WO2021081967A1 - 一种整流器、充电系统和电动车 - Google Patents

一种整流器、充电系统和电动车 Download PDF

Info

Publication number
WO2021081967A1
WO2021081967A1 PCT/CN2019/114904 CN2019114904W WO2021081967A1 WO 2021081967 A1 WO2021081967 A1 WO 2021081967A1 CN 2019114904 W CN2019114904 W CN 2019114904W WO 2021081967 A1 WO2021081967 A1 WO 2021081967A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
terminal
circuit
conversion circuit
Prior art date
Application number
PCT/CN2019/114904
Other languages
English (en)
French (fr)
Inventor
傅电波
梁永涛
王少华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980021288.1A priority Critical patent/CN113133333B/zh
Priority to PCT/CN2019/114904 priority patent/WO2021081967A1/zh
Priority to EP19950728.6A priority patent/EP3975411B1/en
Publication of WO2021081967A1 publication Critical patent/WO2021081967A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4283Arrangements for improving power factor of AC input by adding a controlled rectifier in parallel to a first rectifier feeding a smoothing capacitor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/08Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • This application relates to the field of power electronics, in particular to a rectifier, a charging system and an electric vehicle.
  • rectifiers applied in the fields of uninterruptible power supply, wind power generation, new energy vehicles, etc. generally use high-frequency semiconductor devices as switching devices in the rectifiers to increase power density.
  • the rectifier can have a variety of structures.
  • Power factor correction (PFC) circuits are widely used due to their high efficiency conversion.
  • PFC Power factor correction
  • each switch tube in the PFC circuit is directly connected to the AC power supply.
  • each switch tube will flow a pulsating current with a large change in amplitude. Therefore, when selecting the switch tube of the PFC circuit, there are certain requirements for the withstand voltage level of the switch tube and the maximum pulsating current that flows. These two factors are the key factors that restrict the cost of the switch tube. Therefore, the existing rectifier has high cost while achieving high efficiency conversion.
  • the embodiments of the present application provide a rectifier, a charging system, and an electric vehicle, which are used to reduce the cost of the rectifier while realizing high-efficiency conversion of the rectifier.
  • an embodiment of the present application provides a rectifier, which includes an AC-to-DC conversion circuit (AC/DC conversion circuit) and a power factor correction circuit (PFC circuit); wherein the AC/DC conversion circuit includes a diode;
  • the three-phase AC terminal for receiving the three-phase AC voltage in the DC conversion circuit is connected with the AC terminal of the PFC circuit;
  • the DC terminal of the AC/DC conversion circuit is connected with the DC terminal of the PFC circuit.
  • the AC/DC conversion circuit can be used to convert a three-phase AC voltage into a DC voltage;
  • the PFC circuit can be used to improve the conversion efficiency of the rectifier.
  • AC/DC conversion circuit for receiving three-phase AC voltage through the three-phase AC terminal of the AC/DC conversion circuit, and the voltage value of the first phase AC voltage and the voltage value of the second phase AC voltage in the three-phase AC voltage
  • the absolute value of the difference is greater than the voltage value of the third-phase AC voltage in the three-phase AC voltage
  • the first-phase AC voltage and the second-phase AC voltage are converted into the first DC voltage.
  • the PFC circuit is used to convert the third phase AC voltage to the second DC when the absolute value of the difference between the voltage value of the first phase AC voltage and the voltage value of the second phase AC voltage is greater than the voltage value of the third phase AC voltage Voltage.
  • the voltage value of the first DC voltage may be equal to the voltage value of the second DC voltage.
  • the DC terminal of the AC/DC conversion circuit is connected to the DC terminal of the PFC circuit, the DC terminal of the AC/DC conversion circuit outputs a first DC voltage, and the DC terminal of the PFC circuit outputs a second DC voltage, thereby supplying power to the charged device .
  • Both the three-phase AC terminal of the AC/DC conversion circuit and the AC terminal of the PFC circuit can be connected to an AC power source, and the AC power source is used to output a three-phase AC voltage.
  • the positive and negative directions of the first direct current voltage and the second direct current voltage may be the same.
  • the positive and negative directions of the first DC voltage and the second DC voltage are the same.
  • the specific meaning can be: if the DC terminal of the AC/DC conversion circuit is connected to the DC terminal of the PFC circuit, the output of the DC terminal of the AC/DC conversion circuit is high. One end of the level is connected to the end of the DC end of the PFC circuit that outputs the high level, and the end of the DC end of the AC/DC conversion circuit that outputs the low level is connected to the end of the DC end of the PFC circuit that outputs the low level.
  • the AC/DC conversion circuit and the PFC circuit work in parallel, because the three-phase AC terminal of the AC/DC conversion circuit receives the phase
  • the AC/DC conversion circuit will use the two-phase alternating voltage Converted to the first direct current voltage
  • the PFC circuit converts another phase of alternating current to a second direct current voltage.
  • the use of the rectifier provided in the embodiments of the present application can reduce the cost of the rectifier while realizing high-efficiency conversion of the rectifier.
  • the rectifier provided in the first aspect further includes a controller for controlling the PFC circuit to convert the third-phase AC voltage of the three-phase AC voltage into the second DC voltage.
  • the charged device can be charged through the rectifier under the control of the controller.
  • controller can also be used to control the PFC circuit to convert the third DC voltage into the fourth phase AC voltage, the fifth phase AC voltage, and the sixth phase AC voltage, respectively.
  • the charged device can supply power to the electrical device connected to the AC end of the PFC circuit through the rectifier.
  • the PFC circuit includes: a first boost Boost circuit, a second Boost circuit, a third Boost circuit, a first bus capacitor, and a second bus capacitor;
  • the first bus capacitor and the second bus capacitor are connected in series to form a series branch; the AC terminal of the first Boost circuit, the AC terminal of the second Boost circuit, and the AC terminal of the third Boost circuit constitute the AC terminal of the PFC circuit;
  • the DC terminal of the Boost circuit, the DC terminal of the second Boost circuit, and the DC terminal of the third Boost circuit are connected in parallel to form a first parallel branch; the series branch is connected in parallel with the first parallel branch to form a second parallel branch;
  • the two ends of the parallel branch are the DC ends of the PFC circuit.
  • the first Boost circuit includes a first inductor, a first switching tube, and a second switching tube; the first terminal of the first inductor is connected to the three-phase AC terminal of the AC/DC conversion circuit; the first switch The tube is connected across the second terminal of the first inductor and the positive terminal of the first bus capacitor; the second switch tube is connected across the second terminal of the first inductor and the negative terminal of the second bus capacitor; or
  • the second boost circuit includes a second inductor, a third switch tube, and a fourth switch tube; the first end of the second inductor is connected to the three-phase AC terminal of the AC/DC conversion circuit; the third switch tube is connected across the second inductor Between the second terminal and the positive terminal of the first bus capacitor; the fourth switch tube is connected across the second terminal of the second inductor and the negative terminal of the second bus capacitor; or
  • the third boost circuit includes a third inductor, a fifth switch tube, and a sixth switch tube; the first end of the third inductor is connected to the three-phase AC terminal of the AC/DC conversion circuit; the fifth switch tube is connected across the third inductor Between the second terminal and the positive terminal of the first bus capacitor; the sixth switch tube is connected across the second terminal of the third inductor and the negative terminal of the second bus capacitor.
  • the first aspect is adopted to provide a rectifier.
  • the PFC circuit converts the third-phase AC voltage
  • the PFC circuit works in a single-phase state.
  • the Boost circuit adopts a power factor correction circuit structure, the efficiency of the PFC circuit to convert AC power can be improved, thereby realizing the efficiency of the rectifier. High efficiency conversion.
  • the AC/DC conversion circuit includes a first single-phase converter, a second single-phase converter, and a third single-phase converter;
  • the first single-phase converter, the second single-phase converter and the third single-phase converter are composed of diodes
  • the AC terminal of the first single-phase converter, the AC terminal of the second single-phase converter, and the AC terminal of the third single-phase converter constitute the three-phase AC terminal of the AC/DC conversion circuit
  • the DC terminal of the first single-phase converter, the DC terminal of the second single-phase converter, and the DC terminal of the third single-phase converter are connected in parallel to form the DC terminal of the AC/DC conversion circuit.
  • the first single-phase converter includes a first diode and a second diode; the first diode is connected across the three-phase AC terminal of the AC/DC conversion circuit and the first bus capacitor Between the positive terminals of; the second diode is connected across the first diode and the negative terminal of the second bus capacitor;
  • the second single-phase converter includes a third diode and a fourth diode; the third diode is connected across the three-phase AC terminal of the AC/DC conversion circuit and the positive terminal of the first bus capacitor; the fourth The diode is connected across the third diode and the negative terminal of the second bus capacitor;
  • the third single-phase converter includes a fifth diode and a sixth diode; the fifth diode is connected across the three-phase AC terminal of the AC/DC conversion circuit and the positive terminal of the first bus capacitor; and sixth The diode is connected across the fifth diode and the negative terminal of the second bus capacitor.
  • the AC/DC conversion circuit when the AC/DC conversion circuit converts the first-phase AC voltage and the second-phase AC voltage, the AC/DC conversion circuit operates in a single-phase state. And since the single-phase converters are all composed of diodes, the cost of the components of the AC/DC conversion circuit is low.
  • the rectifier provided in the first aspect further includes a fourth inductor, a fifth inductor, and a sixth inductor;
  • the first end of the fourth inductor is used to receive the first phase of the three-phase AC voltage, and the second end is connected to the three-phase AC end of the AC/DC conversion circuit;
  • the first end of the fifth inductor is used to receive the second phase of the three-phase AC voltage, and the second end is connected to the three-phase AC end of the AC/DC conversion circuit;
  • the first end of the sixth inductor is used to receive the third-phase AC voltage of the three-phase AC voltage, and the second end is connected to the three-phase AC end of the AC/DC conversion circuit.
  • the charging current can be maintained stable through the fourth inductor, the fifth inductor, and the sixth inductor.
  • the PFC circuit is also used to: convert the third DC voltage received by the DC terminal of the PFC circuit into a fourth-phase AC voltage, a fifth-phase AC voltage, and a sixth-phase AC voltage, respectively, and combine the first The four-phase AC voltage, the fifth-phase AC voltage, and the sixth-phase AC voltage are output to the electrical equipment connected to the AC end of the PFC circuit.
  • the device used for rectification in the AC/DC conversion circuit is a diode. Due to the single-phase conductivity characteristics of the diode, the AC/DC conversion circuit does not work at this time. In other words, when being discharged by the charging device, only the PFC circuit in the rectifier works, so low-power inverters can be realized.
  • the rectifier provided by the embodiment of the present application can be used to charge the electric equipment connected to the AC end of the PFC circuit.
  • an embodiment of the present application further provides a charging device, which includes the rectifier provided in the first aspect and any possible design thereof.
  • the charging device further includes an AC power source, and the AC power source is used to supply power to the rectifier, that is, the AC power source can output a three-phase AC voltage.
  • the charging device further includes a device to be charged, and the rectifier is used to charge the device to be charged.
  • an embodiment of the present application also provides a charging system, which includes the rectifier provided in the above-mentioned first aspect and any possible design thereof.
  • the charging system is connected between the wind generator set and the battery pack of the wind power generation system, and the charging system is used to charge the battery pack through alternating current generated by the wind generator set.
  • the charging system is connected between the photovoltaic cell panel of the photovoltaic power generation system and the battery pack, and the charging system is used to charge the battery pack through alternating current generated by the photovoltaic cell panel.
  • the charging system is connected between the input terminal of the uninterruptible power supply and the storage battery, and the charging system is used to charge the storage battery through alternating current received by the uninterruptible power supply.
  • the charging system is a charging pile connected between the AC power source and the electric vehicle, and the charging system is used to charge the electric vehicle.
  • an embodiment of the present application also provides a charging and discharging system, the charging and discharging system includes the rectifier provided in the above-mentioned first aspect and any possible design thereof.
  • the charging and discharging system further includes an electric device, and the rectifier is used to charge the electric device.
  • the electrical equipment may be a terminal such as an induction cooker, an electric rice cooker, and a mobile phone.
  • the charging and discharging system further includes a charged device, and the charged device is used to supply power to the rectifier.
  • the charged device may be a power battery.
  • a power battery For example, nickel-metal hydride batteries, lithium batteries, lead-acid batteries and other power batteries.
  • the embodiments of the present application also provide an electric vehicle, the electric vehicle including a power battery pack and the rectifier provided in the first aspect and any possible design described above, and the power battery pack is used to provide power for the electric vehicle , The rectifier is used to charge the power battery pack.
  • Fig. 1 is a schematic structural diagram of a vehicle-mounted charger provided in the prior art
  • FIG. 2 is a schematic structural diagram of a first rectifier provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a second type of rectifier provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a third type of rectifier provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of an AC/DC conversion circuit provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a PFC circuit provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a fourth type of rectifier provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a charging system provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a charging and discharging system provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of an electric vehicle provided by an embodiment of the application.
  • the rectifier shown in Figure 1 includes a power factor correction PFC module. Specifically, when the rectifier is working in a rectifying state and supplies power to a device (such as a power battery) subsequently connected to the rectifier, three-phase AC power is input from the left side of the PFC module, and the PFC module is used to convert the received three-phase AC power into DC power, and Improve the efficiency of the rectifier to convert DC power.
  • a power factor correction PFC module when the rectifier is working in a rectifying state and supplies power to a device (such as a power battery) subsequently connected to the rectifier, three-phase AC power is input from the left side of the PFC module, and the PFC module is used to convert the received three-phase AC power into DC power, and Improve the efficiency of the rectifier to convert DC power.
  • the two ends of the capacitor C1 output DC power to supply power to the devices subsequently connected to the rectifier; when the rectifier is working in the inverter state, the right side of C1 inputs DC power, and the PFC module is used to convert the DC power at both ends of C1 into AC power , Output AC power from the left side of the PFC module.
  • the rectifier shown in Figure 1 can be used to charge the power battery, since the switching tubes S1-S4 will flow pulsating currents with large amplitudes when the PFC circuit is working, when selecting the switching tubes in the PFC circuit, There are certain requirements for the withstand voltage level of the switching tube and the maximum pulsating current flowing through, and these two factors are the key factors that restrict the cost of the switching tube.
  • the rectifier in the prior art has the problem of high cost of the rectifier while realizing high-efficiency conversion.
  • the embodiments of the present application provide a rectifier, a charging system, and an electric vehicle, which are used to reduce the cost of the rectifier while realizing high-efficiency conversion of the rectifier.
  • the rectifier 200 includes an alternating current (AC) to direct current (DC) conversion circuit 201 (AC/DC conversion circuit 201) and a power factor correction circuit 202 (PFC circuit 202).
  • the AC/DC conversion circuit 201 includes a diode, the three-phase AC terminal for receiving the three-phase AC voltage in the AC/DC conversion circuit 201 is connected to the AC terminal of the PFC circuit 202; the DC terminal of the AC/DC conversion circuit 201 and the PFC The DC terminal of the circuit 202 is connected.
  • the AC/DC conversion circuit 201 can be used to receive the three-phase AC voltage through the three-phase AC terminal of the AC/DC conversion circuit 201, and the voltage value of the first phase AC voltage and the second phase AC voltage in the three-phase AC voltage When the absolute value of the difference between the voltage values of the three-phase AC voltage is greater than the voltage value of the third-phase AC voltage in the three-phase AC voltage, the first-phase AC voltage and the second-phase AC voltage are converted into the first DC voltage; the PFC circuit 202 can be used for When the absolute value of the difference between the voltage value of the first phase AC voltage and the voltage value of the second phase AC voltage is greater than the voltage value of the third phase AC voltage, the third phase AC voltage is converted into the second DC voltage.
  • the first-phase AC voltage may be but not limited to the A-phase voltage in the three-phase AC voltage
  • the second-phase AC voltage may be but not limited to the B-phase voltage in the three-phase AC voltage
  • the third-phase AC voltage may be It is but not limited to the C-phase voltage in the three-phase AC voltage.
  • the voltage value of the first direct current voltage may be equal to the voltage value of the second direct current voltage.
  • the DC terminal (outputting the first DC voltage) of the AC/DC conversion circuit 201 can be electrically connected to the device to be charged (such as a power battery), and the DC terminal of the PFC circuit 202 (outputting the second DC voltage) can also be connected to the device to be charged. Electrically connected to supply power to the device being charged.
  • the positive and negative directions of the first direct current voltage and the second direct current voltage may be the same.
  • the positive and negative directions of the first DC voltage and the second DC voltage are the same, and the specific meaning can be: if the AC/DC conversion circuit 201 and the PFC circuit 202 are connected in parallel, the DC terminal of the AC/DC conversion circuit 201 outputs a high level
  • One end of the PFC circuit 202 is connected to the end of the DC end of the PFC circuit 202 that outputs a high level
  • the end of the DC end of the AC/DC conversion circuit 201 is connected to the end of the DC end of the PFC circuit 202 that outputs a low level.
  • the three-phase AC terminal of the AC/DC conversion circuit 201 and the AC terminal of the PFC circuit 202 can both be electrically connected to an AC power source or electrical equipment.
  • the AC power source is used to output a three-phase AC voltage.
  • the rated voltage of the electrical equipment can be a three-phase alternating current composed of the fourth-phase alternating voltage, the fifth-phase alternating voltage and the sixth-phase alternating voltage, or it can be a single-phase composed of the fourth-phase alternating voltage and the fifth-phase alternating voltage. Phase alternating current.
  • the electrical equipment may be, but not limited to, terminals such as alternators, induction cookers, rice cookers, mobile phones, navigation, televisions, and notebooks.
  • the AC/DC conversion circuit 201 and the PFC circuit 202 work in parallel, and the AC/DC conversion circuit 201 converts the first phase AC voltage and the second phase of the three-phase AC voltage output by the AC power supply.
  • the phase AC voltage is converted into a first DC voltage;
  • the PFC circuit 202 converts the third phase AC voltage of the three-phase AC voltage output by the AC power supply into a second DC voltage.
  • the DC terminal of the AC/DC conversion circuit 201 and the DC terminal of the PFC circuit 202 are both connected to the device to be charged. Among them, the first-phase AC voltage, the second-phase AC voltage, and the third-phase AC voltage form a three-phase AC voltage.
  • the equivalent circuit of the rectifier 200 may be as shown in FIG. 3.
  • the three-phase AC terminal of the AC/DC conversion circuit 201 and the AC terminal of the PFC circuit 202 are connected in parallel to serve as the input terminal of the rectifier 200
  • the DC terminal of the AC/DC conversion circuit 201 and the DC terminal of the PFC circuit 202 are connected in parallel to serve as the rectifier 200
  • the output terminal can be a power battery or a DC device
  • the rectifier 200 shown in FIG. 3 can be used to charge the power battery through an AC power source.
  • the DC device may be, but not limited to, DC power supply equipment such as induction cookers, rice cookers, and refrigerators.
  • the first DC voltage obtained by rectifying the first-phase AC voltage and the second-phase AC voltage by using the AC/DC conversion circuit 201 and the second DC voltage obtained by rectifying the third-phase AC voltage by using the PFC circuit 202 The voltage fluctuates greatly, and the voltage value of the first DC voltage and the voltage value of the second DC voltage are also difficult to meet the voltage requirements of the device to be charged. Therefore, a direct current (DC) converter can also be used for the first DC
  • the voltage and the second DC voltage are rectified and regulated to output a DC voltage usable by the charged device.
  • the rectifier 200 further includes a fourth inductor, a fifth inductor, and a sixth inductor.
  • the first end of the fourth inductor is used for receiving the first phase AC voltage of the three-phase AC voltage, and the second end is connected to the three-phase AC end of the AC/DC conversion circuit;
  • the first end of the fifth inductor is used for Receive the second-phase AC voltage of the three-phase AC voltage, and the second end is connected to the three-phase AC terminal of the AC/DC conversion circuit;
  • the first end of the sixth inductor is used to receive the third-phase AC voltage of the three-phase AC voltage , The second end is connected with the three-phase AC end of the AC/DC conversion circuit.
  • the fourth inductance, the fifth inductance, and the sixth inductance are respectively connected between the AC power source and the three-phase AC terminal of the AC/DC conversion circuit 201, so that the amplitude of the pulsating current flowing in the AC/DC conversion circuit 201 is Stabilize in a fixed interval and realize constant current to charge the device being charged.
  • the AC/DC conversion circuit 201 When the rectifier 200 is used to supply power to the electrical equipment through the charged equipment, the AC/DC conversion circuit 201 includes a diode. Due to the single-phase conductivity of the diode, it can only achieve AC/DC conversion. Therefore, the AC/DC conversion circuit 201 does this Does not work at times. That is to say, when powering the electric equipment, only the PFC circuit 202 in the rectifier 200 works. Specifically, the PFC circuit 202 is used to convert the third DC voltage output by the charged device into a fourth-phase AC voltage, a fifth-phase AC voltage, and a sixth-phase AC voltage, respectively. The AC terminal of the PFC circuit 202 is connected to the electrical equipment.
  • the fourth-phase AC voltage, the fifth-phase AC voltage, and the sixth-phase AC voltage constitute three-phase AC power that can be used by electrical equipment, or the fourth-phase AC voltage and the fifth-phase AC voltage constitute single-phase AC power that can be used by electrical equipment. .
  • the equivalent circuit of the rectifier 200 when powering an electric device, the equivalent circuit of the rectifier 200 may be as shown in FIG. 4.
  • the DC terminal of the PFC circuit 202 is used as the input terminal of the rectifier 200
  • the AC terminal of the PFC circuit 202 is used as the output terminal of the rectifier 200.
  • the charged device may be, but is not limited to, a power battery or an inverter connected to an AC power source.
  • the rectifier 200 shown in FIG. 4 can be used to supply power to the electric device through the charged device.
  • the rectifier 200 is applied to an on-board charger (OBC) configured in a new energy vehicle
  • the electrical equipment may be, but not limited to, an on-board electrical equipment, or may be, but not limited to, a new energy vehicle.
  • the power battery in the charging device can be, but is not limited to, a power battery.
  • the rectifier 200 shown in FIG. 4 can be used to supply power to a vehicle-to-load (V2L) or charge another power battery (V2V) through a power battery.
  • the electrical equipment may be, but not limited to, vehicle electrical equipment such as alternators, induction cookers, rice cookers, etc.
  • the charged equipment may be, but not limited to, power batteries; then, when the power batteries are discharged, they can output a direct current of 90V to 400V.
  • the DC power output by the power battery can be adjusted by the DC converter and then output to the PFC circuit 202.
  • the PFC circuit 202 converts the DC power output by the DC converter to output 380V single-phase AC power or 380V three-phase AC power for supply Alternator, induction cooker, rice cooker and other equipment use.
  • the voltage value of the AC power output by the PFC circuit 202 can meet the rated voltage requirements of equipment such as an AC generator, an induction cooker, and an electric rice cooker.
  • the powered device and the charged device can be power batteries on two new energy vehicles respectively, where the power of the charged device is greater than the power of the powered device, and the charged device can be the powered device through the rectifier 200 at this time Recharge.
  • the charged device when the charged device is discharged, it can output a direct current of 90V to 400V.
  • the direct current output from the charged device is regulated by the DC converter and then output to the PFC circuit 202.
  • the PFC circuit 202 converts the direct current output from the DC converter. , Output three-phase AC voltage to charge the power battery of another new energy vehicle.
  • the third DC voltage output by the charged device is directly inverted through the PFC circuit 202, the output voltage may be difficult to meet the voltage demand of the electrical device. Therefore, the third DC voltage output by the power battery can be first output by the DC converter. The DC voltage is rectified and regulated, and then the rectified and regulated third DC voltage is subjected to inversion processing through the PFC circuit 202, so that the output electrical equipment can use three-phase AC power or single-phase AC power.
  • the charging process of the rectifier 200 to the charged device is referred to as “forward charging”, and the process of discharging the charged device in the rectifier 200 is referred to as “reverse discharge”.
  • the rectifier 200 can be fixed on the new energy vehicle, and electrical equipment can be connected to the rectifier 200 through a fixed interface on the new energy vehicle.
  • the power plugs of the induction cooker, electric rice cooker, etc. can be directly inserted into the fixed interface, so that the power battery can supply power to the AC motor, the induction cooker, and the electric cooker.
  • the rectifier 200 can also be arranged in a flexible and detachable form, that is, a fixed interface is provided on the new energy vehicle to realize the connection between the rectifier 200 and the device to be charged. In this case, the rectifier 200 can be regarded as a device independent of the new energy vehicle.
  • the AC/DC conversion circuit 201 and the PFC circuit 202 may be composed of switching tubes, diodes, inductors, capacitors and other devices.
  • the working states of the AC/DC conversion circuit 201 and the PFC circuit 202 can be realized by adjusting the working states of these devices (for example, switch tubes).
  • the rectifier 200 may further include a controller, and the controller may be used to control the PFC circuit 202 to convert the first-phase AC voltage and the second-phase AC voltage of the three-phase AC voltage output by the AC power supply into the first DC voltage.
  • the rectifier 200 is "forward charging".
  • the controller can also be used to control the PFC circuit 202 to convert the third DC voltage output by the charged device into a fourth phase AC voltage, a fifth phase AC voltage, and a sixth phase AC voltage.
  • the rectifier 200 "reversely discharges" ".
  • the controller can be connected to the gate of the MOS tube, so that the rectifier 200 can be realized by controlling the on and off of the MOS tube. Rectification or inversion; if the switches in each circuit of the rectifier 200 are bipolar junction transistors (BJT), the controller can be connected to the base of the BJT, so that the rectifier 200 can be realized by controlling the on and off of the BJT Rectification or inverter.
  • MOS metal oxide semiconductor
  • BJT bipolar junction transistors
  • the AC/DC conversion circuit 201 and the PFC circuit 202 of the rectifier 200 are connected in the form of an integrated circuit, and the controller may be connected to an integrated circuit composed of the AC/DC conversion circuit 201 and the PFC circuit 202.
  • the AC/DC conversion circuit 201 and the PFC circuit 202 of the rectifier 200 are connected in the form of an integrated circuit, and the controller is also connected to the AC/DC conversion circuit 201 and the PFC circuit 202 in the form of an integrated circuit.
  • the controller may be any of a microcontroller unit (MCU), a central processing unit (CPU), and a digital signal processor (digital signal processor, DSP).
  • MCU microcontroller unit
  • CPU central processing unit
  • DSP digital signal processor
  • the specific form of the controller is not limited to the above examples.
  • the AC/DC conversion circuit 201 has a three-phase AC terminal for receiving a three-phase AC voltage, and the three-phase AC terminal is connected to an AC power source.
  • the AC/DC conversion circuit 201 includes: a first single-phase converter, a second single-phase converter, and a third single-phase converter; wherein, the first single-phase converter, the second single-phase converter, and the third single-phase converter
  • the single-phase converter is composed of diodes; the AC terminal of the first single-phase converter, the AC terminal of the second single-phase converter, and the AC terminal of the third single-phase converter constitute the three-phase AC terminal of the AC/DC conversion circuit 201;
  • the DC terminal of the first single-phase converter, the DC terminal of the second single-phase converter, and the DC terminal of the third single-phase converter are connected in parallel to form the DC terminal of the AC/DC conversion circuit.
  • the AC/DC conversion circuit 201 can be implemented by three single-phase converters using Y-shaped connections.
  • the function of setting the single-phase converter is to receive the three-phase AC voltage through the AC terminal of the single-phase converter, and convert the first-phase AC voltage and the second-phase AC voltage of the three-phase AC voltage into the first DC voltage.
  • the first single-phase converter includes a first diode and a second diode; the first diode is connected across the three-phase AC terminal of the AC/DC conversion circuit and the positive terminal of the first bus capacitor ; The second diode is connected across the negative terminal of the first diode and the second bus capacitor.
  • the second single-phase converter includes a third diode and a fourth diode; the third diode is connected across the three-phase AC terminal of the AC/DC conversion circuit and the positive terminal of the first bus capacitor; the fourth The diode is connected across the third diode and the negative terminal of the second bus capacitor.
  • the third single-phase converter includes a fifth diode and a sixth diode; the fifth diode is connected across the three-phase AC terminal of the AC/DC conversion circuit and the positive terminal of the first bus capacitor; and sixth The diode is connected across the fifth diode and the negative terminal of the second bus capacitor.
  • the positive terminal of the first bus capacitor and the negative terminal of the second bus capacitor are the two terminals of the DC terminal of the PFC circuit 202, the DC terminal of the AC/DC conversion circuit 201 is connected to the DC terminal of the PFC circuit 202, and the connection point is the first The positive terminal of a bus capacitor and the negative terminal of the second bus capacitor.
  • the first single-phase converter, the second single-phase converter, and the third single-phase converter are composed of two diodes, which can directly convert AC power greater than the diode cathode voltage, with high conversion efficiency and low device cost. Therefore, the cost of AC/DC conversion circuit 201 for converting AC power is reduced. Among them, due to the single-phase conductivity characteristics of the diode, the AC/DC conversion circuit 201 is only used to implement rectification, but cannot implement inversion.
  • D1 can be regarded as the first diode
  • D2 can be regarded as the second diode
  • D1 and D2 form the first single-phase converter
  • D3 can be regarded as the third diode
  • D4 can be regarded as the fourth diode
  • D3 and D4 form the second single-phase converter
  • D5 can be regarded as the fifth diode
  • D6 can be regarded as the sixth diode
  • Va can be regarded as the AC terminal of the first single-phase converter
  • Vb can be regarded as the AC terminal of the second single-phase converter
  • Vc can be regarded as the AC terminal of the third single-phase converter.
  • connection relationship of the components in the AC/DC conversion circuit 201 shown in FIG. 5 may be: the cathodes of the diodes D1, D3, and D5 are connected to the positive terminal (output terminal A) of the first bus capacitor C1, and the terminals of D2, D4, and D6 are connected The anode is connected to the negative terminal (output terminal B) of the second bus capacitor C2, the anode of D1 is connected to the cathode of D2, the anode of D3 is connected to the cathode of D4, and the anode of D5 is connected to the cathode of D6.
  • Va, Vb, and Vc are used as three-phase input terminals to receive three-phase AC voltage, and A and B are used as DC output terminals. Energy is transmitted from left to right. The three-phase AC voltage input on the left is converted into DC power and then output.
  • the above description of the structure of the AC/DC conversion circuit 201 is only an example. In practical applications, the AC/DC conversion circuit 201 may also adopt other structures.
  • the AC/DC conversion circuit 201 may be a three-phase fully controlled bridge circuit. , Used to realize three-phase rectification and three-phase inverter.
  • the AC terminal of the PFC circuit 202 is a three-phase AC terminal, and the three-phase AC terminal of the PFC circuit 202 is connected to the three-phase AC terminal of the AC/DC conversion circuit 201.
  • the PFC circuit includes a first boost (boost converter or step-up converter, Boost) Boost circuit, a second Boost circuit, a third Boost circuit, a first bus capacitor, and a second bus capacitor; wherein, the first bus capacitor Connected in series with the second bus capacitor to form a series branch; the AC terminal of the first Boost circuit, the AC terminal of the second Boost circuit, and the AC terminal of the third Boost circuit constitute the AC terminal of the PFC circuit; the DC terminal of the first Boost circuit, The DC terminal of the second Boost circuit and the DC terminal of the third Boost circuit are connected in parallel to form a first parallel branch; the series branch and the first parallel branch are connected in parallel to form a second parallel branch; both ends of the second parallel branch It is the DC terminal of the PFC circuit.
  • Boost boost converter or step-up converter
  • the function of setting the Boost circuit is: when the rectifier 200 is used for "forward charging", three-phase rectification can be realized through the Boost circuit, and the third-phase AC voltage of the three-phase AC voltage output by the AC power supply can be converted into the second phase. DC voltage.
  • the rectifier 200 is used for "reverse discharge”
  • a single-phase inverter and/or a three-phase inverter can be realized through a Boost circuit.
  • the function of setting the first bus capacitor and the second bus capacitor is to receive the first DC voltage output by the single-phase converter and/or the second DC voltage output by the Boost circuit, and convert the voltage value of the first DC voltage and/or the second DC voltage 2.
  • the voltage value of the direct current voltage is stabilized within a fixed value interval, and the stable voltage value is output to the device to be charged.
  • the first Boost circuit includes a first inductor, a first switch tube, and a second switch tube; the first end of the first inductor is connected to the three-phase AC terminal of the AC/DC conversion circuit; the first switch tube is connected across the first switch tube. Between the second end of an inductor and the positive end of the first bus capacitor; the second switch tube is connected across the second end of the first inductor and the negative end of the second bus capacitor.
  • the second boost circuit includes a second inductor, a third switch tube, and a fourth switch tube; the first end of the second inductor is connected to the three-phase AC terminal of the AC/DC conversion circuit; the third switch tube is connected across the second inductor Between the second end and the positive end of the first bus capacitor; the fourth switch tube is connected across the second end of the second inductor and the negative end of the second bus capacitor.
  • the third boost circuit includes a third inductor, a fifth switch tube, and a sixth switch tube; the first end of the third inductor is connected to the three-phase AC terminal of the AC/DC conversion circuit; the fifth switch tube is connected across the third inductor Between the second terminal and the positive terminal of the first bus capacitor; the sixth switch tube is connected across the second terminal of the third inductor and the negative terminal of the second bus capacitor.
  • the first Boost circuit, the second Boost circuit, and the third Boost circuit can treat the alternating current (that is, the alternating current that cannot be converted by the AC/DC conversion circuit 201) in the alternating current with a voltage value smaller than the first bus capacitor potential and the second bus capacitor potential. Perform conversion, thereby improving the conversion efficiency of the rectifier.
  • the pulsating current flowing through the Boost circuit is reduced, and the loss on the switch tube and the inductor is also reduced, the conversion efficiency is high, that is, low-cost switches can be used
  • the tube and inductor realize the high efficiency conversion of the rectifier.
  • L1 can be regarded as the first inductor
  • S1 can be regarded as the first switching tube
  • S2 can be regarded as the second switching tube
  • L1, S1, and S2 form the first Boost circuit
  • L2 can be regarded as the second inductor
  • S3 can be regarded as the third switching tube
  • S4 can be regarded as the fourth switching tube
  • L2 S3 and S4 form the second Boost circuit
  • L3 can be regarded as the third inductor
  • S5 can be regarded as the fifth switching tube
  • S6 can be regarded as the sixth switching tube
  • L3, S5 and S6 form the third Boost circuit.
  • C1 can be regarded as the first bus capacitance
  • C2 can be regarded as the second bus capacitance
  • Va can be regarded as the AC terminal of the first Boost circuit
  • Vb can be regarded as the AC terminal of the second Boost circuit
  • Vc can be regarded as the AC terminal of the third Boost circuit.
  • connection relationship of the components in the PFC circuit 202 shown in FIG. 6 may be: the drains of the switch tubes S1, S3, and S5 are connected to the positive terminal of C1, the sources of S2, S4, and S6 are connected to the negative terminal of C2, and S1
  • the source of S2 is connected to the drain of S2
  • the source of S3 is connected to the drain of S4
  • the source of S5 is connected to the drain of S6.
  • Va, Vb, and Vc are used as three-phase input terminals to receive three-phase AC voltage, and A and B are used as DC output terminals. Energy is transmitted from left to right, and the left side is input The three-phase AC voltage is converted to DC power and output.
  • a and B are used as DC input terminals
  • Va, Vb, and Vc are used as three-phase output terminals.
  • Energy is transmitted from right to left, and the input from the right is The direct current is converted into three-phase alternating current or single-phase alternating current and then output.
  • the PFC circuit 202 adopts the above structure, in addition to realizing AC/DC conversion and DC/AC conversion, high power factor and low current harmonics can also be obtained by controlling the on and off of the switch in the PFC circuit 202.
  • switch tubes in the embodiments of this application include but are not limited to complementary metal oxide semiconductor (CMOS) tubes, MOS tubes, BJTs, and silicon carbide (SiC) power tubes.
  • CMOS complementary metal oxide semiconductor
  • MOS tubes MOS tubes
  • BJTs silicon carbide
  • SiC silicon carbide
  • the specific type of switch tube is not limited.
  • the switch tube is a MOS as an example for illustration. In practical applications, other types of switch tubes can also be used.
  • the switch tube adopts other types the names of each port of the switch tube will be different, but the functions are basically the same.
  • the base in the BJT is equivalent to the gate in the MOS tube; the collector in the BJT is equivalent to the drain in the MOS tube; the emitter in the BJT is equivalent to the source in the MOS tube pole. Therefore, the rectifier implemented based on the MOS tube in this application can be equivalent to the rectifier implemented based on BJT.
  • a rectifier provided by an embodiment of the present application may be as shown in FIG. 7.
  • the input phase wires of the AC side are respectively connected to the inductors L1, L2, L3;
  • the AC/DC conversion circuit includes diodes D1/D2/D/D4/D5/D6.
  • the cathodes of D1, D3, and D5 are all connected to the positive terminal of the first bus capacitor C1
  • the anodes of D1, D3, and D5 are connected to the second end of L1, L2, and L3 respectively;
  • the anodes of D2, D4, and D6 are all connected to the The negative terminal of the first bus capacitor C2 is connected;
  • the cathodes of D2, D4, and D6 are connected to the second terminals of L1, L2, and L3, respectively.
  • the gates of the above switch tubes are all connected with an external control circuit (or controller), and the control circuit realizes the corresponding function of the rectifier by controlling the on and off of the switch tubes.
  • the AC end of the PFC circuit is connected to the three-phase AC end of the AC/DC conversion circuit
  • the DC end of the AC/DC conversion circuit is connected to the DC end of the PFC circuit. connection.
  • Va, Vb, and Vc are used as the input ends of the rectifier, and A and B are used as the output ends of the rectifier, which are connected to the charged device.
  • the AC power supply is connected to the AC/DC conversion circuit and the PFC circuit, and the AC/DC conversion circuit and the PFC circuit are connected to the charged device.
  • Va, Vb and Vc are the input ends of the rectifier, used for receiving the three-phase alternating voltage.
  • D1, D2, D5, and D6 form an H-bridge rectifier circuit, which converts the first-phase AC voltage and the second-phase AC voltage received by Va and Vc into a first DC voltage, and outputs the first DC voltage to both ends of C1 and C2.
  • the second phase AC voltage output by the AC power supply is stored in L5 through L2, L5, S4, S6 (or D6) and L3.
  • turn off S4 After L5 is fully charged, turn off S4, turn on S3, convert the voltage stored in L5 and the second-phase AC voltage into a second DC voltage, and output the second DC voltage to both ends of C1 and C2.
  • the energy is output from the left end to the right end (at this time Va, Vb and Vc are used as the AC input ends of the rectifier, and the two ends A and B connected to the power battery are used as the DC output ends of the rectifier).
  • the PFC circuit since the PFC circuit only passes the second-phase AC voltage during the charging process of the charged device, the AC/DC output of the first-phase AC voltage and the second-phase AC voltage of the AC power supply can be directly AC/DC The conversion efficiency is high. Therefore, for the rectifier shown in Figure 7, the alternating current flowing through the PFC circuit switch tube is reduced during the charging process of the charging device. Therefore, lower-cost devices can be used as the switch of the PFC circuit. Therefore, while realizing high-power charging, the cost of the rectifier can be reduced.
  • the rectifier shown in Figure 7 When the rectifier shown in Figure 7 is used to be discharged by the charging device, according to the direction of energy transmission, it is in the inverter state from right to left (at this time, the two ends A and B connected to the power battery are used as the DC input terminals of the rectifier, Va, Vb and Vc are used as the AC output terminals of the rectifier).
  • Va, Vb and Vc Take a single-phase inverter as an example, the device to be charged is connected to the PFC circuit. Any two ends of Va, Vb and Vc can be used as single-phase AC output terminals to connect with electrical equipment, and output 380V single-phase alternating current to supply power to the electrical equipment.
  • Va, Vb, and Vc are used as three-phase output terminals, connected with electrical equipment, and output three-phase alternating current to supply power to the electrical equipment.
  • the AC/DC conversion circuit and the PFC circuit work in parallel, and the AC/DC conversion circuit outputs the AC power source to the first phase of the three-phase AC voltage And the second-phase AC voltage is converted into the first DC voltage, and the PFC circuit converts the third-phase AC voltage of the three-phase AC output from the AC power supply into the second DC voltage.
  • the PFC circuit only needs to rectify one-phase AC voltage, and the amplitude of the pulsating current flowing through the switch tube becomes smaller. You can choose a lower cost switch tube device and flow through the inductance in the PFC circuit. The alternating current and pulsating current are reduced, and inductors with smaller specifications can also be selected, which reduces the cost of the rectifier.
  • the AC/DC conversion circuit is composed of diodes and can only perform AC/DC conversion, so the AC/DC conversion circuit does not work at this time.
  • the charging device when being discharged by the charging device, only part of the circuit in the rectifier works. Therefore, when being discharged by the charging device, only the PFC circuit in the rectifier works, so low-power inverters can be realized.
  • the use of the rectifier 200 provided in the embodiment of the present application not only realizes high-efficiency conversion during high-power charging, but also reduces the cost of the rectifier.
  • an embodiment of the present application also provides a charging device, which includes the aforementioned rectifier.
  • the charging device further includes an AC power source, and the AC power source is used to supply power to the rectifier, that is, the AC power source can output a three-phase AC voltage.
  • the charging device further includes a device to be charged, and the rectifier is used to charge the device to be charged.
  • an embodiment of the present application also provides a charging system.
  • the charging system 800 includes the aforementioned rectifier 200.
  • the charging system 800 is connected between the wind generator set and the battery pack of the wind power generation system, and the charging system 800 is used to charge the battery pack through alternating current generated by the wind generator set.
  • the charging system 800 is connected between the photovoltaic cell panel and the battery pack of the photovoltaic power generation system, and the charging system 800 is used to charge the battery pack through alternating current generated by the photovoltaic cell panel.
  • the charging system 800 is connected between the input terminal of the uninterruptible power supply and the battery pack, and the charging system 800 is used to charge the battery pack through alternating current received by the uninterruptible power supply.
  • the charging system 800 is a charging pile connected between the AC power source and the electric vehicle, and the charging system 800 is used to charge the electric vehicle.
  • the charging system 800 may further include an AC power source, and the AC power source is used to supply power to the rectifier 200.
  • the AC power supply can output three-phase AC voltage.
  • the charging system 800 further includes a device to be charged, and the rectifier 200 is used to charge the device to be charged.
  • the device to be charged may be a power battery and/or a battery pack.
  • power batteries and/or battery packs such as nickel-metal hydride batteries, lithium batteries, and lead-acid batteries.
  • an embodiment of the present application also provides a charging and discharging system.
  • the charging and discharging system 900 includes the aforementioned rectifier 200.
  • the charging and discharging system 900 further includes an electric device, and the rectifier 200 is used to charge the electric device.
  • the electrical equipment may be a terminal such as an induction cooker, an electric rice cooker, and a mobile phone.
  • the charging and discharging system 900 further includes a charged device, and the charged device is used to supply power to the rectifier 200.
  • the charged device may be, but is not limited to, a power battery.
  • a power battery For example, nickel-metal hydride batteries, lithium batteries, lead-acid batteries and other power batteries.
  • an embodiment of the present application also provides an electric vehicle.
  • the electric vehicle 1000 includes a power battery pack 1001 and the aforementioned rectifier 200.
  • the power battery pack 1001 is used to provide power for the electric vehicle 1000, and the rectifier 200 is used to charge the power battery pack 1001.
  • the solutions provided in this application can be applied to charging solutions for different electric vehicles, specifically, including but not limited to: Pure EV/Battery EV, Hybrid Electric Vehicle (HEV), Different types of vehicles such as new energy vehicles.
  • the rectifier provided in this application is not limited to being applied to the automotive field, but can also be applied to fields such as wind power generation and photovoltaic power generation.
  • connection involved in this application describes the connection relationship between two objects.
  • the connection between A and B can mean that: A and B are directly connected, and A is connected through C and B.
  • system structure and business scenarios provided in the embodiments of the present application are mainly for explaining some possible implementation manners of the technical solutions of the present application, and should not be interpreted as a unique limitation on the technical solutions of the present application.
  • Those of ordinary skill in the art can know that with the evolution of the system and the emergence of newer business scenarios, the technical solutions provided in this application are still applicable to the same or similar technical problems.

Abstract

本申请实施例公开了一种整流器、充电系统和电动车,用以在实现高效率转换的同时,减小整流器的成本。包括:交流(AC)/直流(DC)转换电路和功率因数校正(PFC)电路;AC/DC转换电路包括二极管;AC/DC转换电路中用于接收三相交流电压的三相交流端与PFC电路的交流端连接;AC/DC转换电路的直流端和PFC电路的直流端连接;AC/DC转换电路,用于在三相交流电压中的第一相交流电压的电压值和第二相交流电压的电压值之差的绝对值大于第三相交流电压的电压值时,将第一相交流电压和第二相交流电压转换为第一直流电压;PFC电路,用于将第三相交流电压转换为第二直流电压。

Description

一种整流器、充电系统和电动车 技术领域
本申请涉及电力电子领域,尤其涉及一种整流器、充电系统和电动车。
背景技术
现有技术中,应用于不间断电源、风力发电、新能源汽车等领域的整流器普遍采用高频半导体器件作为整流器中的开关器件,以提高功率密度。
其中,整流器可以有多种结构,功率因数校正(power factor correction,PFC)电路以其高效率转换而被广泛应用,在PFC电路工作期间,PFC电路中的每个开关管均与交流电源直接连接,且每个开关管均会流过幅值变化很大的脉动电流,因此在选用PFC电路的开关管时,对开关管的耐压等级以及流过的最大脉动电流均有一定的要求,而这两个因素均为制约开关管的成本的关键因素。因此现有的整流器在实现高效率转换的同时,成本较高。
因此,现有的整流器还有待进一步研究。
发明内容
本申请实施例提供一种整流器、充电系统和电动车,用以在实现整流器高效率转换的同时,减小整流器的成本。
第一方面,本申请实施例提供一种整流器,该整流器包括交流转直流转换电路(AC/DC转换电路)和功率因数校正电路(PFC电路);其中,AC/DC转换电路包括二极管;AC/DC转换电路中用于接收三相交流电压的三相交流端与PFC电路的交流端连接;AC/DC转换电路的直流端和PFC电路的直流端连接。其中,AC/DC转换电路可用于将三相交流电压转换为直流电压;PFC电路可用于提高整流器的转换效率。
AC/DC转换电路,用于通过AC/DC转换电路的三相交流端接收三相交流电压,并在三相交流电压中的第一相交流电压的电压值和第二相交流电压的电压值之差的绝对值大于三相交流电压中的第三相交流电压的电压值时,将第一相交流电压和第二相交流电压转换为第一直流电压。
PFC电路,用于在第一相交流电压的电压值和第二相交流电压的电压值之差的绝对值大于第三相交流电压的电压值时,将第三相交流电压转换为第二直流电压。
其中,第一直流电压的电压值可以与第二直流电压的电压值相等。具体地,AC/DC转换电路的直流端与PFC电路的直流端连接,AC/DC转换电路的直流端输出第一直流电压,PFC电路的直流端输出第二直流电压,从而为被充电设备供电。AC/DC转换电路的三相交流端与PFC电路的交流端均可以与交流电源连接,该交流电源用于输出三相交流电压。
更进一步地,第一直流电压和第二直流电压的正负方向可以相同。第一直流电压和第二直流电压的正负方向相同,其具体含义可以是:若AC/DC转换电路的直流端与PFC电路的直流端连接,则AC/DC转换电路的直流端中输出高电平的一端与PFC电路的直流端中输出高电平的一端连接,AC/DC转换电路的直流端中输出低电平的一端与PFC电路的直流端中输出低电平的一端连接。
采用第一方面提供的整流器,在整流器用于为被充电设备(例如动力电池)充电时, AC/DC转换电路与PFC电路并联工作,由于AC/DC转换电路的三相交流端接收的是相位和电压值不断变化的三相交流电,在确定三相交流电中其中两相交流电的电压值的差值的绝对值大于另外一相交流电的电压值时,AC/DC转换电路将该两相交流电压转换为第一直流电压,PFC电路将另外一相交流电转换为第二直流电压。因此,在为被充电设备充电时,三相交流电中的大部分交流电流过AC/DC转换电路,只有一相交流电压流过PFC电路,故流过PFC电路中开关管的脉动电流的幅值变小,因此可以使用低成本的开关管来实现整流器的高效率转换,减小了开关管的成本。
综上,采用本申请实施例提供的整流器,在实现整流器高效率转换的同时,可以减小整流器的成本。
在一种可能的设计中,第一方面提供的整流器还包括控制器,该控制器用于控制PFC电路将三相交流电压中的第三相交流电压转换为第二直流电压。
采用上述方案,可以在控制器的控制下,通过整流器为被充电设备充电。
此外,上述控制器还可以用于控制PFC电路将第三直流电压分别转换为第四相交流电压、第五相交流电压和第六相交流电压。
采用上述方案,可以在控制器的控制下,实现被充电设备通过整流器为与PFC电路的交流端连接的用电设备供电。
在一种可能的设计中,PFC电路包括:第一升压Boost电路,第二Boost电路、第三Boost电路、第一母线电容和第二母线电容;
其中,第一母线电容与第二母线电容串联连接构成串联支路;第一Boost电路的交流端、第二Boost电路的交流端和第三Boost电路的交流端构成PFC电路的交流端;第一Boost电路的直流端、第二Boost电路的直流端和第三Boost电路的直流端并联连接构成第一并联支路;串联支路与第一并联支路并联连接构成第二并联支路;第二并联支路的两端为PFC电路的直流端。
在一种可能的设计中,第一Boost电路包括第一电感、第一开关管和第二开关管;第一电感的第一端与AC/DC转换电路的三相交流端连接;第一开关管跨接在第一电感的第二端以及第一母线电容的正端之间;第二开关管跨接在第一电感的第二端以及第二母线电容的负端之间;或者
第二Boost电路包括第二电感、第三开关管和第四开关管;第二电感的第一端与AC/DC转换电路的三相交流端连接;第三开关管跨接在第二电感的第二端以及第一母线电容的正端之间;第四开关管跨接在第二电感的第二端以及第二母线电容的负端之间;或者
第三Boost电路包括第三电感、第五开关管和第六开关管;第三电感的第一端与AC/DC转换电路的三相交流端连接;第五开关管跨接在第三电感的第二端以及第一母线电容的正端之间;第六开关管跨接在第三电感的第二端以及第二母线电容的负端之间。
采用第一方面提供整流器,在PFC电路转换第三相交流电压时,PFC电路工作在单相状态,由于Boost电路采用功率因数校正电路结构,可以实现提高PFC电路转换交流电的效率,从而实现整流器的高效率转换。
在一种可能的设计中,AC/DC转换电路包括第一单相转换器、第二单相转换器和第三单相转换器;
第一单相转换器、第二单相转换器和第三单相转换器由二极管组成;
第一单相转换器的交流端、第二单相转换器的交流端和第三单相转换器的交流端构成 AC/DC转换电路的三相交流端;
第一单相转换器的直流端、第二单相转换器的直流端和第三单相转换器的直流端并联连接构成AC/DC转换电路的直流端。
在一种可能的设计中,第一单相转换器包括第一二极管和第二二极管;第一二极管跨接在AC/DC转换电路的三相交流端以及第一母线电容的正端之间;第二二极管跨接在第一二极管以及第二母线电容的负端之间;
第二单相转换器包括第三二极管和第四二极管;第三二极管跨接在AC/DC转换电路的三相交流端以及第一母线电容的正端之间;第四二极管跨接在第三二极管以及第二母线电容的负端之间;
第三单相转换器包括第五二极管和第六二极管;第五二极管跨接在AC/DC转换电路的三相交流端以及第一母线电容的正端之间;第六二极管跨接在第五二极管以及第二母线电容的负端之间。
采用第一方面提供的整流器,在AC/DC转换电路转换第一相交流电压和第二相交流电压时,AC/DC转换电路工作在单相状态。且由于单相转换器均由二极管组成,故AC/DC转换电路的器件成本低。
在一种可能的设计中,第一方面提供的整流器还包括第四电感、第五电感和第六电感;
第四电感的第一端用于接收三相交流电压中的第一相交流电压,第二端与AC/DC转换电路的三相交流端连接;
第五电感的第一端用于接收三相交流电压中的第二相交流电压,第二端与AC/DC转换电路的三相交流端连接;
第六电感的第一端用于接收三相交流电压中的第三相交流电压,第二端与AC/DC转换电路的三相交流端连接。
采用上述方案,可以通过第四电感、第五电感、第六电感维持充电电流稳定。
在一种可能的设计中,PFC电路还用于:将PFC电路的直流端接收的第三直流电压分别转换为第四相交流电压、第五相交流电压和第六相交流电压,并将第四相交流电压、第五相交流电压和第六相交流电压输出给与PFC电路的交流端连接的用电设备。
采用第一方面提供的整流器,在整流器为用电设备充电时,AC/DC转换电路中用于整流的器件为二极管,由于二极管的单相导电特性,AC/DC转换电路此时不工作,也就是说,被充电设备放电时,整流器中仅有PFC电路工作,因而可以实现小功率逆变。
综上,采用本申请实施例提供的整流器,可以实现为与PFC电路的交流端连接的用电设备充电。
第二方面,本申请实施例还提供一种充电装置,该充电装置包括上述第一方面及其任一可能的设计中提供的整流器。
在一种可能的设计中,该充电装置还包括交流电源,该交流电源用于向该整流器供电,也就是说,该交流电源可以输出三相交流电压。
在一种可能的设计中,该充电装置还包括被充电设备,该整流器用于向被充电设备充电。
另外,第二方面中任一种可能设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第三方面,本申请实施例还提供一种充电系统,该充电系统包括上述第一方面及其任 一可能的设计中提供的整流器。
在一种可能的设计中,该充电系统连接在风力发电系统的风力发电机组与电池组之间,该充电系统用于通过风力发电机组产生的交流电向电池组充电。
在一种可能的设计中,该充电系统连接在光伏发电系统的光伏电池板与电池组之间,该充电系统用于通过光伏电池板产生的交流电向电池组充电。
在一种可能的设计中,该充电系统连接在不间断电源的输入端与蓄电池之间,该充电系统用于通过不间断电源接收的交流电向蓄电池充电。
在一种可能的设计中,该充电系统为充电桩,连接在交流电源与电动车之间,该充电系统用于向电动车充电。
另外,第三方面中任一种可能设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第四方面,本申请实施例还提供一种充放电系统,该充放电系统包括上述第一方面及其任一可能的设计中提供的整流器。
在一种可能的设计中,该充放电系统还包括用电设备,该整流器用于向该用电设备充电。
具体地,用电设备可以是电磁炉、电饭煲、手机等终端。
在一种可能的设计中,该充放电系统还包括被充电设备,该被充电设备用于向该整流器供电。
具体地,被充电设备可以是动力电池。例如,镍氢电池、锂电池、铅酸电池等动力电池。
另外,第四方面中任一种可能设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第五方面,本申请实施例还提供一种电动车,该电动车包括动力电池组和上述第一方面及其任一可能的设计中提供的整流器,该动力电池组用于为电动车提供动力,该整流器用于对动力电池组进行充电。
另外,第五方面中任一种可能设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为现有技术提供的一种车载充电机的结构示意图;
图2为本申请实施例提供的第一种整流器的结构示意图;
图3为本申请实施例提供的第二种整流器的结构示意图;
图4为本申请实施例提供的第三种整流器的结构示意图;
图5为本申请实施例提供的一种AC/DC转换电路的结构示意图;
图6为本申请实施例提供的一种PFC电路的结构示意图;
图7为本申请实施例提供的第四种整流器的结构示意图;
图8为本申请实施例提供的一种充电系统的结构示意图;
图9为本申请实施例提供的一种充放电系统的结构示意图;
图10为本申请实施例提供的一种电动车的结构示意图。
具体实施方式
现有技术中,整流器的一种可能的结构可以如图1所示。图1所示的整流器包括功率因数校正PFC模块。具体地,在整流器工作在整流状态,并且为整流器后续连接的装置(例如动力电池)供电时,从PFC模块左侧输入三相交流电,PFC模块用于将接收的三相交流电转换为直流电,并提高整流器转换直流电的效率,电容C1两端输出直流电,从而为整流器后续连接的装置供电;在整流器工作在逆变状态时,C1右侧输入直流电,PFC模块用于将C1两端的直流电转换为交流电,从PFC模块的左侧输出交流电。
图1所示的整流器虽然可以实现为动力电池充电,但是由于PFC电路工作时,开关管S1-S4均会流过幅值变化很大的脉动电流,因此在选用PFC电路中的开关管时,对开关管的耐压等级以及流过的最大脉动电流均有一定的要求,而这两个因素均为制约开关管成本的关键因素。
因此,现有技术中的整流器在实现高效率转换的同时,存在整流器成本高的问题。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
本申请实施例提供一种整流器、充电系统和电动车,用以在实现整流器高效率转换的同时,减小整流器的成本。
参见图2,为本申请实施例提供的一种整流器的结构示意图。其中,该整流器200包括交流(alternating current,AC)转直流(direct current,DC)转换电路201(AC/DC转换电路201)和功率因数校正电路202(PFC电路202)。其中,AC/DC转换电路201包括二极管,AC/DC转换电路201中用于接收三相交流电压的三相交流端与PFC电路202的交流端连接;AC/DC转换电路201的直流端和PFC电路202的直流端连接。
其中,AC/DC转换电路201可用于通过AC/DC转换电路201的三相交流端接收三相交流电压,并在三相交流电压中的第一相交流电压的电压值和第二相交流电压的电压值之差的绝对值大于三相交流电压中的第三相交流电压的电压值时,将第一相交流电压和第二相交流电压转换为第一直流电压;PFC电路202可用于在第一相交流电压的电压值和第二相交流电压的电压值之差的绝对值大于第三相交流电压的电压值时,将第三相交流电压转换为第二直流电压。具体的,第一相交流电压可以是但不限于三相交流电压中的A相电压、第二相交流电压可以是但不限于三相交流电压中的B相电压、第三相交流电压电压可以是但不限于三相交流电压中的C相电压。
其中,第一直流电压的电压值可以等于第二直流电压的电压值。那么,AC/DC转换电路201的直流端(输出第一直流电压)可以与被充电设备(例如动力电池)电连接,PFC电路202的直流端(输出第二直流电压)也可以与被充电设备电连接,从而向被充电设备供电。
进一步地,第一直流电压和第二直流电压的正负方向可以相同。第一直流电压和第二直流电压的正负方向相同,其具体含义可以是:若AC/DC转换电路201与PFC电路202并联连接,则AC/DC转换电路201的直流端中输出高电平的一端与PFC电路202的直流端中输出高电平的一端连接,AC/DC转换电路201的直流端中输出低电平的一端与PFC电路202的直流端中输出低电平的一端连接。
此外,本申请实施例中,AC/DC转换电路201的三相交流端和PFC电路202的交流端均可以与交流电源或用电设备电连接,该交流电源用于输出三相交流电压,该用电设备 的额定电压可以是由第四相交流电压、第五相交流电压和第六相交流电压构成的三相交流电,或者可以是由第四相交流电压和第五相交流电压构成的单相交流电。其中,该用电设备可以是但不限于交流发电机、电磁炉、电饭煲、手机、导航、电视、笔记本等终端。
在整流器200用于为被充电设备充电时,AC/DC转换电路201和PFC电路202并联工作,AC/DC转换电路201将交流电源输出的三相交流电压中的第一相交流电压和第二相交流电压转换为第一直流电压;PFC电路202将交流电源输出的三相交流电压中的第三相交流电压转换为第二直流电压。AC/DC转换电路201的直流端和PFC电路202的直流端均与被充电设备连接。其中,第一相交流电压、第二相交流电压和第三相交流电压构成三相交流电压。
具体地,在为被充电设备充电时,整流器200的等效电路可以如图3所示。此时AC/DC转换电路201的三相交流端和PFC电路202的交流端并联后作为整流器200的输入端,AC/DC转换电路201的直流端和PFC电路202的直流端并联后作为整流器200的输出端。具体实现时,被充电设备可以动力电池或者直流设备,采用图3所示的整流器200可以通过交流电源为动力电池充电。其中,直流装置可以是但不限于电磁炉、电饭煲、冰箱等直流供电设备。
应理解,采用AC/DC转换电路201对第一相交流电压和第二相交流电压进行整流后得到的第一直流电压和采用PFC电路202对第三相交流电压进行整流后得到的第二直流电压的波动较大,且第一直流电压的电压值和第二直流电压的电压值也难以满足被充电设备的电压需求,因此,还可以通过直流(direct current,DC)转换器对第一直流电压和第二直流电压进行整流和调压处理,从而输出被充电设备可用的直流电压。
应理解,采用AC/DC转换电路201对第一相交流电压和第二相交流电压进行整流和/或采用PFC电路202对第三相交流电压进行整流时,流过AC/DC转换电路201和/或PFC电路202的脉动电流幅值变化较大,为了保证充电电流的稳定,整流器200还包括第四电感、第五电感和第六电感。
具体的,第四电感的第一端用于接收三相交流电压中的第一相交流电压,第二端与AC/DC转换电路的三相交流端连接;第五电感的第一端用于接收三相交流电压中的第二相交流电压,第二端与AC/DC转换电路的三相交流端连接;第六电感的第一端用于接收三相交流电压中的第三相交流电压,第二端与AC/DC转换电路的三相交流端连接。即,第四电感、第五电感和第六电感分别连接在交流电源与AC/DC转换电路201的三相交流端之间,以使流过AC/DC转换电路201中的脉动电流的幅值稳定在固定区间内,实现恒流为被充电设备充电。
在整流器200用于通过被充电设备为用电设备供电时,AC/DC转换电路201包括二极管,由于二极管的单相导电特性,因此只能实现AC/DC转换,因而AC/DC转换电路201此时不工作。也就是说,在为用电设备供电时,整流器200中只有PFC电路202工作。具体地,PFC电路202用于将被充电设备输出的第三直流电压分别转换为第四相交流电压、第五相交流电压和第六相交流电压。PFC电路202的交流端与用电设备连接。其中,第四相交流电压、第五相交流电压和第六相交流电压构成用电设备可用的三相交流电,或者第四相交流电压和第五相交流电压构成用电设备可用的单相交流电。
具体地,在为用电设备供电时,整流器200的等效电路可以如图4所示。此时,PFC电路202的直流端作为整流器200的输入端,PFC电路202的交流端作为整流器200的输 出端。具体实现时,被充电设备可以是但不限于动力电池或者与交流电源连接的逆变器,采用图4所示的整流器200可以通过被充电设备为用电设备供电。
具体实现时,若整流器200应用于新能源汽车中配置的车载充电机(on-borad charger,OBC)中,用电设备可以是但不限于车载用电设备,也可以是但不限于新能源汽车中的动力电池,被充电设备可以是但不限于动力电池。采用图4所示的整流器200可以通过动力电池为车载用电设备(vehicle-to-load,V2L)供电或者为另一动力电池充电(vehicle-to-vehicle,V2V)。
示例性地,用电设备可以是但不限于交流发电机、电磁炉、电饭煲等车载用电设备,被充电设备可以是但不限于动力电池;那么,动力电池放电时,可以输出90V~400V的直流电,动力电池输出的直流电可以经过DC转换器进行调压处理后输出至PFC电路202,PFC电路202对DC转换器输出的直流电进行转换,输出380V的单相交流电或者380V的三相交流电,以供交流发电机、电磁炉、电饭煲等设备使用。其中,经过DC转换器的调压处理后,可以使得PFC电路202输出的交流电的电压值满足交流发电机、电磁炉、电饭煲等设备的额定电压需求。
示例性地,用电设备和被充电设备可以分别为两辆新能源汽车上的动力电池,其中被充电设备的电量大于用电设备的电量,此时被充电设备可通过整流器200为用电设备充电。具体地,被充电设备放电时,可以输出90V~400V的直流电,被充电设备输出的直流电经过DC转换器进行调压处理后输出至PFC电路202,PFC电路202对DC转换器输出的直流电进行转换,输出三相交流电压,从而为另一新能源汽车的动力电池充电。
应理解,若直接通过PFC电路202对被充电设备输出的第三直流电压进行逆变,输出电压可能难以满足用电设备的电压需求,因此,可以先通过DC转换器对动力电池输出的第三直流电压进行整流和调压,然后通过PFC电路202对整流和调压后的第三直流电压进行逆变处理,从而输出用电设备可用三相交流电或单相交流电。
为了便于描述,本申请实施例中将整流器200为被充电设备充电过程称为“正向充电”,将整流器200中被充电设备放电的过程称为“逆向放电”。
实际应用中,以新能源汽车为例,整流器200可以固定在新能源汽车上,用电设备可以通过新能源汽车上的固定接口与整流器200连接。示例性地,电磁炉、电饭煲等设备的电源插头可以直接插入该固定接口,从而实现动力电池为交流电动机、电磁炉、电饭煲供电。在另一种实现方式中,整流器200也可以设置成灵活可拆卸的形式,即新能源汽车上设有固定接口,以实现整流器200与被充电设备的连接。在这种情况下,整流器200可以视为独立于新能源汽车的装置。
具体实现时,AC/DC转换电路201和PFC电路202可以由开关管、二极管、电感、电容等器件组成。AC/DC转换电路201和PFC电路202的工作状态可以通过调节这些器件(例如开关管)的工作状态来实现。
本申请中,可以通过控制器实现上述工作状态的调节。即,整流器200还可以包括控制器,该控制器可以用于控制PFC电路202将交流电源输出的三相交流电压中的第一相交流电压和第二相交流电压转换为第一直流电压,此时整流器200“正向充电”。
此外,该控制器还可以用于控制PFC电路202将被充电设备输出第三直流电压分别转换为第四相交流电压、第五相交流电压和第六相交流电压,此时整流器200“逆向放电”。
具体地,若整流器200的各电路中的开关管为金属氧化物半导体(metal oxide  semiconductor,MOS)管,控制器可以与MOS管的栅极连接,从通过控制MOS管的通断使得整流器200实现整流或逆变;若整流器200的各电路中的开关管为双极结型晶体管(bipolar junction transistor,BJT),控制器可以与BJT的基极连接,从通过控制BJT的通断使得整流器200实现整流或逆变。
可选的,整流器200的AC/DC转换电路201和PFC电路202采用集成电路的形式连接,该控制器可以与由AC/DC转换电路201和PFC电路202构成的集成电路连接。
可选的,整流器200的AC/DC转换电路201和PFC电路202采用集成电路的形式连接,该控制器也采用集成电路的形式与AC/DC转换电路201和PFC电路202连接。
具体实现时,控制器可以是微控制单元(micro controller unit,MCU)、中央处理器(central processing unit,CPU)、数字信号处理器(digital singnal processor,DSP)中的任一种。当然,控制器的具体形态不限于上述举例。
下面,对整流器200中的AC/DC转换电路201和PFC电路202的具体结构进行介绍。
一、AC/DC转换电路201
AC/DC转换电路201具有用于接收三相交流电压的三相交流端,三相交流端与交流电源连接。
具体地,AC/DC转换电路201包括:第一单相转换器、第二单相转换器和第三单相转换器;其中,第一单相转换器、第二单相转换器和第三单相转换器由二极管构成;第一单相转换器的交流端、第二单相转换器的交流端和第三单相转换器的交流端构成AC/DC转换电路201的三相交流端;第一单相转换器的直流端、第二单相转换器的直流端和第三单相转换器的直流端并联连接构成AC/DC转换电路的直流端。
不难看出,AC/DC转换电路201可以通过三个单相转换器采用Y型连接实现。
其中,设置单相转换器的作用是:通过单相转换器的交流端接收三相交流电压,将三相交流电压中的第一相交流电压和第二相交流电压转换为第一直流电压。
下面给出单相转换器的具体结构。
具体地,第一单相转换器包括第一二极管和第二二极管;第一二极管跨接在AC/DC转换电路的三相交流端以及第一母线电容的正端之间;第二二极管跨接在第一二极管以及第二母线电容的负端之间。
第二单相转换器包括第三二极管和第四二极管;第三二极管跨接在AC/DC转换电路的三相交流端以及第一母线电容的正端之间;第四二极管跨接在第三二极管以及第二母线电容的负端之间。
第三单相转换器包括第五二极管和第六二极管;第五二极管跨接在AC/DC转换电路的三相交流端以及第一母线电容的正端之间;第六二极管跨接在第五二极管以及第二母线电容的负端之间。
其中,第一母线电容的正端和第二母线电容负端为PFC电路202的直流端的两个端点,AC/DC转换电路201的直流端与PFC电路202的直流端连接,其连接点为第一母线电容的正端和第二母线电容的负端。
应理解,第一单相转换器、第二单相转换器和第三单相转换器由两个二极管组成,可以直接对大于二极管阴极电压的交流电进行转换,转换效率高,且器件成本低,因此减小了AC/DC转换电路201转换交流电的成本。其中,由于二极管的单相导电特性,AC/DC转换电路201仅用于实现整流,而不能实现逆变。
为了便于理解,下面给出AC/DC转换电路201的具体示例。
参见图5为本申请实施例提供的一种AC/DC转换电路201的结构示意图。在图5中,D1可以视为第一二极管,D2可以视为第二二极管,D1和D2组成第一单相转换器。同样地,D3可以视为第三二极管,D4可以视为第四二极管,D3和D4组成第二单相转换器。D5可以视为第五二极管,D6可以视为第六二极管,D5和D6组成第三单相转换器。此外,Va可以视为第一单相转换器的交流端,Vb可以视为第二单相转换器的交流端,Vc可以视为第三单相转换器的交流端。
图5所示的AC/DC转换电路201中各器件的连接关系可以是:二极管D1、D3和D5的阴极与第一母线电容C1的正端(输出端A)连接,D2、D4和D6的阳极与第二母线电容C2的负端(输出端B)连接,D1的阳极与D2的阴极连接,D3的阳极与D4的阴极连接,D5的阳极与D6的阴极连接。
通过图5所示的AC/DC转换电路201实现三相整流时,Va、Vb和Vc作为三相输入端接收三相交流电压,A和B作为直流输出端,能量从左向右传输,将左侧输入的三相交流电压转换为直流电后输出。
当然,以上对AC/DC转换电路201的结构的介绍仅为示例,实际应用中,AC/DC转换电路201也可以采用其他结构,例如AC/DC转换电路201可以是三相全控桥式电路,用于实现三相整流和三相逆变。
二、PFC电路202
PFC电路202的交流端为三相交流端,PFC电路202的三相交流端与AC/DC转换电路201的三相交流端连接。
具体地,PFC电路包括第一升压(boost converter or step-up converter,Boost)Boost电路,第二Boost电路、第三Boost电路、第一母线电容和第二母线电容;其中,第一母线电容与第二母线电容串联连接构成串联支路;第一Boost电路的交流端、第二Boost电路的交流端和第三Boost电路的交流端构成PFC电路的交流端;第一Boost电路的直流端、第二Boost电路的直流端和第三Boost电路的直流端并联连接构成第一并联支路;串联支路与第一并联支路并联连接构成第二并联支路;第二并联支路的两端为PFC电路的直流端。
其中,设置Boost电路的作用是:在整流器200用于“正向充电”时,可以通过Boost电路实现三相整流,将交流电源输出的三相交流电压中的第三相交流电压转换为第二直流电压。在整流器200用于“逆向放电”时,可通过Boost电路实现单相逆变和/或三相逆变。
设置第一母线电容和第二母线电容的作用是:接收单相转换器输出的第一直流电压进和/或Boost电路输出的第二直流电压,将第一直流电压的电压值和/或第二直流电压的电压值稳定至固定数值区间内,并将该稳定的电压值输出给被充电设备。
下面给出Boost电路的具体结构。
具体地,第一Boost电路包括第一电感、第一开关管和第二开关管;第一电感的第一端与AC/DC转换电路的三相交流端连接;第一开关管跨接在第一电感的第二端以及第一母线电容的正端之间;第二开关管跨接在第一电感的第二端以及第二母线电容的负端之间。
第二Boost电路包括第二电感、第三开关管和第四开关管;第二电感的第一端与AC/DC转换电路的三相交流端连接;第三开关管跨接在第二电感的第二端以及第一母线电容的正端之间;第四开关管跨接在第二电感的第二端以及第二母线电容的负端之间。
第三Boost电路包括第三电感、第五开关管和第六开关管;第三电感的第一端与AC/DC 转换电路的三相交流端连接;第五开关管跨接在第三电感的第二端以及第一母线电容的正端之间;第六开关管跨接在第三电感的第二端以及第二母线电容的负端之间。
应理解,第一Boost电路、第二Boost电路和第三Boost电路可以对交流电中电压值小于第一母线电容电位和第二母线电容电位的交流电(即AC/DC转换电路201无法转换的交流电)进行转换,从而提高了整流器的转换效率。且三相交流电中只有其中一相交流电压流过Boost电路,因此流过Boost电路的脉动电流减小,开关管和电感上的损耗也相应减小,转换效率高,即可以使用低成本的开关管和电感实现整流器的高效率转换。
为了便于理解,下面给出PFC电路202的具体示例。
参见图6为本申请实施例提供的一种PFC电路202的结构示意图。在图6中,L1可以视为第一电感,S1可以视为第一开关管,S2可以视为第二开关管,L1、S1和S2组成第一Boost电路。L2可以视为第二电感,S3可以视为第三开关管,S4可以视为第四开关管,L2、S3和S4组成第二Boost电路。L3可以视为第三电感,S5可以视为第五开关管,S6可以视为第六开关管,L3、S5和S6组成第三Boost电路。C1可以视为第一母线电容,C2可以视为第二母线电容。Va可以视为第一Boost电路的交流端,Vb可以视为第二Boost电路的交流端,Vc可以视为第三Boost电路的交流端。
图6所示的PFC电路202中各器件的连接关系可以是:开关管S1、S3和S5的漏极与C1的正端连接,S2、S4和S6的源极与C2的负端连接,S1的源极与S2的漏极连接,S3的源极与S4的漏极连接,S5的源极与S6的漏极连接。
通过图6所示的PFC电路202实现三相整流时,Va、Vb和Vc作为三相输入端接收三相交流电压,A和B作为直流输出端,能量从左向右传输,将左侧输入的三相交流电压转换为直流电后输出。
通过图6所示的PFC电路202实现三相或单相逆变时,A和B作为直流输入端,Va、Vb和Vc作为三相输出端,能量从右向左传输,将右侧输入的直流电转换为三相交流电或单相交流电后输出。
此外,PFC电路202采用上述结构,除了可以实现AC/DC转换、DC/AC转换之外,还可以通过控制PFC电路202中的开关管的通断获得高功率因数和低电流谐波。
需要说明的是,本申请实施例中的开关管包括但不限于互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)管、MOS管、BJT、碳化硅(SiC)功率管,本申请实施例对开关管的具体类型不做限定。在本申请各附图的示例中,均以开关管为MOS为例进行示意。实际应用中,开关管也可以采用其它类型。在开关管采用其它类型时,开关管的各个端口的名称会有所不同,但功能基本一致。示例性地,开关管为BJT时,BJT中的基极相当于MOS管中的栅极;BJT中的集电极相当于MOS管中的漏极;BJT中的发射极相当于MOS管中的源极。因此,本申请中基于MOS管实现的整流器,可以与基于BJT实现的整流器等同。
由于开关管采用其它类型时的实现方式与原理与采用MOS管时类似,因此本申请实施例中均以开关管采用MOS管为例进行示意,不再对采用其它类型时的具体实现方式做详细介绍。
结合以上描述,示例地,本申请实施例提供的一种整流器可以如图7所示。
在AC/DC转换电路中,交流侧输入的各相线分别与电感L1、L2、L3连接;AC/DC 转换电路包括二极管D1/D2/D/D4/D5/D6。其中,D1、D3和D5的阴极均与第一母线电容C1的正端连接,D1、D3和D5的阳极分别与L1、L2和L3的第二端连接;D2、D4和D6的阳极均与第一母线电容C2的负端连接;D2、D4和D6的阴极分别与L1、L2和L3的第二端连接。
在PFC电路中,包括电感L4、L5和L6、开关管S1/S2/S3/S4/S5/S6、第一母线电容C1和第二母线电容C2,L1、L2和L3的第二端分别与L4的第一端、L5的第一端和L6的第一端连接;S1、S3和S5的漏极均与C1的正端连接,S1、S3和S5的源极分别与L4的第二端、L5的第二端和L6的第二端连接;S2、S4和S6的源极均与C2的负端连接,S2、S4和S6的漏极分别与电感L4的第二端、L5的第二端和L6的第二端连接。以上开关管的栅极均与外部控制电路(或控制器)连接,控制电路通过控制开关管的通断实现整流器的相应功能。
不难看出,AC/DC转换电路的三相交流端和交流电源连接,PFC电路的交流端和AC/DC转换电路的三相交流端连接,AC/DC转换电路直流端和PFC电路的直流端连接。
在图7所示的整流器用于为整流时,Va、Vb和Vc作为整流器的输入端,A和B作为整流器的输出端,与被充电设备连接。
具体地,交流电源后连接AC/DC转换电路和PFC电路,AC/DC转换电路和PFC电路后连接被充电设备。其中Va、Vb和Vc为整流器的输入端,用于接收三相交流电压。以Va、Vb和Vc的电压值关系为Va>Vb>Vc为例,在Va与Vc的电压差的绝对值大于CI和C2两端电压的情况下,在AC/DC转换电路中,D1、D2、D5和D6构成H桥整流电路,将Va和Vc接收的第一相交流电压和第二相交流电压转换为第一直流电压,并将第一直流电压输出至C1和C2两端。在PFC电路中,先通过L2、L5、S4、S6(或者D6)和L3将交流电源输出的第二相交流电压存储至L5中。在L5充电完毕,关闭S4,打开S3,将L5中存储的电压和第二相交流电压转换为第二直流电压,并将第二直流电压输出至C1和C2两端。将能量从左端输出至右端(此时Va、Vb和Vc作为整流器的交流输入端,与动力电池连接的两端A和B作为整流器的直流输出端)。
在上述提供的整流器中,由于在为被充电设备充电过程时,PFC电路只直流过第二相交流电压,对于交流电源输出的第一相交流电压和第二相交流电压可以直接进行AC/DC转换,其转换效率高,因而对图7所示的整流器来说,为被充电设备充电过程中,流过PFC电路开关管的交流电减少,因此可以选用成本较低的器件,作为PFC电路的开关管,故在实现大功率充电的同时,可以减小整流器的成本。
在图7所示的整流器用于被充电设备放电时,根据能量传输方向,从右到左为逆变状态(此时与动力电池连接的两端A和B作为整流器的直流输入端,Va、Vb和Vc作为整流器的交流输出端)。以单相逆变为例,被充电设备后连PFC电路。Va、Vb和Vc中的任意两端均可以作为单相交流输出端,与用电设备连接,输出380V的单相交流电为用电设备供电。以三相逆变为例,被充电设备后连PFC电路。Va、Vb和Vc作为三相输出端,与用电设备连接,输出三相交流电为用电设备供电。
采用本申请实施例提供的整流器,在整流器用于为被充电设备充电时,AC/DC转换电路和PFC电路并联工作,AC/DC转换电路将交流电源输出三相交流电中的第一相交流电压和第二相交流电压转换为第一直流电压,PFC电路将交流电源输出的三相交流电中的第三相交流电压转换为第二直流电压。在为被充电设备充电时,PFC电路只需要对一相交流 电压进行整流,流过开关管的脉动电流的幅值变小,可以选择成本较低的开关管器件,且流过PFC电路中电感的交流电和脉动电流减少,也可以选用规格较小的电感器,减小了整流器的成本。
在整流器用于为被充电设备放电时,AC/DC转换电路由二极管构成只能进行AC/DC转换,因而AC/DC转换电路此时不工作。也就是说,被充电设备放电时,整流器中只有部分电路工作。因此,在被充电设备放电时,整流器中仅有PFC电路工作,因而可以实现小功率逆变。
综上,采用本申请实施例提供的整流器200,在大功率充电时,既实现了高效率转换,也减小了整流器的成本。
基于同一发明构思,本申请实施例还提供一种充电装置,该充电装置包括前述整流器。
可选的,该充电装置还包括交流电源,该交流电源用于向该整流器供电,也就是说,该交流电源可以输出三相交流电压。
可选的,该充电装置还包括被充电设备,该整流器用于向被充电设备充电。
基于同一发明构思,本申请实施例还提供一种充电系统。参见图8,该充电系统800包括前述整流器200。
在一种可能的设计中,该充电系统800连接在风力发电系统的风力发电机组与电池组之间,该充电系统800用于通过风力发电机组产生的交流电向电池组充电。
在一种可能的设计中,该充电系统800连接在光伏发电系统的光伏电池板与电池组之间,该充电系统800用于通过光伏电池板产生的交流电向电池组充电。
在一种可能的设计中,该充电系统800连接在不间断电源的输入端与电池组之间,该充电系统800用于通过不间断电源接收的交流电向电池组充电。
在一种可能的设计中,该充电系统800为充电桩,连接在交流电源与电动车之间,该充电系统800用于向电动车充电。
可选地,该充电系统800还可以包括交流电源,该交流电源用于向整流器200供电。也就是说,该交流电源可以输出三相交流电压。
可选地,该充电系统800还包括被充电设备,整流器200用于向该被充电设备充电。
具体地,被充电设备可以是动力电池和/或电池组。例如,镍氢电池、锂电池、铅酸电池等动力电池和/或电池组。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
基于同一发明构思,本申请实施例还提供一种充放电系统,参见图9,该充放电系统900包括前述整流器200。
可选的,该充放电系统900还包括用电设备,该整流器200用于向该用电设备充电。
具体地,用电设备可以是电磁炉、电饭煲、手机等终端。
可选地,该充放电系统900还包括被充电设备,被充电设备用于向整流器200供电。
具体地,被充电设备可以是但不限于动力电池。例如,镍氢电池、锂电池、铅酸电池等动力电池。
基于同一发明构思,本申请实施例还提供一种电动车。参见图10,该电动车1000包括电力电池组1001和前述整流器200。该动力电池组1001用于为该电动车1000提供动力, 整流器200用于对动力电池组1001进行充电。
应理解,本申请中所提供的方案,可以应用于不同电车的充电方案,具体地,包括但不限于:纯电动汽车(Pure EV/Battery EV),混合动力汽车(Hybrid Electric Vehicle,HEV),新能源汽车(new energy vehicle)等不同类型的汽车。并且,本申请所提供的整流器,并不仅限于应用于汽车领域,还可以应用于风力发电、光伏发电等领域。
需要说明的是,本申请中所涉及的多个,是指两个或两个以上。
本申请中所涉及的术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中所涉及的连接,描述两个对象的连接关系,可以表示两种连接关系,例如,A和B连接,可以表示:A与B直接连接,A通过C和B连接这两种情况。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
此外,本申请实施例中提供的系统结构和业务场景主要是为了解释本申请的技术方案的一些可能的实施方式,不应被解读为对本申请的技术方案的唯一性限定。本领域普通技术人员可以知晓,随着系统的演进,以及更新的业务场景的出现,本申请提供的技术方案对于相同或类似的技术问题仍然可以适用。

Claims (11)

  1. 一种整流器,其特征在于,包括交流转直流AC/DC转换电路和功率因数校正PFC电路;
    所述AC/DC转换电路包括二极管,所述AC/DC转换电路中用于接收三相交流电压的三相交流端与所述PFC电路的交流端连接;所述AC/DC转换电路的直流端和所述PFC电路的直流端连接;
    所述AC/DC转换电路,用于通过所述AC/DC转换电路的所述三相交流端接收三相交流电压,并在所述三相交流电压中的第一相交流电压的电压值和第二相交流电压的电压值之差的绝对值大于第三相交流电压的电压值时,将第一相交流电压和第二相交流电压转换为第一直流电压;
    所述PFC电路,用于在所述第一相交流电压的电压值和所述第二相交流电压的电压值之差的绝对值大于所述第三相交流电压的电压值时,将所述第三相交流电压转换为第二直流电压。
  2. 如权利要求1所述的整流器,其特征在于,还包括:
    控制器,用于控制所述PFC电路将所述三相交流电压中的所述第三相交流电压转换为所述第二直流电压。
  3. 如权利要求1~2中任一项所述的整流器,其特征在于,所述PFC电路包括:第一升压Boost电路,第二Boost电路、第三Boost电路、第一母线电容和第二母线电容;
    其中,所述第一母线电容与所述第二母线电容串联连接构成串联支路;
    所述第一Boost电路的交流端、所述第二Boost电路的交流端和所述第三Boost电路的交流端构成所述PFC电路的交流端;
    所述第一Boost电路的直流端、第二Boost电路的直流端和第三Boost电路的直流端并联连接构成第一并联支路;
    所述串联支路与所述第一并联支路并联连接构成第二并联支路;
    所述第二并联支路的两端为所述PFC电路的直流端。
  4. 如权利要求3所述的整流器,其特征在于,所述第一Boost电路包括第一电感、第一开关管和第二开关管;所述第一电感的第一端与所述AC/DC转换电路的所述三相交流端连接;所述第一开关管跨接在所述第一电感的第二端以及所述第一母线电容的正端之间;所述第二开关管跨接在所述第一电感的第二端以及所述第二母线电容的负端之间;或者
    所述第二Boost电路包括第二电感、第三开关管和第四开关管;所述第二电感的第一端与所述AC/DC转换电路的所述三相交流端连接;所述第三开关管跨接在所述第二电感的第二端以及所述第一母线电容的正端之间;所述第四开关管跨接在所述第二电感的第二端以及所述第二母线电容的负端之间;或者
    所述第三Boost电路包括第三电感、第五开关管和第六开关管;所述第三电感的第一端与所述AC/DC转换电路的所述三相交流端连接;所述第五开关管跨接在所述第三电感的第二端以及所述第一母线电容的正端之间;所述第六开关管跨接在所述第三电感的第二端以及所述第二母线电容的负端之间。
  5. 如权利要求3~4中任一项所述的整流器,其特征在于,所述AC/DC转换电路包括第一单相转换器、第二单相转换器和第三单相转换器;
    所述第一单相转换器、第二单相转换器和第三单相转换器由二极管组成;
    所述第一单相转换器的交流端、所述第二单相转换器的交流端和所述第三单相转换器的交流端构成所述AC/DC转换电路的所述三相交流端;
    所述第一单相转换器的直流端、所述第二单相转换器的直流端和所述第三单相转换器的直流端并联连接构成所述AC/DC转换电路的直流端。
  6. 如权利要求5所述的整流器,其特征在于,所述第一单相转换器包括第一二极管和第二二极管;所述第一二极管跨接在所述AC/DC转换电路的所述三相交流端以及所述所述第一母线电容的正端之间;所述第二二极管跨接在所述第一二极管以及所述第二母线电容的负端之间;
    所述第二单相转换器包括第三二极管和第四二极管;所述第三二极管跨接在所述AC/DC转换电路的所述三相交流端以及所述第一母线电容的正端之间;所述第四二极管跨接在所述第三二极管以及所述第二母线电容的负端之间;
    所述第三单相转换器包括第五二极管和第六二极管;所述第五二极管跨接在所述AC/DC转换电路的所述三相交流端以及所述第一母线电容的正端之间;所述第六二极管跨接在所述第五二极管以及所述第二母线电容的负端之间。
  7. 如权利要求1~6中任一项所述的整流器,其特征在于,还包括第四电感、第五电感和第六电感;
    所述第四电感的第一端用于接收所述三相交流电压中的所述第一相交流电压,第二端与所述AC/DC转换电路的所述三相交流端连接;
    所述第五电感的第一端用于接收所述三相交流电压中的所述第二相交流电压,第二端与所述AC/DC转换电路的所述三相交流端连接;
    所述第六电感的第一端用于接收所述三相交流电压中的所述第三相交流电压,第二端与所述AC/DC转换电路的所述三相交流端连接。
  8. 如权利要求2~7中任一项所述的整流器,其特征在于,所述PFC电路还用于:将所述PFC电路的直流端接收的第三直流电压分别转换为第四相交流电压、第五相交流电压和第六相交流电压,并将所述第四相交流电压、所述第五相交流电压和所述第六相交流电压输出给与所述PFC电路的交流端连接的用电设备。
  9. 如权利要求8所述的整流器,其特征在于,所述控制器还用于:控制所述PFC电路将所述第三直流电压分别转换为所述第四相交流电压、所述第五相交流电压和所述第六相交流电压。
  10. 一种充电系统,其特征在于,包括如权利要求1~9中任一项所述的整流器。
  11. 一种电动车,其特征在于,包括动力电池组和如权利要求1~9中任一项所述的整流器;所述动力电池组用于为所述电动车提供动力,所述整流器用于对所述动力电池组进行充电。
PCT/CN2019/114904 2019-10-31 2019-10-31 一种整流器、充电系统和电动车 WO2021081967A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980021288.1A CN113133333B (zh) 2019-10-31 2019-10-31 一种整流器、充电系统和电动车
PCT/CN2019/114904 WO2021081967A1 (zh) 2019-10-31 2019-10-31 一种整流器、充电系统和电动车
EP19950728.6A EP3975411B1 (en) 2019-10-31 2019-10-31 Rectifier, charging system and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114904 WO2021081967A1 (zh) 2019-10-31 2019-10-31 一种整流器、充电系统和电动车

Publications (1)

Publication Number Publication Date
WO2021081967A1 true WO2021081967A1 (zh) 2021-05-06

Family

ID=75714454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114904 WO2021081967A1 (zh) 2019-10-31 2019-10-31 一种整流器、充电系统和电动车

Country Status (3)

Country Link
EP (1) EP3975411B1 (zh)
CN (1) CN113133333B (zh)
WO (1) WO2021081967A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11597286B2 (en) * 2018-09-24 2023-03-07 Entrust Smart Home Microgrid Ltd Charging apparatus for use in an electric vehicle charging system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636430B1 (en) * 2001-07-30 2003-10-21 University Of Central Florida Energy transfer concept in AC/DC switch mode power supply with power factor correction
CN101834539A (zh) * 2010-05-27 2010-09-15 浙江大学 宽输出电压范围的高效率ac/dc组合变流器
CN109167524A (zh) * 2018-11-06 2019-01-08 深圳市高益智能电气有限公司 一种三相交直流升降压变换电路及其控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741482B2 (en) * 2001-09-14 2004-05-25 Kabushiki Kaisha Toshiba Power conversion device
JP2009142002A (ja) * 2007-12-04 2009-06-25 Panasonic Corp 電源装置
CN102055354B (zh) * 2009-10-30 2013-11-13 西门子公司 一种交流直流转换器以及一种变频器
JP5664588B2 (ja) * 2012-04-20 2015-02-04 株式会社安川電機 電源回生装置および電力変換装置
FR3033458B1 (fr) * 2015-03-05 2018-06-15 Moteurs Leroy-Somer Ensemble electromecanique comportant un alternateur
CN107248814B (zh) * 2016-03-29 2019-09-13 比亚迪股份有限公司 单相交错式pfc电路和具有其的车载充电器及电动汽车
DE102017212572A1 (de) * 2017-07-21 2019-01-24 Siemens Aktiengesellschaft Elektrisches Energieerzeugungssystem und Verfahren zum Betreiben eines elektrischen Energieerzeugungssystems
CN207691703U (zh) * 2018-01-24 2018-08-03 胡炎申 一种光伏发电系统的dc/ac模块
CN109039116A (zh) * 2018-08-14 2018-12-18 浙江大学 一种交错并联式高频隔离型三相pwm整流器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636430B1 (en) * 2001-07-30 2003-10-21 University Of Central Florida Energy transfer concept in AC/DC switch mode power supply with power factor correction
CN101834539A (zh) * 2010-05-27 2010-09-15 浙江大学 宽输出电压范围的高效率ac/dc组合变流器
CN109167524A (zh) * 2018-11-06 2019-01-08 深圳市高益智能电气有限公司 一种三相交直流升降压变换电路及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOEIRO THIAGO B.; MAIA GEAN J.; ORTMANN M. S.; HELDWEIN MARCELO L.: "High Efficiency Three-Phase Unidirectional Buck-type PFC Rectifier Concepts", IECON 2013 - 39TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 10 November 2013 (2013-11-10), pages 7763 - 7768, XP032539679, ISSN: 1553-572X, DOI: 10.1109/IECON.2013.6700428 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11597286B2 (en) * 2018-09-24 2023-03-07 Entrust Smart Home Microgrid Ltd Charging apparatus for use in an electric vehicle charging system

Also Published As

Publication number Publication date
CN113133333B (zh) 2023-05-05
EP3975411A1 (en) 2022-03-30
EP3975411B1 (en) 2023-10-11
EP3975411A4 (en) 2022-07-06
CN113133333A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
CN110356268B (zh) 一种车载充放电装置和系统
Hu et al. Split converter-fed SRM drive for flexible charging in EV/HEV applications
Karshenas et al. Bidirectional dc-dc converters for energy storage systems
Wu et al. Three-port-converter-based single-phase bidirectional AC–DC converter with reduced power processing stages and improved overall efficiency
CN101499675A (zh) 充电电路及电源供应系统
Karshenas et al. Basic families of medium-power soft-switched isolated bidirectional dc-dc converters
WO2022083219A1 (zh) 一种电驱动系统、动力总成以及电动汽车
JP7145881B2 (ja) 三相Vienna整流器を制御するための方法
Chuang et al. Battery float charge technique using parallel-loaded resonant converter for discontinuous conduction operation
CN112152489B (zh) 一种高低压直流双输出集成型三相pwm整流变换器及控制方法
WO2021081967A1 (zh) 一种整流器、充电系统和电动车
EP4068610B1 (en) Converter and on-board charger
US11780342B2 (en) On-board charging and discharging apparatus, charging and discharging system thereof, and electric vehicle
WO2024007688A1 (zh) 双向车载充电机、车载动力系统及电动车辆
CN111130364A (zh) 一种三相整流器
WO2022151126A1 (zh) 一种直流变换器、控制方法、直流汇流箱及光伏发电系统
CN115864621A (zh) 一种不间断电源ups和供电系统
CN210350838U (zh) 车载充放电系统
Undrajavarapu et al. Pv fed boost spwm inverter driven single-phase induction motor
Etier et al. An Intelligent Power Module With Switch Mode Rectifier Based Charger
JP2023166149A (ja) 充電器
Juan et al. Regenerative hybrid battery power module for BLDC motor drive
CN117013680A (zh) 一种不间断电源和供电系统
CN115642817A (zh) 一种宽输出电压范围及低纹波的三相整流器
CN117856644A (zh) 转换装置、转换电路的控制方法、车辆和光伏发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019950728

Country of ref document: EP

Effective date: 20211222

NENP Non-entry into the national phase

Ref country code: DE