WO2021079611A1 - レーザダイオード駆動回路 - Google Patents

レーザダイオード駆動回路 Download PDF

Info

Publication number
WO2021079611A1
WO2021079611A1 PCT/JP2020/032145 JP2020032145W WO2021079611A1 WO 2021079611 A1 WO2021079611 A1 WO 2021079611A1 JP 2020032145 W JP2020032145 W JP 2020032145W WO 2021079611 A1 WO2021079611 A1 WO 2021079611A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser diode
switching element
laser
drive circuit
series circuit
Prior art date
Application number
PCT/JP2020/032145
Other languages
English (en)
French (fr)
Inventor
佑輔 中小原
タン ニャット ホアン
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to US17/767,245 priority Critical patent/US20220376470A1/en
Priority to DE112020005138.2T priority patent/DE112020005138T5/de
Priority to CN202080074065.4A priority patent/CN114616732A/zh
Priority to JP2021554111A priority patent/JPWO2021079611A1/ja
Publication of WO2021079611A1 publication Critical patent/WO2021079611A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06216Pulse modulation or generation

Definitions

  • the present invention relates to a laser diode drive circuit.
  • Patent Document 1 as a laser diode drive circuit capable of outputting a short pulse laser beam, the switching element is turned off to charge a capacitor, and then the switching element is turned on to cause the laser diode to emit light by the discharge current of the capacitor. , A laser diode drive circuit for turning off the switching element and charging the capacitor again after the light emission of the laser diode is stopped is disclosed (see FIG. 2 of Patent Document 1).
  • Patent Document 1 describes that when the electric charge stored in the capacitor is exhausted, the discharge current of the capacitor becomes 0 and the light emission of the laser diode stops.
  • the time from when the switching element is turned on until the discharge current of the capacitor becomes 0, that is, the pulse width of the laser beam is determined by the circuit constant of the LCR resonance circuit.
  • the LCR resonant circuit includes a capacitor, a laser diode, an on-state switching element, a diode in which the anode and cathode are connected in parallel to the laser diode in opposite directions, and a parasitic inductance.
  • the on-time of the switching element is set to 1000 times or more the output period of the laser beam (paragraphs 0042-0043 of Patent Document 1, FIGS. 3, 6 and 6). (See), unnecessary laser light output is generated intermittently until the resonance of the LCR resonant circuit is sufficiently attenuated.
  • An object of the present invention is to provide a laser diode drive circuit capable of suppressing unnecessary laser light output, a laser device including the laser diode drive circuit, a laser radar device, and a vehicle.
  • the laser diode drive circuit is connected in parallel to a switching element, a control unit that controls the switching element on / off, and a first series circuit including the laser diode.
  • the second series circuit includes a series circuit and a capacitor, and the second series circuit includes a rectifying element and a current limiting unit that limits the current flowing through the rectifying element, and the direction from the anode to the cathode of the rectifying element and the laser diode.
  • a closed circuit is formed together with the switching element, the first series circuit, and the second series circuit (first configuration).
  • the capacitor may have only one configuration, or may have a configuration in which a plurality of capacitors are connected in parallel.
  • the first series circuit may be a circuit containing only the laser diode, or may be a circuit in which a plurality of components including the laser diode are connected in series. At least one of the plurality of components may be a parallel circuit.
  • the shunt resistor for detecting the current flowing through the laser diode is provided, the shunt resistor is included in the first series circuit, and the impedance of the shunt resistor is The configuration may be smaller than the impedance of the current limiting unit (second configuration).
  • the shunt resistor for detecting the current flowing through the laser diode is provided, the shunt resistor is provided outside the first series circuit, and the impedance of the shunt resistor is ,
  • the configuration may be smaller than the impedance of the current limiting unit (third configuration).
  • the shunt resistor may have a configuration in which a plurality of resistance elements are connected in parallel (fourth configuration).
  • the distance between the adjacent resistance elements is equal to or more than a value obtained by dividing twice the length of the resistance elements by the number of navies (the first configuration). 5 configuration) may be used.
  • the forward voltage of the body diode of the switching element when the switching element is off, is larger than 0.7 V (sixth configuration).
  • the configuration of may be used.
  • the switching element is a MOS field effect transistor, and when the switching element is off, the gate-source voltage of the switching element is negative. It may be a configuration (seventh configuration).
  • the switching element has a configuration (eighth configuration) of a wide bandgap semiconductor having a larger bandgap than a silicon semiconductor. There may be.
  • the laser apparatus has a configuration (nineth configuration) including a laser diode drive circuit having any of the first to eighth configurations and the laser diode.
  • the substrate is provided, the laser diode is mounted on the first surface of the substrate, and the switching element and the switching element and the switching element are mounted on the second surface of the substrate facing the first surface.
  • the configuration may be such that a capacitor is mounted (tenth configuration).
  • the laser apparatus having the tenth configuration at least one of the switching element and the capacitor overlaps with the laser diode when viewed from the normal direction of the first surface and the second surface. It may be the configuration (11th configuration).
  • the laser radar device has a configuration (12th configuration) including a laser device having any of the 9th to 11th configurations.
  • the vehicle according to the present invention has a configuration (13th configuration) including the laser radar device having the twelfth configuration.
  • the figure which shows the schematic structure of the laser apparatus which concerns on 1st Embodiment Diagram showing the path through which a positive current flows Diagram showing the path of negative current Current and gate signal time chart The figure which shows the schematic structure of the laser apparatus which concerns on 2nd Embodiment.
  • the figure which shows the schematic structure of the laser apparatus which concerns on 3rd Embodiment The figure which shows the structural example of the shunt resistor Top view of the board Bottom view of the board Cross section of the substrate
  • External view of the vehicle The figure which shows the modification of the laser apparatus which concerns on 1st Embodiment
  • the figure which shows the modification of the laser apparatus which concerns on 3rd Embodiment The figure which shows the modification of the laser apparatus which concerns on 3rd Embodiment
  • FIG. 1 is a diagram showing a schematic configuration of a laser apparatus according to the first embodiment.
  • the laser device 1A (hereinafter, referred to as a laser device 1A) according to the first embodiment includes a laser diode LD1 and a laser diode drive circuit 2A.
  • the laser diode drive circuit 2A includes an NMOS (N-channel Metal Oxide Semiconductor) transistor Q1, a control unit CNT1, a capacitor C1, a diode D1, and a current limiting unit CL1.
  • the MOS transistor has a gate structure of "a layer made of a conductor or a semiconductor such as polysilicon having a small resistance value", an "insulating layer”, and a "P-type, N-type, or intrinsic".
  • a field-effect transistor composed of at least three layers of "semiconductor layer”. That is, the gate structure of the MOS transistor is not limited to the three-layer structure of metal, oxide, and semiconductor.
  • the NMOS transistor Q1 is used as the switching element, but a switching element other than the NMOS transistor Q1 may be used instead of the NMOS transistor Q1.
  • the diode D1 is used as the rectifying element, but a rectifying element other than the diode D1 may be used instead of the diode D1.
  • the current limiting unit CL1 is, for example, a single resistance element.
  • the current limiting unit CL1 may be a resistance circuit composed of, for example, a plurality of resistance elements instead of a single resistance element.
  • the current limiting unit CL1 may be, for example, a single diode instead of a single resistance element.
  • the current limiting unit CL1 may be, for example, a plurality of diodes connected in series instead of a single resistance element.
  • the current limiting unit CL1 may be a MOS field effect transistor that limits the current by adjusting the voltage between the gate and source, a bipolar transistor that limits the current by adjusting the voltage between the base and emitter, etc., instead of a single resistance element. Good.
  • the current limiting unit CL1 is not limited to the element, and may be, for example, wiring provided on the substrate. When a part of the wiring is used as the current limiting part CL1, the shape and material of the wiring are made different between the part corresponding to the current limiting part CL1 and the other parts, and the resistance of the wiring of the part corresponding to the current limiting part CL1. Should be increased.
  • the current limiting unit CL1 may be a combination of a plurality of the above examples.
  • the current limiting unit CL1 may be configured by connecting a single resistance element and a single diode in series.
  • the gate signal G1 output from the control unit CNT1 is supplied to the gate of the NMOS transistor Q1.
  • One end of the capacitor C1 and the drain of the NMOS transistor Q1 are connected to the positive electrode of the DC power supply PS1.
  • the other end of the capacitor C1 is connected to the anode of the diode D1 and the cathode of the laser diode LD1.
  • the cathode of the diode D1 is connected to one end of the current limiting unit CL1.
  • the other end of the current limiting unit CL1, the anode of the laser diode LD1, the source of the NMOS transistor Q1, and the negative electrode of the DC power supply PS1 are connected to the ground potential.
  • the second series circuit DC2 including the diode D1 and the current limiting unit CL1 includes the laser diode LD1 so that the direction from the anode to the cathode of the diode D1 and the direction from the anode to the cathode of the laser diode LD1 are opposite to each other. It is connected in parallel to the first series circuit DC1.
  • the control unit CNT1 controls the on / off of the NMOS transistor Q1 by the gate signal G1.
  • the NMOS transistor Q1 When the NMOS transistor Q1 is on, a closed circuit is formed by the NMOS transistor Q1, the capacitor C1, the diode D1, the current limiting unit CL1, and the laser diode LD1.
  • the closed circuit includes a parasitic inductance. Therefore, the closed circuit becomes an LCR resonant circuit.
  • the NMOS transistor Q1 When the NMOS transistor Q1 is switched from off to on while the electric charge is stored in the capacitor C1, the LCR resonance circuit starts resonance.
  • the path through which the current I1 flows when the current I1 flowing through the LCR resonance circuit is positive includes the laser diode LD1 as shown in FIG. Therefore, when the positive current I1 flows, the laser diode LD1 emits light.
  • the path through which the current I1 flows when the current I1 is negative does not include the laser diode LD1 as shown in FIG. Therefore, even if a negative current I1 flows, the laser diode LD1 does not emit light.
  • the direction from the drain of the NMOS transistor Q1 toward the source is defined as the positive direction of the current I1
  • the direction from the source of the NMOS transistor Q1 toward the drain is defined as the negative direction of the current I1.
  • FIG. 4 is a time chart showing the waveforms of the current I1 in the present embodiment, the current I1 in the reference example, and the gate signal G1.
  • the laser device according to the reference example has a configuration in which the current limiting unit CL1 is removed from the laser device 1A.
  • the high level period of the gate signal G1, that is, the on-time of the NMOS transistor Q1 is set to half of the resonance period of the LCR resonance circuit.
  • the on-time of the NMOS transistor Q1 means the time during which the NMOS transistor Q1 is continuously on. Specifically, the period from the time t1 to the time t2 shown in FIG. 4 is the ON time of the NMOS transistor Q1 in the present embodiment.
  • a negative current I1 flows through the body diode of the NMOS transistor Q1 during the period from time t2 to time t4 shown in FIG.
  • the current I1 is limited by the current limiting unit CL1.
  • the vibration of the current I1 is suppressed, so that the appearance of the positive current I1 after the time t4 is suppressed. That is, unnecessary laser light output can be suppressed.
  • the current limiting unit CL1 is not included in the path through which the positive current I1 flows (see FIG. 2). Therefore, there is no possibility that the rising speed of the laser light output or the laser light output is lowered by the current limiting unit CL1.
  • a negative current I1 flows through the body diode of the NMOS transistor Q1 during the period from time t2 to time t3 shown in FIG.
  • the vibration of the current I1 is not suppressed. Therefore, during the period from time t3 to time t5 shown in FIG. 4, a positive current I1 flows through the parasitic capacitance between the drain and the source of the NMOS transistor Q1, and the period from time t5 to time t6 shown in FIG.
  • a negative current I1 flows through the body diode of the NMOS transistor Q1.
  • an unnecessary laser beam output is generated during the period from the time t3 to the time t5 shown in FIG.
  • Such unnecessary light output may cause a malfunction of the laser radar device in, for example, a vehicle.
  • the control unit CNT1 switches the NMOS transistor Q1 from on to off after the time t5 shown in FIG. 4 instead of switching it from on to off at the time t2 shown in FIG. 4, the time starts from the time t3 shown in FIG.
  • the positive current I1 flowing in the period up to t5 is no longer limited. As a result, the positive current I1 is further increased, and the unnecessary laser light output is increased.
  • the laser diode drive circuit 2A and the laser device 1A can suppress unnecessary laser light output.
  • unnecessary laser light output can cause erroneous detection, so a laser diode drive circuit 2A and a laser device 1A capable of suppressing unnecessary laser light output are very useful.
  • the provision of the current limiting unit CL1 suppresses the flow of a positive current after the end of the on-time, so that the on-time of the NMOS transistor Q1 can be lengthened. That is, in the laser diode drive circuit 2A, since the ON time of the NMOS transistor Q1 can be lengthened, the gate signal G1 can be easily generated and the NMOS transistor Q1 can be easily controlled.
  • FIG. 5 is a diagram showing a schematic configuration of the laser apparatus according to the second embodiment.
  • the laser device 1B (hereinafter, referred to as a laser device 1B) according to the second embodiment includes a laser diode LD1 and a laser diode drive circuit 2B.
  • the laser diode drive circuit 2B has a configuration in which a shunt resistor R1 is added to the laser diode drive circuit 2A.
  • the shunt resistor R1 is included in the first series circuit DC1 and is connected in series with the laser diode LD1.
  • the laser diode drive circuit 2B and the laser device 1B have the same effects as the laser diode drive circuit 2A and the laser device 1A, and can detect the current flowing through the laser diode LD1.
  • the shunt resistor R1 detects the current flowing through the laser diode LD1.
  • the impedance of the shunt resistor R1 is made smaller than the impedance of the current limiting unit CL1.
  • FIG. 6 is a diagram showing a schematic configuration of the laser apparatus according to the third embodiment.
  • the laser device 1C (hereinafter, referred to as a laser device 1C) according to the third embodiment includes a laser diode LD1 and a laser diode drive circuit 2C.
  • the laser diode drive circuit 2C has a configuration in which a shunt resistor R1 is added to the laser diode drive circuit 2A.
  • the shunt resistor R1 is connected in series to the parallel circuit of the first series circuit DC1 and the second series circuit DC2.
  • the laser diode drive circuit 2C and the laser device 1C have the same effects as the laser diode drive circuit 2A and the laser device 1A, and can detect the current flowing through the laser diode LD1.
  • the shunt resistor R1 detects the current flowing through the laser diode LD1.
  • the shunt resistor R1 detects the current flowing through the laser diode LD1 in a state including the recovery current of the diode D1. Therefore, the detection accuracy of the current flowing through the laser diode LD1 is higher in the second embodiment than in the present embodiment.
  • the impedance of the shunt resistor R1 is made smaller than the impedance of the current limiting unit CL1.
  • FIG. 7 is a diagram showing a configuration example of the shunt resistor R1 used in the second embodiment and the third embodiment.
  • the shunt resistor R1 of the configuration example shown in FIG. 7 has a configuration in which a plurality of resistance elements RE1 are connected in parallel. By connecting a plurality of resistance elements RE1 in parallel, it becomes easy to reduce the resistance value of the shunt resistor R1.
  • the number of resistance elements RE1 connected in parallel is not limited to three, and may be a plurality.
  • the number of resistance elements RE1 connected in parallel may be determined in consideration of the balance between the required resistance value of the shunt resistor R1 and the required mounting area of the shunt resistor R1.
  • the inductance component of the LCR resonance circuit should be small. Then, in order to minimize the parasitic inductance formed by the shunt resistor R1 of the configuration example shown in FIG. 7, it is preferable to set the mutual inductance M of the adjacent resistance elements RE1 to zero.
  • the mutual inductance M of the adjacent resistance elements RE1 can be expressed by the following equation (1).
  • LN is the length of the resistance element RE1
  • d is the distance between the adjacent resistance elements RE1.
  • the unit of the mutual inductance M is [H]
  • the unit of the length LN and the unit of the interval d are [m], respectively.
  • M 2LN (ln (2LN / d) -1) ⁇ 10-7 ... (1)
  • the condition for suppressing the mutual inductance M to zero can be expressed by the following equation (2).
  • e is a navy number.
  • the forward voltage of the body diode of the NMOS transistor Q1 is larger than the forward voltage of a general silicon diode (for example, 0.7V). Is preferable. If the forward voltage of the body diode of the NMOS transistor Q1 is large when the NMOS transistor Q1 is off, the vibration of the current I1 is suppressed not only by the current limiting unit CL1 but also by the body diode, so that unnecessary laser light is used. The output can be further suppressed.
  • the forward voltage of the body diode of the NMOS transistor Q1 is changed to the forward voltage of the general silicon diode when the NMOS transistor Q1 is off. It does not need to be higher than the voltage (eg 0.7V).
  • the forward voltage of the body diode of the NMOS transistor Q1 is not greater than the forward voltage of a typical silicon diode (eg 0.7V)
  • a "reverse connection diode” is attached to the NMOS transistor Q1. May be connected in parallel.
  • the anode of the "reverse connection diode” is connected to the source of the NMOS transistor Q1 and the cathode of the “reverse connection diode” is connected to the drain of the NMOS transistor Q1.
  • the rectifying direction of the "reverse connection diode” is the same as the rectifying direction of the diode D1.
  • a diode having a forward voltage of about 0.3 V can be used as the "reverse connection diode”.
  • An SBD Schottky Barrier Diode
  • SBD Schottky Barrier Diode
  • the gate-source voltage of the NMOS transistor Q1 when the NMOS transistor Q1 is off is made negative, in other words, the gate when the NMOS transistor Q1 is off.
  • the forward voltage of the body diode of the NMOS transistor Q1 can be made larger than the forward voltage of a general silicon diode (for example, 0.7 V).
  • the voltage between the gate and source of the NMOS transistor Q1 when the NMOS transistor Q1 is off negative it is possible to prevent the NMOS transistor Q1 from being accidentally turned on during the period when the NMOS transistor Q1 should be off. You can also. Since it is suppressed that the NMOS transistor Q1 is erroneously turned on, unnecessary laser light output can be further suppressed.
  • the forward voltage of the body diode of the NMOS transistor Q1 can be changed to the forward voltage of a general silicon diode (for example, 0.7 V).
  • a general silicon diode for example, 0.7 V.
  • Examples of wide bandgap semiconductors having a larger bandgap than silicon semiconductors include compound semiconductors such as SiC and GaN.
  • the vibration of the current I1 is suppressed, so that unnecessary laser light output can be further suppressed.
  • the transistor having a small output capacitance Cass include a transistor of a wide bandgap semiconductor having a bandgap larger than that of a silicon semiconductor.
  • the controllability of the on-time of the NMOS transistor Q1 is improved, so that it becomes easy to suppress unnecessary laser light output.
  • the transistor having a small input capacitance Ciss include a transistor of a wide bandgap semiconductor having a bandgap larger than that of a silicon semiconductor.
  • FIG. 8 is a top view of the substrate B1 on which the NMOS transistor Q1, the capacitor C1, the diode D1, the current limiting unit CL1, and the laser diode LD1 are mounted.
  • FIG. 9 is a bottom view of the substrate B1 on which the NMOS transistor Q1, the capacitor C1, the diode D1, the current limiting unit CL1, and the laser diode LD1 are mounted.
  • FIG. 10 is a cross-sectional view of a substrate B1 on which an NMOS transistor Q1, a capacitor C1, a diode D1, a current limiting unit CL1, and a laser diode LD1 are mounted when they are cut at the AA cutting plane shown in FIGS. 8 and 9. ..
  • the dotted line in FIG. 10 indicates the normal direction of the first surface F1 and the second surface F2 of the substrate B1.
  • the first surface F1 of the substrate B1 and the second surface F2 of the substrate B1 face each other and are substantially parallel to each other.
  • the top view and the bottom view are terms used for convenience, and do not limit the installation direction of the laser device.
  • wirings LN1 to LN3 are provided on the first surface F1 of the substrate B1.
  • the wiring LN1 is a wiring for electrically connecting the pin 3 (cathode of the laser diode) P3 of the TO-Can package type laser diode LD1 and the anode of the diode D1.
  • the wiring LN2 is a wiring for electrically connecting the cathode of the diode D1 and one end of the current limiting unit CL1.
  • the wiring LN3 is a wiring for electrically connecting the other end of the current limiting unit CL1 and the first pin (anode of the laser diode) P1 of the TO-Can package type laser diode LD1.
  • Pin 2 P2 of the TO-Can package type laser diode LD1 is the cathode of the light receiving element built in the TO-Can package.
  • the substrate B1 is provided with through holes through which the 1st pin P1 to the 3rd pin P3 of the TO-Can package type laser diode LD1 pass. Each through hole extends along the normal direction of the first surface F1 and the second surface F2 of the substrate B1.
  • wirings LN4 to LN6 are provided on the second surface F2 of the substrate B1.
  • the wiring LN4 is a wiring for electrically connecting the third pin (cathode of the laser diode) P3 of the TO-Can package type laser diode LD1 and one end of the capacitor C1.
  • the wiring LN5 is a wiring for electrically connecting the pin 1 (anode of the laser diode) P1 of the TO-Can package type laser diode LD1 and the source of the NMOS transistor Q1.
  • the wiring LN6 is a wiring for electrically connecting the drain of the NMOS transistor Q1 and the other end of the capacitor C1.
  • the laser diode LD1 is mounted on the first surface F1 of the substrate B1, and the NMOS transistor Q1 and the capacitor C1 are mounted on the second surface F2 of the substrate B1. ..
  • NMOS transistor Q1 and the capacitor C1 overlaps with the laser diode LD1 when viewed from the normal direction of the first surface F1 and the second surface F2 of the substrate B1. This makes it easy to shorten the path through which the positive current I1 flows.
  • the shunt resistor R1 may be arranged on either the first surface F1 or the second surface F2.
  • the laser device 1 which is any one of the above-mentioned laser devices 1A to 1C is used, for example, as a part of the laser radar device X1 shown in FIG.
  • the laser radar device X1 shown in FIG. 11 is a scanning laser radar device, and includes a laser device 1, a light receiving device 3, an optical system 4, and an overall control unit 5.
  • the overall control unit 5 controls the output of the laser device 1 and the direction of the mirror in the optical system 4, calculates the distance to the object based on the control content of the output of the laser device 1 and the output signal of the light receiving device 3, and optics.
  • the direction of the object is calculated based on the control content of the direction of the mirror in the system 4.
  • the laser radar device X1 shown in FIG. 11 is provided at the front end of the vehicle Y1 shown in FIG. 12, for example, and detects an object located in front of the vehicle Y1.
  • the order in which the capacitor C1, the parallel circuit of the first series circuit DC1 and the second series circuit DC2, and the NMOS transistor Q1 are arranged does not have to be the configuration shown in FIGS. 1 and 5. This is because the capacitor C1, the parallel circuit of the first series circuit DC1 and the second series circuit DC2, and the NMOS transistor Q1 are connected in series, so that the same effect can be obtained even if the order of arrangement is changed. ..
  • the directions of the body diodes of the NMOS transistors Q1 with respect to the diode D1 and the laser diode LD1 are reversed from those before changing the order, the directions of the diode D1 and the laser diode LD1 also need to be reversed.
  • the capacitor C1, the parallel circuit of the first series circuit DC1 and the second series circuit DC2, the shunt resistor R1, and the NMOS transistor Q1 are connected in series, the same effect can be obtained even if the order of arrangement is changed. Because it can be done.
  • the directions of the body diodes of the NMOS transistors Q1 with respect to the diode D1 and the laser diode LD1 are reversed from those before changing the order, the directions of the diode D1 and the laser diode LD1 also need to be reversed. Therefore, for example, in the configuration shown in FIG. 14, as compared with the configuration shown in FIG.
  • the capacitor C1, the parallel circuit of the first series circuit DC1 and the second series circuit DC2, the shunt resistor R1, and the NMOS transistor Q1 are included. Not only the order in which they are arranged, but also the directions of the diode D1 and the laser diode LD1 are changed.
  • the laser diode drive circuit is configured to include the shunt resistor R1, it is preferable to connect one end of the shunt resistor R1 to the ground potential and use the current detection result as the ground potential reference.
  • the laser device is not limited to the form mounted on the substrate.
  • at least a part of the laser diode drive circuit may be modularized together with the laser diode and stored inside the Can package, or at least a part of the laser device may be modularized and stored inside a container other than Can. ..

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

レーザダイオード駆動回路は、スイッチング素子と、前記スイッチング素子をオン/オフ制御する制御部と、レーザダイオードを含む第1直列回路に並列接続される第2直列回路と、コンデンサと、を備える。前記第2直列回路は、整流素子及び前記整流素子に流れる電流を制限する電流制限部を含み、前記整流素子のアノードからカソードに向かう方向と前記レーザダイオードのアノードからカソードに向かう方向とが互いに逆向きになるように、前記第1直列回路に並列接続される。前記コンデンサは、前記スイッチング素子がオフであるときに充電され、前記スイッチング素子がオンであるときに前記スイッチング素子、前記第1直列回路、及び前記第2直列回路とともに閉回路を形成する。

Description

レーザダイオード駆動回路
 本発明は、レーザダイオード駆動回路に関する。
 特許文献1では、短パルスのレーザ光を出力することができるレーザダイオード駆動回路として、スイッチング素子をオフにしてコンデンサを充電し、その後スイッチング素子をオンにしてコンデンサの放電電流によりレーザダイオードを発光させ、レーザダイオードの発光が停止した後スイッチング素子をオフにして再度コンデンサを充電するレーザダイオード駆動回路が開示されている(特許文献1の図2参照)。
特開2016-152336号公報
 特許文献1には、コンデンサに蓄積されている電荷が無くなった時点でコンデンサの放電電流が0になりレーザダイオードの発光が停止すると記載されている。なお、スイッチング素子がオンになってからコンデンサの放電電流が0になる迄の時間すなわちレーザ光のパルス幅は、LCR共振回路の回路定数によって決まる。上記LCR共振回路は、コンデンサと、レーザダイオードと、オン状態のスイッチング素子と、レーザダイオードに対してアノード及びカソードが逆向きで並列接続されるダイオードと、寄生のインダクタンスと、を含む。
 特許文献1に開示されているレーザダイオード駆動回路では、スイッチング素子のオン時間がレーザ光の出力期間の千倍以上に設定されているため(特許文献1の段落0042-0043、図3、図6参照)、不要なレーザ光出力が上記LCR共振回路の共振が十分に減衰するまで断続的に発生する。
 本発明は、不要なレーザ光出力を抑制することができるレーザダイオード駆動回路並びにそれを備えるレーザ装置、レーザレーダ装置、及び車両を提供することを目的とする。
 上記目的を達成するために、本発明に係るレーザダイオード駆動回路は、スイッチング素子と、前記スイッチング素子をオン/オフ制御する制御部と、レーザダイオードを含む第1直列回路に並列接続される第2直列回路と、コンデンサと、を備え、前記第2直列回路は、整流素子及び前記整流素子に流れる電流を制限する電流制限部を含み、前記整流素子のアノードからカソードに向かう方向と前記レーザダイオードのアノードからカソードに向かう方向とが互いに逆向きになるように、前記第1直列回路に並列接続され、前記コンデンサは、前記スイッチング素子がオフであるときに充電され、前記スイッチング素子がオンであるときに前記スイッチング素子、前記第1直列回路、及び前記第2直列回路とともに閉回路を形成する構成(第1の構成)とする。前記コンデンサは1つだけの構成であっても良いし、複数のコンデンサを並列接続した構成であっても良い。
 なお、前記第1直列回路は、前記レーザダイオードしか含まない回路であってもよく、前記レーザダイオードを含む複数の構成要素が直列接続されている回路であってもよい。複数の構成要素の少なくとも一つは並列回路であってもよい。
 また、上記第1の構成であるレーザダイオード駆動回路において、前記レーザダイオードを流れる電流を検出するシャント抵抗を備え、前記シャント抵抗は、前記第1直列回路に含まれ、前記シャント抵抗のインピーダンスは、前記電流制限部のインピーダンスより小さい構成(第2の構成)であってもよい。
 また、上記第1の構成であるレーザダイオード駆動回路において、前記レーザダイオードを流れる電流を検出するシャント抵抗を備え、前記シャント抵抗は、前記第1直列回路外に設けられ、前記シャント抵抗のインピーダンスは、前記電流制限部のインピーダンスより小さい構成(第3の構成)であってもよい。
 また、上記第2又は第3の構成であるレーザダイオード駆動回路において、前記シャント抵抗は、複数の抵抗素子を並列接続した構成である構成(第4の構成)であってもよい。
 また、上記第4の構成であるレーザダイオード駆動回路において、隣り合う前記抵抗素子同士の間隔は、前記抵抗素子の長さの二倍をネイビア数で除して得られる値以上である構成(第5の構成)であってもよい。
 また、上記第1~第5いずれかの構成であるレーザダイオード駆動回路において、前記スイッチング素子がオフであるときに、前記スイッチング素子のボディダイオードの順方向電圧が0.7Vより大きい構成(第6の構成)であってもよい。
 また、上記第6の構成であるレーザダイオード駆動回路において、前記スイッチング素子は、MOS型電界効果トランジスタであり、前記スイッチング素子がオフであるときに、前記スイッチング素子のゲートソース間電圧が負である構成(第7の構成)であってもよい。
 また、上記第1~第7いずれかの構成であるレーザダイオード駆動回路において、前記スイッチング素子は、シリコン半導体よりもバンドギャップが大きいワイドバンドギャップ半導体のスイッチング素子である構成(第8の構成)であってもよい。
 上記目的を達成するために、本発明に係るレーザ装置は、上記第1~第8いずれかの構成のレーザダイオード駆動回路と、前記レーザダイオードと、を備える構成(第9の構成)である。
 また、上記第9の構成であるレーザ装置において、基板を備え、前記基板の第1面に前記レーザダイオードが実装され、前記第1面に対向する前記基板の第2面に前記スイッチング素子及び前記コンデンサが実装される構成(第10の構成)であってもよい。
 また、上記第10の構成であるレーザ装置において、前記スイッチング素子及び前記コンデンサの少なくとも一方の少なくとも一部は、前記第1面及び前記第2面の法線方向から視て前記レーザダイオードと重なっている構成(第11の構成)であってもよい。
 上記目的を達成するために、本発明に係るレーザレーダ装置は、上記第9~第11いずれかの構成であるレーザ装置を備える構成(第12の構成)である。
 上記目的を達成するために、本発明に係る車両は、上記第12の構成であるレーザレーダ装置を備える構成(第13の構成)である。
 本発明によれば、不要なレーザ光出力を抑制することができる。
第1実施形態に係るレーザ装置の概略構成を示す図 正の電流が流れる経路示す図 負の電流が流れる経路示す図 電流及びゲート信号のタイムチャート 第2実施形態に係るレーザ装置の概略構成を示す図 第3実施形態に係るレーザ装置の概略構成を示す図 シャント抵抗の構成例を示す図 基板の上面図 基板の下面図 基板の断面図 レーザレーダ装置の概略構成を示す図 車両の外観図 第1実施形態に係るレーザ装置の変形例を示す図 第3実施形態に係るレーザ装置の変形例を示す図
<1.第1実施形態>
 図1は、第1実施形態に係るレーザ装置の概略構成を示す図である。第1実施形態に係るレーザ装置1A(以下、レーザ装置1Aと称す)は、レーザダイオードLD1及びレーザダイオード駆動回路2Aを備える。
 レーザダイオード駆動回路2Aは、NMOS(N-channel Metal Oxide Semiconductor)トランジスタQ1と、制御部CNT1と、コンデンサC1と、ダイオードD1と、電流制限部CL1と、を備える。なお、本明細書において、MOSトランジスタとは、ゲートの構造が、「導電体または抵抗値が小さいポリシリコン等の半導体からなる層」、「絶縁層」、及び「P型、N型、又は真性の半導体層」の少なくとも3層からなる電界効果トランジスタをいう。つまり、MOSトランジスタのゲートの構造は、金属、酸化物、及び半導体の3層構造に限定されない。
 本実施形態では、スイッチング素子としてNMOSトランジスタQ1を用いているが、NMOSトランジスタQ1の代わりにNMOSトランジスタQ1以外のスイッチング素子を用いてもよい。また、本実施形態では、整流素子としてダイオードD1を用いているが、ダイオードD1の代わりにダイオードD1以外の整流素子を用いてもよい。
 電流制限部CL1は、例えば単一の抵抗素子である。電流制限部CL1は、単一の抵抗素子の代わりに例えば複数の抵抗素子によって構成される抵抗回路であってもよい。電流制限部CL1は、単一の抵抗素子の代わりに例えば単一のダイオードであってもよい。電流制限部CL1は、単一の抵抗素子の代わりに例えば直列接続された複数のダイオードであってもよい。電流制限部CL1は、単一の抵抗素子の代わりに例えばゲートソース間電圧の調整によって電流制限を行うMOS型電界効果トランジスタ、ベースエミッタ間電圧の調整によって電流制限を行うバイポーラトランジスタ等であってもよい。電流制限部CL1は、素子に限定されるものではなく、例えば基板上に設けられる配線であってもよい。配線の一部を電流制限部CL1として用いる場合、配線の形状や材料を電流制限部CL1に該当する部分とそれ以外の部分とで異ならせて、電流制限部CL1に該当する部分の配線の抵抗を大きくすればよい。電流制限部CL1は、上述した例を複数組み合わせたものであってもよい。例えば、電流制限部CL1を単一の抵抗素子と単一のダイオードとを直列接続した構成にしてもよい。
 制御部CNT1から出力されるゲート信号G1は、NMOSトランジスタQ1のゲートに供給される。コンデンサC1の一端及びNMOSトランジスタQ1のドレインは、直流電源PS1の正極に接続される。コンデンサC1の他端は、ダイオードD1のアノード及びレーザダイオードLD1のカソードに接続される。ダイオードD1のカソードは電流制限部CL1の一端に接続される。電流制限部CL1の他端、レーザダイオードLD1のアノード、NMOSトランジスタQ1のソース、及び直流電源PS1の負極は、グラウンド電位に接続される。
 ダイオードD1及び電流制限部CL1を含む第2直列回路DC2は、ダイオードD1のアノードからカソードに向かう方向とレーザダイオードLD1のアノードからカソードに向かう方向とが逆向きになるように、レーザダイオードLD1を含む第1直列回路DC1に並列接続される。
 制御部CNT1は、ゲート信号G1によってNMOSトランジスタQ1をオン/オフ制御する。
 NMOSトランジスタQ1がオフであるとき、直流電源PS1の正極から、コンデンサC1、ダイオードD1、電流制限部CL1を順に経由して直流電源PS1の負極に向かって電流が流れ、コンデンサC1が充電される。なお、直流電源PS1の出力電圧とコンデンサC1の両端電位差が略釣り合うと、電流が流れなくなりコンデンサC1の充電が停止する。
 NMOSトランジスタQ1がオンであるとき、NMOSトランジスタQ1、コンデンサC1、ダイオードD1、電流制限部CL1、及びレーザダイオードLD1によって閉回路が形成される。なお、上記閉回路は、寄生のインダクタンスを含む。したがって、上記閉回路はLCR共振回路になる。コンデンサC1に電荷が蓄えられている状態でNMOSトランジスタQ1がオフからオンに切り替わると、上記LCR共振回路は共振を開始する。
 NMOSトランジスタQ1のオンを継続すると、上記LCR共振回路を流れる電流I1が正であるときの電流I1が流れる経路は、図2に示す通りレーザダイオードLD1を含んでいる。したがって、正の電流I1が流れると、レーザダイオードLD1は発光する。電流I1が負であるときの電流I1が流れる経路は、図3に示す通りレーザダイオードLD1を含んでいない。したがって、負の電流I1が流れても、レーザダイオードLD1は発光しない。なお、本実施形態では、NMOSトランジスタQ1のドレインからソースに向かう向きを電流I1の正方向と定義し、NMOSトランジスタQ1のソースからドレインに向かう向きを電流I1の負方向と定義している。
 図4は、本実施形態における電流I1、参考例における電流I1、及びゲート信号G1の各波形を示すタイムチャートである。参考例に係るレーザ装置は、レーザ装置1Aから電流制限部CL1を取り除いた構成である。なお、図4では、ゲート信号G1のハイレベル期間すなわちNMOSトランジスタQ1のオン時間を上記LCR共振回路の共振周期の半分に設定している。
 NMOSトランジスタQ1のオン時間とは、NMOSトランジスタQ1が連続してオンである時間を意味する。具体的には、図4に示す時間t1から時間t2迄の期間が、本実施形態におけるNMOSトランジスタQ1のオン時間となる。
 本実施形態では、NMOSトランジスタQ1がオフになった後、図4に示す時間t2から時間t4迄の期間、NMOSトランジスタQ1のボディダイオードを介して負の電流I1が流れる。図4に示す時間t2から時間t4迄の期間、電流制限部CL1によって電流I1が制限される。これにより、電流I1の振動が抑制されるので、時間t4以降における正の電流I1の出現が抑制される。つまり、不要なレーザ光出力を抑制することができる。
 電流制限部CL1は、正の電流I1が流れる経路(図2参照)に含まれない。したがって、電流制限部CL1によって、レーザ光出力の立ち上がり速度が低下したり、レーザ光出力が低下したりするおそれはない。
 一方、参考例では、NMOSトランジスタQ1がオフになった後、図4に示す時間t2から時間t3迄の期間、NMOSトランジスタQ1のボディダイオードを介して負の電流I1が流れる。参考例では、電流制限部CL1が設けられていないので、電流I1の振動が抑制されない。このため、図4に示す時間t3から時間t5迄の期間、NMOSトランジスタQ1のドレイン-ソース間の寄生容量を介して正の電流I1が流れ、図4に示す時間t5から時間t6迄の期間、NMOSトランジスタQ1のボディダイオードを介して負の電流I1が流れる。したがって、図4に示す時間t3から時間t5迄の期間、不要なレーザ光出力が発生する。このような不要な光出力は例えば車両などにおけるレーザレーダ装置の誤動作を招く可能性がある。なお、制御部CNT1がNMOSトランジスタQ1を図4に示す時間t2でオンからオフに切り替えるのではなく図4に示す時間t5以降でオンからオフに切り替える場合には、図4に示す時間t3から時間t5迄の期間に流れる正の電流I1はさらに制限されなくなる。これにより、正の電流I1がさらに大きくなり、不要なレーザ光出力が増大する。
 以上の説明から明らかな通り、レーザダイオード駆動回路2A及びレーザ装置1Aは、不要なレーザ光出力を抑制することができる。
 例えば、レーザレーダ装置では、不要なレーザ光出力は誤検出の原因になり得るため、不要なレーザ光出力を抑制することができるレーザダイオード駆動回路2A及びレーザ装置1Aは非常に有用である。
 なお、NMOSトランジスタQ1のオン時間が長いほど、オン時間終了以降に正の電流が流れ易くなる。しかしながら、本実施形態では、電流制限部CL1を設けたことよりオン時間終了以降に正の電流が流れることが抑制されるので、NMOSトランジスタQ1のオン時間を長くすることができる。つまり、レーザダイオード駆動回路2Aでは、NMOSトランジスタQ1のオン時間を長くすることができるため、ゲート信号G1の生成が容易でありNMOSトランジスタQ1の制御が容易である。
<2.第2実施形態>
 図5は、第2実施形態に係るレーザ装置の概略構成を示す図である。第2実施形態に係るレーザ装置1B(以下、レーザ装置1Bと称す)は、レーザダイオードLD1及びレーザダイオード駆動回路2Bを備える。
 レーザダイオード駆動回路2Bは、レーザダイオード駆動回路2Aにシャント抵抗R1を追加した構成である。本実施形態では、シャント抵抗R1は、第1直列回路DC1に含まれ、レーザダイオードLD1に直列接続される。
 レーザダイオード駆動回路2B及びレーザ装置1Bは、レーザダイオード駆動回路2A及びレーザ装置1Aと同様の効果を奏するとともに、レーザダイオードLD1を流れる電流の検出が可能である。
 シャント抵抗R1は、レーザダイオードLD1を流れる電流を検出する。
 シャント抵抗R1の抵抗値が大きいと、電流I1の最大値が小さくなるとともに、レーザ光出力の立ち上がりが遅くなる。したがって、シャント抵抗R1の抵抗値を小さくすることは重要である。このため、本実施形態では、シャント抵抗R1のインピーダンスは電流制限部CL1のインピーダンスより小さくしている。
<3.第3実施形態>
 図6は、第3実施形態に係るレーザ装置の概略構成を示す図である。第3実施形態に係るレーザ装置1C(以下、レーザ装置1Cと称す)は、レーザダイオードLD1及びレーザダイオード駆動回路2Cを備える。
 レーザダイオード駆動回路2Cは、レーザダイオード駆動回路2Aにシャント抵抗R1を追加した構成である。本実施形態では、シャント抵抗R1は、第1直列回路DC1と第2直列回路DC2との並列回路に直列接続される。
 レーザダイオード駆動回路2C及びレーザ装置1Cは、レーザダイオード駆動回路2A及びレーザ装置1Aと同様の効果を奏するとともに、レーザダイオードLD1を流れる電流の検出が可能である。
 シャント抵抗R1は、レーザダイオードLD1を流れる電流を検出する。ただし、第2実施形態とは異なり、本実施形態では、シャント抵抗R1は、レーザダイオードLD1を流れる電流をダイオードD1のリカバリ電流を含んだ状態で検出する。したがって、レーザダイオードLD1を流れる電流の検出精度は、本実施形態より第2実施形態の方が高い。
 シャント抵抗R1の抵抗値が大きいと、電流I1の最大値が小さくなるとともに、レーザ光出力の立ち上がりが遅くなる。したがって、シャント抵抗R1の抵抗値を小さくすることは重要である。このため、本実施形態では、シャント抵抗R1のインピーダンスは電流制限部CL1のインピーダンスより小さくしている。
<4.シャント抵抗>
 図7は、第2実施形態及び第3実施形態で用いたシャント抵抗R1の構成例を示す図である。図7に示す構成例のシャント抵抗R1は、複数の抵抗素子RE1を並列接続した構成である。複数の抵抗素子RE1を並列接続することにより、シャント抵抗R1の抵抗値を小さくすることが容易になる。
 なお、図7に示す構成例では、3個の抵抗素子RE1を並列接続しているが、並列接続される抵抗素子RE1の個数は3個に限定されることはなく、複数であればよい。ただし、並列接続される抵抗素子RE1の個数が多いほど、シャント抵抗R1の抵抗値を小さくすることが容易になるがシャント抵抗R1の実装面積が大きくなる。したがって、要求されるシャント抵抗R1の抵抗値と要求されるシャント抵抗R1の実装面積との兼ね合いを考慮して、並列接続される抵抗素子RE1の個数を決定すればよい。
 また、上記LCR共振回路の共振周期が長くなることを抑制し且つ電流I1の最大値を大きくするには、上記LCR共振回路のインダクタンス成分は小さい方がよい。そして、図7に示す構成例のシャント抵抗R1で形成される寄生のインダクタンスをできるだけ小さくするために、隣接する抵抗素子RE1の相互インダクタンスMを零にすることが好ましい。
 隣接する抵抗素子RE1の相互インダクタンスMは、下記の式(1)で表せる。ただし、LNは抵抗素子RE1の長さであり、dは隣接する抵抗素子RE1の間隔である。相互インダクタンスMの単位は[H]、長さLNの単位及び間隔dの単位はそれぞれ[m]である。
  M=2LN(ln(2LN/d)-1)×10-7 ・・・(1)
 したがって、相互インダクタンスMを零に抑えるための条件は、下記の式(2)で表せる。ただし、eはネイビア数である。
  ln(2LN/d)-1≦0
  d≧2LN/e ・・・(2)
 つまり、隣接する抵抗素子RE1の間隔dは、抵抗素子RE1の長さLNの二倍をネイビア数で除して得られる値以上であることが好ましい。
<5.スイッチング素子>
 レーザダイオード駆動回路2A~2Cに設けられるNMOSトランジスタQ1がオフであるときに、NMOSトランジスタQ1のボディダイオードの順方向電圧は、一般的なシリコンダイオードの順方向電圧(例えば0.7V)より大きいことが好ましい。NMOSトランジスタQ1がオフであるときに、NMOSトランジスタQ1のボディダイオードの順方向電圧が大きければ、電流制限部CL1のみならず当該ボディダイオードによっても電流I1の振動が抑制されるので、不要なレーザ光出力をより一層抑制することができる。なお、電流制限部CL1によって電流I1の振動が十分に抑制されるのであれば、NMOSトランジスタQ1がオフであるときに、NMOSトランジスタQ1のボディダイオードの順方向電圧を一般的なシリコンダイオードの順方向電圧(例えば0.7V)より大きくする必要はない。NMOSトランジスタQ1がオフであるときに、NMOSトランジスタQ1のボディダイオードの順方向電圧を一般的なシリコンダイオードの順方向電圧(例えば0.7V)より大きくしない場合、NMOSトランジスタQ1に「逆接続ダイオード」を並列接続してもよい。「逆接続ダイオード」のアノードはNMOSトランジスタQ1のソースに接続され、「逆接続ダイオード」のカソードはNMOSトランジスタQ1のドレインに接続される。「逆接続ダイオード」の整流方向はダイオードD1の整流方向と同一である。「逆接続ダイオード」として、例えば順方向電圧が0.3V程度のダイオードを用いることができる。順方向電圧が0.3V程度のダイオードの一例として、SBD(Schottky Barrier Diode)を挙げることができる。したがって「逆接続ダイオード」として、例えばSBD(Schottky Barrier Diode)を用いることができる。
 例えばNMOSトランジスタQ1がシリコン半導体のスイッチング素子である場合、NMOSトランジスタQ1がオフであるときのNMOSトランジスタQ1のゲートソース間電圧を負にすることによって、言い換えるとNMOSトランジスタQ1がオフであるときのゲート信号G1のレベルをグラウンド電位より低くすることによって、NMOSトランジスタQ1のボディダイオードの順方向電圧を一般的なシリコンダイオードの順方向電圧(例えば0.7V)より大きくすることができる。
 また、NMOSトランジスタQ1がオフであるときのNMOSトランジスタQ1のゲートソース間電圧を負にすることによって、NMOSトランジスタQ1がオフであるべき期間においてNMOSトランジスタQ1が誤ってオンになることを抑制することもできる。NMOSトランジスタQ1が誤ってオンになることが抑制されるので、不要なレーザ光出力をより一層抑制することができる。
 例えばNMOSトランジスタQ1をシリコン半導体よりもバンドギャップが大きいワイドバンドギャップ半導体のスイッチング素子にすることで、NMOSトランジスタQ1のボディダイオードの順方向電圧を一般的なシリコンダイオードの順方向電圧(例えば0.7V)より大きくしてもよい。シリコン半導体よりもバンドギャップが大きいワイドバンドギャップ半導体としては、例えばSiC、GaN等の化合物半導体を挙げることができる。
 また、NMOSトランジスタQ1として、出力容量Cossの小さいトランジスタを選定することによって、電流I1の振動が抑制されるので、不要なレーザ光出力をより一層抑制することができる。出力容量Cossの小さいトランジスタとしては、例えばシリコン半導体よりもバンドギャップが大きいワイドバンドギャップ半導体のトランジスタを挙げることができる。
 また、NMOSトランジスタQ1として、入力容量Cissの小さいトランジスタを選定することによって、NMOSトランジスタQ1のオン時間の制御性が向上するので、不要なレーザ光出力を抑制することが容易になる。入力容量Cissの小さいトランジスタとしては、例えばシリコン半導体よりもバンドギャップが大きいワイドバンドギャップ半導体のトランジスタを挙げることができる。
<6.部品配置>
 図8~図10は、第1実施形態における部品配置の一例を説明するための図である。図8は、NMOSトランジスタQ1、コンデンサC1、ダイオードD1、電流制限部CL1、及びレーザダイオードLD1が実装されている基板B1の上面図である。図9は、NMOSトランジスタQ1、コンデンサC1、ダイオードD1、電流制限部CL1、及びレーザダイオードLD1が実装されている基板B1の下面図である。図10は、図8及び図9に示すAA切断面で切断した場合のNMOSトランジスタQ1、コンデンサC1、ダイオードD1、電流制限部CL1、及びレーザダイオードLD1が実装されている基板B1の断面図である。図10中の点線は、基板B1の第1面F1及び第2面F2の法線方向を示している。基板B1の第1面F1と基板B1の第2面F2とは、互いに対向しており、略平行である。なお、上面図及び下面図は便宜上用いている用語であり、レーザ装置の設置方向を限定するものではない。
 図8に示す通り、基板B1の第1面F1には、配線LN1~LN3が設けられる。配線LN1は、TO-Canパッケージ型のレーザダイオードLD1の3番ピン(レーザダイオードのカソード)P3とダイオードD1のアノードとを電気的に接続するための配線である。配線LN2は、ダイオードD1のカソードと電流制限部CL1の一端とを電気的に接続するための配線である。配線LN3は、電流制限部CL1の他端とTO-Canパッケージ型のレーザダイオードLD1の1番ピン(レーザダイオードのアノード)P1とを電気的に接続するための配線である。
 TO-Canパッケージ型のレーザダイオードLD1の2番ピンP2はTO-Canパッケージに内蔵される受光素子のカソードである。
 基板B1には、TO-Canパッケージ型のレーザダイオードLD1の1番ピンP1~3番ピンP3がそれぞれ通る貫通穴が設けられる。各貫通穴は基板B1の第1面F1及び第2面F2の法線方向に沿って延びる。
 図9に示す通り、基板B1の第2面F2には、配線LN4~LN6が設けられる。配線LN4は、TO-Canパッケージ型のレーザダイオードLD1の3番ピン(レーザダイオードのカソード)P3とコンデンサC1の一端とを電気的に接続するための配線である。配線LN5は、TO-Canパッケージ型のレーザダイオードLD1の1番ピン(レーザダイオードのアノード)P1とNMOSトランジスタQ1のソースとを電気的に接続するための配線である。配線LN6は、NMOSトランジスタQ1のドレインとコンデンサC1の他端とを電気的に接続するための配線である。
 図8~図10に示す第1実施形態における部品配置例では、基板B1の第1面F1にレーザダイオードLD1が実装され、基板B1の第2面F2にNMOSトランジスタQ1及びコンデンサC1が実装される。これにより、正の電流I1が流れる経路(図2及び図10の太線矢印参照)を短くすることが可能となる。これにより、正の電流I1が流れる経路の配線インダクタンスを低減することが可能となる。これにより、上記LCR共振回路の共振周期が長くなることを抑制し且つ電流I1の最大値を大きくすることが可能となる。
 なお、NMOSトランジスタQ1及びコンデンサC1の少なくとも一方の少なくとも一部は、基板B1の第1面F1及び第2面F2の法線方向から視てレーザダイオードLD1と重なっていることが好ましい。これにより、正の電流I1が流れる経路を短くすることが容易になる。
 ここでは、第1実施形態における部品配置の一例を説明したが、第2実施形態及び第3実施形態においても同様の部品配置にすることで、正の電流I1が流れる経路の配線インダクタンスを低減することが可能となる。なお、シャント抵抗R1は、第1面F1及び第2面F2のどちらに配置してもよい。
<7.用途>
 上述した各レーザ装置1A~1Cのいずれかであるレーザ装置1は、例えば図11に示すレーザレーダ装置X1の一部として用いられる。図11に示すレーザレーダ装置X1は、走査型レーザレーダ装置であって、レーザ装置1と、受光装置3と、光学系4と、全体制御部5と、を備える。全体制御部5は、レーザ装置1の出力及び光学系4内のミラーの向きを制御し、レーザ装置1の出力の制御内容及び受光装置3の出力信号に基づき物体までの距離を演算し、光学系4内のミラーの向きの制御内容に基づき物体の方向を演算する。
 図11に示すレーザレーダ装置X1は、例えば図12に示す車両Y1の前端に設けられ、車両Y1の前方に位置する物体を検知する。
<8.その他>
 上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態の説明ではなく、特許請求の範囲によって示されるものであり、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
 例えば、コンデンサC1と、第1直列回路DC1及び第2直列回路DC2の並列回路と、NMOSトランジスタQ1とが並ぶ順番は、図1及び図5に示す構成でなくてもよい。コンデンサC1と、第1直列回路DC1及び第2直列回路DC2の並列回路と、NMOSトランジスタQ1とは直列に接続されているため、並ぶ順番が変わっても同様の効果を得ることができるからである。ただし、ダイオードD1及びレーザダイオードLD1に対するNMOSトランジスタQ1のボディダイオードの向きが並ぶ順番を変える前と逆になる場合には、ダイオードD1及びレーザダイオードLD1の向きも逆にする必要がある。したがって、例えば図13に示す構成では、図1に示す構成と比較して、コンデンサC1と、第1直列回路DC1及び第2直列回路DC2の並列回路と、NMOSトランジスタQ1とが並ぶ順番のみならず、ダイオードD1及びレーザダイオードLD1の向きも変更している。例えば、コンデンサC1と、第1直列回路DC1及び第2直列回路DC2の並列回路と、シャント抵抗R1と、NMOSトランジスタQ1とが並ぶ順番は、図6に示す構成でなくてもよい。コンデンサC1と、第1直列回路DC1及び第2直列回路DC2の並列回路と、シャント抵抗R1と、NMOSトランジスタQ1とは直列に接続されているため、並ぶ順番が変わっても同様の効果を得ることができるからである。ただし、ダイオードD1及びレーザダイオードLD1に対するNMOSトランジスタQ1のボディダイオードの向きが並ぶ順番を変える前と逆になる場合には、ダイオードD1及びレーザダイオードLD1の向きも逆にする必要がある。したがって、例えば図14に示す構成では、図6に示す構成と比較して、コンデンサC1と、第1直列回路DC1及び第2直列回路DC2の並列回路と、シャント抵抗R1と、NMOSトランジスタQ1とが並ぶ順番のみならず、ダイオードD1及びレーザダイオードLD1の向きも変更している。なお、レーザダイオード駆動回路がシャント抵抗R1を備える構成である場合、シャント抵抗R1の一端をグラウンド電位に接続して電流検出結果をグラウンド電位基準にすることが好ましい。
 レーザ装置は基板上に実装される形態に限定されない。例えば、レーザダイオード駆動回路の少なくとも一部をレーザダイオードとともにモジュール化してCanパッケージの内部に収納してもよく、レーザ装置の少なくとも一部をモジュール化してCan以外の容器の内部に収納してもよい。
 例えば、本明細書中に示される複数の実施形態及び変形例は可能な範囲で組み合わせて実施されてよい。
   1A 第1実施形態に係るレーザ装置
   1B 第2実施形態に係るレーザ装置
   1C 第3実施形態に係るレーザ装置
   2A、2B、2C レーザダイオード駆動回路
   B1 基板
   C1 コンデンサ
   CL1 電流制限部
   CNT1 制御部
   D1 ダイオード
   DC1 第1直列回路
   DC2 第2直列回路
   LD1 レーザダイオード
   R1 シャント抵抗
   RE1 抵抗素子
   Q1 NMOSトランジスタ
   X1 レーザレーダ装置
   Y1 車両

Claims (13)

  1.  スイッチング素子と、
     前記スイッチング素子をオン/オフ制御する制御部と、
     レーザダイオードを含む第1直列回路に並列接続される第2直列回路と、
     コンデンサと、
    を備え、
     前記第2直列回路は、整流素子及び前記整流素子に流れる電流を制限する電流制限部を含み、前記整流素子のアノードからカソードに向かう方向と前記レーザダイオードのアノードからカソードに向かう方向とが互いに逆向きになるように、前記第1直列回路に並列接続され、
     前記コンデンサは、前記スイッチング素子がオフであるときに充電され、前記スイッチング素子がオンであるときに前記スイッチング素子、前記第1直列回路、及び前記第2直列回路とともに閉回路を形成する、レーザダイオード駆動回路。
  2.  前記レーザダイオードを流れる電流を検出するシャント抵抗を備え、
     前記シャント抵抗は、前記第1直列回路に含まれ、
     前記シャント抵抗のインピーダンスは、前記電流制限部のインピーダンスより小さい、請求項1に記載のレーザダイオード駆動回路。
  3.  前記レーザダイオードを流れる電流を検出するシャント抵抗を備え、
     前記シャント抵抗は、前記第1直列回路外に設けられ、
     前記シャント抵抗のインピーダンスは、前記電流制限部のインピーダンスより小さい、請求項1に記載のレーザダイオード駆動回路。
  4.  前記シャント抵抗は、複数の抵抗素子を並列接続した構成である、請求項2又は請求項3に記載のレーザダイオード駆動回路。
  5.  隣り合う前記抵抗素子同士の間隔は、前記抵抗素子の長さの二倍をネイビア数で除して得られる値以上である、請求項4に記載のレーザダイオード駆動回路。
  6.  前記スイッチング素子がオフであるときに、前記スイッチング素子のボディダイオードの順方向電圧が0.7Vより大きい、請求項1~5のいずれか一項に記載のレーザダイオード駆動回路。
  7.  前記スイッチング素子は、MOS型電界効果トランジスタであり、
     前記スイッチング素子がオフであるときに、前記スイッチング素子のゲートソース間電圧が負である、請求項6に記載のレーザダイオード駆動回路。
  8.  前記スイッチング素子は、シリコン半導体よりもバンドギャップが大きいワイドバンドギャップ半導体のスイッチング素子である、請求項1~7のいずれか一項に記載のレーザダイオード駆動回路。
  9.  請求項1~8のいずれか一項の記載のレーザダイオード駆動回路と、
     前記レーザダイオードと、
    を備える、レーザ装置。
  10.  基板を備え、
     前記基板の第1面に前記レーザダイオードが実装され、
     前記第1面に対向する前記基板の第2面に前記スイッチング素子及び前記コンデンサが実装される、請求項9に記載のレーザ装置。
  11.  前記スイッチング素子及び前記コンデンサの少なくとも一方の少なくとも一部は、前記第1面及び前記第2面の法線方向から視て前記レーザダイオードと重なっている、請求項10に記載のレーザ装置。
  12.  請求項9~11のいずれか一項に記載のレーザ装置を備える、レーザレーダ装置。
  13.  請求項12に記載のレーザレーダ装置を備える、車両。
PCT/JP2020/032145 2019-10-23 2020-08-26 レーザダイオード駆動回路 WO2021079611A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/767,245 US20220376470A1 (en) 2019-10-23 2020-08-26 A laser diode driving circuit
DE112020005138.2T DE112020005138T5 (de) 2019-10-23 2020-08-26 Laserdioden-ansteuerungsschaltung
CN202080074065.4A CN114616732A (zh) 2019-10-23 2020-08-26 激光二极管驱动电路
JP2021554111A JPWO2021079611A1 (ja) 2019-10-23 2020-08-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019192903 2019-10-23
JP2019-192903 2019-10-23

Publications (1)

Publication Number Publication Date
WO2021079611A1 true WO2021079611A1 (ja) 2021-04-29

Family

ID=75620466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032145 WO2021079611A1 (ja) 2019-10-23 2020-08-26 レーザダイオード駆動回路

Country Status (5)

Country Link
US (1) US20220376470A1 (ja)
JP (1) JPWO2021079611A1 (ja)
CN (1) CN114616732A (ja)
DE (1) DE112020005138T5 (ja)
WO (1) WO2021079611A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243318A1 (ja) * 2022-06-13 2023-12-21 株式会社デンソー 発光ユニット、光学センサ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955770B2 (en) * 2020-12-28 2024-04-09 Lumentum Operations Llc Laser diode assembly and driving circuit for high power short pulse generation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208677A (ja) * 2001-01-12 2002-07-26 Toyota Industries Corp 温度検出機能を備える半導体装置
JP2009544022A (ja) * 2006-07-17 2009-12-10 ライカ ジオシステムズ アクチェンゲゼルシャフト 電子光学距離計
JP2015179436A (ja) * 2014-03-19 2015-10-08 古河電気工業株式会社 発光素子の駆動回路、光源装置および発光素子の駆動方法
JP2016512652A (ja) * 2013-02-28 2016-04-28 ローレンス リバモア ナショナル セキュリティー, エルエルシー コンパクトな高電流高効率レーザダイオードドライバ
US20180109074A1 (en) * 2016-10-14 2018-04-19 Waymo Llc GaNFET as Energy Store for Fast Laser Pulser
JP2018077073A (ja) * 2016-11-08 2018-05-17 オムロンオートモーティブエレクトロニクス株式会社 物体検出装置
US20180261975A1 (en) * 2017-03-07 2018-09-13 Sensl Technologies Ltd. Laser driver

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569236B2 (ja) 2015-02-18 2019-09-04 株式会社豊田中央研究所 レーザダイオード駆動回路及びレーザレーダ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208677A (ja) * 2001-01-12 2002-07-26 Toyota Industries Corp 温度検出機能を備える半導体装置
JP2009544022A (ja) * 2006-07-17 2009-12-10 ライカ ジオシステムズ アクチェンゲゼルシャフト 電子光学距離計
JP2016512652A (ja) * 2013-02-28 2016-04-28 ローレンス リバモア ナショナル セキュリティー, エルエルシー コンパクトな高電流高効率レーザダイオードドライバ
JP2015179436A (ja) * 2014-03-19 2015-10-08 古河電気工業株式会社 発光素子の駆動回路、光源装置および発光素子の駆動方法
US20180109074A1 (en) * 2016-10-14 2018-04-19 Waymo Llc GaNFET as Energy Store for Fast Laser Pulser
JP2018077073A (ja) * 2016-11-08 2018-05-17 オムロンオートモーティブエレクトロニクス株式会社 物体検出装置
US20180261975A1 (en) * 2017-03-07 2018-09-13 Sensl Technologies Ltd. Laser driver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243318A1 (ja) * 2022-06-13 2023-12-21 株式会社デンソー 発光ユニット、光学センサ

Also Published As

Publication number Publication date
DE112020005138T5 (de) 2022-07-21
JPWO2021079611A1 (ja) 2021-04-29
US20220376470A1 (en) 2022-11-24
CN114616732A (zh) 2022-06-10

Similar Documents

Publication Publication Date Title
US9762053B2 (en) Load driving device
US7570467B2 (en) Electrostatic protection circuit
US20230317713A1 (en) Semiconductor Device
US6292500B1 (en) Semiconductor laser device
WO2021079611A1 (ja) レーザダイオード駆動回路
US20120280668A1 (en) Power supply control apparatus
KR102462819B1 (ko) 반도체 장치
US8605399B2 (en) Load driving device
US9374074B2 (en) Voltage selection circuit and semiconductor integrated circuit device having the same
US8059437B2 (en) Integrated circuit and DC-DC converter formed by using the integrated circuit
KR100807205B1 (ko) 파워 디바이스의 구동회로
US20130027824A1 (en) Semiconductor device
US20090174387A1 (en) Semiconductor Device
US20120249227A1 (en) Voltage level generator circuit
US7642502B2 (en) Photo relay having an insulated gate field effect transistor with variable impedance
WO2019176501A1 (ja) スイッチ制御回路、イグナイタ
US7087968B1 (en) Electrostatic discharge protection circuit and semiconductor circuit therewith
CN113875140B (zh) 驱动器电路和开关系统
EP2161761A2 (en) Relay circuit
US8638534B2 (en) Load driving device
US11729885B2 (en) Light-emitting element driving circuit
JP2020123643A (ja) 半導体装置
JP7222202B2 (ja) 駆動装置及び電力変換装置
WO2023157660A1 (ja) ゲートドライブ回路、電力変換装置
JP2023165137A (ja) 発光素子駆動回路及び発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554111

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20879582

Country of ref document: EP

Kind code of ref document: A1