WO2021079580A1 - 塗工フィルムの製造方法および塗工フィルムの製造装置 - Google Patents

塗工フィルムの製造方法および塗工フィルムの製造装置 Download PDF

Info

Publication number
WO2021079580A1
WO2021079580A1 PCT/JP2020/028569 JP2020028569W WO2021079580A1 WO 2021079580 A1 WO2021079580 A1 WO 2021079580A1 JP 2020028569 W JP2020028569 W JP 2020028569W WO 2021079580 A1 WO2021079580 A1 WO 2021079580A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
coating film
coating
drying
manufacturing apparatus
Prior art date
Application number
PCT/JP2020/028569
Other languages
English (en)
French (fr)
Inventor
亮 石黒
諭 中村
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to US17/771,250 priority Critical patent/US20220410205A1/en
Priority to CN202080065208.5A priority patent/CN114401797A/zh
Priority to EP20878067.6A priority patent/EP4049761A1/en
Priority to KR1020227013271A priority patent/KR20220084298A/ko
Publication of WO2021079580A1 publication Critical patent/WO2021079580A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C1/00Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
    • B05C1/04Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length
    • B05C1/08Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C1/00Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
    • B05C1/04Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length
    • B05C1/08Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line
    • B05C1/0826Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line the work being a web or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/02Sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a coating film manufacturing method and a coating film manufacturing apparatus, and more particularly to a coating film manufacturing method and a manufacturing apparatus used for a battery separator or the like.
  • a positive electrode material and a negative electrode material are separated by a porous film called a separator.
  • the separator has, for example, a plurality of fine pores through which lithium ions pass, and the lithium ions move between the positive electrode material and the negative electrode material through the pores, so that charging and discharging can be repeated. In this way, the separator has a role of separating the positive electrode material and the negative electrode material to prevent a short circuit.
  • the separator plays the role of a battery safety device, and it is important to improve the mechanical strength and heat resistance of the separator.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2016-183209 discloses a technique for forming a coating layer containing inorganic particles and a binder resin composition on at least one surface of a polyolefin resin porous film.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2017-068900 describes a technique of applying a coating liquid containing a filler and a resin binder on a polyolefin-based resin porous film and then drying to form a coating layer. It is disclosed.
  • the present inventor has conducted research and development on a coating technique for forming a coating layer on the surface of the substrate in order to improve the mechanical strength and heat resistance of the substrate (porous film) of the battery separator. There is.
  • the method for producing a coating film disclosed in the present application includes (a) a step of applying a coating liquid to the first surface of a base material taken out from a carry-out portion, and (b) a coating liquid on the base material. It has a step of forming a coating layer on the first surface of the base material by drying, and (c) a step of taking in the base material on which the coating layer is formed at a carry-in portion. Then, the base material is continuously arranged from the carry-out portion to the carry-in portion, and after being taken out from the carry-out portion, tension is cut by the first suction roll before the step (b), and the coating is applied.
  • the base material on which the work layer is formed is tension-cut by a second suction roll before the step (c).
  • the coating film manufacturing apparatus disclosed in the present application dries a carry-out portion for taking out a base material, a coating portion for applying a coating liquid to the first surface of the base material, and a coating liquid on the base material.
  • it has a drying portion for forming a coating layer on the first surface of the base material, and a carrying-in portion for taking in the base material on which the coating layer is formed.
  • the first suction roll is arranged between the carrying-out part and the drying part
  • the second suction roll is arranged between the drying part and the carrying-in part.
  • a coating film having good characteristics can be manufactured.
  • FIG. 1 It is a figure which shows the temperature change in the drying chamber before and after the improvement of the temperature control of a drying chamber. It is sectional drawing which shows the structure of the lithium ion battery. It is a schematic diagram which shows the structure of the manufacturing apparatus of a porous film. It is a simplified schematic diagram which shows the structure of the coating film manufacturing apparatus of Embodiment 1. It is a simplified schematic diagram which shows the structure of the coating film manufacturing apparatus of application example 1. FIG. It is a simplified schematic diagram which shows the structure of the coating film manufacturing apparatus of application example 2. It is a perspective view which shows the state of coating using a slot die.
  • FIG. 1 is a diagram schematically showing a configuration of a coating film manufacturing apparatus according to the present embodiment. Further, FIG. 2 is a cross-sectional view showing a manufacturing process of the coating film of the present embodiment.
  • a base material 1 made of a porous film is prepared.
  • the porous film used as the base material 1 is made of, for example, a polyolefin-based resin.
  • the thickness of the base material 1 is, for example, about 5 ⁇ m to 50 ⁇ m, and the width is, for example, about 200 mm to 3000 mm.
  • the pore size distribution of the fine pores 1a is, for example, about 10 nm to 10 ⁇ m, and the average pore size is, for example, about 100 nm to 900 nm.
  • the galley value of the base material 1 is, for example, about 100 to 300 sec / 100 cc.
  • the surface (first surface) of the base material 1 is surface-treated.
  • the surface of the base material 1 is irradiated with corona discharge using the corona discharge irradiation device 10.
  • the surface of the base material 1 is modified.
  • the wettability of the coating liquid is enhanced on the surface of the base material 1. It should be noted that such a surface treatment step is not essential and can be omitted depending on the type of the base material 1.
  • the coating liquid has a filler and a dispersion medium.
  • the filler inorganic substances such as alumina, silica, aluminum hydroxide and boehmite, cellulose and the like can be used.
  • the dispersion medium an aqueous solvent or an organic solvent can be used.
  • a binder may be added.
  • a side chain or cyclic polymer resin, an acrylic resin, a thermoplastic fluoropolymer, or the like can be used.
  • a gravure coating device can be used.
  • SBR styrene-butadiene rubber
  • a polymer having high ionic conductivity may be added before use.
  • the coating film 3a on the base material 1 is dried to form the coating layer 3b.
  • a separator (coating film) 5 composed of a base material (porous film) 1 and a coating layer 3b can be formed.
  • the base material (porous film) 1 is provided with a large number of micropores 1a, and a coating layer 3b is provided on the surface thereof.
  • the coating layer 3b has, for example, cellulose and alumina.
  • the coating layer 3b is not formed so as to cover all the micropores 1a of the base material 1, and the coating layer 3b itself has air permeability.
  • the galley value (air permeability, [sec / 100cc]) of the base material 1 (separator) on which the coating layer 3b is formed is 10 or more and 3000 or less, and the air permeability is ensured.
  • the coating film manufacturing apparatus has a unwinding portion UW that unwinds the base material 1 and a winding portion WD that winds up the base material 1.
  • the base material 1 is continuously arranged from the unwinding portion UW to the winding portion WD, and is applied to the surface (first surface) of the base material 1 between the unwinding portion UW and the winding portion WD.
  • the work layer 3b is formed, and the separator (coating film) 5 is completed.
  • the roll-shaped (rolled strip-shaped) base material 1 can be continuously processed, and the separator can be efficiently formed.
  • the unwinding portion UW side may be referred to as upstream
  • the winding portion WD may be referred to as downstream.
  • a surface treatment section (10), a coating treatment section (20), and a drying treatment section (30) are arranged between the unwinding section UW and the winding section WD.
  • the base material 1 is treated by each treatment section while being guided by a plurality of rolls (guide rolls) R, and a coating layer 3b is formed on the surface thereof. This will be described in detail below.
  • the base material 1 unwound from the unwinding unit UW is conveyed to the surface treatment unit (10).
  • the corona discharge irradiation device 10 is arranged, and the surface of the base material 1 is irradiated with the corona discharge (corona treatment).
  • corona treatment corona treatment
  • the surface-treated (here, corona-treated) base material 1 is guided by the roll R and conveyed to the coating treatment unit 20.
  • the surface-treated first surface upper side in the surface-treated portion (10)
  • the roll R is inverted by the roll R, and becomes the lower side in the coating-treated portion (20).
  • the gravure coating device 20 is arranged, and the coating liquid 20a is applied (coated) to the first surface of the base material 1.
  • the coating film is indicated by 3a.
  • the base material 1 on which the coating film 3a is formed is guided by the roll R and conveyed to the drying processing unit (30).
  • the first surface (lower side in the coating treatment section (20)) on which the coating film 3a is formed is inverted by the roll R and becomes the upper side in the drying treatment section (30).
  • a drying furnace (conveyor type drying furnace) 30 is arranged, and the liquid component of the coating film 3a of the base material 1 conveyed by the roll R is vaporized to form a coating layer 3b. ..
  • the drying furnace 30 has three drying chambers (covers) 1D, 2D, and 3D, and in each drying chamber, heated air is introduced from a nozzle (not shown). The temperature of the heated air is controlled by a heating unit (heater or the like) (not shown).
  • the strip-shaped base material 1 is processed in each processing unit while being guided by a plurality of rolls (guide rolls) R.
  • suction roll SRs are provided before and after the drying processing unit (30).
  • the suction roll SR cuts the tension of the base material 1.
  • the tension cut it is possible to adjust the tension to be different between the upstream and the downstream starting from the suction roll SR.
  • the state of the base material (film) 1 changes depending on each treatment.
  • the thickness of the base material 1 changes.
  • the drying processing unit (30) the base material 1 expands and contracts. Regardless of such changes in the state of the base material 1, if the same tension is uniformly controlled in the apparatus, there is a concern that the base material 1 may flutter, sag or tear.
  • tension cut is performed before and after the drying processing unit (30).
  • the unwinding unit UW to the inlet of the drying processing unit (30), the inlet of the drying processing unit (30) to the outlet of the drying processing unit (30), and the outlet of the drying processing unit (30) to the winding unit WD 3 Tension can be adjusted in one area.
  • Such tension cut can be performed by using a nip roll described later, but when a nip roll which is a roll that physically sandwiches the base material 1 is used, even if it is a drive type, the base material 1 Since it becomes a transport resistance, the take-up tension becomes large. On the other hand, when the suction roll SR is used, the transport resistance of the base material 1 can be reduced. Here, for example, when the suction roll SR in the apparatus is removed, the winding tension becomes large.
  • the strip-shaped base material 1 is treated in each processing unit while being guided by a plurality of rolls (guide rolls) R. At this time, if the state of the base material (film) 1 is changed by each treatment, the base material 1 may be slackened or torn. Therefore, by performing the tension cut of the base material 1, the slack and tear of the base material 1 can be reduced, and the base material 1 can be processed without any trouble. Further, it is not necessary to suppress the processing speed (line speed, transport speed) of the base material 1 in order to prevent the base material 1 from sagging or tearing, and the base material 1 can be processed at high speed.
  • FIG. 3 is a diagram showing the configuration of the suction roll SR.
  • FIG. 3A is a perspective view
  • FIG. 3B is a cross-sectional view.
  • the suction roll SR has a shaft portion and a cylindrical portion.
  • a plurality of holes P are provided on the side surface of the cylindrical portion.
  • the cylindrical portion is connected to a suction portion (pressure reducing pump or the like), and when the suction roll SR is in operation, a part of the inside of the cylindrical portion is in a suction state.
  • This partial region is a region BA having a fan-shaped cross section in contact with the base material 1. Therefore, as shown in FIG. 3B, the base material 1 is attracted to the side surface of the cylindrical portion and conveyed by the rotation of the cylindrical portion.
  • the suction pressure pressure of a part of the inside of the cylindrical portion BA of a part of the region BA
  • the base material 1 may be drawn into the holes P of the suction roll SR.
  • the suction pressure is preferably 2.5 MPa or less, and more preferably 1.5 MP or less.
  • the size, shape, and number of holes P provided in the suction roll SR can be changed as appropriate.
  • FIG. 4 is a perspective view showing the configuration of the nip roll.
  • the nip roll has a roll R1 and a roll R2, and for example, a pressure is applied to the roll R1 on the roll R2 side. In other words, the roll R1 is pressed against the roll R2.
  • Tension cut can be performed by passing the base material 1 between the roll R1 and the roll R2.
  • FIG. 5 is a diagram schematically showing the state of the base material when the nip roll is used.
  • the base material 1 is thinned by the pressure (load, nip pressure) between the roll R1 and the roll R2. Flattened.
  • the pressure is released, the original shape (thickness) is restored, and wrinkles are generated.
  • the occurrence of wrinkles can be suppressed by using a suction roll instead of the nip rolls (R1, R2).
  • a suction roll instead of the nip rolls (R1, R2).
  • the occurrence of wrinkles can be effectively suppressed.
  • the tension cut works effectively, so that the winding tension can be suppressed as compared with the case of using the nip rolls (R1, R2).
  • the tension of the base material 1 between the rolls becomes large. Further, since the base material (film) 1 is compressed in the thickness direction, the elastically deformed base material 1 is restored to the original width after passing through the nip rolls (R1 and R2), so that the base material 1 is wrinkled. It is more likely to occur.
  • the suction roll SR when used, the tension cut functions effectively, so that the meandering caused by the excess or deficiency of the tension between the rolls R and the physical contact as when the nip roll is used are the causes. The occurrence of wrinkles is suppressed. Therefore, when the suction roll SR is used, the base material 1 can be conveyed at a higher speed than when the nip rolls (R1 and R2) are used.
  • FIG. 6 is a cross-sectional view showing a horizontal coating device.
  • FIG. 7 is a cross-sectional view showing a vertical coating device.
  • the horizontal coating apparatus (20) shown in FIG. 6 includes a chamber (tank) 20b for storing the coating liquid 20a, a roll CR for coating in which a part of the chamber (tank) 20b is immersed in the chamber (tank) 20b, and a roll CR for coating. It has a blade 20c for preventing the coating liquid 20a from scattering. The blade 20c is arranged on the rotation direction side (left side in FIG. 6) of the coating roll CR so as to hold down the coating liquid 20a adhering to the surface of the coating roll CR.
  • the chamber (tank) 20b is arranged in the vertical direction (direction parallel to the direction of gravity). In this case, it is necessary to hold the coating liquid 20a by two blades 20c arranged above and below the chamber (tank) 20b. If the capacity of the chamber (tank) 20b is made too large, the blade that holds the coating liquid 20a bends, and the coating liquid 20a cannot be held completely. As described above, in the vertical coating apparatus (20), the capacity of the chamber (tank) 20b cannot be increased, the blade 20c itself is worn, and the blade 20c is in contact with the coating liquid 20a. The wear of the work roll CR increases.
  • the coating liquid contains a hard filler such as alumina. Therefore, the blade 20c and the roll CR for coating that come into contact with each other through the coating liquid are scraped and worn.
  • the horizontal coating device (20) can be incorporated, the wear of the blade 20c and the roll CR for coating can be reduced. Further, the capacity of the chamber (tank) 20b can be increased, and the coating liquid 20a is unlikely to run out even if high-speed processing is performed.
  • the tension cut works effectively, so that the winding tension can be suppressed as compared with the case of using the nip rolls (R1, R2). Therefore, high-speed processing becomes possible. That is, each process can be performed while transporting the base material 1 at high speed.
  • each cover it is preferable that the internal temperature of each cover (each drying chamber) is uniform.
  • an accompanying flow flows from the lower part of the cover (the gap between the side wall of the cover and the base material 1), and the temperature inside the cover can be lowered. Therefore, it is preferable to control the temperature in consideration of the accompanying flow.
  • FIG. 8 is a cross-sectional view showing the state of the drying chamber of the present embodiment.
  • FIG. 9 is a cross-sectional view showing the state of the drying chamber of the comparative example.
  • the drying chamber 1D arranged at the most upstream side will be described.
  • a nozzle 31a is provided inside the drying chamber 1D.
  • Heat-dried air (heating fluid) DA is discharged from the tip of the nozzle 31a.
  • the heated and dried air DA is blown onto the base material 1 from the tip of the nozzle 31a.
  • the nozzle 31a is provided in the center of the drying chamber, for example.
  • the planar shape of the nozzle 31a may be spot-shaped (circular) or line-shaped (rectangular).
  • the internal temperature of the drying chamber 1D is measured with a thermocouple 31b.
  • a thermocouple is a temperature sensor that uses two or more types of metals and measures the temperature (temperature difference) based on the thermoelectromotive force at the junction between the metals.
  • the temperature inside the drying chamber 1D is measured by this thermocouple (temperature sensor), and if the temperature inside the drying chamber 1D deviates from the set temperature, the temperature of the heated drying air DA is adjusted by a heater (not shown) to dry.
  • the temperature in the chamber 1D is maintained at the set temperature.
  • thermocouple 31b is provided between the side wall of the drying chamber (cover) on the upstream side and the nozzle 31a (region 1A).
  • the thermocouple 31b By arranging the thermocouple 31b in this way, it is possible to appropriately correct the temperature drop in the drying chamber 1D due to the accompanying flow AF, and the coating film 3a formed on the surface of the base material 1 is dried with high accuracy.
  • the side wall of the drying chamber (cover) on the upstream side is the side wall that the base material 1 first crosses, and in other words, extends in the direction intersecting the transport direction among the side walls of the drying chamber. It is a side wall located on the upstream side of the two side walls.
  • thermocouple 31b is arranged so as to be in contact with the nozzle 31a, it is possible to appropriately correct the temperature drop in the drying chamber 1D due to the accompanying flow AF. This is not possible, and uneven drying is likely to occur in the coating film 3a formed on the surface of the base material 1.
  • a coating film (coating layer) having good characteristics can be efficiently produced by adopting a suction roll, adopting a horizontal coating device, and improving temperature control in the drying chamber. can do.
  • a coating layer was formed on the surface of the base material (polyethylene porous film), and a separator (coating film) was formed. That is, a coating film (separator) was formed while tension-cutting the base material using a suction roll before and after the drying treatment section.
  • a thermocouple was placed in the region 1A using a horizontal coating device to control the temperature in the drying chamber.
  • a coating layer was formed on the surface of the base material to form a separator using the coating film manufacturing apparatus of the comparative example. That is, a coating film (separator) was formed while tension-cutting the base material using a nip roll before and after the drying treatment section. A thermocouple was placed in the nozzle using a vertical coating device to control the temperature in the drying chamber.
  • Table 1 below shows the processing conditions and judgment results of each example and each comparative example.
  • FIG. 10 is a diagram showing a sample of Comparative Example 2. As shown in FIG. 10 (A), the sample (separator) has wrinkles. In FIG. 10B, the wrinkled portion is clearly indicated by a black line.
  • Example 1 A coating layer having a film thickness of 4 ⁇ m was formed using a substrate having a film thickness of 7 ⁇ m.
  • the line speed was 50 m / min
  • the take-up tension was 4 N.
  • the drying temperature was 65 ° C. In this case, there were no wrinkles (OK) and the dry state was good (OK).
  • Example 2 A coating layer having a film thickness of 4 ⁇ m was formed using a substrate having a film thickness of 5 ⁇ m.
  • the line speed was 30 m / min
  • the take-up tension was 4 N.
  • the drying temperature was 50 ° C. In this case, there were no wrinkles (OK) and the dry state was good (OK).
  • Example 3 A coating layer having a film thickness of 4 ⁇ m was formed using a substrate having a film thickness of 7 ⁇ m.
  • the line speed was 100 m / min
  • the take-up tension was 4 N.
  • the drying temperature was 65 ° C. In this case, there were no wrinkles (OK) and the dry state was good (OK).
  • the deterioration rate of the galley value of the sample of Comparative Example 1 was 9.1%.
  • the deterioration rate of the galley value of the sample of Example 3 was 8.5%.
  • the deterioration rate of the galley value of the sample of Example 3 achieved the target of 10% or less, and was better than that of Comparative Example 1.
  • Example 1 although the film thickness of the base material was as thin as 7 ⁇ m, a coating film (separator) having no wrinkles and a good dry state was obtained.
  • Example 2 even when the film thickness of the base material was further reduced to 5 ⁇ m, a coating film (separator) having no wrinkles and having a good dry state was obtained.
  • Example 3 even when the line speed was 100 m / min, a coating film (separator) having no wrinkles and a good dry state was obtained.
  • FIG. 11 is a diagram showing temperature changes in the drying chamber before and after the improvement of the temperature control in the drying chamber.
  • the vertical axis represents temperature and the horizontal axis represents time.
  • Unit 0 (circle) indicates after improvement, that is, the case where the thermocouple 31b is arranged between the side wall on the upstream side of the drying chamber and the nozzle 31a (region 1A) to control the drying temperature, and Unit 1 (diamond).
  • Mark indicates before improvement, that is, when the drying temperature is controlled by arranging the nozzles so as to be in contact with the nozzle 31a.
  • the temperature drops sharply due to the influence of the accompanying flow, and the temperature is controlled based on this drop, so that the temperature rises excessively.
  • the nozzle 31a is arranged in the region 1A, the temperature drop due to the influence of the accompanying flow is slight, and the drying treatment is performed in the vicinity of the set temperature of 65 ° C.
  • Example 3 By such temperature control, as shown in Example 3, good drying can be performed without wrinkles even at a line speed of 100 m / min.
  • the film thickness of the base material is 9 ⁇ m or less, more preferably less than 9 ⁇ m, still more preferably 7 ⁇ m or less. Even if there was, it was found that the coating film could be formed well.
  • the separator in order to improve the battery characteristics (particularly, the battery capacity), it is desired to improve the strength and durability of the separator while reducing the thickness of the separator. Therefore, it has been found that it is effective to use the coating film manufacturing method and manufacturing apparatus of the present embodiment as the manufacturing method and manufacturing apparatus for such a thin film and high-strength separator.
  • the winding tension can be 12N or less, more preferably less than 12N, and even more preferably 4N or less. As a result, it was found that a horizontal coating device can be adopted and a separator having good characteristics can be efficiently manufactured.
  • a good drying treatment can be performed even when the drying temperature is relatively low, for example, less than 75 ° C., more preferably 65 ° C. or lower, and further preferably 50 ° C. or lower.
  • good drying treatment can be performed due to the synergistic effect of improving the temperature control and adopting the suction roll.
  • FIG. 12 is a cross-sectional perspective view showing the configuration of a lithium ion battery.
  • the lithium ion battery shown in FIG. 12 has a cylindrical can 106, and the can 106 accommodates a group of electrodes in which a strip-shaped positive electrode material 101 and a negative electrode material 103 are wound via a separator 5. ing.
  • the positive electrode current collecting tab on the upper end surface of the electrode group is joined to the positive electrode cap.
  • the negative electrode current collecting tab on the lower end surface of the electrode group is joined to the bottom of the can 106.
  • An insulating coating (not shown) is provided on the outer peripheral surface of the can 106. Further, an electrolytic solution (not shown) is injected into the can 106.
  • a cylindrical battery has been described here as an example, the configuration of the battery is not limited, and for example, a square type battery or a laminated type battery can be used.
  • the lithium ion battery has a positive electrode material 101, a negative electrode material 103, a separator 5, and an electrolytic solution, and the separator 5 is arranged between the positive electrode material 101 and the negative electrode material 103.
  • the separator 5 has a large number of micropores.
  • the lithium ions inserted in the positive electrode active material are desorbed and released into the electrolytic solution. Will be done. Lithium ions released into the electrolytic solution move in the electrolytic solution, pass through the micropores of the separator, and reach the negative electrode. The lithium ions that reach the negative electrode are inserted into the negative electrode active material that constitutes the negative electrode.
  • lithium ions move back and forth between the positive electrode material and the negative electrode material through the micropores (not shown) provided in the separator 5, so that charging and discharging can be repeated.
  • the separator the characteristics of the lithium ion battery can be improved by using the separator formed by using the coating film manufacturing method and the coating film manufacturing apparatus described in the first embodiment. In addition, a lithium-in battery can be efficiently formed.
  • the base material (porous film) described in the first embodiment can be produced, for example, by the following steps.
  • FIG. 13 is a schematic view showing the configuration of a porous film manufacturing apparatus (system).
  • a plasticizer liquid paraffin
  • a polyolefin for example, polyethylene
  • S1 twin-screw kneading extruder
  • the kneading conditions are, for example, 180 ° C. for 12 minutes, and the rotation speed of the shaft is 100 rpm.
  • the kneaded product (molten resin) is conveyed from the discharge portion to the T-die S2, and the molten resin is cooled in the raw fabric cooling device S3 while being extruded from the slit of the T-die S2 to form a thin-film resin molded body. ..
  • the thin-film resin molded body is stretched in the vertical direction by the first stretching device S4, and further stretched in the horizontal direction by the second stretching device S5.
  • the stretched thin film is immersed in an organic solvent (for example, methylene chloride) in the extraction tank S6.
  • an organic solvent for example, methylene chloride
  • the polyolefin for example, polyethylene
  • the plasticizer paraffin
  • the plasticizer (paraffin) becomes nano-sized islands.
  • This nano-sized plasticizer (paraffin) is removed (defatted) with an organic solvent (for example, methylene chloride) in the extraction tank S6. Thereby, a porous film can be formed.
  • the third stretching device S7 further stretches the thin film in the lateral direction, dries the thin film, heat-fixes it, and relaxes the internal stress during stretching.
  • the winding device S8 winds up the porous film conveyed from the third stretching device S7.
  • porous film (base material of the first embodiment) can be produced.
  • the scroll-shaped porous film wound by the winding device S8 can be set in the unwinding device UW of the first embodiment (FIG. 1), and the coating layer 3b can be formed on the surface thereof.
  • the device of the first embodiment may be incorporated between the third stretching device S7 and the winding device S8. That is, the coating layer 3b may be formed by performing corona treatment on the surface of the porous film conveyed from the third stretching apparatus S7, applying the coating liquid, and then drying.
  • the take-up device S8 corresponds to the take-up device WD of FIG.
  • the separator may be formed by a continuous device (system) from the formation of the porous film to the formation of the coating layer.
  • FIG. 14 is a simplified schematic diagram showing the configuration of the coating film manufacturing apparatus of the first embodiment
  • FIG. 15 is a simplified schematic diagram showing the configuration of the coating film manufacturing apparatus of this application example.
  • the surface (first surface) of the base material 1 is coated (see FIG. 14), but as shown in FIG. 15, both sides of the base material 1 are coated. May be good.
  • the suction roll SR is preferably provided upstream from the coating treatment unit (20). Further, in the surface treatment section (10), it is preferable to perform corona treatment on both surfaces of the base material 1.
  • the suction roll SR may be provided upstream (between 20 and UW) from the coating processing unit (20).
  • FIG. 16 is a simplified schematic view showing a configuration of a coating film manufacturing apparatus of this application example.
  • double-sided coating was performed in one coating processing unit (20), and both sides were simultaneously dried in one drying processing unit (30). It may be dried. Specifically, first, a coating film is provided on the front surface (first surface) of the base material 1, dried by the drying treatment unit (30-1), and then the coating film is applied to the back surface (second surface) of the base material 1. It is provided and dried in the drying treatment section (30-2). The surface treatment may also be performed on one side at a time. In this case, suction rolls are arranged between the two drying treatment sections (30-1, 30-2), before the drying treatment section (30-1), and after the drying treatment section (30-2). Is preferable.
  • the drying processing unit (30-1) and the drying processing unit (30-2) may be connected.
  • FIG. 17 is a perspective view showing a state of coating using a slot die.
  • the coating liquid 20a is applied from the manifold inside the die D to the base material 1 through the slit (discharge portion) at the tip of the die to form the coating film 3a.
  • a first die D1 for the first coating liquid and a second die D2 for the second coating liquid are provided, and the first coating liquid 20a1 and the second die D2 are provided.
  • the second coating liquid 20a2 is sequentially applied onto the base material 1, and a laminated film of the first coating film 3a1 and the second coating film 3a2 is formed.
  • the first die D1 for the first coating liquid is arranged on the surface side of the base material 1, and the second die D2 for the second coating liquid is the base material 1.
  • the first coating film 3a1 is formed on the front surface (first surface) of the base material 1
  • the second coating film 3a2 is formed on the back surface (second surface) of the base material 1. That is, both sides of the base material 1 can be coated.
  • two clavier coating devices according to the first embodiment may be prepared to form a laminated film of the first coating film 3a1 and the second coating film 3a2. Further, the clavier coating apparatus of the first embodiment may be arranged on the front surface side and the back surface side of the base material 1 to perform double-sided coating.
  • a suction roll is used as the tension cutting roll (tension control roll), but another roll capable of tension cutting by one-sided contact may be used.
  • an electrostatic suction roll or an air blowing roll can be used.
  • the base material 1 is adsorbed by electrostatic adsorption, and in the air blowing roll, the base material 1 and the roll are brought into close contact with each other by blowing gas onto the roll.
  • a nozzle that emits heated air is used for the drying process, but an infrared (IR) heater may be used to perform the drying process by heating the heater.
  • IR infrared
  • each layer may be subjected to a drying treatment, or may be collectively subjected to a drying treatment.
  • a scroll-shaped (rolled strip-shaped) base material 1 is used, taken out from the unwinding portion, and transported to the processing portion, but the shape of the base material 1 can be changed as appropriate.
  • the configuration may be such that the material is transported from the unloading unit (transporting unit) to the processing unit. Further, even after the treatment of the base material 1, it is not always necessary to wind the base material 1, and the base material 1 may be transported to, for example, a battery assembling device.
  • the nozzle is provided in the center of the drying chamber, but the position of the nozzle is not limited and may be arranged at another position. Further, a plurality of nozzles may be used. In this case, a thermocouple (temperature sensor) is arranged between the nozzle located on the most upstream side and the side wall of the drying chamber (cover) on the upstream side (region 1A). do it.
  • a thermocouple temperature sensor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Cell Separators (AREA)
  • Coating Apparatus (AREA)

Abstract

特性の良好な塗工フィルムを製造する。塗工フィルムを製造方法は、(a)巻出し部UWから巻き出された基材1の第1面に塗工液20aを塗布する工程と、(b)基材1上の塗工液(塗布膜3a)を乾燥することにより、基材1の第1面に塗工層3bを形成する工程と、(c)塗工層3bが形成された基材1を巻取り部WDにおいて巻き取る工程と、を有する。そして、基材1は、巻出し部UWから巻取り部WDまで連続して配置され、巻出し部UWから取り出された後、(b)工程の前に、第1の吸引ロールSRによりテンションカットされ、塗工層3bが形成された基材1は、(c)工程の前に、第2の吸引ロールSRによりテンションカットされる。

Description

塗工フィルムの製造方法および塗工フィルムの製造装置
 本発明は、塗工フィルムの製造方法および塗工フィルムの製造装置に関し、特に、電池のセパレータなどに用いられる塗工フィルムの製造方法や製造装置に関するものである。
 近年、自動車用やインフラ用としてリチウムイオン電池などの電池の利用が盛んである。リチウムイオン電池などの電池は、正極材と負極材との間がセパレータと呼ばれる多孔質フィルムで分離されている。セパレータは、例えば、リチウムイオンが通る程度の微細孔を複数有し、この孔を通ってリチウムイオンが正極材と負極材の間を移動することで、充電と放電を繰り返すことができる。このように、セパレータは、正極材と負極材を分離させて、短絡を防ぐ役割を有する。
 また、電池の内部が何らかの原因で高温となった場合には、セパレータの微細孔が閉じることで、リチウムイオンの移動を停止し、電池機能を停止させる(シャットダウン機能)。
 このようにセパレータは、電池の安全装置の役割を担っており、セパレータの機械的強度や耐熱性を向上させることが重要となる。
 例えば、特許文献1(特開2016-183209号公報)には、ポリオレフィン樹脂多孔フィルムの少なくとも片面に、無機粒子及びバインダ樹脂組成物を含む被覆層を形成する技術が開示されている。
 また、特許文献2(特開2017-068900号公報)には、ポリオレフィン系樹脂多孔フィルム上にフィラー及び樹脂バインダを含んでなる塗工液を塗布した後、乾燥して被覆層を形成する技術が開示されている。
特開2016-183209号公報 特開2017-068900号公報
 本発明者は、電池のセパレータの基材(多孔質フィルム)の機械的強度や耐熱性の向上を図るべく、基材の表面に塗工層を形成する塗工技術についての研究開発を行っている。
 その研究開発過程において、塗工液の塗布・乾燥工程において基材にシワや乾燥不良が生じ、この解消について鋭意検討したところ、良好な塗工技術を見出すに至った。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される塗工フィルムの製造方法は、(a)搬出部から取り出された基材の第1面に塗工液を塗布する工程と、(b)前記基材上の塗工液を乾燥することにより、前記基材の第1面に塗工層を形成する工程と、(c)前記塗工層が形成された前記基材を搬入部において取り込む工程と、を有する。そして、前記基材は、前記搬出部から前記搬入部まで連続して配置され、前記搬出部から取り出された後、前記(b)工程の前に、第1吸引ロールによりテンションカットされ、前記塗工層が形成された前記基材は、前記(c)工程の前に、第2吸引ロールによりテンションカットされる。
 本願において開示される塗工フィルムの製造装置は、基材を取り出す搬出部と、前記基材の第1面に塗工液を塗布する塗工部と、前記基材上の塗工液を乾燥することにより、前記基材の第1面に塗工層を形成する乾燥部と、前記塗工層が形成された前記基材を取り込む搬入部と、を有する。そして、前記搬出部と前記乾燥部との間に、第1吸引ロールが配置され、前記乾燥部と前記搬入部との間に、第2吸引ロールが配置される。
 本願において開示される塗工フィルムの製造方法によれば、特性の良好な塗工フィルムを製造することができる。
 本願において開示される塗工フィルムの製造装置によれば、特性の良好な塗工フィルムを製造することができる。
実施の形態1の塗工フィルムの製造装置の構成を模式的に示す図である。 実施の形態1の塗工フィルムの製造工程を示す断面図である。 吸引ロールの構成を示す図である。 ニップロールの構成を示す斜視図である。 ニップロールを用いた場合の基材の様子を模式的に示す図である。 横型の塗工装置を示す断面図である。 縦型の塗工装置を示す断面図である。 実施の形態1の乾燥室の様子を示す断面図である。 比較例の乾燥室の様子を示す断面図である。 比較例2の試料を示す図である。 乾燥室の温度制御の改善前と改善後の乾燥室内の温度変化を示す図である。 リチウムイオン電池の構成を示す断面斜視図である。 多孔質フィルムの製造装置の構成を示す模式図である。 実施の形態1の塗工フィルムの製造装置の構成を示す簡略模式図である。 応用例1の塗工フィルムの製造装置の構成を示す簡略模式図である。 応用例2の塗工フィルムの製造装置の構成を示す簡略模式図である。 スロットダイを用いた塗工の様子を示す斜視図である。
 以下、実施の形態を実施例や図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。
 (実施の形態1)
 図1は、本実施の形態の塗工フィルムの製造装置の構成を模式的に示す図である。また、図2は、本実施の形態の塗工フィルムの製造工程を示す断面図である。
 まず、図2を参照しながら、塗工フィルムの形成工程について説明する。
 図2(A)に示すように、多孔質フィルムよりなる基材1を準備する。基材1である多孔質フィルムは、例えば、ポリオレフィン系の樹脂よりなる。基材1の厚さは、例えば、5μm~50μm程度、幅は、例えば、200mm~3000mm程度である。微細孔1aの細孔径分布は、例えば、10nm~10μm程度であり、平均細孔径は、例えば、100nm~900nm程度である。また、基材1のガーレ値は、例えば100~300sec/100cc程度である。
 次いで、図2(B)に示すように、基材1の表面(第1面)に表面処理を施す。例えば、コロナ放電照射装置10を用いて基材1の表面にコロナ放電を照射する。これにより、基材1の表面が改質される。具体的には、基材1の表面において、塗工液の濡れ性が高まる。なお、このような表面処理工程は必須ではなく、基材1の種類によっては省略することも可能である。
 次いで、図2(C)に示すように、基材1の表面に塗工液を塗布し、塗布膜3aを形成する。塗工液は、フィラーと分散媒とを有する。フィラーとしては、アルミナ、シリカ、水酸化アルミニウム、ベーマイトなどの無機物やセルロースなどを用いることができる。分散媒としては、水系の溶媒や有機系の溶媒を用いることができる。また、バインダを添加してもよい。バインダとしては、側鎖状または環状ポリマー樹脂やアクリル系樹脂や熱可塑性フッ素重合体、などを用いることができる。塗布装置としては、例えば、グラビア塗工装置を用いることができる。さらに、フィラーとバインダに加えて、SBR(スチレン・ブタジエンゴム)やイオン電導性の高いポリマーを添加した状態で用いてもよい。
 次いで、図2(D)に示すように、基材1上の塗布膜3aを乾燥することにより、塗工層3bを形成する。以上の工程により、基材(多孔質フィルム)1と塗工層3bよりなるセパレータ(塗工フィルム)5を形成することができる。基材(多孔質フィルム)1には、微細孔1aが多数設けられ、その表面に塗工層3bが設けられている。この塗工層3bは、例えば、セルロースとアルミナとを有する。塗工層3bは、例えば、拡大図に示すように、基材1の微細孔1aをすべて覆うようには形成されておらず、また、塗工層3b自体が通気性を有する。例えば、塗工層3bが形成された基材1(セパレータ)のガーレ値(透気度、[sec/100cc])は、10以上、3000以下であり、通気性は確保されている。
 上記塗工層の成膜を、図1に示す装置(システム)を用いて行う場合について、以下に説明する。
 図1に示すように、塗工フィルムの製造装置は、基材1を巻き出す巻出し部UWと、基材1を巻き取る巻取り部WDとを有する。基材1は、巻出し部UWから巻取り部WDまで連続して配置されており、巻出し部UWと、巻取り部WDとの間において、基材1の表面(第1面)に塗工層3bが形成され、セパレータ(塗工フィルム)5が完成する。この塗工フィルムの製造装置によれば、巻物状(巻かれた帯状)の基材1を連続的に処理でき、効率的にセパレータを形成することができる。なお、本明細書において、巻出し部UW側を上流、巻取り部WDを下流と言う場合がある。
 具体的に、巻出し部UWと巻取り部WDとの間には、表面処理部(10)、塗工処理部(20)、乾燥処理部(30)が配置されている。基材1は、複数のロール(ガイドロール)Rによってガイドされつつ、各処理部において、処理され、その表面に塗工層3bが形成される。以下に詳細に説明する。
 巻出し部UWから巻き出された基材1は、表面処理部(10)まで搬送される。この表面処理部(10)においては、コロナ放電照射装置10が配置されており、基材1の表面にコロナ放電が照射される(コロナ処理)。これにより、基材1の表面が改質され、後述する塗工処理において、塗工液の濡れ性が高まる。
 表面処理(ここでは、コロナ処理)された基材1は、ロールRによってガイドされ、塗工処理部20まで搬送される。ここで、表面処理された第1面(表面処理部(10)においては上側)が、ロールRによって反転され、塗工処理部(20)においては下側となる。
 塗工処理部(20)においては、グラビア塗工装置20が配置されており、基材1の第1面に塗工液20aが塗布(塗工)される。塗布膜を3aで示す。
 塗布膜3aが形成された基材1は、ロールRによってガイドされ、乾燥処理部(30)まで搬送される。ここで、塗布膜3aが形成された第1面(塗工処理部(20)においては下側)が、ロールRによって反転され、乾燥処理部(30)においては上側となる。
 乾燥処理部(30)においては、乾燥炉(コンベア式乾燥炉)30が配置されており、ロールRにより搬送された基材1の塗布膜3aの液体成分を気化させ、塗工層3bとする。例えば、乾燥炉30は、3つの乾燥室(カバー)1D、2D、3Dを有し、各乾燥室では、図示しないノズルから加熱空気が導入されている。加熱空気の温度は、図示しない加熱部(ヒータなど)により温度制御されている。
 このように、帯状の基材1は、複数のロール(ガイドロール)Rによってガイドされつつ、各処理部において、処理される。
 ここで、本実施の形態においては、図1に示すように、乾燥処理部(30)の前後において、吸引ロールSRが設けられている。この吸引ロールSRにより、基材1のテンションカットが行われる。テンションカットにより、吸引ロールSRを起点とした上流と下流において異なる張力に調整することができる。例えば、装置内において、複数の処理部を有する装置において、各処理により基材(フィルム)1の状態が変化する。例えば、塗工処理部(20)においては、基材1の厚みが変化する。また、乾燥処理部(30)においては、基材1が伸縮する。このような、基材1の状態の変化に関わらず、装置内において一律に同じ張力で制御した場合、基材1のバタつき、たるみや破れが懸念される。
 そこで、例えば、乾燥処理部(30)の前後でテンションカットを行う。これにより、巻出し部UW~乾燥処理部(30)の入口、乾燥処理部(30)の入口~乾燥処理部(30)の出口、乾燥処理部(30)の出口~巻取り部WDの3つの領域で張力を調整することができる。
 このようなテンションカットは、後述するニップロールを用いて行うことも可能であるが、物理的に基材1を挟み込むロールであるニップロールを用いた場合、駆動式であったとしても、基材1の搬送抵抗となるため、巻取張力は大きくなる。これに対し、吸引ロールSRを用いた場合、基材1の搬送抵抗を低減できる。ここで、例えば、装置内の吸引ロールSRを取り除いた場合、巻取張力は大きくなる。
 前述したとおり、帯状の基材1は、複数のロール(ガイドロール)Rによってガイドされつつ、各処理部において、処理される。この際、各処理による基材(フィルム)1の状態の変化が生じると、基材1のたるみや破れが生じ得る。このため、基材1のテンションカットを行うことにより、基材1のたるみや破れを低減し、トラブルなく、基材1の処理を行うことができる。また、基材1のたるみや破れを防止するために基材1の処理速度(ライン速度、搬送速度)を抑える必要がなく、基材1の高速処理を行うことができる。
 図3は、吸引ロールSRの構成を示す図である。図3(A)は、斜視図であり、図3(B)は、断面図である。
 図3(A)に示すように、吸引ロールSRは、軸部と、円筒部とを有する。円筒部の側面には、複数の孔Pが設けられている。そして、円筒部は、吸引部(減圧ポンプ等)と接続され、吸引ロールSRの稼動時において、円筒部の内部のうち一部の領域が吸引状態となる。この一部の領域とは、基材1と接している断面が扇状の領域BAである。このため、図3(B)に示すように、基材1は、円筒部の側面に吸引され、円筒部の回転により搬送される。吸引圧力(円筒部の内部のうち一部の領域BAの圧力)は、3MPa以下であることが好ましい。3MPaを超えると基材1が吸引ロールSRの孔Pに引き込まれる恐れがある。特に、基材1として薄い基材(10μm以下)を用いる場合には、吸引圧力を、2.5MPa以下とすることが好ましく、1.5MP以下とすることがより好ましい。なお、吸引ロールSRに設けられる孔Pの大きさ、形状、個数については適宜変更可能である。
 このような、テンションカット用のロール(張力制御用のロール)としては、ニップロールが挙げられる。図4は、ニップロールの構成を示す斜視図である。図4に示すように、ニップロールは、ロールR1とロールR2とを有し、例えば、ロールR1にはロールR2側に圧力が加わっている。別の言い方をすればロールR1はロールR2に押し付けられている。ロールR1とロールR2との間に基材1を通すことで、テンションカットを行うことができる。
 本発明者の検討によれば、ニップロール(R1、R2)をテンションカット用のロールとして用いた場合、基材1にシワが生じ易いことが判明した。図5は、ニップロールを用いた場合の基材の様子を模式的に示す図である。図5(A)に示すように、ロールR1とロールR2との間を通過する瞬間においては、ロールR1とロールR2との間の圧力(荷重、ニップ圧)により、基材1は薄膜化し、平坦化される。しかしながら、ロールR1とロールR2との間を通過した後においては、圧力から解放され、元の形状(厚さ)に戻るとともにシワが生じるのではないかと考えられる。
 本発明者によれば、後述する比較例を初め、ニップロール(R1、R2)を用い、種々の条件(圧力、巻取張力、処理速度など)を変更し、シワが生じない条件について鋭意検討したが、シワの発生を解消することは困難であった。特に、基材1の厚さが小さい場合には、断面積が小さいため、加わる圧力が相対的に大きくなり、シワの発生が顕著であった。
 これに対し、本実施の形態においては、ニップロール(R1、R2)に代えて吸引ロールを用いることで、シワの発生を抑制することができる。特に、基材1の薄膜化が生じた場合においても、有効にシワの発生を抑制することができる。
 (横型の塗工装置の採用)
 前述したように本実施の形態においては、テンションカットが有効に働くことで、ニップロール(R1、R2)を使う場合より、巻取張力を抑えることができる。
 生産性を高めるために高速で塗工した場合、前述したように、ニップロール(R1、R2)を設置した構成装置では、ロール間での基材1の張力が大きくなる。また、基材(フィルム)1が厚み方向に圧縮されるため、弾性変形した基材1がニップロール(R1、R2)を通過後、元の幅に復元されることにより、基材1にシワが発生しやすくなる。
 一方で、膜厚の小さい基材1のシワを改善するために、ロールR間の張力を低くすると、ロールRと基材1との間に空気が入るため、基材1が浮上して蛇行が生じる。基材1の浮上の原因となる空気の量は基材1の搬送速度と比例して上昇するため、特に、高速塗工を行う場合には、基材1が浮上しやすくなる。
 しかしながら、吸引ロールSRを用いた場合は、テンションカットが有効に機能するため、ロールR間での張力の過不足が原因となる蛇行や、ニップロールを用いた場合のような物理的な接触が原因となるシワの発生が抑制される。このため、吸引ロールSRを用いた場合は、ニップロール(R1、R2)を用いた場合と比較して、高速で基材1を搬送させることができる。
 そして、基材1の高速搬送が可能なことから、グラビア塗工装置において、縦型の塗工装置を用いる必要がなく、横型の塗工装置で対応することができる。図6は、横型の塗工装置を示す断面図である。また、図7は、縦型の塗工装置を示す断面図である。
 図6に示す、横型の塗工装置(20)は、塗工液20aを貯留するためのチャンバー(槽)20bと、チャンバー(槽)20bにその一部が浸かる塗工用のロールCRと、塗工液20aの飛び散りを防止するためのブレード20cとを有する。ブレード20cは、塗工用のロールCRの回転方向側(図6においては左側)に、塗工用のロールCRの表面に付着した塗工液20aを押さえるように配置されている。
 これに対し、図7に示す縦型の塗工装置(20)は、チャンバー(槽)20bが垂直方向(重力方向に対し平行な方向)に配置されている。この場合、塗工液20aをチャンバー(槽)20bの上下に配置された2つのブレード20cで保持する必要がある。そして、チャンバー(槽)20bの容量を大きくしすぎると、塗工液20aを保持するブレードが撓み、塗工液20aを保持しきれなくなる。このように、縦型の塗工装置(20)においては、チャンバー(槽)20bの容量を大きくすることができない、また、ブレード20c自体の摩耗、ブレード20cと塗工液20aを介して接する塗工用のロールCRの摩耗が大きくなる。前述したように、塗工液には、アルミナなどの硬いフィラーが含まれる。このため、塗工液を介して接触するブレード20cや塗工用のロールCRが削られ摩耗する。これに対し、本実施の形態においては、横型の塗工装置(20)を組み込むことができるため、ブレード20cや塗工用のロールCRの摩耗を低減できる。また、チャンバー(槽)20bの容量を大きくすることができ、高速処理を行っても塗工液20aの液切れを起こし難い。
 (乾燥炉の温度制御の改善)
 前述したように本実施の形態においては、テンションカットが有効に働くことで、ニップロール(R1、R2)を使う場合より、巻取張力を抑えることができる。このため、高速処理が可能となる。即ち、基材1を高速搬送しながら各処理を行うことができる。
 ここで、乾燥処理部(30)において、各カバー(各乾燥室)の内部温度は均一であることが好ましい。しかしながら、基材1の高速搬送に伴い、カバーの下部(カバーの側壁と基材1との間の隙間)から随伴流が流れ込み、カバー内の温度を低下させ得る。このため、随伴流を考慮した温度制御を行うことが好ましい。
 図8は、本実施の形態の乾燥室の様子を示す断面図である。図9は、比較例の乾燥室の様子を示す断面図である。ここでは、図1に示す乾燥処理部(30)に設けられた3つの乾燥室のうち、最も上流に配置されている乾燥室1Dについて説明する。
 図8に示すように、乾燥室1Dの内部にはノズル31aが設けられ。ノズル31aの先端から加熱乾燥空気(加熱流体)DAが放出されている。別の言い方をすれば、基材1にノズル31aの先端から加熱乾燥空気DAが吹付けられている。
 ノズル31aは、例えば、乾燥室の中央に設けられている。ノズル31aの平面形状は、スポット状(円状)でもライン状(矩形状)でもよい。ここでは、乾燥室1Dの内部温度を熱電対31bで測定している。熱電対は、2種類以上の金属を用い、金属間の接合点における熱起電力に基づいて温度(温度差)を測定する温度センサである。この熱電対(温度センサ)により乾燥室1D内の温度を測定し、乾燥室1D内の温度が設定温度とズレている場合には、図示しないヒータにより加熱乾燥空気DAの温度を調整し、乾燥室1D内の温度を設定温度に維持する。
 本実施の形態においては、熱電対31bが、上流側の乾燥室(カバー)の側壁とノズル31aとの間(領域1A)に設けられている。このように、熱電対31bを配置することで、随伴流AFによる乾燥室1D内の温度低下を適切に補正することができ、基材1の表面に形成された塗布膜3aを精度良く乾燥させることができる。ここで、上流側の乾燥室(カバー)の側壁とは、基材1が最初に横切る側壁であり、別の言い方をすれば、乾燥室の側壁のうち、搬送方向と交差する方向に延在する2つの側壁のうち、上流側に位置する側壁である。
 これに対し、例えば、図9に示す比較例においては、ノズル31aと接触するように熱電対31bが配置されているため、随伴流AFによる乾燥室1D内の温度低下を適切に補正することができず、基材1の表面に形成された塗布膜3aにおいて乾燥ムラが生じやすくなる。
 以上のとおり、本実施の形態によれば、吸引ロールの採用、横型の塗工装置の採用および乾燥室内の温度制御の改善により、特性の良好な塗工フィルム(塗工層)を効率よく製造することができる。
 (実施例)
 以下、本実施の形態をさらに具体的に説明するために実施例を示すが、本発明は以下の実施例に限定されるものではない。
 本実施の形態の塗工フィルムの製造装置を用い、基材(ポリエチレン製の多孔質フィルム)の表面に塗工層を形成し、セパレータ(塗工フィルム)を形成した。即ち、乾燥処理部の前後において吸引ロールを用いて基材のテンションカットを行いつつ塗工フィルム(セパレータ)を形成した。なお、横型の塗工装置を用い、熱電対を上記領域1Aに配置し乾燥室内の温度制御を行った。
 (比較例)
 比較例の塗工フィルムの製造装置を用い、基材の表面に塗工層を形成し、セパレータを形成した。即ち、乾燥処理部の前後においてニップロールを用いて基材のテンションカットを行いつつ塗工フィルム(セパレータ)を形成した。なお、縦型の塗工装置を用い、熱電対をノズルに配置し乾燥室内の温度制御を行った。
 得られた試料(セパレータ)について、シワを目視にて判定し、乾燥状態を触手にて判定した。
 以下の表1に、各実施例および各比較例の処理条件および判定結果を示す。
Figure JPOXMLDOC01-appb-T000001
 (比較例1)
 膜厚9μmの基材を用い、7μmの膜厚の塗工層を形成した。ライン速度を50m/minとした場合、巻取張力は12Nであった。また、乾燥温度は、75℃であった。この場合、シワは無く(OK)、乾燥状態も良好(OK)であった。
 (比較例2)
 膜厚7μmの基材を用い、7μmの膜厚の塗工層を形成した。ライン速度を50m/minとした場合、巻取張力は12Nであった。また、乾燥温度は、75℃であった。この場合、シワが生じ、乾燥状態も悪かった。図10は、比較例2の試料を示す図である。図10(A)に示すように、試料(セパレータ)にシワが生じている。図10(B)においては、シワの部分を黒線で明示してある。
 (比較例3)
 膜厚9μmの基材を用い、7μmの膜厚の塗工層を形成した。ライン速度を50m/minとした場合、巻取張力は12Nであった。ここでは、乾燥温度を80℃とし、乾燥状態の改善を図ったが、却って、シワが生じ、乾燥状態が悪化した。
 (実施例1)
 膜厚7μmの基材を用い、4μmの膜厚の塗工層を形成した。ライン速度を50m/minとした場合、巻取張力は4Nであった。また、乾燥温度は、65℃であった。この場合、シワは無く(OK)、乾燥状態も良好(OK)であった。
 (実施例2)
 膜厚5μmの基材を用い、4μmの膜厚の塗工層を形成した。ライン速度を30m/minとした場合、巻取張力は4Nであった。また、乾燥温度は、50℃であった。この場合、シワは無く(OK)、乾燥状態も良好(OK)であった。
 (実施例3)
 膜厚7μmの基材を用い、4μmの膜厚の塗工層を形成した。ライン速度を100m/minとした場合、巻取張力は4Nであった。また、乾燥温度は、65℃であった。この場合、シワは無く(OK)、乾燥状態も良好(OK)であった。
 (ガーレ値悪化率)
 比較例1および実施例3の試料において、ガーレ値悪化率を求めた。作成した試料を切り出し、ガーレ式自動計測機を用いて測定を行った。ここでは100ccの空気が試料(シート)を通過するまでの時間をガーレ値として測定した。また、塗工層の形成前の基材についても同様にガーレ値を測定し、基準ガーレ値とし、ガーレ値悪化率[((ガーレ値-基準ガーレ値)/基準ガーレ値)×100%]を算出した。
 比較例1の試料のガーレ値悪化率は9.1%であった。一方、実施例3の試料のガーレ値悪化率は8.5%であった。実施例3の試料のガーレ値悪化率は、目標とする10%以下を達成し、さらに、比較例1よりも良好であった。
 (まとめ1)
 比較例1から、基材膜厚が9μmと厚い場合には、比較例の装置においても、シワが無く、乾燥状態の良好な塗工フィルム(セパレータ)が得られたが、基材膜厚が7μmと薄い場合には、比較例の装置では、シワが生じ、乾燥状態も悪かった。また、比較例3から、基材膜厚が9μmと厚い場合であっても、図9に示す乾燥方式の場合には、却って、シワが生じ、乾燥状態が悪化した。
 これに対し、実施例1においては、基材膜厚が7μmと薄いにもかかわらず、シワが無く、乾燥状態の良好な塗工フィルム(セパレータ)が得られた。
 実施例2においては、基材膜厚が5μmとさらに薄くした場合においても、シワが無く、乾燥状態の良好な塗工フィルム(セパレータ)が得られた。
 実施例3においては、ライン速度を100m/minとしても、シワが無く、乾燥状態の良好な塗工フィルム(セパレータ)が得られた。
 さらに、実施例1~3においては、巻取張力が4Nと小さく、前述した、横置き塗工機を採用しても問題ないことが確認できた。また、巻取張力が4Nと小さいことで、ライン速度を100m/min以上にすることができることが確認できた。
 また、乾燥炉の温度調整が良好に機能しており、実施例1~3においては、乾燥温度(設定温度)が比較例1~3より低いにもかかわらず、乾燥状態が良好であった。
 図11は、乾燥室の温度制御の改善前と改善後の乾燥室内の温度変化を示す図である。縦軸は、温度を示し、横軸は時間を示す。0号機(丸印)は改善後、即ち、熱電対31bを乾燥室の上流側の側壁とノズル31aとの間(領域1A)に配置して乾燥温度を制御した場合を示し、1号機(菱形印)は改善前、即ち、ノズル31aと接触するように配置して乾燥温度を制御した場合を示す。
 図示するように、改善前のグラフにおいては、随伴流の影響による温度低下が激しく、さらに、この低下に基づき温度制御が行われるため、過昇温が生じている。これに対し、ノズル31aを上記領域1Aに配置した場合には、随伴流の影響による温度低下は僅かであり、設定温度である65℃近傍での乾燥処理が行われている。
 このような温度制御により、実施例3に示すように100m/minのライン速度においてもシワの無い、良好な乾燥が行えている。
 (まとめ2)
 上記実施例および比較例から、本実施の形態の塗工フィルムの製造方法や製造装置を用いることで、基材の膜厚が9μm以下、より好ましくは9μm未満、さらに好ましくは7μm以下の薄膜であっても、良好に塗工フィルムが形成できることが判明した。特に、セパレータにおいては、電池特性(特に、電池容量)を向上させるため、セパレータの薄膜化を図りつつ、その強度や耐久性の向上が望まれている。よって、このような薄膜であり、かつ、高強度のセパレータの製造方法や製造装置として、本実施の形態の塗工フィルムの製造方法や製造装置を用いることが有効であることが判明した。
 上記実施例および比較例から、巻取張力を12N以下、より好ましくは12N未満、さらに好ましくは4N以下とすることができることが判明した。これにより、横置き塗工装置を採用することができ、特性の良好なセパレータを効率よく製造できることが判明した。
 上記実施例および比較例から、30m/min以上、より好ましくは50m/min以上、さらに好ましくは100m/min以上の基材の処理速度(ライン速度)を達成することができ、特性の良好なセパレータを効率よく製造することができることが判明した。
 上記実施例および比較例から、乾燥温度が比較的低温、例えば、75℃未満、より好ましくは65℃以下、さらに好ましくは50℃以下であっても、良好な乾燥処理が行えることが判明した。特に、温度制御の改善と吸引ロールの採用による相乗効果により、良好な乾燥処理が行えることが判明した。さらに、30m/min以上、より好ましくは50m/min以上、さらに好ましくは100m/min以上の処理速度で処理を行った場合でも、随伴流の影響を低減でき、良好な乾燥処理が行えることが判明した。
 (実施の形態2)
 本実施の形態においては、実施の形態1で説明したセパレータの適用例について説明する。セパレータは、例えば、リチウムイオン電池に適用することができる。
 図12は、リチウムイオン電池の構成を示す断面斜視図である。図12に示すリチウムイオン電池は、円筒形の缶106を有しており、この缶106には、帯状の正極材101および負極材103がセパレータ5を介して捲回された電極群が収容されている。電極群の上端面の正極集電タブは、正極キャップに接合されている。電極群の下端面の負極集電タブは、缶106の底部に接合されている。なお、缶106の外周面には、絶縁被覆(図示せず)が設けられている。また、缶106内には、電解液(図示せず)が注液されている。なお、ここでは、円筒形の電池を例に説明したが、電池の構成に制限はなく、例えば、角型や、ラミネート型の電池とすることができる。
 このように、リチウムイオン電池は、正極材101、負極材103、セパレータ5および電解液を有しており、正極材101と負極材103との間にセパレータ5が配置されている。セパレータ5は、微細孔を多数有する。例えば、充電時、即ち、正極(正極キャップ)と負極(缶106の底部)との間に充電器を接続すると、正極活物質内に挿入されているリチウムイオンが脱離し、電解液中に放出される。電解液中に放出されたリチウムイオンは、電解液中を移動し、セパレータの微細孔を通過して、負極に到達する。この負極に到達したリチウムイオンは、負極を構成する負極活物質内に挿入される。
 このように、セパレータ5に設けられた微細孔(図示せず)を介してリチウムイオンが正極材と負極材の間を行き来することで、充電と放電をくりかえすことができる。このセパレータとして、実施の形態1で説明した塗工フィルムの製造方法、塗工フィルムの製造装置を用いて形成されたセパレータを用いることで、リチウムイオン電池の特性を向上させることができる。また、リチウムイン電池を効率よく形成することができる。
 (実施の形態3)
 本実施の形態においては、実施の形態1で説明した基材(多孔質フィルム)の製造方法について説明する。実施の形態1で説明した基材(多孔質フィルム)は、例えば、以下の工程により製造することができる。
 図13は、多孔質フィルムの製造装置(システム)の構成を示す模式図である。例えば、図13の二軸混練押出機(S1)の原料供給部に可塑剤(流動パラフィン)とポリオレフィン(例えば、ポリエチレン)を投入し、混練部において上記可塑剤とポリオレフィンとを混練する。混練条件は、例えば、180℃、12分間であり、軸の回転数は100rpmである。
 混練物(溶融樹脂)を、吐出部からTダイS2へ搬送し、溶融樹脂をTダイS2のスリットから押し出しつつ、原反冷却装置S3において冷却することで、薄膜状の樹脂成型体を形成する。
 次いで、上記薄膜状の樹脂成型体を第1延伸装置S4により縦方向に引き延ばし、さらに、第2延伸装置S5により横方向に引き延ばす。
 次いで、引き延ばされた薄膜を抽出槽S6において有機溶剤(例えば、塩化メチレン)に浸漬する。引き延ばされた薄膜においては、ポリオレフィン(例えば、ポリエチレン)と可塑剤(パラフィン)が相分離した状態となる。具体的には、可塑剤(パラフィン)がナノサイズの島状となる。このナノサイズの可塑剤(パラフィン)を抽出槽S6の有機溶剤(例えば、塩化メチレン)により除去する(脱脂する)。これにより、多孔質フィルムを形成することができる。
 この後、さらに、第3延伸装置S7で、横方向に引き延ばしつつ、薄膜を乾燥させ、熱固定を行い、延伸時の内部応力を緩和する。次いで、巻取装置S8により、第3延伸装置S7から搬送された多孔質フィルムを巻き取る。
 このようにして、多孔質フィルム(実施の形態1の基材)を製造することができる。
 例えば、巻取装置S8により巻き取られた巻物状の多孔質フィルムを実施の形態1(図1)の巻出装置UWにセットし、その表面に塗工層3bを形成することができる。
 また、例えば、第3延伸装置S7および巻取装置S8の間に、実施の形態1(図1)の装置を組み込んでもよい。即ち、第3延伸装置S7から搬送された多孔質フィルムの表面にコロナ処理を行い、塗工液を塗工した後、乾燥することにより、塗工層3bを形成してもよい。この場合、巻取装置S8は、図1の巻取装置WDと対応する。
 このように、多孔質フィルムの形成から塗工層の形成まで、連続した装置(システム)によりセパレータを形成してもよい。
 (実施の形態4)
 本実施の形態においては、各種応用例について説明する。
 (応用例1)
 図14は、実施の形態1の塗工フィルムの製造装置の構成を示す簡略模式図であり、図15は、本応用例の塗工フィルムの製造装置の構成を示す簡略模式図である。
 実施の形態1においては、基材1の表面(第1面)に塗工処理を施したが(図14参照)、図15に示すように、基材1の両面に塗工処理を施してもよい。この場合、基材1の裏面にも塗布膜が形成されるため、吸引ロールSRは、塗工処理部(20)より上流に設けることが好ましい。また、表面処理部(10)においては、基材1の両面にコロナ処理を行うことが好ましい。
 なお、実施の形態1(図1、図14)において、吸引ロールSRを、塗工処理部(20)より上流(20とUWの間)に設けてもよい。
 (応用例2)
 図16は、本応用例の塗工フィルムの製造装置の構成を示す簡略模式図である。応用例1においては、1つの塗工処理部(20)において両面塗工を行い、1つの乾燥処理部(30)において両面を同時に乾燥したが、図16に示すように、片面ずつ塗工・乾燥してもよい。具体的には、まず、基材1の表面(第1面)に塗布膜を設け、乾燥処理部(30-1)で乾燥した後、基材1の裏面(第2面)に塗布膜を設け、乾燥処理部(30-2)で乾燥する。表面処理も、片面ずつ行ってもよい。この場合、2つの乾燥処理部(30-1、30-2)の間と、乾燥処理部(30-1)の前と、乾燥処理部(30-2)の後とに吸引ロールを配置することが好ましい。なお、乾燥処理部(30-1)と乾燥処理部(30-2)を連結してもよい。
 (応用例3)
 実施の形態1(図1、図6)においては、塗工装置としてクラビア塗工機を用いたが、他の塗工機を用いてもよい。図17は、スロットダイを用いた塗工の様子を示す斜視図である。
 例えば、図17(A)のスロットダイにおいては、塗工液20aがダイDの内部のマニホールドからダイ先端のスリット(吐出部)を介して基材1上に塗布され、塗布膜3aが形成される。
 また、図17(B)のスロットダイにおいては、第1塗工液用の第1ダイD1と第2塗工液用の第2ダイD2とが設けられており、第1塗工液20a1と第2塗工液20a2とが基材1上に順次塗布され、第1塗布膜3a1と第2塗布膜3a2との積層膜が形成される。
 また、図17(C)のスロットダイにおいては、第1塗工液用の第1ダイD1が基材1の表面側に配置され、第2塗工液用の第2ダイD2が基材1の裏面側に配置されており、基材1の表面(第1面)に第1塗布膜3a1が形成され、基材1の裏面(第2面)に第2塗布膜3a2が形成される。即ち、基材1の両面を塗工することができる。
 なお、実施の形態1のクラビア塗工装置を2台用意し、第1塗布膜3a1と第2塗布膜3a2との積層膜を形成してもよい。また、実施の形態1のクラビア塗工装置を、基材1の表面側と、裏面側とに配置し、両面塗工を行ってもよい。
 (応用例4)
 実施の形態1(図1)においては、テンションカット用のロール(張力制御用のロール)として、吸引ロールを用いたが、他の片面接触でテンションカットができるロールを用いてもよい。
 このようなロールとしては、吸引ロールの他、静電吸着ロールやエア吹付けロールを用いることができる。静電吸着ロールにおいては、静電吸着により基材1を吸着し、エア吹付けロールにおいては、ロールに気体を吹き付けることにより基材1とロールとを密着させる。
 (応用例5)
 実施の形態1(図1、図8)においては、乾燥処理に、加熱空気を放出するノズルを用いたが、赤外線(IR)ヒータを用い、ヒータ加熱により乾燥処理を行ってもよい。
 (応用例6)
 実施の形態1(図2)においては、基材1上に1種類の塗工液20aを塗布したが、さらに、他の塗工液を塗布してもよい。即ち、塗工層を多層構造としてもよい(図7(b)等参照)。多層構造の塗工層を形成する場合、各層ごとに乾燥処理を施してもよく、また、まとめて乾燥処理を施してもよい。
 (応用例7)
 実施の形態1(図1)においては、巻物状(巻かれた帯状)の基材1を用い、巻出し部から取り出し、処理部へ搬送したが、基材1の形状は適宜変更可能であり、搬出部(搬送部)から処理部へ搬送される構成であればよい。また、基材1の処理後においても、基材1を必ず巻取る必要はなく、例えば、電池の組み立て装置に搬送されてもよい。
 (応用例8)
 実施の形態1(図8)においては、温度制御の改善を最も上流側にある乾燥室1Dを例に説明したが、他の乾燥室2D、3Dにおいても同様の改善を施してもよい。但し、最も上流側にある乾燥室1Dは、随伴流の影響が大きく、温度制御の改善を適用して効果的である。
 また、実施の形態1(図8)においては、ノズルを乾燥室の中央に設けたが、ノズルの位置に制限はなく、他の位置に配置してもよい。また、複数のノズルを用いてもよく、この場合、最も上流側に位置するノズルと、上流側の乾燥室(カバー)の側壁との間(領域1A)に、熱電対(温度センサ)を配置すればよい。
 (応用例9)
 実施の形態1(図1)におけるロール(ガイドロール)Rの位置や個数は適宜変更可能である。
 以上、本発明者によってなされた発明を実施の形態および実施例に基づき具体的に説明したが、本発明は上記実施の形態または実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
1 基材
1a 微細孔
1A 領域
1D 乾燥室
2D 乾燥室
3a 塗布膜
3a1 第1塗布膜
3a2 第2塗布膜
3b 塗工層
3D 乾燥室
5 セパレータ
10 コロナ放電照射装置(表面処理部)
20 グラビア塗工装置(塗工装置、塗工処理部)
20a 塗工液
20b チャンバー(槽)
20c ブレード
30 乾燥炉(乾燥処理部)
30-1 乾燥処理部
30-2 乾燥処理部
31a ノズル
31b 熱電対
101 正極材
103 負極材
106 缶
AF 随伴流
BA 断面が扇状の領域
CR 塗工用のロール
D ダイ
D1 第1ダイ
D2 第2ダイ
DA 加熱乾燥空気
P 孔
R ロール(ガイドロール)
R1 ニップロール(ロール)
R2 ニップロール(ロール)
S1 二軸混練押出機
S2 ダイ
S3 原反冷却装置
S4 第1延伸装置
S5 第2延伸装置
S6 抽出槽
S7 第3延伸装置
S8 巻取装置
SR 吸引ロール
UW 巻出し部(巻出装置)
WD 巻取り部(巻取装置)

Claims (20)

  1.  (a)搬出部から取り出された基材の第1面に塗工液を塗布する工程と、
     (b)前記基材上の塗工液を乾燥することにより、前記基材の第1面に塗工層を形成する工程と、
     (c)前記塗工層が形成された前記基材を搬入部において取り込む工程と、
    を有し、
     前記基材は、
     前記搬出部から前記搬入部まで連続して配置され、
     前記搬出部から取り出された後、前記(b)工程の前に、第1吸引ロールによりテンションカットされ、
     前記塗工層が形成された前記基材は、前記(c)工程の前に、第2吸引ロールによりテンションカットされる、塗工フィルムの製造方法。
  2.  請求項1記載の塗工フィルムの製造方法において、
     前記第1吸引ロールおよび前記第2吸引ロールの吸引圧力は、それぞれ3MPa以下である、塗工フィルムの製造方法。
  3.  請求項1記載の塗工フィルムの製造方法において、
     前記基材は、多孔質フィルムである、塗工フィルムの製造方法。
  4.  請求項1記載の塗工フィルムの製造方法において、
     前記塗工層が形成された前記基材は、電池用のセパレータである、塗工フィルムの製造方法。
  5.  請求項1記載の塗工フィルムの製造方法において、
     前記基材の膜厚は、9μm未満である、塗工フィルムの製造方法。
  6.  請求項1記載の塗工フィルムの製造方法において、
     前記基材の膜厚は、7μm以下であり、前記搬入部における搬入張力は、12N未満である、塗工フィルムの製造方法。
  7.  請求項1記載の塗工フィルムの製造方法において、
     前記搬入部における前記基材の搬入速度は、30m/min以上である、塗工フィルムの製造方法。
  8.  請求項1記載の塗工フィルムの製造方法において、
     前記乾燥温度は、75℃未満である、塗工フィルムの製造方法。
  9.  請求項1記載の塗工フィルムの製造方法において、
     前記(a)工程は、前記塗工液を貯留するチャンバーと、塗工ロールとを有するグラビア塗工機を用いて行われ、
     前記チャンバーは、横向きに配置されている、塗工フィルムの製造方法。
  10.  請求項1記載の塗工フィルムの製造方法において、
     前記(b)工程は、乾燥室に配置されたノズルから加熱流体を導入する乾燥処理部において行われ、
     前記ノズルと前記乾燥室の前記基材の搬送方向の上流側の側壁との間に配置された温度センサにより、前記乾燥室の温度が制御される、塗工フィルムの製造方法。
  11.  基材を取り出す搬出部と、
     前記基材の第1面に塗工液を塗布する塗工部と、
     前記基材上の塗工液を乾燥することにより、前記基材の第1面に塗工フィルムを形成する乾燥部と、
     前記塗工フィルムが形成された前記基材を取り込む搬入部と、
    を有し、
     前記搬出部と前記乾燥部との間に、第1吸引ロールが配置され、
     前記乾燥部と前記搬入部との間に、第2吸引ロールが配置された、塗工フィルムの製造装置。
  12.  請求項11記載の塗工フィルムの製造装置において、
     前記第1吸引ロールおよび前記第2吸引ロールの吸引圧力は、それぞれ3MPa以下である、塗工フィルムの製造装置。
  13.  請求項11記載の塗工フィルムの製造装置において、
     前記基材は、多孔質フィルムである、塗工フィルムの製造装置。
  14.  請求項11記載の塗工フィルムの製造装置において、
     前記塗工層が形成された前記基材は、電池用のセパレータである、塗工フィルムの製造装置。
  15.  請求項11記載の塗工フィルムの製造装置において、
     前記基材の膜厚は、9μm未満である、塗工フィルムの製造装置。
  16.  請求項11記載の塗工フィルムの製造装置において、
     前記基材の膜厚は、7μm以下であり、前記搬入部における搬入張力は、12N未満である、塗工フィルムの製造装置。
  17.  請求項11記載の塗工フィルムの製造装置において、
     前記搬入部における前記基材の搬入速度は、30m/min以上である、塗工フィルムの製造装置。
  18.  請求項11記載の塗工フィルムの製造装置において、
     前記乾燥部の温度は、75℃未満である、塗工フィルムの製造装置。
  19.  請求項11記載の塗工フィルムの製造装置において、
     前記塗工部は、前記塗工液を貯留するチャンバーと、塗工ロールとを有し、
     前記チャンバーは、横向きに配置されている、塗工フィルムの製造装置。
  20.  請求項11記載の塗工フィルムの製造装置において、
     前記乾燥部は、ノズルから加熱流体が導入される乾燥室を有し、
     前記ノズルと前記乾燥室の前記基材の搬送方向の上流側の側壁との間に配置された温度センサにより、前記乾燥室の温度が制御される、塗工フィルムの製造装置。
PCT/JP2020/028569 2019-10-23 2020-07-22 塗工フィルムの製造方法および塗工フィルムの製造装置 WO2021079580A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/771,250 US20220410205A1 (en) 2019-10-23 2020-07-22 Method for manufacturing coated film and apparatus for manufacturing coated film
CN202080065208.5A CN114401797A (zh) 2019-10-23 2020-07-22 涂布薄膜的制造方法以及涂布薄膜的制造装置
EP20878067.6A EP4049761A1 (en) 2019-10-23 2020-07-22 Coating film production method and coating film production device
KR1020227013271A KR20220084298A (ko) 2019-10-23 2020-07-22 도포 시공 필름의 제조 방법 및 도포 시공 필름의 제조 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019192435A JP7348023B2 (ja) 2019-10-23 2019-10-23 塗工フィルムの製造方法および塗工フィルムの製造装置
JP2019-192435 2019-10-23

Publications (1)

Publication Number Publication Date
WO2021079580A1 true WO2021079580A1 (ja) 2021-04-29

Family

ID=75620426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028569 WO2021079580A1 (ja) 2019-10-23 2020-07-22 塗工フィルムの製造方法および塗工フィルムの製造装置

Country Status (7)

Country Link
US (1) US20220410205A1 (ja)
EP (1) EP4049761A1 (ja)
JP (1) JP7348023B2 (ja)
KR (1) KR20220084298A (ja)
CN (1) CN114401797A (ja)
TW (1) TW202116517A (ja)
WO (1) WO2021079580A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335888A (zh) * 2021-12-22 2022-04-12 江苏神力电源科技有限公司 一种储能电池用pe隔膜裁切装置及其使用方法
CN114713438A (zh) * 2022-05-06 2022-07-08 浙江庞度环保科技股份有限公司 一种涂布设备及应用涂布设备的涂布系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116190913B (zh) * 2023-04-21 2023-08-29 安徽利科新材料科技有限公司 一种生物基涂覆浆料的制备方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010753A (ja) * 2001-07-06 2003-01-14 Toyo Aluminium Kk 帯状塗膜の形成装置及び同塗膜の複数同時形成方法
JP2004290776A (ja) * 2003-03-26 2004-10-21 Fuji Photo Film Co Ltd 塗布膜の乾燥方法及び装置
JP2006341170A (ja) * 2005-06-08 2006-12-21 Toppan Printing Co Ltd 無機化合物蒸着プラスチックフィルムへの塗布液の塗布方法
JP2011064406A (ja) * 2009-09-17 2011-03-31 Yasui Seiki:Kk 複合材料シート製造機および複合材料シートの製造方法
JP2015065110A (ja) * 2013-09-26 2015-04-09 日本ゼオン株式会社 二次電池用耐熱セパレータの製造方法
JP2016183209A (ja) 2015-03-25 2016-10-20 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2016224334A (ja) * 2015-06-02 2016-12-28 コニカミノルタ株式会社 光学フィルムの製造方法
JP2017068900A (ja) 2015-09-28 2017-04-06 日本製紙株式会社 非水電解質二次電池セパレータ用カルボキシメチルセルロース又はその塩

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087561A (ja) * 2002-08-23 2004-03-18 Fuji Mach Mfg Co Ltd 多層基板製造工程集約機
JP2008036461A (ja) * 2006-08-01 2008-02-21 Nof Corp 薄膜コートフィルムの製造方法
JP6528383B2 (ja) * 2014-10-23 2019-06-12 セイコーエプソン株式会社 印刷装置
KR20170068900A (ko) * 2015-12-10 2017-06-20 임병을 조경수의 품질 표준화와 품질 보증을 기반으로 한 유통시스템

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010753A (ja) * 2001-07-06 2003-01-14 Toyo Aluminium Kk 帯状塗膜の形成装置及び同塗膜の複数同時形成方法
JP2004290776A (ja) * 2003-03-26 2004-10-21 Fuji Photo Film Co Ltd 塗布膜の乾燥方法及び装置
JP2006341170A (ja) * 2005-06-08 2006-12-21 Toppan Printing Co Ltd 無機化合物蒸着プラスチックフィルムへの塗布液の塗布方法
JP2011064406A (ja) * 2009-09-17 2011-03-31 Yasui Seiki:Kk 複合材料シート製造機および複合材料シートの製造方法
JP2015065110A (ja) * 2013-09-26 2015-04-09 日本ゼオン株式会社 二次電池用耐熱セパレータの製造方法
JP2016183209A (ja) 2015-03-25 2016-10-20 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2016224334A (ja) * 2015-06-02 2016-12-28 コニカミノルタ株式会社 光学フィルムの製造方法
JP2017068900A (ja) 2015-09-28 2017-04-06 日本製紙株式会社 非水電解質二次電池セパレータ用カルボキシメチルセルロース又はその塩

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335888A (zh) * 2021-12-22 2022-04-12 江苏神力电源科技有限公司 一种储能电池用pe隔膜裁切装置及其使用方法
CN114713438A (zh) * 2022-05-06 2022-07-08 浙江庞度环保科技股份有限公司 一种涂布设备及应用涂布设备的涂布系统

Also Published As

Publication number Publication date
KR20220084298A (ko) 2022-06-21
EP4049761A1 (en) 2022-08-31
JP7348023B2 (ja) 2023-09-20
JP2021068564A (ja) 2021-04-30
US20220410205A1 (en) 2022-12-29
CN114401797A (zh) 2022-04-26
TW202116517A (zh) 2021-05-01

Similar Documents

Publication Publication Date Title
WO2021079580A1 (ja) 塗工フィルムの製造方法および塗工フィルムの製造装置
KR102642709B1 (ko) 웹 코팅과 캘린더링 시스템 및 방법
KR20170059418A (ko) 가열 롤러 및 필름 제조 방법
JP6962750B2 (ja) フィルム延伸装置、およびフィルム製造方法
KR101913476B1 (ko) 전지용 세퍼레이터의 제조 방법 및 전지용 세퍼레이터 제조 장치
KR101832681B1 (ko) 필름 제조 장치, 필름 권회체 제조 장치, 필름 제조 방법 및 필름 권회체 제조 방법
KR20170074830A (ko) 기능성 필름의 제조 방법 및 기능성 필름의 제조 장치
CN108258173B (zh) 隔膜的制造方法以及隔膜的制造装置
US20170174460A1 (en) Method for producing film and method for winding off film
CN107839207B (zh) 膜延伸装置以及膜制造方法
US10090500B2 (en) Film-stretching apparatus and method of producing film
KR101889610B1 (ko) 필름의 제조 방법, 전지용 세퍼레이터 필름, 비수 전해액 이차 전지용 세퍼레이터 및 비수 전해액 이차 전지
US20170244084A1 (en) Expander device, porous film production apparatus, and porous film producing method
KR101787288B1 (ko) 비수전해액 이차전지용 세퍼레이터 가열장치 및 그 제조방법
JP6632501B2 (ja) フィルムの製造方法、電池用セパレータフィルム、非水電解液二次電池用セパレータ及び非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020878067

Country of ref document: EP

Effective date: 20220523