WO2023045756A1 - 一种ac/dc变换器以及充电装置 - Google Patents

一种ac/dc变换器以及充电装置 Download PDF

Info

Publication number
WO2023045756A1
WO2023045756A1 PCT/CN2022/117474 CN2022117474W WO2023045756A1 WO 2023045756 A1 WO2023045756 A1 WO 2023045756A1 CN 2022117474 W CN2022117474 W CN 2022117474W WO 2023045756 A1 WO2023045756 A1 WO 2023045756A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
switching
winding
switching unit
diode
Prior art date
Application number
PCT/CN2022/117474
Other languages
English (en)
French (fr)
Inventor
刘亚平
陈建生
刘洋
姜振廷
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP22871805.2A priority Critical patent/EP4383547A1/en
Publication of WO2023045756A1 publication Critical patent/WO2023045756A1/zh
Priority to US18/594,522 priority patent/US20240204556A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/066Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode particular circuits having a special characteristic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • the present application relates to the field of power supply technology, in particular to an AC/DC converter and a charging device.
  • AC/DC converter is a voltage converter that converts input alternating current into output direct current.
  • the current passes through the inductor L 11 and then passes through the winding T 11 and the winding T 12 respectively.
  • the switching tube Q 11 and the switching tube Q 12 are turned on, no matter whether the AC power supply is in the positive half cycle or the negative half cycle, the inductor L 11 and the winding T 11 form a closed loop with the switching tube Q 11 and the switching tube Q 12 , and the rectifier diode D 11 needs to withstand the voltage across the capacitor C 11 , and the rectifier diode D 13 needs to withstand the voltage across the capacitor C 12 .
  • the inductor L 11 and the winding T 12 form a closed loop with the switch tube Q 13 and the switch tube Q 14 , the rectifier diode D12 needs to withstand the voltage across the capacitor C11 , and the rectifier diode D14 needs to withstand the voltage across the capacitor C12 .
  • the rectifier diodes have to withstand half of the output voltage of the AC/DC converter. Therefore, the AC/DC converter in the prior art has higher requirements on the rated voltage of the rectifier diode.
  • the rated voltage of the rectifier diode in the AC/DC converter must be greater than 400V to ensure that the AC/DC converter can work normally. Since the rated voltage of the rectifier diode is positively correlated with the price, the cost of the AC/DC converter is relatively high.
  • the present application provides an AC/DC converter and a charging device. By changing the internal structure of the switching unit, the cost of the AC/DC converter can be reduced and the conversion efficiency can be improved.
  • an embodiment of the present application provides an AC/DC converter, and the AC/DC converter is arranged between an AC power source and an electric device.
  • the AC/DC converter includes at least one phase circuit; each phase circuit includes an inductor, an autotransformer, a first switching unit, a second switching unit, at least two first rectifying units corresponding to the first switching unit, and a first rectifying unit corresponding to the second switching unit. At least two second rectifying units corresponding to the two switching units; wherein, the autotransformer includes a first winding corresponding to the first switching unit and a second winding corresponding to the second switching unit.
  • one end of the inductor is coupled to an AC power supply, and the other end of the inductor is coupled to one end of the first winding and one end of the second winding; the other end of the first winding is coupled to the winding connection end of the first switching unit, and the other end of the second winding Coupling the winding connection end of the second switching unit; the bus connection end of the first switching unit is coupled to the bus bar of the AC/DC converter through at least two first rectification units, and the bus connection end of the second switching unit is rectified through at least two second The unit is coupled to the bus bar of the AC/DC converter; the bus bar of the AC/DC converter is coupled to the electrical equipment; wherein, at least two groups of switches are included between the winding connection end of any switching unit and the ground connection end of the any switching unit Each group of switching circuits includes a diode and a controllable switch connected in series with the diode; the controllable switch can control the conduction or disconnection of the connection between the winding connection end
  • the embodiment of the present application changes the internal structure of the switching unit.
  • the switching unit adopts at least two groups of switching circuits, each group of switching circuits includes a diode and a controllable switch connected in series with the diode, the output voltage of the AC/DC converter can be controlled by the diode in the switching circuit It is borne by the rectification unit, or by the controllable switch and the rectification diode in the switching circuit.
  • the embodiment of the present application can reduce the voltage difference borne by the rectification unit by changing the internal structure of the switching unit, so that the AC/DC converter in the embodiment of the present application can use electricity when paired with the AC/DC converter provided by the prior art.
  • the AC/DC converter in the embodiment of the present application can select a rectifier device with a lower rated voltage, and the cost is low.
  • the rated voltage of the rectifying device is positively correlated with the forward voltage drop of the rectifying device, that is, the greater the rated voltage of the rectifying device, the greater the loss caused by the rectifying device. Therefore, in the embodiment of the present application, by changing the For the internal structure, a rectifier device with a lower rated voltage can be selected. In addition to reducing the cost, it can also reduce the loss of the AC/DC converter and improve the conversion efficiency.
  • the AC/DC converter in the embodiment of the present application further includes a controller;
  • the control switch sends the first pulse control signal, and the first pulse control signal can control the on-off of the first controllable switch;
  • the controller can also send the second controllable switch included in each group of switching circuits in the second switching unit A second pulse control signal is sent, and the second pulse control signal can control the on-off of the second controllable switch.
  • the frequency between the first pulse control signal and the second pulse control signal is the same, and the phase difference is 180°. At this time, the current ripple of the AC/DC converter is the smallest.
  • At least two groups of switching circuits included in any switching unit include a first group of switching circuits and a second group of switching circuits A circuit, wherein the first group of switching circuits includes a first diode and a first switching tube, and the second group of switching circuits includes a second diode and a second switching tube; the bus bar of the AC/DC converter includes a positive bus bar and a negative bus.
  • the anode of the first diode and the cathode of the second diode are coupled to the other end of the winding corresponding to any switching unit; the cathode of the first diode and the first end of the first switch tube are both connected through One of the two rectification units corresponding to any switching unit is coupled to the positive bus of the AC/DC converter; the anode of the second diode and the second end of the second switching tube pass through the two corresponding The other rectification unit of the two rectification units is coupled to the negative bus of the AC/DC converter; the second end of the first switch tube and the first end of the second switch tube are both coupled to the ground line of the AC/DC converter.
  • the other end of the winding is connected to the connection midpoint of the two diodes, and the ground wire of the AC/DC converter is connected to the connection midpoint of the two switch tubes.
  • the switching speed of the switching tube can be relatively slow, so as to avoid frequent switching of the switching tube and improve the service life of the AC/DC converter.
  • At least two groups of switching circuits included in any switching unit include a first group of switching circuits and a second group of switching circuits The circuit, wherein the first group of switching circuits includes a third diode and a third switching tube, and the second group of switching circuits includes a fourth diode and a fourth switching tube; the bus bar of the AC/DC converter includes a positive bus bar and a negative bus.
  • both the cathode of the third diode and the first end of the third switching tube are coupled to the positive bus bar of the AC/DC converter through one of the two rectifying units corresponding to any switching unit; the third switch The second end of the tube and the first end of the fourth switching tube are coupled to the other end of the winding corresponding to any switching unit; the anode of the fourth diode and the second end of the fourth switching tube are both connected through any switching unit
  • the other of the two rectifying units is coupled to the negative bus of the AC/DC converter; the anode of the third diode and the cathode of the fourth diode are both coupled to the ground of the AC/DC converter.
  • the other end of the winding is connected to the connection midpoint of the two switch tubes, and the ground wire of the AC/DC converter is connected to the connection midpoint of the two diodes.
  • the conduction speed of the diode is faster, which can increase the conversion speed of the AC/DC converter.
  • the AC/DC converter provided in the embodiment of the present application further includes a first capacitor and a second capacitor; wherein, the first capacitor is coupled between the positive bus of the AC/DC converter and the ground of the AC/DC converter, and the second capacitor is coupled between the negative bus of the AC/DC converter and the AC/DC converter Between the ground wires of the DC converter.
  • the above-mentioned AC/DC converter includes a three-phase circuit; the phasor sum of the current in the three-phase circuit to zero.
  • the above-mentioned controller may also control the The duty ratios of the first pulse control signal and the second pulse control signal are both less than 0.5; or, the controller can also control the first pulse when the voltage of the AC power supply is greater than half of the output voltage of the AC/DC converter The duty ratios of the control signal and the second pulse control signal are both greater than 0.5.
  • the number of turns of the first winding and the second winding are equal.
  • the embodiment of the present application provides a charging device, which may include an AC/DC converter and an electric energy meter as in any possible implementation manner in combination with the first aspect or in combination with the first aspect; wherein, The energy meter is connected in series between the AC power supply and the AC/DC converter.
  • the AC/DC converter can convert the alternating current output by the alternating current power supply into the first direct current, and transmit the first direct current to the electric equipment; the electric energy meter can measure the electric energy provided by the alternating current power supply to the electric equipment.
  • the charging device further includes a DC/DC converter; wherein, the DC/DC converter is disposed between the AC/DC converter and the electric device.
  • the AC/DC converter converts the AC output from the AC power supply to the first direct current, and transmits it to the electrical equipment through the DC/DC converter; the DC/DC converter can convert the first direct current to obtain the second direct current, and The second direct current is provided to the electric device.
  • Fig. 1 is a circuit diagram of the AC/DC converter in the prior art
  • Fig. 2 is a structural block diagram of the charging device provided by the embodiment of the present application.
  • Fig. 3 is a structural block diagram of the AC/DC converter provided by the embodiment of the present application.
  • 4A-4B are circuit diagrams of the switching unit provided by the embodiment of the present application.
  • FIG. 5 is a timing diagram of the pulse control signal provided by the embodiment of the present application.
  • 6A-6F are an equivalent circuit diagram of the AC/DC converter provided by the embodiment of the present application.
  • FIG. 8 is another timing diagram of the pulse control signal provided by the embodiment of the present application.
  • 9A-9B are another equivalent circuit diagram of the AC/DC converter provided by the embodiment of the present application.
  • 10A-10B are another equivalent circuit diagram of the AC/DC converter provided by the embodiment of the present application.
  • FIG. 11 is a three-phase circuit diagram of an AC/DC converter provided in an embodiment of the present application.
  • FIG. 12 is a schematic waveform diagram of an AC power grid provided by an embodiment of the present application.
  • FIG. 2 is a structural block diagram of a charging device provided by an embodiment of the present application.
  • the charging device 21 is located between the AC power source and the electrical equipment.
  • the charging device 21 may include a power meter 211 and an AC/DC converter 212 .
  • the output end of the AC power supply is coupled to one end of the energy meter 211
  • the other end of the energy meter 211 is coupled to one end of the AC/DC converter 212
  • the other end of the AC/DC converter 212 is coupled to electrical equipment.
  • the "coupling" described in this application refers to direct or indirect connection.
  • the coupling between A and B can be a direct connection between A and B, or an indirect connection between A and B through one or more other electrical components.
  • it can be a direct connection between A and C, and a direct connection between C and B. , so that A and B are connected through C.
  • the AC/DC converter 212 can convert the alternating current output by the alternating current power source into the first direct current, and transmit the first direct current to the electric device.
  • the electric energy meter 211 is connected in series between the AC power supply and the AC/DC converter 212, and can measure the electric energy provided by the AC power supply to the electric equipment.
  • the AC/DC converter 212 may further include a communication module (not shown in the figure), and the communication module may transmit the electric energy data measured by the electric energy meter 211 to the electric equipment.
  • the AC/DC converter 212 may further include a display module (not shown in the figure), and the display module may display the electric energy data measured by the electric energy meter 211 .
  • the AC/DC converter 212 may adopt circuit structures such as half-wave rectification, full-wave rectification, or active inverter to perform rectification.
  • the electric device may be a terminal, an inverter, or an electric vehicle.
  • the AC power in the AC/DC converter 212 may come from an AC power grid, and the charging device in the embodiment of the present application may be embodied as a charging pile, which outputs DC power to the electric vehicle.
  • the AC/DC converter 212 may also include a DC/DC converter (not shown in the figure), and the DC/DC converter is provided between the AC/DC converter 212 and the electrical equipment Between, that is, the other end of the AC/DC converter 212 is coupled to the electrical equipment through the DC/DC converter.
  • the AC/DC converter 212 can convert the alternating current output by the AC power supply into a first direct current, and the DC/DC converter can convert the first direct current into a second direct current, and transmit the second direct current to the power consumption equipment.
  • the DC/DC converter may be, for example, a BUCK converter, and the BUCK converter may step down the first direct current to obtain the second direct current, that is, the second direct current may be smaller than the first direct current.
  • the DC/DC converter may be, for example, a BOOST converter, and the BOOST converter may boost the first direct current to obtain a second direct current, that is, the second direct current may be greater than the first direct current.
  • the DC/DC converter can also be, for example, a BUCK-BOOST converter, and the BUCK-BOOST converter can step up or step down the first direct current to obtain a second direct current, that is, the second direct current can be greater than or less than First DC.
  • the AC/DC converter 212 and the DC/DC converter may be built into the charging pile of the charging station in the form of a printed circuit board (PCB).
  • PCB printed circuit board
  • FIG. 3 is a structural block diagram of an AC/DC converter provided by an embodiment of the present application.
  • the AC/DC converter provided by the present application is arranged between the AC power source and the electrical equipment.
  • the AC/DC converter includes at least one phase circuit. It can be understood that the number of phase circuits included in the AC/DC converter determines the applicable scenarios of the AC/DC converter. For example, if the AC/DC converter is suitable for an application scenario where the AC power source is an AC grid, the AC/DC converter includes a three-phase circuit; for another example, the AC/DC converter is suitable for a scenario where the AC power source is a single-phase AC , then the AC/DC converter includes a single-phase circuit.
  • FIG. 3 takes the AC/DC converter including a single-phase circuit as an example, and the phase circuit includes an inductor L 31 , an autotransformer 310, a first switching unit 311, a second switching unit 312, and at least Two first rectification units (such as a first rectification unit 313a and a first rectification unit 313b) and at least two second rectification units corresponding to the second switching unit 312 (such as a second rectification unit 314a and a second rectification unit 314b) .
  • the autotransformer 310 includes a first winding T 31 corresponding to the first switching unit 311 and a second winding T 32 corresponding to the second switching unit 312 .
  • the number of turns of the first winding T 31 and the second winding T 32 are equal.
  • the autotransformer 310 isolates and shunts the current of the inductor L 31 to increase the output current of the AC/DC converter.
  • one end of the inductor L 31 is coupled to an AC power supply
  • the other end of the inductor L 31 is coupled to one end of the first winding T 31 and one end of the second winding T 32
  • the other end of the first winding T 31 is coupled to the first switching unit 311
  • the winding connection end 1 of the second winding T 32 is coupled to the winding connection end 1 of the second switching unit 312 .
  • the positive bus connecting terminal 2 of the first switching unit 311 is coupled to the positive bus DC1+ of the AC/DC converter through the first rectifying unit 313a, and the negative bus connecting terminal 3 of the first switching unit 311 is coupled to the AC/DC converter through the first rectifying unit 313b The negative bus DC1- of the device.
  • the positive bus connecting terminal 2 of the second switching unit 312 is coupled to the positive bus DC1+ of the AC/DC converter through the second rectifying unit 314a; the negative bus connecting terminal 3 of the second switching unit 312 is coupled to the AC/DC converter through the second rectifying unit 314b The negative bus DC1- of the device.
  • the positive bus DC1+ and the negative bus DC1- of the AC/DC converter are coupled with electrical equipment, and the output voltage of the AC/DC converter is the positive bus DC1+ of the AC/DC converter and the AC/DC converter The voltage difference between the negative bus DC1-.
  • each switching unit may be: at least two groups of switching circuits are included between the winding connection end 1 of any switching unit and the ground connection 4 of the switching unit, and each group of switching circuits includes diodes and The diode is connected in series with a controllable switch.
  • the controllable switch can control the conduction or disconnection of the connection between the winding connection end 1 and the ground wire connection end 4 of the switching unit where the controllable switch is located.
  • the first group of switching circuits in the first switching unit 311 includes a diode D 31 and a switching tube Q 31 connected in series with the diode D 31.
  • the second group of switching circuits in the first switching unit 311 includes a diode D 32 and a switching tube Q 32 connected in series with the diode D 32.
  • the switching tube Q 32 If the switching tube Q 32 is turned off, the winding connection terminal 1 of the first switching unit 311 is connected to the first The connection between the ground wire connection end 4 of the switching unit 311 is disconnected; if the switch tube Q32 is turned on, the connection between the winding connection end 1 of the first switching unit 311 and the ground wire connection end 4 of the first switching unit 311 Turns on during the negative half cycle of the AC power supply.
  • Fig. 3 is an example in which the controllable switch is implemented as a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). It can be understood that the controllable switch can also be specifically implemented It is a relay, a contactor, or an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT), etc.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the AC/DC converter further includes a first capacitor C 31 and a second capacitor C 32 .
  • the first capacitor C31 is coupled between the positive bus DC1+ of the AC/DC converter and the ground GND of the AC/DC converter
  • the second capacitor C32 is coupled between the negative bus DC1- of the AC/DC converter and AC / between the ground wire GND of the DC converter.
  • the first capacitor C31 is a filter capacitor of the positive bus DC1+ of the AC/DC converter
  • the second capacitor C32 is a filter capacitor of the negative bus DC1- of the AC/DC converter.
  • the AC/DC converter may further include a controller (not shown in the figure).
  • the controller can send a first pulse control signal to the first controllable switches (such as switch tube Q31 and switch tube Q32 ) included in each group of switch circuits in the first switch unit 311, and the first pulse control signal can control the switches The on-off of the tube Q 31 and the switch tube Q 32 ; the controller can also send to the second controllable switch (that is, the two switch tubes in the second switch unit 312) that each group of switch circuits in the second switch unit 312 comprises The second pulse control signal, the second pulse control signal can control the on-off of the two switching tubes in the second switching unit 312 .
  • the frequency between the first pulse control signal and the second pulse control signal is the same.
  • the phase difference between the first pulse control signal and the second pulse control signal may be 180°, and at this time, the current ripple of the AC/DC converter is the smallest.
  • V in represents the voltage of the AC power supply
  • V o represents the output voltage of the AC/DC converter
  • the above-mentioned controller controls the first pulse when V in ⁇ V o /2
  • the duty ratios of the control signal and the second pulse control signal are both less than 0.5.
  • the controller controls the duty ratios of the first pulse control signal and the second pulse control signal to be greater than 0.5.
  • the duty ratio of the first pulse control signal is the same as that of the second pulse control signal.
  • the embodiment of the present application changes the internal structure of the switching unit.
  • the switching unit adopts at least two groups of switching circuits, each group of switching circuits includes a diode and a controllable switch connected in series with the diode, the output voltage of the AC/DC converter can be controlled by the diode in the switching circuit It is borne by the rectification unit, or by the controllable switch and the rectification diode in the switching circuit.
  • the embodiment of the present application can reduce the voltage difference borne by the rectification unit by changing the internal structure of the switching unit, so that the AC/DC converter in the embodiment of the present application can use electricity when paired with the AC/DC converter provided by the prior art.
  • the AC/DC converter in the embodiment of the present application can select a rectifier device with a lower rated voltage, and the cost is low.
  • the rated voltage of the rectifying device is positively correlated with the forward voltage drop of the rectifying device, that is, the greater the rated voltage of the rectifying device, the greater the loss caused by the rectifying device. Therefore, in the embodiment of the present application, by changing the For the internal structure, a rectifier device with a smaller rated voltage can be selected. In addition to reducing the cost, it can also reduce the loss of the AC/DC converter and improve the conversion efficiency.
  • the anode of the diode D31 and the cathode of the diode D32 are both coupled to the other of the first winding T31 corresponding to the first switching unit.
  • One end, that is, the connection point between the anode of the diode D 31 and the cathode of the diode D 32 is the winding connection end 1 of the first switching unit 311 .
  • Both the cathode of the diode D 31 and the first end (ie, the drain) of the switch tube Q 31 are coupled to the AC/DC converter through one of the two rectification units corresponding to the first switching unit (for example, the first rectification unit 313a)
  • the positive bus DC1+ of the first switching unit 311, that is, the connection point between the cathode of the diode D 31 and the drain of the switch Q 31 is the positive bus connecting end 2 of the first switching unit 311.
  • the anode of the diode D 32 and the second end (ie, the source) of the switch tube Q 31 are both coupled to AC/DC conversion through the other rectification unit (for example, the first rectification unit 313b) of the two rectification units corresponding to the first switching unit
  • the negative bus DC1- of the device that is, the connection point between the anode of the diode D 32 and the source of the switching transistor Q 31 is the negative bus connecting terminal 3 of the first switching unit 311 .
  • the connection point of the drain of 32 is the ground connection end 4 of the first switching unit 311 .
  • the other end of the winding is connected to the connection midpoint of the two diodes, and the ground wire of the AC/DC converter is connected to the connection midpoint of the two switch tubes.
  • a power frequency diode with a slow switching speed can be used, and the switching speed of the switching tube can also be relatively slow, so as to avoid frequent switching of the switching tube and improve the life of the AC/DC converter.
  • Both the first end (ie, the drain) of the switch tube Q31 and the cathode of the diode D31 are coupled to the AC/DC converter through one of the two rectification units corresponding to the first switching unit (for example, the first rectification unit 313a)
  • the positive bus DC1+ that is, the connection point between the drain of the switching transistor Q 31 and the cathode of the diode D 31 is the positive bus connection end 2 of the first switching unit 311 .
  • Both the second terminal (namely, the source) of the switching tube Q32 and the anode of the diode D32 are coupled for AC/DC conversion through the other rectification unit (such as the first rectification unit 313b) of the two rectification units corresponding to the first switching unit
  • the negative bus DC1- of the device that is, the connection point between the anode of the diode D 32 and the source of the switching transistor Q 31 is the negative bus connecting terminal 3 of the first switching unit 311 .
  • Both the anode of diode D 31 and the cathode of diode D 32 are coupled to the ground of the AC/DC converter, that is, the connection point between the anode of diode D 31 and the cathode of diode D 32 is the ground connection terminal 4 of the first switching unit 311 .
  • the other end of the winding is connected to the midpoint of the connection of the two switching tubes, and the ground line of the AC/DC converter is connected to the two diodes Connect the midpoint, in this circuit connection mode of the switching unit, the conduction speed of the diode is faster, which can increase the conversion speed of the AC/DC converter.
  • FIG. 5 is a timing diagram of the pulse control signal provided by the embodiment of the present application. As shown in FIG. 5 , the frequency of the first pulse control signal and the second pulse control signal are the same, the phase difference is 180°, and the duty ratios of the first pulse control signal and the second pulse control signal are both less than 0.5.
  • connection relationship of the internal structure of the switching unit is as shown in FIG . 4A, combined with the timing diagram of the pulse control signal shown in FIG . 5 , it is assumed that the AC power output is The AC power is in the positive half cycle; during the time period from t 54 to t 57 , the AC power output by the AC power source is in the negative half cycle. Then, the equivalent circuit diagrams of the AC/DC converter provided by the embodiment of the present application that can be obtained at different times are shown in FIG. 6A to FIG. 6F .
  • the embodiment of the present application takes the rectification unit implemented as a rectification diode as an example, and it can be understood that the rectification unit may also be other semiconductor devices such as triodes, MOSFETs, and the like.
  • the first pulse control signal is at a high level
  • the switch tube Q31 and the switch tube Q32 are turned on
  • the second pulse control signal is at a low level
  • the switch tube Q33 and the switch tube Q 34 is turned off.
  • the equivalent circuit diagram of the AC/DC converter is shown in FIG. 6A .
  • the AC power output by the AC power supply passes through the inductor L 31 and then passes through the winding T 31 and the winding T 32 respectively.
  • the current on the winding T 31 passes through the diode D 31 and the switch tube Q 31 to the ground wire GND of the AC/DC converter, and the inductor L 31 is charged; the current on the winding T 32 passes through the diode D 33 , the rectifier diode D2 and the first
  • the capacitor C 31 is connected to the ground wire GND of the AC/DC converter, and the inductor L 31 is discharged.
  • the voltage on the positive bus DC1+ of the AC/DC converter is the direct current obtained by discharging the inductor L 31 through the rectifier diode D2.
  • both the first pulse control signal and the second pulse control signal are at low level, the switch tube Q31 and the switch tube Q32 are turned off, and the switch tube Q33 and the switch tube Q34 are turned off broken.
  • the equivalent circuit diagram of the AC/DC converter is shown in FIG. 6B .
  • the AC power output by the AC power supply passes through the inductor L 31 and then passes through the winding T 31 and the winding T 32 respectively.
  • the current on the winding T 31 passes through the diode D 31 , the rectifier diode D1 and the first capacitor C 31 to the ground wire GND of the AC/DC converter, and the inductor L 31 discharges;
  • the current on the winding T 32 passes through the diode D 33 , rectified The diode D2 and the first capacitor C 31 are connected to the ground line GND of the AC/DC converter, and the inductor L 31 is discharged.
  • the voltage on the positive bus DC1+ of the AC/DC converter is the sum of the direct currents obtained by discharging the inductor L 31 through the rectifier diode D1 and the rectifier diode D2.
  • the first pulse control signal is at low level, the switch tube Q31 and switch tube Q32 are turned off, and the second pulse control signal is at high level, the switch tube Q33 and switch tube Q 34 is turned on.
  • the equivalent circuit diagram of the AC/DC converter is shown in FIG. 6C .
  • the AC power output by the AC power supply passes through the inductor L 31 and then passes through the winding T 31 and the winding T 32 respectively.
  • the current on the winding T 31 passes through the diode D 31 , the rectifier diode D1 and the first capacitor C 31 to the ground wire GND of the AC/DC converter, and the inductor L 31 discharges; the current on the winding T 32 passes through the diode D 33 and the switch
  • the tube Q 33 is connected to the ground wire GND of the AC/DC converter, and the inductor L 31 is charged.
  • the voltage on the positive bus DC1+ of the AC/DC converter is the direct current obtained by discharging the inductor L 31 through the rectifier diode D1.
  • the pulse control signal in the time period from t54 to t55 is like the pulse control signal in the time period from t50 to t51 (that is, the first The pulse control signal is at high level, and the second pulse control signal is at low level), and the equivalent circuit diagram of the AC/DC converter is also different.
  • the switching tube Q31 and the switching tube Q32 are turned on, and the switching tube Q33 and the switching tube Q34 are turned off.
  • the equivalent circuit diagram of the AC/DC converter is shown in Figure 6D, and the current on the winding T31 is given by
  • the ground wire GND of the AC/DC converter is obtained through the switch tube Q 32 and the diode D 32 , and the inductor L 31 is charged; the current on the winding T 32 is rectified by the ground wire GND of the AC/DC converter through the second capacitor C 32 Diode D4 and diode D 34 are obtained, and inductor L 31 is discharged.
  • the currents on the winding T 31 and the winding T 32 both flow into the inductor L 31 .
  • the voltage on the negative bus DC1- of the AC/DC converter is the direct current obtained by discharging the inductor L 31 through the rectifier diode D4.
  • both the first pulse control signal and the second pulse control signal are at low level, the switch tube Q31 and the switch tube Q32 are turned off, and the switch tube Q33 and the switch tube Tube Q 34 is turned off.
  • the equivalent circuit diagram of the AC/DC converter is shown in FIG. 6E.
  • the current on the winding T31 is obtained from the ground wire GND of the AC/DC converter through the second capacitor C32 , the rectifier diode D3 and the diode D32 .
  • the inductor L 31 is discharged; the current on the winding T 32 is obtained from the ground wire GND of the AC/DC converter through the second capacitor C 32 , the rectifier diode D4 and the diode D 34 , and the inductor L 31 is discharged. Wherein, the currents on the winding T 31 and the winding T 32 both flow into the inductor L 31 .
  • the voltage on the negative bus DC1- of the AC/DC converter is the direct current obtained by discharging the inductor L 31 through the rectifier diode D3 and the rectifier diode D4.
  • the equivalent circuit diagram of the AC/DC converter is shown in FIG. 6F.
  • the current on the winding T31 is obtained from the ground wire GND of the AC/DC converter through the second capacitor C32 , the rectifier diode D3 and the diode D32 .
  • the inductor L 31 is discharged; the current on the winding T 32 is obtained from the ground wire GND of the AC/DC converter through the switch tube Q 34 and the diode D 34 , and the inductor L 31 is charged.
  • the voltage on the negative bus DC1- of the AC/DC converter is the direct current obtained by discharging the inductor L 31 through the rectifier diode D3.
  • the timing diagram of the pulse control signal shown in FIG. 5 is still applicable, except that the inductor L 31 is formed at each moment The current loop is different.
  • the switching tube Q31 and the switching tube Q32 are turned on, and the switching tube Q33 and the switching tube Q34 are turned off.
  • the equivalent circuit diagram of the AC/DC converter is shown in FIG. 7A .
  • the AC power output by the AC power supply passes through the inductor L 31 and then passes through the winding T 31 and the winding T 32 respectively.
  • the difference from FIG. 7A is shown in FIG. 7A .
  • the current on the winding T31 passes through the switch tube Q32 and the diode D32 to the ground wire GND of the AC/DC converter, and the inductor L31 is charged; the current on the winding T32 passes through the switch tube Q33
  • the parasitic diode, the rectifier diode D2 and the first capacitor C 31 are connected to the ground line GND of the AC/DC converter, and the inductor L 31 is discharged.
  • the voltage on the positive bus DC1+ of the AC/DC converter is the direct current obtained by discharging the inductor L 31 through the rectifier diode D2.
  • FIG. 7B the equivalent circuit diagram of the AC/DC converter is shown in FIG. 7B .
  • the AC power output by the AC power supply passes through the inductor L 31 and then passes through the winding T 31 and the winding T 32 respectively. The difference from FIG.
  • the current on the winding T31 passes through the parasitic diode of the switching tube Q31 , the rectifier diode D1 and the first capacitor C31 to the ground wire GND of the AC/DC converter, and the inductor L31 discharges; the winding T32
  • the current above passes through the parasitic diode of the switch tube Q33 , the rectifier diode D2 and the first capacitor C31 to the ground line GND of the AC/DC converter, and the inductor L31 discharges.
  • the voltage on the positive bus DC1+ of the AC/DC converter is the sum of the direct currents obtained by discharging the inductor L 31 through the rectifier diode D1 and the rectifier diode D2.
  • FIG. 7C the equivalent circuit diagram of the AC/DC converter is shown in FIG. 7C .
  • the AC power output by the AC power supply passes through the inductor L 31 and then passes through the winding T 31 and the winding T 32 respectively. The difference from FIG.
  • 6C is that the current on the winding T31 passes through the parasitic diode of the switching tube Q31 , the rectifier diode D1 and the first capacitor C31 to the ground wire GND of the AC/DC converter, and the inductor L31 discharges; the winding T32 The current on the AC passes through the switch tube Q 34 and the diode D 34 to the ground line GND of the AC/DC converter, and the inductor L 31 is charged.
  • the voltage on the positive bus DC1+ of the AC/DC converter is the direct current obtained by discharging the inductor L 31 through the rectifier diode D1.
  • 6D is that the current on the winding T31 is obtained by the ground wire GND of the AC/DC converter through the diode D31 and the switch tube Q31 , and the inductor L31 is charged; the current on the winding T32 is obtained by the ground line GND of the AC/DC converter passing through the second capacitor C 32 , the rectifier diode D4 and the parasitic diode of the switch tube Q 34 , and the inductor L 31 is discharged. Wherein, the currents on the winding T 31 and the winding T 32 both flow into the inductor L 31 .
  • the voltage on the negative bus DC1- of the AC/DC converter is the direct current obtained by discharging the inductor L 31 through the rectifier diode D4.
  • the difference from Figure 6E is that the current on the winding T31 is generated by the ground wire GND of the AC/DC converter through the second capacitor C32 , the rectifier diode D3 and the parasitic diode of the switching tube Q32 are obtained, and the inductor L31 is discharged; the current on the winding T32 is generated by the ground wire GND of the AC/DC converter through the second capacitor C32 , the rectifier diode D4 and the parasitic switching tube Q34 The diode is obtained, and the inductor L 31 is discharged. Wherein, the currents on the winding T 31 and the winding T 32 both flow into the inductor L 31 .
  • the voltage on the negative bus DC1- of the AC/DC converter is the direct current obtained by discharging the inductor L 31 through the rectifier diode D3 and the rectifier diode D4.
  • the alternating current is in the negative half cycle, the switching tube Q31 and the switching tube Q32 are turned off, and the switching tube Q33 and the switching tube Q34 are turned on.
  • the equivalent circuit diagram of the AC/DC converter is shown in FIG . 7F.
  • the difference from FIG . D3 and the parasitic diode of the switching tube Q32 are obtained, and the inductor L31 is discharged; the current on the winding T32 is obtained by the ground wire GND of the AC/DC converter through the diode D33 and the switching tube Q33 , and the inductor L31 is charged.
  • the currents on the winding T 31 and the winding T 32 both flow into the inductor L 31 .
  • the voltage on the negative bus DC1- of the AC/DC converter is the direct current obtained by discharging the inductor L 31 through the rectifier diode D3.
  • FIG. 8 is another timing diagram of the pulse control signal provided by the embodiment of the present application.
  • the duty ratios of the first pulse control signal and the second pulse control signal are both greater than 0.5.
  • the pulse in Figure 5 The overlapping part of the timing diagram of the control signal is that the first pulse control signal and the second pulse control signal are both low level, and the overlapping part of the timing diagram of the pulse control signal in Figure 8 is the first pulse control signal and the second pulse control signal. Both pulse control signals are at high level. Therefore, under the control of the timing diagram of the pulse control signal shown in FIG.
  • each switching tube (for example, switching tubes Q 31 , Q 32 , Q 33 and Q 34 ) of each switching unit can be in an off state together, then in Under the control of the timing diagram of the pulse control signal shown in FIG. 8 , the switch transistors Q 31 , Q 32 , Q 33 and Q 34 can be in the conduction state together.
  • connection relationship of the internal structure of the switching unit is as shown in FIG. 4A, combined with the timing diagram of the pulse control signal shown in FIG. 8 , it is assumed that the AC power output is The AC power is in the positive half cycle; during the period from t 84 to t 87 , the AC power output is in the negative half cycle.
  • the first pulse control signal is at low level, the switch tube Q31 and switch tube Q32 are turned off, and the second pulse control signal is at high level, the switch tube Q33 and switch tube Q 34 is turned on.
  • the equivalent circuit diagram of the AC/DC converter is shown in FIG. 6C , and the specific implementation can be combined with the description in FIG. 6C , so details are not repeated here.
  • both the first pulse control signal and the second pulse control signal are at high level, the switching tube Q31 and the switching tube Q32 are turned on, and the switching tube Q33 and the switching tube Q34 are turned on. Pass.
  • the equivalent circuit diagram of the AC/DC converter is shown in FIG. 9A .
  • the AC power output by the AC power supply passes through the inductor L 31 and then passes through the winding T 31 and the winding T 32 respectively.
  • the current on the winding T 31 passes through the diode D 31 and the switch tube Q 31 to the ground wire GND of the AC/DC converter, and the inductor L 31 is charged; the current on the winding T 32 passes through the diode D 33 and the switch tube Q 33 to AC
  • the ground wire GND of the /DC converter is charged by the inductor L 31 .
  • the voltage difference between the positive bus DC+ and the negative bus DC- of the AC/DC converter is the output voltage during the period from t 80 to t 81 .
  • the first pulse control signal is at a high level
  • the switch tube Q31 and the switch tube Q32 are turned on
  • the second pulse control signal is at a low level
  • the switch tube Q33 and the switch tube Q 34 is turned off.
  • the equivalent circuit diagram of the AC/DC converter is shown in FIG. 6A , and the specific implementation can be combined with the description in FIG. 6A , so details are not repeated here.
  • the alternating current at this time is in the negative half cycle
  • the first pulse control signal is at low level
  • the switch tube Q31 and switch tube Q32 are turned off
  • the second pulse control signal is at high level
  • the switching tube Q33 and the switching tube Q34 are turned on.
  • the equivalent circuit diagram of the AC/DC converter is shown in FIG. 6F , and the specific implementation can be combined with the description in FIG. 6F , which will not be repeated here.
  • the equivalent circuit diagram of the AC/DC converter is shown in FIG. 9B.
  • the current on the winding T31 is obtained by the ground wire GND of the AC/DC converter through the switch tube Q32 and the diode D32 , and the inductor L31 is charged;
  • the current on the winding T32 is obtained by the ground line GND of the AC/DC converter through the switch tube Q34 and the diode D34 , and the inductor L31 is charged.
  • the voltage difference between the positive bus DC+ and the negative bus DC- of the AC/DC converter is the output voltage during the period from t 84 to t 85 .
  • the alternating current at this time is in the negative half cycle
  • the first pulse control signal is at high level
  • the second pulse control signal is at low level
  • the switching tube Q31 and the switching tube Q32 are turned on
  • the switching tube Q33 and the switching tube Q34 are turned off
  • the equivalent circuit diagram of the AC/DC converter is shown in FIG. 6D .
  • the specific implementation can be combined with the description of FIG. 6D , and will not be repeated here.
  • the timing diagram of the pulse control signal shown in FIG. 8 is still applicable, except that the inductor L 31 is formed at each moment The current loop is different.
  • the switching tube Q31 and the switching tube Q32 are turned off, and the switching tube Q33 and the switching tube Q34 are turned on.
  • the equivalent circuit diagram of the AC/DC converter is shown in FIG. 7C , and the specific implementation can be combined with the description in FIG. 7C , so details are not repeated here.
  • the switching tube Q31 and the switching tube Q32 are turned on, and the switching tube Q33 and the switching tube Q34 are turned on.
  • the equivalent circuit diagram of the AC/DC converter is shown in Figure 10A.
  • the current on the winding T 31 passes through the switch tube Q 32 and the diode D 32 to the ground wire GND of the AC/DC converter, and the inductor L 31 is charged; the winding T The current on 32 passes through the switch tube Q 34 and the diode D 34 to the ground line GND of the AC/DC converter, and the inductor L 31 is charged.
  • the voltage difference between the positive bus DC+ and the negative bus DC- of the AC/DC converter is the output voltage during the period from t 80 to t 81 .
  • the switching tube Q31 and the switching tube Q32 are turned on, and the switching tube Q33 and the switching tube Q34 are turned on.
  • the equivalent circuit diagram of the AC/DC converter is shown in Figure 10B, the current on the winding T31 is obtained from the ground wire GND of the AC/DC converter through the diode D31 and the switch tube Q31 , and the inductor L31 is charged;
  • the current on the winding T32 is obtained by the ground line GND of the AC/DC converter through the diode D33 and the switch tube Q33 , and the inductor L31 is charged.
  • the voltage difference between the positive bus DC+ and the negative bus DC- of the AC/DC converter is the output voltage during the period from t 84 to t 85 .
  • the alternating current at this time is in the negative half cycle
  • the switching tube Q31 and the switching tube Q32 are turned on
  • the switching tube Q33 and the switching tube Q34 are turned off, and the equivalent of the AC/DC converter
  • the circuit diagram is shown in FIG. 7D , and the specific implementation can be combined with the description in FIG. 7D , so details are not repeated here.
  • FIG. 11 is a three-phase circuit diagram of an AC/DC converter provided in an embodiment of the present application.
  • the AC/DC converter includes three-phase circuits, and each phase circuit includes an inductor, an autotransformer, a first switching unit, a second switching unit, a first rectifying unit, and a second rectifying unit.
  • the AC/DC converter may include three phase circuits described in FIG. 3 , wherein the switching unit may be specifically implemented as the circuit described in FIG. 4A or FIG. 4B .
  • FIG. 11 takes the switching unit implemented as the circuit described in FIG. 4A as an example, and the AC power supply is implemented as an AC power grid, including three-phase voltages a, b, and c. A phase voltage corresponds to input into a phase circuit.
  • the AC/DC converter shown in Figure 11 is applied to a three-phase three-wire circuit.
  • the AC/DC converter provided in the embodiment of this application can also be applied to a three-phase four-wire system, Circuits such as five-wire system are not limited in this application.
  • the schematic diagram of the waveforms of the three-phase voltages a, b, and c can be seen in Figure 12.
  • the phase difference between the three-phase voltages a, b, and c is 120°.
  • the states of each phase circuit can be considered independent of each other. process.
  • the AC/DC converter of the embodiment of the present application can have multiple states. For example, when the switching unit is specifically implemented as shown in FIG. 4A, at the Tth moment shown in FIG.
  • the phase circuits corresponding to the a-phase voltage and c-phase voltage can have the above in combination with Fig. 6A to The three states in FIG. 6C; the phase circuit corresponding to the b-phase voltage (that is, the input branch of the voltage V b ) can have the three states mentioned above in conjunction with FIGS. 6D to 6F. Therefore, at time T, the AC/DC converter can have 27 possible loop state combinations.
  • both the input branch of the voltage V a and the input branch of the voltage V c form a loop as shown in FIG. 6A
  • the input branch of the voltage V b forms a loop as shown in FIG. 6D
  • the ground wire of the AC grid is different from the ground wire GND of the AC/DC converter, so the current output from the AC grid must also return to the ground wire of the AC grid, that is, the three-phase circuit follows Kirchhoff's current law.
  • the currents of the branch into which the voltage V a is input and the branch into which the voltage V c is input flow back to the ground wire of the AC grid through the branch into which the voltage V b is input. In other words, the phasor sum of the currents in a three-phase circuit will always be zero.
  • the voltage V a is input into the inductor L a and then passes through the winding T a1 and the winding T a2 respectively.
  • the current on the winding T a1 passes through the diode D a1 and the switch tube Q a1 to the ground wire GND of the AC/DC converter;
  • the current on the winding T a2 passes through the diode D a3 , the rectifier diode D2 and the first capacitor C 101 to the AC /DC converter ground wire GND.
  • the voltage V c is input into the inductor L c and passes through the winding T c1 and the winding T c2 respectively.
  • the current on the winding T c1 passes through the diode D c1 and the switch tube Q c1 to the ground wire GND of the AC/DC converter;
  • the current on the winding T c2 passes through the diode D c3 , the rectifier diode D10 and the first capacitor C 101 to the AC /DC converter ground wire GND.
  • the current at the ground line GND of the AC/DC converter can go to the ground line of the AC power grid through the switch tube Q b2 , the diode D b2 and the winding T b1 , or can pass through the second capacitor C 102 , the rectifier diode D8, the diode D b4 and the Winding T b2 to the ground of the AC grid.
  • both the input branch of the voltage V a and the input branch of the voltage V c form a loop as shown in FIG. 6A
  • the input branch of the voltage V b forms a loop as shown in FIG. 6E
  • the voltage V a The input branch and the input branch of the voltage Vc all form a loop as shown in Figure 6A
  • the input branch of the voltage Vb forms a loop as shown in Figure 6F
  • the input branch of the voltage Va forms a loop as shown in Figure 6F
  • the input branch of voltage V c forms the loop shown in Figure 6B
  • the input branch of voltage V b forms the loop shown in Figure 6D
  • the input branch of voltage V a forms the loop shown in Figure 6A out of the loop
  • the input branch of the voltage V c forms the loop shown in Figure 6B
  • the input branch of the voltage V b forms the loop shown in Figure 6E
  • the input branch of the voltage V a forms the loop shown in Figure 6A

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本申请提供了一种AC/DC变换器以及充电装置,该AC/DC变换器包括至少一相电路;在每相电路中,电感的一端耦合交流电源,电感的另一端耦合第一绕组的一端和第二绕组的一端;第一绕组的另一端耦合第一切换单元的绕组连接端,第二绕组的另一端耦合第二切换单元的绕组连接端;第一切换单元的母线连接端通过至少两个第一整流单元耦合AC/DC变换器的母线,第二切换单元的母线连接端通过至少两个第二整流单元耦合AC/DC变换器的母线;任一切换单元的绕组连接端与该任一切换单元的地线连接端之间包括至少两组切换电路,各组切换电路中包括二极管和与二极管串联的可控开关。实施本申请,可以降低成本,且提高变换效率。

Description

一种AC/DC变换器以及充电装置
本申请要求于2021年09月26日提交中国专利局、申请号为202111129282.1、申请名称为“一种AC/DC变换器以及充电装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电源技术领域,尤其是一种AC/DC变换器以及充电装置。
背景技术
AC/DC变换器(Alternating Current/DirectCurrent converter)是一种将输入交流电转变为输出直流电的电压转换器。以图1中示出的AC/DC变换器为例,电流经过电感L 11后分别经过绕组T 11和绕组T 12。在开关管Q 11和开关管Q 12导通时,无论交流电源处于正半周还是负半周,电感L 11和绕组T 11都是与开关管Q 11和开关管Q 12形成闭合回路,整流二极管D 11需要承受电容C 11两端的电压,整流二极管D 13需要承受电容C 12两端的电压。同理的,在开关管Q 13和开关管Q 14导通时,无论交流电源处于正半周还是负半周,电感L 11和绕组T 12都是与开关管Q 13和开关管Q 14形成闭合回路,整流二极管D 12需要承受电容C 11两端的电压,整流二极管D 14需要承受电容C 12两端的电压。换句话来说,现有技术中的AC/DC变换器中,整流二极管均要承受该AC/DC变换器的一半输出电压。因此,现有技术中的AC/DC变换器对整流二极管的额定电压要求较高。特别是在高压应用的场景下,比如输出电压是800V时,该AC/DC变换器中的整流二极管的额定电压要大于400V来保证该AC/DC变换器可以正常工作。由于整流二极管的额定电压的大小与价格正相关,从而使得该AC/DC变换器成本也较高。
发明内容
本申请提供了一种AC/DC变换器以及充电装置,通过改变切换单元的内部结构,可以降低AC/DC变换器的成本,以及提高变换效率。
第一方面,本申请实施例提供了一种AC/DC变换器,该AC/DC变换器设于交流电源与用电设备之间。该AC/DC变换器包括至少一相电路;每相电路中包括电感、自耦变压器、第一切换单元、第二切换单元、与第一切换单元对应的至少两个第一整流单元以及与第二切换单元对应的至少两个第二整流单元;其中,自耦变压器包括与第一切换单元对应的第一绕组以及与第二切换单元对应的第二绕组。具体实现中,电感的一端耦合交流电源,电感的另一端耦合第一绕组的一端和第二绕组的一端;第一绕组的另一端耦合第一切换单元的绕组连接端,第二绕组的另一端耦合第二切换单元的绕组连接端;第一切换单元的母线连接端通过至少两个第一整流单元耦合AC/DC变换器的母线,第二切换单元的母线连接端通过至少两个第二整流单元耦合AC/DC变换器的母线;AC/DC变换器的母线耦合用电设备;其中,任一切换单元的绕组连接端与该任一切换单元的地线连接端之间包括至少两组切换电路,各组切换电路中包括二极管以及与二极管串联的可控开关;该可控开关可以控制可控开关所在的切换单元的绕组连接端与地线连接端之间连接的导通或断开。相对于现 有技术中采用两个开关管串联来切换电感的充放电状态并实现AC/DC变换,本申请实施例改变了切换单元的内部结构。在本申请实施例中,切换单元采用至少两组切换电路,每组切换电路中包括的是二极管以及与该二极管串联的可控开关,AC/DC变换器的输出电压可以由切换电路中的二极管与整流单元承担,或者由切换电路中的可控开关与整流二极管承担。因此,本申请实施例可以通过改变切换单元的内部结构,减轻整流单元承受的电压差,使得本申请实施例中的AC/DC变换器在与现有技术提供的AC/DC变换器对用电设备提供相同输出电压的情况下,本申请实施例的AC/DC变换器可以选择额定电压较小的整流器件,成本低。并且,整流器件的额定电压的大小与该整流器件的正向压降正相关,即整流器件的额定电压越大,该整流器件带来的损耗越大,所以本申请实施例通过改变切换单元的内部结构,可以选择额定电压较小的整流器件,除了可以降低成本之外,还可以减小AC/DC变换器的损耗,提高变换效率。
结合第一方面,在第一种可能的实现方式中,本申请实施例中的AC/DC变换器还包括控制器;该控制器可以向第一切换单元中各组切换电路包括的第一可控开关发送第一脉冲控制信号,该第一脉冲控制信号可以控制所述第一可控开关的通断;该控制器还可以向第二切换单元中各组切换电路包括的第二可控开关发送第二脉冲控制信号,该第二脉冲控制信号可以控制第二可控开关的通断。其中,第一脉冲控制信号与第二脉冲控制信号之间的频率相同,相位差为180°,此时,AC/DC变换器的电流纹波最小。
结合第一方面或结合第一方面第一种可能的实现方式,在第二种可能的实现方式中,包含在任一切换单元中的至少两组切换电路包括第一组切换电路和第二组切换电路,其中第一组切换电路中包括第一二极管和第一开关管,第二组切换电路中包括第二二极管和第二开关管;AC/DC变换器的母线包括正母线和负母线。具体实现中,第一二极管的阳极与第二二极管的阴极均耦合任一切换单元对应的绕组的另一端;第一二极管的阴极与第一开关管的第一端均通过任一切换单元对应的两个整流单元中的一个整流单元耦合AC/DC变换器的正母线;第二二极管的阳极与第二开关管的第二端均通过任一切换单元对应的两个整流单元中的另一个整流单元耦合AC/DC变换器的负母线;第一开关管的第二端与第二开关管的第一端均耦合AC/DC变换器的地线。在本申请实施例中,绕组的另一端连接的是两个二极管的连接中点,而AC/DC变换器的地线连接的是两个开关管的连接中点,在这种切换单元的电路连接方式中,开关管的开关速度可以比较慢,避免开关管频繁地开关,可以提高AC/DC变换器的寿命。
结合第一方面或结合第一方面第一种可能的实现方式,在第三种可能的实现方式中,包含在任一切换单元中的至少两组切换电路包括第一组切换电路和第二组切换电路,其中第一组切换电路中包括第三二极管和第三开关管,第二组切换电路中包括第四二极管和第四开关管;AC/DC变换器的母线包括正母线和负母线。具体实现中,第三二极管的阴极与第三开关管的第一端均通过任一切换单元对应的两个整流单元中的一个整流单元耦合AC/DC变换器的正母线;第三开关管的第二端与第四开关管的第一端均耦合任一切换单元对应的绕组的另一端;第四二极管的阳极与第四开关管的第二端均通过任一切换单元对应的两个整流单元中的另一个整流单元耦合AC/DC变换器的负母线;第三二极管的阳极与第四二极管的阴极均耦合AC/DC变换器的地线。在本申请实施例中,绕组的另一端连接的是 两个开关管的连接中点,而AC/DC变换器的地线连接的是两个二极管的连接中点,在这种切换单元的电路连接方式中,二极管导通速度较快,可以提高AC/DC变换器的变换速度。
结合第一方面第二种可能的实现方式或结合第一方面第三种可能的实现方式,在第四种可能的实现方式中,本申请实施例提供的AC/DC变换器还包括第一电容和第二电容;其中,该第一电容耦合在AC/DC变换器的正母线与AC/DC变换器的地线之间,该第二电容耦合在AC/DC变换器的负母线与AC/DC变换器的地线之间。
结合第一方面或结合第一方面上述任意一种可能的实现方式,在第五种可能的实现方式中,上述AC/DC变换器包括三相电路;所述三相电路中电流的相量和为零。
结合第一方面上述任意一种可能的实现方式,在第六种可能的实现方式中,上述控制器还可以在交流电源的电压小于AC/DC变换器的输出电压的二分之一时,控制第一脉冲控制信号和第二脉冲控制信号的占空比均小于0.5;或者,控制器还可以在交流电源的电压大于AC/DC变换器的输出电压的二分之一时,控制第一脉冲控制信号和第二脉冲控制信号的占空比均大于0.5。
结合第一方面或结合第一方面上述任意一种可能的实现方式,在第七种可能的实现方式中,第一绕组与第二绕组的绕组匝数相等。
第二方面,本申请实施例提供了一种充电装置,该充电装置可以包括如结合第一方面或结合第一方面任意一种可能的实现方式中的AC/DC变换器以及电能表;其中,电能表串联在交流电源与AC/DC变换器之间。AC/DC变换器可以将所述交流电源输出的交流电变换为第一直流电,并将该第一直流电传输至用电设备;电能表可以对交流电源向用电设备提供的电能进行测量。
结合第二方面,在第一种可能的实现方式中,上述充电装置还包括DC/DC变换器;其中,DC/DC变换器设于AC/DC变换器与所述用电设备之间。AC/DC变换器将交流电源输出的交流电变换得到的第一直流电,经过该DC/DC变换器传输至用电设备;该DC/DC变换器可以对第一直流电进行变换得到第二直流电,并将第二直流电向用电设备提供。
应理解的是,本申请上述多个方面的实现和有益效果可以相互参考。
附图说明
图1为现有技术中的AC/DC变换器的一电路图;
图2为本申请实施例提供的充电装置的一结构框图;
图3为本申请实施例提供的AC/DC变换器的一结构框图;
图4A-图4B为本申请实施例提供的切换单元的电路图;
图5为本申请实施例提供的脉冲控制信号的一时序图;
图6A-图6F为本申请实施例提供的AC/DC变换器的一等效电路图;
图7A-图7F为本申请实施例提供的AC/DC变换器的又一等效电路图;
图8为本申请实施例提供的脉冲控制信号的又一时序图;
图9A-图9B为本申请实施例提供的AC/DC变换器的又一等效电路图;
图10A-图10B为本申请实施例提供的AC/DC变换器的又一等效电路图;
图11为本申请实施例提供的AC/DC变换器的三相电路图;
图12为本申请实施例提供的交流电网的波形示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图来对本申请的技术方案的实施作进一步的详细描述。
参见图2,图2为本申请实施例提供的充电装置的一结构框图。如图2所示,充电装置21设于交流电源与用电设备之间。该充电装置21可以包括电能表211以及AC/DC变换器212。其中,交流电源的输出端耦合电能表211的一端,电能表211的另一端耦合AC/DC变换器212的一端,AC/DC变换器212的另一端耦合用电设备。
需要指出的是,本申请中所描述的“耦合”指的是直接或间接连接。例如,A与B耦合,既可以是A与B直接连接,也可以是A与B之间通过一个或多个其它电学元器件间接连接,例如可以是A与C直接连接,C与B直接连接,从而使得A与B之间通过C实现了连接。
AC/DC变换器212可以将交流电源输出的交流电变换为第一直流电,并将该第一直流电传输至用电设备。其中,电能表211串联在交流电源与AC/DC变换器212之间,可以对交流电源向用电设备提供的电能进行测量。可选的,该AC/DC变换器212还可以包括通信模块(图中未示出),该通信模块可以将电能表211测量得到的电能数据向用电设备传输。或者,该AC/DC变换器212还可以包括显示模块(图中未示出),该显示模块可以将电能表211测量得到的电能数据进行显示。
示例性的,该AC/DC变换器212可以采用半波整流、全波整流或者有源逆变等电路结构来进行整流。
示例性的,该用电设备可以是终端、逆变器或电动汽车等。比如该AC/DC变换器212中的交流电源可以是来自交流电网,则本申请实施例中的充电装置可以具体实现为充电桩,向电动汽车输出直流电。
在一些可行的实施实施方式中,该AC/DC变换器212还可以包括DC/DC变换器(图中未示出),该DC/DC变换器设于AC/DC变换器212与用电设备之间,即AC/DC变换器212的另一端通过DC/DC变换器耦合用电设备。具体实现中,AC/DC变换器212可以将交流电源输出的交流电变换为第一直流电,该DC/DC变换器可以将该第一直流电变换第二直流电,并将该第二直流电传输至用电设备。
示例性的,该DC/DC变换器可以例如是BUCK变换器,该BUCK变换器可以对第一直流电进行降压得到第二直流电,即第二直流电可以小于第一直流电。该DC/DC变换器可以例如是BOOST变换器,该BOOST变换器可以对第一直流电进行升压得到第二直流电,即第二直流电可以大于第一直流电。可选的,该DC/DC变换器还可以例如是BUCK-BOOST变换器,该BUCK-BOOST变换器可以对第一直流电进行升压或降压得到第二直流电,即第二直流电可以大于或小于第一直流电。可选的,AC/DC变换器212和DC/DC变换器可以具体以电路印制板PCB的形式内置在充电站的充电桩中。
下面结合附图对本申请实施例提供的AC/DC变换器的具体结构进行说明。
参见图3,图3为本申请实施例提供的AC/DC变换器的一结构框图。如图3所示,本申请提供的AC/DC变换器设于交流电源与用电设备之间。其中,该AC/DC变换器包括至少一相电路。可以理解的是,该AC/DC变换器包括的相电路的数量确定了该AC/DC变换器可以适用的场景。例如,该AC/DC变换器适用于交流电源为交流电网的应用场景,则该AC/DC变换器包括三相电路;又例如,该AC/DC变换器适用于交流电源为单相交流的场景,则该AC/DC变换器包括单相电路。
图3以AC/DC变换器包括单相电路为例,该相电路中包括电感L 31、自耦变压器310、第一切换单元311、第二切换单元312、与第一切换单元311对应的至少两个第一整流单元(例如第一整流单元313a和第一整流单元313b)以及与第二切换单元312对应的至少两个第二整流单元(例如第二整流单元314a和第二整流单元314b)。其中,自耦变压器310包括与第一切换单元311对应的第一绕组T 31以及与第二切换单元312对应的第二绕组T 32
可选的,第一绕组T 31与第二绕组T 32的绕组匝数相等,此时,自耦变压器310对电感L 31的电流进行隔离分流,可以提高AC/DC变换器的输出电流。
具体实现中,电感L 31的一端耦合交流电源,电感L 31的另一端耦合第一绕组T 31的一端和第二绕组T 32的一端,第一绕组T 31的另一端耦合第一切换单元311的绕组连接端①,第二绕组T 32的另一端耦合第二切换单元312的绕组连接端①。
第一切换单元311的正母线连接端②通过第一整流单元313a耦合AC/DC变换器的正母线DC1+,第一切换单元311的负母线连接端③通过第一整流单元313b耦合AC/DC变换器的负母线DC1-。
第二切换单元312的正母线连接端②通过第二整流单元314a耦合AC/DC变换器的正母线DC1+;第二切换单元312的负母线连接端③通过第二整流单元314b耦合AC/DC变换器的负母线DC1-。
其中,AC/DC变换器的正母线DC1+与负母线DC1-之间耦合用电设备,该AC/DC变换器的输出电压为该AC/DC变换器的正母线DC1+与该AC/DC变换器的负母线DC1-之间的电压差。
各个切换单元中的内部结构具体可以是:在任一切换单元的绕组连接端①与该任一切换单元的地线连接端④之间包括至少两组切换电路,各组切换电路中包括二极管以及与该二极管串联的可控开关。其中,该可控开关可以控制该可控开关所在的切换单元的绕组连接端①与地线连接端④之间连接的导通或断开。例如,第一切换单元311中的第一组切换电路包括二极管D 31以及与该二极管D 31串联的开关管Q 31,若开关管Q 31关断,第一切换单元311的绕组连接端①与第一切换单元311的地线连接端④之间的连接断开;若开关管Q 31导通,第一切换单元311的绕组连接端①与第一切换单元311的地线连接端④之间的连接在交流电源处于正半周时导通。第一切换单元311中的第二组切换电路包括二极管D 32以及与该二极管D 32串联的开关管Q 32,若开关管Q 32关断,第一切换单元311的绕组连接端①与第一切换单元311的地线连接端④之间的连接断开;若开关管Q 32导通,第一切换单元311的绕组连接端①与第一切换单元311的地线连接端④之间的连接在交流电源处于负半周时导通。
可以理解的是,图3是以可控开关具体实现为金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)为例,可以理解的是,可控 开关还可以具体实现为继电器、接触器、或绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)等。
在一些可行的实施方式中,AC/DC变换器还包括第一电容C 31和第二电容C 32。其中,第一电容C 31耦合在AC/DC变换器的正母线DC1+与AC/DC变换器的地线GND之间,第二电容C 32耦合在AC/DC变换器的负母线DC1-与AC/DC变换器的地线GND之间。可以理解的是,第一电容C 31是AC/DC变换器的正母线DC1+的滤波电容,第二电容C 32是AC/DC变换器的负母线DC1-的滤波电容。
在一些可行的实施方式中,AC/DC变换器还可以包括控制器(图中未示出)。该控制器可以向第一切换单元311中各组切换电路包括的第一可控开关(例如开关管Q 31和开关管Q 32)发送第一脉冲控制信号,该第一脉冲控制信号可以控制开关管Q 31和开关管Q 32的通断;该控制器还可以向第二切换单元312中各组切换电路包括的第二可控开关(即第二切换单元312中的两个开关管)发送第二脉冲控制信号,该第二脉冲控制信号可以控制第二切换单元312中的两个开关管的通断。其中,第一脉冲控制信号与第二脉冲控制信号之间的频率相同。可选的,第一脉冲控制信号与第二脉冲控制信号之间的相位差可以为180°,此时AC/DC变换器的电流纹波最小。
进一步的,在一些可行的实施方式中,以V in代表交流电源的电压,V o代表AC/DC变换器的输出电压,则上述控制器在V in<V o/2时,控制第一脉冲控制信号和第二脉冲控制信号的占空比均小于0.5。或者,上述控制器在V in>V o/2时,控制第一脉冲控制信号和第二脉冲控制信号的占空比均大于0.5。第一脉冲控制信号的占空比与第二脉冲控制信号的占空比相同。控制器通过调节脉冲控制信号的占空比,可以稳定AC/DC变换器的输出电压V o=2V in
相对于现有技术中采用两个开关管串联来切换电感的充放电状态并实现AC/DC变换,本申请实施例改变了切换单元的内部结构。在本申请实施例中,切换单元采用至少两组切换电路,每组切换电路中包括的是二极管以及与该二极管串联的可控开关,AC/DC变换器的输出电压可以由切换电路中的二极管与整流单元承担,或者由切换电路中的可控开关与整流二极管承担。因此,本申请实施例可以通过改变切换单元的内部结构,减轻整流单元承受的电压差,使得本申请实施例中的AC/DC变换器在与现有技术提供的AC/DC变换器对用电设备提供相同输出电压的情况下,本申请实施例的AC/DC变换器可以选择额定电压较小的整流器件,成本低。并且,整流器件的额定电压的大小与该整流器件的正向压降正相关,即整流器件的额定电压越大,该整流器件带来的损耗越大,所以本申请实施例通过改变切换单元的内部结构,可以选择额定电压较小的整流器件,除了可以降低成本之外,还可以减小AC/DC变换器的损耗,提高变换效率。
在一些可行的实施方式中,以图4A中示出的第一切换单元的电路图为例,二极管D 31的阳极与二极管D 32的阴极均耦合第一切换单元对应的第一绕组T 31的另一端,即二极管D 31的阳极与二极管D 32的阴极的连接点为第一切换单元311的绕组连接端①。二极管D 31的阴极与开关管Q 31的第一端(即漏极)均通过第一切换单元对应的两个整流单元中的一个整流单元(例如第一整流单元313a)耦合AC/DC变换器的正母线DC1+,即二极管D 31的阴极与开关管Q 31的漏极的连接点为第一切换单元311的正母线连接端②。二极管D 32的阳极与开 关管Q 31的第二端(即源极)均通过第一切换单元对应的两个整流单元中的另一个整流单元(例如第一整流单元313b)耦合AC/DC变换器的负母线DC1-,即二极管D 32的阳极与开关管Q 31的源极的连接点为第一切换单元311的负母线连接端③。开关管Q 31的第二端(即源极)与开关管Q 32的第一端(即漏极)均耦合AC/DC变换器的地线,即开关管Q 31的源极与开关管Q 32的漏极的连接点为第一切换单元311的地线连接端④。
同理的,第二切换单元312的电路图可以参考第一切换单元的描述,此处不作赘述。
在本申请实施例中,绕组的另一端连接的是两个二极管的连接中点,而AC/DC变换器的地线连接的是两个开关管的连接中点,在这种切换单元的电路连接方式中,可以使用开关速度较慢的工频二极管,开关管的开关速度也可以比较慢,避免开关管频繁地开关,可以提高AC/DC变换器的寿命。
可选的,在一些可行的实施方式中,以图4B中示出的第二切换单元的电路图为例,开关管Q 31的第二端(即源极)与开关管Q 32的第一端(即漏极)均耦合第一切换单元对应的第一绕组T 31的另一端,即开关管Q 31的源极与开关管Q 32的漏极的连接点为第一切换单元311的绕组连接端①。开关管Q 31的第一端(即漏极)与二极管D 31的阴极均通过第一切换单元对应的两个整流单元中的一个整流单元(例如第一整流单元313a)耦合AC/DC变换器的正母线DC1+,即开关管Q 31的漏极与二极管D 31的阴极的连接点为第一切换单元311的正母线连接端②。开关管Q 32的第二端(即源极)与二极管D 32的阳极均通过第一切换单元对应的两个整流单元中的另一个整流单元(例如第一整流单元313b)耦合AC/DC变换器的负母线DC1-,即二极管D 32的阳极与开关管Q 31的源极的连接点为第一切换单元311的负母线连接端③。二极管D 31的阳极与二极管D 32的阴极均耦合AC/DC变换器的地线,即二极管D 31的阳极与二极管D 32的阴极的连接点为第一切换单元311的地线连接端④。
同理的,第二切换单元312的电路图可以参考第一切换单元的描述,此处不作赘述。
在本申请实施例中,区别于图4A中示出的切换单元,绕组的另一端连接的是两个开关管的连接中点,而AC/DC变换器的地线连接的是两个二极管的连接中点,在这种切换单元的电路连接方式中,二极管导通速度较快,可以提高AC/DC变换器的变换速度。
下面结合图5至图7F对本申请实施例提供的AC/DC变换器的工作原理进行介绍。
参见图5,图5为本申请实施例提供的脉冲控制信号的一时序图。如图5所示,第一脉冲控制信号与第二脉冲控制信号之间的频率相同,相位差为180°,并且第一脉冲控制信号与第二脉冲控制信号的占空比都小于0.5。
在一些可行的实施方式中,切换单元内部结构的连接关系是如图4A所示时,结合图5示出的脉冲控制信号的时序图,假设在t 50至t 53时间段内,交流电源输出的交流电处于正半周;在t 54至t 57时间段内,交流电源输出的交流电处于负半周。则本申请实施例提供的AC/DC变换器可以在不同时刻下得到的等效电路图如图6A至图6F。
需要首先说明的是,本申请实施例以整流单元具体实现为整流二极管为例,可以理解为整流单元还可以是其他半导体器件例如三极管、MOSFET等。
在t 50至t 51时间段内,第一脉冲控制信号为高电平,开关管Q 31和开关管Q 32导通,而第二脉冲控制信号为低电平,开关管Q 33和开关管Q 34关断。此时AC/DC变换器的等效电路图 如图6A所示,交流电源输出的交流电经过电感L 31之后分别经过绕组T 31和绕组T 32。其中,绕组T 31上的电流经过二极管D 31以及开关管Q 31到AC/DC变换器的地线GND,电感L 31充电;绕组T 32上的电流经过二极管D 33、整流二极管D2以及第一电容C 31到AC/DC变换器的地线GND,电感L 31放电。AC/DC变换器的正母线DC1+上的电压是电感L 31经过整流二极管D2放电得到的直流电。
在t 51至t 52时间段内,第一脉冲控制信号和第二脉冲控制信号均为低电平,开关管Q 31和开关管Q 32关断,以及开关管Q 33和开关管Q 34关断。此时AC/DC变换器的等效电路图如图6B所示,交流电源输出的交流电经过电感L 31之后分别经过绕组T 31和绕组T 32。其中,绕组T 31上的电流经过二极管D 31、整流二极管D1以及第一电容C 31到AC/DC变换器的地线GND,电感L 31放电;绕组T 32上的电流经过二极管D 33、整流二极管D2以及第一电容C 31到AC/DC变换器的地线GND,电感L 31放电。AC/DC变换器的正母线DC1+上的电压是电感L 31经过整流二极管D1以及整流二极管D2放电得到的直流电之和。
在t 52至t 53时间段内,第一脉冲控制信号为低电平,开关管Q 31和开关管Q 32关断,而第二脉冲控制信号为高电平,开关管Q 33和开关管Q 34导通。此时AC/DC变换器的等效电路图如图6C所示,交流电源输出的交流电经过电感L 31之后分别经过绕组T 31和绕组T 32。其中,绕组T 31上的电流经过二极管D 31、整流二极管D1以及第一电容C 31到AC/DC变换器的地线GND,电感L 31放电;绕组T 32上的电流经过二极管D 33以及开关管Q 33到AC/DC变换器的地线GND,电感L 31充电。AC/DC变换器的正母线DC1+上的电压是电感L 31经过整流二极管D1放电得到的直流电。
在t 54至t 55时间段内,由于此时的交流电处于负半周,所以即使t 54至t 55时间段内的脉冲控制信号如t 50至t 51时间段内的脉冲控制信号(即第一脉冲控制信号为高电平,以及第二脉冲控制信号为低电平),AC/DC变换器的等效电路图也不同。此时,开关管Q 31和开关管Q 32导通,开关管Q 33和开关管Q 34关断,AC/DC变换器的等效电路图如图6D所示,绕组T 31上的电流是由AC/DC变换器的地线GND经过开关管Q 32和二极管D 32得到,电感L 31充电;绕组T 32上的电流是由AC/DC变换器的地线GND经过第二电容C 32、整流二极管D4和二极管D 34得到,电感L 31放电。其中,绕组T 31和绕组T 32上的电流均汇流至电感L 31。AC/DC变换器的负母线DC1-上的电压是电感L 31经过整流二极管D4放电得到的直流电。
同理的,在t 55至t 56时间段内,第一脉冲控制信号和第二脉冲控制信号均为低电平,开关管Q 31和开关管Q 32关断,以及开关管Q 33和开关管Q 34关断。此时AC/DC变换器的等效电路图如图6E所示,绕组T 31上的电流是由AC/DC变换器的地线GND经过第二电容C 32、整流二极管D3和二极管D 32得到,电感L 31放电;绕组T 32上的电流是由AC/DC变换器的地线GND经过第二电容C 32、整流二极管D4和二极管D 34得到,电感L 31放电。其中,绕组T 31和绕组T 32上的电流均汇流至电感L 31。AC/DC变换器的负母线DC1-上的电压是电感L 31经过整流二极管D3和整流二极管D4放电得到的直流电。
在t 56至t 57时间段内,第一脉冲控制信号为低电平,开关管Q 31和开关管Q 32关断,而第二脉冲控制信号为高电平,开关管Q 33和开关管Q 34导通。此时AC/DC变换器的等效电路图如图6F所示,绕组T 31上的电流是由AC/DC变换器的地线GND经过第二电容C 32、整流二极管D3和二极管D 32得到,电感L 31放电;绕组T 32上的电流是由AC/DC变换器的地线GND 经过开关管Q 34和二极管D 34得到,电感L 31充电。其中,绕组T 31和绕组T 32上的电流均汇流至电感L 31。AC/DC变换器的负母线DC1-上的电压是电感L 31经过整流二极管D3放电得到的直流电。
可选的,在一些可行的实施方式中,切换单元内部结构的连接关系是如图4B所示时,图5示出的脉冲控制信号的时序图依然适用,只是电感L 31在各个时刻形成的电流回路有所不同。
示例性的,在t 50至t 51时间段内,开关管Q 31和开关管Q 32导通,开关管Q 33和开关管Q 34关断。此时AC/DC变换器的等效电路图如图7A所示,交流电源输出的交流电经过电感L 31之后分别经过绕组T 31和绕组T 32。与图6A不同的是,绕组T 31上的电流经过开关管Q 32以及二极管D 32到AC/DC变换器的地线GND,电感L 31充电;绕组T 32上的电流经过开关管Q 33的寄生二极管、整流二极管D2以及第一电容C 31到AC/DC变换器的地线GND,电感L 31放电。AC/DC变换器的正母线DC1+上的电压是电感L 31经过整流二极管D2放电得到的直流电。
在t 51至t 52时间段内,开关管Q 31和开关管Q 32关断,以及开关管Q 33和开关管Q 34关断。此时AC/DC变换器的等效电路图如图7B所示,交流电源输出的交流电经过电感L 31之后分别经过绕组T 31和绕组T 32。与图6B不同的是,绕组T 31上的电流经过开关管Q 31的寄生二极管、整流二极管D1以及第一电容C 31到AC/DC变换器的地线GND,电感L 31放电;绕组T 32上的电流经过开关管Q 33的寄生二极管、整流二极管D2以及第一电容C 31到AC/DC变换器的地线GND,电感L 31放电。AC/DC变换器的正母线DC1+上的电压是电感L 31经过整流二极管D1以及整流二极管D2放电得到的直流电之和。
在t 52至t 53时间段内,开关管Q 31和开关管Q 32关断,开关管Q 33和开关管Q 34导通。此时AC/DC变换器的等效电路图如图7C所示,交流电源输出的交流电经过电感L 31之后分别经过绕组T 31和绕组T 32。与图6C不同的是,绕组T 31上的电流经过开关管Q 31的寄生二极管、整流二极管D1以及第一电容C 31到AC/DC变换器的地线GND,电感L 31放电;绕组T 32上的电流经过开关管Q 34以及二极管D 34到AC/DC变换器的地线GND,电感L 31充电。AC/DC变换器的正母线DC1+上的电压是电感L 31经过整流二极管D1放电得到的直流电。
在t 54至t 55时间段内,交流电处于负半周,开关管Q 31和开关管Q 32导通,开关管Q 33和开关管Q 34关断,AC/DC变换器的等效电路图如图7D所示,与图6D不同的是,绕组T 31上的电流是由AC/DC变换器的地线GND经过二极管D 31以及开关管Q 31得到,电感L 31充电;绕组T 32上的电流是由AC/DC变换器的地线GND经过第二电容C 32、整流二极管D4和开关管Q 34的寄生二极管得到,电感L 31放电。其中,绕组T 31和绕组T 32上的电流均汇流至电感L 31。AC/DC变换器的负母线DC1-上的电压是电感L 31经过整流二极管D4放电得到的直流电。
在t 55至t 56时间段内,交流电处于负半周,开关管Q 31和开关管Q 32关断,以及开关管Q 33和开关管Q 34关断。此时AC/DC变换器的等效电路图如图7E所示,与图6E不同的是,绕组T 31上的电流是由AC/DC变换器的地线GND经过第二电容C 32、整流二极管D3和开关管Q 32的寄生二极管得到,电感L 31放电;绕组T 32上的电流是由AC/DC变换器的地线GND经过第二电容C 32、整流二极管D4和开关管Q 34的寄生二极管得到,电感L 31放电。其中,绕组T 31和绕组T 32上的电流均汇流至电感L 31。AC/DC变换器的负母线DC1-上的电压是电感L 31经过整流二极管D3和整流二极管D4放电得到的直流电。
在t 56至t 57时间段内,交流电处于负半周,开关管Q 31和开关管Q 32关断,开关管Q 33和开关管Q 34导通。此时AC/DC变换器的等效电路图如图7F所示,与图6F不同的是,绕组T 31上的电流是由AC/DC变换器的地线GND经过第二电容C 32、整流二极管D3和开关管Q 32的寄生二极管得到,电感L 31放电;绕组T 32上的电流是由AC/DC变换器的地线GND经过二极管D 33以及开关管Q 33得到,电感L 31充电。其中,绕组T 31和绕组T 32上的电流均汇流至电感L 31。AC/DC变换器的负母线DC1-上的电压是电感L 31经过整流二极管D3放电得到的直流电。
在一些可行的实施方式中,参见图8,图8为本申请实施例提供的脉冲控制信号的又一时序图。如图8所示,第一脉冲控制信号和第二脉冲控制信号的占空比都大于0.5,相较于图5中示出的脉冲控制信号的时序图,可以得出,图5中的脉冲控制信号的时序图的交叠部分是第一脉冲控制信号和第二脉冲控制信号均为低电平,而图8中的脉冲控制信号的时序图的交叠部分是第一脉冲控制信号和第二脉冲控制信号均为高电平。因此在图5中示出的脉冲控制信号的时序图的控制下,各个切换单元的各个开关管(例如开关管Q 31、Q 32、Q 33和Q 34)可以共同处于关断状态,则在图8中示出的脉冲控制信号的时序图的控制下,开关管Q 31、Q 32、Q 33和Q 34可以共同处于导通状态。
在一些可行的实施方式中,切换单元内部结构的连接关系是如图4A所示时,结合图8示出的脉冲控制信号的时序图,假设在t 80至t 83时间段内,交流电源输出的交流电处于正半周;在t 84至t 87时间段内,交流电源输出的交流电处于负半周。
在t 80至t 81时间段内,第一脉冲控制信号为低电平,开关管Q 31和开关管Q 32关断,而第二脉冲控制信号为高电平,开关管Q 33和开关管Q 34导通。此时AC/DC变换器的等效电路图如图6C所示,具体实现可以结合图6C的描述,此处不作赘述。
在t 81至t 82时间段内,第一脉冲控制信号和第二脉冲控制信号均为高电平,开关管Q 31和开关管Q 32导通,以及开关管Q 33和开关管Q 34导通。此时AC/DC变换器的等效电路图如图9A所示,交流电源输出的交流电经过电感L 31之后分别经过绕组T 31和绕组T 32。其中,绕组T 31上的电流经过二极管D 31以及开关管Q 31到AC/DC变换器的地线GND,电感L 31充电;绕组T 32上的电流经过二极管D 33以及开关管Q 33到AC/DC变换器的地线GND,电感L 31充电。AC/DC变换器的正母线DC+与负母线DC-之间的电压差是t 80至t 81时间段输出的电压。
在t 82至t 83时间段内,第一脉冲控制信号为高电平,开关管Q 31和开关管Q 32导通,而第二脉冲控制信号为低电平,开关管Q 33和开关管Q 34关断。此时AC/DC变换器的等效电路图如图6A所示,具体实现可以结合图6A的描述,此处不作赘述。
在t 84至t 85时间段内,此时的交流电处于负半周,第一脉冲控制信号为低电平,开关管Q 31和开关管Q 32关断,而第二脉冲控制信号为高电平,开关管Q 33和开关管Q 34导通。此时AC/DC变换器的等效电路图如图6F所示,具体实现可以结合图6F的描述,此处不作赘述。
在t 85至t 86时间段内,此时的交流电处于负半周,第一脉冲控制信号和第二脉冲控制信号均为高电平,开关管Q 31和开关管Q 32导通,以及开关管Q 33和开关管Q 34导通。此时AC/DC变换器的等效电路图如图9B所示,绕组T 31上的电流是由AC/DC变换器的地线GND经过开关管Q 32和二极管D 32得到,电感L 31充电;绕组T 32上的电流是由AC/DC变换器的地线GND经过开关管Q 34和二极管D 34得到,电感L 31充电。AC/DC变换器的正母线DC+与负母 线DC-之间的电压差是t 84至t 85时间段输出的电压。
在t 86至t 87时间段内,此时的交流电处于负半周,第一脉冲控制信号为高电平,以及第二脉冲控制信号为低电平,开关管Q 31和开关管Q 32导通,开关管Q 33和开关管Q 34关断,AC/DC变换器的等效电路图如图6D所示,具体实现可以结合图6D的描述,此处不作赘述。
可选的,在一些可行的实施方式中,切换单元内部结构的连接关系是如图4B所示时,图8示出的脉冲控制信号的时序图依然适用,只是电感L 31在各个时刻形成的电流回路有所不同。
示例性的,在t 80至t 81时间段内,开关管Q 31和开关管Q 32关断,开关管Q 33和开关管Q 34导通。此时AC/DC变换器的等效电路图如图7C所示,具体实现可以结合图7C的描述,此处不作赘述。
在t 81至t 82时间段内,开关管Q 31和开关管Q 32导通,以及开关管Q 33和开关管Q 34导通。此时AC/DC变换器的等效电路图如图10A所示,绕组T 31上的电流经过开关管Q 32以及二极管D 32到AC/DC变换器的地线GND,电感L 31充电;绕组T 32上的电流经过开关管Q 34以及二极管D 34到AC/DC变换器的地线GND,电感L 31充电。AC/DC变换器的正母线DC+与负母线DC-之间的电压差是t 80至t 81时间段输出的电压。
在t 82至t 83时间段内,开关管Q 31和开关管Q 32导通,开关管Q 33和开关管Q 34关断。此时AC/DC变换器的等效电路图如图7A所示,具体实现可以结合图7A的描述,此处不作赘述。
在t 84至t 85时间段内,此时的交流电处于负半周,开关管Q 31和开关管Q 32关断,开关管Q 33和开关管Q 34导通。此时AC/DC变换器的等效电路图如图7F所示,具体实现可以结合图7F的描述,此处不作赘述。
在t 85至t 85时间段内,此时的交流电处于负半周,开关管Q 31和开关管Q 32导通,以及开关管Q 33和开关管Q 34导通。此时AC/DC变换器的等效电路图如图10B所示,绕组T 31上的电流是由AC/DC变换器的地线GND经过二极管D 31和开关管Q 31得到,电感L 31充电;绕组T 32上的电流是由AC/DC变换器的地线GND经过二极管D 33和开关管Q 33得到,电感L 31充电。AC/DC变换器的正母线DC+与负母线DC-之间的电压差是t 84至t 85时间段输出的电压。
在t 86至t 87时间段内,此时的交流电处于负半周,开关管Q 31和开关管Q 32导通,开关管Q 33和开关管Q 34关断,AC/DC变换器的等效电路图如图7D所示,具体实现可以结合图7D的描述,此处不作赘述。
在一些可行的实施方式中,参见图11,图11为本申请实施例提供的AC/DC变换器的三相电路图。如图11所示,AC/DC变换器包括三相电路,每相电路均包括电感、自耦变压器、第一切换单元、第二切换单元、第一整流单元以及第二整流单元。换句话来说,AC/DC变换器可以包括三个图3中所描述的相电路,其中切换单元可以具体实现为图4A或者图4B所描述的电路。
图11以切换单元具体实现为图4A所描述的电路为例,交流电源具体实现为交流电网,包括a、b、c三相电压。一相电压对应输入一相电路中。
需要首先说明的是,图11中示出的是AC/DC变换器应用在三相三线制电路,本申请 实施例中提供的AC/DC变换器还可以适用于三相四线制、三相五线制等电路,本申请不对此进行限制。
a、b、c三相电压的波形示意图可以参见图12,a、b、c三相电压之间的相位差为120°,在不同的时刻,每一相电路的状态可以认为是相互独立的过程。在三相电路中,本申请实施例的AC/DC变换器可以具有多种状态,例如切换单元具体实现为图4A时,在图12中示出的第T时刻,a相电压和c相电压处于正半周,b相电压处于负半周,则此时a相电压和c相电压对应的相电路(即电压V a所输入支路以及电压V c所输入支路)可以具有前文结合图6A至图6C中的三种状态;b相电压对应的相电路(即电压V b所输入支路)可以具有前文结合图6D至图6F中的三种状态。因此,在第T时刻,该AC/DC变换器可以具有27种可能的回路状态组合。
示例性的,电压V a所输入支路和电压V c所输入支路均形成如图6A示出的回路,电压V b所输入支路形成如图6D示出的回路。交流电网的地线与AC/DC变换器的地线GND是不同的,所以电流从交流电网输出,也要回到交流电网的地线,即三相电路中遵循基尔霍夫电流定律。电压V a所输入支路和电压V c所输入支路的电流由电压V b所输入支路流回至交流电网的地线。换句话来说,三相电路中电流的相量和总会为零。
具体实现中,电压V a输入电感L a之后分别经过绕组T a1和绕组T a2。其中,绕组T a1上的电流经过二极管D a1以及开关管Q a1到AC/DC变换器的地线GND;绕组T a2上的电流经过二极管D a3、整流二极管D2以及第一电容C 101到AC/DC变换器的地线GND。
电压V c输入电感L c之后分别经过绕组T c1和绕组T c2。其中,绕组T c1上的电流经过二极管D c1以及开关管Q c1到AC/DC变换器的地线GND;绕组T c2上的电流经过二极管D c3、整流二极管D10以及第一电容C 101到AC/DC变换器的地线GND。
AC/DC变换器的地线GND处的电流可以经过开关管Q b2、二极管D b2以及绕组T b1到交流电网的地线,或者可以经过第二电容C 102、整流二极管D8、二极管D b4以及绕组T b2到交流电网的地线。
可选的,电压V a所输入支路和电压V c所输入支路均形成如图6A示出的回路,电压V b所输入支路形成如图6E示出的回路;或者,电压V a所输入支路和电压V c所输入支路均形成如图6A示出的回路,电压V b所输入支路形成如图6F示出的回路;或者,电压V a所输入支路形成如图6A示出的回路,电压V c所输入支路形成如图6B示出的回路,电压V b所输入支路形成如图6D示出的回路;电压V a所输入支路形成如图6A示出的回路,电压V c所输入支路形成如图6B示出的回路,电压V b所输入支路形成如图6E示出的回路;电压V a所输入支路形成如图6A示出的回路,电压V c所输入支路形成如图6B示出的回路,电压V b所输入支路形成如图6F示出的回路等等,此处不作赘述。
需要说明的是,上述术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种AC/DC变换器,其特征在于,所述AC/DC变换器设于交流电源与用电设备之间;所述AC/DC变换器包括至少一相电路;每相电路中包括电感、自耦变压器、第一切换单元、第二切换单元、与所述第一切换单元对应的至少两个第一整流单元以及与所述第二切换单元对应的至少两个第二整流单元;其中,所述自耦变压器包括与所述第一切换单元对应的第一绕组以及与所述第二切换单元对应的第二绕组;
    所述电感的一端耦合所述交流电源,所述电感的另一端耦合所述第一绕组的一端和所述第二绕组的一端;
    所述第一绕组的另一端耦合所述第一切换单元的绕组连接端,所述第二绕组的另一端耦合所述第二切换单元的绕组连接端;
    所述第一切换单元的母线连接端通过所述至少两个第一整流单元耦合所述AC/DC变换器的母线,所述第二切换单元的母线连接端通过所述至少两个第二整流单元耦合所述AC/DC变换器的母线;所述AC/DC变换器的母线耦合所述用电设备;
    其中,任一切换单元的绕组连接端与所述任一切换单元的地线连接端之间包括至少两组切换电路,各组切换电路中包括二极管以及与所述二极管串联的可控开关;所述可控开关用于控制所述可控开关所在的切换单元的绕组连接端与地线连接端之间连接的导通或断开。
  2. 根据权利要求1所述的AC/DC变换器,其特征在于,所述AC/DC变换器还包括控制器;
    所述控制器用于向所述第一切换单元中各组切换电路包括的第一可控开关发送第一脉冲控制信号,所述第一脉冲控制信号用于控制所述第一可控开关的通断;
    所述控制器还用于向所述第二切换单元中各组切换电路包括的第二可控开关发送第二脉冲控制信号,所述第二脉冲控制信号用于控制所述第二可控开关的通断;
    其中,所述第一脉冲控制信号与所述第二脉冲控制信号之间的频率相同,相位差为180°。
  3. 根据权利要求1或2所述的AC/DC变换器,其特征在于,包含在所述任一切换单元中的所述至少两组切换电路包括第一组切换电路和第二组切换电路,其中所述第一组切换电路中包括第一二极管和第一开关管,所述第二组切换电路中包括第二二极管和第二开关管;所述AC/DC变换器的母线包括正母线和负母线;
    所述第一二极管的阳极与所述第二二极管的阴极均耦合所述任一切换单元对应的绕组的另一端;所述第一二极管的阴极与所述第一开关管的第一端均通过所述任一切换单元对应的两个整流单元中的一个整流单元耦合所述AC/DC变换器的正母线;所述第二二极管的阳极与所述第二开关管的第二端均通过所述任一切换单元对应的两个整流单元中的另一个整流单元耦合所述AC/DC变换器的负母线;所述第一开关管的第二端与所述第二开关管的第一端均耦合所述AC/DC变换器的地线。
  4. 根据权利要求1或2所述的AC/DC变换器,其特征在于,包含在所述任一切换单 元中的所述至少两组切换电路包括第一组切换电路和第二组切换电路,其中所述第一组切换电路中包括第三二极管和第三开关管,所述第二组切换电路中包括第四二极管和第四开关管;所述AC/DC变换器的母线包括正母线和负母线;
    所述第三二极管的阴极与所述第三开关管的第一端均通过所述任一切换单元对应的两个整流单元中的一个整流单元耦合所述AC/DC变换器的正母线;所述第三开关管的第二端与所述第四开关管的第一端均耦合所述任一切换单元对应的绕组的另一端;所述第四二极管的阳极与所述第四开关管的第二端均通过所述任一切换单元对应的两个整流单元中的另一个整流单元耦合所述AC/DC变换器的负母线;所述第三二极管的阳极与所述第四二极管的阴极均耦合所述AC/DC变换器的地线。
  5. 根据权利要求3或4所述的AC/DC变换器,其特征在于,所述AC/DC变换器还包括第一电容和第二电容;其中,
    所述第一电容耦合在所述AC/DC变换器的正母线与所述AC/DC变换器的地线之间,所述第二电容耦合在所述AC/DC变换器的负母线与所述AC/DC变换器的地线之间。
  6. 根据权利要求1-5任一项所述的AC/DC变换器,其特征在于,所述AC/DC变换器包括三相电路;所述三相电路中电流的相量和为零。
  7. 根据权利要求2-6任一项所述的AC/DC变换器,其特征在于,所述控制器还用于在所述交流电源的电压小于所述AC/DC变换器的输出电压的二分之一时,控制所述第一脉冲控制信号和所述第二脉冲控制信号的占空比均小于0.5;
    或者,所述控制器还用于在所述交流电源的电压大于所述AC/DC变换器的输出电压的二分之一时,控制所述第一脉冲控制信号和所述第二脉冲控制信号的占空比均大于0.5。
  8. 根据权利要求1-7任一项所述的AC/DC变换器,其特征在于,所述第一绕组与所述第二绕组的绕组匝数相等。
  9. 一种充电装置,其特征在于,所述充电装置包括如权利要求1-8任一项所述的AC/DC变换器以及电能表;其中,所述电能表串联在交流电源与所述AC/DC变换器之间;
    所述AC/DC变换器用于将所述交流电源输出的交流电变换为第一直流电,并将所述第一直流电传输至用电设备;所述电能表用于对所述交流电源向所述用电设备提供的电能进行测量。
  10. 根据权利要求9所述的充电装置,其特征在于,所述充电装置还包括DC/DC变换器;其中,所述DC/DC变换器设于所述AC/DC变换器与所述用电设备之间;
    所述AC/DC变换器将所述交流电源输出的交流电变换得到的第一直流电,经过所述DC/DC变换器传输至所述用电设备;所述DC/DC变换器用于对所述第一直流电进行变换得到第二直流电,并将所述第二直流电向所述用电设备提供。
PCT/CN2022/117474 2021-09-26 2022-09-07 一种ac/dc变换器以及充电装置 WO2023045756A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22871805.2A EP4383547A1 (en) 2021-09-26 2022-09-07 Ac/dc converter and charging device
US18/594,522 US20240204556A1 (en) 2021-09-26 2024-03-04 Ac/dc converter and charging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111129282.1 2021-09-26
CN202111129282.1A CN113938030A (zh) 2021-09-26 2021-09-26 一种ac/dc变换器以及充电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/594,522 Continuation US20240204556A1 (en) 2021-09-26 2024-03-04 Ac/dc converter and charging apparatus

Publications (1)

Publication Number Publication Date
WO2023045756A1 true WO2023045756A1 (zh) 2023-03-30

Family

ID=79276987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117474 WO2023045756A1 (zh) 2021-09-26 2022-09-07 一种ac/dc变换器以及充电装置

Country Status (4)

Country Link
US (1) US20240204556A1 (zh)
EP (1) EP4383547A1 (zh)
CN (1) CN113938030A (zh)
WO (1) WO2023045756A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113938030A (zh) * 2021-09-26 2022-01-14 华为数字能源技术有限公司 一种ac/dc变换器以及充电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155393A (zh) * 2010-10-13 2013-06-12 三菱电机株式会社 三相交流直流变换装置以及使用了三相交流直流变换装置的空气调节机
JP2014045565A (ja) * 2012-08-27 2014-03-13 Mitsubishi Electric Corp 切替形ダイオード及び高周波整流器
CN107204720A (zh) * 2017-07-03 2017-09-26 珠海英搏尔电气股份有限公司 一种交直流变换电路、交直流变换器及其控制方法
CN111030458A (zh) * 2019-10-12 2020-04-17 山特电子(深圳)有限公司 多输入功率变换器及其控制方法和包括其的不间断电源
CN113938030A (zh) * 2021-09-26 2022-01-14 华为数字能源技术有限公司 一种ac/dc变换器以及充电装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205283423U (zh) * 2016-01-13 2016-06-01 深圳市科华恒盛科技有限公司 三相pfc整流电路
CN106208669A (zh) * 2016-09-07 2016-12-07 深圳市核达中远通电源技术有限公司 一种电源拓扑结构
US10566891B2 (en) * 2018-02-23 2020-02-18 Delta Electronics, Inc. Power supply device and control method thereof
CN113437882B (zh) * 2021-06-28 2024-02-13 三峡大学 基于并联式多二极管串联双向开关的三电平整流器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155393A (zh) * 2010-10-13 2013-06-12 三菱电机株式会社 三相交流直流变换装置以及使用了三相交流直流变换装置的空气调节机
JP2014045565A (ja) * 2012-08-27 2014-03-13 Mitsubishi Electric Corp 切替形ダイオード及び高周波整流器
CN107204720A (zh) * 2017-07-03 2017-09-26 珠海英搏尔电气股份有限公司 一种交直流变换电路、交直流变换器及其控制方法
CN111030458A (zh) * 2019-10-12 2020-04-17 山特电子(深圳)有限公司 多输入功率变换器及其控制方法和包括其的不间断电源
CN113938030A (zh) * 2021-09-26 2022-01-14 华为数字能源技术有限公司 一种ac/dc变换器以及充电装置

Also Published As

Publication number Publication date
CN113938030A (zh) 2022-01-14
EP4383547A1 (en) 2024-06-12
US20240204556A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
US8780588B2 (en) Bidirectional DC/DC converter with simple control operation
CN109874385B (zh) 电力转换系统
US20210061114A1 (en) On-board charging and discharging system
US8531854B2 (en) Power factor correction converter and power factor correction conversion device
US20180269795A1 (en) Bidirectional resonant conversion circuit and converter
WO2008020629A1 (fr) Convertisseur cc/cc à commutation souple pousser-tirer de type poussée d&#39;isolation
CN101350569A (zh) 太阳能光伏逆变器拓扑结构
US20240204556A1 (en) Ac/dc converter and charging apparatus
EP4007146A1 (en) Power conversion device
CN103326583A (zh) 电源转换器及其充放电系统
CN110460140A (zh) 车载充放电系统
CN112224056B (zh) 一种车辆及其能量转换装置
CN102710007B (zh) 一种基于平衡桥臂的双电源供电系统
CN112373322A (zh) 电动汽车双向无线电能传输拓扑结构及调制方法
CN111669061A (zh) 反拖系统和风力发电机组
CN110557031A (zh) 一种变频器以及变频器系统
CN110829841A (zh) 一种多端口变换器以及多端口变换器的控制系统
CN114337334B (zh) 一种转换器和车载充电器
CN105634321B (zh) 高可靠性的单相双向dc‑ac变换器及其控制方法
CN210350838U (zh) 车载充放电系统
CN210405105U (zh) 一种变频器以及变频器系统
CN113133333B (zh) 一种整流器、充电系统和电动车
KR20090011604A (ko) 연료전지 차량용 양방향 3상 pwm dc-dc 컨버터
CN115864621A (zh) 一种不间断电源ups和供电系统
CN111244961B (zh) 一种高效率电源系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022871805

Country of ref document: EP

Effective date: 20240307

NENP Non-entry into the national phase

Ref country code: DE