WO2021022886A1 - 一种变换器及供电系统 - Google Patents

一种变换器及供电系统 Download PDF

Info

Publication number
WO2021022886A1
WO2021022886A1 PCT/CN2020/093978 CN2020093978W WO2021022886A1 WO 2021022886 A1 WO2021022886 A1 WO 2021022886A1 CN 2020093978 W CN2020093978 W CN 2020093978W WO 2021022886 A1 WO2021022886 A1 WO 2021022886A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
switch
inductor
unit
tube
Prior art date
Application number
PCT/CN2020/093978
Other languages
English (en)
French (fr)
Inventor
刘卫平
梁永涛
陈晨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20849410.4A priority Critical patent/EP3869684A4/en
Publication of WO2021022886A1 publication Critical patent/WO2021022886A1/zh
Priority to US17/481,076 priority patent/US11677328B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • This application relates to the field of power electronics, in particular to a converter and a power supply system.
  • pure electric vehicles are equipped with on-board chargers (OBC), so that pure electric vehicles can be charged using household AC power sockets.
  • OBC on-board chargers
  • three-phase alternating current or single-phase alternating current can be used to charge a pure electric vehicle.
  • three-phase alternating current can increase the charging power level, shorten the charging time and increase the cruising range of pure electric vehicles.
  • the inverter function has also become a standard configuration of pure electric vehicles.
  • V2V Vehicle-to-vehicle
  • Vehicle-to-load can be realized through inverter technology.
  • V2L V2L power supply.
  • a pure electric vehicle can provide three-phase alternating current and single-phase alternating current to the load through OBC.
  • the OBC circuit In order for the controller to control the OBC circuit to work in the three-phase rectification state/three-phase inverter state or the single-phase rectification state/single-phase inverter state according to the AC voltage, the OBC circuit usually contains a sampling circuit, which is used by the controller to collect OBC AC voltage.
  • the negative pole of the bus bar is a ground wire, and the sampling circuit needs to include a differential circuit, which results in a complicated sampling circuit.
  • This application provides a converter and a power supply system, which solves the problem of a relatively complicated sampling circuit in an OBC circuit.
  • a converter which includes: an AC input unit, a switching unit, a conversion unit, a DC output unit, and a controller.
  • the AC input unit is used to input AC power to provide AC power for the conversion unit.
  • the AC input unit includes U line, V line, W line and N line.
  • the N line is connected to the ground line of the controller and the output terminal of the AC input unit Connect the input terminal of the switching unit; the controller is used to collect the voltage of the U line through the first sampling line, the voltage of the V line through the second sampling line, and the voltage of the W line through the third sampling line, according to the U line
  • the voltage of the V line and the voltage of the W line determine the first control signal and send the first control signal to the switching unit.
  • the controller is connected to the U line through the first sampling line, and the controller is connected to the V line through the second sampling line.
  • Line connection the controller is connected to the W line through the third sampling line;
  • the switching unit is used to control the converter to switch from the three-phase AC input circuit to the single-phase AC input circuit according to the first control signal sent by the controller, the switching unit
  • the output terminal is connected to the input terminal of the conversion unit;
  • the conversion unit is used to convert alternating current into direct current according to a second control signal sent by the controller, and the second control signal is based on the voltage of the U line and the V line collected by the controller
  • the voltage, the voltage of the W line, the current of the conversion unit and the DC voltage output by the DC output unit are determined, and the output end of the conversion unit is connected to the input end of the DC output unit;
  • the DC output unit is used to receive the DC power output by the conversion unit, Output direct current.
  • the converter provided by the embodiment of the application by connecting the N wire to the ground wire of the controller, serves as the sampling reference ground wire of the controller. Therefore, the controller can be directly connected to the U wire, V wire and W wire respectively to collect The voltage of the U line, the voltage of the V line and the voltage of the W line, thereby effectively simplifying the three-phase phase voltage sampling circuit.
  • the converter further includes a first bus split capacitor and a second bus split capacitor.
  • the midpoint of the first bus split capacitor and the second bus split capacitor is connected to the N line through a capacitor.
  • the first bus split capacitor The positive pole of the DC output unit is connected to the positive pole of the bus bar included in the DC output unit, the negative pole of the first bus splitting capacitor is connected to the positive pole of the second bus splitting capacitor, and the negative pole of the second bus splitting capacitor is connected to the negative pole of the bus included in the DC output unit.
  • electromagnetic interference Electromagnetic Interference, EMI
  • the conversion unit includes a first inductor, a second inductor, a third inductor, a first switching tube, a second switching tube, a third switching tube, a fourth switching tube, a fifth switching tube, and a first switching tube.
  • the midpoint of the series bridge arm composed of the sixth switching tube is connected, the drain of the first switching tube, the drain of the third switching tube, and the drain of the fifth switching tube are respectively connected to the positive pole of the bus bar included in the DC output unit.
  • the drain of the second switching tube, the drain of the fourth switching tube and the source of the sixth switching tube are respectively connected to the negative electrode of the bus bar included in the DC output unit.
  • the controller is further configured to collect the current of the first inductor through the fourth sampling line, collect the current of the second inductor through the fifth sampling line, collect the current of the third inductor through the sixth sampling line, and collect the current of the third inductor through the sixth sampling line.
  • the sampling circuit collects the DC voltage, and determines the second control signal according to the current of the first inductor, the current of the second inductor, the current of the third inductor, the DC voltage, the voltage of the U line, the voltage of the V line and the voltage of the W line
  • the unit sends a second control signal.
  • the controller can be directly connected to the U wire, V wire and W wire respectively to collect the current and the first inductor current.
  • the current of the second inductor and the current of the third inductor thus effectively simplify the current sampling circuit of the conversion unit.
  • the first inductor, the second inductor, and the third inductor are integrated inductors. Therefore, when the converter works in the rectification state of the three-phase alternating current, the power frequency magnetic cancellation can be realized and the inductor volume can be reduced.
  • the switching unit includes a first switch, a second switch, and a third switch, wherein one end of the first switch is connected to the V line, the other end of the first switch is connected to the N line, and the second switch One end of the second switch is connected to the W line, the other end of the second switch is connected to the N line, one end of the third switch is connected to one end of the first inductor, and the other end of the third switch is connected to the other end of the first inductor; for the first switch The first switch is controlled to be closed according to the first control signal sent by the controller; and the second switch is used to control the second switch to close according to the first control signal sent by the controller; The first control signal controls the third switch to turn off.
  • a converter in a second aspect, includes a DC input unit, a switching unit, a conversion unit, an AC output unit, and a controller.
  • the DC input unit is used to input DC power to provide DC power to the conversion unit, and the output end of the DC input unit is connected to the input end of the conversion unit; the conversion unit is used to convert the DC power according to the first control signal sent by the controller.
  • the first control signal is determined according to the U line voltage, the V line voltage, the W line voltage, the current of the conversion unit and the DC voltage output by the DC input unit collected by the controller, and the output terminal of the conversion unit is connected
  • the input terminal of the switching unit; the switching unit is used to control the converter to switch from a three-phase AC output circuit to a single-phase AC output circuit according to a second control signal sent by the controller, and the output terminal of the switching unit is connected to the input of the AC output unit
  • the AC output unit is used to receive the AC output from the conversion unit and output the AC power.
  • the AC output unit includes U line, V line, W line and N line.
  • the N line is connected to the ground wire of the controller; the controller, Used to collect the voltage of the U line through the first sampling line, collect the voltage of the V line through the second sampling line and collect the voltage of the W line through the third sampling line, according to the voltage of the U line, the voltage of the V line and the voltage of the W line Determine the second control signal and send the second control signal to the switching unit.
  • the controller is connected to the U line through the first sampling line, the controller is connected to the V line through the second sampling line, and the controller is connected to the W line through the third sampling line. Wire connection.
  • the converter provided by the embodiment of the application by connecting the N wire to the ground wire of the controller, serves as the sampling reference ground wire of the controller. Therefore, the controller can be directly connected to the U wire, V wire and W wire respectively to collect The voltage of the U line, the voltage of the V line and the voltage of the W line, thereby effectively simplifying the three-phase phase voltage sampling circuit.
  • the converter further includes a first bus split capacitor and a second bus split capacitor.
  • the midpoint of the first bus split capacitor and the second bus split capacitor is connected to the N line through a capacitor.
  • the first bus split capacitor The positive pole of the DC input unit is connected to the positive pole of the bus bar included in the DC input unit, the negative pole of the first bus splitting capacitor is connected to the positive pole of the second bus splitting capacitor, and the negative pole of the second bus splitting capacitor is connected to the negative pole of the bus included in the DC input unit.
  • the conversion unit includes a first inductor, a second inductor, a third inductor, a first switching tube, a second switching tube, a third switching tube, a fourth switching tube, a fifth switching tube, and a first switching tube.
  • the midpoint of the series bridge arm composed of the sixth switching tube is connected, the drain of the first switching tube, the drain of the third switching tube, and the drain of the fifth switching tube are respectively connected to the positive pole of the bus bar included in the DC input unit.
  • the drain of the second switching tube, the drain of the fourth switching tube and the source of the sixth switching tube are respectively connected to the negative pole of the bus bar included in the DC input unit.
  • the controller is further configured to collect the current of the first inductor through the fourth sampling line, collect the current of the second inductor through the fifth sampling line, collect the current of the third inductor through the sixth sampling line, and collect the current of the third inductor through the sixth sampling line.
  • the sampling circuit collects the DC voltage, and determines the first control signal according to the current of the first inductor, the current of the second inductor, the current of the third inductor, the DC voltage, the voltage of the U line, the voltage of the V line and the voltage of the W line.
  • the unit sends the first control signal.
  • the controller can be directly connected to the U wire, V wire and W wire respectively to collect the current and the first inductor current.
  • the current of the second inductor and the current of the third inductor thus simplify the current sampling circuit of the conversion unit.
  • the first inductor, the second inductor, and the third inductor are integrated inductors. Therefore, when the converter works in the rectification state of the three-phase alternating current, the power frequency magnetic cancellation can be realized and the inductor volume can be reduced.
  • the switching unit includes a first switch, a second switch, and a third switch, wherein one end of the first switch is connected to the V line, the other end of the first switch is connected to the N line, and the second switch One end of the second switch is connected to the W line, the other end of the second switch is connected to the N line, one end of the third switch is connected to one end of the first inductor, and the other end of the third switch is connected to the other end of the first inductor; for the first switch The first switch is controlled to be closed according to the second control signal sent by the controller; and the second switch is used to control the second switch to close according to the second control signal sent by the controller; The second control signal controls the third switch to turn off.
  • a converter which includes: an AC input unit, a switching unit, a conversion unit, and a DC output unit.
  • the AC input unit is used to input AC power to provide AC power to the conversion unit
  • the AC input unit includes U line, V line, W line and N line
  • the output end of the AC input unit is connected to the input end of the switching unit
  • the switching unit is used to switch the converter from a three-phase alternating current input circuit to a single-phase alternating current input circuit.
  • the output end of the switching unit is connected to the input end of the conversion unit; the conversion unit is used to convert alternating current to direct current.
  • the output terminal is connected to the input terminal of the DC output unit; the DC output unit is used to receive the DC power output by the conversion unit and output the DC power.
  • the conversion unit includes a first inductor, a second inductor, a third inductor, a first switching tube, a second switching tube, a third switching tube, a fourth switching tube, a fifth switching tube, and a sixth switching tube.
  • One end of the inductor is connected to the U line
  • the other end of the first inductor is connected to the midpoint of the series bridge arm composed of the first switch tube and the second switch tube
  • one end of the second inductor is connected to the V line
  • the other end of the second inductor is connected to the V line.
  • One end is connected to the midpoint of the series bridge arm composed of the third switch tube and the fourth switch tube, one end of the third inductor is connected to the W line, and the other end of the third inductor is connected in series with the fifth switch tube and the sixth switch tube.
  • the midpoint of the bridge arm is connected, the drain of the first switching tube, the drain of the third switching tube, and the drain of the fifth switching tube are respectively connected to the positive pole of the bus bar included in the DC output unit, and the drain of the second switching tube, The drain of the fourth switching tube and the source of the sixth switching tube are respectively connected to the negative electrode of the bus bar included in the DC output unit.
  • the switching unit includes a first switch, a second switch and a third switch.
  • One end of the first switch is connected to the V line
  • the other end of the first switch is connected to the N line
  • one end of the second switch is connected to the W line
  • the second switch is The other end of the switch is connected to the N line
  • one end of the third switch is connected to one end of the first inductor
  • the other end of the third switch is connected to the other end of the first inductor; when the first switch, the second switch and the third switch are all connected When closed, the converter switches to a single-phase AC input circuit.
  • the first switch S1 and the second switch S2 are closed to realize the parallel operation of the phase power bridge arms of the V line and the W line, making full use of power devices and reducing Switch tube loss improves rectification efficiency.
  • Closing the third switch S3 makes the bridge arm connected to the third switch S3 work in the low-frequency bridge arm, so as to be compatible with the circuit structure of the conversion unit.
  • a converter in a fourth aspect, includes a DC input unit, a switching unit, a conversion unit, and an AC output unit.
  • the direct current input unit is used to input direct current to provide direct current to the conversion unit, and the output end of the direct current input unit is connected to the input end of the conversion unit;
  • the conversion unit is used to convert direct current into alternating current, and the output end of the conversion unit
  • the input terminal of the switching unit is connected;
  • the switching unit is used to switch the converter from a three-phase AC output circuit to a single-phase AC output circuit, and the output terminal of the switching unit is connected to the input terminal of the AC output unit;
  • the AC output unit It is used to receive the AC power output by the conversion unit and output the AC power.
  • the AC output unit includes U line, V line, W line and N line.
  • the conversion unit includes a first inductor, a second inductor, a third inductor, a first switching tube, a second switching tube, a third switching tube, a fourth switching tube, a fifth switching tube, and a sixth switching tube.
  • One end of the inductor is connected to the U line
  • the other end of the first inductor is connected to the midpoint of the series bridge arm composed of the first switch tube and the second switch tube
  • one end of the second inductor is connected to the V line
  • the other end of the second inductor is connected to the V line.
  • One end is connected to the midpoint of the series bridge arm composed of the third switch tube and the fourth switch tube, one end of the third inductor is connected to the W line, and the other end of the third inductor is connected in series with the fifth switch tube and the sixth switch tube.
  • the midpoint of the bridge arm is connected, the drain of the first switching tube, the drain of the third switching tube and the drain of the fifth switching tube are respectively connected to the positive pole of the bus bar included in the DC input unit, and the drain of the second switching tube is The drain of the fourth switching tube and the source of the sixth switching tube are respectively connected to the negative electrode of the bus bar included in the DC input unit.
  • the switching unit includes a first switch, a second switch and a third switch.
  • One end of the first switch is connected to the V line
  • the other end of the first switch is connected to the N line
  • one end of the second switch is connected to the W line
  • the second switch is The other end of the switch is connected to the N line
  • one end of the third switch is connected to one end of the first inductor
  • the other end of the third switch is connected to the other end of the first inductor; when the first switch, the second switch and the third switch are all connected When closed, the converter switches to a single-phase AC output circuit.
  • the first switch S1 and the second switch S2 are closed to realize the parallel operation of the phase power bridge arms of the V line and the W line, making full use of power devices and reducing Switch tube loss improves rectification efficiency.
  • Closing the third switch S3 makes the bridge arm connected to the third switch S3 work in the low-frequency bridge arm, so as to be compatible with the circuit structure of the conversion unit.
  • a power supply system including: a load and at least one of the above-mentioned converters.
  • the converter is used to convert alternating current to direct current or direct current to alternating current to provide direct current or alternating current to the load.
  • Fig. 1 is a first structural diagram of a converter provided by this application
  • Figure 2 is a second structural diagram of a converter provided by this application.
  • FIG. 3 is a third structural diagram of a converter provided by this application.
  • Figure 4 is a fourth structural diagram of a converter provided by this application.
  • FIG. 5 is a schematic diagram five of the structure of a converter provided by this application.
  • FIG. 6 is a sixth structural diagram of a converter provided by this application.
  • FIG. 7 is a schematic diagram 1 of a power supply system provided by this application.
  • Fig. 8 is a second schematic diagram of a power supply system provided by this application.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • the converter 100 includes: an AC input unit 101, a switching unit 102, a conversion unit 103, a DC output unit 104, and a controller 105.
  • the output terminal of the AC input unit 101 is connected to the input terminal of the switching unit 102
  • the output terminal of the switching unit 102 is connected to the input terminal of the conversion unit 103
  • the output terminal of the conversion unit 103 is connected to the input terminal of the DC output unit 104.
  • the AC input unit 101 is used to input AC power and provide AC power to the conversion unit 103.
  • the AC input unit 101 includes a U line, a V line, a W line, and an N line, and the N line is connected to the ground line of the controller 105.
  • U line, V line and W line are three-phase live wires.
  • U line can also be called A phase.
  • the V line can also be referred to as the B phase.
  • the W line can also be called the C phase.
  • N is the neutral line, which is the zero line.
  • the voltage between any of the U, V, and W lines and the N line is the phase voltage (for example, 220V).
  • the voltage between U line, V line and W line is the line voltage (for example: 380V).
  • the controller 105 is used to collect the voltage of the U line through the first sampling line Si1, the voltage of the V line through the second sampling line Si2 and the voltage of the W line through the third sampling line Si3, according to the voltage of the U line and the V line The voltage of and the voltage of the W line determine the first control signal, and the first control signal is sent to the switching unit 102.
  • the controller 105 is connected to the U line through the first sampling line Si1, the controller 105 is connected to the V line through the second sampling line Si2, and the controller 105 is connected to the W line through the third sampling line Si3.
  • the switching unit 102 is configured to control the converter 100 to switch from a three-phase AC power input circuit to a single-phase AC power input circuit according to a first control signal sent by the controller 105, and provide single-phase AC power to the conversion unit 103 through the single-phase AC power input circuit.
  • the conversion unit 103 is used to convert AC power into DC power according to a second control signal sent by the controller 105.
  • the second control signal is based on the voltage of the U line, the voltage of the V line, the voltage of the W line, and the conversion unit collected by the controller 105.
  • the current of 103 and the DC voltage output by the DC output unit 104 are determined.
  • the DC output unit 104 is configured to receive the DC power output by the conversion unit 103, output the DC power, and supply power to the load (such as a pure electric vehicle).
  • the controller In contrast to using the negative pole of the bus as the ground wire, the controller needs to be connected to the U, V, and W wires through a differential circuit.
  • the converter provided in this embodiment of the application connects the N wire to the ground wire of the controller.
  • the differential circuit can be removed, and the controller can be directly connected to the U line, V line and W line respectively to collect the voltage of the U line, the voltage of the V line and the voltage of the W line. Effectively simplify the three-phase phase voltage sampling circuit.
  • the switching unit may include a first switch S1, a second switch S2, and a third switch S3.
  • the first switch S1 is connected to the controller 105 through the first control line So1
  • the second switch S2 is connected to the controller 105 through the second control line So2
  • the third switch S3 is connected to the controller 105 through the third control line So3.
  • the controller 105 can determine that the converter input is single-phase alternating current, and the controller 105 passes The first control circuit So1 sends a first control signal to the first switch S1 for controlling the first switch S1 to close, and the controller 105 sends a first control signal to the second switch S2 through the second control circuit So2 for controlling the second switch S2 The second switch S2 is closed, and the controller 105 sends a first control signal to the third switch S3 through the third control line So3 for controlling the third switch S3 to be closed.
  • the converter inputs single-phase AC power
  • the parallel operation of the phase power bridge arms of the V line and W line is realized, making full use of power devices, reducing switch tube losses, and improving rectification efficiency .
  • the third switch S3 is closed, so that the bridge arm connected to the third switch S3 works on the low-frequency bridge arm, so as to be compatible with the circuit structure of the conversion unit.
  • the converter may also include a first bus splitting capacitor C1 and a second bus splitting capacitor C2.
  • the midpoints of the first bus splitting capacitor C1 and the second bus splitting capacitor C2 are connected to the N line through the capacitor C3, the positive pole of the first bus splitting capacitor C1 is connected to the positive pole of the bus bar included in the DC output unit 104, and the first bus splitting The negative pole of the capacitor C1 is connected to the positive pole of the second bus splitting capacitor C2, and the negative pole of the second bus splitting capacitor C2 is connected to the negative pole of the bus included in the DC output unit 104.
  • EMI refers to the interference phenomenon caused by the action of electromagnetic waves and electronic components.
  • conduction interference and radiation interference There are two types of conduction interference and radiation interference.
  • the conversion unit may include a first inductor L1, a second inductor L2, a third inductor L3, a first switching tube Q1, a second switching tube Q2, a third switching tube Q3, a fourth switching tube Q4, a fifth switching tube Q5, and a first switching tube Q1.
  • Six switch tube Q6 may include a first inductor L1, a second inductor L2, a third inductor L3, a first switching tube Q1, a second switching tube Q2, a third switching tube Q3, a fourth switching tube Q4, a fifth switching tube Q5, and a first switching tube Q1.
  • one end of the first inductor L1 is connected to the U line
  • the other end of the first inductor L1 is connected to the midpoint of the series bridge arm formed by the first switch tube Q1 and the second switch tube Q2
  • one end of the second inductor L2 is connected to V Wire connection
  • the other end of the second inductor L2 is connected to the midpoint of the series bridge arm composed of the third switch tube Q3 and the fourth switch tube Q4
  • one end of the third inductor L3 is connected to the W line
  • the other end of the third inductor L3 Connected to the midpoint of the series bridge arm formed by the fifth switching tube Q5 and the sixth switching tube Q6, the drain of the first switching tube Q1, the drain of the third switching tube Q3 and the drain of the fifth switching tube Q5 are respectively connected to
  • the positive pole of the bus included in the DC output unit 104 is connected
  • the drain of the second switching tube Q2, the drain of the fourth switching tube Q4, and the source of the sixth switching tube Q6 are respectively connected
  • the switch tube can be a power device.
  • the power device can be a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), an Insulated Gate Bipolar Transistor (IGBT), and an integrated gate commutated thyristor ( At least one or a combination of different power devices in Intergrated Gate Commutated Thyristors (IGCT).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • IGCT Intergrated Gate Commutated Thyristors
  • the upper tube refers to a switch tube connected to the positive pole of the bus bar included in the DC output unit 104.
  • the down tube represents a switch tube connected to the negative electrode of the bus bar included in the DC output unit 104.
  • the switch tube of each bridge arm is turned on and off according to the logic relationship of the switch state of the bridge arm as described in Table 1, so that the bridge arm group outputs signals of different levels.
  • the controller 105 is also used to collect the current of the first inductor L1 through the fourth sampling line Si4, collect the current of the second inductor L2 through the fifth sampling line Si5, collect the current of the third inductor L3 through the sixth sampling line Si6, and pass through the Seven sampling circuit Si7 collects DC voltage.
  • a differential circuit may also be included between the controller 105 and the DC output unit 104, and the DC voltage is collected by using a differential voltage division method through the differential circuit.
  • the second control signal is determined according to the current of the first inductor L1, the current of the second inductor L2, the current of the third inductor L3, the DC voltage, the voltage of the U line, the voltage of the V line and the voltage of the W line, through the fourth control line So4 sends a second control signal to the conversion unit 103, which controls the conversion unit 103 to convert alternating current (three-phase alternating current or single-phase alternating current) into direct current. Therefore, by connecting the N wire to the ground wire of the controller as the sampling reference ground wire of the controller, the controller can be directly connected to the U wire, V wire and W wire respectively to collect the current and the first inductor current. The current of the second inductor and the current of the third inductor thus simplify the current sampling circuit of the conversion unit.
  • the first inductor L1, the second inductor L2, and the third inductor L3 are integrated inductors. Therefore, when the converter works in the rectification state of the three-phase alternating current, the power frequency magnetic cancellation can be realized and the inductor volume can be reduced.
  • the converter may further include a filtering and slow-up circuit 106.
  • the filtering and slow-up circuit 106 includes capacitors, inductors, resistors, switches and other elements.
  • the filtering and slow-up circuit 106 is used to filter the AC power according to the third control signal sent by the controller 105 through the fifth control line So5, and output the filtered AC power. And to avoid the impact of current on the converted voltage.
  • the converter shown in FIG. 2 can work in the charging mode, and the electric energy is transmitted from the AC input unit 101 to the DC output unit 104, that is, from the AC side to the pure electric vehicle side, and controlled by the controller 105, the converter can work in Three-phase rectification charging state or single-phase rectification charging state.
  • FIG. 3 is a converter 300 provided by an embodiment of the application.
  • the converter 300 includes: a DC input unit 301, a conversion unit 302, a switching unit 303, an AC output unit 304, and a controller 305.
  • the output terminal of the DC input unit 301 is connected to the input terminal of the conversion unit 302
  • the output terminal of the conversion unit 302 is connected to the input terminal of the switching unit 303
  • the output terminal of the switching unit 303 is connected to the input terminal of the AC output unit 304.
  • the DC input unit 301 is used to input DC power and provide DC power for the conversion unit 302.
  • the conversion unit 302 is configured to convert DC power into AC power according to the first control signal sent by the controller 305.
  • the first control signal is determined according to the voltage of the U line, the voltage of the V line, the voltage of the W line, the current of the conversion unit and the DC voltage output by the DC input unit 301 collected by the controller.
  • the switching unit 303 is configured to control the converter to switch from a three-phase AC output circuit to a single-phase AC output circuit according to the second control signal sent by the controller 305, and provide the AC output unit 304 with single-phase AC power through the single-phase AC output circuit.
  • the AC output unit 304 is configured to receive the AC power output by the conversion unit 302 and output the AC power.
  • the AC output unit 304 includes U line, V line, W line and N line, and the N line is connected to the ground line of the controller.
  • U line, V line and W line are three-phase live wires.
  • U line can also be called A phase.
  • the V line can also be referred to as the B phase.
  • the W line can also be called the C phase.
  • N is the neutral line, which is the zero line.
  • the voltage between any of the U, V, and W lines and the N line is the phase voltage (for example, 220V).
  • the voltage between U line, V line and W line is the line voltage (for example: 380V).
  • the controller 305 is configured to collect the voltage of the U line through the first sampling line Si1, collect the voltage of the V line through the second sampling line Si2 and collect the voltage of the W line through the third sampling line Si3, according to the voltage of the U line and the V line
  • the voltage of the W line and the voltage of the W line determine the second control signal and send the second control signal to the switching unit 303.
  • the controller 305 is connected to the U line through the first sampling line Si1, and the controller 305 is connected to the V line through the second sampling line Si2. Line connection, the controller 305 is connected to the W line through the third sampling line Si3.
  • the controller In contrast to using the negative pole of the bus as the ground wire, the controller needs to be connected to the U, V, and W wires through a differential circuit.
  • the converter provided in this embodiment of the application connects the N wire to the ground wire of the controller.
  • the differential circuit can be removed, and the controller can be directly connected to the U line, V line and W line respectively to collect the voltage of the U line, the voltage of the V line and the voltage of the W line. Effectively simplify the three-phase phase voltage sampling circuit.
  • the specific implementation of the converter 300 may be as shown in FIG. 4.
  • the converter 300 also includes a filtering and slow-up circuit 306.
  • the converter can work in the discharge mode, and the electric energy is transmitted from the DC input unit to the AC output unit, that is, from the pure electric vehicle side to the AC side.
  • the converter can work in the three-phase inverter discharge state Or single-phase inverter discharge state.
  • FIG. 5 is a converter 500 provided by an embodiment of the application.
  • the converter 500 includes: an AC input unit 501, a switching unit 502, a conversion unit 503, and a DC output unit 504.
  • the output terminal of the AC input unit 501 is connected to the input terminal of the switching unit 502, the output terminal of the switching unit 502 is connected to the input terminal of the conversion unit 503, and the output terminal of the conversion unit 503 is connected to the input terminal of the DC output unit 504.
  • the AC input unit 501 is used to input AC power and provide AC power to the conversion unit 503.
  • the AC input unit 501 includes U line, V line, W line, and N line.
  • the switching unit 502 is configured to switch the converter 500 from a three-phase AC power input circuit to a single-phase AC power input circuit.
  • the conversion unit 503 is used to convert alternating current into direct current.
  • the DC output unit 504 is configured to receive the DC power output by the conversion unit 503 and output the DC power.
  • the conversion unit 503 may include a first inductor L1, a second inductor L2, a third inductor L3, a first switching tube Q1, a second switching tube Q2, a third switching tube Q3, a fourth switching tube Q4, The fifth switch tube Q5 and the sixth switch tube Q6.
  • one end of the first inductor L1 is connected to the U line
  • the other end of the first inductor L1 is connected to the midpoint of the series bridge arm formed by the first switch tube Q1 and the second switch tube Q2
  • one end of the second inductor L2 is connected to V Wire connection
  • the other end of the second inductor L2 is connected to the midpoint of the series bridge arm composed of the third switch tube Q3 and the fourth switch tube Q4
  • one end of the third inductor L3 is connected to the W line
  • the other end of the third inductor L3 Connected to the midpoint of the series bridge arm formed by the fifth switching tube Q5 and the sixth switching tube Q6, the drain of the first switching tube Q1, the drain of the third switching tube Q3 and the drain of the fifth switching tube Q5 are respectively connected to
  • the positive pole of the bus included in the DC output unit 504 is connected
  • the drain of the second switch Q2, the drain of the fourth switch Q4, and the source of the sixth switch Q6 are respectively connected to the negative
  • the switching unit 502 includes a first switch S1, a second switch S2, and a third switch S3.
  • One end of the first switch S1 is connected to the V line
  • the other end of the first switch S1 is connected to the N line
  • one end of the second switch S2 is connected to the W line
  • the other end of the second switch S2 is connected to the N line.
  • One end of the switch S3 is connected to one end of the first inductor L1
  • the other end of the third switch S3 is connected to the other end of the first inductor L1.
  • the converter shown in Figure 5 can work in the charging mode according to the control of the controller. Electric energy is transmitted from the AC input unit 501 to the DC output unit 504, that is, from the AC side to the pure electric vehicle side. Through the controller control, the converter can Work in three-phase rectification charging state or single-phase rectification charging state.
  • FIG. 6 is a converter 600 provided by an embodiment of the application.
  • the converter 600 includes a DC input unit 601, a conversion unit 602, a switching unit 603, and an AC output unit 604.
  • the output terminal of the DC input unit 601 is connected to the input terminal of the conversion unit 602, the output terminal of the conversion unit 602 is connected to the input terminal of the switching unit 603, and the output terminal of the switching unit 603 is connected to the input terminal of the AC output unit 604.
  • the DC input unit 601 is used to input DC power and provide DC power to the conversion unit 602.
  • the conversion unit 602 is used to convert direct current into alternating current.
  • the switching unit 603 is used to switch the converter from a three-phase alternating current output circuit to a single-phase alternating current output circuit.
  • the AC output unit 604 is configured to receive the AC power output by the conversion unit 602 and output AC power.
  • the AC output unit 604 includes a U line, a V line, a W line, and an N line.
  • the conversion unit 602 may include a first inductor L1, a second inductor L2, a third inductor L3, a first switching tube Q1, a second switching tube Q2, a third switching tube Q3, a fourth switching tube Q4, and a fifth switching tube.
  • Q5 and the sixth switch tube Q6 may include a first inductor L1, a second inductor L2, a third inductor L3, a first switching tube Q1, a second switching tube Q2, a third switching tube Q3, a fourth switching tube Q4, and a fifth switching tube.
  • Q5 and the sixth switch tube Q6 may include a first inductor L1, a second inductor L2, a third inductor L3, a first switching tube Q1, a second switching tube Q2, a third switching tube Q3, a fourth switching tube Q4, and a fifth switching tube.
  • Q5 and the sixth switch tube Q6 may include a first inductor L1, a second inductor L2, a third inductor L3, a first switching tube Q1,
  • one end of the first inductor L1 is connected to the U line
  • the other end of the first inductor L1 is connected to the midpoint of the series bridge arm formed by the first switch tube Q1 and the second switch tube Q2
  • one end of the second inductor L2 is connected to V Wire connection
  • the other end of the second inductor L2 is connected to the midpoint of the series bridge arm composed of the third switch tube Q3 and the fourth switch tube Q4
  • one end of the third inductor L3 is connected to the W line
  • the other end of the third inductor L3 Connected to the midpoint of the series bridge arm formed by the fifth switching tube Q5 and the sixth switching tube Q6, the drain of the first switching tube Q1, the drain of the third switching tube Q3 and the drain of the fifth switching tube Q5 are respectively connected to
  • the positive pole of the bus included in the DC input unit 601 is connected
  • the drain of the second switch Q2, the drain of the fourth switch Q4, and the source of the sixth switch Q6 are respectively connected to the negative
  • the switching unit 603 includes a first switch S1, a second switch S2, and a third switch S3.
  • One end of the first switch S1 is connected to the V line
  • the other end of the first switch S1 is connected to the N line
  • one end of the second switch S2 is connected to the W line
  • the other end of the second switch S2 is connected to the N line.
  • One end of the switch S3 is connected to one end of the first inductor L1
  • the other end of the third switch S3 is connected to the other end of the first inductor L1.
  • the converter shown in Figure 6 can work in the discharge mode according to the control of the controller. Electric energy is transmitted from the DC input unit to the AC output unit, that is, from the pure electric vehicle side to the AC side. Through the controller control, the converter can work in Three-phase inverter discharge state or single-phase inverter discharge state.
  • An embodiment of the present application also provides a power supply system, including a load and a converter, the converter is used to convert alternating current into direct current or direct current into alternating current to provide direct current or alternating current to the load.
  • the power supply system includes: an AC power source 701, a converter 702, and a load 703.
  • the converter 702 It is used to convert alternating current into direct current to provide direct current to the load 703.
  • the output terminal of the AC power supply 701 is connected to the AC input terminal of the converter 702, and the DC output terminal of the converter 702 is connected to the load 703.
  • the load 703 may be a pure electric vehicle.
  • the converter 702 may be the converter shown in FIG. 2 or FIG. 5.
  • the power supply system includes: a direct current power supply 801, a converter 802, and a load 803.
  • the converter 802 is used for The direct current is converted into alternating current to provide alternating current to the load 803.
  • the output terminal of the DC power supply 801 is connected to the DC input terminal of the converter 802, and the AC output terminal of the converter 802 is connected to the load 803.
  • the DC power supply 801 may be a pure electric vehicle.
  • the converter 802 may be the converter shown in FIG. 4 or FIG. 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

公开了一种变换器及供电系统,涉及电力电子领域,解决了OBC电路中的采样电路较复杂的问题。该变换器包括交流单元、切换单元、变换单元、直流单元和控制器,其中,交流单元包括U线、V线、W线和N线,该N线连接控制器的地线,使得控制器可以直接与U线、V线和W线连接,采集U线的电压、V线的电压和W线的电压。从而,简化了采样电路。

Description

一种变换器及供电系统
本申请要求于2019年08月07日提交国家知识产权局、申请号为201910725682.5、申请名称为“一种变换器及供电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电力电子领域,尤其涉及一种变换器及供电系统。
背景技术
随着纯电动汽车的发展,当下直流快充充电基础设施还未完全普及,影响了纯电动汽车的用户体验。为了提升充电的便利性,纯电动汽车配置了车载充电器(On board charger,OBC),使得纯电动汽车可以使用家用的交流电源插座进行充电。例如,可以使用三相交流电或单相交流电对纯电动汽车进行充电。相对单相交流电,三相交流电可以提升充电功率等级、缩短充电时间和提高纯电动汽车的续航里程。为了加强纯电动汽车的用户体验,逆变功能也成为了纯电动汽车的标配,通过逆变技术可以实现车辆到车辆(Vehicle-to-vehicle,V2V)和车辆到负载(Vehicle-to-load,V2L)的供电。例如,纯电动汽车可以通过OBC为负载提供三相交流电和单相交流电。
为了使控制器根据交流电压控制OBC电路工作于三相整流状态/三相逆变状态或者单相整流状态/单相逆变状态,通常OBC电路包含采样电路,该采样电路用于控制器采集OBC的交流电压。但是,传统技术中母线的负极为接地线,采样电路需要包含差分电路,导致采样电路较复杂。
发明内容
本申请提供一种变换器及供电系统,解决了OBC电路中的采样电路较复杂的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供了一种变换器,该变换器包括:交流输入单元、切换单元、变换单元、直流输出单元和控制器。其中,所述交流输入单元,用于输入交流电,为变换单元提供交流电,交流输入单元包括U线、V线、W线和N线,N线连接控制器的地线,交流输入单元的输出端连接切换单元的输入端;所述控制器,用于通过第一采样线路采集U线的电压,通过第二采样线路采集V线的电压和通过第三采样线路采集W线的电压,根据U线的电压、V线的电压和W线的电压确定第一控制信号,向切换单元发送第一控制信号,其中,控制器通过第一采样线路与U线连接,控制器通过第二采样线路与V线连接,控制器通过第三采样线路与W线连接;所述切换单元,用于根据控制器发送的第一控制信号控制变换器从三相交流电输入电路切换为单相交流电输入电路,切换单元的输出端连接变换单元的输入端;所述变换单元,用于根据控制器发送的第二控制信号将交流电变换为直流电,第二控制信号是根据控制器采集的U线的电压、V线的电压、W线的电压、变换单元的电流和直流输出单元输出的直流电压确定的,变换单元的输出端连接直流输出单元的输入端;所述直流输出单元,用于 接收变换单元输出的直流电,输出直流电。
本申请实施例提供的变换器,通过将N线连接到控制器的地线,作为控制器的采样参考地线,因此,可以将控制器直接与U线、V线和W线分别连接,采集U线的电压、V线的电压和W线的电压,从而,有效地简化了三相相电压采样电路。
在一种可能的设计中,变换器还包括第一母线分裂电容和第二母线分裂电容,第一母线分裂电容和第二母线分裂电容的中点通过电容与N线连接,第一母线分裂电容的正极与直流输出单元包含的母线的正极连接,第一母线分裂电容的负极与第二母线分裂电容的正极连接,第二母线分裂电容的负极与直流输出单元包含的母线的负极连接。从而,可以提供高频通路,降低电磁干扰(Electromagnetic Interference,EMI)。
在另一种可能的设计中,变换单元包括第一电感、第二电感、第三电感、第一开关管、第二开关管、第三开关管、第四开关管、第五开关管和第六开关管,其中,第一电感的一端与U线连接,第一电感的另一端与第一开关管和第二开关管组成的串联桥臂的中点连接,第二电感的一端与V线连接,第二电感的另一端与第三开关管和第四开关管组成的串联桥臂的中点连接,第三电感的一端与W线连接,第三电感的另一端与第五开关管和第六开关管组成的串联桥臂的中点连接,第一开关管的漏极、第三开关管的漏极和第五开关管的漏极分别与直流输出单元包含的母线的正极连接,第二开关管的漏极、第四开关管的漏极和第六开关管的源极分别与直流输出单元包含的母线的负极连接。
在一些实施例中,控制器还用于通过第四采样线路采集第一电感的电流,通过第五采样线路采集第二电感的电流,通过第六采样线路采集第三电感的电流,通过第七采样线路采集直流电压,根据第一电感的电流、第二电感的电流、第三电感的电流、直流电压、U线的电压,V线的电压和W线的电压确定第二控制信号,向变换单元发送第二控制信号。从而,通过将N线连接到控制器的地线,作为控制器的采样参考地线,因此,可以将控制器直接与U线、V线和W线分别连接,采集第一电感的电流、第二电感的电流、第三电感的电流,从而,有效地简化了变换单元的电流的采样电路。
在另一种可能的设计中,第一电感、第二电感和第三电感是集成电感。从而,当变换器工作于三相交流电的整流状态时,可以实现工频磁抵消,减小电感体积。
在另一种可能的设计中,切换单元包括第一开关、第二开关和第三开关,其中,第一开关的一端与V线连接,第一开关的另一端与N线连接,第二开关的一端与W线连接,第二开关的另一端与N线连接,第三开关的一端与第一电感的一端连接,第三开关的另一端与第一电感的另一端连接;第一开关用于根据控制器发送的第一控制信号控制第一开关关闭;以及,第二开关用于根据控制器发送的第一控制信号控制第二开关关闭;以及,第三开关用于根据控制器发送的第一控制信号控制第三开关关闭。
第二方面,提供了一种变换器,该变换器包括:直流输入单元、切换单元、变换单元、交流输出单元和控制器。其中,所述直流输入单元,用于输入直流电,为变换单元提供直流电,直流输入单元的输出端连接变换单元的输入端;所述变换单元,用于根据控制器发送的第一控制信号将直流电变换为交流电,第一控制信号是根据控制器采集的U线的电压、V线的电压、W线的电压、变换单元的电流和直流输入单元输出的直流电压确定的,变换单元的输出端连接切换单元的输入端;所述切换单元,用 于根据控制器发送的第二控制信号控制变换器切换从三相交流电输出电路为单相交流电输出电路,切换单元的输出端连接交流输出单元的输入端;所述交流输出单元,用于接收变换单元输出的交流电,输出交流电,交流输出单元包括U线、V线、W线和N线,N线连接控制器的地线;所述控制器,用于通过第一采样线路采集U线的电压,通过第二采样线路采集V线的电压和通过第三采样线路采集W线的电压,根据U线的电压、V线的电压和W线的电压确定第二控制信号,向切换单元发送第二控制信号,其中,控制器通过第一采样线路与U线连接,控制器通过第二采样线路与V线连接,控制器通过第三采样线路与W线连接。
本申请实施例提供的变换器,通过将N线连接到控制器的地线,作为控制器的采样参考地线,因此,可以将控制器直接与U线、V线和W线分别连接,采集U线的电压、V线的电压和W线的电压,从而,有效地简化了三相相电压采样电路。
在一种可能的设计中,变换器还包括第一母线分裂电容和第二母线分裂电容,第一母线分裂电容和第二母线分裂电容的中点通过电容与N线连接,第一母线分裂电容的正极与直流输入单元包含的母线的正极连接,第一母线分裂电容的负极与第二母线分裂电容的正极连接,第二母线分裂电容的负极与直流输入单元包含的母线的负极连接。从而,可以提供高频通路,降低EMI。
在另一种可能的设计中,变换单元包括第一电感、第二电感、第三电感、第一开关管、第二开关管、第三开关管、第四开关管、第五开关管和第六开关管,其中,第一电感的一端与U线连接,第一电感的另一端与第一开关管和第二开关管组成的串联桥臂的中点连接,第二电感的一端与V线连接,第二电感的另一端与第三开关管和第四开关管组成的串联桥臂的中点连接,第三电感的一端与W线连接,第三电感的另一端与第五开关管和第六开关管组成的串联桥臂的中点连接,第一开关管的漏极、第三开关管的漏极和第五开关管的漏极分别与直流输入单元包含的母线的正极连接,第二开关管的漏极、第四开关管的漏极和第六开关管的源极分别与直流输入单元包含的母线的负极连接。
在一些实施例中,控制器还用于通过第四采样线路采集第一电感的电流,通过第五采样线路采集第二电感的电流,通过第六采样线路采集第三电感的电流,通过第七采样线路采集直流电压,根据第一电感的电流、第二电感的电流、第三电感的电流、直流电压、U线的电压,V线的电压和W线的电压确定第一控制信号,向变换单元发送第一控制信号。从而,通过将N线连接到控制器的地线,作为控制器的采样参考地线,因此,可以将控制器直接与U线、V线和W线分别连接,采集第一电感的电流、第二电感的电流、第三电感的电流,从而,简化了变换单元的电流的采样电路。
在另一种可能的设计中,第一电感、第二电感和第三电感是集成电感。从而,当变换器工作于三相交流电的整流状态时,可以实现工频磁抵消,减小电感体积。
在另一种可能的设计中,切换单元包括第一开关、第二开关和第三开关,其中,第一开关的一端与V线连接,第一开关的另一端与N线连接,第二开关的一端与W线连接,第二开关的另一端与N线连接,第三开关的一端与第一电感的一端连接,第三开关的另一端与第一电感的另一端连接;第一开关用于根据控制器发送的第二控制信号控制第一开关关闭;以及,第二开关用于根据控制器发送的第二控制信号控制第 二开关关闭;以及,第三开关用于根据控制器发送的第二控制信号控制第三开关关闭。
第三方面,提供了一种变换器,该变换器包括:交流输入单元、切换单元、变换单元和直流输出单元。其中,所述交流输入单元,用于输入交流电,为变换单元提供交流电,交流输入单元包括U线、V线、W线和N线,交流输入单元的输出端连接切换单元的输入端;所述切换单元,用于将变换器从三相交流电输入电路切换为单相交流电输入电路,切换单元的输出端连接变换单元的输入端;所述变换单元,用于将交流电变换为直流电,变换单元的输出端连接直流输出单元的输入端;所述直流输出单元,用于接收变换单元输出的直流电,输出直流电。
其中,变换单元包括第一电感、第二电感、第三电感、第一开关管、第二开关管、第三开关管、第四开关管、第五开关管和第六开关管,其中,第一电感的一端与U线连接,第一电感的另一端与第一开关管和第二开关管组成的串联桥臂的中点连接,第二电感的一端与V线连接,第二电感的另一端与第三开关管和第四开关管组成的串联桥臂的中点连接,第三电感的一端与W线连接,第三电感的另一端与第五开关管和第六开关管组成的串联桥臂的中点连接,第一开关管的漏极、第三开关管的漏极和第五开关管的漏极分别与直流输出单元包含的母线的正极连接,第二开关管的漏极、第四开关管的漏极和第六开关管的源极分别与直流输出单元包含的母线的负极连接。
切换单元包括第一开关、第二开关和第三开关,其中,第一开关的一端与V线连接,第一开关的另一端与N线连接,第二开关的一端与W线连接,第二开关的另一端与N线连接,第三开关的一端与第一电感的一端连接,第三开关的另一端与第一电感的另一端连接;当第一开关、第二开关和第三开关均关闭时,变换器切换为单相交流电输入电路。
本申请实施例提供的变换器,在变换器输入单相交流电时,通过闭合第一开关S1和第二开关S2,实现V线和W线的相功率桥臂并联工作,充分利用功率器件,降低开关管损耗,提升整流效率。闭合第三开关S3使第三开关S3连接的桥臂工作于低频桥臂,从而兼容变换单元的电路结构。
第四方面,提供了一种变换器,该变换器包括:直流输入单元、切换单元、变换单元和交流输出单元。其中,所述直流输入单元,用于输入直流电,为变换单元提供直流电,直流输入单元的输出端连接变换单元的输入端;所述变换单元,用于将直流电变换为交流电,变换单元的输出端连接切换单元的输入端;所述切换单元,用于将变换器切换从三相交流电输出电路为单相交流电输出电路,切换单元的输出端连接交流输出单元的输入端;所述交流输出单元,用于接收变换单元输出的交流电,输出交流电,交流输出单元包括U线、V线、W线和N线。
其中,变换单元包括第一电感、第二电感、第三电感、第一开关管、第二开关管、第三开关管、第四开关管、第五开关管和第六开关管,其中,第一电感的一端与U线连接,第一电感的另一端与第一开关管和第二开关管组成的串联桥臂的中点连接,第二电感的一端与V线连接,第二电感的另一端与第三开关管和第四开关管组成的串联桥臂的中点连接,第三电感的一端与W线连接,第三电感的另一端与第五开关管和第六开关管组成的串联桥臂的中点连接,第一开关管的漏极、第三开关管的漏极和第五开关管的漏极分别与直流输入单元包含的母线的正极连接,第二开关管的漏极、第四 开关管的漏极和第六开关管的源极分别与直流输入单元包含的母线的负极连接。
切换单元包括第一开关、第二开关和第三开关,其中,第一开关的一端与V线连接,第一开关的另一端与N线连接,第二开关的一端与W线连接,第二开关的另一端与N线连接,第三开关的一端与第一电感的一端连接,第三开关的另一端与第一电感的另一端连接;当第一开关、第二开关和第三开关均关闭时,变换器切换为单相交流电输出电路。
本申请实施例提供的变换器,在变换器输出单相交流电时,通过闭合第一开关S1和第二开关S2,实现V线和W线的相功率桥臂并联工作,充分利用功率器件,降低开关管损耗,提升整流效率。闭合第三开关S3使第三开关S3连接的桥臂工作于低频桥臂,从而兼容变换单元的电路结构。
第五方面,提供了一种供电系统,包括:负载以及以上任意所述的变换器中至少一个,变换器用于将交流电转化为直流电或将直流电转化为交流电,以为负载提供直流电或交流电。
另外,上述任意方面的设计方式所带来的技术效果可参见第一方面和第二方面中不同设计方式所带来的技术效果,此处不再赘述。
本申请中,变换器的名字对设备本身不构成限定,在实际实现中,这些设备可以以其他名称出现。只要各个设备的功能和本申请类似,属于本申请权利要求及其等同技术的范围之内。
附图说明
图1为本申请提供的一种变换器的结构示意图一;
图2为本申请提供的一种变换器的结构示意图二;
图3为本申请提供的一种变换器的结构示意图三;
图4为本申请提供的一种变换器的结构示意图四;
图5为本申请提供的一种变换器的结构示意图五;
图6为本申请提供的一种变换器的结构示意图六;
图7为本申请提供的一种供电系统示意图一;
图8为本申请提供的一种供电系统示意图二。
具体实施方式
本申请说明书和权利要求书及上述附图中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面将结合附图对本申请实施例的实施方式进行详细描述。
图1为本申请实施例提供的一种变换器100,如图1所示,该变换器100包括:交流输入单元101、切换单元102、变换单元103、直流输出单元104和控制器105。其中,交流输入单元101的输出端连接切换单元102的输入端,切换单元102的输出端连接变换单元103的输入端,变换单元103的输出端连接直流输出单元104的输入 端。
交流输入单元101,用于输入交流电,为变换单元103提供交流电。交流输入单元101包括U线、V线、W线和N线,N线连接控制器105的地线。U线、V线和W线为三相火线。U线也可以称为A相。V线也可以称为B相。W线也可以称为C相。N是中性线,也就是零线。U线、V线和W线中任何一相与N线之间的电压为相电压(如:220V)。U线、V线和W线之间的电压为线电压(如:380V)。
控制器105,用于通过第一采样线路Si1采集U线的电压,通过第二采样线路Si2采集V线的电压和通过第三采样线路Si3采集W线的电压,根据U线的电压、V线的电压和W线的电压确定第一控制信号,向切换单元102发送第一控制信号。其中,控制器105通过第一采样线路Si1与U线连接,控制器105通过第二采样线路Si2与V线连接,控制器105通过第三采样线路Si3与W线连接。
切换单元102,用于根据控制器105发送的第一控制信号控制变换器100从三相交流电输入电路切换为单相交流电输入电路,通过单相交流电输入电路为变换单元103提供单相交流电。
变换单元103,用于根据控制器105发送的第二控制信号将交流电变换为直流电,第二控制信号是根据控制器105采集的U线的电压、V线的电压、W线的电压、变换单元103的电流和直流输出单元104输出的直流电压确定的。
直流输出单元104,用于接收变换单元103输出的直流电,输出直流电,为负载(如:纯电动汽车)供电。
相对于将母线的负极作为接地线,控制器与U线、V线和W线之间需要通过差分电路连接,本申请实施例提供的变换器,通过将N线连接到控制器的地线,作为控制器的采样参考地线,因此,可以去除了差分电路,将控制器直接与U线、V线和W线分别连接,采集U线的电压、V线的电压和W线的电压,能够有效地简化三相相电压采样电路。
在一些实施例中,如图2所示,切换单元可以包括第一开关S1、第二开关S2和第三开关S3。其中,第一开关S1通过第一控制线路So1与控制器105连接,第二开关S2通过第二控制线路So2与控制器105连接,第三开关S3通过第三控制线路So3与控制器105连接。
当控制器105采集到的U线的电压大于0伏,且V线的电压和W线的电压均等于0伏时,控制器105可以确定变换器输入的是单相交流电,则控制器105通过第一控制线路So1向第一开关S1发送第一控制信号,用于控制第一开关S1闭合,以及控制器105通过第二控制线路So2向第二开关S2发送第一控制信号,用于控制第二开关S2闭合,以及控制器105通过第三控制线路So3向第三开关S3发送第一控制信号,用于控制第三开关S3闭合。从而,在变换器输入单相交流电时,通过闭合第一开关S1和第二开关S2,实现V线和W线的相功率桥臂并联工作,充分利用功率器件,降低开关管损耗,提升整流效率。闭合第三开关S3,使第三开关S3连接的桥臂工作于低频桥臂,从而兼容变换单元的电路结构。
进一步的,变换器还可以包括第一母线分裂电容C1和第二母线分裂电容C2。其中,第一母线分裂电容C1和第二母线分裂电容C2的中点通过电容C3与N线连接, 第一母线分裂电容C1的正极与直流输出单元104包含的母线的正极连接,第一母线分裂电容C1的负极与第二母线分裂电容C2的正极连接,第二母线分裂电容C2的负极与直流输出单元104包含的母线的负极连接。从而,可以提供高频通路,降低EMI。所谓EMI是指电磁波与电子元件作用后而产生的干扰现象,有传导干扰和辐射干扰两种。
变换单元可以包括第一电感L1、第二电感L2、第三电感L3、第一开关管Q1、第二开关管Q2、第三开关管Q3、第四开关管Q4、第五开关管Q5和第六开关管Q6。其中,第一电感L1的一端与U线连接,第一电感L1的另一端与第一开关管Q1和第二开关管Q2组成的串联桥臂的中点连接,第二电感L2的一端与V线连接,第二电感L2的另一端与第三开关管Q3和第四开关管Q4组成的串联桥臂的中点连接,第三电感L3的一端与W线连接,第三电感L3的另一端与第五开关管Q5和第六开关管Q6组成的串联桥臂的中点连接,第一开关管Q1的漏极、第三开关管Q3的漏极和第五开关管Q5的漏极分别与直流输出单元104包含的母线的正极连接,第二开关管Q2的漏极、第四开关管Q4的漏极和第六开关管Q6的源极分别与直流输出单元104包含的母线的负极连接。
开关管可以是功率器件。例如,功率器件可以是金属-氧化层半导体场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)、绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)和集成门极换流晶闸管(Intergrated Gate Commutated Thyristors,IGCT)中至少一个或不同功率器件的组合。每个桥臂的开关状态B k的定义如下:
Figure PCTCN2020093978-appb-000001
其中,上管表示与直流输出单元104包含的母线的正极连接的开关管。下管表示与直流输出单元104包含的母线的负极连接的开关管。
每个桥臂的开关管按照如表1所述的桥臂开关状态逻辑关系进行开通和关断,以使桥臂组输出不同的电平信号。
表1桥臂开关状态逻辑关系
Figure PCTCN2020093978-appb-000002
控制器105还用于通过第四采样线路Si4采集第一电感L1的电流,通过第五采样线路Si5采集第二电感L2的电流,通过第六采样线路Si6采集第三电感L3的电流,通过第七采样线路Si7采集直流电压。可选的,控制器105与直流输出单元104之间还可以包括差分电路,通过差分电路采用差分分压方式采集直流电压。根据第一电感L1的电流、第二电感L2的电流、第三电感L3的电流、直流电压、U线的电压,V线的电压和W线的电压确定第二控制信号,通过第四控制线路So4向变换单元103发送 第二控制信号,控制变换单元103将交流电(三相交流电或单相交流电)变换为直流电。从而,通过将N线连接到控制器的地线,作为控制器的采样参考地线,因此,可以将控制器直接与U线、V线和W线分别连接,采集第一电感的电流、第二电感的电流、第三电感的电流,从而,简化了变换单元的电流的采样电路。
在另一些实施例中,第一电感L1、第二电感L2和第三电感L3是集成电感。从而,当变换器工作于三相交流电的整流状态时,可以实现工频磁抵消,减小电感体积。
在另一些实施例中,变换器还可以包括滤波及缓起电路106。该滤波及缓起电路106包括电容、电感、电阻和开关等元件。该滤波及缓起电路106用于根据控制器105通过第五控制线路So5发送的第三控制信号对交流电进行滤波,输出滤波后的交流电。并且避免电流对变换电压的冲击。
因此,图2所示的变换器可以工作于充电模式,电能从交流输入单元101向直流输出单元104传输,即从交流侧向纯电动汽车侧传输,通过控制器105控制,变换器可以工作于三相整流充电状态或单相整流充电状态。
图3为本申请实施例提供的一种变换器300,如图3所示,该变换器300包括:直流输入单元301、变换单元302、切换单元303、交流输出单元304和控制器305。其中,直流输入单元301的输出端连接变换单元302的输入端,变换单元302的输出端连接切换单元303的输入端,切换单元303的输出端连接交流输出单元304的输入端。
直流输入单元301,用于输入直流电,为变换单元302提供直流电。
变换单元302,用于根据控制器305发送的第一控制信号将直流电变换为交流电。第一控制信号是根据控制器采集的U线的电压、V线的电压、W线的电压、变换单元的电流和直流输入单元301输出的直流电压确定的。
切换单元303,用于根据控制器305发送的第二控制信号控制变换器切换从三相交流电输出电路为单相交流电输出电路,通过单相交流电输出电路为交流输出单元304提供单相交流电。
交流输出单元304,用于接收变换单元302输出的交流电,输出交流电。交流输出单元304包括U线、V线、W线和N线,N线连接控制器的地线。U线、V线和W线为三相火线。U线也可以称为A相。V线也可以称为B相。W线也可以称为C相。N是中性线,也就是零线。U线、V线和W线中任何一相与N线之间的电压为相电压(如:220V)。U线、V线和W线之间的电压为线电压(如:380V)。
控制器305,用于通过第一采样线路Si1采集U线的电压,通过第二采样线路Si2采集V线的电压和通过第三采样线路Si3采集W线的电压,根据U线的电压、V线的电压和W线的电压确定第二控制信号,向切换单元303发送第二控制信号,其中,控制器305通过第一采样线路Si1与U线连接,控制器305通过第二采样线路Si2与V线连接,控制器305通过第三采样线路Si3与W线连接。
相对于将母线的负极作为接地线,控制器与U线、V线和W线之间需要通过差分电路连接,本申请实施例提供的变换器,通过将N线连接到控制器的地线,作为控制器的采样参考地线,因此,可以去除了差分电路,将控制器直接与U线、V线和W线分别连接,采集U线的电压、V线的电压和W线的电压,能够有效地简化三相相电压 采样电路。
在一些实施例中,变换器300的具体实现方式可以如图4所示的变换器。变换器300还包括滤波及缓起电路306。此时,该变换器可以工作于放电模式,电能从直流输入单元向交流输出单元传输,即从纯电动汽车侧向交流侧传输,通过控制器控制,变换器可以工作于三相逆变放电状态或单相逆变放电状态。具体的解释可以参考上述实施例的阐述,不予赘述。
图5为本申请实施例提供的一种变换器500,如图5所示,该变换器500包括:交流输入单元501、切换单元502、变换单元503和直流输出单元504。其中,交流输入单元501的输出端连接切换单元502的输入端,切换单元502的输出端连接变换单元503的输入端,变换单元503的输出端连接直流输出单元504的输入端。
交流输入单元501,用于输入交流电,为变换单元503提供交流电。交流输入单元501包括U线、V线、W线和N线。
切换单元502,用于将变换器500从三相交流电输入电路切换为单相交流电输入电路。
变换单元503,用于将交流电变换为直流电。
直流输出单元504,用于接收变换单元503输出的直流电,输出直流电。
在一些实施例中,变换单元503可以包括第一电感L1、第二电感L2、第三电感L3、第一开关管Q1、第二开关管Q2、第三开关管Q3、第四开关管Q4、第五开关管Q5和第六开关管Q6。其中,第一电感L1的一端与U线连接,第一电感L1的另一端与第一开关管Q1和第二开关管Q2组成的串联桥臂的中点连接,第二电感L2的一端与V线连接,第二电感L2的另一端与第三开关管Q3和第四开关管Q4组成的串联桥臂的中点连接,第三电感L3的一端与W线连接,第三电感L3的另一端与第五开关管Q5和第六开关管Q6组成的串联桥臂的中点连接,第一开关管Q1的漏极、第三开关管Q3的漏极和第五开关管Q5的漏极分别与直流输出单元504包含的母线的正极连接,第二开关管Q2的漏极、第四开关管Q4的漏极和第六开关管Q6的源极分别与直流输出单元504包含的母线的负极连接。
切换单元502包括第一开关S1、第二开关S2和第三开关S3。其中,第一开关S1的一端与V线连接,第一开关S1的另一端与N线连接,第二开关S2的一端与W线连接,第二开关S2的另一端与N线连接,第三开关S3的一端与第一电感L1的一端连接,第三开关S3的另一端与第一电感L1的另一端连接。当第一开关S1、第二开关S2和第三开关S3均关闭时,变换器500切换为单相交流电输入电路。从而,在变换器输入单相交流电时,通过闭合第一开关S1和第二开关S2,实现V线和W线的相功率桥臂并联工作,充分利用功率器件,降低开关管损耗,提升整流效率。闭合第三开关S3使第三开关S3连接的桥臂工作于低频桥臂,从而兼容变换单元的电路结构。
图5所示的变换器可以根据控制器的控制工作于充电模式,电能从交流输入单元501向直流输出单元504传输,即从交流侧向纯电动汽车侧传输,通过控制器控制,变换器可以工作于三相整流充电状态或单相整流充电状态。
图6为本申请实施例提供的一种变换器600,如图6所示,该变换器600包括:直流输入单元601、变换单元602、切换单元603和交流输出单元604。其中,直流输 入单元601的输出端连接变换单元602的输入端,变换单元602的输出端连接切换单元603的输入端,切换单元603的输出端连接交流输出单元604的输入端。
其中,直流输入单元601,用于输入直流电,为变换单元602提供直流电。
变换单元602,用于将直流电变换为交流电。
切换单元603,用于将变换器切换从三相交流电输出电路为单相交流电输出电路。
交流输出单元604,用于接收变换单元602输出的交流电,输出交流电,交流输出单元604包括U线、V线、W线和N线。
其中,变换单元602可以包括第一电感L1、第二电感L2、第三电感L3、第一开关管Q1、第二开关管Q2、第三开关管Q3、第四开关管Q4、第五开关管Q5和第六开关管Q6。其中,第一电感L1的一端与U线连接,第一电感L1的另一端与第一开关管Q1和第二开关管Q2组成的串联桥臂的中点连接,第二电感L2的一端与V线连接,第二电感L2的另一端与第三开关管Q3和第四开关管Q4组成的串联桥臂的中点连接,第三电感L3的一端与W线连接,第三电感L3的另一端与第五开关管Q5和第六开关管Q6组成的串联桥臂的中点连接,第一开关管Q1的漏极、第三开关管Q3的漏极和第五开关管Q5的漏极分别与直流输入单元601包含的母线的正极连接,第二开关管Q2的漏极、第四开关管Q4的漏极和第六开关管Q6的源极分别与直流输入单元601包含的母线的负极连接。
切换单元603包括第一开关S1、第二开关S2和第三开关S3。其中,第一开关S1的一端与V线连接,第一开关S1的另一端与N线连接,第二开关S2的一端与W线连接,第二开关S2的另一端与N线连接,第三开关S3的一端与第一电感L1的一端连接,第三开关S3的另一端与第一电感L1的另一端连接。当第一开关S1、第二开关S2和第三开关S3均关闭时,变换器600切换为单相交流电输出电路。从而,在变换器输出单相交流电时,通过闭合第一开关S1和第二开关S2,实现V线和W线的相功率桥臂并联工作,充分利用功率器件,降低开关管损耗,提升整流效率。闭合第三开关S3使第三开关S3连接的桥臂工作于低频桥臂,从而兼容变换单元的电路结构。
图6所示的变换器可以根据控制器的控制工作于放电模式,电能从直流输入单元向交流输出单元传输,即从纯电动汽车侧向交流侧传输,通过控制器控制,变换器可以工作于三相逆变放电状态或单相逆变放电状态。
本申请实施例还提供了一种供电系统,包括:负载以及变换器,变换器用于将交流电转化为直流电或将直流电转化为交流电,以为负载提供直流电或交流电。
在一些实施例中,如图7所示,假设当所述多电平变换器用于将交流电转化为直流电时,该供电系统包括:交流电源701、变换器702和负载703,所述变换器702用于将交流电转化为直流电,以为所述负载703提供直流电。其中,交流电源701的输出端连接变换器702的交流输入端,变换器702的直流输出端连接负载703。负载703可以是纯电动汽车。所述变换器702可以是图2或图5所示的变换器。
在另一些实施例中,如图8所示,假设当所述变换器用于将直流电转化为交流电时,该供电系统包括:直流电源801、变换器802和负载803,所述变换器802用于将直流电转化为交流电,以为所述负载803提供交流电。其中,直流电源801的输出端连接变换器802的直流输入端,变换器802的交流输出端连接负载803。直流电源801 可以是纯电动汽车。所述变换器802可以是图4或图6所示的变换器。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种变换器,其特征在于,包括:
    交流输入单元,用于输入交流电,为变换单元提供所述交流电,所述交流输入单元包括U线、V线、W线和N线,所述N线连接控制器的地线,所述交流输入单元的输出端连接切换单元的输入端;
    所述控制器,用于通过第一采样线路采集所述U线的电压,通过第二采样线路采集所述V线的电压和通过第三采样线路采集所述W线的电压,根据所述U线的电压、所述V线的电压和所述W线的电压确定第一控制信号,向所述切换单元发送所述第一控制信号,其中,所述控制器通过所述第一采样线路与所述U线连接,所述控制器通过所述第二采样线路与所述V线连接,所述控制器通过所述第三采样线路与所述W线连接;
    所述切换单元,用于根据所述控制器发送的第一控制信号控制所述变换器从三相交流电输入电路切换为单相交流电输入电路,所述切换单元的输出端连接所述变换单元的输入端;
    所述变换单元,用于根据所述控制器发送的第二控制信号将所述交流电变换为直流电,所述第二控制信号是根据所述控制器采集的所述U线的电压、所述V线的电压、所述W线的电压、所述变换单元的电流和直流输出单元输出的直流电压确定的,所述变换单元的输出端连接所述直流输出单元的输入端;
    所述直流输出单元,用于接收所述变换单元输出的所述直流电,输出所述直流电。
  2. 根据权利要求1所述的变换器,其特征在于,所述变换器还包括第一母线分裂电容和第二母线分裂电容,所述第一母线分裂电容和所述第二母线分裂电容的中点通过电容与所述N线连接,所述第一母线分裂电容的正极与所述直流输出单元包含的母线的正极连接,所述第一母线分裂电容的负极与所述第二母线分裂电容的正极连接,所述第二母线分裂电容的负极与所述直流输出单元包含的母线的负极连接。
  3. 根据权利要求1或2所述的变换器,其特征在于,所述变换单元包括第一电感、第二电感、第三电感、第一开关管、第二开关管、第三开关管、第四开关管、第五开关管和第六开关管,其中,所述第一电感的一端与所述U线连接,所述第一电感的另一端与所述第一开关管和所述第二开关管组成的串联桥臂的中点连接,所述第二电感的一端与所述V线连接,所述第二电感的另一端与所述第三开关管和所述第四开关管组成的串联桥臂的中点连接,所述第三电感的一端与所述W线连接,所述第三电感的另一端与所述第五开关管和所述第六开关管组成的串联桥臂的中点连接,所述第一开关管的漏极、所述第三开关管的漏极和所述第五开关管的漏极分别与所述直流输出单元包含的母线的正极连接,所述第二开关管的漏极、所述第四开关管的漏极和所述第六开关管的源极分别与所述直流输出单元包含的母线的负极连接。
  4. 根据权利要求3所述的变换器,其特征在于,所述控制器还用于通过第四采样线路采集所述第一电感的电流,通过第五采样线路采集所述第二电感的电流,通过第六采样线路采集所述第三电感的电流,通过第七采样线路采集所述直流电压,根据所述第一电感的电流、所述第二电感的电流、所述第三电感的电流、所述直流电压、所述U线的电压,所述V线的电压和所述W线的电压确定所述第二控制信号,向所述 变换单元发送所述第二控制信号。
  5. 根据权利要求3或4所述的变换器,其特征在于,所述第一电感、所述第二电感和所述第三电感是集成电感。
  6. 根据权利要求3至5中任一项所述的变换器,其特征在于,所述切换单元包括第一开关、第二开关和第三开关,其中,所述第一开关的一端与所述V线连接,所述第一开关的另一端与所述N线连接,所述第二开关的一端与所述W线连接,所述第二开关的另一端与所述N线连接,所述第三开关的一端与所述第一电感的一端连接,所述第三开关的另一端与所述第一电感的另一端连接;
    所述第一开关用于根据所述控制器发送的第一控制信号控制所述第一开关关闭;以及,
    所述第二开关用于根据所述控制器发送的第一控制信号控制所述第二开关关闭;以及,
    所述第三开关用于根据所述控制器发送的第一控制信号控制所述第三开关关闭。
  7. 一种变换器,其特征在于,包括:
    直流输入单元,用于输入直流电,为变换单元提供所述直流电,所述直流输入单元的输出端连接所述变换单元的输入端;
    所述变换单元,用于根据控制器发送的第一控制信号将所述直流电变换为交流电,所述第一控制信号是根据所述控制器采集的U线的电压、V线的电压、W线的电压、所述变换单元的电流和所述直流输入单元输出的直流电压确定的,所述变换单元的输出端连接切换单元的输入端;
    所述切换单元,用于根据所述控制器发送的第二控制信号控制所述变换器切换从三相交流电输出电路为单相交流电输出电路,所述切换单元的输出端连接交流输出单元的输入端;
    所述交流输出单元,用于接收所述变换单元输出的所述交流电,输出所述交流电,所述交流输出单元包括所述U线、所述V线、所述W线和N线,所述N线连接控制器的地线;
    所述控制器,用于通过第一采样线路采集所述U线的电压,通过第二采样线路采集所述V线的电压和通过第三采样线路采集所述W线的电压,根据所述U线的电压、所述V线的电压和所述W线的电压确定所述第二控制信号,向所述切换单元发送所述第二控制信号,其中,所述控制器通过所述第一采样线路与所述U线连接,所述控制器通过所述第二采样线路与所述V线连接,所述控制器通过所述第三采样线路与所述W线连接。
  8. 根据权利要求7所述的变换器,其特征在于,所述变换器还包括第一母线分裂电容和第二母线分裂电容,所述第一母线分裂电容和所述第二母线分裂电容的中点通过电容与所述N线连接,所述第一母线分裂电容的正极与所述直流输入单元包含的母线的正极连接,所述第一母线分裂电容的负极与所述第二母线分裂电容的正极连接,所述第二母线分裂电容的负极与所述直流输入单元包含的母线的负极连接。
  9. 根据权利要求7或8所述的变换器,其特征在于,所述变换单元包括第一电感、第二电感、第三电感、第一开关管、第二开关管、第三开关管、第四开关管、第五开 关管和第六开关管,其中,所述第一电感的一端与所述U线连接,所述第一电感的另一端与所述第一开关管和所述第二开关管组成的串联桥臂的中点连接,所述第二电感的一端与所述V线连接,所述第二电感的另一端与所述第三开关管和所述第四开关管组成的串联桥臂的中点连接,所述第三电感的一端与所述W线连接,所述第三电感的另一端与所述第五开关管和所述第六开关管组成的串联桥臂的中点连接,所述第一开关管的漏极、所述第三开关管的漏极和所述第五开关管的漏极分别与所述直流输入单元包含的母线的正极连接,所述第二开关管的漏极、所述第四开关管的漏极和所述第六开关管的源极分别与所述直流输入单元包含的母线的负极连接。
  10. 根据权利要求9所述的变换器,其特征在于,所述控制器还用于通过第四采样线路采集所述第一电感的电流,通过第五采样线路采集所述第二电感的电流,通过第六采样线路采集所述第三电感的电流,通过第七采样线路采集所述直流电压,根据所述第一电感的电流、所述第二电感的电流、所述第三电感的电流、所述直流电压、所述U线的电压,所述V线的电压和所述W线的电压确定所述第一控制信号,向所述变换单元发送所述第一控制信号。
  11. 根据权利要求9或10所述的变换器,其特征在于,所述第一电感、所述第二电感和所述第三电感是集成电感。
  12. 根据权利要求9至11中任一项所述的变换器,其特征在于,所述切换单元包括第一开关、第二开关和第三开关,其中,所述第一开关的一端与所述V线连接,所述第一开关的另一端与所述N线连接,所述第二开关的一端与所述W线连接,所述第二开关的另一端与所述N线连接,所述第三开关的一端与所述第一电感的一端连接,所述第三开关的另一端与所述第一电感的另一端连接;
    所述第一开关用于根据所述控制器发送的第二控制信号控制所述第一开关关闭;以及,
    所述第二开关用于根据所述控制器发送的第二控制信号控制所述第二开关关闭;以及,
    所述第三开关用于根据所述控制器发送的第二控制信号控制所述第三开关关闭。
  13. 一种变换器,其特征在于,包括:
    交流输入单元,用于输入交流电,为变换单元提供所述交流电,所述交流输入单元包括U线、V线、W线和N线,所述交流输入单元的输出端连接切换单元的输入端;
    所述切换单元,用于将所述变换器从三相交流电输入电路切换为单相交流电输入电路,所述切换单元的输出端连接所述变换单元的输入端;
    所述变换单元,用于将所述交流电变换为直流电,所述变换单元的输出端连接直流输出单元的输入端;
    所述直流输出单元,用于接收所述变换单元输出的所述直流电,输出所述直流电;
    其中,所述变换单元包括第一电感、第二电感、第三电感、第一开关管、第二开关管、第三开关管、第四开关管、第五开关管和第六开关管,所述第一电感的一端与所述U线连接,所述第一电感的另一端与所述第一开关管和所述第二开关管组成的串联桥臂的中点连接,所述第二电感的一端与所述V线连接,所述第二电感的另一端与所述第三开关管和所述第四开关管组成的串联桥臂的中点连接,所述第三电感的一端 与所述W线连接,所述第三电感的另一端与所述第五开关管和所述第六开关管组成的串联桥臂的中点连接,所述第一开关管的漏极、所述第三开关管的漏极和所述第五开关管的漏极分别与所述直流输出单元包含的母线的正极连接,所述第二开关管的漏极、所述第四开关管的漏极和所述第六开关管的源极分别与所述直流输出单元包含的母线的负极连接;
    所述切换单元包括第一开关、第二开关和第三开关,所述第一开关的一端与所述V线连接,所述第一开关的另一端与所述N线连接,所述第二开关的一端与所述W线连接,所述第二开关的另一端与所述N线连接,所述第三开关的一端与第一电感的一端连接,所述第三开关的另一端与所述第一电感的另一端连接;当所述第一开关、所述第二开关和所述第三开关均关闭时,所述变换器切换为单相交流电输入电路。
  14. 一种变换器,其特征在于,包括:
    直流输入单元,用于输入直流电,为变换单元提供所述直流电,所述直流输入单元的输出端连接所述变换单元的输入端;
    所述变换单元,用于将所述直流电变换为交流电,所述变换单元的输出端连接切换单元的输入端;
    所述切换单元,用于将所述变换器切换从三相交流电输出电路为单相交流电输出电路,所述切换单元的输出端连接交流输出单元的输入端;
    所述交流输出单元,用于接收所述变换单元输出的所述交流电,输出所述交流电,所述交流输出单元包括U线、V线、W线和N线;
    其中,所述变换单元包括第一电感、第二电感、第三电感、第一开关管、第二开关管、第三开关管、第四开关管、第五开关管和第六开关管,所述第一电感的一端与所述U线连接,所述第一电感的另一端与所述第一开关管和所述第二开关管组成的串联桥臂的中点连接,所述第二电感的一端与所述V线连接,所述第二电感的另一端与所述第三开关管和所述第四开关管组成的串联桥臂的中点连接,所述第三电感的一端与所述W线连接,所述第三电感的另一端与所述第五开关管和所述第六开关管组成的串联桥臂的中点连接,所述第一开关管的漏极、所述第三开关管的漏极和所述第五开关管的漏极分别与所述直流输入单元包含的母线的正极连接,所述第二开关管的漏极、所述第四开关管的漏极和所述第六开关管的源极分别与所述直流输入单元包含的母线的负极连接;
    所述切换单元包括第一开关、第二开关和第三开关,所述第一开关的一端与所述V线连接,所述第一开关的另一端与所述N线连接,所述第二开关的一端与所述W线连接,所述第二开关的另一端与所述N线连接,所述第三开关的一端与第一电感的一端连接,所述第三开关的另一端与所述第一电感的另一端连接;当所述第一开关、所述第二开关和所述第三开关均关闭时,所述变换器切换为单相交流电输出电路。
  15. 一种供电系统,其特征在于,包括:负载以及如权利要求1至6、13任意一项权利要求所述的变换器和如权利要求7至12、14任意一项权利要求所述的变换器中至少一个,所述变换器用于将交流电转化为直流电或将直流电转化为交流电,以为所述负载提供直流电或交流电。
PCT/CN2020/093978 2019-08-07 2020-06-02 一种变换器及供电系统 WO2021022886A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20849410.4A EP3869684A4 (en) 2019-08-07 2020-06-02 CONVERTER AND POWER SUPPLY SYSTEM
US17/481,076 US11677328B2 (en) 2019-08-07 2021-09-21 Converter and power supply system with simplified sampling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910725682.5 2019-08-07
CN201910725682.5A CN110460260B (zh) 2019-08-07 2019-08-07 一种变换器及供电系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/481,076 Continuation US11677328B2 (en) 2019-08-07 2021-09-21 Converter and power supply system with simplified sampling

Publications (1)

Publication Number Publication Date
WO2021022886A1 true WO2021022886A1 (zh) 2021-02-11

Family

ID=68485288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093978 WO2021022886A1 (zh) 2019-08-07 2020-06-02 一种变换器及供电系统

Country Status (4)

Country Link
US (1) US11677328B2 (zh)
EP (1) EP3869684A4 (zh)
CN (1) CN110460260B (zh)
WO (1) WO2021022886A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022207065A1 (en) * 2021-03-29 2022-10-06 Huawei Technologies Co., Ltd. Ac/dc converter and a control method thereof for charging electrical vehicles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460260B (zh) 2019-08-07 2020-12-15 华为技术有限公司 一种变换器及供电系统
CN114450882A (zh) * 2019-10-02 2022-05-06 海拉有限双合股份公司 具有中间电路的双向变流器
CN115700981A (zh) * 2021-07-30 2023-02-07 台达电子工业股份有限公司 交流直流转换电路及其输入电流检测方法
WO2023159226A2 (en) * 2022-02-17 2023-08-24 Dynapower Company Llc Apparatuses and methods for power supply realization using multiple inverters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570560A (zh) * 2012-01-18 2012-07-11 华北电力大学(保定) V2g双向功率变换电动汽车充放电系统及其控制方法
US20130027991A1 (en) * 2010-02-09 2013-01-31 Power Integrations, Inc. Method and apparatus to control a power converter having a low loop bandwidth
CN108258697A (zh) * 2018-02-02 2018-07-06 山东电力设备有限公司 电能质量综合治理和功率优化的能量路由器
CN109842287A (zh) * 2019-01-07 2019-06-04 深圳陆巡科技有限公司 一种兼容单相和三相交流输入的pfc电路及其控制方法
CN110460260A (zh) * 2019-08-07 2019-11-15 华为技术有限公司 一种变换器及供电系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9647555B2 (en) * 2005-04-08 2017-05-09 Lincoln Global, Inc. Chopper output stage for arc welder power source
JP5627701B2 (ja) * 2010-10-13 2014-11-19 三菱電機株式会社 3相交流直流変換装置及び3相交流直流変換装置を用いた空気調和機
US8687388B2 (en) * 2012-01-31 2014-04-01 Delta Electronics, Inc. Three-phase soft-switched PFC rectifiers
US9099935B2 (en) * 2013-01-14 2015-08-04 Yaskawa America, Inc. Single-phase active front end rectifier system for use with three-phase variable frequency drives
US20140217827A1 (en) * 2013-02-01 2014-08-07 3L Power Llc Apparatus for and method of operation of a power inverter system
KR101867191B1 (ko) * 2013-06-28 2018-06-12 비와이디 컴퍼니 리미티드 전기 차량용 전원 시스템, 전기 차량 및 모터 컨트롤러
JP6190967B2 (ja) * 2014-08-20 2017-08-30 三菱電機株式会社 発電システム
CN205986277U (zh) 2016-08-23 2017-02-22 惠州比亚迪电子有限公司 电动汽车及其车载充放电系统
CN207124568U (zh) 2017-08-24 2018-03-20 深圳欣锐科技股份有限公司 电压转换电路与电池充电器
US10513185B2 (en) 2017-12-20 2019-12-24 Ford Global Technologies, Llc Electrified vehicle ground fault monitoring system
KR102528230B1 (ko) * 2018-07-18 2023-05-03 현대자동차주식회사 전기 자동차의 충전 장치
CN109861357A (zh) * 2018-09-07 2019-06-07 台达电子工业股份有限公司 充放电方法与装置
CN109889077B (zh) * 2019-04-08 2021-01-26 台达电子企业管理(上海)有限公司 单相和三相兼容的ac/dc电路及充放电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130027991A1 (en) * 2010-02-09 2013-01-31 Power Integrations, Inc. Method and apparatus to control a power converter having a low loop bandwidth
CN102570560A (zh) * 2012-01-18 2012-07-11 华北电力大学(保定) V2g双向功率变换电动汽车充放电系统及其控制方法
CN108258697A (zh) * 2018-02-02 2018-07-06 山东电力设备有限公司 电能质量综合治理和功率优化的能量路由器
CN109842287A (zh) * 2019-01-07 2019-06-04 深圳陆巡科技有限公司 一种兼容单相和三相交流输入的pfc电路及其控制方法
CN110460260A (zh) * 2019-08-07 2019-11-15 华为技术有限公司 一种变换器及供电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3869684A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022207065A1 (en) * 2021-03-29 2022-10-06 Huawei Technologies Co., Ltd. Ac/dc converter and a control method thereof for charging electrical vehicles

Also Published As

Publication number Publication date
US11677328B2 (en) 2023-06-13
CN110460260A (zh) 2019-11-15
EP3869684A4 (en) 2022-01-26
US20220038025A1 (en) 2022-02-03
EP3869684A1 (en) 2021-08-25
CN110460260B (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
WO2021022886A1 (zh) 一种变换器及供电系统
EP3886304B1 (en) On-board charger
CN109842287B (zh) 一种兼容单相和三相交流输入的pfc电路及其控制方法
WO2020258939A1 (zh) 一种车载充放电装置和系统
CN104702093B (zh) 无桥功率因数校正电路
CN109245536A (zh) 一种适用于双向近场电能传输的电路拓扑结构
CN208955902U (zh) 一种适用于双向近场电能传输的电路拓扑结构
CN105939126B (zh) 一种开关电感型混合准z源逆变器
CN108923663A (zh) 单相双极性ac-ac变换器拓扑结构及其调制方法
CN101699699A (zh) 一种不间断电源
JP4460572B2 (ja) 高力率を有するアーク溶接用発電機
CN100571006C (zh) 超导储能用双向三电平软开关dc/dc变换器及其控制方法
CN206790354U (zh) 高频隔离串联谐振多电平双向充电装置
CN108092517A (zh) 一种车载充电和dcdc连接的电路
WO2024007688A1 (zh) 双向车载充电机、车载动力系统及电动车辆
CN112297894A (zh) 一种宽范围输出的集成车载充电机
CN108683330A (zh) 一种三开关管三相pfc电路控制方法及系列拓扑结构
CN102684519A (zh) 一种电路及其控制方法
CN206506452U (zh) 一种宽范围输入的开关电源控制电路
CN115642825A (zh) 一种三相五电平pwm逆变器及应用
CN107222111A (zh) 高频隔离串联谐振多电平双向充电装置
CN208046456U (zh) 一种车载充电和dcdc连接的电路
US20240113638A1 (en) Single-stage multi-path direct current access converter and control method thereof
CN213461552U (zh) 一种ac-ac混合升压开关电容变换器
TW201526515A (zh) 單相三階轉換器之調變方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020849410

Country of ref document: EP

Effective date: 20210521

NENP Non-entry into the national phase

Ref country code: DE