WO2021081922A1 - 控制方法、装置和存储介质 - Google Patents

控制方法、装置和存储介质 Download PDF

Info

Publication number
WO2021081922A1
WO2021081922A1 PCT/CN2019/114813 CN2019114813W WO2021081922A1 WO 2021081922 A1 WO2021081922 A1 WO 2021081922A1 CN 2019114813 W CN2019114813 W CN 2019114813W WO 2021081922 A1 WO2021081922 A1 WO 2021081922A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference point
movable platform
position information
heading
user
Prior art date
Application number
PCT/CN2019/114813
Other languages
English (en)
French (fr)
Inventor
贾向华
闫光
王璐
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/114813 priority Critical patent/WO2021081922A1/zh
Priority to CN201980040905.2A priority patent/CN112313599B/zh
Publication of WO2021081922A1 publication Critical patent/WO2021081922A1/zh
Priority to US17/701,709 priority patent/US20220214700A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0202Control of position or course in two dimensions specially adapted to aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Definitions

  • This application relates to the field of equipment control, and in particular to a control method, device and storage medium.
  • the present application provides a control method, device and storage medium to solve the problem of insufficient operation control of a movable platform in the prior art.
  • the first aspect of the present application provides a control method, including: the method includes:
  • the movable platform According to the position information, the first direction and the second direction of the first reference point and the second reference point, controlling the movable platform to perform work tasks in the first work area;
  • the first work area is a reference line connecting the first reference point and the second reference point, a reference line extending from the first reference point in the first direction, and a reference line extending from the second reference point.
  • the reference point is an area defined by a reference line extending along the second direction.
  • the second aspect of the present application provides a control device, including:
  • a memory storing executable code
  • One or more processors working individually or collectively, execute the executable code to achieve:
  • the method includes:
  • the movable platform According to the position information, the first direction and the second direction of the first reference point and the second reference point, controlling the movable platform to perform work tasks in the first work area;
  • the first work area is a reference line connecting the first reference point and the second reference point, a reference line extending from the first reference point in the first direction, and a reference line extending from the second reference point.
  • the reference point is an area defined by a reference line extending along the second direction.
  • a third aspect of the present application provides a computer-readable storage medium having executable code stored in the computer-readable storage medium, and the executable code is used to implement the control method described in the first aspect.
  • the user sets the reference direction corresponding to the reference point through the operation of the control terminal, can flexibly plan the work area of the movable platform, improve the operation convenience of controlling the movable platform, and improve the work efficiency.
  • Figure 1 is a schematic architecture diagram of an unmanned aerial vehicle system provided by an embodiment of the application
  • FIG. 2 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a work plan provided by an embodiment of the application.
  • FIG. 4 is a flowchart of a control method provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a work area planning provided by an embodiment of this application.
  • Fig. 6 is a schematic diagram of generating a route in a work area provided by an embodiment of the application.
  • FIG. 7 is a flowchart of a control method provided by another embodiment of this application.
  • FIG. 8 is a schematic diagram of a work area planning provided by another embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a control device provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a work planning system for a movable platform provided by an embodiment of the application.
  • the user can define the route trajectory of the movable platform.
  • the movable platform can move along a defined route and perform tasks.
  • the movable platform may be an unmanned vehicle, unmanned aerial vehicle, unmanned ship, robot, amphibious or ternary movable platform, and so on. It can also be a mobile platform with a certain function of manning people, for example, a car with automatic driving function and so on.
  • the above-mentioned route is not limited to being understood as a trajectory of airspace.
  • the actual application scenarios of the movable platform are different.
  • the route can be interpreted as the surface motion trajectory, the airspace motion trajectory, the underwater motion trajectory, and so on.
  • the movable platform moves along the route and can also perform tasks such as spraying pesticides, collecting images, collecting soil samples, detecting fire sources, and so on.
  • drones can move along a route, spray pesticides on the land covered by the route, or collect vegetation growth.
  • the mobile platform can accept instructions from a control terminal connected to it to perform work operations.
  • the control terminal can be a mobile phone, a laptop computer, a remote control, a smart wearable device, a VR control device, and so on.
  • the control terminal can detect the operation of the user through the interactive device.
  • the interactive device can be an important part of the control terminal and an interface for interacting with the user.
  • the user can control the movable platform by operating the interactive device; When the user wants to control the movable platform, the user operates the interactive device of the control terminal, and the control terminal detects the user's operation through the interactive device.
  • the interactive device can be, for example, one or more of the touch screen, keyboard, joystick, and wave wheel of the control terminal; at the same time, the touch screen can also display the operating parameters of the movable platform, and can display the images taken by the movable platform. Picture.
  • Fig. 1 is a schematic architecture diagram of an unmanned aerial vehicle system according to an embodiment of the present application.
  • a rotary wing drone is taken as an example for description.
  • the drone system 100 may include a drone 110, a display device 130, and a control terminal 140.
  • the unmanned aerial vehicle 110 is taken as an example of an unmanned aerial vehicle, which may include a power system 150, a control system 160, a frame, and a pan/tilt 120 carried on the frame.
  • the drone 110 can wirelessly communicate with the control terminal 140 and the display device 130.
  • the drone may also be an unmanned vehicle or an unmanned ship.
  • the frame may include a fuselage and a tripod (also called a landing gear).
  • the fuselage may include a center frame and one or more arms connected to the center frame, and the one or more arms extend radially from the center frame.
  • the tripod is connected with the fuselage, and is used for supporting the UAV 110 when it is landed.
  • the power system 150 may include one or more electronic governors (referred to as ESCs for short) 151, one or more propellers 153, and one or more motors 152 corresponding to the one or more propellers 153.
  • the motor 152 is connected between the ESC 151 and the propeller 153, and the motor 152 and the propeller 153 are arranged on the arm of the drone 110.
  • the ESC 151 is used to receive the driving signal generated by the control system 160 and provide a driving current to the motor 152 according to the driving signal to control the rotation speed of the motor 152. It should be noted that one ESC 151 may correspond to multiple motors, or multiple ESCs 151 may correspond to one motor 152 respectively.
  • the motor 152 is used to drive the propeller to rotate, thereby providing power for the flight of the drone 110, and the power enables the drone 110 to achieve one or more degrees of freedom of movement.
  • the drone 110 may rotate about one or more rotation axes.
  • the aforementioned rotation axis may include a roll axis (Roll), a yaw axis (Yaw), and a pitch axis (pitch).
  • the motor 152 may be a DC motor or an AC motor.
  • the motor 152 may be a brushless motor or a brushed motor.
  • the control system 160 may include a controller 161 and a sensing system 162.
  • the sensing system 162 is used to measure the attitude information of the drone, that is, the position information and state information of the drone 110 in space, such as three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system 162 may include, for example, at least one of sensors such as a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (IMU), a vision sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system may be the Global Positioning System (GPS).
  • the controller 161 is used to control the flight or operation of the drone 110, for example, it can control the flight or operation of the drone 110 according to the attitude information measured by the sensor system 162. It should be understood that the controller 161 can control the drone 110 according to pre-programmed program instructions, and can also control the drone 110 by responding to one or more control instructions from the control terminal 140.
  • the pan/tilt head 120 may include a pan/tilt motor 122.
  • the pan/tilt is used to carry the camera 123.
  • the controller 161 can control the movement of the pan-tilt 120 through the pan-tilt motor 122.
  • the pan/tilt head 120 may further include a pan/tilt controller for controlling the movement of the pan/tilt head 120 by controlling the pan/tilt motor 122.
  • the pan-tilt 120 may be independent of the drone 110 or a part of the drone 110.
  • the pan/tilt motor 122 may be a DC motor or an AC motor.
  • the pan/tilt motor 122 may be a brushless motor or a brushed motor. It should also be understood that the pan-tilt can be located on the top of the drone, or on the bottom of the drone.
  • the photographing device 123 may be, for example, a device for capturing images, such as a camera or a video camera, and the photographing device 123 may communicate with the flight controller and take pictures under the control of the flight controller.
  • the imaging device 123 of this embodiment at least includes a photosensitive element, and the photosensitive element is, for example, a Complementary Metal Oxide Semiconductor (CMOS) sensor or a Charge-coupled Device (CCD) sensor. It can be understood that the camera 123 can also be directly fixed to the drone 110, so the pan/tilt 120 can be omitted.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge-coupled Device
  • the display device 130 is located on the ground, can communicate with the drone 110 in a wireless manner, and can be used to display the attitude information of the drone 110.
  • the image taken by the imaging device may also be displayed on the display device 130. It should be understood that the display device 130 may be an independent device or integrated in the control terminal 140.
  • the control terminal 140 is located on the ground end of the UAV system 100, and can communicate with the UAV 110 in a wireless manner for remote control of the UAV 110.
  • a liquid storage tank 170 is also mounted between the legs of the UAV, and the liquid storage tank 170 is used to store liquid medicine or water; and the arm There is also a spray head 180 at the end of the, and the liquid in the liquid storage tank 170 is pumped into the spray head 180 by a pump, and is sprayed out by the spray head 180.
  • a continuous wave radar 190 can be mounted on the tripod.
  • the continuous wave radar 190 is a rotating continuous wave radar.
  • the continuous wave radar 190 can be used for ranging, but is not limited to ranging.
  • the agricultural drone may include two or more tripods, and the continuous wave radar 190 is mounted on one of the tripods.
  • Figure 3 is a schematic diagram of planning a route in a rectangular operation plot.
  • the user marks the position coordinates of point A1 and point B1, where A1 is one corner point of the rectangular plot, and B1 is the other corner point of the rectangular plot.
  • determine the A2 point according to the position of the A1 point and the working distance
  • determine the B2 point according to the position of the B1 point and the working distance.
  • determine point B3 according to the position of point B2 and the working distance the An point is determined according to the position of the An-1 point and the working distance
  • the Bn point is determined according to the position of the Bn-1 point and the working distance to determine the position coordinates of the An and Bn points.
  • the planned route includes the connection between A1 and B1, the connection between A2 and B2, ... the connection between An and Bn.
  • Each of the lines is parallel to each other.
  • the mobile platform performs a flight mission, it takes off from point A1 and passes through point B1, point B2, point A2, point A3, point B3, point B4, point A4... point Bn-1, An-1 point, An point, Bn point.
  • the movable platform flies along the above-mentioned route, and its trajectory is in a reciprocating "S" shape.
  • the movable platform also has a certain operating radius. With the movement of the movable platform, its already operated area gradually covers the entire rectangular operation plot.
  • the work area presents many possible shapes.
  • the user can determine the largest inscribed rectangular area in these irregular areas, and plan the route for the movable platform to operate automatically through the above scheme.
  • other irregular areas are manually controlled by the user to work on the movable platform.
  • a triangular area determine an inscribed rectangular area with the largest area, and plan a route for the movable platform to operate automatically through the above scheme.
  • the small area in the corresponding triangular area other than the rectangular plot because it contains the corners of the original triangular area, is not convenient to be described by a rectangular area, and it is not convenient to plan a route that can allow the movable platform to operate automatically.
  • the user can manually control the operation of the movable platform.
  • the embodiment of the present application proposes a control method to improve the convenience of the operation of the movable needle platform.
  • FIG. 4 is a schematic flowchart of a control method provided by an embodiment of the application. As shown in FIG. 4, the control method may include the following steps:
  • S401 Acquire location information of the first reference point and the second reference point.
  • the position information of at least two reference waypoints can be obtained, and the at least two reference waypoints are respectively located at different boundaries of the target operation area.
  • the first reference point and the second reference point may be corner points located at the bottom side of the trapezoid, respectively.
  • At least one of the position information of the first reference point and the position information of the second reference point is determined according to the collected position information of the movable platform of.
  • the acquired position information of the first reference point and the second reference point includes: in response to a user's first position setting operation, using the current position information of the movable platform as the position of the first reference point Information; in response to the user's second location setting operation, the current location information of the movable platform is used as the location information of the second reference point.
  • the process by which the movable platform reaches the reference point may be controlled by the user.
  • the user controls the movable platform to move to the reference point, and then executes the position setting operation.
  • a reference point recognition rule set by the movable platform may identify the reference point and move to the reference point.
  • Corresponding reference points may be provided with identifiers, for example, ground cross logos, flagpole logos, etc., and the movable platform recognizes where the identifiers are located and sends an inquiry message to the user whether to perform location setting. Further, after receiving the inquiry information, the user executes the location setting operation.
  • the position setting operation may be pressing a position setting confirmation key of a terminal device communicatively connected with the movable platform. Furthermore, a corresponding instruction is generated based on the confirmation key. It may also be that the user issues a voice instruction for instructing to collect the coordinates of the current position of the movable platform. It may also be that the user issues a gesture instruction for instructing to collect the coordinates of the current position of the movable platform.
  • These instructions may be responded to by the movable platform or a control device communicatively connected with the movable platform, and use the current position information of the drone as the position information of the reference point.
  • the user may control the drone to fly to a reference point and control the drone to hover, and in response to the position setting operation, use the current position information of the drone as the reference point Location information.
  • At least one of the position information of the first reference point and the position information of the second reference point is detected by detecting that the user is in a communication connection with the movable platform.
  • the third location setting operation of the digital map displayed on the terminal device is determined.
  • the location setting operation may include the user selecting a point on the digital map.
  • the acquired position information of the first reference point and the second reference point includes: in response to a user's third position setting operation, determining the position information of the first reference point according to the position coordinates of the point selected by the user on the digital map In response to the user's fourth location setting operation, the location information of the second reference point is determined according to the location coordinates of the point selected by the user on the digital map.
  • the position information of the reference point can be determined according to the position coordinates and the voyage height of the selected point on the digital map.
  • the selected points on the digital map may include two-dimensional coordinates, such as latitude and longitude coordinates. On the basis of the two-dimensional coordinates, a three-dimensional coordinate is determined according to the voyage height as the position information of the reference point.
  • At least one of the position information of the first reference point and the position information of the second reference point is collected and communicatively connected with the movable platform The location information of the terminal device is determined.
  • the acquired location information of the first reference point and the second reference point includes: in response to a user's fifth location setting operation, using the current location information of the terminal device as the location information of the first reference point ; In response to the user's sixth location setting operation, the current location information of the terminal device is used as the location information of the second reference point.
  • the user may bring the terminal device to the first reference point to perform the fifth position setting operation.
  • the user can bring the terminal device to the second reference point to perform the sixth position setting operation.
  • the position information of at least two reference waypoints can be obtained, and the at least two reference waypoints are respectively located at different boundaries of the target operation area.
  • the first reference point is located at a first boundary, and the first direction is an extension direction of the first boundary; the second reference point is located at a second boundary, and the second direction is an extension of the second boundary direction.
  • the first reference point and the second reference point may be corner points located at the bottom side of the trapezoid, respectively.
  • the first reference point is located at the first waist line of the trapezoid
  • the second reference point is located at the second waist line of the terrain.
  • the first direction is an extension direction of the first waistline
  • the second direction is an extension direction of the second waistline.
  • the first reference point and the second reference point may be corner points connected by the first side of the triangle.
  • the first reference point is located on the second side of the triangle, and the second reference point is located on the third side of the terrain.
  • the first direction is the extension direction of the second side, and the second direction is the extension direction of the third pass.
  • the shape of the target work area can also be a parallelogram or any quadrilateral.
  • the shape of the target work area can also be a parallelogram or any quadrilateral.
  • complex shapes such as pentagons, hexagons, dodecagons and other complex shapes, you can perform corresponding processing by determining multiple reference points and corresponding directions.
  • the complex polygon can be divided into multiple simple triangles or quadrilaterals.
  • the direction can be identified by vector information in a certain coordinate system.
  • the coordinate system can be either the earth coordinate system or the station center coordinate system.
  • the station center coordinate system is also called the station coordinate, or the east-north-sky coordinate system ENU, and the English name is local Cartesian coordinates coordinate system.
  • the direction can be used to indicate the included angle of a certain fixed direction.
  • the direction of the reference line connecting the first reference point and the second reference point can be determined, and the first direction corresponding to the first reference point can be determined by The first included angle between the lines represents, and the second direction corresponding to the second reference point can be represented by the second included angle with the reference line.
  • At least one of the first direction and the second direction is determined according to the collected heading of the movable platform.
  • the heading of the movable platform includes the heading of the fuselage of the movable platform or the heading of the camera of the movable platform.
  • the heading of the fuselage of the movable platform is the heading.
  • the movement of the movable platform is a "headless mode", that is, when the movable platform moves in various directions, there is no need to adjust the posture to make the head face the direction of movement.
  • the current direction of movement of the movable platform or the current direction of the control terminal can be used as the heading of the fuselage .
  • acquiring the first direction and the second direction includes: in response to a user's first direction setting operation of a terminal device communicatively connected with the movable platform, collecting the heading of the movable platform, and The collected heading is taken as the first direction; in response to the user's operation of setting the second direction of the terminal device communicatively connected with the movable platform, the heading of the movable platform is collected, and the collected heading As the second direction.
  • the user may control the movable platform to reach the first reference point, and collect the position coordinates of the first reference point through the first position setting operation. Further, the movable platform is controlled to rotate in situ, or move slightly, so that the heading of the movable platform points to the extension direction of a boundary of the work area, and the first direction setting operation is performed to determine the first direction according to the heading. One direction. Further, operations similar to those of the first reference point and the first direction are performed, the position coordinates of the second reference point are acquired, and the second direction is determined.
  • the movable platform is equipped with a shooting device, and the method further includes: displaying the image collected by the shooting device on the terminal device; The heading mark of the heading of the movable platform.
  • the user can observe the environment in which the movable platform is located through images, and determine whether the heading of the movable platform points to the extension direction of the boundary of the work area through the relationship between the characteristics of the objects in the environment and the heading mark.
  • the farmland operation area Take the farmland operation area as an example.
  • the farmland is surrounded by roads, ridges or rows of trees.
  • the user can determine whether the heading of the movable platform and whether it points to the extension direction of the boundary of the work area based on the imaging size of these objects in the image and the proportion of the imaging frame.
  • the heading indicator can assist the user in judgment to a certain extent, which improves the convenience of setting such a direction.
  • the line of sight direction of the photographing device may be consistent with the heading, and the obtained image may be referred to as the first person view (FPV) of the movable platform.
  • the center of the FPV image frame corresponds to the front view direction of the current camera. Since the direction corresponding to the center of the image is actually the heading of the movable platform, the heading mark can be displayed in the center of the image. This heading mark can be in the form of an arrow, an extension line, etc.
  • the image can also be processed with a preset image processing template to improve the distortion of the image, or the visual effect of the central area can be enhanced by adjusting the contrast, adjusting the brightness and other processing methods.
  • the direction setting operation collects the current heading of the movable platform, and determines the first direction according to the heading.
  • the setting operation corresponding to the second direction is similar to the first direction.
  • At least one of the first direction and the second direction is determined by the collected orientation of the terminal device communicatively connected with the movable platform.
  • the terminal device may be configured with an electronic gyroscope to sense the orientation of the terminal device with respect to the earth coordinate system.
  • the acquired position information of the first reference point and the second reference point includes: in response to a user's fifth direction setting operation, determining the first direction according to the current orientation of the terminal device; and in response to the user's The sixth direction setting operation is to determine the second direction according to the current orientation of the terminal device.
  • the user can move the terminal device to point to the extension direction of a boundary of the work area, and perform the fifth direction setting operation.
  • the user can move the terminal device to point to the extension direction of another boundary of the work area, and perform the sixth direction setting operation.
  • the user may bring the terminal device to the first reference point, and collect the position coordinates of the first reference point. Further, the terminal device is controlled to rotate in place, or move slightly, so that the orientation of the terminal device points to the extending direction of a boundary of the working area, and the fifth direction setting operation is used to determine the orientation of the terminal device according to the orientation of the terminal device. The first direction. Further, carrying the terminal device to the second reference point, performing operations similar to the first reference point and the first direction, acquiring the position coordinates of the second reference point, and determining the second direction.
  • At least one of the first direction and the second direction is determined by detecting the third direction of the digital map displayed on the control terminal communicatively connected to the movable platform by the user.
  • the direction setting operation is determined.
  • the method further includes: displaying a direction indicator corresponding to the at least one direction on the digital map; the third direction setting operation includes: an operation for adjusting the direction of the direction indicator.
  • a digital map of the work area may be displayed on the control terminal, and the identification of the determined first reference point may be displayed, and the starting point from the first reference point may be displayed for identifying the extension direction of the first direction.
  • Identification line The user can drag the identification line on the display screen, lengthen or shorten the identification line, and rotate the identification line to make the identification line meet the requirements. Through the operation of clicking the confirmation key, the first direction is determined according to the identification line.
  • At least one of the first direction and the second direction is determined by the movement path of the movable platform.
  • the user can control the movable platform to move from the first reference point to the boundary of the target work area where the first reference point is located. Further, the first direction may be determined according to the movement path of the movable platform point.
  • the moving path of the movable platform under the control of the user may not be a straight line, which will bring uncertainty.
  • S403 According to the position information of the first reference point and the second reference point, the first direction and the second direction, control a movable platform to perform a work task in a first work area.
  • the first work area is a reference line connecting the first reference point and the second reference point, a reference line extending from the first reference point in the first direction, and a reference line extending from the second reference point.
  • the reference point is an area defined by a reference line extending along the second direction.
  • the first operation area may be a part of the area to be planned. Therefore, through the solution of this embodiment, multiple above-mentioned work areas can be determined from the area to be planned.
  • the working area of the movable platform is also determined accordingly, that is, the first reference point and the second reference point
  • the first direction and the second direction can be any direction to adapt to irregular work areas.
  • the user sets the reference direction corresponding to the reference point through the operation of the control terminal, can flexibly plan the work area of the movable platform, improve the operation convenience of controlling the movable platform, and improve the work efficiency.
  • controlling the movable platform to perform work tasks in the first work area includes: The position information of the first reference point and the second reference point, the first direction and the second direction to plan a route; according to the route movement, the movable platform is controlled to be in the first operation area Perform work tasks within.
  • route planning can be carried out in the above-mentioned first operation area.
  • Figure 6 takes Figure 6 as an example to illustrate an optional implementation of route planning.
  • the longitude and latitude of the determined first reference point A are (lon A , lat A ), the first reference direction (for example, the collected heading of the movable platform at point A) is Yaw A , and the second reference point B
  • the longitude and latitude of the point are (lon B , lat B ), the second reference direction (for example, the collected heading of the movable platform at point B) is Yaw B
  • the set operation distance is l.
  • the extension of the reference line between points B moves in the direction of Yaw AB .
  • the distance between ′ and point A is l AA′
  • the distance between the next waypoint B′ and point B along the second reference direction of point B is l BB′ :
  • the planned route is composed of multiple route units; wherein, the route unit includes a main route segment, and two end points of the main route segment are respectively located along the first direction from the first reference point An extended reference line and a reference line extending from the second reference point in the second direction.
  • the connection of A'B' is the main route segment.
  • the route unit further includes a secondary route segment connecting any two adjacent main route segments; wherein the ends of the secondary route segment coincide with the ends of the two adjacent main route segments located on the same reference line .
  • the connection of BB' is the secondary route segment.
  • the main route segment is parallel to the reference line connecting the first reference point and the second reference point.
  • the position of the end point of the main route segment is determined according to the set working distance. For example, the line of A'B' is parallel to the line of AB, and the interval between the two is the working distance l.
  • the job spacing can be determined according to the user's job spacing setting operation. You can also get the job spacing from the network platform in related fields. It can also be set according to the type of operation, for example, the planting interval of vegetation in the agricultural field. It can also be set according to the working radius of the movable platform.
  • the above is only an optional implementation scheme for the route planning method.
  • the reference line between the first reference point and the second reference point, the reference line extending from the first reference point in the first reference direction, and the reference line extending from the second reference point can also be used.
  • spiral-shaped routes, grid-type routes, etc. are planned.
  • the first work area is based on the reference line between the first reference point and the second reference point, the reference line extending from the first reference point in the first reference direction, and the reference line extending from the second reference point along the The area defined by the reference line extending in the second reference direction. Without more restrictions, it is surrounded by three sides.
  • the first work area is a triangular shape surrounded by three sides.
  • the first A work area is open, and the route of the movable platform can extend indefinitely in this area.
  • a preset number of route units can be displayed first, and then more route units can be displayed after the movable platform passes these route units.
  • Fig. 7 is a flowchart of a control method shown in an exemplary embodiment of the present application. The method shown in Figure 7 includes:
  • S701 Acquire position information of the first reference point and the second reference point
  • S703 Determine whether the first direction and the second direction meet a direction condition.
  • the direction condition includes: the first direction and the second direction both point to the same side of the reference line of the first reference point and the second reference point; and the first direction and the second direction
  • the angle between the directions is greater than 0° and less than 180°.
  • the direction condition may also be: the first direction and the second direction both point to the same side of the reference line of the first reference point and the second reference point, and the first reference point and the second reference point.
  • the angle between the extension direction of the reference line of the second reference point and the first direction is greater than 0° and less than 180°, and the extension direction of the reference line of the first reference point and the second reference point is greater than 0° and less than 180°.
  • the included angle in the second direction is greater than 0° and less than 180°.
  • the direction condition may also be: the angle between the first direction and the second direction and the same normal direction of the reference line of the first reference point and the second reference point are both less than 90 degrees.
  • the direction condition can also be set according to the actual working capacity of the movable platform, for example, it is limited by the minimum turning angle of the movable platform.
  • the minimum turning angle of the movable platform is 30 degrees.
  • the angle between the extension direction of the reference line of the first reference point and the second reference point and the first direction is 170°.
  • the first work area is a reference line connecting the first reference point and the second reference point, a reference line extending from the first reference point in the first direction, and a reference line extending from the second reference point.
  • the reference point is an area defined by a reference line extending along the second direction.
  • the method may further include the following steps:
  • S705 In response to the user's operation for updating the work area, obtain location information of the third reference point and the fourth reference point.
  • the operation for updating the work area may occur after the movable platform completes the work task in the first work area. This operation can also occur in the process of performing a job task, and then the operation of the movable platform can be interrupted in response to this operation.
  • the position information of any one of the third reference point and the fourth reference point may be determined according to the current position point of the movable platform when the operation is interrupted.
  • the position information of the third reference point may be the current position of the movable platform when the operation is interrupted.
  • the third reference point may also be the boundary (reference line extending from the first reference point in the first direction) corresponding to the route unit where the movable platform is currently located when the operation is interrupted.
  • the position of the end point of a reference line extending from the second reference point in the second direction may be the boundary (reference line extending from the first reference point in the first direction) corresponding to the route unit where the movable platform is currently located when the operation is interrupted.
  • the position of the other reference point can be reset in response to the user's position setting operation.
  • the location of the other reference point can be determined according to the collected position information of the movable platform, can be determined by the collected position information of the terminal equipment communicatively connected with the movable platform, and can also be determined by detecting the user's presence and location.
  • the position setting operation of the digital map displayed on the terminal device communicatively connected to the mobile platform is determined.
  • the newly determined position of the fourth reference point is far away from the originally planned first operation area.
  • the current position of the movable platform is on a reference line extending from the first reference point in the first direction, and the current position of the movable platform is As the position of the third reference point.
  • the third direction can be set to be consistent with the first direction. It can also be reset according to the user's direction setting operation. As shown in FIG. 8, the third direction is inconsistent with the first direction.
  • the position of the fourth reference point can be reset in response to the user's position setting operation.
  • the fourth direction is a newly set direction.
  • the fourth direction corresponding to the fourth reference point may be determined according to the collected heading of the movable platform.
  • the heading of the movable platform includes the heading of the fuselage of the movable platform or the camera of the movable platform Heading.
  • the heading of the fuselage of the movable platform is the heading.
  • the movable platform is equipped with a shooting device, and the method further includes: displaying an image collected by the shooting device on the terminal device; and displaying a heading indicator for indicating the heading of the movable platform in the image.
  • the fourth direction corresponding to the fourth reference point can be determined by the collected orientation of the terminal device communicatively connected with the mobile platform, or can be determined by detecting the user's response to the display on the control terminal communicatively connected with the mobile platform.
  • the direction setting operation of the digital map may also be determined by the movement path of the movable platform.
  • S707 Control the movable platform to perform work tasks in the second work area according to the position information of the third reference point and the fourth reference point, the third direction, and the fourth direction;
  • the second operation area is an area defined by a reference line extending from the third reference point in the third direction and a reference line extending from the fourth reference point in the fourth direction.
  • the second work area may be further defined by a reference line connecting the third reference point and the fourth reference point.
  • the method of planning the route in the second operation area and further controlling the operation of the movable platform based on the planned route is similar to the previous embodiment, and the description will not be repeated here.
  • the reference line extending along the third direction at the third reference point and the reference line from the third reference point controls the operation of the movable platform in a second operation area defined by a reference line extending along the fourth direction. In this way, it is convenient and flexible to carry out the work area planning of the movable platform.
  • the first work area and the second work area can also be planned in sequence.
  • the foregoing embodiment does not limit a specific execution subject.
  • the above method can be executed by the movable receipt alone, or by the control terminal in cooperation with the movable platform, or by the control terminal alone.
  • FIG. 9 is a schematic structural diagram of a control device provided by an embodiment of the application; as shown in FIG. 9, the device 900 includes: a memory 901, which stores executable codes; and, one or more processors 902, individually or collectively To work.
  • the memory 901 and the processor 902 may be connected in communication via a bus.
  • the foregoing processor 902 may be a central processing unit (Central Processing Unit, CPU), and the processor 902 may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits (Application Specific Integrated Circuits). ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the one or more processors 902 execute the executable code stored in the memory 901 to implement:
  • the movable platform According to the position information, the first direction and the second direction of the first reference point and the second reference point, controlling the movable platform to perform work tasks in the first work area;
  • the first work area is a reference line connecting the first reference point and the second reference point, a reference line extending from the first reference point in the first direction, and a reference line extending from the second reference point.
  • the reference point is an area defined by a reference line extending along the second direction.
  • the position information of the first reference point and the second reference point may be determined based on the following optional implementation manners.
  • At least one of the position information of the first reference point and the position information of the second reference point is determined according to the collected position information of the movable platform .
  • the processor obtains the position information of the first reference point and the second reference point, it is specifically configured to:
  • the current position information of the movable platform is used as the position information of the second reference point.
  • At least one of the position information of the first reference point and the position information of the second reference point is collected by a terminal communicatively connected with the movable platform The location information of the device is determined.
  • At least one of the position information of the first reference point and the position information of the second reference point is determined by detecting that the user is in communication with the terminal connected to the mobile platform.
  • the third location setting operation of the digital map displayed on the device is determined.
  • first direction and the second direction may be determined based on the following optional implementation manners.
  • At least one of the first direction and the second direction is determined according to the collected heading of the movable platform.
  • the heading of the movable platform includes the heading of the fuselage of the movable platform or the heading of the camera of the movable platform.
  • the heading of the fuselage of the movable platform is the nose heading.
  • the processor when the processor acquires the first direction and the second direction, it is specifically configured to:
  • the heading of the movable platform is collected, and the collected heading is used as the second direction.
  • the movable platform is equipped with a photographing device, and the processor is further configured to:
  • a heading mark for indicating the heading of the movable platform is displayed in the image.
  • At least one of the first direction and the second direction is determined by the collected orientation of the terminal device communicatively connected with the movable platform.
  • At least one of the first direction and the second direction is determined by detecting the user's first direction on the digital map displayed on the control terminal communicatively connected with the movable platform.
  • the three-direction setting operation is determined.
  • the processor is further configured to:
  • the third direction setting operation includes: an operation for adjusting the direction of the direction indicator.
  • At least one of the first direction and the second direction is determined by the movement path of the movable platform.
  • the processor controls the movable portion according to the position information of the first reference point and the second reference point, the first direction and the second direction
  • the tasks performed by the platform in the first work area are specifically used for:
  • the movable platform is controlled to perform work tasks in the first work area according to the movement of the route.
  • the planned route consists of multiple route units
  • the route unit includes a main route segment, and two end points of the main route segment are respectively located on a reference line extending from the first reference point in the first direction and along a reference line from the second reference point.
  • the reference line extending in the second direction.
  • the route unit further includes a secondary route segment connecting any two adjacent main route segments;
  • the end of the secondary route segment coincides with the ends of the two adjacent main route segments located on the same reference line.
  • the main route segment is parallel to the reference line connecting the first reference point and the second reference point.
  • the position of the end point of the main route segment is determined according to a set operation distance.
  • the embodiment of the present application also proposes an optional implementation manner for checking the validity of the direction setting.
  • the processor is further configured to:
  • the controlling a movable platform to perform a work task in a first work area according to the position information, the first direction and the second direction of the first reference point and the second reference point includes:
  • control the movable platform to be in the first operating area according to the position information of the first reference point and the second reference point, the first direction and the second direction Perform work tasks.
  • the direction condition includes:
  • the first direction and the second direction both point to the same side of the reference line of the first reference point and the second reference point;
  • the included angle between the first direction and the second direction is greater than 0° and less than 180°.
  • the embodiment of the present application also provides an optional implementation manner for replanning the work area.
  • the processor is further configured to:
  • the second operation area is an area defined by a reference line extending from the third reference point in the third direction and a reference line extending from the fourth reference point in the fourth direction.
  • the position information of at least one of the third reference point and the fourth reference point is based on where the movable platform is located in response to the user's operation for updating the work area The location is ok.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement any one of the control methods.
  • control device of this embodiment can be used to implement the technical solutions of the control methods in the foregoing method embodiments of the present invention, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 10 is a schematic structural diagram of a work planning system for a movable platform provided by an embodiment of this application.
  • the work planning system 1000 for a movable platform in this embodiment may include: a movable platform 1001 and a control Terminal 1002.
  • the control terminal 1002 may adopt the structure of the embodiment shown in FIG. 9, and correspondingly, it may execute the technical solutions of the control terminal in the foregoing method embodiments. The implementation principles and technical effects are similar and will not be repeated here.
  • a person of ordinary skill in the art can understand that all or part of the steps in the above method embodiments can be implemented by a program instructing relevant hardware.
  • the foregoing program can be stored in a computer readable storage medium. When the program is executed, it is executed. Including the steps of the foregoing method embodiment; and the foregoing storage medium includes: read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks, etc., which can store program codes Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)

Abstract

一种控制方法、装置和存储介质,所述方法包括:获取第一参考点和第二参考点的位置信息(S401);获取所述第一参考点对应的第一方向和所述第二参考点对应的第二方向,其中,所述第一方向和所述第二方向中的至少一个方向是响应于用户的方向设置操作确定的(S402);根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务(S403)。这样,提升了可移动平台作业控制的便捷度。

Description

控制方法、装置和存储介质 技术领域
本申请涉及设备控制领域,尤其涉及一种控制方法、装置和存储介质。
背景技术
随着科技的不断发展,各种各样的可移动平台为人们的生活、工作、娱乐提供了更大的便利。
在农业、测绘、侦查等应用领域中,涉及使用可移动平台在作业区域中执行作业任务的场景,例如喷洒农药、采集影像、采集土壤样本、侦测火源等等。这些作业区域往往成不规则的形状,需要用户对该作业区域勘查之后,再手动控制可移动平台在这些不规则的作业区内运动,继而完成对该区域的作业。
然而,针对较大的不规则地块,人工控制可移动平台作业费时费力,操作不够便捷。
发明内容
本申请提供了一种控制方法、装置和存储介质,以解决现有技术中可移动平台作业控制不够便捷的问题。
本申请的第一方面提供了一种控制方法,包括:所述方法包括:
获取第一参考点和第二参考点的位置信息;
获取所述第一参考点对应的第一方向和所述第二参考点对应的第二方向,其中,所述第一方向和所述第二方向中的至少一个方向是响应于用户的方向设置操作确定的;
根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务;
其中,所述第一作业区域为连接所述第一参考点和所述第二参考点的参考线、从所述第一参考点沿所述第一方向延伸的参考线以及从所述第二参考 点沿所述第二方向延伸的参考线限定的区域。
本申请的第二方面提供了一种控制装置,包括:
存储器,存储有可执行代码;以及,
一个或多个处理器,单独地或共同地工作,执行所述可执行代码以用于实现:
所述方法包括:
获取第一参考点和第二参考点的位置信息;
获取所述第一参考点对应的第一方向和所述第二参考点对应的第二方向,其中,所述第一方向和所述第二方向中的至少一个方向是响应于用户的方向设置操作确定的;
根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务;
其中,所述第一作业区域为连接所述第一参考点和所述第二参考点的参考线、从所述第一参考点沿所述第一方向延伸的参考线以及从所述第二参考点沿所述第二方向延伸的参考线限定的区域。
本申请的第三方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行代码,所述可执行代码用于实现上述第一方面所述的控制方法。
上述技术方案,至少能够达到以下技术效果:
通过获取第一参考点和第二参考点的位置信息,并至少基于用户的方向设置操作确定所述第一参考点对应的第一方向和所述第二参考点对应的第二方向中的至少一个方向,再根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务;因此,用户通过对控制终端的操作来设置参考点对应的参考方向,可灵活规划可移动平台的作业区域,提高了控制可移动平台的作业便捷度,提升了作业效率。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的无人机系统的示意性架构图;
图2为本申请实施例提供的一种无人机的结构示意图;
图3为本申请实施例提供的一种作业规划示意图;
图4为本申请一实施例提供的一种控制方法的流程图;
图5为本申请一实施例提供的一种作业区域规划示意图;
图6为本申请一实施例提供的生成作业区域内航线的示意图;
图7为本申请另一实施例提供的一种控制方法的流程图;
图8为本申请另一实施例提供的一种作业区域规划示意图;
图9为本申请一实施例提供的控制装置的结构示意图;
图10为本申请一实施例提供的可移动平台的作业规划系统的一种结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
为了提升可移动平台的使用体验,降低用户手动操控无人机的繁琐性,提升可移动凭条的使用便捷度,可以由用户定义可移动平台的航线轨迹。可 移动平台可以沿着定义的航线移动并执行任务。该可移动平台可以是无人车、无人机、无人船、机器人、两栖或者三栖可移动平台等等。也可以为具有一定的载人功能可移动平台,例如,具有自动驾驶功能的汽车等等。
上述航线并不局限于被理解为空域的运动轨迹。可移动平台的实际应用场景不同,该航线可以被解释为地表运动轨迹,空域运动轨迹,水下运动轨迹,等等。
该可移动平台沿所述航线运动,还可以执行任务,例如喷洒农药、采集影像、采集土壤样本、侦测火源等等。以无人机为在农业领域的应用过场景为例,无人机可以沿航线运动,在航线覆盖的地块上执行喷洒农药,或者采集植被生长情况的任务。
该可移动平台可以接受与其通信连接的控制终端的指令,进行作业操作。该控制终端可以是手机,笔记本电脑,遥控器,智能穿戴设备,VR控制设备等等。控制终端可以通过交互装置检测用户的操作,其中,交互装置可以是控制终端的重要组成部分,是与用户进行交互的接口,用户可以通过对交互装置的操作,实现对可移动平台的控制;当用户想要控制可移动平台时,用户对控制终端的交互装置进行操作,控制终端通过该交互装置检测到用户的操作。该交互装置例如可以是控制终端的触摸显示屏、键盘、摇杆、波轮中的一种或多种;同时触控屏还可以显示可移动平台运行时的参数,可以显示可移动平台拍摄的画面。
图1是根据本申请的实施例的无人机系统的示意性架构图。本实施例以旋翼无人机为例进行说明。
无人机系统100可以包括无人机110、显示设备130和控制终端140。其中,本实施例中,所述无人机110以无人飞行器为例,其可以包括动力系统150、控制系统160、机架和承载在机架上的云台120。无人机110可以与控制终端140和显示设备130进行无线通信。在其他实施例中,所述无人机也可以为无人车或无人船。
机架可以包括机身和脚架(也称为起落架)。机身可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。 脚架与机身连接,用于在无人机110着陆时起支撑作用。
动力系统150可以包括一个或多个电子调速器(简称为电调)151、一个或多个螺旋桨153以及与一个或多个螺旋桨153相对应的一个或多个电机152。其中电机152连接在电调151与螺旋桨153之间,电机152和螺旋桨153设置在无人机110的机臂上。电调151用于接收控制系统160产生的驱动信号,并根据驱动信号提供驱动电流给电机152,以控制电机152的转速。需要说明的是,一个电调151可以对应多个电机,也可以多个电调151分别对应一个电机152。电机152用于驱动螺旋桨旋转,从而为无人机110的飞行提供动力,该动力使得无人机110能够实现一个或多个自由度的运动。在某些实施例中,无人机110可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴(Roll)、偏航轴(Yaw)和俯仰轴(pitch)。应理解,电机152可以是直流电机,也可以交流电机。另外,电机152可以是无刷电机,也可以是有刷电机。
控制系统160可以包括控制器161和传感系统162。传感系统162用于测量无人机的姿态信息,即无人机110在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统162例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。控制器161用于控制无人机110的飞行或运行,例如,可以根据传感系统162测量的姿态信息控制无人机110的飞行或运行。应理解,控制器161可以按照预先编好的程序指令对无人机110进行控制,也可以通过响应来自控制终端140的一个或多个控制指令对无人机110进行控制。
云台120可以包括云台电机122。云台用于携带拍摄装置123。控制器161可以通过云台电机122控制云台120的运动。可选地,作为另一实施例,云台120还可以包括云台控制器,用于通过控制云台电机122来控制云台120的运动。应理解,云台120可以独立于无人机110,也可以为无人机110的一部分。应理解,云台电机122可以是直流电机,也可以是交流电机。另外,云台电机122可以是无刷电机,也可以是有刷电机。还应理解,云台可以位于无人机的顶部,也可以位于无人机的底部。
拍摄装置123例如可以是照相机或摄像机等用于捕获图像的设备,拍摄装置123可以与飞行控制器通信,并在飞行控制器的控制下进行拍摄。本实施例的拍摄装置123至少包括感光元件,该感光元件例如为互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)传感器或电荷耦合元件(Charge-coupled Device,CCD)传感器。可以理解,拍摄装置123也可直接固定于无人机110上,从而云台120可以省略。
显示设备130位于地面端,可以通过无线方式与无人机110进行通信,并且可以用于显示无人机110的姿态信息。另外,还可以在显示设备130上显示成像装置拍摄的图像。应理解,显示设备130可以是独立的设备,也可以集成在控制终端140中。
控制终端140位于无人机系统100的地面端,可以通过无线方式与无人机110进行通信,用于对无人机110进行远程操纵。
以无人机为农业无人机为例,如图2所示,无人机的脚架之间还搭载有储液箱170,该储液箱170用于存储药液或者水;而且机臂的末端还搭载有喷头180,储液箱170中的液体通过泵泵入至喷头180,由喷头180喷散出去。
另外,脚架上还可以搭载连续波雷达190,该连续波雷达190为旋转连续波雷达,该连续波雷达190可以用于测距,但不限于测距。其中,农业无人机可以包括两个或两个以上脚架,连续波雷达190搭载在其中一个脚架上。
应理解,上述对于无人机系统各组成部分的命名仅是出于标识的目的,并不应理解为对本申请的实施例的限制。下述本申请实施例可以应用于上述无人机,也可以应用于其他可移动平台。
图3为一种在矩形作业地块规划航线的示意图。首先,用户标记A1点和B1点的位置坐标,A1为矩形地块的一个角点,B1为矩形地块的另一个角点。再根据A1点位置和作业间距,确定A2点,根据B1点位置和作业间距确定B2点。根据A2点位置和作业间距确定A3点,根据B2点位置和作业间距确定B3点。依次类推,根据An-1点位置和作业间距确定An点,根据Bn-1点位置和作业间距确定Bn点确定An点和Bn点的位置坐标。
然而,在规划的航线中包括A1和B1连线,A2和B2的连线,……An和Bn的连线。每一所述连线互相平行。见图3中虚线所示,可移动平台执行飞行任务 时,从A1点起飞,依次经过B1点,B2点,A2点,A3点,B3点,B4点,A4点……Bn-1点,An-1点,An点,Bn点。
可移动平台沿上述航线飞行,其轨迹呈往复“S”型。另外,可移动平台也具有一定的作业半径。随着可移动平台的移动,其已作业的区域逐步覆盖整个矩形作业地块。
在上述操作中,通过标记最初始的A1点和B1点,即可生成得到覆盖矩形地块的航线,这一定程度提升了可移动平台在规则的矩形地块作业的便捷度。
然而,现实世界中,作业区域呈现多种可能的形状。用户可以在这些不规则的区域中确定最大的内切矩形区域,通过上述方案规划可使可移动平台自动作业的航线。中而除上述内切矩形区域之外的其他不规则区域,则由用户手动控制可移动平台作业。
例如,在一个三角型区域中,确定一个面积最大的内切的矩形区域,通过上述方案规划能够让可移动平台自动作业的航线。而对应三角形区域中除所述矩形地块以外的小区域,由于其包含了原三角形区域的边角,不便于被一个矩形区域描述,也就不便于规划能够让可移动平台自动作业的航线,则可由用户手动控制可移动平台作业。
值得说明的是,在存在较多不规则作业区域的应用场景下,手动作业费时费力。
本申请实施例提出一种控制方法,以提升针可移动平台作业的便捷度。
图4为本申请实施例提供的一种控制方法的流程示意图,如图4所示,该控制方法可以包括如下步骤:
S401、获取第一参考点和第二参考点的位置信息。
具体实施时,可以获取至少两个基准航点的位置信息,至少两个所述基准航点分别位于目标作业区域的不同边界。例如,如果该目标作业区域是梯形的,所述第一参考点和所述第二参考点可以是分别位于所述梯形的底边的角点。
在第一种可选的实施方式中,所述第一参考点的位置信息和所述第二参考点的位置信息中的至少一个位置信息,是由根据采集到的可移动平台的位置信息确定的。
可选的,所获取第一参考点和第二参考点的位置信息,包括:响应于用户的第一位置设置操作,将所述可移动平台当前的位置信息作为所述第一参考点的位置信息;响应于用户的第二位置设置操作,将所述可移动平台当前的位置信息作为所述第二参考点的位置信息。
具体实施时,可移动平台到达所述参考点的过程可以是由用户控制的。由用户控制所述可移动平台运动到达参考点,继而执行所述位置设置操作。
或者,可移动平台基设置的参考点识别规则,识别所述参考点,并运动至所述参考点。参考点处对应的可以设置有标识物,例如,地面十字标识,旗杆标识等等,可移动平台识别到所述标识物所在处,并向用户发出是否执行位置设置的问询信息。进一步的,用户接受到问询信息后,执行所述位置设置操作。
所述位置设置操作,可以是按下与所述可移动平台通信连接的终端设备的位置设置确认键。进而,基于所述确认键生成相应的指令。还可以是用户发出用于指示采集所述可移动平台当前位置坐标的语音指令。还可以是用户发出用于指示采集所述可移动平台当前位置坐标的手势指令。
这些指令可以由所述可移动平台,或者与所述可移动平台通信连接的控制设备响应,并将所述无人机当前的位置信息作为所述参考点的位置信息。
以无人机为例,可以是用户控制无人机飞向参考点,并控制无人机悬停,响应于所述位置设置操作,将所述无人机当前的位置信息作为所述参考点的位置信息。
在第二种可选的实施方式中,所述第一参考点的位置信息和第二参考位置点的位置信息中的至少一个位置信息是通过检测用户对在与所述可移动平 台通信连接的终端设备上显示的数字地图的第三位置设置操作确定的。
可选的,所述位置设置操作可以包括用户在所述数字地图上选点。
所获取第一参考点和第二参考点的位置信息,包括:响应于用户的第三位置设置操作,根据所述用户在数字地图上选点的位置坐标确定所述第一参考点的位置信息;响应于用户的第四位置设置操作,根据所述用户在数字地图上选点的位置坐标确定所述第二参考点的位置信息。
具体实施时,若可移动平台为飞行器,可以根据所述数字地图上的选点的位置坐标和航程高度,确定所述参考点的位置信息。
所述数字地图上的选点可以包括二维坐标,例如经纬度坐标。在所述二维坐标的基础上,根据航程高度确定三维坐标作为所述参考点的位置信息。
在第三种可选的实施方式中,所述第一参考点的位置信息和所述第二参考点的位置信息中的至少一个位置信息是由采集到的与所述可移动平台通信连接的终端设备的位置信息确定的。
可选的,所获取第一参考点和第二参考点的位置信息,包括:响应于用户的第五位置设置操作,将所述终端设备当前的位置信息作为所述第一参考点的位置信息;响应于用户的第六位置设置操作,将所述终端设备当前的位置信息作为所述第二参考点的位置信息。
具体的,用户可以携带所述终端设备到达所述第一参考点,执行第五位置设置操作。用户可以携带所述终端设备到达所述第二参考点,执行第六位置设置操作。
S402、获取所述第一参考点对应的第一方向和所述第二参考点对应的第二方向,其中,所述第一方向和所述第二方向中的至少一个方向是响应于用户的方向设置操作确定的。
具体实施时,可以获取至少两个基准航点的位置信息,至少两个所述基准航点分别位于目标作业区域的不同边界。所述第一参考点位于第一边界, 所述第一方向为所述第一边界的延伸方向;所述第二参考点位于第二边界,所述第二方向为所述第二边界的延伸方向。
例如,如果该目标作业区域是梯形的,所述第一参考点和所述第二参考点可以是分别位于所述梯形的底边的角点。所述第一参考点位于所述梯形的第一腰线,所述第二参考点位于所述地形的第二腰线。所述第一方向为所述第一腰线的延伸方向,所述第二方向为所述第二腰线的延伸方向。
例如,如果该目标作业区域是三角形的,所述第一参考点和所述第二参考点可以是通过所述三角形的第一边连接的角点。所述第一参考点位于所述三角形的第二边,所述第二参考点位于所述地形的第三边。所述第一方向为所述第二边的延伸方向,所述第二方向为所述第三遍的延伸方向。
值得说明的是,上述对目标作业区的形状的说明仅为便于理解的举例,并不用于限制本方案的能够实施的应用场景。除此之外,目标作业区域的形状还可以是平行四边形,任意四边形。对于复杂的形状,例如,五边形,六边形,十二边形等复杂形状,可以通过确定多个参考点和对应的方向,执行相应的处理。或者,可以将复杂多边形划分为多个简单的三角形或者四边形。
所述方向可以通过某一坐标系下的向量信息标识。该坐标系可以是地球坐标系,也可以是站心坐标系。站心坐标系也叫做站点坐标,或者东-北-天坐标系ENU,英文名称是local Cartesian coordinates coordinate system。
除此之外,所述方向可以用于某一固定方向的夹角表示。当获取得到第一参考点和第二参考点的位置信息后,连接第一参考点和第二参考点的参考线的方向可以确定,对应第一参考点的第一方向可以通过与所述参考线之间的第一夹角表示,对应第二参考点的第二方向可以通过与所述参考线之间的第二夹角表示。
在第四可选实施方式中,所述第一方向和所述第二方向中的至少一个方向是根据采集到的所述可移动平台的航向确定的。
可选的,所述可移动平台的航向包括所述可移动平台的机身的航向或所 述可移动平台的拍摄装置的航向。例如,所述可移动平台的机身的航向为机头航向。
值得说明的是,在一些场景中,可移动平台的运动为“无头模式”,即,可移动平台朝各个方向运动时,无需调整姿态使头部朝向运动方向。以可移动平台按照控制终端的打杆方向进行任意方向的运动的场景为例,可以将所述可移动平台当前的运动方向,或所述控制终端当前的打杆方向作为所述机身的航向。
可选的,获取所述第一方向和所述第二方向,包括:响应于用户对与所述可移动平台通信连接的终端设备第一方向设置操作,采集所述可移动平台的航向,并将采集的所述航向作为所述第一方向;响应于用户对与所述可移动平台通信连接的终端设备第二方向设置操作,采集所述可移动平台的航向,并将采集的所述航向作为所述第二方向。
具体的,用户可以控制可移动平台到达所述第一参考点,通过第一位置设置操作采集所述第一参考点的位置坐标。进一步的,控制所述可移动平台原地转动,或者微微移动,使所述可移动平台的航向指向作业区域的一条边界的延伸方向,通过第一方向设置操作,根据所述航向确定所述第一方向。进一步的,执行与第一参考点和第一方向类似的操作,获取所述第二参考点的位置坐标,并确定所述第二方向。
为了提升方向设置的便捷度,所述可移动平台搭载拍摄装置,所述方法还包括:在所述终端设备上显示所述拍摄装置采集得到的影像;在所述影像中显示用于指示所述可移动平台航向的航向标识。
这样,用户可以通过影像观察所述可移动平台所处的环境,通过环境中物体特征与航向标识的关系,确定所述可移动平台的航向是否指向作业区域的边界的延伸方向。
以农田类作业区域为例,农田周边为一般会有道路、田埂或者成排的树木。用户可以基于这些物体在影像中的成像大小,在成像画幅中占得比例, 确定可移动平台的航向是否与是否指向作业区域的边界的延伸方向。除此之外,所述航向标识,可以一定程度上辅助用户判断,提升了这种方向设置的便捷度。
具体的,所述拍摄装置的视线方向可以与航向保持一致,那么获取得到的影像可以称为所述可移动平台的第一人称视角(First Person View,FPV)。FPV影像画幅正中,对应的即为当前拍摄装置的正视方向。由于影像的正中对应的方向实际上为可移动平台的航向,可以在影像的正中显示所述航向标记。这个航向标记可以是箭头、延长线等图案形式。为了提升用户感官,还可以预设的图像处理模板处理该影像,使得图像的畸变得到改善,或者通过调整对比对、调整亮度等处理方式使得中心区域的视觉效果增强。
当用户看到所述航向标记与影像中作业区域的边界的延伸方向上的景物重合时,即可认为所述可移动平台的航向与实际的作业区域的边界的延伸方向一致,进而通过第一方向设置操作,采集所述可移动平台当前的航向,并根据所述航向确定所述第一方向。对应第二方向的设置操作,与第一方向类似。
在第五可选实施方式中,所述第一方向和所述第二方向中的至少一个方向是由采集到的与所述可移动平台通信连接的终端设备的朝向确定的。
所述终端设备可以配置电子陀螺仪,以感知所述终端设备相对于地球坐标系的朝向。
可选的,所获取第一参考点和第二参考点的位置信息,包括:响应于用户的第五方向设置操作,根据所述终端设备当前的朝向确定所述第一方向;响应于用户的第六方向设置操作,根据所述终端设备当前的朝向确定所述第二方向。
具体的,用户可以移动所述终端设备,使其指向作业区域的一条边界的延伸方向,执行第五方向设置操作。用户可以移动所述终端设备,使其指向作业区域的另一条边界的延伸方向,执行第六方向设置操作。
具体的,用户可以携带所述终端设备到达所述第一参考点,采集所述第一参考点的位置坐标。进一步的,控制所述终端设备原地转动,或者微微移动,使所述终端设备的朝向指向作业区域的一条边界的延伸方向,通过第五方向设置操作,根据所述终端设备的朝向确定所述第一方向。进一步的,携带所述终端设备到达所述第二参考点,执行与第一参考点和第一方向类似的操作,获取所述第二参考点的位置坐标,并确定所述第二方向。
在第六可选实施方式中,所述第一方向和所述第二方向中的至少一个方向是通过检测用户对在与所述可移动平台通信连接的控制终端上显示的数字地图的第三方向设置操作确定的。
可选的,所述方法还包括:在所述数字地图上显示对应所述至少一个方向的方向标识;所述第三方向设置操作包括:用于调整所述方向标识的指向的操作。
例如,可以在所述控制终端上显示作业区域的数字地图,并显示已确定的第一参考点的标识,显示从所述第一参考点出发点的用于标识所述第一方向的延伸方向的标识线。用户可以在显示屏上拖动该标识线,拉长或缩短该标识线,旋转该标识线,以使得所述标识线符合需求。通过点击确认键的操作,根据所述标识线确定所述第一方向。
在第七可选实施方式中,所述第一方向和所述第二方向中的至少一个方向由所述可移动平台的运动路径确定的。
以第一方向为例,用户可以控制可移动平台从第一参考点出发,向沿所述第一参考点所在的目标作业区的边界运动。进一步的,可以根据可移动平台点的运动路径确定所述第一方向。
值得说明的是,可移动平台在用户的控制下的移动路径可能并非直线,这会带来不确定性。具体实施时,可以去运动路径上的几个参考点,并根据几个参考点之间的参考线,确定所述方向。
S403、根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务。
其中,所述第一作业区域为连接所述第一参考点和所述第二参考点的参考线、从所述第一参考点沿所述第一方向延伸的参考线以及从所述第二参考点沿所述第二方向延伸的参考线限定的区域。
该第一作业区域可以为待规划区域内的部分区域。因此,通过本实施例的方案,可以从待规划区域内确定出多个上述作业区域。
如图5所示,在确定第一参考点、第二参考点、第一参考方向、第二参考方向之后,可移动平台的作业区域也相应确定,即为第一参考点和第二参考点之间的参考线、从第一参考点沿第一参考方向延伸的参考线和从第二参考点沿第二参考方向延伸的参考线限定的区域。第一方向与第二方向可以是任意方向,以适应不规则的作业区域。
上述技术方案,至少能够达到以下技术效果:
通过获取第一参考点和第二参考点的位置信息,并至少基于用户的方向设置操作确定所述第一参考点对应的第一方向和所述第二参考点对应的第二方向中的至少一个方向,再根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务;因此,用户通过对控制终端的操作来设置参考点对应的参考方向,可灵活规划可移动平台的作业区域,提高了控制可移动平台的作业便捷度,提升了作业效率。
根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务,包括:根据所述第一参考点和所述第二参考点的所述位置信息,所述第一方向和所述第二方向规划航线;根据所述航线运动控制所述可移动平台在所述第一作业区域内执行工作任务。
也就是说,在上述第一作业区内可以进行航线的规划。下面以图6为例说明航线的规划的一种可选实现方式。
其中,确定的第一参考点A点的经度和纬度为(lon A,lat A),第一参考方向(例如采集到的可移动平台在A点的航向)为Yaw A,第二参考点B点的经度和纬度为(lon B,lat B),第二参考方向(例如采集到的可移动平台在B点的航向)为Yaw B,设置的作业间距为l,可移动平台沿A点与B点之间的参考线的延长线移动的航向为Yaw AB
进而可求出A点与B点之间的参考线的延长线的方向与第一参考方向的角度差为θ A=(Yaw A-Yaw AB),和A点与B点之间的参考线的延长线的方向与第二参考方向的角度差为θ B=(Yaw B-Yaw AB),再结合作业间距l,根据下式可求得沿第一参考方向A点的下一个航点A′与A点的距离为l A-A′,以及沿第二参考方向B点的下一个航点B′与B点的距离为l B-B′
l A-A′=l/sinθ A
l B-B′=l/sinθ B
然后根据经纬度转换公式和l A-A′,可以获得A′的经纬度坐标,以及根据经纬度转换公式和l B-B′,可以获得B′的经纬度坐标。相应地,其它航点可由上述过程类推得出,此处不再赘述。
将已确定的航点进行连接得到航线,以使可移动平台的航线覆盖第一作业区域。
示例的,规划的所述航线由多个航线单元组成;其中,所述航线单元包括主航线段,所述主航线段的两个端点分别位于从所述第一参考点沿所述第一方向延伸的参考线上和从所述第二参考点沿所述第二方向延伸的参考线上。例如,A′B′的连线,即为所述主航线段。
所述航线单元还包括连接任意两相邻所述主航线段的副航线段;其中,所述副航线段的端头与两相邻所述主航线段位于同一所述参考线的端头重合。 例如,BB′的连线,即为所述副航线段。
所述主航线段平行于所述连接第一参考点和所述第二参考点的参考线。所述主航线段的所述端点的位置根据设置的作业间距确定。例如,A′B′的连线平行于AB的连线,且二者间隔为作业间距l。
作业间距可以根据用户的作业间距设置操作确定。也可以从相关领域的网络平台获取作业间距。还可以根据作业类型,例如,农业领域植被的种植间距设定。还可以根据可移动平台的作业半径设定。
值得说明的是,上述仅为对航线规划方式的一种可选实施方案。除此之外,根据实际作业需求,还可以在通过第一参考点和第二参考点之间的参考线、从第一参考点沿第一参考方向延伸的参考线和从第二参考点沿第二参考方向延伸的参考线限定的区域内,规划螺旋型的航线、网格型航线等等。
在上述实施例中,第一作业区域是根据所述第一参考点和第二参考点之间的参考线、从第一参考点沿第一参考方向延伸的参考线和从第二参考点沿第二参考方向延伸的参考线限定的区域。在没有更多限定的情况下,是受到三条边包围的。
如果从第一参考点沿第一参考方向延伸的参考线,与从第二参考点沿第二参考方向延伸的参考线在远处相交,那么第一作业区域是受到三边包围的三角形形状。
如果从第一参考点沿第一参考方向延伸的参考线,与从第二参考点沿第二参考方向延伸的参考线平行,或者越往远处两条参考线之间距离越远,那么第一作业区域是开放的,可移动平台的航线可以在这一区域无限延伸。
向用户显示所述航线时,可以先显示预设个所述航线单元,等到可移动平台经过这些航线单元,再进一步显示更多的航线单元。
图7是本申请一示例性实施例示出的一种控制方法的流程图。如图7所示所述方法包括:
S701,获取第一参考点和第二参考点的位置信息;
S702,获取所述第一参考点对应的第一方向和所述第二参考点对应的第二方向,其中,所述第一方向和所述第二方向中的至少一个方向是响应于用户的方向设置操作确定的;
S703,判断所述第一方向与所述第二方向是否满足方向条件。
所述方向条件包括:所述第一方向和所述第二方向均指向所述第一参考点和所述第二参考点的参考线的同一侧;且所述第一方向与所述第二方向之间的夹角大于0°且小于180°。
所述方向条件也可以是:所述第一方向和所述第二方向均指向所述第一参考点和所述第二参考点的参考线的同一侧,所述第一参考点和所述第二参考点的参考线的延伸方向与所述第一方向夹角大于0°且小于180°,并且,所述第一参考点和所述第二参考点的参考线的延伸方向与所述第二方向夹角大于0°且小于180°。
所述方向条件也可以是:所述第一方向和所述第二方向,与所述第一参考点和所述第二参考点的参考线的同一法线方向的夹角均小于90度。
除此之外,所述方向条件也可以根据所述可移动平台的实际工作能力设置,比如说,受限于所述可移动平台的最小转弯角。例如,可移动平台的最小转弯角为30度。第一参考点和所述第二参考点的参考线的延伸方向与所述第一方向之间的夹角为170°,这会使多条主航线与所述第一方向对应的边界上的副航线之间夹角存在10°的转弯锐角。而可移动平台无法执行该转弯操作,则所述第一方向设置无效。
S704,若满足所述方向条件,则根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务。
其中,所述第一作业区域为连接所述第一参考点和所述第二参考点的参考线、从所述第一参考点沿所述第一方向延伸的参考线以及从所述第二参考点沿所述第二方向延伸的参考线限定的区域。
在本实施例中,通过判断所述第一方向与所述第二方向是否满足方向条件,能够进一步的保证后续步骤的执行的有效性。
为了便于用户更新规划作业区域,所述方法进一步可以包括如下步骤:
S705,响应于用户的用于更新作业区域的操作,获取第三参考点和第四参考点的位置信息。
所述用于更新作业区域的操作可以发生在可移动平台在第一作业区域执行完作业任务之后。这一操作也可以发生在执行作业任务的过程中,那么响应于这一操作可以中断所述可移动平台的作业。
所述第三参考点和所述第四参考点中的任一参考点的位置信息可以根据中断作业时所述可移动平台当前的位置点确定。例如,第三参考点的位置信息可以为中断作业时所述可移动平台当前的位置。如图8所示,第三参考点也可以是中断作业时所述可移动平台当前所处的航线单元对应的位于边界(从所述第一参考点沿所述第一方向延伸的参考线,或者,从所述第二参考点沿所述第二方向延伸的参考线)的端点的位置。
另一参考点的位置可以响应于用户的位置设置操作重新设置。
另一参考点的位置可以根据采集到的可移动平台的位置信息确定,可以由采集到的与所述可移动平台通信连接的终端设备的位置信息确定的,还可以通过检测用户对在与所述可移动平台通信连接的终端设备上显示的数字地图的位置设置操作确定的。
如图8所示,重新确定的第四参考点的位置远离原规划的第一作业区域。
S706,获取所述第三参考点对应的第三方向和所述第四参考点对应的第四方向,其中,所述第三方向和所述第四方向中的至少一个方向是响应于用户的方向设置操作确定的。
在一种可选的实施方式中,若中断作业时,所述可移动平台当前的位置在从所述第一参考点沿所述第一方向延伸的参考线上,将所述可移动平台当前的位置作为所述第三参考点的位置。可以设置所述第三方向与所述第一方 向一致。也可以根据用户的方向设置操作重新设置,如图8所示,所述第三方向与所述第一方向不一致。
第四参考点的位置可以响应于用户的位置设置操作重新设置。如图8所示,第四方向为一个新设定的方向。
对应第四参考点的第四方向可以根据采集到的所述可移动平台的航向确定,所述可移动平台的航向包括所述可移动平台的机身的航向或所述可移动平台的拍摄装置的航向。所述可移动平台的机身的航向为机头航向。所述可移动平台搭载拍摄装置,所述方法还包括:在所述终端设备上显示所述拍摄装置采集得到的影像;在所述影像中显示用于指示所述可移动平台航向的航向标识。
对应第四参考点的第四方向可以由采集到的与所述可移动平台通信连接的终端设备的朝向确定,也可以通过检测用户对在与所述可移动平台通信连接的控制终端上显示的数字地图的方向设置操作确定,也可以由所述可移动平台的运动路径确定的。
S707,根据所述第三参考点和所述第四参考点的所述位置信息、所述第三方向和所述第四方向,控制可移动平台在第二作业区域内执行工作任务;
其中,所述第二作业区域为从所述第三参考点沿所述第三方向延伸的参考线以及从所述第四参考点沿所述第四方向延伸的参考线限定的区域。
所述第二作业区域还可以进一步的由连接所述第三参考点和所述第四参考点的参考线限定。
在第二作业区域内规划航线,并进一步基于规划的航线控制可移动平台作业的方式与前文实施例类似,此处不再重复描述。
在本实施例中,可以响应于用户的用于更新作业区域的操作,基于第三参考点和第四参考点,在所述第三参考点沿所述第三方向延伸的参考线以及从所述第四参考点沿所述第四方向延伸的参考线限定的第二作业区域中控制可移动平台作业。这样,有便于灵活地进行可移动平台的作业区域规划。
另外,在复杂形状的作业区域规划中,也可以依次规划第一作业区,第 二作业区。
以上方法的实施例中,为便于描述,将其以步骤的形式进行说明。值得说明的是,此处仅为示例性说明,描述的先后并不用于限定步骤的执行顺序。例如,也可以先获取对应第一参考点的第一方向,再获取第一参考点的位置信息,进而再获取对应第二参考点的第二方向,再获取第二参考点的位置信息。再比如,每一次获取方向,都可以执行用于判断方向是否满足方向条件的检验步骤。
除此之外,上述实施例并不限定具体的执行主体。上述方法可以由可移动凭条独自执行,也可以由控制终端配合可移动平台执行,也可以由控制终端独自执行。
图9为本申请一实施例提供的控制装置的结构示意图;如图9所示,该装置900包括:存储器901,存储有可执行代码;以及,一个或多个处理器902,单独地或共同地工作。该交存储器901和处理器902可以通过总线通信连接。上述处理器902可以是中央处理单元(Central Processing Unit,CPU),该处理器902还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该一个或多个处理器902执行存储器901中存储的可执行代码,以用于实现:
获取第一参考点和第二参考点的位置信息;
获取所述第一参考点对应的第一方向和所述第二参考点对应的第二方向,其中,所述第一方向和所述第二方向中的至少一个方向是响应于用户的方向设置操作确定的;
根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务;
其中,所述第一作业区域为连接所述第一参考点和所述第二参考点的参考线、从所述第一参考点沿所述第一方向延伸的参考线以及从所述第二参考点沿所述第二方向延伸的参考线限定的区域。
具体的,第一参考点和第二参考点的位置信息可以基于如下可选实施方式确定。
在一种可选的实施方式中,所述第一参考点的位置信息和所述第二参考点的位置信息中的至少一个位置信息,是由根据采集到的可移动平台的位置信息确定的。
可选的,所述处理器在获取第一参考点和第二参考点的位置信息时,具体用于:
响应于用户的第一位置设置操作,将所述可移动平台当前的位置信息作为所述第一参考点的位置信息;
响应于用户的第二位置设置操作,将所述可移动平台当前的位置信息作为所述第二参考点的位置信息。
在一种可选的实施方式中,所述第一参考点的位置信息和所述第二参考点的位置信息中的至少一个位置信息是由采集到的与所述可移动平台通信连接的终端设备的位置信息确定的。
在一种可选的实施方式中,所述第一参考点的位置信息和第二参考位置点的位置信息中的至少一个位置信息是通过检测用户对在与所述可移动平台通信连接的终端设备上显示的数字地图的第三位置设置操作确定的。
具体的,第一方向和所述第二方向中可以基于如下可选实施方式确定。
在一种可选的实施方式中,所述第一方向和所述第二方向中的至少一个方向是根据采集到的所述可移动平台的航向确定的。
可选的,所述可移动平台的航向包括所述可移动平台的机身的航向或所述可移动平台的拍摄装置的航向。
可选的,所述可移动平台的机身的航向为机头航向。
可选的,所述处理器在获取所述第一方向和所述第二方向时,具体用于:
响应于用户对与所述可移动平台通信连接的终端设备第一方向设置操作,采集所述可移动平台的航向,并将采集的所述航向作为所述第一方向;
响应于用户对与所述可移动平台通信连接的终端设备第二方向设置操作,采集所述可移动平台的航向,并将采集的所述航向作为所述第二方向。
可选的,所述可移动平台搭载拍摄装置,所述处理器还用于:
在所述终端设备上显示所述拍摄装置采集得到的影像;
在所述影像中显示用于指示所述可移动平台航向的航向标识。
在一种可选的实施方式中,所述第一方向和所述第二方向中的至少一个方向是由采集到的与所述可移动平台通信连接的终端设备的朝向确定的。
在一种可选的实施方式中,所述第一方向和所述第二方向中的至少一个方向是通过检测用户对在与所述可移动平台通信连接的控制终端上显示的数字地图的第三方向设置操作确定的。
可选的,所述处理器还用于:
在所述数字地图上显示对应所述至少一个方向的方向标识;
所述第三方向设置操作包括:用于调整所述方向标识的指向的操作。
在一种可选的实施方式中,所述述第一方向和所述第二方向中的至少一个方向由所述可移动平台的运动路径确定的。
在一种可选的实施方式中,所述处理器在根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务是,具体用于:
根据所述第一参考点和所述第二参考点的所述位置信息,所述第一方向和所述第二方向规划航线;
根据所述航线运动控制所述可移动平台在所述第一作业区域内执行工作任务。
可选的,规划的所述航线由多个航线单元组成;
其中,所述航线单元包括主航线段,所述主航线段的两个端点分别位于从所述第一参考点沿所述第一方向延伸的参考线上和从所述第二参考点沿所述第二方向延伸的参考线上。
可选的,所述航线单元还包括连接任意两相邻所述主航线段的副航线段;
其中,所述副航线段的端头与两相邻所述主航线段位于同一所述参考线的端头重合。
可选的,所述主航线段平行于所述连接第一参考点和所述第二参考点的参考线。
可选的,所述主航线段的所述端点的位置根据设置的作业间距确定。
具体的,本申请还实施例还提出一种用于检验方向设置有效性的可选实施方式。
在一种可选的实施方式中,所述处理器还用于:
判断所述第一方向与所述第二方向是否满足方向条件;
所述根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务,包括:
若满足所述方向条件,则根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务。
可选的,所述方向条件包括:
所述第一方向和所述第二方向均指向所述第一参考点和所述第二参考点的参考线的同一侧;
且所述第一方向与所述第二方向之间的夹角大于0°且小于180°。
具体的,本申请实施例还提供一种用于重新规划作业区域的可选实施方式。
在一种可选的实施方式中,所述处理器还用于:
响应于用户的用于更新作业区域的操作,获取第三参考点和第四参考点 的位置信息;
获取所述第三参考点对应的第三方向和所述第四参考点对应的第四方向,其中,所述第三方向和所述第四方向中的至少一个方向是响应于用户的方向设置操作确定的;
根据所述第三参考点和所述第四参考点的所述位置信息、所述第三方向和所述第四方向,控制可移动平台在第二作业区域内执行工作任务;
其中,所述第二作业区域为从所述第三参考点沿所述第三方向延伸的参考线以及从所述第四参考点沿所述第四方向延伸的参考线限定的区域。
可选的,所述第三参考点和所述第四参考点中至少一个参考点的位置信息,是根据响应于所述用户的用于更新作业区域的操作时所述可移动平台所处的位置确定的。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现任一项所述的控制方法。
本实施例的控制装置,可以用于执行本发明上述各方法实施例中控制方法的技术方案,其实现原理和技术效果类似,此处不再赘述。
图10为本申请一实施例提供的可移动平台的作业规划系统的一种结构示意图,如图10所示,本实施例的可移动平台的作业规划系统1000可以包括:可移动平台1001和控制终端1002。其中,控制终端1002可以采用图9所示实施例的结构,其对应地,可以执行上述各方法实施例中控制终端的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上各个实施例中的技术方案、技术特征在不相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请 保护范围内的等同实施例。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (47)

  1. 一种控制方法,其特征在于,所述方法包括:
    获取第一参考点和第二参考点的位置信息;
    获取所述第一参考点对应的第一方向和所述第二参考点对应的第二方向,其中,所述第一方向和所述第二方向中的至少一个方向是响应于用户的方向设置操作确定的;
    根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务;
    其中,所述第一作业区域为连接所述第一参考点和所述第二参考点的参考线、从所述第一参考点沿所述第一方向延伸的参考线以及从所述第二参考点沿所述第二方向延伸的参考线限定的区域。
  2. 根据权利要求1所述的方法,其特征在于,所述第一参考点的位置信息和所述第二参考点的位置信息中的至少一个位置信息,是由根据采集到的可移动平台的位置信息确定的。
  3. 根据权利要求2所述的方法,其特征在于,所获取第一参考点和第二参考点的位置信息,包括:
    响应于用户的第一位置设置操作,将所述可移动平台当前的位置信息作为所述第一参考点的位置信息;
    响应于用户的第二位置设置操作,将所述可移动平台当前的位置 信息作为所述第二参考点的位置信息。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一参考点的位置信息和所述第二参考点的位置信息中的至少一个位置信息是由采集到的与所述可移动平台通信连接的终端设备的位置信息确定的。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一参考点的位置信息和第二参考位置点的位置信息中的至少一个位置信息是通过检测用户对在与所述可移动平台通信连接的终端设备上显示的数字地图的第三位置设置操作确定的。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一方向和所述第二方向中的至少一个方向是根据采集到的所述可移动平台的航向确定的。
  7. 根据权利要求6所述的方法,其特征在于,所述可移动平台的航向包括所述可移动平台的机身的航向或所述可移动平台的拍摄装置的航向。
  8. 根据权利要求7所述的方法,其特征在于,所述可移动平台的机身的航向为机头航向。
  9. 根据权利要求6-7任一项所述的方法,其特征在于,获取所述第一方向和所述第二方向,包括:
    响应于用户对与所述可移动平台通信连接的终端设备第一方向设置操作,采集所述可移动平台的航向,并将采集的所述航向作为所述第一方向;
    响应于用户对与所述可移动平台通信连接的终端设备第二方向设置操作,采集所述可移动平台的航向,并将采集的所述航向作为所述第二方向。
  10. 根据权利要求9所述的方法,其特征在于,所述可移动平台搭载拍摄装置,所述方法还包括:
    在所述终端设备上显示所述拍摄装置采集得到的影像;
    在所述影像中显示用于指示所述可移动平台航向的航向标识。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述第一方向和所述第二方向中的至少一个方向是由采集到的与所述可移动平台通信连接的终端设备的朝向确定的。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述第一方向和所述第二方向中的至少一个方向是通过检测用户对在与所述可移动平台通信连接的控制终端上显示的数字地图的第三方向设 置操作确定的。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    在所述数字地图上显示对应所述至少一个方向的方向标识;
    所述第三方向设置操作包括:用于调整所述方向标识的指向的操作。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述第一方向和所述第二方向中的至少一个方向由所述可移动平台的运动路径确定的。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务,包括:
    根据所述第一参考点和所述第二参考点的所述位置信息,所述第一方向和所述第二方向规划航线;
    根据所述航线运动控制所述可移动平台在所述第一作业区域内执行工作任务。
  16. 根据权利要求15所述的方法,其特征在于,规划的所述航线由多个航线单元组成;
    其中,所述航线单元包括主航线段,所述主航线段的两个端点分 别位于从所述第一参考点沿所述第一方向延伸的参考线上和从所述第二参考点沿所述第二方向延伸的参考线上。
  17. 根据权利要求16所述的方法,其特征在于,所述航线单元还包括连接任意两相邻所述主航线段的副航线段;
    其中,所述副航线段的端头与两相邻所述主航线段位于同一所述参考线的端头重合。
  18. 根据权利要求16或17所述的方法,其特征在于,所述主航线段平行于所述连接第一参考点和所述第二参考点的参考线。
  19. 根据权利要求16-18任一项所述的方法,其特征在于,所述主航线段的所述端点的位置根据设置的作业间距确定。
  20. 根据权利要求1-19任一项所述的方法,其特征在于,所述方法还包括:
    判断所述第一方向与所述第二方向是否满足方向条件;
    所述根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务,包括:
    若满足所述方向条件,则根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在 第一作业区域内执行工作任务。
  21. 根据权利要求20所述的方法,其特征在于,所述方向条件包括:
    所述第一方向和所述第二方向均指向所述第一参考点和所述第二参考点的参考线的同一侧;
    且所述第一方向与所述第二方向之间的夹角大于0°且小于180°。
  22. 根据权利要求1-21任一项所述的方法,其特征在于,所述方法包括:
    响应于用户的用于更新作业区域的操作,获取第三参考点和第四参考点的位置信息;
    获取所述第三参考点对应的第三方向和所述第四参考点对应的第四方向,其中,所述第三方向和所述第四方向中的至少一个方向是响应于用户的方向设置操作确定的;
    根据所述第三参考点和所述第四参考点的所述位置信息、所述第三方向和所述第四方向,控制可移动平台在第二作业区域内执行工作任务;
    其中,所述第二作业区域为从所述第三参考点沿所述第三方向延伸的参考线以及从所述第四参考点沿所述第四方向延伸的参考线限定的区域。
  23. 根据权利要求22所述的方法,其特征在于,所述第三参考点和所述第四参考点中至少一个参考点的位置信息,是根据响应于所述用户的用于更新作业区域的操作时所述可移动平台所处的位置确定的。
  24. 一种控制装置,其特征在于,所述装置包括存储器和处理器;
    所述存储器用于存储程序代码;
    所述处理器,调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    获取第一参考点和第二参考点的位置信息;
    获取所述第一参考点对应的第一方向和所述第二参考点对应的第二方向,其中,所述第一方向和所述第二方向中的至少一个方向是响应于用户的方向设置操作确定的;
    根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务;
    其中,所述第一作业区域为连接所述第一参考点和所述第二参考点的参考线、从所述第一参考点沿所述第一方向延伸的参考线以及从所述第二参考点沿所述第二方向延伸的参考线限定的区域。
  25. 根据权利要求24所述的装置,其特征在于,所述第一参考点 的位置信息和所述第二参考点的位置信息中的至少一个位置信息,是由根据采集到的可移动平台的位置信息确定的。
  26. 根据权利要求25所述的装置,其特征在于,所述处理器在获取第一参考点和第二参考点的位置信息时,具体用于:
    响应于用户的第一位置设置操作,将所述可移动平台当前的位置信息作为所述第一参考点的位置信息;
    响应于用户的第二位置设置操作,将所述可移动平台当前的位置信息作为所述第二参考点的位置信息。
  27. 根据权利要求24-26任一项所述的装置,其特征在于,所述第一参考点的位置信息和所述第二参考点的位置信息中的至少一个位置信息是由采集到的与所述可移动平台通信连接的终端设备的位置信息确定的。
  28. 根据权利要求24-27任一项所述的装置,其特征在于,所述第一参考点的位置信息和第二参考位置点的位置信息中的至少一个位置信息是通过检测用户对在与所述可移动平台通信连接的终端设备上显示的数字地图的第三位置设置操作确定的。
  29. 根据权利要求24-28任一项所述的装置,其特征在于,所述第一方向和所述第二方向中的至少一个方向是根据采集到的所述可 移动平台的航向确定的。
  30. 根据权利要求29所述的装置,其特征在于,所述可移动平台的航向包括所述可移动平台的机身的航向或所述可移动平台的拍摄装置的航向。
  31. 根据权利要求30所述的装置,其特征在于,所述可移动平台的机身的航向为机头航向。
  32. 根据权利要求29-31任一项所述的装置,其特征在于,所述处理器在获取所述第一方向和所述第二方向时,具体用于:
    响应于用户对与所述可移动平台通信连接的终端设备第一方向设置操作,采集所述可移动平台的航向,并将采集的所述航向作为所述第一方向;
    响应于用户对与所述可移动平台通信连接的终端设备第二方向设置操作,采集所述可移动平台的航向,并将采集的所述航向作为所述第二方向。
  33. 根据权利要求32所述的装置,其特征在于,所述可移动平台搭载拍摄装置,所述处理器还用于:
    在所述终端设备上显示所述拍摄装置采集得到的影像;
    在所述影像中显示用于指示所述可移动平台航向的航向标识。
  34. 根据权利要求24-33任一项所述的装置,其特征在于,所述第一方向和所述第二方向中的至少一个方向是由采集到的与所述可移动平台通信连接的终端设备的朝向确定的。
  35. 根据权利要求24-34任一项所述的装置,其特征在于,所述第一方向和所述第二方向中的至少一个方向是通过检测用户对在与所述可移动平台通信连接的控制终端上显示的数字地图的第三方向设置操作确定的。
  36. 根据权利要求35所述的装置,其特征在于,所述处理器还用于:
    在所述数字地图上显示对应所述至少一个方向的方向标识;
    所述第三方向设置操作包括:用于调整所述方向标识的指向的操作。
  37. 根据权利要求24-36任一项所述的装置,其特征在于,所述第一方向和所述第二方向中的至少一个方向由所述可移动平台的运动路径确定的。
  38. 根据权利要求24-37任一项所述的装置,其特征在于,所述处理器在根据所述第一参考点和所述第二参考点的所述位置信息、所 述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务是,具体用于:
    根据所述第一参考点和所述第二参考点的所述位置信息,所述第一方向和所述第二方向规划航线;
    根据所述航线运动控制所述可移动平台在所述第一作业区域内执行工作任务。
  39. 根据权利要求38所述的装置,其特征在于,规划的所述航线由多个航线单元组成;
    其中,所述航线单元包括主航线段,所述主航线段的两个端点分别位于从所述第一参考点沿所述第一方向延伸的参考线上和从所述第二参考点沿所述第二方向延伸的参考线上。
  40. 根据权利要求39所述的装置,其特征在于,所述航线单元还包括连接任意两相邻所述主航线段的副航线段;
    其中,所述副航线段的端头与两相邻所述主航线段位于同一所述参考线的端头重合。
  41. 根据权利要求39或40所述的装置,其特征在于,所述主航线段平行于所述连接第一参考点和所述第二参考点的参考线。
  42. 根据权利要求39-41任一项所述的装置,其特征在于,所述 主航线段的所述端点的位置根据设置的作业间距确定。
  43. 根据权利要求24-42任一项所述的装置,其特征在于,所述处理器还用于:
    判断所述第一方向与所述第二方向是否满足方向条件;
    所述根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务,包括:
    若满足所述方向条件,则根据所述第一参考点和所述第二参考点的所述位置信息、所述第一方向和所述第二方向,控制可移动平台在第一作业区域内执行工作任务。
  44. 根据权利要求43所述的装置,其特征在于,所述方向条件包括:
    所述第一方向和所述第二方向均指向所述第一参考点和所述第二参考点的参考线的同一侧;
    且所述第一方向与所述第二方向之间的夹角大于0°且小于180°。
  45. 根据权利要求24-44任一项所述的装置,其特征在于,所述处理器还用于:
    响应于用户的用于更新作业区域的操作,获取第三参考点和第四 参考点的位置信息;
    获取所述第三参考点对应的第三方向和所述第四参考点对应的第四方向,其中,所述第三方向和所述第四方向中的至少一个方向是响应于用户的方向设置操作确定的;
    根据所述第三参考点和所述第四参考点的所述位置信息、所述第三方向和所述第四方向,控制可移动平台在第二作业区域内执行工作任务;
    其中,所述第二作业区域为从所述第三参考点沿所述第三方向延伸的参考线以及从所述第四参考点沿所述第四方向延伸的参考线限定的区域。
  46. 根据权利要求45所述的装置,其特征在于,所述第三参考点和所述第四参考点中至少一个参考点的位置信息,是根据响应于所述用户的用于更新作业区域的操作时所述可移动平台所处的位置确定的。
  47. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被处理器执行以实现权利要求1-23中任一项所述的方法。
PCT/CN2019/114813 2019-10-31 2019-10-31 控制方法、装置和存储介质 WO2021081922A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/114813 WO2021081922A1 (zh) 2019-10-31 2019-10-31 控制方法、装置和存储介质
CN201980040905.2A CN112313599B (zh) 2019-10-31 2019-10-31 控制方法、装置和存储介质
US17/701,709 US20220214700A1 (en) 2019-10-31 2022-03-23 Control method and device, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/114813 WO2021081922A1 (zh) 2019-10-31 2019-10-31 控制方法、装置和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/701,709 Continuation US20220214700A1 (en) 2019-10-31 2022-03-23 Control method and device, and storage medium

Publications (1)

Publication Number Publication Date
WO2021081922A1 true WO2021081922A1 (zh) 2021-05-06

Family

ID=74336550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114813 WO2021081922A1 (zh) 2019-10-31 2019-10-31 控制方法、装置和存储介质

Country Status (3)

Country Link
US (1) US20220214700A1 (zh)
CN (1) CN112313599B (zh)
WO (1) WO2021081922A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115037875B (zh) * 2022-05-17 2023-11-14 杭州华橙软件技术有限公司 一种云台转动控制方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109871030A (zh) * 2019-03-01 2019-06-11 上海戴世智能科技有限公司 一种无人机械的路径规划方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016314770A1 (en) * 2015-09-03 2018-03-29 Commonwealth Scientific And Industrial Research Organisation Unmanned aerial vehicle control techniques
CA3001023A1 (en) * 2016-01-08 2017-07-13 Pictometry International Corp. Systems and methods for taking, processing, retrieving, and displaying images from unmanned aerial vehicles
US11453494B2 (en) * 2016-05-20 2022-09-27 Skydio, Inc. Unmanned aerial vehicle area surveying
CN110383192A (zh) * 2018-03-16 2019-10-25 深圳市大疆创新科技有限公司 可移动平台及其控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109871030A (zh) * 2019-03-01 2019-06-11 上海戴世智能科技有限公司 一种无人机械的路径规划方法

Also Published As

Publication number Publication date
US20220214700A1 (en) 2022-07-07
CN112313599B (zh) 2024-02-27
CN112313599A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
US11794890B2 (en) Unmanned aerial vehicle inspection system
US12130636B2 (en) Methods and system for autonomous landing
US20220357753A1 (en) Drop-off location planning for delivery vehicle
JP6390013B2 (ja) 小型無人飛行機の制御方法
WO2020237471A1 (zh) 飞行航线生成方法、终端和无人机
WO2020062178A1 (zh) 基于地图识别目标对象的方法与控制终端
EP3103043A1 (en) Multi-sensor environmental mapping
US20210208608A1 (en) Control method, control apparatus, control terminal for unmanned aerial vehicle
WO2021159249A1 (zh) 航线规划方法、设备及存储介质
WO2018020659A1 (ja) 移動体、移動体制御方法、移動体制御システム、及び移動体制御プログラム
WO2023272633A1 (zh) 无人机的控制方法、无人机、飞行系统及存储介质
WO2021168819A1 (zh) 无人机的返航控制方法和设备
CN111247389B (zh) 关于拍摄设备的数据处理方法、装置及图像处理设备
WO2020048365A1 (zh) 飞行器的飞行控制方法、装置、终端设备及飞行控制系统
CN114077249B (zh) 一种作业方法、作业设备、装置、存储介质
CN115046531A (zh) 一种基于无人机的杆塔测量方法、电子平台和存储介质
WO2021081922A1 (zh) 控制方法、装置和存储介质
WO2020225979A1 (ja) 情報処理装置、情報処理方法、プログラム、及び情報処理システム
JP7031997B2 (ja) 飛行体システム、飛行体、位置測定方法、プログラム
WO2018045654A1 (zh) 显示可移动装置的状态的方法、系统和控制装置
CN110892353A (zh) 控制方法、控制装置、无人飞行器的控制终端
WO2021081894A1 (zh) 可移动平台的作业规划方法、系统和控制终端
WO2023082066A1 (zh) 作业规划方法、控制装置、控制终端及存储介质
WO2023139628A1 (ja) エリア設定システム、及びエリア設定方法
WO2023187891A1 (ja) 判定システム、及び判定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950911

Country of ref document: EP

Kind code of ref document: A1