WO2024007688A1 - 双向车载充电机、车载动力系统及电动车辆 - Google Patents

双向车载充电机、车载动力系统及电动车辆 Download PDF

Info

Publication number
WO2024007688A1
WO2024007688A1 PCT/CN2023/089927 CN2023089927W WO2024007688A1 WO 2024007688 A1 WO2024007688 A1 WO 2024007688A1 CN 2023089927 W CN2023089927 W CN 2023089927W WO 2024007688 A1 WO2024007688 A1 WO 2024007688A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
bridge arm
power
midpoint
alternating current
Prior art date
Application number
PCT/CN2023/089927
Other languages
English (en)
French (fr)
Inventor
梁志刚
孟元东
倪辉
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2024007688A1 publication Critical patent/WO2024007688A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • This application relates to the field of power electronics technology, and in particular to a two-way vehicle charger, a vehicle power system and an electric vehicle.
  • on-board charger refers to a charger fixedly installed on an electric vehicle.
  • the AC side of the on-board charger is connected to the AC power grid, and the DC side of the on-board charger is connected to the power battery.
  • the on-board charger It is used to convert the output voltage of the AC power grid into DC voltage to charge the power battery.
  • the vehicle charger cannot accommodate the demand for charging the external load and has poor applicability.
  • This application provides a two-way on-board charger, on-board power system and electric vehicle, which is compatible with the forward charging function for charging the power battery and the reverse discharging function for supplying power to the AC load. It greatly reduces the circuit cost and has strong application flexibility. Strong applicability.
  • this application provides a bidirectional vehicle-mounted charger, which is used to charge a power battery using a three-phase AC power source or to use a power battery to power an AC load.
  • Two-way car chargers include:
  • Two bus capacitors are connected in series between the positive and negative poles of the DC bus;
  • Power factor correction (PFC) circuit is used to receive one-phase AC power or three-phase AC power provided by a three-phase AC power supply, or to receive DC power provided by a power battery.
  • the power factor correction circuit includes:
  • the first bridge arm is connected in series between the positive and negative poles of the DC bus, and the midpoint of the first bridge arm is connected to the series connection point of the two bus capacitors through the first switch;
  • Three second bridge arms are connected in series between the positive and negative poles of the DC bus.
  • the midpoint of at least one second bridge arm is used to receive one-phase alternating current; or the midpoints of the three second bridge arms are used to receive three-phase AC power. AC power; or at least one second bridge arm for receiving DC power;
  • the first switch is controlled to be turned on, and the midpoint of at least one second bridge arm is controlled to output AC power to supply power to the AC load.
  • the first switch and the three second bridge arms can be controlled to cooperate, thereby realizing the forward charging function of charging the power battery and the reverse discharging function of supplying power to the AC load, greatly reducing the circuit cost and being flexible in use. Strong performance and strong applicability.
  • the above-mentioned first bridge arm includes two diodes connected in series, and the series connection point of the two diodes serves as the midpoint of the first bridge arm, and the cost of the bridge arm is lower;
  • the second bridge arm includes a second switch in series and the third switch, and the series connection point of the second switch and the third switch serves as the midpoint of the second bridge arm.
  • the second switch and the third switch in the three second bridge arms are controlled to be turned on alternately to convert the three-phase alternating current into direct current.
  • controlling some or all of the second bridge arms among the three second bridge arms can convert one-phase alternating current into direct current, convert direct current into alternating current, or convert three-phase alternating current. It is a direct current, thus meeting the different working needs of the two-way on-board charger and having strong application flexibility.
  • the bidirectional vehicle charger includes three fourth switches corresponding to three second bridge arms, a midpoint of the second bridge arm
  • the fourth switch corresponding to the second bridge arm is connected to a live wire of the three-phase AC power supply or the first connection end of the AC load.
  • the midpoints of the three second bridge arms, the three fourth switches and the three live wires of the three-phase AC power supply correspond to each other and are connected one by one.
  • the three fourth switches are controlled to be turned on so that the midpoints of the three second bridge arms receive three-phase alternating current.
  • controlling any one of the three fourth switches or all the fourth switches to be turned on can realize that the midpoint of the second bridge arm receives one-phase alternating current, or outputs alternating current, or receives three-phase alternating current, Thus, it can meet the different working needs of the two-way vehicle charger and has strong application flexibility.
  • the three second bridge arms include two other second bridges except the second bridge arm corresponding to any fourth switch. Arm;
  • Two-way vehicle charger includes a fifth switch.
  • the midpoint of any second bridge arm among the other two second bridge arms is connected to the first connection end of any fourth switch through the fifth switch, and the first connection end of any fourth switch is connected to the three-phase One live wire of the AC power source or the first connection of the AC load is connected.
  • the three fourth switches are controlled to be turned off, and the fifth switch is controlled to be turned on, so that the midpoint of at least one second bridge arm receives one phase alternating current or outputs alternating current.
  • the midpoint of the second bridge arm can receive one-phase alternating current or output alternating current, thus satisfying the requirements of the bidirectional vehicle charger.
  • the three second bridge arms include two other second bridge arms except the second bridge arm corresponding to any fourth switch. arm; the bidirectional vehicle charger includes two fifth switches corresponding to the other two second bridge arms.
  • the midpoint of one of the other two second bridge arms is connected to the first connection end of any fourth switch through the fifth switch corresponding to the second bridge arm, and the third connection end of any fourth switch One connection end is connected to a live wire of the three-phase AC power supply or the first connection end of the AC load.
  • the midpoints of the other two second bridge arms correspond to and are connected to the two fifth switches one-to-one.
  • the three fourth switches are controlled to be turned off, and the two fifth switches are controlled to be turned on, so that the midpoint of at least one second bridge arm receives one phase alternating current or outputs alternating current.
  • the midpoint of the second bridge arm can receive one-phase alternating current or output alternating current, thus meeting the requirements for bidirectional vehicle charging. It can meet the different working requirements of the machine and has strong flexibility in use.
  • the two-way vehicle charger includes a sixth switch, and any one of the first possible implementation manners of the first aspect includes a sixth switch.
  • the midpoint of the second bridge arm is connected to the neutral line of the three-phase AC power supply through the sixth switch; the two-way on-board charger is used to charge the power battery using the three-phase AC power supply;
  • the sixth switch is controlled to be turned off to realize the forward charging function of charging the power battery.
  • the two-way vehicle charger includes a sixth switch, and any one of the first possible implementation manners of the first aspect includes a sixth switch.
  • the midpoint of the second bridge arm is connected to the second connection end of the AC load through the sixth switch; the bidirectional vehicle charger is used to use the power battery to supply power to the AC load;
  • the sixth switch is controlled to be turned on to realize the reverse discharge function of supplying power to the AC load.
  • the two bus capacitors include a positive bus capacitance and a negative bus capacitance.
  • the controller is used to: collect the voltage of the positive bus capacitor and the voltage of the negative bus capacitor during the process of charging the load based on the DC voltage provided by the power battery; further, between the voltage of the positive bus capacitor and the voltage of the negative bus capacitor, When the difference between The voltage fluctuation at the midpoint of the capacitor improves the power supply stability of the two-way on-board charger and has greater applicability. Among them, the difference is the value obtained by subtracting the voltage of the negative bus capacitor from the voltage of the positive bus capacitor.
  • the above controller is configured to: the difference between the voltage of the negative bus capacitor and the voltage of the positive bus capacitor is greater than or equal to In the case of two thresholds, the third switch in the second bridge arm connected to the sixth switch is controlled to be turned on to balance the voltage of the positive bus capacitor and the voltage of the negative bus capacitor, thereby suppressing the voltage fluctuation at the midpoint of the bus capacitor to improve
  • the two-way on-board charger has more stable power supply and greater applicability.
  • the difference is the value obtained by subtracting the voltage of the positive bus capacitor from the voltage of the negative bus capacitor.
  • this application provides a vehicle-mounted power system, including a power battery and a vehicle-mounted charger provided in any one of the above-mentioned first aspect to the eighth possible implementation manner of the first aspect; the vehicle-mounted charger is used for Power battery charging. Since the two-way vehicle charger is compatible with the forward charging function and reverse discharge function of a single three-phase input, it can improve the working efficiency of the vehicle power system and greatly reduce the circuit cost of the vehicle power system, with strong applicability.
  • the present application provides an electric vehicle, including a power battery, a drive motor, and a vehicle-mounted charger as provided in any one of the above-mentioned first aspect to the eighth possible implementation manner of the first aspect; the vehicle-mounted charger is used for It is used to power the power battery; the power battery is used to power the drive motor.
  • Figure 1 is a schematic structural diagram of an electric vehicle provided by this application.
  • FIG. 2 is a schematic structural diagram of the two-way vehicle charger provided by this application.
  • Figure 3A is a circuit schematic diagram of the two-way vehicle charger provided by this application.
  • FIG. 3B is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • Figure 4A is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • FIG. 4B is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • Figure 5A is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • Figure 5B is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • Figure 6A is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • Figure 6B is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • Figure 7A is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • Figure 7B is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • Figure 8A is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • Figure 8B is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • FIG. 9 is a schematic structural diagram of the vehicle power system provided by this application.
  • FIG. 1 is a schematic structural diagram of an electric vehicle provided by this application.
  • the electric vehicle 1 includes a two-way on-board charger 10 , a power battery 20 and a drive motor 30 .
  • the bidirectional vehicle charger 10 is used to receive the input voltage V in1 provided by the three-phase AC power supply 2 and provide the output voltage V out1 to power the power battery 20 .
  • the power battery 20 is used to provide the input voltage V in2 to the driving motor 30 to power the driving motor 30 .
  • the three-phase AC power supply 2 may be an AC power grid, an AC charging pile, or an uninterruptible power system (UPS).
  • UPS uninterruptible power system
  • the bidirectional vehicle charger 10 is also used to receive the input voltage V in2 provided by the power battery 20 and provide the output voltage V out2 to power the AC load 3 .
  • the AC load 3 is provided inside the electric vehicle 1 .
  • the AC load 3 may be a compressor motor or other low-power motor.
  • the AC load 3 is set outside the electric vehicle 1 .
  • the AC load 3 can be a mobile phone, a tablet, a laptop, a Bluetooth headset, a lamp, an induction cooker, a kettle, a game console, a power bank, or a smart wearable device. .
  • the bidirectional vehicle charger 10 provided by the embodiment of the present application is compatible with the forward charging function of charging the power battery 20 and the reverse discharging function of supplying power to the AC load 3, thus simplifying the structural layout of the electric vehicle 1, with low cost, small size and High integration.
  • FIG. 2 is a schematic structural diagram of the two-way vehicle charger provided by this application.
  • the two-way on-board charger 10 is used to charge the power battery 12 using the three-phase AC power supply 11 or to provide power to the AC load 13 using the power battery 12 .
  • the two-way vehicle-mounted charger 10 uses the three-phase AC power supply 11 to charge the power battery 12, the two-way vehicle-mounted charger 10 operates in the forward charging mode.
  • the bidirectional vehicle-mounted charger 10 uses the power battery 12 to supply power to the AC load 13, the bi-directional vehicle-mounted charger 10 operates in the reverse discharge mode.
  • the three-phase AC power supply 11 may be an AC power grid, an AC charging pile or an uninterruptible power system (UPS).
  • AC load 3 can be a compressor motor, other low-power motors, mobile phones, tablets, laptops, Bluetooth headsets, lamps, induction cookers, kettles, game consoles, power banks, or smart wearable devices.
  • the bidirectional vehicle charger 10 includes a DC bus 100 , two bus capacitors, a first switch K 1 , a power factor correction circuit 101 and a controller 102 .
  • the DC bus 100 is used to transmit DC power.
  • the two-way on-board charger 10 utilizes the three-phase AC power supply 11 to When the power battery 12 is charged, the DC bus 100 is used to transmit the DC power V out3 .
  • the DC bus 100 is used to transmit the DC power V in5 .
  • the two bus capacitors include a positive bus capacitor C dc1 and a negative bus capacitor C dc2 , which are connected in series between the positive and negative poles of the DC bus 100 .
  • the positive bus capacitance C dc1 is the bus capacitance connected to the positive pole of the DC bus 100
  • the negative bus capacitance C dc2 is the bus capacitance connected to the negative pole of the DC bus 100 .
  • the power factor correction circuit 101 is used for receiving one-phase AC power V in3 or three-phase AC power V in4 provided by the three-phase AC power supply 11 , or for receiving the direct current V in5 provided by the power battery 12 .
  • the power factor correction circuit 101 includes a first bridge arm 1011 and three second bridge arms.
  • the first bridge arm 1011 is connected in series between the positive and negative poles of the DC bus 100.
  • the midpoint of the first bridge arm 1011 is connected to the series connection point of the positive bus capacitor C dc1 and the negative bus capacitor C dc2 through the first switch K 1 .
  • the first switch K 1 can be a relay, and the series connection point of the positive bus capacitor C dc1 and the negative bus capacitor C dc2 can also be called the bus capacitance midpoint or the bus capacitance midpoint.
  • the three second bridge arms include a second bridge arm 1012, a second bridge arm 1013 and a second bridge arm 1014, which are respectively connected in series between the positive and negative poles of the DC bus 100.
  • the midpoint of at least one second bridge arm is used to receive one-phase alternating current V in3 ; or the midpoints of the second bridge arm 1012, the second bridge arm 1013 and the second bridge arm 1014 are used to receive three-phase alternating current V in4 ; Or at least one second bridge arm is used to receive the direct current V in5 .
  • the controller 102 may be a control board, a control chip, or software code.
  • the controller 102 may establish a wired connection or a wireless connection with the first switch K 1 and the power factor correction circuit 101 .
  • the controller 102 is used to control the on or off of the first switch K 1 and control the operation of the power factor correction circuit 101 .
  • the controller 102 is used to control the actions of each of the second bridge arms 1012 , 1013 , and 1014 , thereby controlling the operation of the power factor correction circuit 101 .
  • Controller 102 for:
  • the first switch K 1 is controlled to be turned on, and the midpoint output AC power V out4 of at least one second bridge arm is controlled to supply power to the AC load 13 .
  • the bidirectional vehicle charger 10 is in the reverse discharge mode.
  • the controller 102 provided in this application is used to control the coordinated actions of the first switch K 1 , the second bridge arm 1012 , the second bridge arm 1013 and the second bridge arm 1014 , thereby being compatible with the forward charging function of charging the power battery 12 and the charging function of the power battery 12 .
  • the reverse discharge function of the AC load 13 power supply greatly reduces the circuit cost, has strong application flexibility and strong applicability.
  • the positive bus capacitance C dc1 or the negative bus capacitance C dc2 , the first switch K 1 , the first bridge arm 1011 , the second bridge arm 1012 , and the The second bridge arm 1013 and the second bridge arm 1014 may form a reverse direct current (DC)/alternating current (AC) circuit, which is used to realize the reverse discharge function of supplying power to the AC load 13 .
  • DC direct current
  • AC alternating current
  • the first bridge arm 1011 includes a diode D 1 and a diode D 2 connected in series.
  • the series connection point of the diode D 1 and the diode D 2 serves as the midpoint of the first bridge arm 1011 .
  • the cost of the bridge arm is lower.
  • the first bridge arm 1011 includes two switches connected in series, and the series connection point of the two switches serves as the midpoint of the first bridge arm 1011 .
  • the second bridge arm includes a second switch and a third switch connected in series, and the series connection point of the second switch and the third switch serves as the midpoint of the second bridge arm.
  • the second bridge arm 1012 includes a second switch S 1 and a third switch S 2 connected in series, and the series connection point of the second switch S 1 and the third switch S 2 serves as the midpoint of the second bridge arm 1012;
  • the second bridge The arm 1013 includes a second switch S 3 and a third switch S 4 connected in series.
  • the series connection point of the second switch S 3 and the third switch S 4 serves as the midpoint of the second bridge arm 1013 ;
  • the second bridge arm 1014 includes a series connected The second switch S 5 and the third switch S 6 , and the series connection point of the second switch S 5 and the third switch S 6 serves as the midpoint of the second bridge arm 1014 .
  • the second switch and the third switch in each second bridge arm include but are not limited to: an insulated gate bipolar transistor (IGBT), or a metal oxide semiconductor field effect transistor. (metal-oxide-semiconductor field-effect transistor, MOSFET).
  • the second switch and the third switch in each of the above-mentioned second bridge arms may be made of silicon semiconductor material Si, or third-generation wide bandgap semiconductor material silicon carbide SiC, or gallium nitride GaN, or other switch materials.
  • the second switch and the third switch in each second bridge arm are IGBTs.
  • the second switch and the third switch in each second bridge arm are conductive in a complementary manner, that is, when the second switch is on, the third switch is off, or when the second switch is off, the third switch is on. Pass.
  • the controller 102 is used to control the second switch and the third switch in at least one second bridge arm to alternately conduct, so as to convert the one-phase alternating current V in3 into the direct current V out3 and provide power to the power battery 12 Charging, or converting the DC power V in5 into the AC power V out4 and supplying power to the AC load 13; controlling the second switch and the third switch in the second bridge arm 1012, the second bridge arm 1013 and the second bridge arm 1014 to alternately conduct, The three-phase alternating current V in4 is converted into the direct current V out3 and the power battery 12 is charged.
  • the second switch and the third switch are alternately turned on including: within a period of time, the second switch in the second bridge arm is turned on and the third switch is turned off. , in another period of time, the second switch in the second bridge arm is turned off and the third switch is turned on. Wherein, one time period and another time period are within a switching period of the second bridge arm, and the other time period is after a time period.
  • the controller 102 provided by the embodiment of the present application is used to control part or all of the second bridge arms among the second bridge arm 1012, the second bridge arm 1013 and the second bridge arm 1014, so as to realize the switching of one-phase alternating current.
  • V in3 is converted into direct current V out3
  • direct current V in5 is converted into alternating current V out4
  • three-phase alternating current V in4 is converted into direct current V out3 , thus meeting the different working requirements of the two-way vehicle charger 10 and having high application flexibility.
  • the bidirectional vehicle charger 10 is used to charge the power battery 12 using the three-phase AC power supply 11.
  • the diode D 1 and the diode D 2 in the first bridge arm 1011 are alternately conductive. Specifically, the diode D 1 Diode D 2 is turned off when it is on, or diode D 2 is on when diode D 1 is off.
  • the bidirectional vehicle charger 10 is used to use the power battery 12 to supply power to the AC load 13, and the diode D 1 and the diode D 2 in the first bridge arm 1011 are both turned off.
  • FIG. 3A is a circuit schematic diagram of the two-way vehicle charger provided by this application.
  • the three-phase AC power supply 11 is a power supply composed of three AC potentials with the same frequency, equal amplitude, and phases that differ from each other by 120 degrees of electrical angle.
  • the three alternating current potentials include alternating current potential V ga , alternating current potential V gb and alternating current potential V gc .
  • the three live wires of the three-phase AC power supply 11 are respectively drawn from the alternating current potential V ga , alternating current potential V gb and alternating current potential V gc .
  • the neutral line of the power supply 11 is drawn from the neutral point of the alternating current potential Vga , the alternating current potential Vgb and the alternating current potential Vgc .
  • the zero line can also be called the N line.
  • the bidirectional vehicle charger 10 includes three fourth switches corresponding to the second bridge arm 1012 , the second bridge arm 1013 and the second bridge arm 1014 .
  • the midpoint of one of the second bridge arms 1012, 1013 and 1014 is connected to a live wire of the three-phase AC power supply 11 through a fourth switch corresponding to the second bridge arm.
  • the midpoints of the second bridge arm 1012 , the second bridge arm 1013 and the second bridge arm 1014 , the three fourth switches, and the three live wires of the three-phase AC power supply 11 correspond to each other and are connected in a one-to-one manner. It should be noted that the connection relationship between other components in the two-way vehicle charger 10 can be seen in the corresponding embodiment of FIG. 2 and will not be described again here.
  • the three fourth switches include the fourth switch K 2a , the fourth switch K 2b and the fourth switch K 2c .
  • the midpoint of the second bridge arm 1012 is connected to the live wire drawn from the AC potential V ga through the fourth switch K 2a .
  • the midpoint of the second bridge arm 1013 is connected to the live wire drawn from the AC potential V gb through the fourth switch K 2b .
  • the second bridge The midpoint of the arm 1014 is connected to the live wire drawn from the alternating current potential V gc through the fourth switch K 2c .
  • the bidirectional vehicle charger 10 includes a filter inductor La , a filter inductor L b and a filter inductor L c .
  • the second The midpoint of the bridge arm 1012 is connected to the live line drawn from the AC potential Vga through the filter inductor L a and the fourth switch K 2a .
  • the midpoint of the second bridge arm 1013 is connected to the AC potential V through the filter inductor L b and the fourth switch K 2b .
  • the live wire drawn from gb , the midpoint of the second bridge arm 1014 is connected to the live wire drawn from the AC potential V gc through the filter inductor L c and the fourth switch K 2c .
  • FIG. 3B is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • the bidirectional vehicle charger 10 shown in FIG. 2 also includes three fourth switches corresponding to the second bridge arm 1012 , the second bridge arm 1013 and the second bridge arm 1014 .
  • the midpoint of one of the second bridge arms 1012, 1013 and 1014 is connected to the first connection end of the AC load 13 through a fourth switch corresponding to the second bridge arm.
  • the midpoints of the second bridge arm 1012, the second bridge arm 1013 and the second bridge arm 1014 correspond to and are connected to the three fourth switches one by one. It should be noted that the connection relationship between other components in the two-way vehicle charger 10 can be seen in the corresponding embodiment of FIG. 2 and will not be described again here.
  • the three fourth switches include the fourth switch K 2a , the fourth switch K 2b and the fourth switch K 2c .
  • the midpoint of the second bridge arm 1012 is connected to the first connection end of the AC load 13 through the fourth switch K 2a
  • the midpoint of the second bridge arm 1013 is connected to the first connection end of the AC load 13 through the fourth switch K 2b .
  • the midpoint of the second bridge arm 1014 is connected to the first connection end of the AC load 13 through the fourth switch K 2c .
  • the bidirectional vehicle charger 10 includes a filter inductor La , a filter inductor L b and a filter inductor L c .
  • the midpoint of the second bridge arm 1012 is connected to the AC through the filter inductor La and the fourth switch K 2a
  • the first connection end of the load 13 and the midpoint of the second bridge arm 1013 are connected to the first connection end of the AC load 13 through the filter inductor L b and the fourth switch K 2 b .
  • the midpoint of the second bridge arm 1014 is connected through the filter inductor L c
  • the fourth switch K 2c is connected to the first connection end of the AC load 13 .
  • the controller 102 may establish a wired connection or a wireless connection with the fourth switch K 2a , the fourth switch K 2b , and the fourth switch K 2c .
  • the controller 102 is used to control the fourth switch K 2a , the fourth switch K 2b and the fourth switch K 2c to be turned on or off, so that the power factor correction circuit 101 receives one-phase alternating current V in3 or three-phase alternating current V in4 Or output AC power V out4 .
  • the controller 102 is used to control any fourth switch to turn on, and control the other two fourth switches to turn off, so that the midpoint of at least one second bridge arm receives one-phase alternating current V in3 or outputs alternating current V out4 ; Control the fourth switch K 2a , the fourth switch K 2b and the fourth switch K 2c to be turned on so that the midpoints of the second bridge arm 1012, the second bridge arm 1013 and the second bridge arm 1014 receive the three-phase alternating current V in4 .
  • any fourth switch may be the fourth switch K 2a , the other two fourth switches include the fourth switch K 2b and the fourth switch K 2c , and at least one second bridge arm includes the second bridge arm 1012.
  • any fourth switch may be a fourth switch K 2b , the other two fourth switches include a fourth switch K 2a and a fourth switch K 2c , and at least one second bridge arm includes a second bridge Arm 1013.
  • any fourth switch may be a fourth switch K 2c , the other two fourth switches include a fourth switch K 2a and a fourth switch K 2b , and at least one second bridge arm includes a second bridge Arm 1014.
  • the controller 102 is used to control any one of the fourth switch K 2a , the fourth switch K 2b and the fourth switch K 2c or all the fourth switches to be turned on, which can realize the center of the second bridge arm.
  • the point receives one-phase alternating current V in3 , or receives three-phase alternating current V in4 , or outputs alternating current V out4 , thereby meeting different working requirements of the two-way vehicle charger 10 and providing high flexibility in use.
  • FIG. 4A is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • the bidirectional vehicle charger 10 includes a fifth switch K 3a
  • the second bridge arm 1012 , the second bridge arm 1013 and the second bridge arm 1014 include the second bridge arm corresponding to any fourth switch. Except for the other two second bridge arms. Among them, the midpoint of any second bridge arm among the other two second bridge arms is connected to the first connection end of any fourth switch through the fifth switch K3a , and the first connection end of any fourth switch is connected to One live connection of the three-phase AC power supply 11. It should be noted that the connection relationship between other components in the two-way vehicle charger 10 can be seen in the corresponding embodiment of FIG. 3A and will not be described again here.
  • any fourth switch is the fourth switch K 2a
  • the second bridge arm corresponding to any fourth switch is the second bridge arm 1012
  • the other two second bridge arms include the second bridge arm 1013 and the second bridge arm 1014, the other two second bridges Any second bridge arm among the arms is the second bridge arm 1013 .
  • the midpoint of the second bridge arm 1013 is connected to the first connection end of the fourth switch K 2a through the fifth switch K 3a .
  • the first connection end of the fourth switch K 2a is connected to the live wire drawn from the AC potential V ga .
  • FIG. 4B is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • the bidirectional vehicle charger 10 includes a fifth switch K 3a
  • the second bridge arm 1012 , the second bridge arm 1013 and the second bridge arm 1014 include any second bridge arm corresponding to the fourth switch. Except for the other two second bridge arms. Among them, the midpoint of any second bridge arm among the other two second bridge arms is connected to the first connection end of any fourth switch through the fifth switch K3a , and the first connection end of any fourth switch is connected to The first connection end of the AC load 13 is connected. It should be noted that the connection relationship between other components in the two-way vehicle charger 10 can be seen in the corresponding embodiment of FIG. 3B and will not be described again here.
  • any fourth switch is the fourth switch K 2a
  • the second bridge arm corresponding to any fourth switch is the second bridge arm 1012
  • the other two second bridge arms include the second bridge arm 1013 and the second bridge arm 1014
  • any one of the other two second bridge arms is the second bridge arm 1013.
  • the midpoint of the second bridge arm 1013 is connected to the first connection end of the fourth switch K 2a through the fifth switch K 3a .
  • the first connection end of the fourth switch K 2a is connected to the first connection end of the AC load 13.
  • the controller 102 provided in the embodiment of the present application can establish a wired connection or a wireless connection with the fourth switch K 2a , the fourth switch K 2b , the fourth switch K 2c and the fifth switch K 3a .
  • the controller 102 is used to control the fourth switch K 2a , the fourth switch K 2b , the fourth switch K 2c and the fifth switch K 3a to be turned on or off, so that the power factor correction circuit 101 receives One-phase AC power V in3 , or receive three-phase AC power V in4 , or output AC power V out4 .
  • the power factor correction circuit 101 is used to receive one-phase alternating current V in3 or output alternating current V out4 .
  • the controller 102 is used to: control the fourth switch K 2a and the fifth switch K 3a to be turned on, and control the other two fourth switches to be turned off, so that the midpoint of at least one second bridge arm receives one-phase alternating current V in3 Or output alternating current V out4 , wherein the other two fourth switches include the fourth switch K 2b and the fourth switch K 2c , and at least one second bridge arm includes the second bridge arm 1012 and the second bridge arm 1013 ; controlling the fourth switch K 2a , the fourth switch K 2b and the fourth switch K 2c are turned off, and the fifth switch K 3a is controlled to be turned on, so that the midpoint of at least one second bridge arm receives one-phase alternating current V in3 or outputs alternating current V out4 , Wherein, at least one second bridge arm includes the second bridge arm 1013 .
  • the controller 102 is used to control each of the fourth switch K 2a , the fourth switch K 2b , the fourth switch K 2c and the fifth switch K 3a to be turned on or off, so as to realize the switching of the second bridge arm.
  • the midpoint receives one-phase alternating current V in3 or outputs alternating current V out4 , thereby meeting the different working requirements of the two-way vehicle charger 10 and providing high flexibility in use.
  • the power factor correction circuit 101 provided by the embodiment of the present application is used to receive three-phase alternating current V in4 .
  • the controller 102 is used to: control the fourth switch K 2a , the fourth switch K 2b and the fourth switch K 2c to be turned on, and control the fifth switch K 3a to be turned off, so that the second bridge arm 1012 and the second bridge arm The midpoint of 1013 and the second bridge arm 1014 receives the three-phase alternating current V in4 .
  • FIG. 5A is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • the power factor correction circuit 101 includes three filter capacitors corresponding to the filter inductor L a , the filter inductor L b and the filter inductor L c .
  • the three filter capacitors include the filter capacitor Ca , the filter capacitor C b and the filter capacitor C .
  • Capacitance C c Capacitance C c .
  • the filter inductor L a is connected to the first connection end of the filter capacitor C a
  • the filter inductor L b is connected to the first connection end of the filter capacitor C b
  • the filter inductor L c is connected to the first connection end of the filter capacitor C c .
  • the second connection end of each of the filter capacitor C a , the filter capacitor C b and the filter capacitor C c is connected to the series connection point of the positive bus capacitor C dc1 and the negative bus capacitor C dc2 .
  • the above-mentioned bidirectional vehicle charger 10 includes a bidirectional DC/DC conversion circuit 103.
  • the bidirectional DC/DC conversion circuit 103 is connected in series between the positive and negative poles of the DC bus 100. It should be noted that the connection relationship between other components in the two-way vehicle charger 10 can be seen in the corresponding embodiment of FIG. 4A and will not be described again here.
  • the filter inductor L a , the filter inductor L b , the filter inductor L c , the filter capacitor Ca , the filter capacitor C b and the filter capacitor C c may form a filter circuit.
  • the first bridge arm 1011 and the second bridge The arm 1012, the second bridge arm 1013 and the second bridge arm 1014 may constitute a bridge arm conversion circuit.
  • the two-way vehicle charger 10 provided in the embodiment of the present application is used to use the three-phase AC power supply 11 to charge Power battery 12 recharges.
  • the filter circuit is used to filter the one-phase AC power V in3 or the three-phase AC power V in4 provided by the three-phase AC power supply 11, and output the DC power V OUT3 through the bridge arm conversion circuit to charge the power battery 12, thereby reducing the need for a two-way on-board charger 10 switching ripple, strong applicability.
  • the bidirectional DC/DC conversion circuit 103 is used to receive the output voltage of the bridge arm conversion circuit and output the direct current V OUT3 to charge the power battery 12 .
  • Figure 5B is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • the power factor correction circuit 101 provided by the embodiment of the present application is used to use the power battery 12 to supply power to the AC load 13 .
  • the bridge arm conversion circuit is used to receive the DC power V in5 provided by the power battery 12 or the DC power output by the power battery 12 through the bidirectional DC/DC conversion circuit 103, and filter the filter circuit to output the AC power V OUT4 to power the AC load 13, thereby reducing
  • the switching ripple of the two-way vehicle charger 10 has strong applicability.
  • FIG. 6A is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • the bidirectional vehicle charger 10 also includes a sixth switch K 4 , and the midpoint of any second bridge arm is connected to the neutral line of the three-phase AC power supply 11 through the sixth switch K 4 .
  • any second bridge arm may be the second bridge arm 1014 . It should be noted that the connection relationship between other components in the two-way vehicle charger 10 can be seen in the corresponding embodiment of FIG. 5A and will not be described again here.
  • the bidirectional vehicle charger 10 provided in the embodiment of the present application is used to charge the power battery 12 using the three-phase AC power supply 11 .
  • the controller 102 is used to control the sixth switch K 4 to turn off.
  • the specific control method of other switches in the two-way vehicle charger 10 please refer to the embodiment corresponding to FIG. 4A above, and will not be described again here.
  • FIG. 6B is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • the bidirectional vehicle charger 10 also includes a sixth switch K 4 , and the midpoint of any second bridge arm is connected to the second connection end of the AC load 13 through the sixth switch K 4 .
  • any second bridge arm may be the second bridge arm 1014 . It should be noted that the connection relationship between other components in the two-way vehicle charger 10 can be seen in the corresponding embodiment of FIG. 5B and will not be described again here.
  • the bidirectional vehicle charger 10 provided in the embodiment of the present application is used to use the power battery 12 to supply power to the AC load 13 .
  • the controller 102 is used to control the sixth switch K 4 to be turned on.
  • the specific control method of other switches in the two-way vehicle charger 10 please refer to the embodiment corresponding to FIG. 4B mentioned above, and will not be described again here.
  • the second bridge arm 1014 connected to the sixth switch K 4 may be a balancing bridge arm of the positive bus capacitance C dc1 and the negative bus capacitance C dc2 , and the balancing bridge arm is used to balance the positive bus capacitance C dc1 voltage and the voltage of the negative bus capacitance C dc2 .
  • the controller 102 When the power battery 12 supplies power to the AC load 13, the controller 102 is used to: collect the voltage of the positive bus capacitor C dc1 and the voltage of the negative bus capacitor C dc2 ; When the difference between the voltages of dc2 is greater than or equal to the first threshold, the second switch S 5 in the second bridge arm 1014 connected to the sixth switch K 4 is controlled to be turned on, thereby balancing the voltage of the positive bus capacitor C dc1 and the voltage of the negative bus capacitor C dc2 to suppress the voltage fluctuation at the midpoint of the bus capacitor, thereby improving the power supply stability of the two-way vehicle charger 10 .
  • the current output by the positive terminal of the power battery 12 flows through the second switch S 5 , the sixth switch K 4 , the first switch K 1 and the negative bus capacitor C dc2 in sequence and returns to the negative terminal of the power battery 12 to form a balanced circuit.
  • this balancing circuit is used to balance the voltage of the positive bus capacitor C dc1 and the voltage of the negative bus capacitor C dc2 .
  • the specific conduction time of the second switch S 5 can be determined by the difference, which is the value obtained by subtracting the voltage of the negative bus capacitor C dc2 from the voltage of the positive bus capacitor C dc1 .
  • the first threshold is a threshold set by the user or a threshold configured by the controller 102. For example, the first threshold is 10V or other values.
  • the controller 102 is used to: calculate the voltage between the voltage of the negative bus capacitor C dc2 and the voltage of the positive bus capacitor C dc1
  • the third switch S 6 in the second bridge arm 1014 connected to the sixth switch K 4 is controlled to be turned on, thereby balancing the voltage of the positive bus capacitor C dc1 and the negative bus capacitance.
  • the voltage of C dc2 is used to suppress the voltage fluctuation at the midpoint of the bus capacitor, thereby improving the power supply stability of the two-way vehicle charger 10 .
  • the current output by the positive terminal of the power battery 12 flows through the positive bus capacitor C dc1 , the first switch K 1 , the sixth switch K 4 and the third switch S 6 in sequence and returns to the negative terminal of the power battery 12 to form a balanced circuit.
  • this balancing circuit is used to balance the voltage of the positive bus capacitor C dc1 and the voltage of the negative bus capacitor C dc2 .
  • the specific conduction time of the third switch S 6 can be determined by the difference, which is the value obtained by subtracting the voltage of the positive bus capacitor C dc1 from the voltage of the negative bus capacitor C dc2 .
  • the second threshold is a threshold set by the user or a control The threshold configured by the processor 102. In an embodiment, the first threshold and the second threshold may be the same or different.
  • the second bridge arm connected to the sixth switch K 4 may be the second bridge arm 1013 .
  • the controller 102 is used to control the fifth switch K 3a to turn off.
  • the second bridge arm connected to the sixth switch K 4 may be the second bridge arm 1012 .
  • the controller 102 is used to control the fourth switch K 2a to turn off. It can be seen that when the second bridge arm connected to the sixth switch K4 and the second bridge arm connected to the fourth switch or the fifth switch are the same bridge arm, the fourth switch or the fifth switch is turned off; When the second bridge arm connected to the sixth switch K 4 and the second bridge arm connected to the fourth switch or the fifth switch are different bridge arms, the fourth switch or the fifth switch may be turned on or off. It should be noted that the specific control method of other switches in the two-way vehicle charger 10 can be referred to the corresponding embodiment of FIG. 4B above, and will not be described again here.
  • FIG. 7A is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • the second bridge arm 1012, the second bridge arm 1013 and the second bridge arm 1014 include two other second bridge arms except the second bridge arm corresponding to any fourth switch.
  • Bidirectional vehicle charging The machine 10 includes two fifth switches corresponding to the other two second bridge arms, and the two fifth switches include a fifth switch K 3a and a fifth switch K 3b .
  • the midpoint of one of the other two second bridge arms is connected to the first connection end of any fourth switch through the fifth switch corresponding to the second bridge arm, and the third connection end of any fourth switch One connection end is connected to a live wire of the three-phase AC power supply 11 .
  • the connection relationship between other components in the two-way vehicle charger 10 can be seen in the corresponding embodiment of FIG. 3A and will not be described again here.
  • any fourth switch is the fourth switch K 2a
  • the second bridge arm corresponding to any fourth switch is the second bridge arm 1012
  • the other two second bridge arms include the second bridge arm 1013 and the second bridge arm 1014.
  • the midpoint of the second bridge arm 1013 is connected to the first connection end of the fourth switch K 2a through the fifth switch K 3a corresponding to the second bridge arm 1013
  • the midpoint of the second bridge arm 1014 is connected to the second bridge arm 1014 through the fifth switch K 3 a corresponding to the second bridge arm 1013
  • the corresponding fifth switch K 3b is connected to the first connection end of the fourth switch K 2a
  • the first connection end of the fourth switch K 2a is connected to the live wire drawn from the AC potential V ga .
  • FIG. 7B is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • the second bridge arm 1012, the second bridge arm 1013 and the second bridge arm 1014 include two other second bridge arms except the second bridge arm corresponding to any fourth switch.
  • the above-mentioned Figure 3B The illustrated bidirectional vehicle charger 10 also includes a fifth switch K 3a and a fifth switch K 3b corresponding to the other two second bridge arms. Wherein, the midpoint of one of the other two second bridge arms is connected to the first connection end of any fourth switch through the fifth switch corresponding to the second bridge arm, and the third connection end of any fourth switch One connection end is connected to the first connection end of the AC load 13 . It should be noted that the connection relationship between other components in the two-way vehicle charger 10 can be seen in the corresponding embodiment of FIG. 3B and will not be described again here.
  • any fourth switch may be the fourth switch K 2a , the second bridge arm corresponding to any fourth switch is the second bridge arm 1012 , and the other two second bridge arms include the second bridge arm 1013 and the second bridge arm 1014.
  • the midpoint of the second bridge arm 1013 is connected to the first connection end of the fourth switch K 2a through the fifth switch K 3a corresponding to the second bridge arm 1013
  • the midpoint of the second bridge arm 1014 is connected to the second bridge arm 1014 through the fifth switch K 3 a corresponding to the second bridge arm 1013 .
  • the corresponding fifth switch K 3b is connected to the first connection end of the fourth switch K 2a
  • the first connection end of the fourth switch K 2a is connected to the first connection end of the AC load 13.
  • the controller 102 provided in the embodiment of the present application can establish a wired connection or a wireless connection with the fourth switch K 2a , the fourth switch K 2b , the fourth switch K 2c , the fifth switch K 3a and the fifth switch K 3b .
  • the controller 102 is used to control the fourth switch K 2a , the fourth switch K 2b , the fourth switch K 2c , the fifth switch K 3a and the fifth switch K 3b to be turned on or off, so that the power factor correction circuit 101 receives a Phase AC power V in3 , or receive three-phase AC power V in4 , or output AC power V out4 .
  • the power factor correction circuit 101 is used to receive one-phase alternating current V in3 or output alternating current V out4 .
  • the controller 102 is used to: control the fourth switch K 2a , the fifth switch K 3a and the fifth switch K 3b to turn on, and control the other two fourth switches to turn off, so that the midpoint of at least one second bridge arm Receive one-phase alternating current V in3 or output alternating current V out4 , wherein the other two fourth switches include the fourth switch K 2b and the fourth switch K 2c , and at least one second bridge arm includes the second bridge arm 1012 and the second bridge arm 1013 and the second bridge arm 1014; control the fourth switch K 2a , the fourth switch K 2b and the fourth switch K 2c to turn off, and control the fifth switch K 3a and the fifth switch K 3b to turn on, so that at least one first The midpoint of the two bridge arms receives one-phase alternating current V in3 or outputs alternating current V out4 , wherein at least one second bridge arm
  • controller 102 is used to control each of the fourth switch K 2a , the fourth switch K 2b , the fourth switch K 2c , the fifth switch K 3a and the fifth switch K 3b to be turned on or off to achieve
  • the midpoint of the second bridge arm receives one-phase alternating current V in3 or outputs alternating current V out4 , thereby meeting different working requirements of the two-way vehicle charger 10 and providing high flexibility in use.
  • the power factor correction circuit 101 provided by the embodiment of the present application is used to receive the three-phase alternating current V in4 .
  • the controller 102 is used to: control the fourth switch K 2a , the fourth switch K 2b and the fourth switch K 2c to be turned on, and to control the fifth switch K 3a and the fifth switch K 3b to be turned off, so that the second bridge arm 1012, the midpoint of the second bridge arm 1013 and the second bridge arm 1014 receives the three-phase alternating current V in4 .
  • FIG. 8A is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • the bidirectional vehicle charger 10 includes a sixth switch K 4 , and the midpoint of the second bridge arm 1014 is connected to the neutral line of the three-phase AC power supply 11 through the filter inductor L c and the sixth switch K 4 . It should be noted that the connection relationship between other components in the two-way vehicle charger 10 can be seen in the corresponding embodiment of FIG. 7A and will not be described again here.
  • the bidirectional vehicle charger 10 provided in the embodiment of the present application is used to charge the power battery 12 using the three-phase AC power supply 11 .
  • the controller 102 is used to control the sixth switch K 4 to turn off.
  • FIG. 8B is another circuit schematic diagram of the two-way vehicle charger provided by this application.
  • the bidirectional vehicle charger 10 includes a sixth switch K 4 , and the midpoint of the second bridge arm 1014 is connected to the second connection end of the AC load 13 through the filter inductor L c and the sixth switch K 4 .
  • the connection relationship between other components in the two-way vehicle charger 10 can be seen in the corresponding embodiment of FIG. 7B and will not be described again here.
  • the bidirectional vehicle charger 10 provided in the embodiment of the present application is used to use the power battery 12 to supply power to the AC load 13 .
  • the controller 102 is used to: control the fifth switch K 3a and the sixth switch K 4 to be turned on, and control the fifth switch K 3b to be turned off.
  • the specific control method of other switches in the two-way vehicle charger 10 can be seen in the corresponding figure 7B above. The embodiments will not be described again here.
  • the second bridge arm 1014 may be a balancing bridge arm of the positive bus capacitance C dc1 and the negative bus capacitance C dc2 , and the balancing bridge arm is used to balance the voltage of the positive bus capacitance C dc1 and the voltage of the negative bus capacitance C dc2 Voltage.
  • the specific working principle of the balance bridge arm can be found in the corresponding embodiment in FIG. 6B and will not be described again here.
  • the one-phase AC power V in3 or the three-phase AC power V in4 provided by the three-phase AC power supply 11 can be used to charge the power battery 12
  • the DC power V in5 provided by the power battery 12 can be used to charge the AC power.
  • Load 13 is powered, so it is compatible with the forward charging function and reverse discharging function of single three-phase input, which greatly reduces the circuit cost, makes the application more flexible and has stronger applicability.
  • FIG. 9 is a schematic structural diagram of the vehicle power system provided by this application.
  • the vehicle power system 4 includes a power battery 40 and a two-way vehicle charger 41 .
  • the two-way vehicle charger 41 is used to charge the power battery 40 . Since the two-way on-board charger 41 is compatible with the forward charging function and the reverse discharging function of a single three-phase input, it can improve the working efficiency of the on-board power system 4 and greatly reduce the circuit cost of the on-board power system 4 and has strong applicability.

Abstract

一种双向车载充电机(10),包括直流母线(100)、两个母线电容、功率因数校正电路(101)和控制器(102),其中功率因数校正电路(101)包括:第一桥臂(1011),串联于直流母线(100)的正负极之间,第一桥臂(1011)的中点通过第一开关(K 1)连接两个母线电容的串联连接点;三个第二桥臂,分别串联于直流母线(100)的正负极之间;控制器(102),用于:控制第一开关(K 1)断开,并控制至少一个第二桥臂输出直流电为动力电池(12)充电,控制第一开关(K 1)导通,并控制至少一个第二桥臂的中点输出交流电为交流负载(13)供电。还公开了一种车载动力系统及电动车辆。该充电机兼容对动力电池充电的正向充电功能以及对交流负载供电的逆向放电功能,大幅度降低了电路成本,运用灵活性强,适用性强。

Description

双向车载充电机、车载动力系统及电动车辆
本申请要求于2022年07月05日提交中国专利局、申请号为202210782895.3、申请名称为“双向车载充电机、车载动力系统及电动车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力电子技术领域,尤其涉及一种双向车载充电机、车载动力系统及电动车辆。
背景技术
目前,车载充电机(on board charge,OBC)是指固定安装在电动汽车上的充电机,该车载充电机的交流侧连接交流电网,车载充电机的直流侧连接动力电池,其中,车载充电机用于将交流电网的输出电压转换为直流电压以对动力电池充电。然而,在车载充电机的交流侧连接外部负载的情况下,车载充电机无法兼容对外部负载充电的需求,适用性差。
发明内容
本申请提供一种双向车载充电机、车载动力系统及电动车辆,可兼容对动力电池充电的正向充电功能和对交流负载供电的逆向放电功能,大幅度降低了电路成本,运用灵活性强,适用性强。
第一方面,本申请提供了一种双向车载充电机,用于利用三相交流电源为动力电池充电或利用动力电池为交流负载供电。双向车载充电机包括:
直流母线,用于传输直流电;
两个母线电容,串联于直流母线的正负极之间;
功率因数校正(power factor correction,PFC)电路,用于接收三相交流电源提供的一相交流电或三相交流电,或用于接收动力电池提供的直流电,功率因数校正电路包括:
第一桥臂,串联于直流母线的正负极之间,第一桥臂的中点通过第一开关连接两个母线电容的串联连接点;
三个第二桥臂,分别串联于直流母线的正负极之间,至少一个第二桥臂的中点用于接收一相交流电;或者三个第二桥臂的中点用于接收三相交流电;或者至少一个第二桥臂用于接收直流电;
控制器,用于:
控制第一开关断开,并控制至少一个第二桥臂输出直流电为动力电池充电;
控制第一开关导通,并控制至少一个第二桥臂的中点输出交流电为交流负载供电。
在本申请中,可控制第一开关和三个第二桥臂配合动作,从而实现对动力电池充电的正向充电功能以及对交流负载供电的逆向放电功能,大幅度降低了电路成本,运用灵活性强,适用性强。
结合第一方面,在第一种可能的实施方式中,上述第一桥臂包括串联的两个二极管,两个二极管的串联连接点作为第一桥臂的中点,桥臂成本更低;第二桥臂包括串联的第二开关 和第三开关,第二开关和第三开关的串联连接点作为第二桥臂的中点。
控制器,用于:
控制至少一个第二桥臂中的第二开关和第三开关交替导通,以将一相交流电转换为直流电或将直流电转换为交流电;
控制三个第二桥臂中的第二开关和第三开关交替导通,以将三相交流电转换为直流电。
在本申请中,控制三个第二桥臂中的部分第二桥臂或者所有第二桥臂动作,可实现将一相交流电转换为直流电、或将直流电转换为交流电、或将三相交流电转换为直流电,从而满足了双向车载充电机的不同工作需求,运用灵活性强。
结合第一方面第一种可能的实施方式,在第二种可能的实施方式中,双向车载充电机包括与三个第二桥臂对应的三个第四开关,一个第二桥臂的中点通过与第二桥臂对应的第四开关连接至三相交流电源的一个火线或交流负载的第一连接端。其中,三个第二桥臂的中点、三个第四开关和三相交流电源的三个火线一一对应并连接。
控制器,用于:
控制任意一个第四开关导通,并控制其他两个第四开关断开,以使至少一个第二桥臂的中点接收一相交流电或输出交流电;
控制三个第四开关导通,以使三个第二桥臂的中点接收三相交流电。
在本申请中,控制三个第四开关中的任意一个第四开关或者所有第四开关导通,可实现第二桥臂的中点接收一相交流电、或输出交流电、或接收三相交流电,从而满足双向车载充电机的不同工作需求,运用灵活性强。
结合第一方面第二种可能的实施方式,在第三种可能的实施方式中,三个第二桥臂包括除任意一个第四开关对应的第二桥臂之外的其他两个第二桥臂;双向车载充电机包括一个第五开关。其中,其他两个第二桥臂中的任意一个第二桥臂的中点通过第五开关连接至任意一个第四开关的第一连接端,任意一个第四开关的第一连接端与三相交流电源的一个火线或交流负载的第一连接端连接。
控制器,用于:
控制任意一个第四开关和第五开关导通,并控制其他两个第四开关断开,以使至少一个第二桥臂的中点接收一相交流电或输出交流电;
控制三个第四开关断开,并控制第五开关导通,以使至少一个第二桥臂的中点接收一相交流电或输出交流电。
在本申请中,控制三个第四开关和一个第五开关中的各开关导通或者关断,可实现第二桥臂的中点接收一相交流电或输出交流电,从而满足了双向车载充电机的不同工作需求,运用灵活性强。
结合第一方面第二种可能的实施方式,在第四种可能的实施方式中,三个第二桥臂包括除任意一个第四开关对应的第二桥臂之外的其他两个第二桥臂;双向车载充电机包括与其他两个第二桥臂对应的两个第五开关。其中,其他两个第二桥臂中的一个第二桥臂的中点通过与第二桥臂对应的第五开关连接至任意一个第四开关的第一连接端,任意一个第四开关的第一连接端与三相交流电源的一个火线或交流负载的第一连接端连接。其他两个第二桥臂的中点和两个第五开关一一对应并连接。
控制器,用于:
控制任意一个第四开关和两个第五开关导通,并控制其他两个第四开关断开,以使至少一个第二桥臂的中点接收一相交流电或输出交流电;
控制三个第四开关断开,并控制两个第五开关导通,以使至少一个第二桥臂的中点接收一相交流电或输出交流电。
在本申请中,控制三个第四开关和两个第五开关中的各开关导通或者关断,可实现第二桥臂的中点接收一相交流电或输出交流电,从而满足了双向车载充电机的不同工作需求,运用灵活性强。
结合第一方面第一种可能的实施方式至第一方面第四种可能的实施方式中的任一种,在第五种可能的实施方式中,双向车载充电机包括第六开关,任意一个第二桥臂的中点通过第六开关连接三相交流电源的零线;双向车载充电机用于利用三相交流电源为动力电池充电;
控制器,用于:
控制第六开关断开,以实现对动力电池充电的正向充电功能。
结合第一方面第一种可能的实施方式至第一方面第四种可能的实施方式中的任一种,在第六种可能的实施方式中,双向车载充电机包括第六开关,任意一个第二桥臂的中点通过第六开关连接交流负载的第二连接端;双向车载充电机用于利用动力电池为交流负载供电;
控制器,用于:
控制第六开关导通,以实现对交流负载供电的逆向放电功能。
结合第一方面第六种可能的实施方式,在第七种可能的实施方式中,两个母线电容包括正母线电容和负母线电容。控制器,用于:在基于动力电池提供的直流电压对负载充电的过程中,采集正母线电容的电压和负母线电容的电压;进一步地,在正母线电容的电压与负母线电容的电压之间的差值大于或者等于第一阈值的情况下,控制第六开关连接的第二桥臂中的第二开关导通,以均衡正母线电容的电压和负母线电容的电压,从而抑制了母线电容中点的电压波动以提高双向车载充电机的供电稳定性,适用性更强。其中,差值为正母线电容的电压减去负母线电容的电压后得到的值。
结合第一方面第七种可能的实施方式,在第八种可能的实施方式中,上述控制器,用于:在负母线电容的电压与正母线电容的电压之间的差值大于或者等于第二阈值的情况下,控制第六开关连接的第二桥臂中的第三开关导通,以均衡正母线电容的电压和负母线电容的电压,从而抑制了母线电容中点的电压波动以提高双向车载充电机的供电稳定性,适用性更强。其中,差值为负母线电容的电压减去正母线电容的电压后得到的值。
第二方面,本申请提供了一种车载动力系统,包括动力电池以及如上述第一方面至第一方面第八种可能的实施方式中任一种提供的车载充电机;车载充电机用于为动力电池充电。由于双向车载充电机兼容单三相输入的正向充电功能和逆向放电功能,因此可提高车载动力系统的工作效率,并且大幅度降低了车载动力系统的电路成本,适用性强。
第三方面,本申请提供了一种电动车辆,包括动力电池、驱动电机以及如上述第一方面至第一方面第八种可能的实施方式中任一种提供的车载充电机;车载充电机用于为动力电池供电;动力电池用于为驱动电机供电。
在本申请中,可兼容单三相输入的正向充电功能和逆向放电功能,大幅度降低了电路成本,运用灵活性强,适用性强。
附图说明
图1是本申请提供的电动车辆的一种结构示意图;
图2是本申请提供的双向车载充电机的结构示意图;
图3A是本申请提供的双向车载充电机的一电路示意图;
图3B是本申请提供的双向车载充电机的另一电路示意图;
图4A是本申请提供的双向车载充电机的另一电路示意图;
图4B是本申请提供的双向车载充电机的另一电路示意图;
图5A是本申请提供的双向车载充电机的另一电路示意图;
图5B是本申请提供的双向车载充电机的另一电路示意图;
图6A是本申请提供的双向车载充电机的另一电路示意图;
图6B是本申请提供的双向车载充电机的另一电路示意图;
图7A是本申请提供的双向车载充电机的另一电路示意图;
图7B是本申请提供的双向车载充电机的另一电路示意图;
图8A是本申请提供的双向车载充电机的另一电路示意图;
图8B是本申请提供的双向车载充电机的另一电路示意图;
图9是本申请提供的车载动力系统的结构示意图。
具体实施方式
下面将结合图示对本申请提供的车载充电机、车载动力系统及电动车辆进行说明。
图1是本申请提供的电动车辆的一种结构示意图。如图1所示,电动车辆1包括双向车载充电机10、动力电池20和驱动电机30。双向车载充电机10用于接收三相交流电源2提供的输入电压Vin1,并提供输出电压Vout1为动力电池20供电。动力电池20用于为驱动电机30提供输入电压Vin2以对驱动电机30供电。
在一种实施例中,三相交流电源2可以是交流电网、交流充电桩或者不间断电源(uninterruptible power system,UPS)。
如图1所示,双向车载充电机10还用于接收动力电池20提供的输入电压Vin2,并提供输出电压Vout2为交流负载3供电。在一种实施例中,交流负载3设置在电动车辆1内部,例如,交流负载3可以是压缩机电机或者其他小功率电机。在另一种实施例中,交流负载3设置在电动车辆1外部,交流负载3可以是手机、平板、笔记本电脑、蓝牙耳机、灯具、电磁炉、烧水壶、游戏机、充电宝或者智能可穿戴设备。
本申请实施例提供的双向车载充电机10可兼容对动力电池20充电的正向充电功能以及对交流负载3供电的逆向放电功能,从而简化了电动车辆1的结构布局,成本低、体积小且集成度高。
图2是本申请提供的双向车载充电机的结构示意图。双向车载充电机10用于利用三相交流电源11为动力电池12充电或利用动力电池12为交流负载13供电。在双向车载充电机10利用三相交流电源11为动力电池12充电的情况下,双向车载充电机10工作在正向充电模式。在双向车载充电机10利用动力电池12为交流负载13供电的情况下,双向车载充电机10工作在逆向放电模式。
在一种实施例中,三相交流电源11可以是交流电网、交流充电桩或者不间断电源(uninterruptible power system,UPS)。交流负载3可以是压缩机电机、其他小功率电机、手机、平板、笔记本电脑、蓝牙耳机、灯具、电磁炉、烧水壶、游戏机、充电宝或者智能可穿戴设备。
如图2所示,双向车载充电机10包括直流母线100、两个母线电容、第一开关K1、功率因数校正电路101和控制器102。
其中,直流母线100,用于传输直流电。在双向车载充电机10利用三相交流电源11为 动力电池12充电的情况下,直流母线100用于传输直流电Vout3。在双向车载充电机10利用动力电池12为交流负载13供电的情况下,直流母线100用于传输直流电Vin5
两个母线电容包括正母线电容Cdc1和负母线电容Cdc2,串联于直流母线100的正负极之间。其中,正母线电容Cdc1是与直流母线100的正极连接的母线电容,负母线电容Cdc2是与直流母线100的负极连接的母线电容。
功率因数校正电路101,用于接收三相交流电源11提供的一相交流电Vin3或三相交流电Vin4,或用于接收动力电池12提供的直流电Vin5。功率因数校正电路101包括第一桥臂1011和三个第二桥臂。
第一桥臂1011,串联于直流母线100的正负极之间,第一桥臂1011的中点通过第一开关K1连接正母线电容Cdc1和负母线电容Cdc2的串联连接点。其中,第一开关K1可以是继电器,正母线电容Cdc1和负母线电容Cdc2的串联连接点也可称为bus电容中点或者母线电容中点。
三个第二桥臂包括第二桥臂1012、第二桥臂1013和第二桥臂1014,分别串联于直流母线100的正负极之间。其中,至少一个第二桥臂的中点用于接收一相交流电Vin3;或者第二桥臂1012、第二桥臂1013和第二桥臂1014的中点用于接收三相交流电Vin4;或者至少一个第二桥臂用于接收直流电Vin5
控制器102可以是控制板、控制芯片或者软件代码。控制器102可以与第一开关K1和功率因数校正电路101建立有线连接或者无线连接。在一种实施例中,控制器102用于控制第一开关K1的导通或者关断,并控制功率因数校正电路101的运行。具体地,控制器102用于控制第二桥臂1012、第二桥臂1013和第二桥臂1014中的各第二桥臂动作,从而控制功率因数校正电路101的运行。
控制器102,用于:
控制第一开关K1断开,并控制至少一个第二桥臂输出直流电Vout3为动力电池12充电,此时双向车载充电机10处于正向充电模式;
控制第一开关K1导通,并控制至少一个第二桥臂的中点输出交流电Vout4为交流负载13供电,此时双向车载充电机10处于逆向放电模式。
本申请提供的控制器102用于控制第一开关K1、第二桥臂1012、第二桥臂1013和第二桥臂1014配合动作,从而兼容对动力电池12充电的正向充电功能以及对交流负载13供电的逆向放电功能,大幅度降低了电路成本,运用灵活性强,适用性强。
在一种实施例中,在第一开关K1导通的情况下,正母线电容Cdc1或负母线电容Cdc2、第一开关K1、第一桥臂1011、第二桥臂1012、第二桥臂1013和第二桥臂1014可构成逆向直流(direct current,DC)/交流(alternating current,AC)电路,用于实现对交流负载13供电的逆向放电功能。
在一种实施例中,第一桥臂1011包括串联的二极管D1和二极管D2,二极管D1和二极管D2的串联连接点作为第一桥臂1011的中点,桥臂成本更低。在另一种实施例中,第一桥臂1011包括串联的两个开关,两个开关的串联连接点作为第一桥臂1011的中点。
在一种实施例中,第二桥臂包括串联的第二开关和第三开关,第二开关和第三开关的串联连接点作为第二桥臂的中点。例如,第二桥臂1012包括串联的第二开关S1和第三开关S2,第二开关S1和第三开关S2的串联连接点作为第二桥臂1012的中点;第二桥臂1013包括串联的第二开关S3和第三开关S4,第二开关S3和第三开关S4的串联连接点作为第二桥臂1013的中点;第二桥臂1014包括串联的第二开关S5和第三开关S6,第二开关S5和第三开关S6的串联连接点作为第二桥臂1014的中点。
在一种实施例中,每个第二桥臂中的第二开关和第三开关包括但不限于:绝缘栅双极性晶体管(insulated gate bipolar transistor,IGBT),或者金属氧化物半导体场效应晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)。上述每个第二桥臂中的第二开关和第三开关可由硅半导体材料Si,或者第三代宽禁带半导体材料的碳化硅SiC,或者氮化镓GaN,或者其他开关材料制成。例如,如图2所示,每个第二桥臂中的第二开关和第三开关为IGBT。
在一种实施例中,每个第二桥臂中的第二开关和第三开关互补导通,即第二开关导通时第三开关关断,或者第二开关关断时第三开关导通。
在一种实施例中,控制器102,用于控制至少一个第二桥臂中的第二开关和第三开关交替导通,以将一相交流电Vin3转换为直流电Vout3并为动力电池12充电,或将直流电Vin5转换为交流电Vout4并为交流负载13供电;控制第二桥臂1012、第二桥臂1013和第二桥臂1014中的第二开关和第三开关交替导通,以将三相交流电Vin4转换为直流电Vout3并对动力电池12充电。
在一种实施例中,对于一个第二桥臂而言,第二开关和第三开关交替导通包括:在一时间段内第二桥臂中的第二开关导通且第三开关关断,在另一时间段内第二桥臂中的第二开关关断且第三开关导通。其中,一时间段和另一时间段处于第二桥臂的一个开关周期,且另一时间段在一时间段之后。
本申请实施例提供的控制器102用于控制第二桥臂1012、第二桥臂1013和第二桥臂1014中的部分第二桥臂或者所有第二桥臂动作,可实现将一相交流电Vin3转换为直流电Vout3、或将直流电Vin5转换为交流电Vout4、或将三相交流电Vin4转换为直流电Vout3,从而满足了双向车载充电机10的不同工作需求,运用灵活性强。
在一种实施例中,双向车载充电机10用于利用三相交流电源11为动力电池12充电,第一桥臂1011中的二极管D1和二极管D2交替导通,具体地,二极管D1导通时二极管D2截止,或者二极管D1截止时二极管D2导通。
在另一种实施例中,双向车载充电机10用于利用动力电池12为交流负载13供电,第一桥臂1011中的二极管D1和二极管D2均截止。
图3A是本申请提供的双向车载充电机的一电路示意图。如图3A所示,三相交流电源11是由三个频率相同、振幅相等、相位依次互差120度电角度的交流电势构成的电源。三个交流电势包括交流电势Vga、交流电势Vgb和交流电势Vgc,三相交流电源11的三个火线分别从交流电势Vga、交流电势Vgb和交流电势Vgc引出,三相交流电源11的零线从交流电势Vga、交流电势Vgb和交流电势Vgc的中性点引出。其中,零线也可称为N线。
如图3A所示,双向车载充电机10包括与第二桥臂1012、第二桥臂1013和第二桥臂1014对应的三个第四开关。其中,第二桥臂1012、第二桥臂1013和第二桥臂1014中一个第二桥臂的中点通过与第二桥臂对应的第四开关连接至三相交流电源11的一个火线。第二桥臂1012、第二桥臂1013和第二桥臂1014的中点、三个第四开关和三相交流电源11的三个火线一一对应并连接。需要说明的是,双向车载充电机10中其他器件之间的连接关系可参见图2对应的实施例,在此不再赘述。
其中,三个第四开关包括第四开关K2a、第四开关K2b和第四开关K2c。第二桥臂1012的中点通过第四开关K2a连接至交流电势Vga引出的火线,第二桥臂1013的中点通过第四开关K2b连接交流电势Vgb引出的火线,第二桥臂1014的中点通过第四开关K2c连接交流电势Vgc引出的火线。
在一种实施例中,双向车载充电机10包括滤波电感La、滤波电感Lb和滤波电感Lc,第二 桥臂1012的中点通过滤波电感La和第四开关K2a连接至交流电势Vga引出的火线,第二桥臂1013的中点通过滤波电感Lb和第四开关K2b连接交流电势Vgb引出的火线,第二桥臂1014的中点通过滤波电感Lc和第四开关K2c连接交流电势Vgc引出的火线。
图3B是本申请提供的双向车载充电机的另一电路示意图。如图3B所示,上述图2所示的双向车载充电机10还包括与第二桥臂1012、第二桥臂1013和第二桥臂1014对应的三个第四开关。其中,第二桥臂1012、第二桥臂1013和第二桥臂1014中一个第二桥臂的中点通过与第二桥臂对应的第四开关连接至交流负载13的第一连接端。第二桥臂1012、第二桥臂1013和第二桥臂1014的中点和三个第四开关一一对应并连接。需要说明的是,双向车载充电机10中其他器件之间的连接关系可参见图2对应的实施例,在此不再赘述。
其中,三个第四开关包括第四开关K2a、第四开关K2b和第四开关K2c。第二桥臂1012的中点通过第四开关K2a连接至交流负载13的第一连接端,第二桥臂1013的中点通过第四开关K2b连接至交流负载13的第一连接端,第二桥臂1014的中点通过第四开关K2c连接至交流负载13的第一连接端。
在一种实施例中,双向车载充电机10包括滤波电感La、滤波电感Lb和滤波电感Lc,第二桥臂1012的中点通过滤波电感La和第四开关K2a连接至交流负载13的第一连接端,第二桥臂1013的中点通过滤波电感Lb和第四开关K2b连接交流负载13的第一连接端,第二桥臂1014的中点通过滤波电感Lc和第四开关K2c连接交流负载13的第一连接端。
在一种实施例中,控制器102可以与第四开关K2a、第四开关K2b和第四开关K2c建立有线连接或者无线连接。控制器102用于控制第四开关K2a、第四开关K2b和第四开关K2c导通或者关断,以使功率因数校正电路101接收一相交流电Vin3、或接收三相交流电Vin4或输出交流电Vout4
具体地,控制器102,用于控制任意一个第四开关导通,并控制其他两个第四开关断开,以使至少一个第二桥臂的中点接收一相交流电Vin3或输出交流电Vout4;控制第四开关K2a、第四开关K2b和第四开关K2c导通,以使第二桥臂1012、第二桥臂1013和第二桥臂1014的中点接收三相交流电Vin4
在一种实施例中,任意一个第四开关可以是第四开关K2a,其他两个第四开关包括第四开关K2b和第四开关K2c,至少一个第二桥臂包括第二桥臂1012。在另一种实施例中,任意一个第四开关可以是第四开关K2b,其他两个第四开关包括第四开关K2a和第四开关K2c,至少一个第二桥臂包括第二桥臂1013。在另一种实施例中,任意一个第四开关可以是第四开关K2c,其他两个第四开关包括第四开关K2a和第四开关K2b,至少一个第二桥臂包括第二桥臂1014。
由此可见,控制器102用于控制第四开关K2a、第四开关K2b和第四开关K2c中的任意一个第四开关或者所有第四开关导通,可实现第二桥臂的中点接收一相交流电Vin3、或接收三相交流电Vin4、或输出交流电Vout4,从而满足双向车载充电机10的不同工作需求,运用灵活性强。
图4A是本申请提供的双向车载充电机的另一电路示意图。如图4A所示,双向车载充电机10包括一个第五开关K3a,第二桥臂1012、第二桥臂1013和第二桥臂1014包括除任意一个第四开关对应的第二桥臂之外的其他两个第二桥臂。其中,其他两个第二桥臂中的任意一个第二桥臂的中点通过第五开关K3a连接至任意一个第四开关的第一连接端,任意一个第四开关的第一连接端与三相交流电源11的一个火线连接。需要说明的是,双向车载充电机10中其他器件之间的连接关系可参见图3A对应的实施例,在此不再赘述。
在一种实施例中,任意一个第四开关为第四开关K2a,任意一个第四开关对应的第二桥臂为第二桥臂1012,其他两个第二桥臂包括第二桥臂1013和第二桥臂1014,其他两个第二桥 臂中的任意一个第二桥臂为第二桥臂1013。第二桥臂1013的中点通过第五开关K3a连接至第四开关K2a的第一连接端,第四开关K2a的第一连接端与交流电势Vga引出的火线连接。
图4B是本申请提供的双向车载充电机的另一电路示意图。如图4B所示,双向车载充电机10包括一个第五开关K3a,第二桥臂1012、第二桥臂1013和第二桥臂1014包括除任意一个第四开关对应的第二桥臂之外的其他两个第二桥臂。其中,其他两个第二桥臂中的任意一个第二桥臂的中点通过第五开关K3a连接至任意一个第四开关的第一连接端,任意一个第四开关的第一连接端与交流负载13的第一连接端连接。需要说明的是,双向车载充电机10中其他器件之间的连接关系可参见图3B对应的实施例,在此不再赘述。
在一种实施例中,任意一个第四开关为第四开关K2a,任意一个第四开关对应的第二桥臂为第二桥臂1012,其他两个第二桥臂包括第二桥臂1013和第二桥臂1014,其他两个第二桥臂中的任意一个第二桥臂为第二桥臂1013。第二桥臂1013的中点通过第五开关K3a连接至第四开关K2a的第一连接端,第四开关K2a的第一连接端与交流负载13的第一连接端连接。
本申请实施例提供的控制器102可以与第四开关K2a、第四开关K2b、第四开关K2c和第五开关K3a建立有线连接或者无线连接。在一种实施例中,控制器102用于控制第四开关K2a、第四开关K2b、第四开关K2c和第五开关K3a导通或者关断,以使功率因数校正电路101接收一相交流电Vin3、或接收三相交流电Vin4或输出交流电Vout4
本申请实施例提供的功率因数校正电路101用于接收一相交流电Vin3或者输出交流电Vout4。控制器102,用于:控制第四开关K2a和第五开关K3a导通,并控制其他两个第四开关断开,以使至少一个第二桥臂的中点接收一相交流电Vin3或输出交流电Vout4,其中,其他两个第四开关包括第四开关K2b和第四开关K2c,至少一个第二桥臂包括第二桥臂1012和第二桥臂1013;控制第四开关K2a、第四开关K2b和第四开关K2c断开,并控制第五开关K3a导通,以使至少一个第二桥臂的中点接收一相交流电Vin3或输出交流电Vout4,其中,至少一个第二桥臂包括第二桥臂1013。
由此可见,控制器102用于控制第四开关K2a、第四开关K2b、第四开关K2c和第五开关K3a中的各开关导通或者关断,可实现第二桥臂的中点接收一相交流电Vin3或输出交流电Vout4,从而满足了双向车载充电机10的不同工作需求,运用灵活性强。
本申请实施例提供的功率因数校正电路101用于接收三相交流电Vin4。控制器102,用于:控制第四开关K2a、第四开关K2b和第四开关K2c导通,并控制第五开关K3a断开,以使第二桥臂1012、第二桥臂1013和第二桥臂1014的中点接收三相交流电Vin4
图5A是本申请提供的双向车载充电机的另一电路示意图。如图5A所示,功率因数校正电路101包括与滤波电感La、滤波电感Lb和滤波电感Lc对应的三个滤波电容,三个滤波电容包括滤波电容Ca、滤波电容Cb和滤波电容Cc。其中,滤波电感La连接滤波电容Ca的第一连接端,滤波电感Lb连接滤波电容Cb的第一连接端,滤波电感Lc连接滤波电容Cc的第一连接端。滤波电容Ca、滤波电容Cb和滤波电容Cc中各滤波电容的第二连接端连接正母线电容Cdc1和负母线电容Cdc2的串联连接点。
上述双向车载充电机10包括双向DC/DC变换电路103,双向DC/DC变换电路103串联于直流母线100的正负极之间。需要说明的是,双向车载充电机10中其他器件之间的连接关系可参见图4A对应的实施例,在此不再赘述。
在一种实施例中,滤波电感La、滤波电感Lb、滤波电感Lc、滤波电容Ca、滤波电容Cb和滤波电容Cc可构成滤波电路,第一桥臂1011、第二桥臂1012、第二桥臂1013和第二桥臂1014可构成桥臂变换电路。本申请实施例提供的双向车载充电机10用于利用三相交流电源11为 动力电池12充电。滤波电路用于对三相交流电源11提供的一相交流电Vin3或三相交流电Vin4进行滤波,并经桥臂变换电路输出直流电VOUT3为动力电池12充电,从而减少了双向车载充电机10的开关纹波,适用性强。在一种实施例中,双向DC/DC变换电路103用于接收桥臂变换电路的输出电压,并输出直流电VOUT3为动力电池12充电。
参见图5B,图5B是本申请提供的双向车载充电机的另一电路示意图。如图5B所示,双向车载充电机10的内部电路结构可参见图5A对应的实施例,在此不再赘述。本申请实施例提供的功率因数校正电路101用于利用动力电池12为交流负载13供电。桥臂变换电路用于接收动力电池12提供的直流电Vin5或动力电池12经双向DC/DC变换电路103输出的直流电,并经滤波电路滤波后输出交流电VOUT4为交流负载13供电,从而减少了双向车载充电机10的开关纹波,适用性强。
图6A是本申请提供的双向车载充电机的另一电路示意图。如图6A所示,双向车载充电机10还包括第六开关K4,任意一个第二桥臂的中点通过第六开关K4连接三相交流电源11的零线。在一种实施例中,任意一个第二桥臂可以是第二桥臂1014。需要说明的是,双向车载充电机10中其他器件之间的连接关系可参见图5A对应的实施例,在此不再赘述。
本申请实施例提供的双向车载充电机10用于利用三相交流电源11为动力电池12充电。控制器102,用于:控制第六开关K4断开,双向车载充电机10中其他开关的具体控制方式可参见上述图4A对应的实施例,在此不再赘述。
图6B是本申请提供的双向车载充电机的另一电路示意图。如图6B所示,双向车载充电机10还包括第六开关K4,任意一个第二桥臂的中点通过第六开关K4连接交流负载13的第二连接端。在一种实施例中,任意一个第二桥臂可以是第二桥臂1014。需要说明的是,双向车载充电机10中其他器件之间的连接关系可参见图5B对应的实施例,在此不再赘述。
本申请实施例提供的双向车载充电机10用于利用动力电池12为交流负载13供电。控制器102,用于:控制第六开关K4导通,双向车载充电机10中其他开关的具体控制方式可参见上述图4B对应的实施例,在此不再赘述。
在一种实施例中,第六开关K4所连接的第二桥臂1014可以是正母线电容Cdc1和负母线电容Cdc2的平衡桥臂,且平衡桥臂用于均衡正母线电容Cdc1的电压和负母线电容Cdc2的电压。在动力电池12为交流负载13供电的过程中,控制器102,用于:采集正母线电容Cdc1的电压和负母线电容Cdc2的电压;在正母线电容Cdc1的电压与负母线电容Cdc2的电压之间的差值大于或者等于第一阈值的情况下,控制第六开关K4连接的第二桥臂1014中的第二开关S5导通,从而均衡正母线电容Cdc1的电压和负母线电容Cdc2的电压以抑制母线电容中点的电压波动,进而提高了双向车载充电机10的供电稳定性。
其中,动力电池12的正极端输出的电流依次流过第二开关S5、第六开关K4、第一开关K1和负母线电容Cdc2回到动力电池12的负极端以形成平衡电路,且该平衡电路用于均衡正母线电容Cdc1的电压和负母线电容Cdc2的电压。第二开关S5的具体导通时长可由差值决定,差值为正母线电容Cdc1的电压减去负母线电容Cdc2的电压后得到的值。第一阈值为用户设置的阈值或者控制器102所配置的阈值,例如,第一阈值为10V或其他值。
在一种实施例中,在采集正母线电容Cdc1的电压和负母线电容Cdc2的电压之后,控制器102,用于:在负母线电容Cdc2的电压与正母线电容Cdc1的电压之间的差值大于或者等于第二阈值的情况下,控制第六开关K4连接的第二桥臂1014中的第三开关S6导通,从而均衡正母线电容Cdc1的电压和负母线电容Cdc2的电压以抑制母线电容中点的电压波动,进而提高了双向车载充电机10的供电稳定性。
其中,动力电池12的正极端输出的电流依次流过正母线电容Cdc1、第一开关K1、第六开关K4和第三开关S6回到动力电池12的负极端以形成平衡电路,且该平衡电路用于均衡正母线电容Cdc1的电压和负母线电容Cdc2的电压。第三开关S6的具体导通时长可由差值决定,该差值为负母线电容Cdc2的电压减去正母线电容Cdc1的电压后得到的值,第二阈值为用户设置的阈值或者控制器102所配置的阈值。在一种实施例中,第一阈值和第二阈值可以相同,也可以不同。
在一种实施例中,第六开关K4连接的第二桥臂可以是第二桥臂1013。控制器102,用于:控制第五开关K3a关断。在另一实施例中,第六开关K4连接的第二桥臂可以是第二桥臂1012。控制器102,用于:控制第四开关K2a关断。由此可见,在第六开关K4连接的第二桥臂和第四开关或第五开关连接的第二桥臂为同一桥臂的情况下,该第四开关或第五开关关断;在第六开关K4连接的第二桥臂和第四开关或第五开关连接的第二桥臂为不同桥臂的情况下,该第四开关或第五开关可以导通或者关断。需要说明的是,双向车载充电机10中其他开关的具体控制方式可参见上述图4B对应的实施例,在此不再赘述。
图7A是本申请提供的双向车载充电机的另一电路示意图。如图7A所示,第二桥臂1012、第二桥臂1013和第二桥臂1014包括除任意一个第四开关对应的第二桥臂之外的其他两个第二桥臂,双向车载充电机10包括与其他两个第二桥臂对应的两个第五开关,两个第五开关包括第五开关K3a和第五开关K3b。其中,其他两个第二桥臂中的一个第二桥臂的中点通过与第二桥臂对应的第五开关连接至任意一个第四开关的第一连接端,任意一个第四开关的第一连接端与三相交流电源11的一个火线连接。需要说明的是,双向车载充电机10中其他器件之间的连接关系可参见图3A对应的实施例,在此不再赘述。
在一种实施例中,任意一个第四开关为第四开关K2a,任意一个第四开关对应的第二桥臂为第二桥臂1012,其他两个第二桥臂包括第二桥臂1013和第二桥臂1014。第二桥臂1013的中点通过与第二桥臂1013对应的第五开关K3a连接至第四开关K2a的第一连接端,第二桥臂1014的中点通过与第二桥臂1014对应的第五开关K3b连接至第四开关K2a的第一连接端,第四开关K2a的第一连接端与交流电势Vga引出的火线连接。
图7B是本申请提供的双向车载充电机的另一电路示意图。如图7B所示,第二桥臂1012、第二桥臂1013和第二桥臂1014包括除任意一个第四开关对应的第二桥臂之外的其他两个第二桥臂,上述图3B所示的双向车载充电机10还包括与其他两个第二桥臂对应的第五开关K3a和第五开关K3b。其中,其他两个第二桥臂中的一个第二桥臂的中点通过与第二桥臂对应的第五开关连接至任意一个第四开关的第一连接端,任意一个第四开关的第一连接端与交流负载13的第一连接端连接。需要说明的是,双向车载充电机10中其他器件之间的连接关系可参见图3B对应的实施例,在此不再赘述。
在一种实施例中,任意一个第四开关可以是第四开关K2a,任意一个第四开关对应的第二桥臂为第二桥臂1012,其他两个第二桥臂包括第二桥臂1013和第二桥臂1014。第二桥臂1013的中点通过与第二桥臂1013对应的第五开关K3a连接至第四开关K2a的第一连接端,第二桥臂1014的中点通过与第二桥臂1014对应的第五开关K3b连接至第四开关K2a的第一连接端,第四开关K2a的第一连接端与交流负载13的第一连接端连接。
本申请实施例提供的控制器102可以与第四开关K2a、第四开关K2b、第四开关K2c、第五开关K3a和第五开关K3b建立有线连接或者无线连接。控制器102用于控制第四开关K2a、第四开关K2b、第四开关K2c、第五开关K3a和第五开关K3b导通或者关断,以使功率因数校正电路101接收一相交流电Vin3、或接收三相交流电Vin4或输出交流电Vout4
本申请实施例提供的功率因数校正电路101用于接收一相交流电Vin3或者输出交流电Vout4。控制器102,用于:控制第四开关K2a、第五开关K3a和第五开关K3b导通,并控制其他两个第四开关断开,以使至少一个第二桥臂的中点接收一相交流电Vin3或输出交流电Vout4,其中,其他两个第四开关包括第四开关K2b和第四开关K2c,至少一个第二桥臂包括第二桥臂1012、第二桥臂1013和第二桥臂1014;控制第四开关K2a、第四开关K2b和第四开关K2c断开,并控制第五开关K3a和第五开关K3b导通,以使至少一个第二桥臂的中点接收一相交流电Vin3或输出交流电Vout4,其中,至少一个第二桥臂包括第二桥臂1013和第二桥臂1014。
由此可见,控制器102用于控制第四开关K2a、第四开关K2b、第四开关K2c、第五开关K3a和第五开关K3b中的各开关导通或者关断,实现第二桥臂的中点接收一相交流电Vin3或输出交流电Vout4,从而满足双向车载充电机10的不同工作需求,运用灵活性强。
本申请实施例提供的功率因数校正电路101用于接收三相交流电Vin4。控制器102,用于:控制第四开关K2a、第四开关K2b和第四开关K2c导通,并控制第五开关K3a和第五开关K3b断开,以使第二桥臂1012、第二桥臂1013和第二桥臂1014的中点接收三相交流电Vin4
图8A是本申请提供的双向车载充电机的另一电路示意图。如图8A所示,双向车载充电机10包括第六开关K4,第二桥臂1014的中点通过滤波电感Lc和第六开关K4连接三相交流电源11的零线。需要说明的是,双向车载充电机10中其他器件之间的连接关系可参见图7A对应的实施例,在此不再赘述。
本申请实施例提供的双向车载充电机10用于利用三相交流电源11为动力电池12充电。控制器102,用于:控制第六开关K4断开,双向车载充电机10中其他开关的具体控制方式可参见上述图7A对应的实施例,在此不再赘述。
图8B是本申请提供的双向车载充电机的另一电路示意图。如图8B所示,双向车载充电机10包括第六开关K4,第二桥臂1014的中点通过滤波电感Lc和第六开关K4连接交流负载13的第二连接端。需要说明的是,双向车载充电机10中其他器件之间的连接关系可参见图7B对应的实施例,在此不再赘述。
本申请实施例提供的双向车载充电机10用于利用动力电池12为交流负载13供电。控制器102,用于:控制第五开关K3a和第六开关K4导通,并控制第五开关K3b断开,双向车载充电机10中其他开关的具体控制方式可参见上述图7B对应的实施例,在此不再赘述。
在一种实施例中,第二桥臂1014可以是正母线电容Cdc1和负母线电容Cdc2的平衡桥臂,且平衡桥臂用于均衡正母线电容Cdc1的电压和负母线电容Cdc2的电压。其中,平衡桥臂的具体工作原理可参见图6B对应的实施例,在此不再赘述。
在本申请提供的双向车载充电机10中,可利用三相交流电源11提供的一相交流电Vin3或三相交流电Vin4为动力电池12充电,或利用动力电池12提供的直流电Vin5为交流负载13供电,从而兼容单三相输入的正向充电功能和逆向放电功能,大幅度降低了电路成本,运用灵活性更强,适用性更强。
图9是本申请提供的车载动力系统的结构示意图。如图9所示,车载动力系统4包括动力电池40和双向车载充电机41,双向车载充电机41用于为动力电池40充电。由于双向车载充电机41兼容单三相输入的正向充电功能和逆向放电功能,因此可提高车载动力系统4的工作效率,并且大幅度降低了车载动力系统4的电路成本,适用性强。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种双向车载充电机,用于利用三相交流电源为动力电池充电或利用所述动力电池为交流负载供电,其特征在于,包括:
    直流母线,用于传输直流电;
    两个母线电容,串联于所述直流母线的正负极之间;
    所述功率因数校正电路,用于接收所述三相交流电源提供的一相交流电或三相交流电,或用于接收所述动力电池提供的所述直流电,所述功率因数校正电路包括:
    第一桥臂,串联于所述直流母线的正负极之间,所述第一桥臂的中点通过第一开关连接所述两个母线电容的串联连接点;
    三个第二桥臂,分别串联于所述直流母线的正负极之间,至少一个所述第二桥臂的中点用于接收所述一相交流电;或者三个所述第二桥臂的中点用于接收所述三相交流电;或者至少一个所述第二桥臂用于接收所述直流电;
    控制器,用于:
    控制所述第一开关断开,并控制至少一个所述第二桥臂输出所述直流电为所述动力电池充电;
    控制所述第一开关导通,并控制至少一个所述第二桥臂的中点输出交流电为所述交流负载供电。
  2. 根据权利要求1所述的双向车载充电机,其特征在于,所述第一桥臂包括串联的两个二极管,所述两个二极管的串联连接点作为所述第一桥臂的中点;所述第二桥臂包括串联的第二开关和第三开关,所述第二开关和所述第三开关的串联连接点作为所述第二桥臂的中点;
    所述控制器,用于:
    控制至少一个所述第二桥臂中的第二开关和第三开关交替导通,以将所述一相交流电转换为所述直流电或将所述直流电转换为所述交流电;
    控制三个所述第二桥臂中的第二开关和第三开关交替导通,以将所述三相交流电转换为所述直流电。
  3. 根据权利要求2所述的双向车载充电机,其特征在于,所述双向车载充电机包括与三个所述第二桥臂对应的三个第四开关,一个所述第二桥臂的中点通过与所述第二桥臂对应的第四开关连接至所述三相交流电源的一个火线或所述交流负载的第一连接端;
    所述控制器,用于:
    控制任意一个所述第四开关导通,并控制其他两个所述第四开关断开,以使至少一个所述第二桥臂的中点接收所述一相交流电或输出所述交流电;
    控制三个所述第四开关导通,以使三个所述第二桥臂的中点接收所述三相交流电。
  4. 根据权利要求3所述的双向车载充电机,其特征在于,三个所述第二桥臂包括除任意一个所述第四开关对应的第二桥臂之外的其他两个所述第二桥臂;所述双向车载充电机包括一个第五开关;
    其他两个所述第二桥臂中的任意一个所述第二桥臂的中点通过所述第五开关连接至任意一个所述第四开关的第一连接端,任意一个所述第四开关的第一连接端与所述三相交流电源 的一个火线或所述交流负载的第一连接端连接;
    所述控制器,用于:
    控制任意一个所述第四开关和所述第五开关导通,并控制其他两个所述第四开关断开,以使至少一个所述第二桥臂的中点接收所述一相交流电或输出所述交流电;
    控制三个所述第四开关断开,并控制所述第五开关导通,以使至少一个所述第二桥臂的中点接收所述一相交流电或输出所述交流电。
  5. 根据权利要求3所述的双向车载充电机,其特征在于,三个所述第二桥臂包括除任意一个所述第四开关对应的第二桥臂之外的其他两个所述第二桥臂;所述双向车载充电机包括与其他两个所述第二桥臂对应的两个第五开关;
    其他两个所述第二桥臂中的一个所述第二桥臂的中点通过与所述第二桥臂对应的第五开关连接至任意一个所述第四开关的第一连接端,任意一个所述第四开关的第一连接端与所述三相交流电源的一个火线或所述交流负载的第一连接端连接;
    所述控制器,用于:
    控制任意一个所述第四开关和两个所述第五开关导通,并控制其他两个所述第四开关断开,以使至少一个所述第二桥臂的中点接收所述一相交流电或输出所述交流电;
    控制三个所述第四开关断开,并控制两个所述第五开关导通,以使至少一个所述第二桥臂的中点接收所述一相交流电或输出所述交流电。
  6. 根据权利要求2-5任一项所述的双向车载充电机,其特征在于,所述双向车载充电机包括第六开关,任意一个所述第二桥臂的中点通过所述第六开关连接所述三相交流电源的零线;所述双向车载充电机用于利用所述三相交流电源为所述动力电池充电;
    所述控制器,用于:
    控制所述第六开关断开。
  7. 根据权利要求2-5任一项所述的双向车载充电机,其特征在于,所述双向车载充电机包括第六开关,任意一个所述第二桥臂的中点通过所述第六开关连接所述交流负载的第二连接端;所述双向车载充电机用于利用所述动力电池为所述交流负载供电;
    所述控制器,用于:
    控制所述第六开关导通。
  8. 根据权利要求7所述的双向车载充电机,其特征在于,所述两个母线电容包括正母线电容和负母线电容;
    所述控制器,用于:
    采集所述正母线电容的电压和所述负母线电容的电压;
    在所述正母线电容的电压与所述负母线电容的电压之间的差值大于或者等于第一阈值的情况下,控制所述第六开关连接的第二桥臂中的所述第三开关导通,以均衡所述正母线电容的电压和所述负母线电容的电压,所述差值为所述正母线电容的电压减去所述负母线电容的电压后得到的值。
  9. 根据权利要求8所述的双向车载充电机,其特征在于,所述控制器,用于:
    在所述负母线电容的电压与所述正母线电容的电压之间的差值大于或者等于第二阈值的情况下,控制所述第六开关连接的第二桥臂中的所述第二开关导通,以均衡所述正母线电容的电压和所述负母线电容的电压,所述差值为所述负母线电容的电压减去所述正母线电容的电压后得到的值。
  10. 一种车载动力系统,其特征在于,所述车载动力系统包括动力电池以及如权利要求1-9任一项所述的双向车载充电机;
    所述双向车载充电机用于利用所述三相交流电源为所述动力电池充电。
  11. 一种电动车辆,其特征在于,所述电动车辆包括动力电池、驱动电机以及如权利要求1-9任一项所述的双向车载充电机;
    所述双向车载充电机用于利用所述三相交流电源为所述动力电池充电;
    所述动力电池用于为所述驱动电机供电。
PCT/CN2023/089927 2022-07-05 2023-04-21 双向车载充电机、车载动力系统及电动车辆 WO2024007688A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210782895.3 2022-07-05
CN202210782895.3A CN115230506A (zh) 2022-07-05 2022-07-05 双向车载充电机、车载动力系统及电动车辆

Publications (1)

Publication Number Publication Date
WO2024007688A1 true WO2024007688A1 (zh) 2024-01-11

Family

ID=83670922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089927 WO2024007688A1 (zh) 2022-07-05 2023-04-21 双向车载充电机、车载动力系统及电动车辆

Country Status (2)

Country Link
CN (1) CN115230506A (zh)
WO (1) WO2024007688A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115230506A (zh) * 2022-07-05 2022-10-25 华为数字能源技术有限公司 双向车载充电机、车载动力系统及电动车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317638A (ja) * 1995-05-22 1996-11-29 Hitachi Ltd 電力変換装置
US20160172992A1 (en) * 2014-12-16 2016-06-16 Rockwell Automation Technologies, Inc. Ac drive scr and relay precharging apparatus
CN109861357A (zh) * 2018-09-07 2019-06-07 台达电子工业股份有限公司 充放电方法与装置
CN110460140A (zh) * 2019-09-23 2019-11-15 台达电子企业管理(上海)有限公司 车载充放电系统
CN210075077U (zh) * 2019-06-14 2020-02-14 苏州汇川联合动力系统有限公司 一种功率因数校正电路及车载充电机
CN111355287A (zh) * 2020-03-23 2020-06-30 台达电子企业管理(上海)有限公司 车载充电机
CN115230506A (zh) * 2022-07-05 2022-10-25 华为数字能源技术有限公司 双向车载充电机、车载动力系统及电动车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08317638A (ja) * 1995-05-22 1996-11-29 Hitachi Ltd 電力変換装置
US20160172992A1 (en) * 2014-12-16 2016-06-16 Rockwell Automation Technologies, Inc. Ac drive scr and relay precharging apparatus
CN109861357A (zh) * 2018-09-07 2019-06-07 台达电子工业股份有限公司 充放电方法与装置
CN210075077U (zh) * 2019-06-14 2020-02-14 苏州汇川联合动力系统有限公司 一种功率因数校正电路及车载充电机
CN110460140A (zh) * 2019-09-23 2019-11-15 台达电子企业管理(上海)有限公司 车载充放电系统
CN111355287A (zh) * 2020-03-23 2020-06-30 台达电子企业管理(上海)有限公司 车载充电机
CN115230506A (zh) * 2022-07-05 2022-10-25 华为数字能源技术有限公司 双向车载充电机、车载动力系统及电动车辆

Also Published As

Publication number Publication date
CN115230506A (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
EP3886304B1 (en) On-board charger
EP3790155A1 (en) On-board charging and discharging system
CN110612658B (zh) 双向蓄电电池组的充电器
CN110356268B (zh) 一种车载充放电装置和系统
US10926643B2 (en) Electric charger system for electric or hybrid vehicle
CN203251231U (zh) 用于由电池运行的车辆的驱动系统
CN109889073B (zh) 驱动控制电路和家电设备
CN103647483A (zh) 一种集成开关磁阻电机驱动和电池充电的功率变换装置
WO2021022886A1 (zh) 一种变换器及供电系统
WO2024007688A1 (zh) 双向车载充电机、车载动力系统及电动车辆
US11332028B2 (en) Alternating voltage charging device and method for the single- or multi-phase alternating current charging of a vehicle
KR100999969B1 (ko) 배터리 충전 장치
CN103647465A (zh) 一种功率变换装置
CN103326583A (zh) 电源转换器及其充放电系统
CN112224061B (zh) 能量转换装置、动力系统及车辆
US20230208287A1 (en) Dc/dc converter, voltage gain switching method and system
EP4068610B1 (en) Converter and on-board charger
JPS61210894A (ja) エレベ−タの停電救出装置
WO2023045756A1 (zh) 一种ac/dc变换器以及充电装置
CN112224056A (zh) 一种车辆及其能量转换装置
CN210350838U (zh) 车载充放电系统
CN216625603U (zh) 电源变换装置
EP3975411B1 (en) Rectifier, charging system and electric vehicle
KR20110063186A (ko) 양방향 전력제어 방식의 배터리 충전장치
CN110178301B (zh) 电压转换电路与电池充电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23834467

Country of ref document: EP

Kind code of ref document: A1