WO2021081954A1 - 子像素渲染方法、驱动芯片和显示装置 - Google Patents

子像素渲染方法、驱动芯片和显示装置 Download PDF

Info

Publication number
WO2021081954A1
WO2021081954A1 PCT/CN2019/114882 CN2019114882W WO2021081954A1 WO 2021081954 A1 WO2021081954 A1 WO 2021081954A1 CN 2019114882 W CN2019114882 W CN 2019114882W WO 2021081954 A1 WO2021081954 A1 WO 2021081954A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
pixels
unit
rendering
Prior art date
Application number
PCT/CN2019/114882
Other languages
English (en)
French (fr)
Inventor
杨学炎
Original Assignee
北京集创北方科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京集创北方科技股份有限公司 filed Critical 北京集创北方科技股份有限公司
Priority to PCT/CN2019/114882 priority Critical patent/WO2021081954A1/zh
Priority to CN201980002240.6A priority patent/CN110945582B/zh
Priority to KR1020207005186A priority patent/KR102314074B1/ko
Publication of WO2021081954A1 publication Critical patent/WO2021081954A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0457Improvement of perceived resolution by subpixel rendering

Definitions

  • the present invention relates to the field of display technology, and more specifically to a sub-pixel rendering method driving chip and a display device.
  • the display panel includes a plurality of pixel units, and each pixel unit includes a plurality of sub-pixels.
  • the plurality of sub-pixels are respectively used for displaying one of red, green, and blue colors.
  • the image pixels correspond to the pixel units of the panel.
  • the display of image pixels is realized by the brightness control of multiple sub-pixels of different colors. Therefore, the use of multiple pixel units of the panel can achieve Display of the complete image.
  • an organic light emitting diode In an organic light emitting diode (abbreviated as OLED) display device, an organic light emitting diode is used as a sub-pixel unit. Different from traditional liquid crystal display devices, OLED display devices have high contrast, thin thickness, wide viewing angles, and flexibility, and therefore have received widespread attention.
  • the sub-pixel units of the OLED display device are active light-emitting elements, and the number of sub-pixel units is related to the cost.
  • a high-resolution OLED display device requires a number of sub-pixel units corresponding to the resolution, and the size of the sub-pixel units needs to be reduced to achieve high-density integration, which not only leads to difficulties in manufacturing processes, but also increases product costs.
  • a further improved method is to adopt a sub-pixel rendering method to achieve high resolution, where each pixel unit includes, for example, two-color sub-pixel units, and adjacent pixel units share a third-color sub-pixel, thus reducing the number of panels.
  • the number of sub-pixel units reduces process difficulty and product cost.
  • the sub-pixel rendering method is related to the sub-pixel arrangement, a specially designed driving circuit is required for a specific sub-pixel arrangement. There are differences in the arrangement of sub-pixels of OLED display devices of different manufacturers. If corresponding driving circuits are designed separately, the design cost and manufacturing cost of the driving circuit will be increased.
  • the purpose of the present application is to provide a sub-pixel rendering method, a driving chip and a display device, wherein the sub-pixel rendering method is adopted to reduce the number of sub-pixels.
  • the present application provides a sub-pixel rendering method for driving multiple pixel units of a display panel, each pixel unit including multiple sub-pixels of different colors, and the method includes:
  • the gray-scale driving parameters of each image pixel are adjusted to change the light-emitting brightness of the corresponding sub-pixels
  • the plurality of pixel units include a first pixel unit and a second pixel unit, the rendering unit of the first pixel unit includes internal sub-pixels, and the rendering unit of the second pixel unit includes internal sub-pixels and adjacent pixels The compensation sub-pixel of the cell.
  • the sub-pixel arrangement of the display panel is a periodic structure in which one blue sub-pixel, two green sub-pixels arranged in a column direction, and two red sub-pixels arranged in a column direction are repeated in the row direction, so
  • the sub-pixel density of the display panel is that every two pixel units includes two red sub-pixels, two green sub-pixels, and one blue sub-pixel.
  • the density of the green sub-pixel and the red sub-pixel are the same and half of the density of the blue sub-pixel, wherein the density of the sub-pixel is related to the luminous brightness.
  • the first pixel unit includes one blue sub-pixel, one green sub-pixel, and one red sub-pixel adjacent to each other
  • the second pixel unit includes one green sub-pixel and one red sub-pixel adjacent to each other.
  • the rendering unit of the second pixel unit obtains 1 blue sub-pixel as the compensation sub-pixel from the adjacent first pixel unit.
  • the respective rendering units of the first pixel unit and the second pixel unit respectively obtain the brightness rendering coefficient of each sub-pixel according to the following formula:
  • BR, BG, and BB respectively represent the brightness rendering coefficients of the red sub-pixel, the green sub-pixel, and the blue sub-pixel, and x represents the scaling factor.
  • the scaling factor x is the ratio of the maximum value of the gray-scale drive current to the maximum value of the system drive current, and 1/2 ⁇ x ⁇ 1.
  • the sub-pixel arrangement of the display panel is a periodic structure in which one red sub-pixel, two green sub-pixels arranged in a column direction, and two blue sub-pixels arranged in a column direction are repeated in the row direction, so
  • the sub-pixel density of the display panel is that every two pixel units includes one red sub-pixel, two green sub-pixels, and two blue sub-pixels.
  • the density of the green sub-pixel and the blue sub-pixel is the same and is half of the density of the red sub-pixel, wherein the density of the sub-pixel is related to the luminous brightness.
  • the first pixel unit includes one red sub-pixel, one green sub-pixel, and one blue sub-pixel adjacent to each other
  • the second pixel unit includes one green sub-pixel, one green sub-pixel and one adjacent to each other.
  • the rendering unit of the second pixel unit obtains 1 red sub-pixel as a compensation sub-pixel from the adjacent first pixel unit.
  • the respective rendering units of the first pixel unit and the second pixel unit respectively obtain the brightness rendering coefficient of each sub-pixel according to the following formula:
  • BR, BG, and BB respectively represent the brightness rendering coefficients of the red sub-pixel, the green sub-pixel, and the blue sub-pixel, and x represents the scaling factor.
  • the scaling factor x is the ratio of the maximum value of the gray-scale drive current to the maximum value of the system drive current, and 1/2 ⁇ x ⁇ 1.
  • the sub-pixel arrangement of the display panel is a periodic structure in which one blue sub-pixel, one red sub-pixel and one green sub-pixel arranged in the column direction are repeated in the row direction, and the sub-pixels of the display panel
  • the pixel density is that every 6 pixel units includes 5 red sub-pixels, 5 green sub-pixels, and 5 blue sub-pixels.
  • the density of the red sub-pixel, the green sub-pixel and the blue sub-pixel are equal, wherein the density of the sub-pixel is related to the light-emitting brightness.
  • the multi-pixel unit further includes a third pixel unit to a sixth pixel unit, and the respective rendering units of the third pixel unit to the sixth pixel unit include internal sub-pixels and compensation sub-pixels of adjacent pixel units,
  • the first pixel unit includes one red sub-pixel, one green sub-pixel, and one adjacent blue sub-pixel arranged in a column direction,
  • the second pixel unit includes one red sub-pixel and one green sub-pixel arranged in a column direction;
  • the third pixel unit includes one blue sub-pixel, and adjacent one red sub-pixel and one green sub-pixel arranged in a column direction;
  • the fourth pixel unit and the fifth pixel unit respectively include respective blue sub-pixels, and they are equally divided into one red sub-pixel and one green sub-pixel arranged in a column direction;
  • the rendering units from the second pixel unit to the sixth pixel unit obtain at least one blue sub-pixel from adjacent pixel units, so that the corresponding rendering unit includes 1 red sub-pixel, 1 green sub-pixel, and 2 Blue sub-pixels.
  • the first pixel unit obtains the brightness rendering coefficient of each sub-pixel according to the following formula:
  • BR, BG, and BB respectively represent the brightness rendering coefficients of the red sub-pixel, the green sub-pixel, and the blue sub-pixel, and x represents the scaling factor.
  • BR, BG, and BB respectively represent the brightness rendering coefficients of the red sub-pixel, the green sub-pixel, and the blue sub-pixel, and x represents the scaling factor.
  • the scaling factor x is the ratio of the maximum value of the gray-scale drive current to the maximum value of the system drive current, and 1/10 ⁇ x ⁇ 1.
  • a driving chip applied to a display panel including:
  • the first storage unit is configured to store the preset parameters of the display panel locally, or receive and store the configuration parameters of the display panel from the host;
  • the second storage unit is used to store the rendering units of the pixel units of different display panels and the corresponding brightness rendering coefficients and scaling coefficients;
  • the image processing unit is connected to the first storage unit and the second storage unit, and performs the following processing when executing instructions:
  • the rendering unit of the pixel unit and the corresponding brightness rendering coefficient and scaling factor are obtained.
  • the rendering unit includes the internal sub-pixels of the pixel unit and the corresponding pixel unit. Multiple adjacent compensation pixels;
  • the gray-scale driving parameters of each image pixel are adjusted to change the light-emitting brightness of the corresponding sub-pixels
  • the plurality of pixel units include a first pixel unit and a second pixel unit
  • the rendering unit of the first pixel unit includes internal sub-pixels of the first pixel unit
  • the rendering unit of the second pixel unit includes The internal sub-pixels of the second pixel unit and the compensation sub-pixels of the adjacent first pixel unit.
  • the driving parameter includes at least one of a driving current, a driving voltage, and a duty cycle corresponding to the gray-scale signal.
  • the display panel is one of a liquid crystal display panel and an organic light emitting diode display panel.
  • Another aspect of the present application provides a computer-readable storage medium on which a computer program is stored, wherein the computer program is executed by a processor to implement the steps of the above sub-pixel rendering method.
  • Another aspect of the present application provides a display device, which includes the above-mentioned driving chip.
  • the rendering unit of the pixel unit and the corresponding brightness rendering coefficient and scaling factor are obtained according to the sub-pixel arrangement of the display panel, so as to be applicable to display panels with different sub-pixel arrangements, and at least a part of the pixel units are shared
  • the sub-pixels of adjacent pixel units can reduce the number of sub-pixels of the display panel, thereby reducing the design cost and the manufacturing cost.
  • FIG. 1 shows a schematic diagram of a first type of sub-pixel arrangement and pixel units of a display panel according to the prior art.
  • FIG. 2 shows a schematic diagram of a second type of sub-pixel arrangement and pixel units of a display panel according to the prior art.
  • FIG. 3 shows a schematic diagram of a third type of sub-pixel arrangement and a pixel unit of a division method according to an embodiment of the present invention.
  • 4a and 4b respectively show the sub-pixel rendering methods of the first pixel unit and the second pixel unit in the sub-pixel arrangement shown in FIG. 3.
  • FIG. 5 shows a schematic diagram of a third type of sub-pixel arrangement and a pixel unit of another division method according to an embodiment of the present invention.
  • 6a and 6b respectively show the sub-pixel rendering methods of the first pixel unit and the second pixel unit in the sub-pixel arrangement shown in FIG. 5.
  • FIG. 7 shows a schematic diagram of a third type of sub-pixel arrangement and a pixel unit of another division method according to an embodiment of the present invention.
  • 8a and 8b respectively show the sub-pixel rendering methods of the first pixel unit and the second pixel unit in the sub-pixel arrangement shown in FIG. 7.
  • FIG. 9 shows a schematic diagram of a fourth type of sub-pixel arrangement and a pixel unit of a division method in an alternative embodiment of an embodiment of the present invention.
  • 10a and 10b respectively show the sub-pixel rendering methods of the first pixel unit and the second pixel unit in the sub-pixel arrangement shown in FIG. 9.
  • FIG. 11 shows a schematic diagram of a second type of sub-pixel arrangement and pixel units of a display panel according to an embodiment of the present invention.
  • 12a and 12b respectively show the sub-pixel rendering methods of the first pixel unit and the second to sixth pixel units in the sub-pixel arrangement shown in FIG. 11.
  • Fig. 13 shows a flowchart of a sub-pixel rendering method according to an embodiment of the present invention.
  • FIG. 14 shows a schematic block diagram of a display device according to an embodiment of the present invention.
  • FIG. 1 shows a schematic diagram of a first type of sub-pixel arrangement and pixel units of a display panel according to the prior art.
  • the display panel 100 includes a plurality of red sub-pixels 101, a plurality of blue sub-pixels 102, and a plurality of green sub-pixels 103 arranged in an array in rows and columns.
  • the arrangement of multiple sub-pixels is a periodic structure in which one red sub-pixel 101, one blue sub-pixel 102, and two green sub-pixels 103 arranged in the column direction are repeated.
  • a plurality of red sub-pixels 101 and a plurality of blue sub-pixels 102 are arranged in a row, or a plurality of green sub-pixels 103 are arranged in a row.
  • the above-mentioned display panel 100 includes, for example, two types of pixel units.
  • the first pixel unit P1 includes one red sub-pixel 101 and one adjacent green sub-pixel 103, for example, one green sub-pixel 103 in the same row or in an adjacent row.
  • the first pixel unit P1 lacks the blue sub-pixel 102, therefore, it is necessary to share the blue sub-pixel 102 from the adjacent second pixel unit P2 during display driving.
  • the second pixel unit P2 includes one blue sub-pixel 102 and one adjacent green sub-pixel 103, for example, one green sub-pixel 103 in the same row or in an adjacent row.
  • the second pixel unit P2 lacks the red sub-pixel 101. Therefore, the red sub-pixel 101 needs to be shared from the adjacent first pixel unit P1 during display driving.
  • scan signals are provided to scan lines row by row to select sub-pixels in corresponding rows, and corresponding gray-scale data are provided to sub-pixels in corresponding columns via multiple data lines, so that the light-emitting brightness of multiple sub-pixels is consistent with the gray level.
  • the order data is consistent.
  • the density of the red sub-pixel 101 and the blue sub-pixel 102 are equal, and the green sub-pixel 103 is half the density of the red sub-pixel 101.
  • the density of the sub-pixels is, for example, related to the light-emitting brightness.
  • the density of the sub-pixels is high, the light-emitting brightness is high, and the screen display has high fineness.
  • sub-pixels are composed of active light-emitting elements.
  • the rendering coefficient of the grayscale data of the single red sub-pixel 101 and the single blue sub-pixel 102 is, for example, 1/2
  • the rendering coefficient of the single green sub-pixel 103 is, for example, 1, and the light-emitting luminances of the three color sub-pixels are balanced with each other.
  • FIG. 2 shows a schematic diagram of a second type of sub-pixel arrangement and pixel units of a display panel according to the prior art.
  • the display panel 200 includes a plurality of red sub-pixels 201, a plurality of blue sub-pixels 202, and a plurality of green sub-pixels 203 arranged in an array in rows and columns.
  • the arrangement of multiple sub-pixels is a periodic structure in which one red sub-pixel 201, one green sub-pixel 203, and one blue sub-pixel 202 are repeatedly arranged in the column direction.
  • a plurality of red sub-pixels 201, a plurality of green sub-pixels 203, and a plurality of blue sub-pixels 202 are arranged in a row in sequence.
  • the above-mentioned display panel 200 includes, for example, three types of pixel units.
  • the first pixel unit P1 includes one red sub-pixel 201 and one adjacent green sub-pixel 203, for example, one green sub-pixel 203 in the same row or in an adjacent row.
  • the first pixel unit P1 lacks the blue sub-pixel 202. Therefore, the blue sub-pixel 202 needs to be shared from the adjacent second pixel unit P2 during display driving.
  • the second pixel unit P2 includes one blue sub-pixel 202 and one adjacent red sub-pixel 201, for example, one red sub-pixel 201 in the same row or in an adjacent row.
  • the second pixel unit P2 lacks the green sub-pixel 203.
  • the third pixel unit P3 includes one green sub-pixel 203 and an adjacent blue sub-pixel 202, for example, one blue sub-pixel 202 in the same row or in an adjacent row.
  • the third pixel unit P3 lacks the red sub-pixel 201. Therefore, the red sub-pixel 201 needs to be shared from the adjacent first pixel unit P1 during display driving.
  • scan signals are provided to scan lines row by row to select sub-pixels in corresponding rows, and corresponding gray-scale data are provided to sub-pixels in corresponding columns via multiple data lines, so that the light-emitting brightness of multiple sub-pixels is consistent with the gray level.
  • the order data is consistent.
  • the density of the red sub-pixel 201, the blue sub-pixel 202 and the green sub-pixel 203 are equal.
  • the density of the sub-pixels is, for example, related to the light-emitting brightness.
  • the density of the sub-pixels is high, the light-emitting brightness is high, and the screen display has high fineness.
  • sub-pixels are composed of active light-emitting elements.
  • the rendering coefficients of the single red sub-pixel 201, the single blue sub-pixel 202, and the single green sub-pixel 203 are, for example, 1, and the light-emitting luminances of the three-color sub-pixels are balanced with each other.
  • FIG. 3 shows a schematic diagram of a third type of sub-pixel arrangement and a pixel unit of a division method according to an embodiment of the present invention.
  • the display panel 300 includes a plurality of red sub-pixels 301, a plurality of blue sub-pixels 302, and a plurality of green sub-pixels 303 arranged in an array in rows and columns.
  • the arrangement of multiple sub-pixels is a periodic structure in which one blue sub-pixel 302, two green sub-pixels 303 arranged in the column direction, and two red sub-pixels 301 arranged in the column direction are repeated.
  • a plurality of red sub-pixels 301 and a plurality of blue sub-pixels 302 are arranged in a row, or a plurality of green sub-pixels 303 are arranged in a row.
  • the above-mentioned display panel 300 includes, for example, two types of pixel units.
  • the first pixel unit P1 includes a blue sub-pixel 302, an adjacent green sub-pixel 303, and a red sub-pixel 301, for example, a blue sub-pixel 302 in the current row, and a green sub-pixel on the lower right side.
  • the first pixel unit P1 includes three colors of sub-pixels, and therefore, there is no need to share any color sub-pixels from adjacent first pixel units P1 during display driving.
  • the second pixel unit P2 includes one red sub-pixel 301 and one adjacent green sub-pixel 303, for example, one red sub-pixel 301 below the current row and one green sub-pixel 303 above the right side of the adjacent row.
  • the second pixel unit P2 lacks the blue sub-pixel 302. Therefore, it is necessary to share the blue sub-pixel 302 from the adjacent first pixel unit P1 during display driving.
  • the sub-pixel density of the display panel 300 is that every three pixel units includes two red sub-pixels, two green sub-pixels, and two blue sub-pixels.
  • two pixel units P1 and P2 adjacent to each other share two red sub-pixels 301, two green sub-pixels 303, and one blue sub-pixel.
  • the single-point brightness of each pixel unit is, for example, 1 for the red sub-pixel and 1 for the green sub-pixel, and 1/2 for the blue sub-pixel.
  • scan signals are provided to scan lines row by row to select sub-pixels in corresponding rows, and corresponding gray-scale data are provided to sub-pixels in corresponding columns via multiple data lines, so that the light-emitting brightness of multiple sub-pixels is consistent with the gray level.
  • the order data is consistent.
  • the density of the red sub-pixel 301 and the green sub-pixel 303 are equal, and both are half the density of the blue sub-pixel 302.
  • the density of the sub-pixels is, for example, related to the light-emitting brightness.
  • the density of the sub-pixels is high, the light-emitting brightness is high, and the screen display has high fineness.
  • sub-pixels are composed of active light-emitting elements.
  • the rendering coefficient of the grayscale data of the single blue sub-pixel 302 is, for example, 1/2
  • the rendering coefficient of the single red sub-pixel 301 and the single green sub-pixel 303 is, for example, 1, and the light-emitting luminances of the three color sub-pixels are balanced with each other.
  • Fig. 4a shows a sub-pixel rendering method of the first pixel unit in the sub-pixel arrangement shown in Fig. 3.
  • the first pixel unit P1 includes sub-pixels of all three colors, and there is no need to share any color sub-pixels from the adjacent second pixel unit P2.
  • the red sub-pixels, green sub-pixels, and blue sub-pixels inside the second pixel unit P2 constitute the rendering unit 131, and the blue sub-pixel 302 needs to be shared from the adjacent first pixel unit P1.
  • the formula of the rendering unit 141 of the first pixel unit P1 is expressed as:
  • BR, BG, and BB respectively represent the brightness rendering coefficients of the red sub-pixel, the green sub-pixel, and the blue sub-pixel, and x represents the scaling factor.
  • the scaling factor x is, for example, the ratio of the maximum value of the gray-scale drive current to the maximum value of the system drive current, such as 1/2 ⁇ x ⁇ 1.
  • the grayscale data displayed by the first pixel unit P1 is, for example, (10, 10, 10), then the rendering of the first pixel unit P1
  • the gray-scale driving currents of the red sub-pixel, green sub-pixel, and blue sub-pixel of the unit 131 are 1.96 mA, 1.96 mA, and 0.98 mA, respectively.
  • FIG. 4b shows the sub-pixel rendering method of the second pixel unit in the sub-pixel arrangement shown in FIG. 3.
  • the red sub-pixel and the green sub-pixel in the second pixel unit P2 and the adjacent compensation sub-pixel constitute the rendering unit 132.
  • the compensation sub-pixel of the first pixel unit P1 includes a blue sub-pixel that is nearest to the first pixel unit P1 on the right side.
  • the formula of the rendering unit 132 of the second pixel unit P2 is expressed as:
  • BR, BG, and BB respectively represent the brightness rendering coefficients of the red sub-pixel, the green sub-pixel, and the blue sub-pixel, and x represents the scaling factor.
  • the scaling factor x is, for example, the ratio of the maximum value of the gray-scale drive current to the maximum value of the system drive current, such as 1/2 ⁇ x ⁇ 1.
  • the grayscale data displayed by the second pixel unit P2 is, for example, (10, 10, 10), then the rendering of the second pixel unit P2
  • the gray-scale driving currents of the red sub-pixel, green sub-pixel, and blue sub-pixel of the unit 132 are 1.96 mA, 1.96 mA, and 0.98 mA, respectively.
  • FIG. 5 shows a schematic diagram of a third type of sub-pixel arrangement and a pixel unit of another division method according to an embodiment of the present invention.
  • the arrangement of the sub-pixels of the display panel shown in FIG. 5 is the same as the arrangement of the sub-pixels of the display panel shown in FIG. 3, and will not be described in detail here.
  • the internal sub-pixels of the two pixel units P1 and P2 of the display panel shown in FIG. 5 are different from the internal sub-pixels of the two pixel units P1 and P2 of the display panel shown in FIG. 3.
  • the first pixel unit P1 includes a blue sub-pixel 302 and an adjacent green sub-pixel 303 and a red sub-pixel 301, for example, a blue sub-pixel 302 in the current row, and a green sub-pixel on the upper right side.
  • the pixel 303 and a red sub-pixel 301 located in the same line with the green sub-pixel 303 on the upper right side.
  • the first pixel unit P1 includes three-color sub-pixels, and therefore, there is no need to share any color sub-pixels from the adjacent second pixel unit P2 during display driving.
  • the second pixel unit P2 includes one red sub-pixel 301 and one adjacent green sub-pixel 303, for example, one green sub-pixel 303 and one red sub-pixel 301 adjacent to and located above each other in the current row.
  • the second pixel unit P2 lacks the blue sub-pixel 302. Therefore, it is necessary to share the blue sub-pixel 302 from the adjacent first pixel unit P1 during display driving.
  • the sub-pixel density of the display panel 400 is that every three pixel units includes two red sub-pixels, two green sub-pixels, and two blue sub-pixels.
  • two pixel units P1 and P2 adjacent to each other share two red sub-pixels 301, two green sub-pixels 303, and one blue sub-pixel.
  • scan signals are provided to scan lines row by row to select sub-pixels in corresponding rows, and corresponding gray-scale data are provided to sub-pixels in corresponding columns via multiple data lines, so that the light-emitting brightness of multiple sub-pixels is consistent with the gray level.
  • the order data is consistent.
  • the density of the red sub-pixel 301 and the green sub-pixel 303 are equal, and both are half the density of the blue sub-pixel 302.
  • the density of the sub-pixels is, for example, related to the light-emitting brightness.
  • the density of the sub-pixels is high, the light-emitting brightness is high, and the screen display has high fineness.
  • sub-pixels are composed of active light-emitting elements.
  • the rendering coefficient of the grayscale data of the single blue sub-pixel 302 is, for example, 1/2
  • the rendering coefficient of the single red sub-pixel 301 and the single green sub-pixel 303 is, for example, 1, and the light-emitting luminances of the three color sub-pixels are balanced with each other.
  • Fig. 6a shows a sub-pixel rendering method of the first pixel unit in the sub-pixel arrangement shown in Fig. 5.
  • the first pixel unit P1 includes sub-pixels of all three colors, and there is no need to share any color sub-pixels from the adjacent second pixel unit P2.
  • the red sub-pixels, green sub-pixels, and blue sub-pixels inside the first pixel unit P1 constitute a rendering unit 141.
  • the formula of the rendering unit 141 of the first pixel unit P1 is the same as the above formula (1), and will not be described in detail here.
  • FIG. 6b shows the sub-pixel rendering method of the second pixel unit in the sub-pixel arrangement shown in FIG. 5.
  • the red sub-pixel and the green sub-pixel inside the second pixel unit P2 and the adjacent compensation sub-pixel constitute the rendering unit 142.
  • the compensation sub-pixel of the second pixel unit P2 includes a blue sub-pixel closest to the first pixel unit P1 on the right.
  • the formula of the rendering unit 142 of the second pixel unit P2 is the same as the above formula (2), and will not be described in detail here.
  • Fig. 7 shows a schematic diagram of a third type of sub-pixel arrangement and a pixel unit of another division method according to an embodiment of the present invention.
  • the arrangement of the sub-pixels of the display panel shown in FIG. 7 is the same as the arrangement of the sub-pixels of the display panel shown in FIG. 3 and FIG.
  • the internal sub-pixels of the two pixel units P2 of the display panel shown in FIG. 7 are different from the internal sub-pixels of the pixel unit P2 of the display panel shown in FIG. 5.
  • the first pixel unit P1 includes a blue sub-pixel 302 and an adjacent green sub-pixel 303 and a red sub-pixel 301, for example, a blue sub-pixel 302 in the current row, and a green sub-pixel on the upper right side.
  • the first pixel unit P1 includes three-color sub-pixels, and therefore, there is no need to share any color sub-pixels from the adjacent second pixel unit P2 during display driving.
  • the second pixel unit P2 includes one red sub-pixel 301 and one adjacent green sub-pixel 303, for example, one green sub-pixel 303 and one red sub-pixel 301 adjacent to and located above each other in the current row.
  • the second pixel unit P2 lacks the blue sub-pixel 302. Therefore, it is necessary to share the blue sub-pixel 302 from the adjacent first pixel unit P1 during display driving.
  • the sub-pixel density of the display panel 500 is that every two pixel units includes two red sub-pixels, two green sub-pixels, and one blue sub-pixel.
  • scan signals are provided to scan lines row by row to select sub-pixels in corresponding rows, and corresponding gray-scale data are provided to sub-pixels in corresponding columns via multiple data lines, so that the light-emitting brightness of multiple sub-pixels is consistent with the gray level.
  • the order data is consistent.
  • the density of the red sub-pixel 301 and the green sub-pixel 303 are equal, and both are half the density of the blue sub-pixel 302.
  • the density of the sub-pixels is, for example, related to the light-emitting brightness.
  • the density of the sub-pixels is high, the light-emitting brightness is high, and the screen display has high fineness.
  • sub-pixels are composed of active light-emitting elements.
  • the rendering coefficient of the grayscale data of the single blue sub-pixel 302 is, for example, 1/2
  • the rendering coefficient of the single red sub-pixel 301 and the single green sub-pixel 303 is, for example, 1, and the light-emitting luminances of the three color sub-pixels are balanced with each other.
  • FIG. 8a shows a sub-pixel rendering method of the first pixel unit in the sub-pixel arrangement shown in FIG. 7.
  • the first pixel unit P1 includes sub-pixels of all three colors, and there is no need to share any color sub-pixels from the adjacent second pixel unit P2.
  • the red sub-pixels, green sub-pixels, and blue sub-pixels inside the first pixel unit P1 constitute the rendering unit 151.
  • the formula of the rendering unit 151 of the first pixel unit P1 is the same as the above formula (1), and will not be described in detail here.
  • FIG. 8b shows the sub-pixel rendering method of the second pixel unit in the sub-pixel arrangement shown in FIG. 7.
  • the red sub-pixel and the green sub-pixel inside the second pixel unit P2 and the adjacent compensation sub-pixel constitute a rendering unit 152.
  • the compensation sub-pixel of the second pixel unit P2 includes a blue sub-pixel closest to the first pixel unit P1 on the right.
  • the formula of the rendering unit 152 of the second pixel unit P2 is the same as the above formula (2), and will not be described in detail here.
  • the sub-pixel arrangement of the display panel shown in FIG. 3, FIG. 5, and FIG. 7 is to repeat one blue sub-pixel 302, two green sub-pixels 303 arranged in the column direction, and A periodic structure of two red sub-pixels 301 arranged in a direction.
  • the display panel 600 adopts a fourth type of sub-pixel arrangement, that is, one red sub-pixel 301 is repeated in the row direction, two green sub-pixels 303, and two green sub-pixels 303 arranged in the column direction are repeated in the row direction.
  • the first pixel unit P1 includes a red sub-pixel 601 and an adjacent green sub-pixel 603 and a blue sub-pixel 602, for example, a red sub-pixel 601 in the current row, and a green sub-pixel on the lower right side.
  • the pixel 603, the lower left side, and the red sub-pixel 601 are located in a blue sub-pixel 602 in the same row.
  • the formula of the rendering unit 161 of the first pixel unit P1 is expressed as:
  • BR, BG, and BB respectively represent the brightness rendering coefficients of the red sub-pixel, the green sub-pixel, and the blue sub-pixel, and x represents the scaling factor.
  • the second pixel unit P2 includes one blue sub-pixel 602 and one adjacent green sub-pixel 603, for example, one blue sub-pixel 602 below the current row and one green sub-pixel 603 above the right side of the adjacent row .
  • the formula of the rendering unit 162 of the second pixel unit P2 is expressed as:
  • BR, BG, and BB respectively represent the brightness rendering coefficients of the red sub-pixel, the green sub-pixel, and the blue sub-pixel, and x represents the scaling factor.
  • FIG. 10a shows a sub-pixel rendering method of the first pixel unit in the sub-pixel arrangement shown in FIG. 9.
  • the first pixel unit P1 includes sub-pixels of all three colors, and there is no need to share any color sub-pixels from the adjacent second pixel unit P2.
  • the red sub-pixel 601, the green sub-pixel 603, and the blue sub-pixel 602 inside the first pixel unit P1 constitute a rendering unit 161.
  • the formula of the rendering unit 161 of the first pixel unit P1 is the same as the above formula (3), and will not be described in detail here.
  • FIG. 10b shows the sub-pixel rendering method of the second pixel unit in the sub-pixel arrangement shown in FIG. 9.
  • the blue sub-pixel 602 and the green sub-pixel 603 inside the second pixel unit P2 and the adjacent compensation sub-pixels constitute the rendering unit 162.
  • the compensation sub-pixel of the second pixel unit P2 includes a blue sub-pixel 603 nearest to the first pixel unit P1 on the right.
  • the formula of the rendering unit 162 of the second pixel unit P2 is the same as the above formula (4), and will not be described in detail here.
  • FIG. 11 shows a schematic diagram of a second type of sub-pixel arrangement and pixel units of a display panel according to an embodiment of the present invention.
  • the display panel 700 includes a plurality of red sub-pixels 701, a plurality of blue sub-pixels 702, and a plurality of green sub-pixels 703 arranged in an array in rows and columns.
  • the arrangement of multiple sub-pixels is a periodic structure in which one red sub-pixel 701, one green sub-pixel 703, and one blue sub-pixel 702 are repeatedly arranged in the column direction.
  • a plurality of red sub-pixels 701, a plurality of green sub-pixels 703, and a plurality of blue sub-pixels 702 are arranged in a row in sequence.
  • the aforementioned display panel 700 includes, for example, six types of pixel units.
  • the first pixel unit P1 to the sixth pixel unit P6 divide the physical area of 5 original three-color pixel units.
  • the first pixel unit P1 includes one red sub-pixel 701, one green sub-pixel 703, and one adjacent blue sub-pixel 702 arranged in the column direction.
  • the second pixel unit P2 includes one red sub-pixel 701 and one green sub-pixel 703 arranged along the column direction, and one blue sub-pixel 702 is missing.
  • the third pixel unit P3 includes one blue sub-pixel 702, and adjacent one red sub-pixel 701 and one green sub-pixel 703 arranged in the column direction.
  • the fourth pixel unit P4 and the fifth pixel unit P5 respectively include respective blue sub-pixels 702, and the two are equally divided into one red sub-pixel 701 and one green sub-pixel 703 arranged in the column direction.
  • the sixth pixel unit P6 includes one red sub-pixel 701 and one green sub-pixel 703 arranged along the column direction, and one adjacent blue sub-pixel 702.
  • the first pixel unit P1 uses internal three-color sub-pixels to achieve color display, and the second pixel unit P2 to the sixth pixel unit P6 share the blue sub-pixel 702 from adjacent pixel units, respectively.
  • the sub-pixel density of the display panel 700 is that every 6 pixel units includes 5 red sub-pixels, 5 green sub-pixels, and 5 blue sub-pixels.
  • each pixel unit P1 to P6 adjacent to each other share five red sub-pixels 701, five green sub-pixels 703, and five blue sub-pixels 702.
  • the single-point brightness of each pixel unit is, for example, 5/6 for the red sub-pixel, the green sub-pixel, and the blue sub-pixel, respectively.
  • scan signals are provided to scan lines row by row to select sub-pixels in corresponding rows, and corresponding gray-scale data are provided to sub-pixels in corresponding columns via multiple data lines, so that the light-emitting brightness of multiple sub-pixels is consistent with the gray level.
  • the order data is consistent.
  • the density of the red sub-pixel 701, the blue sub-pixel 702 and the green sub-pixel 703 are equal.
  • the density of the sub-pixels is, for example, related to the light-emitting brightness.
  • the density of the sub-pixels is high, the light-emitting brightness is high, and the screen display has high fineness.
  • sub-pixels are composed of active light-emitting elements.
  • the rendering coefficients of the single red sub-pixel 701, the single blue sub-pixel 702, and the single green sub-pixel 703 are, for example, 1, and the light-emitting luminances of the three-color sub-pixels are balanced with each other.
  • Fig. 12a shows a sub-pixel rendering method of the first pixel unit in the sub-pixel arrangement shown in Fig. 11.
  • the red sub-pixels, green sub-pixels, and blue sub-pixels inside the first pixel unit P1 constitute a rendering unit 171.
  • the first pixel unit P1 includes three-color sub-pixels, and there is no need to obtain compensation sub-pixels from adjacent pixel units.
  • the rendering unit 171 includes one red sub-pixel, one green sub-pixel, and one blue sub-pixel.
  • the formula of the rendering unit 171 of the first pixel unit P1 is expressed as:
  • BR, BG, and BB respectively represent the brightness rendering coefficients of the red sub-pixel, the green sub-pixel, and the blue sub-pixel, and x represents the scaling factor.
  • the scaling factor x is, for example, the ratio of the maximum value of the gray-scale drive current to the maximum value of the system drive current, such as 1/10 ⁇ x ⁇ 1, preferably, x is equal to 1/10, 3/10, 5/10, 6/10 , Any one of 1.
  • the grayscale data displayed by the first pixel unit P1 is, for example, (10, 10, 10), then the rendering of the first pixel unit P1
  • the gray-scale driving currents of the red sub-pixel, the green sub-pixel, and the blue sub-pixel of the unit 171 are 1.63 mA, 1.63 mA, and 1.63 mA, respectively.
  • Fig. 12b shows a sub-pixel rendering method of the second to sixth pixel units in the sub-pixel arrangement shown in Fig. 11.
  • the second pixel units P2 to P6 form a rendering unit 172 with adjacent compensation sub-pixels, respectively.
  • the compensation sub-pixels of the second pixel units P2 to P6 are, for example, part or all of the red sub-pixels, green sub-pixels, and blue sub-pixels of adjacent pixel units.
  • the rendering unit 172 includes one red sub-pixel, one green sub-pixel, and two blue sub-pixels.
  • BR, BG, and BB respectively represent the brightness rendering coefficients of the red sub-pixel, the green sub-pixel, and the blue sub-pixel, and x represents the scaling factor.
  • the scaling factor x is, for example, the ratio of the maximum value of the gray-scale drive current to the maximum value of the system drive current, such as 1/10 ⁇ x ⁇ 1, preferably, x is equal to 1/10, 3/10, 5/10, 6/10 , Any one of 1.
  • the grayscale data displayed by the first pixel unit P1 is, for example, (10, 10, 10), then the second pixel units P2 to P6
  • the gray-scale driving currents of the red sub-pixel, green sub-pixel, and blue sub-pixel of the rendering unit 152 are 1.63 mA, 1.63 mA, and 0.82 mA, respectively.
  • Fig. 13 shows a flowchart of a sub-pixel rendering method according to an embodiment of the present invention.
  • the sub-pixel rendering method is implemented by, for example, a general driving chip, which is used to drive various display panels.
  • the display panel includes a plurality of pixel units, and each pixel unit includes a plurality of sub-pixels of different colors.
  • step S01 the sub-pixel arrangement of the display panel is obtained.
  • a plurality of sub-pixels of the display panel are arranged in rows and columns in an array, and in the same row, the arrangement of the plurality of sub-pixels is repeated
  • the sub-pixel arrangement of the display panel is a periodic structure in which the first pixel unit and the second pixel unit are repeatedly arranged in the row direction.
  • the first pixel unit includes 1 blue sub-pixel in the current row, 1 green sub-pixel on the lower right side, and 1 sub-pixel on the upper right side.
  • the second pixel unit includes one red sub-pixel 301 below the current row and one green sub-pixel above the right side of the adjacent row, as shown in FIG. 3.
  • the first pixel unit includes 1 blue sub-pixel in the current row, 1 green sub-pixel on the upper right side, and upper left side with the The green sub-pixel is located in one red sub-pixel in the same row, and the second pixel unit includes one green sub-pixel and one red sub-pixel adjacent to and below each other in the current row, as shown in FIG. 7.
  • the display panel 600 adopts a fourth type of sub-pixel arrangement, that is, one red sub-pixel is repeated in the row direction, two green sub-pixels are arranged in the column direction, and the sub-pixels are arranged in the column direction.
  • the pixel unit of the pixel unit can be referred to the three division methods in the above-mentioned embodiment.
  • a division method similar to that shown in FIG. Other ways of division that can be obtained by creative work.
  • a plurality of sub-pixels of the display panel are arranged in an array in rows and columns. In the same row, the arrangement of the plurality of sub-pixels is repeatedly arranged in the column direction.
  • the sub-pixel arrangement of the display panel is a periodic structure in which the first pixel unit and the second pixel unit are repeatedly arranged in the row direction.
  • the rendering unit of the first pixel unit It includes all three colors of sub-pixels, and there is no need to share any color sub-pixels from adjacent first pixel units.
  • the brightness rendering coefficients of the red sub-pixel, the green sub-pixel, and the blue sub-pixel of the rendering unit of the first pixel unit can be calculated, so as to calculate the corrected gray-scale driving current.
  • the rendering units of the second pixel unit all obtain the blue sub-pixel as the compensation sub-pixel from the adjacent second pixel unit.
  • the brightness rendering coefficients of the red sub-pixel, green sub-pixel, and blue sub-pixel of the rendering unit of the second pixel unit can be calculated.
  • the first The rendering unit of the pixel unit includes sub-pixels of all three colors, and there is no need to share any color sub-pixels from adjacent first pixel units.
  • the brightness rendering coefficients of the red sub-pixel, the green sub-pixel, and the blue sub-pixel of the rendering unit of the first pixel unit can be calculated, so as to calculate the corrected gray-scale driving current.
  • the rendering units of the second pixel unit all obtain the blue sub-pixel as the compensation sub-pixel from the adjacent second pixel unit.
  • the brightness rendering coefficients of the red sub-pixel, green sub-pixel, and blue sub-pixel of the rendering unit of the second pixel unit can be calculated.
  • the sub-pixels of the first pixel unit constitute the rendering unit, and the rendering units of the second to sixth pixel units all obtain the sub-pixels from adjacent pixel units.
  • a part is used as a compensation sub-pixel to constitute a rendering unit.
  • the rendering unit of the first pixel unit includes, for example, one red sub-pixel, one green sub-pixel, and one blue sub-pixel. According to the above formula (5), the red sub-pixel, The brightness rendering coefficients of the green sub-pixels and the blue sub-pixels are used to calculate the corrected gray-scale drive current.
  • step S04 according to the brightness rendering coefficient and the scaling factor, the gray-scale driving parameter (for example, the gray-scale driving current) of each image pixel is adjusted, so as to calculate the corrected gray-scale driving current, and then change the corresponding The luminous brightness of the sub-pixel.
  • the gray-scale driving parameter for example, the gray-scale driving current
  • the sub-pixel rendering method according to the embodiment of the present invention makes the driving chip applicable to display panels with different sub-pixel arrangements, thereby reducing design costs and manufacturing costs.
  • FIG. 14 shows a schematic block diagram of a display device according to an embodiment of the present invention.
  • the display device 10 includes a display panel 11 and a driving chip 12.
  • the display panel 11 is, for example, an OLED (Organic Light Emitting Diode) display panel or a liquid crystal display panel.
  • the display panel 11 includes a scan line 21, a data line 22, a plurality of sub-pixels 23 and a scan circuit 25.
  • the sub-pixel 23 is disposed at the intersection of the scan line 21 and the data line 22, and is configured to display one of red, green, and blue.
  • the sub-pixel 23 that displays red may include a light-emitting element that emits red light
  • the sub-pixel 23 that displays green may include a light-emitting element that emits green light
  • the sub-pixel 23 that displays blue light may include a light-emitting element that emits green light.
  • the colored sub-pixel 23 may include a light emitting element that emits blue light.
  • the driving chip 12 performs an expected image data process on the received image data 41 to generate a gray-scale voltage 32 for driving the display panel 11.
  • the gray-scale voltage corresponds to the gray-scale value of the sub-pixel.
  • the image data process performed in the driving chip 12 includes a sub-pixel rendering method.
  • the image data process performed in the driving chip 12 may include processes other than the sub-pixel rendering process (for example, color adjustment).
  • the driving chip 12 includes an image processing unit, a first storage unit, and a second storage unit.
  • the first storage unit is used to store the preset parameters of the display panel locally, or receive and store the configuration parameters of the display panel from the host.
  • the second storage unit is used to store the rendering units of the pixel units of different display panels and the corresponding brightness rendering coefficients, such as corresponding look-up tables.
  • the image processing unit can obtain the sub-pixel arrangement of the display panel according to preset parameters or configuration parameters, and obtain the rendering unit of the pixel unit and the corresponding brightness rendering coefficient according to the sub-pixel arrangement and the position of the pixel unit, the rendering unit Including internal sub-pixels of the pixel unit and a plurality of compensation pixels adjacent to the pixel unit; and mapping the color component of each image pixel to the internal sub-pixels of the pixel unit according to the brightness rendering coefficient Grayscale values, and grayscale values of the plurality of compensation sub-pixels.
  • the driving chip 12 provides the scan signal 31 and the gray-scale voltage 32 to the display panel 11.
  • the scanning circuit 25 drives the scanning line 21 by the scanning signal 31 received from the driving chip 12.
  • a pair of scanning circuits 25 are provided.
  • One of the scanning circuits 25 drives odd-numbered scanning lines 21, and the other drives even-numbered scanning lines 21.
  • the driving chip 12 uses the gray-scale voltage 32 to drive the data line 22.
  • the driving chip according to the embodiment of the present invention can be formed as a general driving chip, which can be applied to display panels with different sub-pixel arrangements, so that the design cost and the manufacturing cost can be reduced.
  • An embodiment of the present invention also provides a display driving device, which includes the above-mentioned driving chip.
  • the embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the sub-pixel rendering method provided in the foregoing embodiment are implemented.
  • the processor here may be a processor or a collective term for multiple processing elements.
  • the processor may be a CPU or one or more integrated circuits configured to implement the above sub-pixel rendering method. .
  • the computer-readable storage medium provided in this embodiment stores a program capable of correspondingly implementing the sub-pixel rendering method provided in the foregoing embodiment.
  • the program stored in the computer-readable storage medium and the specific steps of the processor executing the program can also be referred to the description of the specific execution part of the above-mentioned driving chip.
  • the embodiments described herein can be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processor can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this application Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described herein can be implemented by modules (such as procedures, functions, etc.) that perform the functions described herein.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the embodiments of the embodiments of the present invention may be provided as methods, devices, or computer program products. Therefore, the embodiments of the present invention may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the embodiments of the present invention may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • the embodiments of the present invention are described with reference to the flowcharts and/or block diagrams of the methods, terminal devices (chips), and computer program products according to the embodiments of the present invention.
  • each process and/or block in the flowchart and/or block diagram, and the combination of processes and/or blocks in the flowchart and/or block diagram can be implemented by computer program instructions.
  • These computer program instructions can be provided to the processors of general-purpose computers, special-purpose computers, embedded processors, or other programmable data processing terminal equipment to generate a machine, so that instructions executed by the processor of the computer or other programmable data processing terminal equipment A device for realizing the function specified in one flow or multiple flows and/or one block or multiple blocks in the flowchart is generated.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing terminal equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the instruction device implements the functions specified in one process or multiple processes and/or one block or multiple blocks in the flowchart.
  • These computer program instructions can also be loaded on a computer or other programmable data processing terminal equipment, so that a series of operation steps are executed on the computer or other programmable terminal equipment to produce computer-implemented processing, so that the computer or other programmable terminal equipment
  • the instructions executed on the above provide steps for realizing the function specified in one flow or multiple flows and/or one block or multiple blocks in the flowchart.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

子像素渲染方法、驱动芯片(12)和显示装置(10),子像素(23)渲染方法包括获得显示面板的子像素排列方式(S01);根据子像素(23)排列和像素单元的位置,获得像素单元的渲染单元(131, 141, 151, 161, 171, 132, 142, 152, 162, 172)及相应子像素(23)的亮度渲染系数(BR, BG, BB)和缩放系数(x)(S02),以及根据亮度渲染系数(BR, BG, BB)和缩放系数(x),对每个图像像素的灰阶驱动参数进行调整,以改变相应子像素(23)的发光亮度(S04),其中,多个像素单元包括第一像素单元(P1)和第二像素单元(P2),第一像素单元(P1)的渲染单元(131, 141, 151, 161, 171)仅包括第一像素单元(P1)的内部子像素,第二像素单元(P2)的渲染单元(132, 142, 152, 162, 172)包括第二像素单元(P2)的内部子像素以及相邻的第一像素单元(P1)的补偿子像素,可以减少显示面板(11)的子像素(23)数量,从而可以降低设计成本和制造成本。

Description

子像素渲染方法、驱动芯片和显示装置 技术领域
本发明涉及显示技术领域,更具体地涉及一种子像素渲染方法驱动芯片和显示装置。
背景技术
显示面板包括多个像素单元,每个像素单元包括多个子像素,例如,多个子像素分别用于显示红、绿、蓝三色之一。在显示图像时,图像像素与面板的像素单元相对应,在每个像素单元中,通过不同颜色的多个子像素的亮度控制来实现图像像素的显示,因而,采用面板的多个像素单元可以实现完整图像的显示。
在有机发光二极管(缩写为OLED)显示装置中,采用有机发光二极管作为子像素单元。与传统的液晶显示装置不同,OLED显示装置的对比度高、厚度薄、视角广、可弯曲,因此已经获得广泛的关注。OLED显示装置的子像素单元是主动发光元件,子像素单元的数量与成本相关。高分辨率的OLED显示装置需要与分辨率相应数量的子像素单元,并且需要减小子像素单元的尺寸以实现高密度的集成,不仅导致制造工艺困难,而且导致产品成本提高。
进一步改进的方法是采用子像素渲染方法实现高分辨率,其中,每个像素单元例如包括两种颜色的子像素单元,并且从相邻像素单元共用第三种颜色的子像素,因而可以减少面板子像素单元的数量,降低工艺难度和产品成本。
由于子像素渲染方法与子像素排列相关,因此,针对特定的子像素排列需要使用专门设计的驱动电路。不同厂家的OLED显示装置的子像素排列存在着差异,如果分别设计相应的驱动电路,则会提高驱动电路的设计成本和制造成本。
发明内容
鉴于上述问题,本申请的目的在于提供子像素渲染方法、驱动芯片和显示装置,其中,采用子像素渲染方法减少子像素的数量。
本申请一方面提供了一种子像素渲染方法,用于驱动显示面板的多个像素单元,每个像素单元包括不同颜色的多个子像素,所述方法包括:
获得显示面板的子像素排列;
根据所述子像素排列和像素单元的位置,获得所述像素单元的渲染单元及相应子像素的亮 度渲染系数和缩放系数,以及
根据所述亮度渲染系数和缩放系数,对每个图像像素的灰阶驱动参数进行调整,以改变所述相应子像素的发光亮度,
其中,所述多个像素单元包括第一像素单元和第二像素单元,所述第一像素单元的渲染单元包括内部子像素,所述第二像素单元的渲染单元包括内部子像素以及相邻像素单元的补偿子像素。
优选地,所述显示面板的子像素排列是在行方向上重复1个蓝色子像素、沿列方向排列的2个绿色子像素、沿列方向排列的2个红色子像素的周期性结构,所述显示面板的子像素密度为每2个像素单元包括2个红色子像素、2个绿色子像素、1个蓝色子像素。
优选地,所述绿色子像素和所述红色子像素的密度相同且为所述蓝色子像素密度的一半,其中,子像素的密度与发光亮度相关。
优选地,所述第一像素单元包括彼此邻近的1个蓝色子像素、1个绿色子像素、1个红色子像素,所述第二像素单元包括彼此邻近的1个绿色子像素、1个红色子像素,所述第二像素单元的渲染单元从相邻的第一像素单元获得1个蓝色子像素作为补偿子像素。
优选地,所述第一像素单元和所述第二像素单元各自的渲染单元分别根据以下的公式获得各个子像素的亮度渲染系数:
BR:BG:BB=x:x:1/2*x       (1),
其中,BR、BG、BB分别表示红色子像素、绿色子像素和蓝色子像素的亮度渲染系数,x表示缩放系数。
优选地,所述缩放系数x是灰阶驱动电流最大值与系统驱动电流最大值的比值,并且1/2≤x≤1。
优选地,所述显示面板的子像素排列是在行方向上重复1个红色子像素、沿列方向排列的2个绿色子像素、沿列方向排列的2个蓝色子像素的周期性结构,所述显示面板的子像素密度为每2个像素单元包括1个红色子像素、2个绿色子像素、2个蓝色子像素。
优选地,所述绿色子像素和所述蓝色子像素的密度相同且为所述红色子像素密度的一半,其中,子像素的密度与发光亮度相关。
优选地,所述第一像素单元包括彼此邻近的1个红色子像素、1个绿色子像素、1个蓝色子像素,所述第二像素单元包括彼此邻近的1个绿色子像素、1个蓝色子像素,所述第二像素单元的渲染单元从相邻的第一像素单元获得1个红色子像素作为补偿子像素。
优选地,所述第一像素单元和所述第二像素单元分各自的渲染单元分别根据以下的公式获 得各个子像素的亮度渲染系数:
BR:BG:BB=1/2*x:x:x       (3),
其中,BR、BG、BB分别表示红色子像素、绿色子像素和蓝色子像素的亮度渲染系数,x表示缩放系数。
优选地,所述缩放系数x是灰阶驱动电流最大值与系统驱动电流最大值的比值,并且1/2≤x≤1。
优选地,所述显示面板的子像素排列是在行方向上重复1个蓝色子像素、沿列方向排列的1个红色子像素和1个绿色子像素的周期性结构,所述显示面板的子像素密度为每6个像素单元包括5个红色子像素、5个绿色子像素、5个蓝色子像素。
优选地,所述红色子像素、所述绿色子像素和所述蓝色子像素密度相等,其中,子像素的密度与发光亮度相关。
优选地,所述多像素单元还包括第三像素单元至第六像素单元,第三像素单元至第六像素单元各自的渲染单元包括内部子像素以及相邻像素单元的补偿子像素,
所述第一像素单元包括沿列方向排列的1个红色子像素和1个绿色子像素、以及相邻的1个蓝色子像素,
所述第二像素单元包括沿列方向排列的1个红色子像素和1个绿色子像素;
所述第三像素单元包括1个蓝色子像素、以及相邻的沿列方向排列的1个红色子像素和1个绿色子像素;
所述第四像素单元和所述第五像素单元分别包括各自的蓝色子像素,以及二者均分沿列方向排列的1个红色子像素和1个绿色子像素;
所述第六像素单元包括沿列方向排列的1个红色子像素和1个绿色子像素,以及相邻的1个蓝色子像素,
所述第二像素单元至所述第六像素单元的渲染单元从相邻的像素单元获得至少一个蓝色子像素,使得相应的渲染单元包括1个红色子像素、1个绿色子像素、以及2个蓝色子像素。
优选地,所述第一像素单元根据以下的公式获得各个子像素的亮度渲染系数:
BR:BG:BB=5/6*x:5/6*x:5/6*x      (5),
其中,BR、BG、BB分别表示红色子像素、绿色子像素和蓝色子像素的亮度渲染系数,x表示缩放系数。
优选地,所述第二像素单元至第六像素单元分别根据以下的公式获得各个子像素的亮度渲染系数:
BR:BG:BB=5/6*x:5/6*x:5/12*x       (6),
其中,BR、BG、BB分别表示红色子像素、绿色子像素和蓝色子像素的亮度渲染系数,x表示缩放系数。
优选地,所述缩放系数x是灰阶驱动电流最大值与系统驱动电流最大值的比值,并且1/10≤x≤1。
本申请另一方面提供了一种驱动芯片,应用于显示面板,包括:
第一存储单元,用于在本地存储所述显示面板的预设参数,或者从主机接收并存储所述显示面板的配置参数;
第二存储单元,用于存储不同显示面板的像素单元的渲染单元及相应的亮度渲染系数和缩放系数;以及
图像处理单元,与所述第一存储单元和所述第二存储单元相连接,并且在执行指令时进行以下处理:
获得显示面板的子像素排列方式;
根据所述子像素排列和像素单元的位置,获得所述像素单元的渲染单元及相应的亮度渲染系数和缩放系数,所述渲染单元包括所述像素单元的内部子像素和与所述像素单元相邻的多个补偿像素;
将每个图像像素的颜色分量映射成所述像素单元的渲染单元的各个子像素的灰阶值;以及
根据所述亮度渲染系数和缩放系数,对每个图像像素的灰阶驱动参数进行调整,以改变所述相应子像素的发光亮度,
其中,所述多个像素单元包括第一像素单元和第二像素单元,所述第一像素单元的渲染单元包括所述第一像素单元的内部子像素,所述第二像素单元的渲染单元包括所述第二像素单元的内部子像素以及相邻的第一像素单元的补偿子像素。
优选地,所述驱动参数包括灰阶信号对应的驱动电流、驱动电压和占空比中的至少之一。
优选地,所述显示面板为液晶显示面板和有机发光二极管显示面板中的一种。
本申请另一方面提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现上述的子像素渲染方法的步骤。
本申请另一方面提供了一种显示装置,其中,包括上述的驱动芯片。
根据本发明实施例的子像素渲染方法,根据显示面板的子像素排列获得像素单元的渲染单元和相应的亮度渲染系数和缩放系数,以适用于不同子像素排列的显示面板,至少一部分像素单元共用相邻的像素单元的子像素以减少显示面板的子像素数量,从而可以降低设计成本和制 造成本。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其他目的、特征和优点将更为清楚。
图1示出根据现有技术的显示面板的第一类型子像素排列及其像素单元的示意图。
图2示出根据现有技术的显示面板的第二类型子像素排列及其像素单元的示意图。
图3示出根据本发明实施例的第三类型子像素排列及其一种分割方式的像素单元的示意图。
图4a和4b分别示出图3所示子像素排列中第一像素单元和第二像素单元的子像素渲染方法。
图5示出根据本发明实施例的第三类型子像素排列及其另一种分割方式的像素单元的示意图。
图6a和6b分别示出图5所示子像素排列中第一像素单元和第二像素单元的子像素渲染方法。
图7示出根据本发明实施例的第三类型子像素排列及其另一种分割方式的像素单元的示意图。
图8a和8b分别示出图7所示子像素排列中第一像素单元和第二像素单元的子像素渲染方法。
图9示出根据本发明实施例的替代实施例中的第四类型子像素排列及其一种分割方式的像素单元的示意图。
图10a和10b分别示出图9所示子像素排列中第一像素单元和第二像素单元的子像素渲染方法。
图11示出根据本发明实施例的显示面板的第二类型子像素排列及其像素单元的示意图。
图12a和12b分别示出图11所示子像素排列中第一像素单元和第二至第六像素单元的子像素渲染方法。
图13示出根据本发明实施例的子像素渲染方法的流程图。
图14示出根据本发明实施例的显示装置的示意性框图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以通过不同的形式来实现,并不限于本文所描述的实施例。相反的,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员 通常理解的含义相同。本文在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
下面,参照附图对本发明进行详细说明。
图1示出根据现有技术的显示面板的第一类型子像素排列及其像素单元的示意图。
显示面板100包括按行和列排成阵列的多个红色子像素101、多个蓝色子像素102和多个绿色子像素103。在同一行中,多个子像素的排列是重复1个红色子像素101、1个蓝色子像素102、沿列方向排列的2个绿色子像素103的周期性结构。在同一列中,多个红色子像素101和多个蓝色子像素102排成列,或者多个绿色子像素103排成列。
上述的显示面板100例如包括两种类型的像素单元。第一像素单元P1包括1个红色子像素101及相邻的1个绿色子像素103,例如同一行或相邻行的1个绿色子像素103。第一像素单元P1缺少蓝色子像素102,因此,在显示驱动时需要从相邻的第二像素单元P2共用蓝色子像素102。第二像素单元P2包括1个蓝色子像素102及相邻的1个绿色子像素103,例如同一行或相邻行的1个绿色子像素103。第二像素单元P2缺少红色子像素101,因此,在显示驱动时需要从相邻的第一像素单元P1共用红色子像素101。
在工作期间,例如,逐行向扫描线提供扫描信号以选择相应行的子像素,经由多个数据线分别向相应列的子像素提供相应的灰阶数据,使得多个子像素的发光亮度与灰阶数据一致。
优选地,红色子像素101与蓝色子像素102的密度相等,绿色子像素103则是红色子像素101的密度的一半。子像素的密度例如与发光亮度相关,子像素密度大,其发光亮度高,同时屏幕显示精细度高。例如,在OLED显示装置中,子像素由主动发光元件组成。单个红色子像素101和单个蓝色子像素102的灰阶数据的渲染系数例如为1/2,单个绿色子像素103的渲染系数例如为1,三种颜色的子像素的发光亮度彼此均衡。
图2示出根据现有技术的显示面板的第二类型子像素排列及其像素单元的示意图。
显示面板200包括按行和列排成阵列的多个红色子像素201、多个蓝色子像素202和多个绿色子像素203。在同一行中,多个子像素的排列是重复沿列方向排列的1个红色子像素201和1个绿色子像素203、以及1个蓝色子像素202的周期性结构。在同一列中,多个红色子像素201、多个绿色子像素203和多个蓝色子像素202依次排成列。
上述的显示面板200例如包括三种类型的像素单元。第一像素单元P1包括1个红色子像素201及相邻的1个绿色子像素203,例如同一行或相邻行的1个绿色子像素203。第一像素单元P1缺少蓝色子像素202,因此,在显示驱动时需要从相邻的第二像素单元P2共用蓝色子像素202。第二像素单元P2包括1个蓝色子像素202及相邻的1个红色子像素201,例如同一行或相邻行的1个红色 子像素201。第二像素单元P2缺少绿色子像素203,因此,在显示驱动时需要从相邻的第三像素单元P3共用绿色子像素203。第三像素单元P3包括1个绿色子像素203及相邻的蓝色子像素202,例如同一行或相邻行的1个蓝色子像素202。第三像素单元P3缺少红色子像素201,因此,在显示驱动时需要从相邻的第一像素单元P1共用红色子像素201。
在工作期间,例如,逐行向扫描线提供扫描信号以选择相应行的子像素,经由多个数据线分别向相应列的子像素提供相应的灰阶数据,使得多个子像素的发光亮度与灰阶数据一致。
优选地,红色子像素201、蓝色子像素202与绿色子像素203的密度相等。子像素的密度例如与发光亮度相关,子像素密度大,其发光亮度高,同时屏幕显示精细度高。例如,在OLED显示装置中,子像素由主动发光元件组成。单个红色子像素201、单个蓝色子像素202、以及单个绿色子像素203的渲染系数例如为1,三种颜色的子像素的发光亮度彼此均衡。
图3示出根据本发明实施例的第三类型子像素排列及其一种分割方式的像素单元的示意图。
显示面板300包括按行和列排成阵列的多个红色子像素301、多个蓝色子像素302和多个绿色子像素303。在同一行中,多个子像素的排列是重复1个蓝色子像素302、沿列方向排列的2个绿色子像素303、沿列方向排列的2个红色子像素301的周期性结构。在同一列中,多个红色子像素301和多个蓝色子像素302排成列,或者多个绿色子像素303排成列。
上述的显示面板300例如包括两种类型的像素单元。第一像素单元P1包括1个蓝色子像素302及相邻的1个绿色子像素303和一个红色子像素301,例如当前行的1个蓝色子像素302、右侧下方的1个绿色子像素303、右侧上方的1个红色子像素301。第一像素单元P1包括三种颜色的子像素,因此,在显示驱动时无需从相邻的第一像素单元P1共用任何颜色的子像素。第二像素单元P2包括1个红色子像素301及相邻的1个绿色子像素303,例如当前行下方的1个红色子像素301及相邻行右侧上方的1个绿色子像素303。第二像素单元P2缺少蓝色子像素302,因此,在显示驱动时需要从相邻的第一像素单元P1共用蓝色子像素302。
该显示面板300的子像素密度为每3个像素单元包括2个红色子像素、2个绿色子像素、2个蓝色子像素。
在图3所示的显示面板300中,彼此相邻的两个像素单元P1和P2共用2个红色子像素301、2个绿色子像素303和1个蓝色子像素。每个像素单元的单点亮度例如是红色子像素和绿色子像素分别为1,蓝色子像素为1/2。
在工作期间,例如,逐行向扫描线提供扫描信号以选择相应行的子像素,经由多个数据线分别向相应列的子像素提供相应的灰阶数据,使得多个子像素的发光亮度与灰阶数据一致。
优选地,红色子像素301与绿色子像素303的密度相等,均为蓝色子像素302的密度的一半。 子像素的密度例如与发光亮度相关,子像素密度大,其发光亮度高,同时屏幕显示精细度高。例如,在OLED显示装置中,子像素由主动发光元件组成。单个蓝色子像素302的灰阶数据的渲染系数例如为1/2,单个红色子像素301和单个绿色子像素303的渲染系数例如为1,三种颜色的子像素的发光亮度彼此均衡。
图4a示出图3所示子像素排列中第一像素单元的子像素渲染方法。
第一像素单元P1包括全部三种颜色的子像素,无需从相邻的第二像素单元P2共用任何颜色的子像素。第二像素单元P2内部的红色子像素、绿色子像素和蓝色子像素构成渲染单元131,需要从相邻的第一像素单元P1共用蓝色子像素302。
第一像素单元P1的渲染单元141的公式表示为:
BR:BG:BB=x:x:1/2*x       (1),
其中,BR、BG、BB分别表示红色子像素、绿色子像素和蓝色子像素的亮度渲染系数,x表示缩放系数。
该缩放系数x例如是灰阶驱动电流最大值与系统驱动电流最大值的比值,例如1/2≤x≤1。
例如,在系统驱动电流最大值为100mA且缩放系数x=1/2的情形下,第一像素单元P1显示的灰阶数据例如是(10,10,10),则第一像素单元P1的渲染单元131的红色子像素、绿色子像素和蓝色子像素的灰阶驱动电流分别为1.96mA、1.96mA、0.98mA。
图4b示出图3所示子像素排列中第二像素单元的子像素渲染方法。
第二像素单元P2内部的红色子像素和绿色子像素,与邻近的补偿子像素构成渲染单元132。如图所示,第一像素单元P1的补偿子像素包括右侧的一个最近邻第一像素单元P1的蓝色子像素。
第二像素单元P2的渲染单元132的公式表示为:
BR:BG:BB=x:x:1/2*x       (2),
其中,BR、BG、BB分别表示红色子像素、绿色子像素和蓝色子像素的亮度渲染系数,x表示缩放系数。
该缩放系数x例如是灰阶驱动电流最大值与系统驱动电流最大值的比值,例如1/2≤x≤1。
例如,在系统驱动电流最大值为100mA且缩放系数x=1/2的情形下,第二像素单元P2显示的灰阶数据例如是(10,10,10),则第二像素单元P2的渲染单元132的红色子像素、绿色子像素和蓝色子像素的灰阶驱动电流分别为1.96mA、1.96mA、0.98mA。
图5示出根据本发明实施例的第三类型子像素排列及其另一种分割方式的像素单元的示意图。
图5所示显示面板的子像素排列方式与图3所示的显示面板的子像素排列方式相同,在此不 做详述。
进一步地,图5所示的显示面板的两个像素单元P1和P2的内部子像素与图3所示的显示面板的两个像素单元P1和P2的内部子像素却是不同的。
第一像素单元P1包括1个蓝色子像素302及相邻的1个绿色子像素303和一个红色子像素301,例如当前行的1个蓝色子像素302、右侧上方的1个绿色子像素303和右侧上方与该绿色子像素303位于同行的1个红色子像素301。第一像素单元P1包括三种颜色的子像素,因此,在显示驱动时无需从相邻的第二像素单元P2共用任何颜色的子像素。第二像素单元P2包括1个红色子像素301及相邻的1个绿色子像素303,例如当前行的彼此邻近且位于上方的1个绿色子像素303及1个红色子像素301。第二像素单元P2缺少蓝色子像素302,因此,在显示驱动时需要从相邻的第一像素单元P1共用蓝色子像素302。
该显示面板400的子像素密度为每3个像素单元包括2个红色子像素、2个绿色子像素、2个蓝色子像素。
在图5所示的显示面板400中,彼此相邻的两个像素单元P1和P2共用2个红色子像素301、2个绿色子像素303和1个蓝色子像素。
在工作期间,例如,逐行向扫描线提供扫描信号以选择相应行的子像素,经由多个数据线分别向相应列的子像素提供相应的灰阶数据,使得多个子像素的发光亮度与灰阶数据一致。
优选地,红色子像素301与绿色子像素303的密度相等,均为蓝色子像素302的密度的一半。子像素的密度例如与发光亮度相关,子像素密度大,其发光亮度高,同时屏幕显示精细度高。例如,在OLED显示装置中,子像素由主动发光元件组成。单个蓝色子像素302的灰阶数据的渲染系数例如为1/2,单个红色子像素301和单个绿色子像素303的渲染系数例如为1,三种颜色的子像素的发光亮度彼此均衡。
图6a示出图5所示子像素排列中第一像素单元的子像素渲染方法。
如图所示,第一像素单元P1包括全部三种颜色的子像素,无需从相邻的第二像素单元P2共用任何颜色的子像素。第一像素单元P1内部的红色子像素、绿色子像素和蓝色子像素构成渲染单元141。第一像素单元P1的渲染单元141的公式与上述公式(1)相同,在此不再详述。
图6b示出图5所示子像素排列中第二像素单元的子像素渲染方法。
如图所示,第二像素单元P2内部的红色子像素和绿色子像素,与邻近的补偿子像素构成渲染单元142。如图所示,第二像素单元P2的补偿子像素包括右侧的一个最近邻第一像素单元P1的蓝色子像素。第二像素单元P2的渲染单元142的公式与上述公式(2)相同,在此不再详述。
图7示出根据本发明实施例的第三类型子像素排列及其另一种分割方式的像素单元的示意 图。
图7所示显示面板的子像素排列方式与图3和图5所示的显示面板的子像素排列方式相同,在此不同详述。
进一步地,图7所示的显示面板的两个像素单元P2的内部子像素与图5所示的显示面板的像素单元P2的内部子像素却是不同的。
第一像素单元P1包括1个蓝色子像素302及相邻的1个绿色子像素303和一个红色子像素301,例如当前行的1个蓝色子像素302、右侧上方的1个绿色子像素303和左侧上方与该绿色子像素303的1个红色子像素301。第一像素单元P1包括三种颜色的子像素,因此,在显示驱动时无需从相邻的第二像素单元P2共用任何颜色的子像素。第二像素单元P2包括1个红色子像素301及相邻的1个绿色子像素303,例如当前行的彼此邻近且位于上方的1个绿色子像素303及1个红色子像素301。第二像素单元P2缺少蓝色子像素302,因此,在显示驱动时需要从相邻的第一像素单元P1共用蓝色子像素302。
该显示面板500的子像素密度为每2个像素单元包括2个红色子像素、2个绿色子像素、1个蓝色子像素。
在工作期间,例如,逐行向扫描线提供扫描信号以选择相应行的子像素,经由多个数据线分别向相应列的子像素提供相应的灰阶数据,使得多个子像素的发光亮度与灰阶数据一致。
优选地,红色子像素301与绿色子像素303的密度相等,均为蓝色子像素302的密度的一半。子像素的密度例如与发光亮度相关,子像素密度大,其发光亮度高,同时屏幕显示精细度高。例如,在OLED显示装置中,子像素由主动发光元件组成。单个蓝色子像素302的灰阶数据的渲染系数例如为1/2,单个红色子像素301和单个绿色子像素303的渲染系数例如为1,三种颜色的子像素的发光亮度彼此均衡。
图8a示出图7所示子像素排列中第一像素单元的子像素渲染方法。
如图所示,第一像素单元P1包括全部三种颜色的子像素,无需从相邻的第二像素单元P2共用任何颜色的子像素。第一像素单元P1内部的红色子像素、绿色子像素和蓝色子像素构成渲染单元151。第一像素单元P1的渲染单元151的公式与上述公式(1)相同,在此不再详述。
图8b示出图7所示子像素排列中第二像素单元的子像素渲染方法。
如图所示,第二像素单元P2内部的红色子像素和绿色子像素,与邻近的补偿子像素构成渲染单元152。如图所示,第二像素单元P2的补偿子像素包括右侧的一个最近邻第一像素单元P1的蓝色子像素。第二像素单元P2的渲染单元152的公式与上述公式(2)相同,在此不再详述。
在上述的实施例中,在图3、图5和图7中示出的显示面板的子像素排列是重复1个蓝色子像 素302、沿列方向排列的2个绿色子像素303、沿列方向排列的2个红色子像素301的周期性结构。
在替代的实施例中,如图9所示,显示面板600采用第四类型的子像素排列,即,在行方向上重复1个红色子像素301、沿列方向排列的2个绿色子像素303、沿列方向排列的2个蓝色子像素302的周期性结构。
第一像素单元P1包括1个红色子像素601及相邻的1个绿色子像素603和1个蓝色子像素602,例如当前行的1个红色子像素601、右侧下方的1个绿色子像素603、左侧下方和该红色子像素601位于同行的1个蓝色子像素602。第一像素单元P1的渲染单元161的公式表示为:
BB:BR:BG=x:1/2*x:x      (3),
其中,BR、BG、BB分别表示红色子像素、绿色子像素和蓝色子像素的亮度渲染系数,x表示缩放系数。
第二像素单元P2包括1个蓝色子像素602及相邻的1个绿色子像素603,例如当前行下方的1个蓝色子像素602及相邻行右侧上方的1个绿色子像素603。第二像素单元P2的渲染单元162的公式表示为:
BG:BB:BR=x:x:1/2*x      (4),
其中,BR、BG、BB分别表示红色子像素、绿色子像素和蓝色子像素的亮度渲染系数,x表示缩放系数。
图10a示出图9所示子像素排列中第一像素单元的子像素渲染方法。
如图所示,第一像素单元P1包括全部三种颜色的子像素,无需从相邻的第二像素单元P2共用任何颜色的子像素。第一像素单元P1内部的红色子像素601、绿色子像素603和蓝色子像素602构成渲染单元161。第一像素单元P1的渲染单元161的公式与上述公式(3)相同,在此不再详述。
图10b示出图9所示子像素排列中第二像素单元的子像素渲染方法。
如图所示,第二像素单元P2内部的蓝色子像素602和绿色子像素603,与邻近的补偿子像素构成渲染单元162。如图所示,第二像素单元P2的补偿子像素包括右侧的一个最近邻第一像素单元P1的蓝色子像素603。第二像素单元P2的渲染单元162的公式与上述公式(4)相同,在此不再详述。
图11示出根据本发明实施例的显示面板的第二类型子像素排列及其像素单元的示意图。
显示面板700包括按行和列排成阵列的多个红色子像素701、多个蓝色子像素702和多个绿色子像素703。在同一行中,多个子像素的排列是重复沿列方向排列的1个红色子像素701和1个绿色子像素703、以及1个蓝色子像素702的周期性结构。在同一列中,多个红色子像素701、多个绿色子像素703和多个蓝色子像素702依次排成列。
上述的显示面板700例如包括六种类型的像素单元。第一像素单元P1至第六像素单元P6分割5个原始三色像素单元的物理区域。第一像素单元P1包括沿列方向排列的1个红色子像素701和1个绿色子像素703、以及相邻的1个蓝色子像素702。第二像素单元P2包括沿列方向排列的1个红色子像素701和1个绿色子像素703,缺少1个蓝色子像素702。第三像素单元P3包括1个蓝色子像素702、以及相邻的沿列方向排列的1个红色子像素701和1个绿色子像素703。第四像素单元P4和第五像素单元P5分别包括各自的蓝色子像素702,以及二者均分沿列方向排列的1个红色子像素701和1个绿色子像素703。第六像素单元P6包括沿列方向排列的1个红色子像素701和1个绿色子像素703,以及相邻的1个蓝色子像素702。第一像素单元P1采用内部的三色子像素实现彩色显示,第二像素单元P2至第六像素单元P6则分别从相邻的像素单元共用蓝色子像素702。
该显示面板700的子像素密度为每6个像素单元包括5个红色子像素、5个绿色子像素、5个蓝色子像素。
在图11所示的显示面板700中,彼此相邻的六个像素单元P1至P6共用5个红色子像素701、5个绿色子像素703和5个蓝色子像素702。每个像素单元的单点亮度例如是红色子像素、绿色子像素、蓝色子像素分别为5/6。
在工作期间,例如,逐行向扫描线提供扫描信号以选择相应行的子像素,经由多个数据线分别向相应列的子像素提供相应的灰阶数据,使得多个子像素的发光亮度与灰阶数据一致。
优选地,红色子像素701、蓝色子像素702与绿色子像素703的密度相等。子像素的密度例如与发光亮度相关,子像素密度大,其发光亮度高,同时屏幕显示精细度高。例如,在OLED显示装置中,子像素由主动发光元件组成。单个红色子像素701、单个蓝色子像素702、以及单个绿色子像素703的渲染系数例如为1,三种颜色的子像素的发光亮度彼此均衡。
图12a示出图11所示子像素排列中第一像素单元的子像素渲染方法。
第一像素单元P1内部的红色子像素和绿色子像素、以及蓝色子像素构成渲染单元171。如图所示,第一像素单元P1包括三色子像素,无需从相邻的像素单元获得补偿子像素。渲染单元171包括1个红色子像素、1个绿色子像素、以及1个蓝色子像素。
第一像素单元P1的渲染单元171的公式表示为:
BR:BG:BB=5/6*x:5/6*x:5/6*x      (5),
其中,BR、BG、BB分别表示红色子像素、绿色子像素和蓝色子像素的亮度渲染系数,x表示缩放系数。
该缩放系数x例如是灰阶驱动电流最大值与系统驱动电流最大值的比值,例如1/10≤x≤1,优选地,x等于1/10、3/10、5/10、6/10、1中的任一个。
例如,在系统驱动电流最大值为100mA且缩放系数x=5/10的情形下,第一像素单元P1显示的灰阶数据例如是(10,10,10),则第一像素单元P1的渲染单元171的红色子像素、绿色子像素和蓝色子像素的灰阶驱动电流分别为1.63mA、1.63mA、1.63mA。
图12b示出图11所示子像素排列中和第二至第六像素单元的子像素渲染方法。
第二像素单元P2至P6,分别与邻近的补偿子像素构成渲染单元172。如图所示,第二像素单元P2至P6的补偿子像素例如是相邻像素单元的红色子像素、绿色子像素、蓝色子像素的一部分或全部。渲染单元172包括1个红色子像素、1个绿色子像素、以及2个蓝色子像素。
第二像素单元P2至P6的渲染单元172的公式表示为:
BR:BG:BB=5/6*x:5/6*x:5/12*x      (6),
其中,BR、BG、BB分别表示红色子像素、绿色子像素和蓝色子像素的亮度渲染系数,x表示缩放系数。
该缩放系数x例如是灰阶驱动电流最大值与系统驱动电流最大值的比值,例如1/10≤x≤1,优选地,x等于1/10、3/10、5/10、6/10、1中的任一个。
例如,在系统驱动电流最大值为100mA且缩放系数x=5/10的情形下,第一像素单元P1显示的灰阶数据例如是(10,10,10),则第二像素单元P2至P6的渲染单元152的红色子像素、绿色子像素和蓝色子像素的灰阶驱动电流分别为1.63mA、1.63mA、0.82mA。
图13示出根据本发明实施例的子像素渲染方法的流程图。该子像素渲染方法例如采用通用的驱动芯片实现,用于驱动各种显示面板。显示面板包括多个像素单元,每个像素单元包括不同颜色的多个子像素。
在步骤S01中,获得显示面板的子像素排列。
在图3、图5和图7所示的第三类型子像素排列中,所述显示面板的多个子像素按行和列排列成阵列,在同一行中,所述多个子像素的排列是重复1个蓝色子像素、沿列方向排列的2个红色子像素、沿列方向排列的2个绿色子像素的周期性结构。所述显示面板的子像素排列是在行方向上重复排列第一像素单元和第二像素单元的周期性结构。
在上述的第三类型子像素排列中,如果采用第一种分割方式,则第一像素单元包括当前行的1个蓝色子像素、右侧下方的1个绿色子像素、右侧上方的1个红色子像素,所述第二像素单元包括当前行下方的1个红色子像素301及相邻行右侧上方的1个绿色子像素,如图3所示。
在上述的第三类型子像素排列中,如果采用第二种分割方式,则第一像素单元包括当前行的1个蓝色子像素、右侧上方的1个绿色子像素和右侧上方与该绿色子像素位于同行的1个红色子像素,所述第二像素单元包括当前行的彼此邻近且位于下方的1个绿色子像素及1个红色 子像素,如图5所示。
在上述的第三类型子像素排列中,如果采用第三种分割方式,则第一像素单元包括当前行的1个蓝色子像素、右侧上方的1个绿色子像素和左侧上方与该绿色子像素位于同行的1个红色子像素,所述第二像素单元包括当前行的彼此邻近且位于下方的1个绿色子像素及1个红色子像素,如图7所示。
在替代的实施例中,如图9所示,显示面板600采用第四类型的子像素排列,即在行方向上重复1个红色子像素、沿列方向排列的2个绿色子像素、沿列方向排列的2个蓝色子像素的周期性结构,其像素单元可参考上述实施例中的三种分割方式,在此给出类似图7所示分割方式,也可为本领域普通技术人员不付出创造性劳动即可获得的其他分割方式。
在图11所示的第二类型子像素排列中,所述显示面板的多个子像素按行和列排列成阵列,在同一行中,所述多个子像素的排列是重复沿列方向排列的1个红色子像素和1个绿色子像素、以及1个蓝色子像素的周期性结构。所述显示面板的子像素排列是在行方向上重复排列第一像素单元和第二像素单元的周期性结构。
在上述的第二类型子像素排列中,第一像素单元至第六像素单元分割5个原始三色像素单元的物理区域,如图11所示。
在步骤S02中,根据子像素排列和像素单元的位置,获得像素单元的渲染单元及相应的亮度渲染系数,渲染单元包括像素单元的全部子像素,如果像素单元欠缺颜色,则进一步包括相邻像素单元用于补充所欠缺颜色的补偿子像素。
在上述的第三类型子像素排列中,如图3、图5和图7所示,不论采用第一种分割方式、第二种分割方式还是第三种分割方式,第一像素单元的渲染单元包括全部三种颜色的子像素,无需从相邻的第一像素单元共用任何颜色的子像素。根据上述的公式(1),可以计算出第一像素单元的渲染单元的红色子像素、绿色子像素、以及蓝色子像素的亮度渲染系数,从而计算出修正后的灰阶驱动电流。第二像素单元的渲染单元均从相邻的第二像素单元获取蓝色子像素作为补偿子像素。根据上述的公式(2),可以计算出第二像素单元的渲染单元的红色子像素、绿色子像素、以及蓝色子像素的亮度渲染系数。
在上述的第三类型子像素排列的替代实施例中,不论采用类似图7中的第三种分割方式,如图9所示,还是类似第一种分割方式和第二种分割方式,第一像素单元的渲染单元包括全部三种颜色的子像素,无需从相邻的第一像素单元共用任何颜色的子像素。根据上述的公式(3),可以计算出第一像素单元的渲染单元的红色子像素、绿色子像素、以及蓝色子像素的亮度渲染系数,从而计算出修正后的灰阶驱动电流。第二像素单元的渲染单元均从相邻的第二像素单元获 取蓝色子像素作为补偿子像素。根据上述的公式(4),可以计算出第二像素单元的渲染单元的红色子像素、绿色子像素、以及蓝色子像素的亮度渲染系数。
在上述的第二类型子像素排列中,如图11所示,第一像素单元自身的子像素构成渲染单元,第二至第六像素单元的渲染单元均从相邻的像素单元获取子像素的一部分作为补偿子像素以构成渲染单元。第一像素单元的渲染单元例如包括1个红色子像素、1个绿色子像素和1个蓝色子像素,根据上述的公式(5),可以计算出相应像素单元的渲染单元的红色子像素、绿色子像素、以及蓝色子像素的亮度渲染系数,从而计算出修正后的灰阶驱动电流。第二至第六像素单元的渲染单元例如分别包括1个红色子像素、1个绿色子像素、2个蓝色子像素,根据上述的公式(6),可以计算出第二至第六像素单元的渲染单元的红色子像素、绿色子像素、以及蓝色子像素的亮度渲染系数。
在步骤S03中,根据公式提供的亮度渲染系数,将每个图像像素的颜色分量映射成像素单元相应的渲染单元的三色子像素的灰阶值。
在步骤S04中,根据所述亮度渲染系数和缩放系数,对每个图像像素的灰阶驱动参数(例如为灰阶驱动电流)进行调整,从而计算出修正后的灰阶驱动电流,继而改变相应子像素的发光亮度。
根据本发明实施例的子像素渲染方法使得驱动芯片可以适用于不同子像素排列的显示面板,从而可以降低设计成本和制造成本。
图14示出根据本发明实施例的显示装置的示意性框图。
如图所示,显示装置10包括显示面板11和驱动芯片12。显示面板11例如是OLED(有机发光二极管)显示面板或液晶显示面板。
显示面板11包括扫描线21、数据线22、多个子像素23和扫描电路25。子像素23设置在扫描线21和数据线22的相交处,并且配置成显示红、绿和蓝色其中之一。当OLED显示面板用作显示面板11时,在一个实施例中,显示红色的子像素23可包括发射红光的发光元件,显示绿色的子像素23可包括发射绿光的发光元件,以及显示蓝色的子像素23可包括发射蓝光的发光元件。
驱动芯片12从主机所接收的图像数据41和控制数据42。图像数据41包括图像的各个像素的颜色值。控制数据42包括用于控制驱动芯片12的命令和参数。应用处理器、CPU(中央处理器)、DSP(数字信号处理器)等可用作主机。
驱动芯片12对于接收的图像数据41执行预期图像数据过程,以生成用于驱动显示面板11的灰阶电压32。该灰阶电压与子像素的灰阶值相对应。在驱动芯片12中执行的图像数据过程包括子像素渲染方法。在驱动芯片12中执行的图像数据过程可包括除了子像素渲染过程之外的过程 (例如色彩调整)。
例如,驱动芯片12包括图像处理单元、第一存储单元和第二存储单元。第一存储单元用于在本地存储显示面板的预设参数,或者从主机接收并存储显示面板的配置参数。第二存储单元用于存储不同显示面板的像素单元的渲染单元及相应的亮度渲染系数,例如相应的查找表。图像处理单元根据预设参数或配置参数可以获得显示面板的子像素排列,根据所述子像素排列和像素单元的位置,获得所述像素单元的渲染单元及相应的亮度渲染系数,所述渲染单元包括所述像素单元的内部子像素和与所述像素单元相邻的多个补偿像素;以及根据所述亮度渲染系数,将每个图像像素的颜色分量映射成所述像素单元的内部子像素的灰阶值,以及所述多个补偿子像素的灰阶值。
驱动芯片12向显示面板11提供扫描信号31和灰阶电压32。在显示面板11中,扫描电路25从驱动芯片12接收的扫描信号31而驱动扫描线21。在这个实施例中,提供一对扫描电路25。扫描电路25之一驱动奇数序号的扫描线21,而另一驱动偶数序号的扫描线21。驱动芯片12采用灰阶电压32驱动数据线22。
根据本发明实施例的驱动芯片可以形成为通用驱动芯片,可以适用于不同子像素排列的显示面板,从而可以降低设计成本和制造成本。
本发明实施例还提供了一种显示驱动装置,其中,包括如上述的驱动芯片。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例提供的子像素渲染方法的步骤。
值得注意,这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,或者是被配置成实施以上子像素渲染方法的一个或多个集成电路。
本实施例提供的计算机可读存储介质存储有能够对应实现上述实施例提供的子像素渲染方法的程序。此外,计算机可读存储介质中存储的程序,以及处理器执行该程序的具体步骤,也均可参见上述驱动芯片具体执行部分的描述。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理器可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技 术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本发明实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本发明实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。本发明实施例是参照根据本发明实施例的方法、终端设备(芯片)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或一个方框或多个方框中指定的功能的步骤。
应当说明的是,在本文中,所含术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (22)

  1. 一种子像素渲染方法,用于驱动显示面板的多个像素单元,每个像素单元包括不同颜色的多个子像素,所述方法包括:
    获得显示面板的子像素排列;
    根据所述子像素排列和像素单元的位置,获得所述像素单元的渲染单元及相应子像素的亮度渲染系数和缩放系数,以及
    根据所述亮度渲染系数和缩放系数,对每个图像像素的灰阶驱动参数进行调整,以改变所述相应子像素的发光亮度,
    其中,所述多个像素单元包括第一像素单元和第二像素单元,所述第一像素单元的渲染单元包括内部子像素,所述第二像素单元的渲染单元包括内部子像素以及相邻像素单元的补偿子像素。
  2. 根据权利要求1所述的子像素渲染方法,其中,所述显示面板的子像素排列是在行方向上重复1个蓝色子像素、沿列方向排列的2个绿色子像素、沿列方向排列的2个红色子像素的周期性结构,所述显示面板的子像素密度为每2个像素单元包括2个红色子像素、2个绿色子像素、1个蓝色子像素。
  3. 根据权利要求2所述的子像素渲染方法,其中,所述绿色子像素和所述红色子像素的密度相同且为所述蓝色子像素密度的一半,其中,子像素的密度与发光亮度相关。
  4. 根据权利要求2所述的子像素渲染方法,其中,所述第一像素单元包括彼此邻近的1个蓝色子像素、1个绿色子像素、1个红色子像素,所述第二像素单元包括彼此邻近的1个绿色子像素、1个红色子像素,所述第二像素单元的渲染单元从相邻的第一像素单元获得1个蓝色子像素作为补偿子像素。
  5. 根据权利要求4所述的子像素渲染方法,其中,所述第一像素单元和所述第二像素单元各自的渲染单元分别根据以下的公式获得各个子像素的亮度渲染系数:
    BR:BG:BB=x:x:1/2*x    (1),
    其中,BR、BG、BB分别表示红色子像素、绿色子像素和蓝色子像素的亮度渲染系数,x表示缩放系数。
  6. 根据权利要求5所述的子像素渲染方法,其中,所述缩放系数x是灰阶驱动电流最大值与系统驱动电流最大值的比值,并且1/2≤x≤1。
  7. 根据权利要求1所述的子像素渲染方法,其中,所述显示面板的子像素排列是在行方向上重复1个红色子像素、沿列方向排列的2个绿色子像素、沿列方向排列的2个蓝色子像素的 周期性结构,所述显示面板的子像素密度为每2个像素单元包括1个红色子像素、2个绿色子像素、2个蓝色子像素。
  8. 根据权利要求7所述的子像素渲染方法,其中,所述绿色子像素和所述蓝色子像素的密度相同且为所述红色子像素密度的一半,其中,子像素的密度与发光亮度相关。
  9. 根据权利要求7所述的子像素渲染方法,其中,所述第一像素单元包括彼此邻近的1个红色子像素、1个绿色子像素、1个蓝色子像素,所述第二像素单元包括彼此邻近的1个绿色子像素、1个蓝色子像素,所述第二像素单元的渲染单元从相邻的第一像素单元获得1个红色子像素作为补偿子像素。
  10. 根据权利要求9所述的子像素渲染方法,其中,所述第一像素单元和所述第二像素单元分各自的渲染单元分别根据以下的公式获得各个子像素的亮度渲染系数:
    BR:BG:BB=1/2*x:x:x    (3),
    其中,BR、BG、BB分别表示红色子像素、绿色子像素和蓝色子像素的亮度渲染系数,x表示缩放系数。
  11. 根据权利要求10所述的子像素渲染方法,其中,所述缩放系数x是灰阶驱动电流最大值与系统驱动电流最大值的比值,并且1/2≤x≤1。
  12. 根据权利要求1所述的子像素渲染方法,其中,所述显示面板的子像素排列是在行方向上重复1个蓝色子像素、沿列方向排列的1个红色子像素和1个绿色子像素的周期性结构,所述显示面板的子像素密度为每6个像素单元包括5个红色子像素、5个绿色子像素、5个蓝色子像素。
  13. 根据权利要求12所述的子像素渲染方法,其中,所述红色子像素、所述绿色子像素和所述蓝色子像素密度相等,其中,子像素的密度与发光亮度相关。
  14. 根据权利要求12所述的子像素渲染方法,其中,所述多像素单元还包括第三像素单元至第六像素单元,第三像素单元至第六像素单元各自的渲染单元包括内部子像素以及相邻像素单元的补偿子像素,
    所述第一像素单元包括沿列方向排列的1个红色子像素和1个绿色子像素、以及相邻的1个蓝色子像素,
    所述第二像素单元包括沿列方向排列的1个红色子像素和1个绿色子像素;
    所述第三像素单元包括1个蓝色子像素、以及相邻的沿列方向排列的1个红色子像素和1个绿色子像素;
    所述第四像素单元和所述第五像素单元分别包括各自的蓝色子像素,以及二者均分沿列方 向排列的1个红色子像素和1个绿色子像素;
    所述第六像素单元包括沿列方向排列的1个红色子像素和1个绿色子像素,以及相邻的1个蓝色子像素,
    所述第二像素单元至所述第六像素单元的渲染单元从相邻的像素单元获得至少一个蓝色子像素,使得相应的渲染单元包括1个红色子像素、1个绿色子像素、以及2个蓝色子像素。
  15. 根据权利要求14所述的子像素渲染方法,其中,所述第一像素单元根据以下的公式获得各个子像素的亮度渲染系数:
    BR:BG:BB=5/6*x:5/6*x:5/6*x    (5),
    其中,BR、BG、BB分别表示红色子像素、绿色子像素和蓝色子像素的亮度渲染系数,x表示缩放系数。
  16. 根据权利要求14所述的子像素渲染方法,其中,所述第二像素单元至第六像素单元分别根据以下的公式获得各个子像素的亮度渲染系数:
    BR:BG:BB=5/6*x:5/6*x:5/12*x    (6),
    其中,BR、BG、BB分别表示红色子像素、绿色子像素和蓝色子像素的亮度渲染系数,x表示缩放系数。
  17. 根据权利要求15或16所述的子像素渲染方法,其中,所述缩放系数x是灰阶驱动电流最大值与系统驱动电流最大值的比值,并且1/10≤x≤1。
  18. 一种驱动芯片,应用于显示面板,包括:
    第一存储单元,用于在本地存储所述显示面板的预设参数,或者从主机接收并存储所述显示面板的配置参数;
    第二存储单元,用于存储不同显示面板的像素单元的渲染单元及相应的亮度渲染系数和缩放系数;以及
    图像处理单元,与所述第一存储单元和所述第二存储单元相连接,并且在执行指令时进行以下处理:
    获得显示面板的子像素排列方式;
    根据所述子像素排列和像素单元的位置,获得所述像素单元的渲染单元及相应的亮度渲染系数和缩放系数,所述渲染单元包括所述像素单元的内部子像素和与所述像素单元相邻的多个补偿像素;
    将每个图像像素的颜色分量映射成所述像素单元的渲染单元的各个子像素的灰阶值;以及
    根据所述亮度渲染系数和缩放系数,对每个图像像素的灰阶驱动参数进行调整,以改变所述相应子像素的发光亮度,
    其中,所述多个像素单元包括第一像素单元和第二像素单元,所述第一像素单元的渲染单元包括所述第一像素单元的内部子像素,所述第二像素单元的渲染单元包括所述第二像素单元的内部子像素以及相邻的第一像素单元的补偿子像素。
  19. 根据权利要求18所述的驱动芯片,其中,所述驱动参数包括灰阶信号对应的驱动电流、驱动电压和占空比中的至少之一。
  20. 根据权利要求18所述的驱动芯片,其中,所述显示面板为
    液晶显示面板和有机发光二极管显示面板中的一种。
  21. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至17中任一项所述的子像素渲染方法的步骤。
  22. 一种显示装置,其中,包括如权利要求18至20中任一项所述的驱动芯片。
PCT/CN2019/114882 2019-10-31 2019-10-31 子像素渲染方法、驱动芯片和显示装置 WO2021081954A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/114882 WO2021081954A1 (zh) 2019-10-31 2019-10-31 子像素渲染方法、驱动芯片和显示装置
CN201980002240.6A CN110945582B (zh) 2019-10-31 2019-10-31 子像素渲染方法、驱动芯片和显示装置
KR1020207005186A KR102314074B1 (ko) 2019-10-31 2019-10-31 부화소 렌더링 방법, 구동 칩 및 표시 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114882 WO2021081954A1 (zh) 2019-10-31 2019-10-31 子像素渲染方法、驱动芯片和显示装置

Publications (1)

Publication Number Publication Date
WO2021081954A1 true WO2021081954A1 (zh) 2021-05-06

Family

ID=69913087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114882 WO2021081954A1 (zh) 2019-10-31 2019-10-31 子像素渲染方法、驱动芯片和显示装置

Country Status (3)

Country Link
KR (1) KR102314074B1 (zh)
CN (1) CN110945582B (zh)
WO (1) WO2021081954A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113936589A (zh) * 2021-10-26 2022-01-14 卡莱特云科技股份有限公司 一种虚拟像素校正方法及装置
CN113936590A (zh) * 2021-10-26 2022-01-14 卡莱特云科技股份有限公司 基于虚拟像素led显示屏的亮度校正方法、装置及显示系统
CN116486738A (zh) * 2023-06-19 2023-07-25 长春希达电子技术有限公司 像素复用方法、数据传输系统以及显示屏控制系统和方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710279B (zh) * 2020-06-30 2023-07-04 京东方科技集团股份有限公司 图像渲染方法及装置、显示设备、存储介质及电子设备
CN115440153A (zh) 2021-06-01 2022-12-06 力领科技股份有限公司 显示面板的子像素渲染方法
CN113658549B (zh) * 2021-08-17 2022-10-21 晟合微电子(肇庆)有限公司 子像素渲染方法、显示装置及存储介质
CN113838900B (zh) * 2021-09-22 2023-09-01 京东方科技集团股份有限公司 像素排列结构、显示面板及显示设备
CN114203063B (zh) * 2021-11-30 2024-07-02 深圳市洲明科技股份有限公司 显示设备
CN114138224B (zh) * 2021-12-07 2023-05-30 深圳市华星光电半导体显示技术有限公司 图像中子像素的渲染方法、装置、计算机设备和存储介质
CN114879397B (zh) * 2022-05-23 2023-05-09 重庆惠科金渝光电科技有限公司 显示面板、显示面板的驱动方法和显示装置
CN115294927B (zh) * 2022-09-28 2022-12-27 长春希达电子技术有限公司 一种基于像素复用的颜色补偿方法、存储介质和系统
CN115731859A (zh) * 2022-10-28 2023-03-03 惠科股份有限公司 显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102568376A (zh) * 2010-12-13 2012-07-11 乐金显示有限公司 用于驱动有机发光显示装置的设备和方法
CN105047092A (zh) * 2015-08-06 2015-11-11 上海和辉光电有限公司 显示器及其像素阵列
CN106157876A (zh) * 2015-03-27 2016-11-23 上海和辉光电有限公司 显示器图像的显示方法及显示器
CN107293571A (zh) * 2017-06-09 2017-10-24 深圳市华星光电技术有限公司 Oled显示面板的像素排列结构及oled显示面板
CN108877640A (zh) * 2018-09-27 2018-11-23 京东方科技集团股份有限公司 显示面板及显示面板驱动方法
KR20190138179A (ko) * 2018-06-04 2019-12-12 엘지디스플레이 주식회사 전계발광표시장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7525526B2 (en) * 2003-10-28 2009-04-28 Samsung Electronics Co., Ltd. System and method for performing image reconstruction and subpixel rendering to effect scaling for multi-mode display
GB2525388B (en) * 2014-04-17 2021-01-13 Advanced Risc Mach Ltd Method of and apparatus for processing data for a display
KR101934088B1 (ko) * 2014-07-31 2019-01-03 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
KR20160018936A (ko) * 2014-08-07 2016-02-18 엘지디스플레이 주식회사 유기발광표시패널
CN105261321A (zh) * 2015-09-18 2016-01-20 深圳市华星光电技术有限公司 一种像素渲染方法、像素渲染装置和显示器
CN105552102B (zh) * 2015-12-23 2019-07-02 昆山国显光电有限公司 像素排布结构及其制造方法,显示器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102568376A (zh) * 2010-12-13 2012-07-11 乐金显示有限公司 用于驱动有机发光显示装置的设备和方法
CN106157876A (zh) * 2015-03-27 2016-11-23 上海和辉光电有限公司 显示器图像的显示方法及显示器
CN105047092A (zh) * 2015-08-06 2015-11-11 上海和辉光电有限公司 显示器及其像素阵列
CN107293571A (zh) * 2017-06-09 2017-10-24 深圳市华星光电技术有限公司 Oled显示面板的像素排列结构及oled显示面板
KR20190138179A (ko) * 2018-06-04 2019-12-12 엘지디스플레이 주식회사 전계발광표시장치
CN108877640A (zh) * 2018-09-27 2018-11-23 京东方科技集团股份有限公司 显示面板及显示面板驱动方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113936589A (zh) * 2021-10-26 2022-01-14 卡莱特云科技股份有限公司 一种虚拟像素校正方法及装置
CN113936590A (zh) * 2021-10-26 2022-01-14 卡莱特云科技股份有限公司 基于虚拟像素led显示屏的亮度校正方法、装置及显示系统
CN113936590B (zh) * 2021-10-26 2022-09-16 卡莱特云科技股份有限公司 基于虚拟像素led显示屏的亮度校正方法、装置及显示系统
CN113936589B (zh) * 2021-10-26 2022-09-30 卡莱特云科技股份有限公司 一种虚拟像素亮色度校正方法及装置
CN116486738A (zh) * 2023-06-19 2023-07-25 长春希达电子技术有限公司 像素复用方法、数据传输系统以及显示屏控制系统和方法
CN116486738B (zh) * 2023-06-19 2023-09-19 长春希达电子技术有限公司 像素复用方法、数据传输系统以及显示屏控制系统和方法

Also Published As

Publication number Publication date
KR20210054483A (ko) 2021-05-13
KR102314074B1 (ko) 2021-10-19
CN110945582B (zh) 2022-03-04
CN110945582A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2021081954A1 (zh) 子像素渲染方法、驱动芯片和显示装置
US11594175B2 (en) Organic light emitting display device and driving method thereof
US9898978B2 (en) Liquid crystal panels and the driving circuits thereof
JP5544387B2 (ja) デルタ構造のカラーディスプレイにカラー画像をレンダリングする方法及びデルタ構造のカラーディスプレイの駆動装置
US10115358B2 (en) Display apparatus
CN105185244B (zh) 一种像素结构、显示面板及显示装置
US9786210B2 (en) Pixel array composed of pixel units, display and method for rendering image on a display
EP2819118B1 (en) Pixel structure and display panel
JP6140711B2 (ja) 液晶表示装置
TW201816754A (zh) 顯示裝置
WO2016188024A1 (zh) 阵列基板、显示面板、显示装置及驱动方法
US10510306B2 (en) Display panel and display apparatus having the same
US20090027425A1 (en) Display device and driving method for display device
US20160171917A1 (en) Display panel
CN110599962B (zh) 不同颜色序列Delta型子像素显示面板的渲染方法
WO2019184106A1 (zh) 显示面板及显示装置
CN106328031A (zh) 显示面板和具有该显示面板的显示装置
US20200258440A1 (en) System and method for driving three-color and four-color pixel display panel
US9589494B2 (en) Display device
KR20130045735A (ko) 표시장치
TW201742043A (zh) 具有新穎的子像素排列方式的顯示裝置
JP2020518022A (ja) 表示パネルの駆動方法及び駆動装置
CN110599954B (zh) 子像素渲染方法和显示驱动装置
CN109817158B (zh) 显示面板的驱动方法、装置及显示装置
KR20150029362A (ko) 유기전계발광 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950676

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950676

Country of ref document: EP

Kind code of ref document: A1