WO2021159249A1 - 航线规划方法、设备及存储介质 - Google Patents
航线规划方法、设备及存储介质 Download PDFInfo
- Publication number
- WO2021159249A1 WO2021159249A1 PCT/CN2020/074660 CN2020074660W WO2021159249A1 WO 2021159249 A1 WO2021159249 A1 WO 2021159249A1 CN 2020074660 W CN2020074660 W CN 2020074660W WO 2021159249 A1 WO2021159249 A1 WO 2021159249A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- route
- flight
- aircraft
- ground
- contour
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000005507 spraying Methods 0.000 claims description 18
- 239000007921 spray Substances 0.000 claims description 17
- 238000004590 computer program Methods 0.000 claims description 16
- 238000000926 separation method Methods 0.000 claims description 6
- 230000001788 irregular Effects 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 24
- 230000000694 effects Effects 0.000 description 18
- 235000013399 edible fruits Nutrition 0.000 description 14
- 238000013507 mapping Methods 0.000 description 7
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000002304 esc Anatomy 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
Definitions
- This application relates to the technical field of drones, in particular to a route planning method, equipment and storage medium.
- the topographic map of the terraces and the digital elevation model (Digital Elevation Model, DSM) and other intermediate data can be surveyed and mapped.
- the generated topographic map or digital surface model (Digital Surface Model, DSM) is used as a map and input to the plant protection machine as topographic information, so that the plant protection machine can fly high and imitate the ground based on the topographic map.
- the plant protection aircraft route generated according to the traditional route planning scheme will frequently adjust the height during the process of heightening and imitating the ground, just like “up and down the stairs.” Due to frequent height adjustments and accelerations and decelerations in this flight mode, battery power will be greatly consumed, resulting in low operating efficiency of the plant protection aircraft.
- this application provides a route planning method, equipment and storage medium, which can improve the operational efficiency of the aircraft by planning a reasonable flight route.
- this application provides a route planning method for an aircraft, the method including:
- topographic map Acquiring a topographic map about the ground, the topographic map including contour lines;
- each ground operation area plan the flight route of the aircraft in each ground operation area.
- this application also provides a route planning device, which includes a memory and a processor;
- the memory is used to store a computer program
- the processor is configured to execute the computer program and, when executing the computer program, implement the following steps:
- topographic map Acquiring a topographic map about the ground, the topographic map including contour lines;
- each ground operation area plan the flight route of the aircraft in each ground operation area.
- this application also provides a flight system, the flight system includes any one of the above-mentioned route planning device and an aircraft, the route planning device and the aircraft are in communication connection; the route planning device will plan The flight path of is sent to the aircraft, and the aircraft flies according to the flight path.
- the present application also provides a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the processor implements the above-mentioned route planning method.
- the route planning method, equipment, and storage medium proposed in this application can avoid frequent adjustment of the altitude of the aircraft during operation, thereby saving battery power and improving the efficiency of flight operations.
- Fig. 1 is a schematic diagram of a flight system provided by an embodiment of the present application
- FIG. 2 is a schematic diagram of a scene of a digital elevation model provided by an embodiment of the present application
- Fig. 3 is a schematic diagram of a contour topographic map provided by an embodiment of the present application.
- Fig. 4 is a schematic flowchart of a route planning method provided by an embodiment of the present application.
- FIG. 5 is a schematic diagram of the effect of determining the ground operation area by contour lines according to an embodiment of the present application.
- FIG. 6 is a schematic diagram of the effect of a route coverage range provided by an embodiment of the present application.
- FIG. 7 is a schematic diagram of the effect of another route coverage range provided by an embodiment of the present application.
- FIG. 8 is a schematic diagram of the effect of generating route strips based on contour lines provided by an embodiment of the present application.
- FIG. 9 is a schematic diagram of the effect of determining the ground operation area by contour lines provided by an embodiment of the present application.
- FIG. 10 is a schematic diagram of the effect of generating route strips based on contour lines provided by an embodiment of the present application.
- FIG. 11 is a schematic diagram of the effect of determining a layer of terraces by contour lines according to an embodiment of the present application.
- FIG. 12 is a schematic diagram of the effect of generating route strips in a layer of terraces according to an embodiment of the present application.
- FIG. 13 is a schematic diagram of the effect of generating a flight route according to the route strip provided by an embodiment of the present application.
- FIG. 14 is a schematic diagram of the effect of determining operation waypoints provided by an embodiment of the present application.
- FIG. 15 is a schematic diagram of the effect of generating a flight route according to an operation waypoint provided by an embodiment of the present application.
- FIG. 16 is a schematic diagram of an effect of determining operation waypoints provided by an embodiment of the present application.
- FIG. 17 is another schematic diagram of the effect of generating flight routes based on operating waypoints provided by the embodiments of the present application.
- FIG. 18 is a schematic diagram of the effect of determining operation waypoints belonging to a ground operation area provided by an embodiment of the present application.
- FIG. 19 is a schematic diagram of the effect of determining operation waypoints belonging to a ground operation area provided by an embodiment of the present application.
- 20a to 20c are schematic diagrams of shape attribute information of terraces provided by an embodiment of the present application.
- 21 to 24 are schematic diagrams of the effect of generating flight routes provided by the embodiments of the present application.
- 25a to 25c are schematic diagrams of the effect of the flight routes of terraces with different shape attribute information provided by the embodiments of the present application.
- FIG. 26 is a schematic diagram of the effect of generating a flight buffer provided by an embodiment of the present application.
- Fig. 27 is a schematic block diagram of a route planning device provided by an embodiment of the present application.
- the embodiments of the present application provide a route planning method, a route planning device, a flight system, and a storage medium, so that the aircraft can save battery power and improve flight operation efficiency when flying according to the planned flight route.
- FIG. 1 is a flight system provided by an embodiment of the application.
- the flight system includes a control terminal and an aircraft, and the control terminal is used to control the flight of the aircraft or perform corresponding operations, such as shooting, spraying, and so on.
- Aircraft include drones, which include rotary-wing drones, such as quadrotor drones, hexarotor drones, and octo-rotor drones. It can also be a fixed-wing drone or a rotary-wing drone. The combination with fixed-wing UAV is not limited here.
- control terminal includes a remote control, a ground control platform, a mobile phone, a tablet computer, a notebook computer, a PC computer, etc., which are not limited herein.
- the UAV can include power system, flight control system and frame.
- the drone can communicate with the control terminal wirelessly, and the control terminal can acquire and display the flight information of the drone.
- the control terminal can communicate with the UAV in a wireless manner for remote control of the UAV, and to formulate a flight route and send it to the UAV, so that the UAV can fly according to the flight route.
- the frame includes a fuselage and a tripod (also called a landing gear).
- the fuselage may include a fuselage body and one or more arms connected to the fuselage body, and the one or more arms extend radially from the center frame.
- the tripod is connected to the fuselage and is used for supporting the UAV when landing.
- the power system may include one or more electronic governors (referred to as ESCs for short), one or more propellers, and one or more motors corresponding to the one or more propellers, where the motors are connected to the electronic governor and the propeller In between, the motor and the propeller are set on the arm of the UAV; the electronic governor is used to receive the driving signal generated by the flight control system, and provide the driving current to the motor according to the driving signal to control the speed of the motor.
- the motor is used to drive the propeller to rotate, thereby providing power for the flight of the drone, and the power enables the drone to achieve one or more degrees of freedom of movement.
- the drone can rotate around one or more rotation axes.
- the aforementioned rotation axis may include a roll axis, a yaw axis, and a pitch axis.
- the motor can be a DC motor or an AC motor.
- the motor can be a brushless motor or a brushed motor.
- the flight control system may include a flight controller and a sensing system.
- the sensing system is used to measure the attitude information of the unmanned aerial vehicle, that is, the position information and state information of the UAV in space, such as three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration, and three-dimensional angular velocity.
- the sensing system may include, for example, at least one of sensors such as a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (IMU), a vision sensor, a global navigation satellite system, and a barometer.
- the global navigation satellite system may be the Global Positioning System (GPS).
- the flight controller is used to control the flight of the UAV, for example, it can control the flight of the UAV according to the attitude information measured by the sensor system. It should be understood that the flight controller can control the drone according to pre-programmed program instructions, or can control the drone by responding to one or more control instructions from the control terminal.
- the UAV is also equipped with a radar, which is used to realize the function of surveying terrain information.
- a radar can be mounted on one of the tripods of the drone.
- the UAV uses radar to conduct ground-like flight.
- the radar mainly includes an RF front-end module and a signal processing module.
- the RF front-end module includes a transmitting antenna and a receiving antenna.
- the signal processing module is responsible for generating modulated signals and processing and analyzing the collected intermediate frequency signals.
- the RF front-end module receives the modulated signal to generate a high-frequency signal whose frequency changes linearly with the modulated signal, and radiates downward through the transmitting antenna.
- the electromagnetic wave encounters the ground, targets or obstacles and is reflected back, and then is received by the receiving antenna and transmitted.
- the signal and the intermediate frequency are mixed to obtain an intermediate frequency signal, and the speed information and distance information can be obtained according to the frequency of the intermediate frequency signal.
- the drone is also equipped with a photographing device, such as a camera, which can be set on the drone's fuselage through a pan-tilt and used to take ground images or conduct terrain mapping.
- a photographing device such as a camera
- a surveying drone uses a surveying drone to cover multiple photos of the terrain from multiple angles, and record the captured pose and GPS location information, and then use reconstruction technology (Structure from Motion, SFM) to generate a three-dimensional model or digital elevation Model DSM. As shown in Figure 2, it is the digital elevation model DSM of terraces.
- SFM Structure from Motion
- the contour topographic map generated according to the digital elevation model DSM, as shown in Figure 3, is the contour topographic map of terraces.
- the contour topographic map includes multiple contour lines located in different height ranges, with different contours. Lines are used to define terraces on different levels.
- the drone is also equipped with a spraying device and/or a spreading device to realize seeding on the ground or spraying of ground crops. For example, the operations of planting seeds on a certain terraced field or spraying agricultural fertilizers.
- the embodiment of the present application provides a route planning method for an aircraft to solve the above-mentioned problems of fast power consumption and low operation efficiency.
- control terminal executes any one of the route planning methods for terraces provided in the embodiments of the present application, obtains the flight route, and sends the obtained flight route to the aircraft, so that the aircraft can fly according to the planned flight route. It can prevent the aircraft from frequently adjusting the altitude, save battery power, and improve the operating efficiency of the aircraft.
- FIG. 4 is a schematic flowchart of steps of an aircraft route planning method provided by an embodiment of the present application.
- This route planning method is designed for route planning based on terrace-like terrain to improve the operating efficiency of UAVs.
- the route planning method includes steps S101 to S103.
- the drone When the drone needs to operate on a certain piece of ground, it can obtain a topographic map about the ground, where the topographic map includes contour lines, and the topographic map includes but is not limited to a contour topographic map.
- acquiring a topographic map about the ground specifically includes: acquiring a digital elevation model about the ground; and generating a contour topographic map of the ground based on the digital elevation model. As a result, more accurate contour lines can be obtained.
- the digital elevation model of the ground according to the surveying and mapping photos For example, to obtain the surveying and mapping photos collected during the surveying and mapping of the ground by the surveying and mapping drone, the digital elevation model of the ground according to the surveying and mapping photos, and then generate the contour topographic map of the ground according to the digital elevation model of the ground.
- the line topographic map includes contour lines with different height ranges, as shown in Figure 3.
- contour lines in the topographic map represent different height ranges
- multiple ground operation areas corresponding to different height ranges can be determined based on the contour lines.
- the topographic map includes four contour lines, which are contour line C1, contour line C2, contour line C3, and contour line C4.
- contour line C1 contour line
- the height ranges corresponding to the line C2, the contour line C3, and the contour line C4 decrease in order.
- the contour lines multiple ground operation areas corresponding to different height ranges are determined.
- the line C3 defines the ground work area S2, the ground work area S3 is determined by the contour line C3 and the contour line C4, and the ground work area S4 is enclosed by the contour line C4.
- planning the flight route of the aircraft in each ground operation area is specifically: obtaining the route coverage of the aircraft during operation; According to the contour lines of the ground operation area, a plurality of route strips are generated according to the route coverage range, and the plurality of route strips completely cover the ground operation area; and the aircraft in the place is generated according to the route strips Describe the flight path of the ground operation area.
- the route coverage is the spray width; if the operation of the aircraft is a shooting operation, the coverage of the route is the field of view of the camera, and the camera is set On the aircraft.
- the spray width is the corresponding spray width on the ground along the flight direction when the aircraft is flying at a specific height.
- the specific height is H1
- the spray pattern coverage width is W1, which is the route coverage.
- the spray width W1 is the width covered by the two nozzles. Of course, it can also be one nozzle or more nozzles. When more nozzles are included, the spray width coverage W1 is the width covered by the plurality of nozzles.
- the route coverage is the field of view of the camera, specifically the width of the camera’s field of view on the ground, specifically as shown in Figure 7, the camera’s field of view a at the flying height of the drone is H2 In the corresponding width on the ground, the route coverage is specifically W2.
- each ground operation area Based on the contour lines of each ground operation area, multiple route strips are generated according to the route coverage range. Specifically, you can refer to the contour lines of each ground operation area and divide each route according to the route coverage range. The ground operation area is divided into multiple route strips until the multiple route strips completely cover the ground operation area. As a result, it can be ensured that the aircraft can completely cover the ground operation area when flying in accordance with the planned flight route, thereby increasing the coverage rate of the operation.
- the ground operation area S1 is divided into three route strips according to the route coverage W1, which are route strip S11, route strip S12 and route
- the three strips of strip S13, route strip S11, route strip S12 and route strip S13 can completely cover the ground operation area S1.
- multiple route strips are generated according to the route coverage, specifically: based on each ground operation area located within the first height range Generating at least one route strip within the first altitude range according to the route coverage range, and the at least one route strip completely covers the corresponding ground operation area within the first altitude range.
- each ground work area is determined by at least two contour lines located in different height ranges
- one of the contour lines is the same as the height of the ground work area
- the first height range is the same as the height of the ground work area
- the height range corresponding to the contour line is thus based on the contour line located in the first height range in the ground operation area, and the route strip located in the first height range is generated according to the route coverage.
- the ground work area S5 determined by the contour line C5 and the contour line C6, wherein the height range of the contour line C5 and the contour line C6 are different, and the contour line C6 is the same as the ground
- the first height range is the height range of the contour line C6.
- C5' is the projection of the contour line C5 in the ground work area S5.
- filter some positions that are not within the first height range such as filtering some convex positions or concave positions.
- some convex positions and concave positions may not be within the first height range, so it can be done when generating the route strip. Avoid it.
- each route strip corresponds to a flight route, so that when the aircraft flies according to the flight route, the strip can be completely covered, thereby covering the entire ground operation area.
- the ground includes terraces, and the contour lines in the topographic map about the ground are used to determine each level of terraces, and each level of terraces corresponds to a working ground area.
- the ground work area S1, the ground work area S2, the ground work area S3, and the ground work area S4 in FIG. 5 correspond to the first, second, third, and fourth terraces, respectively.
- the contour line of each level of terraces includes a first contour line used to describe the inner boundary of each level of terraces and a second contour line used to describe the outer boundary of each level of terraces.
- the first contour line and the second contour line of the first layer of terraces are the contour line C1 and the contour line C2, respectively.
- generating multiple route strips according to the route coverage range includes: taking the first contour line as a reference and generating multiple route strips according to the route coverage range. Or use the second contour as a reference to generate multiple route strips according to the coverage of the route; the generated multiple route strips can cover this layer of terraces.
- the ground work area S1 its contour lines include a first contour line C1 and a second contour line C2.
- first contour line C1 a first contour line
- second contour line C2 a second contour line
- the ground work area S1 its contour lines include a first contour line C1 and a second contour line C2.
- the second contour line C2 can be used as a reference, and multiple route strips in the ground operation area S1 can be generated according to the route coverage.
- the route coverage W1 are route strip S11', route strip S12', and route strip Bring S13'.
- a flight route is generated in each route strip, and some routes in the flight route are similar in shape to the contour line. For example, part of the flight route has the same shape as the contour line.
- the n-th terraces are determined by two contour lines, namely contour n1 and contour n2, and assume the height corresponding to contour n1 The range is greater than the height range corresponding to the contour n2.
- three route strips are generated according to the route coverage, namely route strip 1, route strip 2 and route strip 3. The three route strips can be Complete coverage of the n-th terrace.
- a sub-route is generated in each route strip, for example, sub-route 1, sub-route 2 and sub-route 3 located in route strip 1, route strip 2 and route strip 3 respectively.
- the method further includes: determining a part of the route beyond the route strip where the flight route is located, and setting the part of the route as a non-operating route, wherein the aircraft Spraying is not performed during the non-operating route, and some routes beyond the route strip are routes not located in the ground operation area.
- some routes in sub-route 3 are located in the ground operation area determined by contour n2, that is, some routes that are not located on the n-th terrace, this part of the routes are non-operating routes, so The aircraft does not spray when flying on the non-operating route.
- the aircraft can be an agricultural plant protection machine.
- an agricultural plant protection machine is used to spray fruit trees planted in terraced fields.
- Fruit trees are generally planted at intervals. Since the spraying operation only needs to spray the fruit trees, the route planning method also provides a "Fruit tree single plant mode" in order to spray only the fruit trees in the terraced fields.
- terraced fields may not plant fruit trees, but other large-area crops, and there is no need to use the "fruit tree single plant mode.”
- the flight route of the aircraft in the ground operation area is generated according to the route strip, specifically: in each route strip A plurality of operation waypoints are generated in the ground operation area; the operation waypoints belonging to the ground operation area are determined; the flight route of the aircraft in the ground operation area is generated according to the operation waypoints belonging to the ground operation area.
- generating multiple operation waypoints in each route strip includes: obtaining the operation frequency of the aircraft and the flight distance corresponding to the operation frequency; according to the operation frequency of the aircraft and The flight distance corresponding to the operation frequency generates a plurality of operation waypoints in each route strip, and the separation distance of the plurality of operation waypoints in the same strip is the same.
- the operation frequency can be one operation in a period of time, such as spraying frequency, photographing frequency and so on.
- spraying frequency such as spraying frequency, photographing frequency and so on.
- the flying speed of the aircraft is 5m/s
- the flying distance corresponding to the operating frequency is 5m.
- Figure 14 shows that multiple operating waypoints are generated in each route strip according to the operating frequency of the aircraft and the flight distance corresponding to the operating frequency.
- route strip 1 route strip 2, and route strip
- Multiple operation waypoints are generated in zone 3.
- the separation distances of the multiple operation waypoints in the same belt are the same, that is, the separation distances are all flight distances, such as 5m.
- the multiple operation waypoints in each route strip can be connected to form a flight route in the terrace of this layer, as shown in Fig. 15 Shown.
- generating multiple operation waypoints in each route strip includes: if it is detected that the user has selected the target point operation mode, determining that it is located at the location according to the digital elevation model corresponding to the contour map.
- the multiple target points in the strip of each route are used to obtain the multiple operation waypoints, and the target points are points that need to be operated.
- the target point operation mode is, for example, "fruit tree per plant mode", and each target point corresponds to a fruit tree, and of course it can also correspond to other targets.
- each fruit tree located in each route strip is determined, thereby obtaining multiple operation waypoints.
- each route strip represent a fruit tree. Due to the planting of fruit trees and the later growth, seedlings may be missing or dead, etc., causing the points in each route strip to merge. It will not be as regular as the waypoints in Figure 14. In Figure 16, each fruit tree represents a working waypoint.
- each route strip After multiple operation waypoints are generated in each route strip, multiple operation waypoints in each route strip can be connected, that is, each fruit tree can be connected in turn, and then formed in the terrace of this layer
- the flight route is shown in Figure 17.
- determining the operation waypoints belonging to the ground operation area is specifically: determining the operation waypoints belonging to the ground operation area according to the contour lines of the ground operation area.
- image recognition technology is used to determine whether the operation waypoint is located in the ground operation area determined by the contour line. As shown in Figure 18, waypoint 1 to waypoint 10 are not in the terraces enclosed by contour n1 and contour n2, so it can be determined that waypoint 1 to waypoint 10 do not belong to the ground operation area And other waypoints are in the ground operation area.
- the operation waypoints belonging to the ground operation area are determined, and the operation waypoints belonging to the ground operation area may also be determined according to the contour position of the ground operation area, the position of the operation waypoint, and the height of the operation waypoint. Operation waypoints in the operation area.
- the contour position of the ground work area is a position corresponding to the contour line enclosing the ground work area.
- the contour lines with the same height of the ground work area S5 are used to determine the height range of the ground work area S5, that is, the height range of the contour line C6 can be taken as the height range of the ground work area S5, expressed as h6, for example, h6 corresponds to The altitude is 1000-1004m.
- the height range corresponding to the contour line C5 is expressed as h5, where the height range corresponding to h5 is greater than the height range corresponding to h6, for example, the altitude range corresponding to h6 is 1010-1014m.
- the positions corresponding to waypoint N1, waypoint M2, and waypoint M3 are all located within the contour position of ground operation area S5, but the heights of waypoint M2 and waypoint M3 are h7 and h8, respectively, where h7 is less than h6 , H8 is greater than h6, which means that waypoint M2 may be a point in a pit, waypoint M2 may be a point on a boss, and the height of waypoint M2 and waypoint M3 are not within the height range of ground operation area S5, thus It is determined that waypoint M2 and waypoint M3 are also operation waypoints that do not belong to ground operation area S5, and only waypoint N1 is an operation waypoint that belongs to ground operation area S5.
- the corresponding flight route is a non-operating route.
- the non-operating route shown in Figure 15 means that the aircraft does not perform operations when flying within the route segment.
- the contour line features of the contour lines in the topographic map can also be extracted, and the contour line features are used to describe the contour lines of each layer of terraces.
- the shape attribute information of the terraces is determined according to the contour features, and the shape attribute information is used to describe the shape of the terraces, which can describe the overall shape of the terraces, or it can refer to the shape of each terrace.
- the shape attribute information includes: ring attributes and/or non-ring attributes; the ring attributes include: regular ring attributes and/or irregular ring attributes; the non-ring attributes include: The terraces on the first floor constitute strip-like attributes and/or strip-like attributes including partial reconstruction contours.
- the ring attribute is shown in Fig. 20a.
- the four-story terraces are all ring-shaped structures, namely, 1-story terraces, 2-story terraces, 3-story terraces, and 4-story terraces.
- the regular ring attributes include roughly elliptical or circular shapes, such as 3-story terraces and 4-story terraces; irregular ring attributes include raised or recessed ring shapes, such as 1-story terraces and 2-story terraces.
- Figure 20b shows a striped attribute with the upper level of terraces, and a striped structure composed of two floors of terraces and one layer of terraces;
- Figure 20c shows a striped attribute including partial reconstruction of contour lines.
- the generating the flight route of the aircraft in the ground operation area according to the route strip is specifically based on the location of each route strip.
- Multiple sub-routes are generated in the ground operation area, and the multiple sub-routes include multiple start points and multiple end points; according to the order of the positions of the multiple sub-routes, the end point of one of the multiple sub-routes is connected with all the sub-routes. The starting point of the adjacent sub-route of the sub-route to obtain the flight route of the aircraft in the ground operation area.
- three sub-routes are generated in the ground operation area, namely, sub-route 1, sub-route 2 and sub-route 3.
- each sub-route includes a starting point and an end point.
- the flight distance corresponding to the operating frequency between the start and end points.
- the arrangement order of the positions of the multiple sub-routes such as the arrangement order of the sub-route 1, the sub-route 2 and the sub-route 3, connect the end point of one of the multiple sub-routes and the start point of the sub-route adjacent to the sub-route, In order to obtain the flight route of the aircraft in the ground operation area, specifically as shown in FIG. 21 or as shown in FIG. 22.
- not only the shape attribute information of the terraces must be considered, but also the flight from the upper terrace to the lower terrace or the flight from the lower terrace to the upper terrace during operation.
- the operating take-off point during the operation of the aircraft is set, for example, the operating take-off point may be located at the highest terrace of the terrace, or the operating take-off point may be located at the lowest terrace of the terrace.
- the operation take-off point is located on the highest terrace of the terrace, that is, the flight operation is from the upper terrace to the lower terrace; the operation take-off point is located on the lowest terrace of the terrace, that is the flight operation is from the lower terrace to the upper terrace.
- the height range of the adjacent terraces is lower than the height range of the terraces of the current level for the route segment located in the terraces adjacent to the current level of terraces, as shown in Fig. 22
- the height range of the 1-story terraces and the 2-story terraces, the height range of the 2-story terraces is smaller than the height range of the 1-story terraces.
- the height range of the adjacent terraces is higher than the height range of the terraces of the current level, as shown in Figure 23.
- the height range of the 1-story terraces and 2-story terraces is larger than that of the 1-story terraces.
- This route segment is shown in the two non-operating routes in Figure 23. For these two non-operating routes, bypass these two line segments when planning the flight route. When the non-operating route is about to be reached, the aircraft is required to fly along the sub-route adjacent to the non-operating route, as shown in Figure 23.
- Air route flying, overlapping routes can ensure that the aircraft will not collide with 2 levels of terraces and cause a crash, while at the same time it can bypass the non-operating routes, and it is stipulated that the aircraft will not perform operations, such as spraying or taking pictures, when flying on the overlapping routes.
- the route strip includes a first marking point and a second marking point, and the positions of the first marking point and the second marking point are different .
- the generating the flight route of the aircraft in the ground operation area according to the route strip is specifically: generating a first part of the flight route similar in shape to the contour line by taking the first marking point as the first starting point , Wherein when it is predicted that the first part of the flight route will intersect the first starting point, the generation of the first part of the route similar in shape to the contour line is suspended; the second part of the route is generated, wherein the second part of the route includes The end point of the first part of the route and the second marking point; taking the second marking point as the second starting point to generate a third part of the flight course similar in shape to the contour line; wherein the first starting point is the starting point The starting point of the first part of the route, and the second starting point is the starting point of the third part of the route.
- the first part of the route, the second part of the route, and the third part of the route represent the first part of the flight route, the second part of the flight route, and the third part of the flight route, respectively.
- the shape is similar to the contour n1, and of course it can also be similar to the contour n2; when it is predicted that the first part of the flight route will intersect the first starting point, it can be specifically determined at the operating frequency corresponding to the distance from the first starting point. Stopped when flying distance. In this way, the flight path in each ground operation area can be quickly obtained.
- the flight routes in the adjacent ground operation areas After obtaining the flight route in each ground operation area, connect the flight routes in the adjacent ground operation areas to obtain the flight route on the ground, such as the flight route for a certain terrace. If the flight route is generated in the terminal device, the flight route is sent to the aircraft after the flight route is generated, so that the aircraft can fly according to the flight route.
- the battery power of the aircraft is saved and the operation efficiency is improved. It is also possible to determine the flight route connection points of the flight routes between the terraces of each layer and the ground operation area of the adjacent terraces according to the shape attribute information of the terraces; wherein, at the route connection points, the aircraft needs to be
- the adjustment of the flight height by the contour line means that the aircraft has completed the flight operations on the terraces of this layer and needs to operate on the adjacent terraces.
- the route connection point includes a lower step point and an upper step point
- the lower step point is the connection point from the upper terrace to the lower terrace
- the upper step point is the connection point from the lower terrace to the upper terrace.
- the planned flight route is shown in Figure 25a to Figure 25c. If the aircraft flies and operates according to the planned flight route, it can quickly complete the flight operations on each terrace and then proceed to the next terrace for operations, thereby avoiding frequent height adjustments. Acceleration and deceleration can save battery power to the greatest extent, thereby improving the operational efficiency of the aircraft. As shown in Figure 25b and Figure 25c, if some of the routes are set as non-operating routes (the illustration is a dashed line), the aircraft will not perform operations (for example, spraying, broadcasting, or taking pictures) while flying on the non-operating routes. The operating route is a part of the route beyond the route belt, that is, the non-operating route is a route not located in the ground operation area.
- the route planning method further includes: determining the inner boundary line of each terrace according to the contour; generating a flight buffer according to the inner boundary of each terrace, the flight buffer being an area where the aircraft does not operate .
- the flight buffer can be set by the user. The user sets the "mountain boundary (inner boundary)" to generate a flight buffer with a certain width outwards. The flight buffer is set to the area where the aircraft does not operate, thereby ensuring The flight safety of the aircraft.
- a flight-restricted distance is acquired, and a flight buffer is generated according to the inner boundary line of each terrace and the flight-restricted distance.
- the limited flying distance indicates a distance extending outward from the inner boundary line, which can be set by the user according to the terrain of the terraces.
- the limit flying distance is set to Wh
- the inner boundary line is C5'
- the inner boundary line is C5' to indicate the boundary line of the mountain
- the inner boundary line is C5' to extend Wh (for example, Extend Wh meters) to form a flight buffer zone
- the flight buffer zone is set as an area where the aircraft does not perform flight operations, thereby improving the flight safety of the aircraft.
- the aircraft when the aircraft receives the flight route and topographic map, it can operate according to the flight route, or perform ground-simulation flight according to the flight route according to the topographic map, thereby saving battery power and improving the operating efficiency of the aircraft.
- the route planning device 500 includes a processor 501, a memory 502, and a display 503.
- the display 503 and the memory 502 are connected to the processor 501 through a bus, such as an I2C (Inter-integrated Circuit) bus.
- I2C Inter-integrated Circuit
- the processor 501 may be a micro-controller unit (MCU), a central processing unit (CPU), a digital signal processor (Digital Signal Processor, DSP), or the like.
- MCU micro-controller unit
- CPU central processing unit
- DSP Digital Signal Processor
- the memory 502 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk.
- the display 503 is used to display corresponding content, such as a topographic map, a flight route planned by a contour topographic map, etc., and the display 303 may be a touch display screen.
- the processor is configured to run a computer program stored in a memory, and when executing the computer program, implement any route planning method as provided in the embodiments of the present application.
- the processor is configured to run a computer program stored in a memory, and implement the following steps when the computer program is executed:
- topographic map on the ground including contour lines; determine multiple ground operation areas corresponding to different height ranges according to the contour lines; plan the aircraft according to the contour lines of each ground operation area The flight path in each of the ground operations area.
- the processor implementing the acquisition of a topographic map on the ground includes:
- the processor further implements:
- the topographic map on the ground is generated according to the digital elevation model and/or the contour topographic map, and the topographic map on the ground and the flight route are sent to the aircraft.
- part of the flight path is similar in shape to the contour line.
- the processor realizes the planning of the flight route of the aircraft in each ground operation area according to the contour line of each ground operation area, including:
- the processor realizes the generation of multiple route strips based on the contour lines of each of the ground operation areas and according to the route coverage range, including:
- a route strip located in the first height range is generated according to the route coverage range, and the route strip completely covers the first height range.
- the corresponding ground operation area within a height range is generated according to the route coverage range, and the route strip completely covers the first height range.
- the route coverage includes the spray width; if the operation of the aircraft is a shooting operation, the coverage of the route includes the angle of view of the camera ,
- the photographing device is arranged on the aircraft.
- the processor further implements:
- each route strip corresponds to a flight route.
- the ground includes terraces, and contour lines in the topographic map are used to determine each level of terraces, and each level of terraces corresponds to a working ground area.
- the contour lines of each level of terraces include a first contour line for describing the inner boundary of each level of terraces and a second contour line for describing the outer boundary of each level of terraces. String;
- the processor realizes the generation of multiple route strips based on the contour line of each ground operation area according to the route coverage range, including:
- first contour As a reference, generate multiple route strips according to the coverage of the route; or use the second contour as a reference to generate multiple route strips according to the coverage of the route.
- the processor implementing the generating of the flight route of the aircraft in the ground operation area according to the route strip includes:
- the processor implementing the generation of multiple operation waypoints in each route strip includes:
- the processor realizes the generation of multiple operation waypoints in each route strip, including:
- a plurality of target points located in each route strip are determined according to the digital elevation model corresponding to the contour map to obtain the plurality of operation waypoints, and the target The point is the point where the job needs to be performed.
- the processor implementing the determination of the operation waypoint belonging to the ground operation area includes:
- the operation waypoints belonging to the ground operation area are determined according to the contour lines of the ground operation area.
- the processor implementing the determination of the operation waypoint belonging to the ground operation area includes:
- the position of the operation waypoint and the height of the operation waypoint, the operation waypoints belonging to the ground operation area are determined.
- the processor further implements:
- contour line features of contour lines in the topographic map where the contour line features are used to describe the shape of the contour lines of each layer of terraces; determine the shape attribute information of the terraces according to the contour line features , The shape attribute information is used to describe the shape of the terraces.
- the shape attribute information includes: ring attributes and/or non-ring attributes; the ring attributes include: regular ring attributes and/or irregular ring attributes; the non-ring attributes include: The terraces on the first floor constitute strip-like attributes and/or strip-like attributes including partial reconstruction contours.
- the route strip includes a first marking point and a second marking point, and the positions of the first marking point and the second marking point are different ;
- the implementation of the processor to generate the flight route of the aircraft in the ground operation area according to the route strip includes:
- first marked point as the first starting point, generate a first part of the flight course similar in shape to the contour line, wherein when it is predicted that the first part of the flight course will intersect the first starting point, stop continuing the generation and the contour
- the first part of the route with similar line shapes generating a second part of the route, wherein the second part of the route includes the end point of the first part of the route and the second marking point; taking the second marking point as the second starting point , Generate the third part of the flight route similar in shape to the contour line;
- the first starting point is the starting point of the first part of the route
- the second starting point is the starting point of the third part of the route
- the processor implementing the generation of the flight route of the aircraft in the ground operation area according to the route strip includes:
- the processor further implements:
- the aircraft needs to adjust the flying height according to the contour line.
- the route connection point includes: a lower step point and an upper step point, the lower step point is a connection point from the upper terrace to the lower terrace, and the upper step point is from the lower terrace to the upper terrace. Junction.
- the processor further implements:
- the operating take-off point being located at the highest terrace of the terrace or the lowest terrace of the terrace.
- the processor further implements:
- the processor implementing the generation of a flight buffer according to the inner boundary line of each level of terraces includes:
- the processor further implements:
- the flight route is sent to the aircraft so that the aircraft can fly according to the flight route.
- the route planning device includes a remote control, a smart phone, a tablet computer, a desktop computer, or a wearable electronic device, etc., of course, it can also be an aircraft.
- the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the foregoing implementation The steps of the route planning method provided in the example.
- the computer-readable storage medium may be the internal storage unit of the route planning device described in any of the foregoing embodiments, such as the hard disk or memory of the route planning device.
- the computer-readable storage medium may also be an external storage device of the route planning device, such as a plug-in hard disk, a smart media card (SMC), and a secure digital (Secure Digital) equipped on the route planning device. , SD) card, flash card (Flash Card), etc.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Traffic Control Systems (AREA)
- Navigation (AREA)
Abstract
一种航线规划方法,该方法包括:获取关于地面的地形图,该地形图包括等高线(S101);根据该等高线确定对应于不同高度范围的多个地面作业区域(S102);根据每个地面作业区域的等高线,规划飞行器在每个地面作业区域的飞行航线(S103)。
Description
本申请涉及无人机技术领域,尤其涉及一种航线规划方法、设备及存储介质。
目前,在使用植保机作业时,对于梯田类的复杂地形,虽然可以使用测绘无人机进行地形测绘,测绘出梯田的地形图与数字高程模型(Digital Elevation Model,DSM)等中间数据,再将生成的地形图或者数字表面模型(Digital Surface Model,DSM)当作地图使用,输入给植保机作为地形信息,让植保机基于地形图进行变高仿地飞行。但是由于梯田地块的特殊性,按照传统航线规划方案生成的植保机航线,在变高仿地作业过程中会频繁调整高度,犹如“上下台阶”。这种飞行方式由于频繁地进行高度调节和加减速,将会极大地消耗电池电量,致使植保机的作业效率较低。
发明内容
基于此,本申请提供了一种航线规划方法、设备及存储介质,通过规划合理的飞行航线,以提高飞行器的作业效率。
第一方面,本申请提供了一种飞行器的航线规划方法,所述方法包括:
获取关于地面的地形图,所述地形图包括等高线;
根据所述等高线确定对应于不同高度范围的多个地面作业区域;
根据每个地面作业区域的等高线,规划所述飞行器在所述每个地面作业区域的飞行航线。
第二方面,本申请还提供了一种航线规划装置,所述航线规划装置包括存储器和处理器;
所述存储器用于存储计算机程序;
所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:
获取关于地面的地形图,所述地形图包括等高线;
根据所述等高线确定对应于不同高度范围的多个地面作业区域;
根据每个地面作业区域的等高线,规划所述飞行器在所述每个地面作业区域的飞行航线。
第三方面,本申请还提供了一种飞行系统,所述飞行系统包括上述任一项所述航线规划装置和飞行器,所述航线规划装置和所述飞行器通信连接;所述航线规划装置将规划的飞行航线发送至所述飞行器,所述飞行器按照所述飞行航线进行飞行。
第四方面,本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述的航线规划方法。
本申请提出的航线规划方法、设备及存储介质,可以避免飞行器在作业过程中频繁地调整高度,由此节省了电池电量,进而提高了飞行作业的效率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请的实施例提供的一种飞行系统的示意图;
图2是本申请的实施例提供的一种数字高程模型的场景示意图;
图3是本申请的实施例提供的一种等高线地形图的示意图;
图4是本申请的实施例提供的一种航线规划方法的示意流程图;
图5是本申请的实施例提供的由等高线确定地面作业区域的效果示意图;
图6是本申请的实施例提供的一种航线覆盖幅度的效果示意图;
图7是本申请的实施例提供的另一种航线覆盖幅度的效果示意图;
图8是本申请的实施例提供的根据等高线生成航线条带的效果示意图;
图9是本申请的实施例提供的由等高线确定地面作业区域的效果示意图;
图10是本申请的实施例提供的根据等高线生成航线条带的效果示意图;
图11是本申请的实施例提供的由等高线确定一层梯田的效果示意图;
图12是本申请的实施例提供的在一层梯田内生成航线条带的效果示意图;
图13是本申请的实施例提供的根据航线条带生成飞行航线的效果示意图;
图14是本申请的实施例提供的确定作业航点的效果示意图;
图15是本申请的实施例提供的根据作业航点生成飞行航线的效果示意图;
图16是本申请的实施例提供的一种确定作业航点的效果示意图;
图17是本申请的实施例提供的另一种根据作业航点生成飞行航线的效果示意图;
图18是本申请的实施例提供的确定属于地面作业区域内的作业航点的效果示意图;
图19是本申请的实施例提供的确定属于地面作业区域内的作业航点的效果示意图;
图20a至图20c是本申请的实施例提供的梯田的形状属性信息的示意图;
图21至图24是本申请的实施例提供的生成飞行航线的效果示意图;
图25a至图25c是本申请的实施例提供的具有不同形状属性信息的梯田的飞行航线的效果示意图;
图26是本申请的实施例提供的生成飞行缓冲区的效果示意图;
图27是本申请的实施例提供的一种航线规划装置的示意性框图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤, 也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
本申请的实施例提供了一种航线规划方法、航线规划装置、飞行系统及存储介质,使得飞行器在按照规划飞行航线飞行时,可以节省电池电量,并提高飞行作业效率。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1为本申请的实施例提供的一种飞行系统。该飞行系统包括控制终端和飞行器,控制终端用于控制飞行器的飞行或执行相应的作业动作,比如拍摄、喷洒等等。
飞行器包括无人机,该无人机包括旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机,还可以是旋翼型与固定翼无人机的组合,在此不作限定。
示例性的,控制终端包括遥控器、地面控制平台、手机、平板电脑、笔记本电脑和PC电脑等,在此不作限定。
无人机可以包括动力系统、飞控系统和机架。无人机可以与控制终端进行无线通信,该控制终端可以获取并显示无人机的飞行信息等。该控制终端可以通过无线方式与无人机进行通信,用于对无人机进行远程操纵,以及制定飞行航线发送给无人机,以使无人机按照该飞行航线飞行。
其中,机架包括机身和脚架(也称为起落架)。机身可以包括机身本体以及与机身本体连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架与机身连接,用于在无人机着陆时起支撑作用。
动力系统可以包括一个或多个电子调速器(简称为电调)、一个或多个螺旋桨以及与一个或多个螺旋桨相对应的一个或多个电机,其中电机连接在电子调速器与螺旋桨之间,电机和螺旋桨设置在无人机的机臂上;电子调速器用于接收飞控系统产生的驱动信号,并根据驱动信号提供驱动电流给电机,以控制电机的转速。电机用于驱动螺旋桨旋转,从而为无人机的飞行提供动力,该动力使得无人机能够实现一个或多个自由度的运动。
在某些实施例中,无人机可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、偏航轴和俯仰轴。应理解,电机可以是直流电机,也可 以交流电机。另外,电机可以是无刷电机,也可以是有刷电机。
飞控系统可以包括飞行控制器和传感系统。传感系统用于测量无人飞行器的姿态信息,即无人机在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。
飞行控制器用于控制无人机的飞行,例如,可以根据传感系统测量的姿态信息控制无人机的飞行。应理解,飞行控制器可以按照预先编好的程序指令对无人机进行控制,也可以通过响应来自控制终端的一个或多个控制指令对无人机进行控制。
无人机还搭载有雷达,该雷达用于实现对地形信息进行勘测的功能。示例性的,雷达可以搭载在无人机的其中一个脚架上。无人机通过雷达进行仿地飞行。
雷达主要包括射频前端模块和信号处理模块,射频前端模块包括一个发射天线和一个接收天线,信号处理模块负责产生调制信号以及对采集的中频信号进行处理分析。
具体地,射频前端模块接收到调制信号产生频率随调制信号线性变化的高频信号,通过发射天线向下辐射,电磁波遇到地面、目标物或障碍物被反射回来,再被接收天线接收,发射信号与中频进行混频得到中频信号,根据中频信号的频率就可得到速度信息和距离信息。
无人机上还搭载有拍摄装置,比如相机,该拍摄装置可通过云台设置在无人机的机身上,用于拍摄地面图像、或者进行地形测绘。
比如,使用测绘无人机,从多个角度覆盖拍摄地形的多张照片,并记录拍摄的位姿和GPS位置信息,再使用重建技术(Structure from motion,SFM),从而生成三维模型或者数字高程模型DSM。如图2所示,为梯田的数字高程模型DSM。
根据数字高程模型DSM生成的等高线地形图,如图3所示,为梯田的等高线地形图,该等高线地形图包括多条位于不同高度范围的等高线,不同的等高线用于限定不同层的梯田。
无人机上还搭载有喷洒装置和/或播撒装置,以实现对地面进行播种,或者对地面农作物的进喷洒作业等。比如,对某一梯田进行播种,或者喷洒农业化肥的作业。
对于梯田类这种复杂地形,虽然可以使用测绘无人机进行地形测绘,测绘出梯田的地形图,再将根据测绘的地形图生成的DSM,传送给植保机作为地形信息,让植保机基于地形信息进行变高仿地飞行进行作业。但是,由于梯田地块的特殊性,按照传统航线规划方案生成的飞行航线,在变高仿地作业过程中会频繁调整高度,犹如“上下台阶”,这种飞行方式由于反复进行高度调节和加减速,将会极大地消耗电池电量,导致作业效率较低。
为此,本申请的实施例提供了一种飞行器的航线规划方法,以解决上述电量消耗快以及作业效率低的问题。
以下将基于图1中的飞行控制系统对本申请提供的飞行器的航线规划方法进行介绍,但图1对应方式并不构成对本申请提供的飞行控制系统的限定。
示例性的,控制终端执行本申请实施例提供的任意一种针对类梯田的航线规划方法,得到飞行航线,并将得到的飞行航线发送给飞行器,以使得飞行器能够按照规划的飞行航线飞行。可避免飞行器频繁地调整高度,节省电池电量,进而提高了飞行器的作业效率。
请参阅图4,图4是本申请实施例提供的一种飞行器的航线规划方法的步骤示意流程图。该航线规划方法针对类梯田的地形进行航线规划,以提高无人机的作业效率。
需要说明的是,以下将梯田为例对本申请提供航线规划方法进行介绍,但可以理解的是,该航线规划方法也适合其他类梯田的地形。
如图4所示,该航线规划方法包括步骤S101至步骤S103。
S101、获取关于地面的地形图,所述地形图包括等高线;
S102、根据所述等高线确定对应于不同高度范围的多个地面作业区域;
S103、根据每个地面作业区域的等高线,规划所述飞行器在所述每个地面作业区域的飞行航线。
在无人机需要对某一块地面进行作业时,可以获取关于地面的地形图,其中该地形图包括等高线,该地形图包括但不限定等高线地形图。
在一些实施例中,获取关于地面的地形图,具体为:获取关于地面的数字 高程模型;基于所述数字高程模型生成所述地面的等高线地形图。由此,可以得到更为准确的等高线。
比如,获取测绘无人机对该地面进行测绘时采集的测绘照片,根据测绘照片关于该地面的数字高程模型,再根据该地面的数字高程模型生成该地面的等高线地形图,该等高线地形图中包括具有不同高度范围的等高线,具体如图3所示。
因为地形图中的等高线代表着不同的高度范围,由此可以根据所述等高线确定对应于不同高度范围的多个地面作业区域。
示例性的,如图5所示,该地形图中包括四条等高线,分别为等高线C1、等高线C2、等高线C3和等高线C4,其中等高线C1、等高线C2、等高线C3和等高线C4对应的高度范围依次减小。根据所述等高线确定对应于不同高度范围的多个地面作业区域,具体地在图5中,由等高线C1和等高线C2确定地面作业区域S1,由等高线C2和等高线C3确定地面作业区域S2,由等高线C3和等高线C4确定地面作业区域S3,以及由等高线C4围成地面作业区域S4。
在一些实施例中,根据每个地面作业区域的等高线,规划所述飞行器在所述每个地面作业区域的飞行航线,具体为:获取所述飞行器作业时的航线覆盖幅度;基于每个所述地面作业区域的等高线,根据所述航线覆盖幅度生成多条航线条带,所述多条航线条带完全覆盖所述地面作业区域;根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线。
示例性的,若所述飞行器的作业为喷洒作业时,航线覆盖幅度为喷幅宽度;若所述飞行器的作业为拍摄作业时,航线覆盖幅度为拍摄装置的视场角,所述拍摄装置设置在所述飞行器上。
其中,该喷幅宽度是飞行器飞行在特定高度时沿着飞行方向在地面上对应的喷幅覆盖宽度。具体如图6所示,特定高度为H1,喷幅覆盖宽度为W1,该W1即为航线覆盖幅度。
需要说明的是,在图6中,仅示例了两个喷嘴,喷幅覆盖宽度W1为两个喷嘴所覆盖的宽度,当然也可以是一个喷嘴,或者更多个喷嘴的情况,当无人机包括更多个喷嘴时,喷幅覆盖宽度W1为多个喷嘴所覆盖的宽度。
其中,航线覆盖幅度为拍摄装置的视场角,具体为拍摄装置的视场角在地面对应的宽度,具体如图7所示,为拍摄装置的视场角a在无人机飞行高度为 H2在地面对应的宽度,航线覆盖幅度具体为W2。
基于每个所述地面作业区域的等高线,根据所述航线覆盖幅度生成多条航线条带,具体可以参照每个所述地面作业区域的等高线,按照所述航线覆盖幅度将每个所述地面作业区域划分为多条航线条带,直至所述多条航线条带完全覆盖所述地面作业区域。由此,可以确保飞行器按照规划的飞行航线飞行作业时,可以完全覆盖该地面作业区域,进而提高了作业的覆盖率。
比如,如图8所示,参照地面作业区域S1的等高线C1,按照航线覆盖幅度W1将地面作业区域S1划分为三个航线条带,分别为航线条带S11、航线条带S12和航线条带S13,航线条带S11、航线条带S12和航线条带S13三个条带可以完全覆盖地面作业区域S1。
在一些实施例中,基于每个所述地面作业区域的等高线,根据所述航线覆盖幅度生成多条航线条带,具体为:基于每个所述地面作业区域中位于第一高度范围内的等高线,根据所述航线覆盖幅度生成位于所述第一高度范围内的至少一航线条带,所述至少一航线条带完全覆盖所述第一高度范围内对应的地面作业区域。
由于每个地面作业区域由至少两条位于不同高度范围内的等高线确定,其中一条等高线与该地面作业区域的高度相同,因此第一高度范围为与该地面作业区域的高度相同的等高线对应的高度范围,由此基于所述地面作业区域中位于第一高度范围内的等高线,根据所述航线覆盖幅度生成位于所述第一高度范围内的航线条带。可以过滤一些不在该第一高度范围内的位置,以便飞行器按照在按照规划的航线飞行时,不用调整高度,进而节省电量,提高了飞行作业效率。
具体地,如图9所示,等高线C5和等高线C6确定的地面作业区域S5,其中,等高线C5和等高线C6的高度范围不相同,并且等高线C6为与地面作业区域S5的高度相同的等高线,第一高度范围为等高线C6的高度范围。C5’为等高线C5在地面作业区域S5中的投影。
其中,过滤一些不在该第一高度范围内的位置,比如过滤一些凸起位置或者凹陷位置,具体某一些凸起位置和凹陷位置可能不在第一高度范围内,因此在生成航线条带时可以进行规避掉。
在一些实施例中,每条航线条带对应一条飞行航线,以使飞行器按照该飞 行航线飞行时,可以完成覆盖该条带,进而实现覆盖整个地面作业区域。
在一些实施例中,所述地面包括梯田,所述关于地面的地形图中的等高线用于确定每层梯田,每层梯田对应一个作业地面区域。比如,图5中的地面作业区域S1、地面作业区域S2、地面作业区域S3和地面作业区域S4分别对应第一层梯田、第二层梯田、第三层梯田和第四层梯田。
其中,所述每层梯田的等高线包括用于描述所述每层梯田的内边界的第一等高线和用于描述所述每层梯田的外边界的第二等高线。比如,第一层梯田的第一等高线和第二等高线分别为等高线C1和等高线C2。
相应地,基于每个所述地面作业区域的等高线,根据所述航线覆盖幅度生成多条航线条带,包括:以所述第一等高线为基准,根据所述航线覆盖幅度生成多条航线条带;或以所述第二等高线为基准,根据所述航线覆盖幅度生成多条航线条带;生成的多条航线条带可以完成覆盖该层梯田。
比如,对于地面作业区域S1,其等高线包括第一等高线C1和第二等高线C2。由此,能够以第一等高线C1为基准,根据所述航线覆盖幅度生成地面作业区域S1的多条航线条带。具体如图8所示,以第一等高线C1为基准,根据航线覆盖幅度W1生成地面作业区域S1的多条航线条带,分别为航线条带S11、航线条带S12和航线条带S13。
再比如,对于地面作业区域S1,其等高线包括第一等高线C1和第二等高线C2。由此,可以第二等高线C2为基准,根据所述航线覆盖幅度生成地面作业区域S1的多条航线条带。具体如图10所示,以第二等高线C2为基准,根据航线覆盖幅度W1生成地面作业区域S1的多条航线条带,分别为航线条带S11’、航线条带S12’和航线条带S13’。
在生成多条航线条带后,在每一条航线条带内生成一条飞行航线,所述飞行航线中的部分航线与所述等高线形状相似。比如,所述飞行航线中的部分航线与所述等高线形状相同。
示例性的,如图11至图12所示,在图11中由两条等高线,即等高线n1和等高线n2确定的第n层梯田,并假设等高线n1对应的高度范围大于等高线n2对应的高度范围。在图12中,以第n层梯田的等高线n1为基准,根据航线覆盖幅度生成三条航线条带,分别为航线条带1、航线条带2和航线条带3,三条航线条带可以完成覆盖该第n层梯田。
需要说明的是,如果三条航线条带无法完全覆盖该第n层梯田,则需要生成更多的条带。当然也可以用第n层梯田的等高线n2为基准,根据航线覆盖幅度生成多条航线条带,以能够完全覆盖该第n层梯田为准。
在图13中,在每一条航线条带内生成一条子航线,比如为分别位于航线条带1、航线条带2和航线条带3的子航线1、子航线2和子航线3。
示例性的,若飞行器的作业为喷洒作业时,所述方法还包括:确定超出所述飞行航线所在的航线条带的部分航线,将所述部分航线设置为不作业航线,其中,所述飞行器在所述不作业航线飞行时不进行喷洒,超出所述航线条带的部分航线为不位于该地面作业区域内的航线。
比如,如图13所示,子航线3中有部分航线是位于由等高线n2确定的地面作业区域内,即不位于第n层梯田的部分航线,该部分航线即为不作业航线,所述飞行器在所述不作业航线飞行时不进行喷洒。
飞行器可以是农业植保机,比如农业植保机用于对梯田中种植的果树进行喷洒作业,果树一般是间隔种植的,由于喷洒作业只需要对果树进行喷洒,因此该航线规划方法还提供了一种“果树单株模式”,以便只对梯田中的果树进行喷洒。当然,梯田也有可能不是种植果树,而是其他大面积农作物,不需要使用“果树单株模式”。
在一些实施例中,为了快速准确地生成地面作业区域内的飞行航线,根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线,具体为:在所述每条航线条带内生成多个作业航点;确定属于所述地面作业区域内的作业航点;根据所述属于所述地面作业区域内的作业航点生成所述飞行器在所述地面作业区域的飞行航线。
在一些实施例中,在所述每条航线条带内生成多个作业航点,具体包括:获取所述飞行器的作业频率以及所述作业频率对应的飞行距离;根据所述飞行器的作业频率以及所述作业频率对应的飞行距离在所述每条航线条带内生成多个作业航点,在同一条带内的所述多个作业航点的间隔距离相同。
作业频率可以为一段时间作业一次,比如喷洒频率、拍照频率等。示例性的,比如飞行器的作业频率设置为间隔1秒钟喷洒一次,而飞行器的飞行速度5m/s,则作业频率对应的飞行距离为5m。
比如,如图14所示,图14为根据飞行器的作业频率以及作业频率对应的 飞行距离在每条航线条带内生成多个作业航点,在航线条带1、航线条带2和航线条带3内均生成了多个作业航点。且在同一条带内的所述多个作业航点的间隔距离相同,即间隔距离均为飞行距离,比如5m。
其中,在所述每条航线条带内生成多个作业航点之后,则可以连接每个航线条带内的多个作业航点,进而形成在该层梯田内的飞行航线,具体如图15所示。
在一些实施例中,在所述每条航线条带内生成多个作业航点,包括:若检测到用户选择了目标点作业模式,根据所述等高线地图对应的数字高程模型确定位于所述每条航线条带内多个目标点,得到所述多个作业航点,所述目标点为需要进行作业的点。
其中,目标点作业模式比如为“果树单株模式”,每一个目标点对应一棵果树,当然也可以对应其他目标物。根据所述等高线地图对应的数字高程模型确定位于所述每条航线条带内每棵果树,由此得到多个作业航点。
比如,如图16所示,每个航线条带内的点代表一棵果树,由于果树种植的原因以及后期成长,可能会缺苗或者死掉等原因,导致每个航线条带内的点并不会像图14中作业航点那么规则。在图16中,每棵果树表示一个作业航点。
其中,在所述每条航线条带内生成多个作业航点之后,则可以连接每个航线条带内的多个作业航点,即可以依次连接每棵果树,进而形成在该层梯田内的飞行航线,具体如图17所示。
在一些实施例中,确定属于所述地面作业区域内的作业航点,具体为:根据所述地面作业区域的等高线确定属于所述地面作业区域内的作业航点。
比如利用图像识别技术确定作业航点是否位于等高线确定的地面作业区域内。如图18所示,航点1至航点10均不在由等高线n1和等高线n2围成的梯田内,由此可以确定航点1至航点10不属于所述地面作业区域内的作业航点,而其他的航点在所述地面作业区域内。
在另一些实施方式中,确定属于所述地面作业区域内的作业航点,还可以根据所述地面作业区域的等高线位置、作业航点的位置和作业航点的高度确定属于所述地面作业区域内的作业航点。其中,所述地面作业区域的等高线位置为围成该地面作业区域的等高线对应的位置。
具体地,确定作业航点的位置是否在地面作业区域的等高线位置内,且作 业航点的高度还在所述地面作业区域的高度范围内。由此,可以更为准确地确定哪些航点是属于对应的地面作业区域的。
示例性的,如图19所示,等高线C5和等高线C6确定的地面作业区域S5,其中,等高线C5和等高线C6的高度范围不相同,并且等高线C6为与地面作业区域S5的高度相同的等高线,用于确定地面作业区域S5的高度范围,即可以将等高线C6的高度范围作为地面作业区域S5的高度范围,表示为h6,比如h6对应的海拔高度为1000-1004m。等高线C5对应的高度范围表示为h5,其中h5对应的高度范围大于h6对应的高度范围,比如h6对应的海拔高度为1010-1014m。由图19可以确定,航点N1、航点M2和航点M3的位置均位于在地面作业区域S5的等高线位置内,该等高线位置为等高线C5和等高线C6之间位置,可以理解为地理位置,具体可以为经度信息和纬度信息;而航点M1不在地面作业区域S5的等高线位置,由此可以确定航点M1不属于地面作业区域S5内的作业航点。
而对应于航点N1、航点M2和航点M3的位置均位于在地面作业区域S5的等高线位置内,但是航点M2和航点M3的高度分别为h7和h8,其中h7小于h6,h8大于h6,即表示航点M2可能是凹坑内的点,航点M2可能是凸台上的点,航点M2和航点M3的高度并不在地面作业区域S5的高度范围内,由此确定航点M2和航点M3也是不属于地面作业区域S5的作业航点,只有航点N1是属于地面作业区域S5的作业航点。
对于不属于地面作业区域内的作业航点,在生成飞行航线时,对应的飞行航线为不作业航线,如图15所示的不作业航线,即飞行器在该航线段内飞行时不进行作业。
由于梯田的地貌的特殊性,不仅在于每层梯田的等高范围不同,其形状也会出现一些不规则的,为此给航线规划带来了难度。
为此,在本申请的实施例中,在航线规划之前,还可以提取所述地形图中等高线的等高线特征,所述等高线特征用于描述所述每层梯田的等高线的形状;根据所述等高线特征确定所述梯田的形状属性信息,所述形状属性信息用于描述梯田的形状,可以描述梯田的整体形状,也可以是指每层梯田的形状。
在一些实施例中,所述形状属性信息包括:环形属性和/或非环形属性;所述环形属性包括:规则的环形属性和/或非规则的环形属性;所述非环形属性包 括:与上一层梯田组成条带状属性和/或包括部分重建等高线的条带状属性。
示例性的,环形属性如图20a所示,在图20a中,4层梯田均是环形结构,即1层梯田、2层梯田、3层梯田和4层梯田。其中,规则的环形属性包括大致呈椭圆形状或圆形等,比如3层梯田和4层梯田;非规则的环形属性包括凸起部或者凹陷部的环形形状,比如1层梯田和2层梯田。
示例性的,非环形属性如图20b和图20c所示。图20b为与上一层梯田组成条带状属性,2层梯田与1层梯田组成的条带状结构;图20c为包括部分重建等高线的条带状属性。
在一些实施例中,若所述形状属性信息为环形属性;所述根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线,具体为根据每个所述航线条带在所述地面作业区域内生成多个子航线,所述多个子航线包括多个起点和多个终点;按照所述多个子航线位置的排列顺序,连接所述多个子航线中的一个子航线的终点与所述子航线相邻的子航线的起点,以得到所述飞行器在所述地面作业区域的飞行航线。
示例性的,如图21所示,在地面作业区域内生成三条子航线,分别为子航线1、子航线2和子航线3,当然也可以包括更多条子航线,每条子航线包括起点和终点,起点和终点间隔作业频率对应的飞行距离。按照多个子航线位置的排列顺序,比如子航线1、子航线2和子航线3的排列顺序,连接所述多个子航线中的一个子航线的终点与所述子航线相邻的子航线的起点,以得到所述飞行器在所述地面作业区域的飞行航线,具体如图21所示,或者如图22所示。
在一些实施例中,在规划航线时,不仅要考虑到梯田的形状属性信息,还考虑作业时是从上层梯田往下层梯田飞行,还是从下层梯田往上层梯田飞行。
具体地,设置飞行器作业时的作业起飞点,比如可以所述作业起飞点位于所述梯田的最高层梯田,或者所述作业起飞点位于所述梯田的最低层梯田。所述作业起飞点位于所述梯田的最高层梯田,即为从上层梯田往下层梯田飞行作业;所述作业起飞点位于所述梯田的最低层梯田,即为从下层梯田往上层梯田飞行作业。
示例性的,若是飞行器从上层梯田往下层梯田飞行,对于位于与本层梯田相邻的梯田内的航线段,相邻的梯田的高度范围低于本层梯田的高度范围,具体如图22中1层梯田和2层梯田,2层梯田的高度范围小于1层梯田的高度范 围,该航线段如图22中两段不作业航线。对于这两段不作业航线,在规划飞行航线时可以规定飞行器按照该规划的飞行航线飞行,但在不作业航线飞行时不进行作业,比如喷洒或拍照等等。
示例性的,若是飞行器从下层梯田往上层梯田飞行,对于位于与本层梯田相邻的梯田内的航线段,相邻的梯田的高度范围高于本层梯田的高度范围,具体如图23中1层梯田和2层梯田,2层梯田的高度范围大于1层梯田的高度范围,该航线段如图23中两段不作业航线。对于这两段不作业航线,在规划飞行航线时绕过这两条线段,在快到达该不作业航线时,规定飞行器沿与不作业航线相邻的子航线飞行,如在图23中的重叠航线飞行,重叠航线可以确保飞行器不会碰到2层梯田造成坠机,同时在又可以绕过不作业航线,且规定飞行器在重叠航线飞行时不进行作业,比如喷洒或拍照等等。
在一些实施例中,若所述形状属性信息为环形属性;在所述航线条带内包括第一标记点和第二标记点,所述第一标记点和所述第二标记点的位置不同。
相应地,所述根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线,具体为:以第一标记点为第一起点,生成与等高线形状相似的第一部分飞行航线,其中当预测所述第一部分飞行航线将与所述第一起点相交时,中止继续生成与等高线形状相似的所述第一部分航线;生成第二部分航线,其中所述第二部分航线包括所述第一部分航线的终点和所述第二标记点;以所述第二标记点为第二起点,生成与等高线形状相似的第三部分飞行航线;其中,所述第一起点为所述第一部分航线的起点,所述第二起点为第三部分航线的起点。
示例性的,如图24所示,第一部分航线、第二部分航线和第三部分航线分别表示第一部分飞行航线、第二部分飞行航线和第三部分飞行航线。在环形属性的梯田内的航线条带内设置第一标记点和第二标记点,以第一标记点为第一起点生成与等高线的形状相似的第一部分航线,其中该第一部分飞行航线与等高线n1形状相似,当然也可以与等高线n2的形状相似;当预测所述第一部分飞行航线将与所述第一起点相交时,具体可以在与第一起点相距作业频率对应的飞行距离时中止。该这种方式由此可以快速地得到每个地面作业区域内的飞行航线。
在得到每个地面作业区域内的飞行航线,将彼此相邻的地面作业区域内的飞行航线连接,得到关于地面的飞行航线,比如针对某一块梯田的飞行航线。 若是在终端设备中生成的飞行航线,在生成飞行航线后将所述飞行航线发送至飞行器,以使所述飞行器按照所述飞行航线飞行。
在一些实施例中,为了得到更为合理的飞行航线,节省飞行器的电池电量以及提高作业效率。还可以根据所述梯田的形状属性信息,确定所述每层梯田与相邻层梯田的地面作业区域的飞行航线的航线连接点;其中,在所述航线连接点处,所述飞行器需要根据所述等高线调整飞行高度,即表示飞行器完成本层梯田飞行作业,需要对相邻层梯田进行作业。
其中,所述航线连接点包括下台阶点和上台阶点,所述下台阶点为从上层梯田至下层梯田的连接点,所述上台阶点为从下层梯田至上层梯田的连接点。
规划后飞行航线如图25a至图25c所示,若飞行器按照规划的飞行航线飞行并作业,可以快速完成每层梯田的飞行作业后进行下一层梯田进行作业,由此避免频繁地进行高度调节和加减速,最大程度地节省电池电量,进而提高了飞行器的作业效率。如图25b和图25c所示,若部分航线设置为不作业航线(图示为虚线),其中,所述飞行器在不作业航线飞行时不进行作业(例如,喷洒,播撒,或者拍照),不作业航线为超出所述航线条带的部分航线,即所述不作业航线为不位于该地面作业区域内的航线。
由于类梯田的地形特殊性,在飞行器飞行的过程中,极有可能与梯田山体发生碰撞,导致飞行器坠毁,为了防止与梯田山体发生刮蹭。所述航线规划方法还包括:根据所述等高线确定每层梯田的内边界线;根据所述每层梯田的内边界线生成飞行缓冲区,所述飞行缓冲区为飞行器不进行作业的区域。该飞行缓冲区可由用户设定,用户设定以“山体边界线(内边界线)”向外一定宽度生成飞行缓冲区,飞行缓冲区内设定为飞机不进行作业的区域,由此确保了飞行器的飞行安全。
具体地,获取限飞距离,根据所述每层梯田的内边界线和所述限飞距离生成飞行缓冲区。限飞距离表示以内边界线向外延伸的一段距离,可以由用户根据梯田的地形进行设定。
示例性的,如图26所示,限飞距离为设置为Wh,内边界线为C5’,内边界线为C5’表示山体的边界线,以内边界线为C5’向外延伸Wh(例如,延伸Wh米)形成飞行缓冲区,飞行缓冲区内设定为飞机不进行飞行作业的区域,由此提高了飞行器飞行的安全性。
在一些实施例中,还可以根据所述数字高程模型和/或等高线地形图生成所述关于地面的地形图,并将所述关于地面的地形图和所述飞行航线发送至飞行器。以使飞行器在接收到飞行航线和地形图时,按照该飞行航线飞行作业,或者按照该飞行航线根据该地形图进行仿地飞行,由此节省电池电量,提高了飞行器的作业效率。
请参阅图27,图27是本申请一实施例提供的一种航线规划装置的示意性框图。该航线规划装置500包括处理器501、存储器502和显示器503,显示器503和存储器502通过总线与处理器501连接,比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器501可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器502可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
具体地,显示器503用于显示对应内容,比如地形图、等高线地形图会规划的飞行航线等,该显示器303可以为触摸显示屏。
其中,所述处理器用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现如本申请实施例提供的任意一种航线规划方法。
示例性的,所述处理器用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现如下步骤:
获取关于地面的地形图,所述地形图包括等高线;根据所述等高线确定对应于不同高度范围的多个地面作业区域;根据每个地面作业区域的等高线,规划所述飞行器在所述每个地面作业区域的飞行航线。
在一些实施例中,所述处理器实现所述获取关于地面的地形图,包括:
获取关于地面的数字高程模型;基于所述数字高程模型生成所述地面的等高线地形图。
在一些实施例中,所述处理器还实现:
根据所述数字高程模型和/或等高线地形图生成所述关于地面的地形图,并将所述关于地面的地形图和所述飞行航线发送至飞行器。
在一些实施例中,所述飞行航线中的部分航线与所述等高线形状相似。
在一些实施例中,所述处理器实现所述根据每个地面作业区域的等高线,规划所述飞行器在所述每个地面作业区域的飞行航线,包括:
获取所述飞行器作业时的航线覆盖幅度;基于每个所述地面作业区域的等高线,根据所述航线覆盖幅度生成多条航线条带,所述多条航线条带完全覆盖所述地面作业区域;根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线。
在一些实施例中,所述处理器实现所述基于每个所述地面作业区域的等高线,根据所述航线覆盖幅度生成多条航线条带,包括:
基于每个所述地面作业区域中位于第一高度范围内的等高线,根据所述航线覆盖幅度生成位于所述第一高度范围内的航线条带,所述航线条带完全覆盖所述第一高度范围内对应的地面作业区域。
在一些实施例中,若所述飞行器的作业为喷洒作业时,所述航线覆盖幅度包括喷幅宽度;若所述飞行器的作业为拍摄作业时,所述航线覆盖幅度包括拍摄装置的视场角,所述拍摄装置设置在所述飞行器上。
在一些实施例中,若所述飞行器的作业为喷洒作业时,所述处理器还实现:
确定超出所述飞行航线所在的航线条带的部分航线,将所述部分航线设置为不作业航线,其中,所述飞行器在所述不作业航线飞行时不进行喷洒,超出所述航线条带的部分航线为不位于该地面作业区域内的航线。
在一些实施例中,每条航线条带对应一条飞行航线。
在一些实施例中,所述地面包括梯田,所述地形图中的等高线用于确定每层梯田,每层梯田对应一个作业地面区域。
在一些实施例中,所述每层梯田的等高线包括用于描述所述每层梯田的内边界的第一等高线和用于描述所述每层梯田的外边界的第二等高线;
所述处理器实现所述基于每个所述地面作业区域的等高线,根据所述航线覆盖幅度生成多条航线条带,包括:
以所述第一等高线为基准,根据所述航线覆盖幅度生成多条航线条带;或以所述第二等高线为基准,根据所述航线覆盖幅度生成多条航线条带。
在一些实施例中,所述处理器实现所述根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线,包括:
在所述每条航线条带内生成多个作业航点;确定属于所述地面作业区域内 的作业航点;根据所述属于所述地面作业区域内的作业航点生成所述飞行器在所述地面作业区域的飞行航线。
在一些实施例中,所述处理器实现所述在所述每条航线条带内生成多个作业航点,包括:
获取所述飞行器的作业频率以及所述作业频率对应的飞行距离;根据所述飞行器的作业频率以及所述作业频率对应的飞行距离在所述每条航线条带内生成多个作业航点,在同一条带内的所述多个作业航点的间隔距离相同。
在一些实施例中,所述处理器实现在所述每条航线条带内生成多个作业航点,包括:
若检测到用户选择了目标点作业模式,根据所述等高线地图对应的数字高程模型确定位于所述每条航线条带内多个目标点,得到所述多个作业航点,所述目标点为需要进行作业的点。
在一些实施例中,所述处理器实现所述确定属于所述地面作业区域内的作业航点,包括:
根据所述地面作业区域的等高线确定属于所述地面作业区域内的作业航点。
在一些实施例中,所述处理器实现所述确定属于所述地面作业区域内的作业航点,包括:
根据所述地面作业区域的等高线位置、作业航点的位置和作业航点的高度确定属于所述地面作业区域内的作业航点。
在一些实施例中,所述处理器还实现:
提取所述地形图中等高线的等高线特征,所述等高线特征用于描述所述每层梯田的等高线的形状;根据所述等高线特征确定所述梯田的形状属性信息,所述形状属性信息用于描述梯田的形状。
在一些实施例中,所述形状属性信息包括:环形属性和/或非环形属性;所述环形属性包括:规则的环形属性和/或非规则的环形属性;所述非环形属性包括:与上一层梯田组成条带状属性和/或包括部分重建等高线的条带状属性。
在一些实施例中,若所述形状属性信息为环形属性;在所述航线条带内包括第一标记点和第二标记点,所述第一标记点和所述第二标记点的位置不同;
所述处理器实现所述根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线,包括:
以所述第一标记点为第一起点,生成与等高线形状相似的第一部分飞行航线,其中当预测所述第一部分飞行航线将与所述第一起点相交时,中止继续生成与等高线形状相似的所述第一部分航线;生成第二部分航线,其中所述第二部分航线包括所述第一部分航线的终点和所述第二标记点;以所述第二标记点为第二起点,生成与等高线形状相似的第三部分飞行航线;
其中,所述第一起点为所述第一部分航线的起点,所述第二起点为第三部分航线的起点。
在一些实施例中,若所述形状属性信息为环形属性;所述处理器实现所述根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线,包括:
根据每个所述航线条带在所述地面作业区域内生成多个子航线,所述多个子航线包括多个起点和多个终点;按照所述多个子航线位置的排列顺序,连接所述多个子航线中的一个子航线的终点与所述子航线相邻的子航线的起点,以得到所述飞行器在所述地面作业区域的飞行航线。
在一些实施例中,所述处理器还实现:
根据所述梯田的形状属性信息,确定所述每层梯田与相邻层梯田的地面作业区域的飞行航线的航线连接点;
其中,在所述航线连接点处,所述飞行器需要根据所述等高线调整飞行高度。
在一些实施例中,所述航线连接点包括:下台阶点和上台阶点,所述下台阶点为从上层梯田至下层梯田的连接点,所述上台阶点为从下层梯田至上层梯田的连接点。
在一些实施例中,所述处理器还实现:
设置飞行器作业时的作业起飞点,所述作业起飞点位于所述梯田的最高层梯田或者所述梯田的最低层梯田。
在一些实施例中,所述处理器还实现:
根据所述等高线确定每层梯田的内边界线;根据所述每层梯田的内边界线生成飞行缓冲区,所述飞行缓冲区为飞行器不进行作业的区域。
在一些实施例中,所述处理器实现所述根据所述每层梯田的内边界线生成飞行缓冲区,包括:
获取限飞距离,根据所述每层梯田的内边界线和所述限飞距离生成飞行缓 冲区。
在一些实施例中,所述处理器还实现:
将所述飞行航线发送至飞行器,以使所述飞行器按照所述飞行航线飞行。
需要说明的是,航线规划装置包括遥控器、智能手机、平板电脑、台式电脑或者可穿戴电子设备等,当然也可以为飞行器。
本申请的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现上述实施例提供的航线规划方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的航线规划装置的内部存储单元,例如所述航线规划装置的硬盘或内存。所述计算机可读存储介质也可以是所述航线规划装置的外部存储设备,例如所述航线规划装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (54)
- 一种飞行器的航线规划方法,其特征在于,所述方法包括:获取关于地面的地形图,所述地形图包括等高线;根据所述等高线确定对应于不同高度范围的多个地面作业区域;根据每个地面作业区域的等高线,规划所述飞行器在所述每个地面作业区域的飞行航线。
- 根据权利要求1所述的方法,其特征在于,所述获取关于地面的地形图,包括:获取关于地面的数字高程模型;基于所述数字高程模型生成所述地面的等高线地形图。
- 根据权利要求2所述的方法,其特征在于,所述方法还包括:根据所述数字高程模型和/或等高线地形图生成所述关于地面的地形图,并将所述关于地面的地形图和所述飞行航线发送至飞行器。
- 根据权利要求1所述的方法,其特征在于,所述飞行航线中的部分航线与所述等高线形状相似。
- 根据权利要求1所述的方法,其特征在于,所述根据每个地面作业区域的等高线,规划所述飞行器在所述每个地面作业区域的飞行航线,包括:获取所述飞行器作业时的航线覆盖幅度;基于每个所述地面作业区域的等高线,根据所述航线覆盖幅度生成多条航线条带,所述多条航线条带完全覆盖所述地面作业区域;根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线。
- 根据权利要求5所述的方法,其特征在于,所述基于每个所述地面作业区域的等高线,根据所述航线覆盖幅度生成多条航线条带,包括:基于每个所述地面作业区域中位于第一高度范围内的等高线,根据所述航线覆盖幅度生成位于所述第一高度范围内的航线条带,所述航线条带完全覆盖所述第一高度范围内对应的地面作业区域。
- 根据权利要求5所述的方法,其特征在于,若所述飞行器的作业为喷洒作业时,所述航线覆盖幅度包括喷幅宽度;若所述飞行器的作业为拍摄作业时, 所述航线覆盖幅度包括拍摄装置的视场角,所述拍摄装置设置在所述飞行器上。
- 根据权利要求7所述的方法,其特征在于,若所述飞行器的作业为喷洒作业时,所述方法还包括:确定超出所述飞行航线所在的航线条带的部分航线,将所述部分航线设置为不作业航线,其中,所述飞行器在所述不作业航线飞行时不进行喷洒,超出所述航线条带的部分航线为不位于该地面作业区域内的航线。
- 根据权利要求5所述的方法,其特征在于,每条航线条带对应一条飞行航线。
- 根据权利要求5所述的方法,其特征在于,所述地面包括梯田,所述地形图中的等高线用于确定每层梯田,每层梯田对应一个作业地面区域。
- 根据权利要求10所述的方法,其特征在于,所述每层梯田的等高线包括用于描述所述每层梯田的内边界的第一等高线和用于描述所述每层梯田的外边界的第二等高线;所述基于每个所述地面作业区域的等高线,根据所述航线覆盖幅度生成多条航线条带,包括:以所述第一等高线为基准,根据所述航线覆盖幅度生成多条航线条带;或以所述第二等高线为基准,根据所述航线覆盖幅度生成多条航线条带。
- 根据权利要求5所述的方法,其特征在于,所述根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线,包括:在所述每条航线条带内生成多个作业航点;确定属于所述地面作业区域内的作业航点;根据所述属于所述地面作业区域内的作业航点生成所述飞行器在所述地面作业区域的飞行航线。
- 根据权利要求12所述的方法,其特征在于,所述在所述每条航线条带内生成多个作业航点,包括:获取所述飞行器的作业频率以及所述作业频率对应的飞行距离;根据所述飞行器的作业频率以及所述作业频率对应的飞行距离在所述每条航线条带内生成多个作业航点,在同一条带内的所述多个作业航点的间隔距离相同。
- 根据权利要求12所述的方法,其特征在于,在所述每条航线条带内生 成多个作业航点,包括:若检测到用户选择了目标点作业模式,根据所述等高线地图对应的数字高程模型确定位于所述每条航线条带内多个目标点,得到所述多个作业航点,所述目标点为需要进行作业的点。
- 根据权利要求12所述的方法,其特征在于,所述确定属于所述地面作业区域内的作业航点,包括:根据所述地面作业区域的等高线确定属于所述地面作业区域内的作业航点。
- 根据权利要求12所述的方法,其特征在于,所述确定属于所述地面作业区域内的作业航点,包括:根据所述地面作业区域的等高线位置、作业航点的位置和作业航点的高度确定属于所述地面作业区域内的作业航点。
- 根据权利要求5所述的方法,其特征在于,所述方法还包括:提取所述地形图中等高线的等高线特征,所述等高线特征用于描述所述每层梯田的等高线的形状;根据所述等高线特征确定所述梯田的形状属性信息,所述形状属性信息用于描述梯田的形状。
- 根据权利要求17所述的方法,其特征在于,所述形状属性信息包括:环形属性和/或非环形属性;所述环形属性包括:规则的环形属性和/或非规则的环形属性;所述非环形属性包括:与上一层梯田组成条带状属性和/或包括部分重建等高线的条带状属性。
- 根据权利要求18所述的方法,其特征在于,若所述形状属性信息为环形属性;在所述航线条带内包括第一标记点和第二标记点,所述第一标记点和所述第二标记点的位置不同;所述根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线,包括:以所述第一标记点为第一起点,生成与等高线形状相似的第一部分飞行航线,其中当预测所述第一部分飞行航线将与所述第一起点相交时,中止继续生成与等高线形状相似的所述第一部分航线;生成第二部分航线,其中所述第二部分航线包括所述第一部分航线的终点和所述第二标记点;以所述第二标记点为第二起点,生成与等高线形状相似的第三部分飞行航线;以及其中,所述第一起点为所述第一部分航线的起点,所述第二起点为第三部分航线的起点。
- 根据权利要求18所述的方法,其特征在于,若所述形状属性信息为环形属性;所述根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线,包括:根据每个所述航线条带在所述地面作业区域内生成多个子航线,所述多个子航线包括多个起点和多个终点;按照所述多个子航线位置的排列顺序,连接所述多个子航线中的一个子航线的终点与所述子航线相邻的子航线的起点,以得到所述飞行器在所述地面作业区域的飞行航线。
- 根据权利要求18所述的方法,其特征在于,所述方法还包括:根据所述梯田的形状属性信息,确定所述每层梯田与相邻层梯田的地面作业区域的飞行航线的航线连接点;其中,在所述航线连接点处,所述飞行器需要根据所述等高线调整飞行高度。
- 根据权利要求21所述的方法,其特征在于,所述航线连接点包括:下台阶点和上台阶点,所述下台阶点为从上层梯田至下层梯田的连接点,所述上台阶点为从下层梯田至上层梯田的连接点。
- 根据权利要求1至22任一项所述的方法,其特征在于,所述方法还包括:设置飞行器作业时的作业起飞点,所述作业起飞点位于所述梯田的最高层梯田或者所述梯田的最低层梯田。
- 根据权利要求1至22任一项所述的方法,其特征在于,所述方法还包括:根据所述等高线确定每层梯田的内边界线;根据所述每层梯田的内边界线生成飞行缓冲区,所述飞行缓冲区为飞行器不进行作业的区域。
- 根据权利要求24所述的方法,其特征在于,所述根据所述每层梯田的 内边界线生成飞行缓冲区,包括:获取限飞距离,根据所述每层梯田的内边界线和所述限飞距离生成飞行缓冲区。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:将所述飞行航线发送至飞行器,以使所述飞行器按照所述飞行航线飞行。
- 一种航线规划装置,其特征在于,所述航线规划装置包括存储器和处理器;所述存储器用于存储计算机程序;所述处理器,用于执行所述计算机程序并在执行所述计算机程序时,实现如下步骤:获取关于地面的地形图,所述地形图包括等高线;根据所述等高线确定对应于不同高度范围的多个地面作业区域;根据每个地面作业区域的等高线,规划所述飞行器在所述每个地面作业区域的飞行航线。
- 根据权利要求27所述的装置,其特征在于,所述处理器实现所述获取关于地面的地形图,包括:获取关于地面的数字高程模型;基于所述数字高程模型生成所述地面的等高线地形图。
- 根据权利要求28所述的装置,其特征在于,所述处理器还实现:根据所述数字高程模型和/或等高线地形图生成所述关于地面的地形图,并将所述关于地面的地形图和所述飞行航线发送至飞行器。
- 根据权利要求27所述的装置,其特征在于,所述飞行航线中的部分航线与所述等高线形状相似。
- 根据权利要求27所述的装置,其特征在于,所述处理器实现所述根据每个地面作业区域的等高线,规划所述飞行器在所述每个地面作业区域的飞行航线,包括:获取所述飞行器作业时的航线覆盖幅度;基于每个所述地面作业区域的等高线,根据所述航线覆盖幅度生成多条航线条带,所述多条航线条带完全覆盖所述地面作业区域;根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线。
- 根据权利要求31所述的装置,其特征在于,所述处理器实现所述基于每个所述地面作业区域的等高线,根据所述航线覆盖幅度生成多条航线条带,包括:基于每个所述地面作业区域中位于第一高度范围内的等高线,根据所述航线覆盖幅度生成位于所述第一高度范围内的航线条带,所述航线条带完全覆盖所述第一高度范围内对应的地面作业区域。
- 根据权利要求31所述的装置,其特征在于,若所述飞行器的作业为喷洒作业时,所述航线覆盖幅度包括喷幅宽度;若所述飞行器的作业为拍摄作业时,所述航线覆盖幅度包括拍摄装置的视场角,所述拍摄装置设置在所述飞行器上。
- 根据权利要求33所述的装置,其特征在于,若所述飞行器的作业为喷洒作业时,所述处理器还实现:确定超出所述飞行航线所在的航线条带的部分航线,将所述部分航线设置为不作业航线,其中,所述飞行器在所述不作业航线飞行时不进行喷洒,超出所述航线条带的部分航线为不位于该地面作业区域内的航线。
- 根据权利要求31所述的装置,其特征在于,每条航线条带对应一条飞行航线。
- 根据权利要求31所述的装置,其特征在于,所述地面包括梯田,所述地形图中的等高线用于确定每层梯田,每层梯田对应一个作业地面区域。
- 根据权利要求36所述的装置,其特征在于,所述每层梯田的等高线包括用于描述所述每层梯田的内边界的第一等高线和用于描述所述每层梯田的外边界的第二等高线;所述处理器实现所述基于每个所述地面作业区域的等高线,根据所述航线覆盖幅度生成多条航线条带,包括:以所述第一等高线为基准,根据所述航线覆盖幅度生成多条航线条带;或以所述第二等高线为基准,根据所述航线覆盖幅度生成多条航线条带。
- 根据权利要求31所述的装置,其特征在于,所述处理器实现所述根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线,包括:在所述每条航线条带内生成多个作业航点;确定属于所述地面作业区域内的作业航点;根据所述属于所述地面作业区域内的作业航点生成所述飞行器在所述地面作业区域的飞行航线。
- 根据权利要求38所述的装置,其特征在于,所述处理器实现所述在所述每条航线条带内生成多个作业航点,包括:获取所述飞行器的作业频率以及所述作业频率对应的飞行距离;根据所述飞行器的作业频率以及所述作业频率对应的飞行距离在所述每条航线条带内生成多个作业航点,在同一条带内的所述多个作业航点的间隔距离相同。
- 根据权利要求38所述的装置,其特征在于,所述处理器实现在所述每条航线条带内生成多个作业航点,包括:若检测到用户选择了目标点作业模式,根据所述等高线地图对应的数字高程模型确定位于所述每条航线条带内多个目标点,得到所述多个作业航点,所述目标点为需要进行作业的点。
- 根据权利要求38所述的装置,其特征在于,所述处理器实现所述确定属于所述地面作业区域内的作业航点,包括:根据所述地面作业区域的等高线确定属于所述地面作业区域内的作业航点。
- 根据权利要求38所述的装置,其特征在于,所述处理器实现所述确定属于所述地面作业区域内的作业航点,包括:根据所述地面作业区域的等高线位置、作业航点的位置和作业航点的高度确定属于所述地面作业区域内的作业航点。
- 根据权利要求31所述的装置,其特征在于,所述处理器还实现:提取所述地形图中等高线的等高线特征,所述等高线特征用于描述所述每层梯田的等高线的形状;根据所述等高线特征确定所述梯田的形状属性信息,所述形状属性信息用于描述梯田的形状。
- 根据权利要求43所述的装置,其特征在于,所述形状属性信息包括:环形属性和/或非环形属性;所述环形属性包括:规则的环形属性和/或非规则的环形属性;所述非环形属性包括:与上一层梯田组成条带状属性和/或包括部分重建等高线的条带状属性。
- 根据权利要求44所述的装置,其特征在于,若所述形状属性信息为环 形属性;在所述航线条带内包括第一标记点和第二标记点,所述第一标记点和所述第二标记点的位置不同;所述处理器实现所述根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线,包括:以所述第一标记点为第一起点,生成与等高线形状相似的第一部分飞行航线,其中当预测所述第一部分飞行航线将与所述第一起点相交时,中止继续生成与等高线形状相似的所述第一部分航线;生成第二部分航线,其中所述第二部分航线包括所述第一部分航线的终点和所述第二标记点;以所述第二标记点为第二起点,生成与等高线形状相似的第三部分飞行航线;以及其中,所述第一起点为所述第一部分航线的起点,所述第二起点为第三部分航线的起点。
- 根据权利要求44所述的装置,其特征在于,若所述形状属性信息为环形属性;所述处理器实现所述根据所述航线条带生成所述飞行器在所述地面作业区域的飞行航线,包括:根据每个所述航线条带在所述地面作业区域内生成多个子航线,所述多个子航线包括多个起点和多个终点;按照所述多个子航线位置的排列顺序,连接所述多个子航线中的一个子航线的终点与所述子航线相邻的子航线的起点,以得到所述飞行器在所述地面作业区域的飞行航线。
- 根据权利要求44所述的装置,其特征在于,所述处理器还实现:根据所述梯田的形状属性信息,确定所述每层梯田与相邻层梯田的地面作业区域的飞行航线的航线连接点;其中,在所述航线连接点处,所述飞行器需要根据所述等高线调整飞行高度。
- 根据权利要求47所述的装置,其特征在于,所述航线连接点包括:下台阶点和上台阶点,所述下台阶点为从上层梯田至下层梯田的连接点,所述上台阶点为从下层梯田至上层梯田的连接点。
- 根据权利要求27至48任一项所述的装置,其特征在于,所述处理器 还实现:设置飞行器作业时的作业起飞点,所述作业起飞点位于所述梯田的最高层梯田或者所述梯田的最低层梯田。
- 根据权利要求27至48任一项所述的装置,其特征在于,所述处理器还实现:根据所述等高线确定每层梯田的内边界线;根据所述每层梯田的内边界线生成飞行缓冲区,所述飞行缓冲区为飞行器不进行作业的区域。
- 根据权利要求50所述的装置,其特征在于,所述处理器实现所述根据所述每层梯田的内边界线生成飞行缓冲区,包括:获取限飞距离,根据所述每层梯田的内边界线和所述限飞距离生成飞行缓冲区。
- 根据权利要求27所述的装置,其特征在于,所述处理器还实现:将所述飞行航线发送至飞行器,以使所述飞行器按照所述飞行航线飞行。
- 一种飞行系统,其特征在于,包括如权利要求27至52任一项所述航线规划装置和飞行器,所述航线规划装置和所述飞行器通信连接;所述航线规划装置将规划的飞行航线发送至所述飞行器,所述飞行器按照所述飞行航线进行飞行。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1至26中任一项所述的航线规划方法的步骤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080005134.6A CN112823322A (zh) | 2020-02-10 | 2020-02-10 | 航线规划方法、设备及存储介质 |
PCT/CN2020/074660 WO2021159249A1 (zh) | 2020-02-10 | 2020-02-10 | 航线规划方法、设备及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/074660 WO2021159249A1 (zh) | 2020-02-10 | 2020-02-10 | 航线规划方法、设备及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021159249A1 true WO2021159249A1 (zh) | 2021-08-19 |
Family
ID=75858140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/074660 WO2021159249A1 (zh) | 2020-02-10 | 2020-02-10 | 航线规划方法、设备及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112823322A (zh) |
WO (1) | WO2021159249A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113504788B (zh) * | 2021-06-24 | 2024-02-20 | 北京农业智能装备技术研究中心 | 一种航空施药作业航线规划方法及系统 |
CN114442660A (zh) * | 2021-12-31 | 2022-05-06 | 北京理工大学重庆创新中心 | 一种基于gps和图像的无人机搜索方法 |
CN114611802A (zh) * | 2022-03-15 | 2022-06-10 | 广州极飞科技股份有限公司 | 作业航线生成方法、装置、电子设备及可读存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104155993A (zh) * | 2014-08-11 | 2014-11-19 | 江苏恒创软件有限公司 | 一种基于无人直升机的坡地区域农作物作业方法 |
CN107544548A (zh) * | 2017-10-20 | 2018-01-05 | 广州极飞科技有限公司 | 控制无人机作业的方法、装置及无人机 |
CN108513643A (zh) * | 2017-08-31 | 2018-09-07 | 深圳市大疆创新科技有限公司 | 一种路径规划方法、飞行器、飞行系统 |
CN108594850A (zh) * | 2018-04-20 | 2018-09-28 | 广州极飞科技有限公司 | 基于无人机的航线规划及控制无人机作业的方法、装置 |
KR20190128513A (ko) * | 2018-05-08 | 2019-11-18 | 한화정밀기계 주식회사 | 농업용 무인 살포 시스템 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018094670A1 (zh) * | 2016-11-24 | 2018-05-31 | 深圳市大疆创新科技有限公司 | 农业无人飞行器的控制方法、地面控制端及存储介质 |
WO2019119187A1 (zh) * | 2017-12-18 | 2019-06-27 | 深圳市大疆创新科技有限公司 | 一种无人机的航线规划方法、控制设备及存储介质 |
CN108873851A (zh) * | 2018-09-06 | 2018-11-23 | 保定智飞航空科技有限公司 | 一种农业无人机管控系统 |
CN109375636A (zh) * | 2018-12-13 | 2019-02-22 | 广州极飞科技有限公司 | 无人机航线的生成方法、装置、无人机和存储介质 |
-
2020
- 2020-02-10 CN CN202080005134.6A patent/CN112823322A/zh active Pending
- 2020-02-10 WO PCT/CN2020/074660 patent/WO2021159249A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104155993A (zh) * | 2014-08-11 | 2014-11-19 | 江苏恒创软件有限公司 | 一种基于无人直升机的坡地区域农作物作业方法 |
CN108513643A (zh) * | 2017-08-31 | 2018-09-07 | 深圳市大疆创新科技有限公司 | 一种路径规划方法、飞行器、飞行系统 |
CN107544548A (zh) * | 2017-10-20 | 2018-01-05 | 广州极飞科技有限公司 | 控制无人机作业的方法、装置及无人机 |
CN108594850A (zh) * | 2018-04-20 | 2018-09-28 | 广州极飞科技有限公司 | 基于无人机的航线规划及控制无人机作业的方法、装置 |
KR20190128513A (ko) * | 2018-05-08 | 2019-11-18 | 한화정밀기계 주식회사 | 농업용 무인 살포 시스템 |
Non-Patent Citations (1)
Title |
---|
ZHANG MAOLIN: "Research on Path Planning And Tracking Control of Quad Rotor for Terraces Environment", CHINESE MASTER'S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY II, 30 June 2016 (2016-06-30), XP055835272 * |
Also Published As
Publication number | Publication date |
---|---|
CN112823322A (zh) | 2021-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240160209A1 (en) | Aerial operation support and real-time management | |
US20210358315A1 (en) | Unmanned aerial vehicle visual point cloud navigation | |
WO2022094854A1 (zh) | 农作物的生长监测方法、设备及存储介质 | |
US10126126B2 (en) | Autonomous mission action alteration | |
JP6962720B2 (ja) | 飛行制御方法、情報処理装置、プログラム及び記録媒体 | |
WO2021159249A1 (zh) | 航线规划方法、设备及存储介质 | |
US20200026720A1 (en) | Construction and update of elevation maps | |
CN207096463U (zh) | 一种农用北斗差分测向导航控制系统 | |
EP3387507B1 (en) | Systems and methods for uav flight control | |
JP6390013B2 (ja) | 小型無人飛行機の制御方法 | |
KR20200031165A (ko) | 내비게이션 차트 구성 방법, 장애물 회피 방법 및 장치, 단말기, 무인 항공기 | |
WO2020237471A1 (zh) | 飞行航线生成方法、终端和无人机 | |
US11798426B2 (en) | Autonomous mission action alteration | |
CN108594850A (zh) | 基于无人机的航线规划及控制无人机作业的方法、装置 | |
JP2019015670A (ja) | 無人航空機の飛行高度設定方法および無人航空機システム | |
CN206804018U (zh) | 环境数据服务器、无人飞行器及定位系统 | |
JP6138326B1 (ja) | 移動体、移動体の制御方法、移動体を制御するプログラム、制御システム、及び情報処理装置 | |
WO2021087701A1 (zh) | 起伏地面的地形预测方法、装置、雷达、无人机和作业控制方法 | |
WO2021232407A1 (zh) | 一种喷洒控制方法及装置 | |
US20210208608A1 (en) | Control method, control apparatus, control terminal for unmanned aerial vehicle | |
WO2021237462A1 (zh) | 无人飞行器的限高方法、装置、无人飞行器及存储介质 | |
US20220214700A1 (en) | Control method and device, and storage medium | |
WO2022094962A1 (zh) | 飞行器的悬停方法、飞行器及存储介质 | |
WO2022000195A1 (zh) | 作业方法、控制设备、作业无人机、系统及存储介质 | |
JP2019045898A (ja) | 飛行体制御方法、飛行体、プログラム及び記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20918712 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20918712 Country of ref document: EP Kind code of ref document: A1 |