WO2021079399A1 - ハイドロゲル流体デバイス、ハイドロゲル流体デバイスの製造方法 - Google Patents
ハイドロゲル流体デバイス、ハイドロゲル流体デバイスの製造方法 Download PDFInfo
- Publication number
- WO2021079399A1 WO2021079399A1 PCT/JP2019/041262 JP2019041262W WO2021079399A1 WO 2021079399 A1 WO2021079399 A1 WO 2021079399A1 JP 2019041262 W JP2019041262 W JP 2019041262W WO 2021079399 A1 WO2021079399 A1 WO 2021079399A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogel
- polymer material
- base material
- flow path
- gel
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0004—Use of compounding ingredients, the chemical constitution of which is unknown, broadly defined, or irrelevant
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/08—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0689—Sealing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/069—Absorbents; Gels to retain a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0816—Cards, e.g. flat sample carriers usually with flow in two horizontal directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0883—Serpentine channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/12—Specific details about materials
- B01L2300/123—Flexible; Elastomeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/16—Surface properties and coatings
- B01L2300/161—Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
- B01L2300/163—Biocompatibility
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/02—Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
- C08J2205/022—Hydrogel, i.e. a gel containing an aqueous composition
Definitions
- the present invention relates to a hydrogel fluid device and a method for manufacturing a hydrogel fluid device.
- Hydrogel is known. Hydrogels have properties such as biocompatibility, high water content, high flexibility, high lubricity, and substance permeability. These properties of hydrogels are similar to those of living tissue. Therefore, hydrogels are suitable as materials for devices that artificially reproduce biological systems.
- hydrogel into a three-dimensional shape, for example, a hollow shape to form a flow path.
- a biological system in which a liquid is poured into a flow path formed of a hydrogel and a substance in the liquid can be exchanged between the flow path and the hydrogel is being studied.
- Biological systems using hydrogels are expected to be used in various industrial fields such as medicine, cell culture, and robotics.
- Non-Patent Document 1 discloses a method of forming a flow path in a hydrogel by combining 3D printing and a sacrificial layer.
- the choice of materials is limited, and any base material cannot be used.
- the minimum size of the flow path to be formed is on the millimeter scale, and the selection of the shape of the flow path is also limited.
- the method disclosed in Non-Patent Document 1 is not a simple method because the process of removing the sacrificial layer is complicated.
- Non-Patent Document 2 discloses the method described in Non-Patent Document 2 as a method for forming a flow path in a hydrogel.
- the adhesive region 103a and the non-adhesive region 103b of the arbitrary base material 102 and the hydrogel 103 are arranged in an arbitrary pattern.
- the flow path 104 having the hydrogel of an arbitrary shape hereinafter, referred to as “hybrid flow path”” may be described as a microstructure on a micrometer scale. ) Can be easily formed.
- the hydrogel in the thin film portion of the hybrid flow path is mechanically fragile. Therefore, for example, when a tubular structure such as a tube for sending a liquid is attached to the hybrid flow path, there is a problem that processing is difficult. Therefore, there is a demand for a device having a hybrid flow path having sufficient strength during processing while maintaining the selection of the shape of the flow path, the wide selection of the base material, and the simplicity of the process of forming the hybrid flow path. ing.
- An object of the present invention is to provide a hydrogel fluid device having a flow path having an arbitrary shape that can be formed by a simple method, an arbitrary selection of a base material, and excellent mechanical strength when processing the flow path. , The production method thereof is to be provided.
- One aspect of the present invention is a film-like hydrogel having a base material, an adhesive region provided on the base material and adhering to the base material, and a non-adhesive region not adhering to the base material, and the hydro.
- a bulk gel comprising a path and a second polymer material that covers one surface of the hydrogel outside the flow path and has a lower degree of swelling than the first polymer material. , Hydrogel fluid device.
- a hydrogel fluid device having a flow path of an arbitrary shape that can be formed by a simple method, an arbitrary selection of a base material, and excellent mechanical strength when processing the flow path, and a hydrogel fluid device thereof It becomes possible to provide a manufacturing method.
- FIG. 2 is a cross-sectional view taken along the line II-II of the hydrogel fluid device of FIG. It is sectional drawing explaining the manufacturing method of the hydrogel fluid device which concerns on one Embodiment. It is sectional drawing explaining the manufacturing method of the hydrogel fluid device which concerns on one Embodiment. It is sectional drawing explaining the manufacturing method of the hydrogel fluid device which concerns on one Embodiment. It is sectional drawing explaining the manufacturing method of the hydrogel fluid device which concerns on one Embodiment. It is sectional drawing explaining the manufacturing method of the hydrogel fluid device which concerns on one Embodiment. It is sectional drawing explaining the manufacturing method of the hydrogel fluid device which concerns on one Embodiment. It is sectional drawing explaining the manufacturing method of the hydrogel fluid device which concerns on one Embodiment.
- FIG. 28 is a cross-sectional view of the hydrogel fluid device of FIG. 28.
- FIG. 1 is a perspective view of the hydrogel fluid device 1 according to the embodiment.
- FIG. 2 is a cross-sectional view taken along the line segment II-II of the hydrogel fluid device 1.
- the hydrogel fluid device 1 includes a base material 2, a film-like hydrogel 3, a flow path 4, a bulk-like gel 5, and tubular structures 6 and 6.
- the base material 2 supports the film-like hydrogel 3.
- the shape of the base material 2 is not particularly limited.
- the shape of the base material 2 may be processed into a three-dimensional shape capable of receiving a more complicated external stimulus by a microfabrication technique or the like.
- the mechanical characteristics of the base material 2 are not limited.
- the rigidity of the base material 2 is different from the rigidity of the film-like hydrogel 3.
- the rigidity of the base material 2 is higher than the rigidity of the film-like hydrogel 3.
- the degree of freedom in forming the flow path 4, that is, the hybrid flow path, due to the swelling of the film-like hydrogel 3 is improved.
- swelling means that a liquid such as water flows into the network structure of the gel to increase the volume of the gel.
- the type of material of the base material 2 is not particularly limited.
- the base material 2 may or may not have light transmittance.
- the material of the base material 2 is glass having excellent transparency and chemical stability; an elastomer such as polysilicone and synthetic rubber that can induce large deformation by mechanical stimulation; carbon nanotubes that can induce thermal stimulation by light stimulation, and gold nanostructure.
- the base material 2 may be another hydrogel having a degree of swelling different from that of the film-like hydrogel 3. The material of the base material 2 is not limited to these examples.
- the base material 2 can be selected from various materials and materials.
- the film-shaped hydrogel 3 is provided on one surface 2a of the base material 2.
- the film-shaped hydrogel 3 has an adhesive region 3a that adheres to the base material 2 and a non-adhesive region 3b that does not adhere to the base material 2. In the adhesive region 3a, the film-like hydrogel 3 and the base material 2 are adhered by the layer 11 of the adhesive functional group.
- the non-adhesive region 3b is arranged in a band shape inside the flow path 4.
- the adhesive region 3a is arranged on both sides of the non-adhesive region 3b in the extending direction.
- the patterns of the adhesive region 3a and the non-adhesive region 3b shown in FIGS. 1 and 2 are examples, and various pattern shapes can be adopted depending on the design.
- the film-shaped hydrogel 3 is a hydrogel after the first polymer material constituting the hydrogel is swollen. That is, the film-shaped hydrogel 3 is a swelled film-like hydrogel 3 in which a liquid such as water flows into the network structure or the like of the first polymer material. Therefore, it can be said that the film-shaped hydrogel 3 is a swelling product of the first polymer material.
- the degree of swelling of the first polymer material is particularly limited as long as it is relatively higher than that of the second polymer material described later and can form a desired flow path when the volume is increased during swelling. Not done.
- the first polymer material may be a chemically crosslinked gel obtained by chemical crosslinking, or may be a physically crosslinked gel obtained by physical crosslinking.
- the first polymer material include synthetic water-soluble polymers such as polyacrylamide and polyvinyl alcohol; polysaccharides such as chitosan, alginic acid and cellulose; and proteins such as collagen and albumin.
- the method for synthesizing the first polymer material is not particularly limited. For example, in the case of an acrylic polymer, a gelation reaction due to chemical cross-linking due to a polymerization reaction of acrylic groups can be mentioned.
- gelation by physical bonding may be used, or a chemical cross-linking agent typified by glutaraldehyde may be used.
- An example of the first method for synthesizing a polymer material will be described in detail in the section ⁇ Method for manufacturing a hydrogel fluid device> described later.
- An example of the film-shaped hydrogel 3 is, for example, a hydrogel after the first polymer material 31, which will be described later, has swollen.
- the type of the first polymer material is not particularly limited as long as it is a polymer material constituting a hydrogel.
- an external stimulus-responsive hydrogel is used as the first polymer material, it is possible to control the shape deformation of the hydrogel fluid device 1.
- the term "external stimulus responsiveness” means the property that the molecular structure of a polymer material changes in response to external stimuli such as heat, light, electricity, and pH.
- Examples of external stimulus-responsive hydrogels include heat-responsive hydrogels, pH-responsive hydrogels, and photoresponsive hydrogels.
- Examples of the heat-responsive hydrogel include gels containing poly (N-isopropylacrylamide), poly (methyl vinyl ether) and the like.
- Examples of the pH-responsive hydrogel include gels containing a polymer electrolyte synthesized from an anionic or cationic monomer.
- Examples of the photoresponsive hydrogel include gels containing a polymer having spiropirane or azobenzene as a skeleton.
- a tough hydrogel such as a double network gel, a slide ring gel, a Tetra-PEG gel, or a nanoclay gel may be used.
- PEG polyethylene glycol
- the first polymer material constituting the film-shaped hydrogel 3 may further contain various additives.
- the additive is not particularly limited as long as it does not inhibit the formation of hydrogel. By using any additive, any function can be imparted to the hydrogel 3.
- Examples of the additive in Hydrogel 3 include biomolecules that improve biocompatibility; silver nanoparticles for exhibiting antibacterial properties, surfactants; ionic liquids for increasing conductivity, and conductive polymers; Examples thereof include magnetic nanoparticles for reacting with a magnetic field.
- the additives are not limited to these examples.
- the thickness of the film-shaped hydrogel 3 is not particularly limited, but it is preferable that the thickness is such that the structural strength can be maintained so as not to be crushed by its own weight.
- the degree of cross-linking of chemical cross-linking, the degree of cross-linking of physical cross-linking, or the concentration of polymer in the gel in order to maintain the strength sufficient to support its own weight while keeping the thickness of the film-like hydrogel 3 thin.
- the mechanical properties of the hydrogel 3 may be improved.
- the shape of the first polymer material constituting the hydrogel 3 does not have to be all film-like. That is, the first polymer material may have a part having a shape other than the film shape.
- the shape other than the film shape is not particularly limited, and various shapes can be selected according to the usage pattern. For example, in addition to the film shape, a plate shape, a block shape, and the like can be mentioned. On the other hand, when it is desired to induce a channel-like shape deformation, a film-like shape is preferable because a large deformation can be performed with a relatively small force.
- the flow path 4 is formed at the interface between the base material 2 and the film-like hydrogel 3.
- the flow path 4 is formed by swelling the first polymer material constituting the hydrogel 3 so that the first polymer material in the non-adhesive region 3b is separated from the base material 2.
- the first polymer material swells and the first polymer material in the non-adhesive region 3b is selectively separated from the base material 2, so that buckling deformation of the first polymer material occurs, resulting in a film-like shape. It becomes hydrogel 3.
- a hybrid flow path that is, a flow path 4 is formed as a space surrounded by the base material 2 and the film-like hydrogel 3.
- the flow path 4 has a film-like hydrogel 3 at a portion separated from the base material 2 as a flow path surface 4c.
- the flow path 4 has a first opening surface 4a and a second opening surface 4b.
- the flow path surface c of the flow path 4 is formed in a band shape along the extending direction of the non-adhesive region 3b between the first opening surface 4a and the second opening surface 4b. Then, the flow path 4 formed at the interface between the base material 2 and the film-shaped hydrogel 3 penetrates from the first surface 5a side to the second surface 5b side of the bulk-shaped gel 5.
- the bulk gel 5 is a gel after the second polymer material constituting the gel has swollen. That is, the bulk gel 5 is a swelled gel 5 in which a liquid such as water flows into the network structure or the like of the second polymer material. Therefore, it can be said that the film-shaped hydrogel 3 is a swelling product of the second polymer material.
- the second polymer material has a lower degree of swelling than the first polymer material constituting the film-like hydrogel 3.
- the degree of swelling of the second polymer material is not particularly limited as long as it is lower than the degree of swelling of the first polymer material.
- the degree of swelling of the second polymer material is preferably, for example, about 0.8 to 1.2 times the degree of swelling in one direction based on the size before swelling.
- d is the diameter of the maximum portion of the sample after being allowed to stand in pure water
- d 0 is the diameter of the circular sample before being allowed to stand in pure water.
- the second polymer material constituting the bulk gel 5 may be a hydrogel or a gel other than the hydrogel.
- the second polymer material may be the same as or different from the first polymer material described in the above section (film-like hydrogel). ..
- Specific examples of the second polymer material include chemically crosslinked gels that are crosslinked by covalent bonds due to a radical polymerization reaction of monomers.
- Examples of the chemically crosslinked gel include polyacrylamide and its derivatives (polydimethylacrylamide, polyN-isopropylacrylamide, etc.). In this case, by using methylenebisacrylamide as the cross-linking agent, the cross-linking density may be increased and the degree of swelling of the second polymer material may be kept within the above numerical range.
- the second polymer material also includes a physically crosslinked gel in which a polymer having a positive charge or a negative charge and an ion having a polyvalent charge opposite to them are combined.
- the physically crosslinked gel include a physically crosslinked gel obtained by combining a sodium alginate solution, which is a negatively charged polymer, with a calcium solution such as calcium chloride and calcium sulfate.
- poly (2,2'-disulfo-4,4'-bensidine terephthalamide: PBDT) which is a water-soluble polyaramid, and various metal polyvalent cations (Ca 2+ , Fe 2+ , Al 3+ , Zr 4+ , Ti) Examples thereof include a physically crosslinked gel combined with 4+ etc.).
- TEMPO-oxidized cellulose nanofibers (NIPPON PAPER INDUSTRIES CO., LTD.), which are also negatively charged, and cellulose nanofibers defibrated by the phosphate esterification method (Oji Holdings Corporation) are used. May be good.
- TEMPO is an abbreviation for 2,2,6,6-tetramethylpiperidine 1-oxyl (2,2,6,6-tetramethylpiperidine-1-oxyl radical).
- the bulk gel 5 covers one surface of the film-like hydrogel 3 outside the flow path 4.
- the bulk gel 5 covers the surface on which the film-like hydrogel 3 does not come into contact with the base material 2. That is, one surface of the film-like hydrogel 3 coated with the bulk gel 5 is one surface opposite to the surface in contact with the base material 2 (that is, facing the surface in contact with the base material 2).
- the bulk gel 5 covers the outside of the flow path 4. Therefore, when the aqueous liquid is poured into the inside of the flow path 4, the aqueous liquid permeates the hydrogel on the flow path surface 4c, diffuses to the outside of the flow path 4, and reaches the gel 5.
- the gel 5 is composed of a hydrogel
- the aqueous liquid that has reached the gel 5 can be diffused inside the gel 5. Therefore, by arranging an arbitrary object (for example, cells, cultured tissue) in advance inside the gel 5, the aqueous liquid can be selectively supplied to the object in a predetermined region inside the gel 5.
- the gel 5 when a hydrogel having a positive charge or a negative charge is used as the second polymer material constituting the gel 5, a function of preventing the diffusion of low molecules having a specific charge can be imparted to the flow path 4. That is, the gel 5 can be provided with a function of shielding small molecules having a specific charge from diffusing from the inside to the outside of the flow path 4.
- a hydrogel whose hydrophilic and hydrophobic properties are switched in response to an external stimulus; the degree of swelling may be changed in response to an external stimulus.
- Hydrogels that can be used can also be used.
- the small molecules that diffuse in the gel 5 are hydrophilic.
- the small molecules diffusing in the gel 5 can be selectively limited to hydrophobic ones.
- the selection of the properties of the gel 5 enables filtering of low molecular diffusion that diffuses from the inside to the outside of the flow path 4. Since this filtering function can be changed in response to an external stimulus as in the above example, temporal control is possible.
- the swelling rate of the gel 5 When a hydrogel capable of changing the swelling rate (moisture content) in response to an external stimulus is used, if the swelling rate of the gel 5 is relatively high as a result of responding to the external stimulus, it diffuses in the gel 5. The diffusion rate of small molecules is relatively slow. On the other hand, when the swelling rate of the gel 5 is relatively low as a result of responding to an external stimulus, the diffusion rate of small molecules diffusing in the gel 5 becomes relatively high.
- the diffusion rate of small molecules diffusing in the bulk gel 5 can be controlled by selecting the properties of the gel 5. Since this diffusion rate control function can be changed in response to an external stimulus as in the above example, temporal control is possible.
- the bulk gel 5 may have a functional group that exhibits a predetermined response such as fluorescence to small molecules diffused from the flow path 4.
- the gel 5 shows a predetermined response such as fluorescence, so that the hydrogel fluid device 1 can be provided with a function as a sensor of the diffused small molecule.
- the mechanical strength of the bulk gel 5 is not particularly limited.
- the second polymer material is a double that is a composite of a physically crosslinked gel and a chemically crosslinked gel. Network gel is preferred. Since the double network gel has a tough double network structure, the mechanical strength is further improved.
- the shape of the bulk gel 5 is not particularly limited. However, the thickness of the bulk gel 5 needs to be thicker than the height H of the flow path 4 from the point of covering the flow path 4. The thickness of the bulk gel 5 may be further increased in order to give sufficient strength to the joint with the tube.
- the second polymer material constituting the bulk gel 5 may contain various additives as long as the swelling degree does not change extremely. Any function can be imparted to the gel 5 by using any additive.
- the additive in gel 5 is not particularly limited as long as it does not inhibit gel formation.
- the method for synthesizing the second polymer material is not particularly limited as long as it is a method having a lower degree of swelling than the first polymer material.
- An example of the second method for synthesizing the polymer material will be described in detail in the section ⁇ Method for manufacturing a hydrogel fluid device> described later.
- An example of the bulk gel 5 is, for example, a gel after the second polymer material 51, which will be described later, has swollen.
- the tubular structures 6 and 6 are fixed to the first opening surface 4a and the second opening surface 4b of the flow path 4 by the adhesives 7 and 7, respectively. Specifically, in the first opening surface 4a and the second opening surface 4b of the flow path 4, the tubular structures 6 and 6 are formed between the base material 2 and the hydrogel 3 by the adhesives 7 and 7, respectively. It is fixed.
- the tubular structure 6 is for supplying an arbitrary fluid into the flow path 4.
- the tubular structure 6 is, for example, a liquid feeding tube.
- the liquid feeding tube is not particularly limited as long as it is a portable device that can send liquid from the outside.
- the type of liquid feeding tube is not particularly limited.
- Examples of the liquid feed tube include a tube made of polytetrafluoroethylene (PTFE), tetrafluoroethylene (PFA), polyurethane, polyethylene, silicone, polyimide and the like.
- the outer diameter of the tubular structure 6 is not particularly limited. However, a tube having an outer diameter similar to the height H of the flow path 4 is desirable.
- the adhesives 7 and 7 fix the liquid feeding tube to the flow path 4. That is, the adhesives 7 and 7 fix the tubular structure 6 between the base material 2 and the film-like hydrogel 3. As shown in FIG. 2, in the hydrogel fluid device 1, the adhesives 7 and 7 are in contact with the flow path surface 4c of the flow path 4 around the tubular structure 6 at the opening surfaces 4a and 4b at the entrance of the flow path 4. The space is densely filled. It is desirable that the adhesives 7 and 7 have water resistance and adhesiveness to the base material 2 and the film-like hydrogel 3. Examples of the adhesives 7 and 7 include cyanoacrylate-based adhesives, silicone-based adhesives, epoxy-based adhesives, and the like.
- the hydrogel fluid device 1 described above is composed of a second polymer material that covers one surface of the hydrogel outside the flow path and has a lower degree of swelling than the first polymer material that constitutes the hydrogel. It is provided with a bulk gel. Since the bulk gel composed of the second polymer material having a relatively low degree of swelling functions as the exoskeleton of the film-like hydrogel, the structure of the film-like hydrogel can be toughened. In addition, between the film-like hydrogel and the bulk-like gel, the network structures in the gel invade each other, and a structure in which the network structures are entangled with each other can be constructed, and strong adhesion is realized.
- the thin film portion of the flow path which has been mechanically fragile in the past, is toughened by coating with a bulk gel.
- the structure of the toughened thin film portion has sufficient strength to join a tubular structure such as a liquid feeding tube. Therefore, the hydrogel fluid device 1 is excellent in mechanical strength when processing the flow path.
- the hydrogel fluid device 1 includes a flow path formed by separating the hydrogel in the non-adhesive region from the base material due to the swelling of the first polymer material constituting the hydrogel. Therefore, the hydrogel fluid device and the flow path can be formed by a simple method. Further, in the hydrogel fluid device 1, since the flow path is formed by utilizing the free swelling of the first polymer material constituting the film-like hydrogel, the flow path 4 has an arbitrary shape and structure. Can be taken.
- the shape of the flow path can be arbitrarily selected.
- the base material, the film-shaped hydrogel, and the bulk-shaped gel can be selected arbitrarily and independently of each other. Therefore, various base materials, film-like hydrogels, and bulk-like gels can be combined according to the desired functions to be realized by the hydrogel fluid device. Therefore, according to the hydrogel fluid device 1, a fluid device having a wide range of functions and properties is provided.
- the hydrogel fluid device 1 described above has an advantage that the width of material selection and the width of the size scale of the flow path are wider than those of the conventional fluid device using hydrogel described in Non-Patent Document 1. ..
- a flow path having a complicated shape (serpentine shape, etc.) based on the mechanical instability of an elastic body can be easily manufactured.
- it unlike conventional PDMS-based fluid devices, it has a bulk gel in which water-soluble small molecules can diffuse, which allows the water-soluble small molecules to diffuse inside the hydrogel fluid device.
- the hydrogel fluid device 1 described above has excellent mechanical strength when processing a flow path, and therefore has toughness capable of joining a tubular structure such as a liquid feeding tube.
- the bulk gel 5 used as a reinforcing material for imparting toughness also has substance permeability. Therefore, according to the hydrogel fluid device 1, a device capable of diffusing the fluid inside the hydrogel fluid device 1 is provided. That is, in the case of a hydrogel fluid device to which a liquid feeding tube or the like is joined, small molecules injected into the flow path via the liquid feeding tube or the like are injected into the gel film-like hydrogel 3 and the bulk-like gel 5. Can be sequentially diffused.
- hydrogel fluid device 1 for example, by using a bulk gel capable of embedding cells, cell nutrients, differentiation factors, etc. are diffused from the flow path in an arbitrary three-dimensional direction. It can be expected to be used as a possible three-dimensional cell culture substrate.
- hydrogel fluid device 1 for example, as a cell culture substrate capable of controlling cell differentiation by seeding cells on a bulk gel and diffusing differentiation factors and the like from a flow path. Expected to be used.
- hydrogel fluid device 1 According to the hydrogel fluid device 1 described above, a functional group that exhibits a response such as fluorescence to small molecules diffused from the flow path can be introduced into the bulk gel. In this case, the hydrogel fluid device 1 can be applied to a sensor that responds to a particular small molecule. In addition, by combining the functions of these gels 5 with the functions of a film-like hydrogel, it is possible to manufacture a hydrogel fluid device 1 having a more complicated function.
- the hydrogel fluid device is, for example, a manufacturing system for culturing artificial tissues by supplying cells with nutrients and various differentiation factors to a channel and diffusing them into a bulk gel; encapsulation in a bulk gel. It can be applied to a wide range of applications such as a sensor that detects a substance diffused from a flow path by a stimulated response unit.
- the first polymer material 31 in the non-adhesive region 3b is separated from the base material 2, and the base material 2 and the first A flow path 4 is formed at the interface of the polymer material 31 with the layer, and the first polymer material 31 is a film-like hydrogel 3.
- the outside of the flow path 4 is covered with a bulky second polymer material 51 having a lower swelling degree than the first polymer material 31, and then a second height is obtained.
- the molecular material 51 is swollen to obtain a bulk gel 5.
- the first polymer material 31 means the film-like hydrogel before swelling, and is distinguished from the film-like hydrogel 3 after swelling.
- the "bulk-like second polymer material 51" means a bulk-like gel before swelling and is distinguished from the bulk-like gel 5 after swelling.
- a first pattern 11 of an adhesive functional group is formed on one surface 2a of the base material 2.
- a layer 11A of an adhesive functional group is provided on one surface 2a of the base material 2.
- the layer 11A presents an adhesive functional group on one side 2a of the substrate 2.
- the details and preferred embodiments of the base material 2 can be the same as those described in the above section ⁇ Hydrogel fluid device>.
- a glass substrate can be mentioned.
- Examples of the layer 11A of the adhesive functional group include a layer of a silane coupling agent having an adhesive functional group.
- adhesive functional group means a functional group that can adhere to the first polymerizable monomer described later.
- a (meth) acrylic group can be exemplified as the adhesive functional group.
- the silane coupling agent include 3- (methacryloyloxy) propyltrimethoxysilane.
- the method for forming the layer 11A is not particularly limited.
- one side 2a of the base material 2 is washed with an aqueous solution of sodium hydroxide, 3- (methacryloyloxy) propyltrimethoxysilane is activated by oxygen plasma or pyrania washing, and then silane coupling is performed on the one side 2a of the base material 2.
- Layer 11A can be formed by applying the agent. Piranha cleaning is a common name that refers to a cleaning method that uses a mixed solution of concentrated sulfuric acid and an aqueous hydrogen peroxide solution. In the following description, a case where the layer 11A is a monomolecular layer of a silane coupling agent will be described as an example, but the present invention is not limited to this example.
- a resist layer 40A is further provided on one surface 11a of the adhesive functional group layer 11A.
- the resist layer 40A is not particularly limited.
- a layer of positive photoresist In this case, the resist layer 40A can be formed by applying a positive photoresist on the surface of the layer 11A.
- the method of applying the positive photoresist is not particularly limited. For example, the spin coating method can be used.
- the resist layer 40A is irradiated with ultraviolet rays UV1 via a mask M having a light-shielding portion M1 and a light-transmitting portion M2.
- the peak wavelength of ultraviolet UV1 is not particularly limited as long as it is within the absorption wavelength band of the positive photoresist.
- the irradiated portion of ultraviolet UV1 in the resist layer 40A is removed, an opening 40X is formed, and the pattern of the resist layer 40 is the layer 11. It is formed on one side.
- the layer 11A exposed by the opening 40X is subjected to oxygen plasma treatment using oxygen plasma O via the resist layer 40 in which the opening 40X is formed.
- the silane coupling agent of the layer 11A in the portion exposed to the opening 40X is removed.
- a layer 11 of the silane coupling agent having a pattern shape can be obtained (lift-off).
- the shape of the layer 11 can be appropriately adjusted by changing the shape of the translucent portion M2 in the mask M.
- the photoresist is formed in an arbitrary pattern using a lithography technique, so that the adhesive functional group is formed on one surface 2a of the base material 2.
- the first pattern 11 of the above can be formed.
- the first composition 30 containing the first polymerizable monomer having a functional group forming a chemical bond with the adhesive functional group is applied to one surface 2a of the base material 2.
- the spacer 60 is arranged on the one surface 2a on which the layer 11 is formed, and the first composition 30 containing the first polymerizable monomer is placed on the one surface 2a of the base material 2 in the region surrounded by the spacer 60.
- a seal substrate 70 having ultraviolet light transmission is covered so as to cover the first composition 30.
- the first composition 30 is spread over the region surrounded by the spacer 60, and the first composition 30 is applied to one surface 2a of the base material 2.
- the seal substrate 70 for example, a glass substrate can be used.
- the surface of the seal substrate 70 that comes into contact with the first composition 30 may be cleaned by subjecting it to oxygen plasma treatment.
- One surface 70a of the seal substrate 70 may be a flat surface in order to keep the surface of the first polymer material 31 described later smooth, and may be an arbitrary fine three-dimensional object on the surface of the first polymer material 31 described later. In order to transfer the shape, it may be processed into the arbitrary fine three-dimensional shape.
- the first composition 30 contains a first polymerizable monomer, a polymerization initiator, and if necessary, an organic solvent and a polymerization accelerator.
- the first polymerizable monomer is a monomer capable of forming a polymer by polymerization.
- the first polymerizable monomer has a functional group that forms a chemical bond with the adhesive functional group.
- the first polymerizable monomer becomes the first polymer material 31 constituting the hydrogel by the polymerization reaction. It can be said that the first composition 30 applied to the base material is a precursor of the first polymer material 31.
- the first polymerizable monomer is not particularly limited as long as it is a compound capable of forming a network structure of the first polymer material 31 by polymerization. Examples of the first polymerizable monomer include an acrylic monomer having an acrylic group. However, the first polymerizable monomer is not limited to this example.
- Examples of the polymerization initiator include a photopolymerization initiator and a thermal polymerization initiator.
- the polymerization initiator is preferably water-soluble.
- Water-soluble photopolymerization initiators include 2-oxoglutaric acid, 4'-(2-hydroxyethoxy) -2-hydroxy-2-methylpropiophenone (Irgacure 2959), and phenyl (2,4,6-trimethylbenzoyl).
- Examples of the thermal polymerization initiator include ammonium peroxodisulfate (APS) and potassium peroxodisulfate (KPS).
- organic solvent examples include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMA), ethylene carbonate (EC) and the like.
- polymerization accelerator examples include N, N, N', N'-tetramethylethane-1,2-diamine (TEMED). It can also be polymerized within minutes at room temperature by using a polymerization accelerator.
- TEMED N, N, N', N'-tetramethylethane-1,2-diamine
- TEMED N, N, N', N'-tetramethylethane-1,2-diamine
- TEMED tetramethylethane-1,2-diamine
- the first composition 30 is formed into the layer 31A of the first polymer material 31. And. At the time of gelation, an appropriate stimulus suitable for the polymerization initiator is given to the first composition 30 to induce radical polymerization. As a result, radical polymerization can be started, and the layer of the first polymer material 31 can be provided on one surface 2a of the base material 2.
- the method for producing a hydrogel fluid device according to the first aspect will be described by taking as an example a case where the first composition 30 contains a photopolymerization initiator as a polymerization initiator. , Not limited to the following example.
- ultraviolet rays UV2 are irradiated through the seal substrate 70.
- the peak wavelength of the ultraviolet UV2 is not particularly limited as long as it is within the absorption wavelength band of the photopolymerization initiator contained in the first composition 30.
- the peak wavelength of ultraviolet UV2 is, for example, 365 nm.
- the gelation of the first composition 30 causes the interface between the first polymer material 31 and the base material 2 to be formed.
- An adhesive region 3a where the base material 2 and the first polymer material 31 adhere to each other, and a non-adhesive region 3b where the base material 2 and the hydrogel do not adhere to each other are formed.
- the functional group of the first polymerizable monomer reacts with the adhesive functional group of the silane coupling agent of the layer 11 during the polymerization reaction.
- the gelled first polymer material 31 adheres to one surface 2a of the base material 2, and the adhesive region 3a Is formed.
- the first polymer material 31 does not adhere to the base material 2 and the non-adhesive region 3b is formed.
- the first polymerizable monomers contained in the first composition 30 are polymerized with each other.
- the layer 31A of the first polymer material 31 constituting the hydrogel can be provided so that the adhesive region 3a and the non-adhesive region 3b are formed.
- the type of polymerization reaction during gelation is not particularly limited. Usually, it is selected from the polymerization reaction according to the polymerization initiator in the first composition 30.
- the polymerization reaction include radical polymerization using a polymerization initiator such as a photopolymerization initiator and a thermal polymerization initiator.
- a polymerization initiator such as a photopolymerization initiator and a thermal polymerization initiator.
- the first polymerizable monomer is an acrylic monomer
- chemical cross-linking by a polymerization reaction of an acrylic group can be mentioned.
- the first polymer material 31 in the non-adhesive region 3b is separated from the base material 2, and the base material 2 and the first polymer material 31 are separated from each other.
- the flow path 4 is formed at the interface with the layer 31A of the polymer material 1 and the first polymer material 31 is a film-like hydrogel 3.
- the liquid used for the swelling of the first polymer material 31 is not particularly limited, and can be appropriately selected depending on the polymer in the first polymer material 31. For example, an aqueous liquid such as water can be mentioned.
- the layer 31A of the first polymer material 31 shown in FIG. 11 For example, by immersing the layer 31A of the first polymer material 31 shown in FIG. 11 together with the base material 2 in a large excess amount of pure water, water is swollen in the first polymer material 31 and the first polymer material 31 is swelled. The unreacted first polymerizable monomer may be removed from the polymer material 31. As a result, a film-like hydrogel 3 in which the first polymer material 31 is swollen with water is obtained.
- the portion overlapping with the layer 11 becomes the adhesive region 3a, and the portion not overlapping with the layer 11 is the non-adhesive region 3b. It becomes.
- the layer 31A of the first polymer material 31 is not fixed to the base material 2 in the non-adhesive region 3b. Therefore, the portion of the first polymer material 31 that partially overlaps the non-adhesive region 3b intersects the extending direction of the non-adhesive region 3b when the volume of the first polymer material 31 increases due to swelling.
- the volume can be freely increased so as to be separated from the base material 2 in the direction of the substrate 2.
- the portion of the first polymer material 31 that overlaps the adhesive region 3a in a plane is restricted from increasing in volume in the direction intersecting the extending direction of the adhesive region 3a.
- the first polymer material 31 in the portion overlapping the non-adhesive region 3b is deformed according to the degree of swelling of the first polymer material 31, separated from the base material 2, and the flow path 4 is formed. ..
- the first polymer material 31 is bent from one surface 2a of the base material 2. Separated from. In the non-adhesive region 3b, the first polymer material 31 swells freely, so that it swells and deforms greatly in the direction away from the base material 2 in order to alleviate the increase in internal pressure due to the increase in volume.
- the first polymer material 31 is largely separated from the base material 2 on the opposite side, and the film-like hydrogel 3 in the non-adhesive region takes a buckling-deformed shape.
- the flow path 4, that is, the hybrid flow path is formed in the space surrounded by the film-shaped hydrogel 3 and the base material 2.
- the shape of the flow path 4 can be controlled by appropriately changing the pattern shape of the first pattern 11 and controlling the pattern shapes of the adhesive region 3a and the non-adhesive region 3b.
- the shape of the flow path 4 is, for example, the type of the first polymer material 31, the ratio of the rigidity of the base material 2 to the rigidity of the first polymer material 31, and the shape of the first polymer material 31. It can be controlled by adjusting the thickness of the layer 31A and the like.
- the rigidity of the first polymer material 31 and the swelling rate of the first polymer material 31 change the type of the first polymerizable monomer used in the first composition, the type and amount of the cross-linking agent, and the like. It can be controlled by.
- the shape and thickness of the film-shaped hydrogel 3 can be controlled by adjusting the shape and thickness of the first polymer material 31 according to the size of the spacer 60, the shape of the spacer 60, and the like. Since the shape of the surface 70a (see FIGS. 9 and 10) facing the base material 2 of the seal substrate 70 is transferred to the film-shaped hydrogel 3, the film-shaped hydrogel can be controlled by controlling the shape of the surface 70a. The shape of 3 may be controlled.
- the change between the first polymer material 31 and the film-like hydrogel 3 before and after swelling is a reversible change. Therefore, the shape of the flow path 4 can be controlled by changing the swelling rate of the film-shaped hydrogel 3. For example, the swelling rate of the hydrogel 3 can be changed by contacting the hydrogel 3 with water to swell, or drying the hydrogel 3.
- the swelling rate of the first polymer material 31 is changed according to the stimulus input to the first polymer material 31.
- the shape of the flow path 4 may be controlled.
- the outside of the flow path 4 is covered with a bulky second polymer material 51 having a lower swelling degree than the first polymer material, and the second polymer material is coated. 51 is swollen to obtain a bulk gel 5.
- the liquid used for the swelling of the second polymer material 51 is not particularly limited, and can be appropriately selected depending on the polymer in the second polymer material 51.
- an aqueous liquid such as water and an oily liquid such as benzene can be mentioned.
- the spacer 61 is arranged on one surface 2a on which the layer 11 is formed.
- the low swelling gel composition 50 containing the low swelling gel monomer is dropped onto one surface 3c of the film-like hydrogel 3 outside the flow path 4 in the region surrounded by the spacer 61.
- a seal substrate 71 having ultraviolet transmittance is covered so as to cover the composition 50 for a low swelling gel.
- the composition 50 for low swelling gel is spread over the region surrounded by the spacer 61, and the composition 50 for low swelling gel is applied to one surface 3c of the film-like hydrogel 3 outside the flow path 4. To do.
- the seal substrate 71 for example, a glass substrate can be used.
- the surface of the seal substrate 71 that comes into contact with the low-swelling gel composition 50 may be cleaned by subjecting it to oxygen plasma treatment.
- the one surface 71a of the seal substrate 71 may be a flat surface in order to keep the surface of the second polymer material 51 described later smooth, and may be an arbitrary fine three-dimensional object on the surface of the second polymer material 51 described later. In order to transfer the shape, it may be processed into the arbitrary fine three-dimensional shape.
- the composition 50 for a low swelling gel contains, for example, a monomer for a low swelling gel, a polymerization initiator, an organic solvent, a polymerization accelerator, and a cross-linking polymer, if necessary.
- the low swelling gel monomer is a monomer capable of forming a polymer by polymerization.
- the low swelling gel monomer may be the same as or different from the first polymerizable monomer.
- the low-swelling gel monomer becomes a second polymer material that constitutes a bulk gel by a polymerization reaction. It can be said that the composition 50 for a low swelling gel applied to one surface 3c of the hydrogel 3 is a precursor of the bulk gel 5.
- the low-swelling gel monomer is not particularly limited as long as it is a compound capable of forming a network structure of the second polymer material 51 by polymerization.
- Examples of the monomer for a low swelling gel include an acrylic monomer having an acrylic group.
- the monomer for low swelling gel is not limited to this example.
- Examples of the polymerization initiator in the composition 50 for a low swelling gel include a photopolymerization initiator and a thermal polymerization initiator.
- the polymerization initiator is preferably water-soluble.
- Examples of the photopolymerization initiator include 2-oxoglutaric acid, 4'-(2-hydroxyethoxy) -2-hydroxy-2-methylpropiophenone (Irgacure 2959), and phenyl (2,4,6-trimethylbenzoyl) phosphinic acid. Examples thereof include lithium (LAP) and 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] (VA-086).
- thermal polymerization initiator examples include ammonium peroxodisulfate (APS) and potassium peroxodisulfate (KPS). By combining these thermal polymerization initiators and polymerization accelerators, polymerization can be carried out at room temperature within a few minutes.
- the polymerization accelerator examples include N, N, N', N'-tetramethylethane-1,2-diamine (TEMED).
- radical polymerization is induced by giving an appropriate stimulus according to the polymerization initiator in the composition 50 for a low swelling gel.
- the composition 50 for a low swelling gel is gelled, and the film-like hydrogel 3 outside the flow path 4 is made of a bulky second polymer material 51 having a low degree of swelling.
- One side 3c is covered.
- gelling the composition 50 for a low swelling gel on the surface of one side 3c of the film-shaped hydrogel 3 a second state in which a part of the polymer is infiltrated into the film-shaped hydrogel 3.
- the polymer material 51 of the above can be obtained.
- the bulk-shaped second polymer material 51 is swollen to obtain a bulk-shaped gel 5. Since the bulk-shaped second polymer material 51 has a smaller degree of swelling than the first polymer material 31, it can function as an exoskeleton that stabilizes the shapes of the film-shaped hydrogel 3 and the flow path 4. Therefore, the chemical properties of the film-like hydrogel 3 are changed while maintaining the function as a flow path without causing a change in the shape of the flow path 4, which normally changes in shape when the degree of swelling changes. be able to.
- the type of radical polymerization reaction in the bulk gel 5 is not particularly limited. Usually, it is selected from the polymerization reaction according to the polymerization initiator in the composition 50 for a low swelling gel.
- Examples of the polymerization reaction include radical polymerization using a polymerization initiator such as a photopolymerization initiator and a thermal polymerization initiator.
- the bulk gel 5 has a tough double network structure by combining the above-mentioned chemically cross-linked gel and the physically cross-linked gel.
- Gel 5 can be obtained.
- a polyacrylamide gel is formed by radical polymerization by dropping the composition 50 for a swellable gel onto one surface 3c of a film-like hydrogel 3 outside the flow path 4. Then, by impregnating with an aqueous solution of ZrCl 2 O, a physically crosslinked gel consisting of PBDT and Zr4 + ions is formed in the polyacrylamide gel. In this case, even if the obtained hydrogel fluid device is immersed in pure water, the tough mechanical properties are not lost.
- the shape and thickness of the bulk gel 5 can be controlled by adjusting the shape and thickness of the second polymer material 51 according to the size of the spacer 61, the shape of the spacer 61, and the like. Since the shape of the surface 71a (see FIG. 13) facing the film-shaped hydrogel 3 of the seal substrate 71 is transferred to the bulk-shaped gel 5, the bulk-shaped gel 5 is controlled by controlling the shape of the surface 71a. You may control the shape of.
- a method for synthesizing a second polymer material constituting the bulk gel 5 a method for obtaining a physically crosslinked gel by combining a polymer having a positive charge or a negative charge and an ion having a polyvalent charge opposite to them. Can also be mentioned.
- the polymer solution is dropped onto one side 3c of the hydrogel 3.
- a second polymer material 51 in a state in which a part of the polymer is infiltrated into the film-shaped hydrogel 3 can be obtained.
- An example is a combination of a solution of sodium alginate, which is a polymer having a negative charge, and a solution of calcium such as calcium chloride and calcium sulfate.
- PBDT poly (2,2'-disulfo-4,4'-bensidine terephthalamide: PBDT)
- PBDT poly (2,2'-disulfo-4,4'-bensidine terephthalamide: PBDT
- metal polyvalent cations Ca 2+ , Fe 2+ , By combining with Al 3+ , Zr 4+ , Ti 4+, etc.
- a physically crosslinked gel with low swelling property can be obtained.
- TEMPO-oxidized cellulose nanofibers (NIPPON PAPER INDUSTRIES CO., LTD.), which are also negatively charged, and cellulose nanofibers defibrated by the phosphate esterification method (Oji Holdings Corporation) are used. You may use it.
- agar containing carrageenan that gels with temperature, gelatin made of collagen, gelidiaceae, and agar made of Gracilaria may be used.
- agar containing carrageenan that gels with temperature, gelatin made of collagen, gelidiaceae, and agar made of Gracilaria first prepare a fluid low-swelling gel composition 50 by raising the temperature, and then prepare a film-like hydro. It is possible to obtain a bulk-like second polymer material 51 in which a part of the polymer is infiltrated into the gel 3.
- Another method of coating the outside of the flow path 4 with the bulk-like second polymer material 51 is to use glutaraldehyde to coat a polymer having a reactive side chain (for example, polyvinyl alcohol having a hydroxyl group, cellulose, etc.).
- a method of cross-linking can be mentioned.
- the polymer solution is first dropped on the outside of the flow path 4, and then the cross-linking agent is dropped and diffused.
- the cross-linking agent is dropped and diffused.
- a tubular structure 6 is bonded to the opening surface of the flow path 4 with an adhesive 7.
- the tubular structure 6 and the adhesive 7 can have the same contents as those described in the above-mentioned ⁇ Hydrogel fluid device> section.
- the timing of joining the tubular structure such as the liquid feeding tube to the flow path is not particularly limited. That is, the flow path 4 may be first coated with a bulk gel 5 to improve the mechanical properties, and then the tubular structure 6 may be attached to the opening surface of the flow path 4 and then joined with an adhesive 7.
- the tubular structure 6 may be first joined to the opening surface of the flow path 4 with an adhesive 7, and then coated with a bulk gel 5.
- the bulk gel before gelation infiltrates the hydrogel on the flow path surface, a mutually invaginated network structure is formed between the two gels, and the gel is firmly adhered to the hydro gel on the flow path surface.
- the mechanical strength of the gel is improved.
- the raw material of the bulk gel can be dropped on the outer surface of the flow path in a liquid state and gelled, even if the shape of the flow path is complicated, the shape of the flow path can be followed.
- the flow path can be covered with a bulk gel.
- the bulk gel when the bulk gel swells, the bulk gel has a lower degree of swelling than the film hydrogel, so that the bulk gel stabilizes the shape of the hydrogel on the flow path surface of the flow path.
- the shape of the hydrogel in the flow path which usually changes in shape when the degree of swelling changes, is small, and the chemical properties of the hydrogel can be changed while maintaining the function as the flow path.
- the thin film portion of the flow path which was conventionally mechanically fragile, is toughened by coating with a bulk gel.
- the structure of the toughened thin film portion has sufficient strength to join a tubular structure such as a liquid feeding tube. Therefore, the hydrogel fluid device 1 is excellent in mechanical strength when processing the flow path.
- a layer of a first polymer material is provided so that an adhesive region and a non-adhesive region are formed on one surface of the base material, and the first polymer material is swollen.
- the first polymer material in the non-adhesive region is separated from the base material to form a flow path.
- the swelling of the first polymer material can be carried out by, for example, an operation such as immersion in water or the like, a flow path can be easily formed.
- the pattern arrangement of the adhesive region and the non-adhesive region can be arbitrarily determined, and a flow path is formed by utilizing the free swelling of the film-like hydrogel. Therefore, a flow path having an arbitrary shape and structure can be formed.
- the shape of the flow path can be arbitrarily selected, and in addition, the base material, the hydrogel, and the gel materials can be selected arbitrarily and independently of each other. Therefore, various substrates, hydrogels and gels can be combined depending on the desired function to be achieved by the hydrogel fluid device. Therefore, according to the method for manufacturing a hydrogel fluid device according to the present embodiment, a fluid device having a wide range of functions and characteristics can be easily manufactured.
- a hybrid flow path made of hydrogels of various chemical species is coated with a bulk gel, so that small molecules can be transferred to the inside of the gel by sending a liquid from the outside.
- Hydrogel fluid devices can be made that can be diffused into.
- a coating film 80A of a photopolymerization initiator solution is formed on one surface 2a of the base material 2.
- a resin substrate such as an elastomer or a polymer film that can be infiltrated with an organic solvent as the base material 2.
- organic solvent such as methanol, ethanol, and acetone.
- a hydrogen abstraction type photopolymerization initiator is used as the photopolymerization initiator.
- the hydrogen abstraction type photopolymerization initiator include benzophenone, Michler's ketone, Michler's ethyl ketone and the like.
- the solvent for the photopolymerization initiator solution include polar solvents such as ethanol and acetone.
- the solvent is removed from the coating film 80A, and the photopolymerization initiator layer 80 is provided on the base material 2. Further, since the polar solvent used in the photopolymerization initiator solution can infiltrate the resin substrate, a part of the photopolymerization initiator is contained inside the resin substrate as the solvent infiltrates into the resin substrate. Invade.
- the second composition 32 containing the monomer is dropped onto the region surrounded by the spacer 60.
- the seal substrate 70 having ultraviolet transparency is covered, and the second composition 32 is spread and applied to the region surrounded by the spacer 60.
- the mask material 85 is placed in a portion of the film-like hydrogel where the non-adhesive region 3b is desired to be formed.
- a material that does not react with the second polymerizable monomer is used as the mask material 85.
- a paraffin film can be used as the mask material 85.
- the second composition 32 contains a second polymerizable monomer, a hydrogen abstraction type photopolymerization initiator, and if necessary, an organic solvent. However, if the concentration of the hydrogen abstraction type photopolymerization initiator contained in the layer 80 is sufficiently high, the second composition 32 may not contain the hydrogen abstraction type photopolymerization initiator. "Sufficiently high concentration” refers to a case where the concentration of the photopolymerization initiator is, for example, 10% by mass or more in the photopolymerization initiator solution used for forming the coating film 80A.
- the second polymerizable monomer is a monomer capable of forming a polymer by polymerization.
- the second polymerizable monomer has a functional group that forms a chemical bond with the polymerization initiator.
- the second polymerizable monomer becomes the first polymer material constituting the hydrogel by the polymerization reaction.
- the second polymerizable monomer is not particularly limited as long as it is a compound capable of forming a network structure of the first polymer material 31 by polymerization.
- Examples of the second polymerizable monomer include an acrylic monomer having an acrylic group. However, the second polymerizable monomer is not limited to this example.
- the second polymerizable monomer is polymerized and the second composition 32 is gelled to form an adhesive region at a portion overlapping the layer 80 of the photopolymerization initiator.
- the second composition 32 is used as the first polymer material 31.
- the ultraviolet UV3 is irradiated through the seal substrate 70.
- the peak wavelength of the ultraviolet UV3 is included in the absorption wavelength band of the photopolymerization initiator contained in the layer 80.
- the peak wavelength of ultraviolet UV3 is, for example, 365 nm.
- the photopolymerization initiator By irradiating with ultraviolet UV3, the photopolymerization initiator is reacted in a predetermined pattern.
- the photopolymerization initiator of the layer 80 is formed in the pattern of the mask material 85.
- a hydrogen atom is extracted from the base material 2.
- radicals which are reaction starting points, are generated on the base material 2.
- the monomer contained in the second composition 32 is polymerized starting from the radical generated in the base material 2, and the first polymer material 31 is obtained. Therefore, the first polymer material 31 is adhered to the base material 2 at a portion overlapping the layer 80 of the photopolymerization initiator.
- the ultraviolet UV3 is shielded from light and the photopolymerization initiator.
- Hydrogen atom extraction from the base material 2 does not occur. Even if a hydrogen atom is extracted from the base material 2 to generate a radical, the second composition 32 is not in contact with the base material 2. Therefore, the generated radicals do not react with the second polymerizable monomer in the second composition 32. Therefore, in the portion where the mask material 85 of the layer 80 overlaps, the second polymerizable monomers contained in the second composition 32 are polymerized without being bonded to the base material 2.
- the seal substrate 70 is removed.
- an adhesive region 3a that adheres to the base material 2 and a non-adhesive region 3b that does not adhere to the base material 2 are formed.
- a layer 31A of the first polymer material 31 constituting the hydrogel is provided.
- the polymerization initiator is reacted in a pattern to polymerize the monomer, but this embodiment is not limited to this.
- the photopolymerization initiator in the portion irradiated with the ultraviolet rays is excited and hydrogen on the surface of the base material is extracted. Bonds to the surface of the substrate.
- a layer of the photopolymerization initiator of the portion irradiated with ultraviolet rays is provided in advance on the base material. This ultraviolet irradiation is referred to as "first ultraviolet irradiation".
- the surface of the substrate is washed with the polar solvent contained in the photopolymerization initiator solution.
- the photopolymerization initiator other than the layer of the photopolymerization initiator provided on the base material can be removed from the surface of the base material.
- the photopolymerization initiator provided on the surface of the base material by the first ultraviolet irradiation and remains in a predetermined pattern. Layers react. Therefore, after forming a layer pattern of the photopolymerization initiator by the first ultraviolet irradiation, the second composition is applied to one surface of the base material, and the second ultraviolet irradiation is performed to polymerize the second polymerizable monomer.
- an adhesive region 3a is formed at a portion where the layer of the photopolymerization initiator and the second composition overlap. ..
- the layer 31A of the first polymer material 31 constituting the hydrogel is formed so that the adhesive region 3a that adheres to the base material 2 and the non-adhesive region 3b that does not adhere to the base material 2 are formed. It may be provided.
- a film of a silane coupling agent having a water-repellent and oil-repellent functional group may be selectively formed on one surface 2a of the base material 2 in advance.
- a film of a silane coupling agent having a water-repellent and oil-repellent functional group can be provided on one surface of a substrate by, for example, lithography.
- the film of the silane coupling agent repels the photopolymerization initiator solution and photopolymerizes in a pattern shape complementary to the film of the silane coupling agent.
- a coating film 80A of the initiator solution is formed.
- Examples of such a silane coupling agent include (trichloro (1H, 1H, 2H, 2H-heptadecafluorodecyl) silane).
- the layer 80 is formed from the coating film 80A formed in a pattern shape complementary to the film of the silane coupling agent, and the second composition is applied to one surface of the base material 2.
- the second polymerizable monomer is polymerized and reacts with the layer 80 of the photopolymerization initiator at the portion having a pattern shape complementary to the film of the silane coupling agent.
- the second polymerizable monomer reacts with the photopolymerization initiator to form an adhesive region.
- the hydrogen abstraction type initiator is not introduced on the water-repellent oil-repellent functional group, and the polymerization ability is increased. Since there is no such material, the substrate and the first polymer material can be patterned and bonded. In this way, the layer 31A of the first polymer material constituting the hydrogel is provided so that the adhesive region 3a that adheres to the base material 2 and the non-adhesive region 3b that does not adhere to the base material 2 are formed. You may.
- the details and preferable aspects of the configurations of the following (A), (B), (C), and (D) relate to the above-mentioned first aspect.
- the content can be the same as that described in the method for manufacturing a hydrogel fluid device.
- Configuration (B) The outside of the flow path is coated with a bulky second polymer material having a lower degree of swelling than the first polymer material.
- Composition (C) A bulky gel is obtained by swelling a second polymer material.
- a layer 11 of a silane coupling agent having a pattern shape is formed on one surface 2a of the base material 2.
- the silane coupling agent and the pattern forming method can be the same as those described in the method for manufacturing a hydrogel fluid device according to the first aspect.
- a layer 90 of the gel-invagable polymer is formed on the surface of the layer 11, and a pattern of the gel-injectable polymer is formed.
- the gel-embedding polymer include chitosan, alginic acid, polyvinyl alcohol and the like.
- the grafting to method or the grafting from method can be used. This makes it possible to react the adhesive functional group of the silane coupling agent with the gel-embedding polymer.
- the first polymer material 31 is formed on one surface 2a of the base material 2 on which the second pattern is formed so as to cover the layer 90 formed in the pattern.
- the sheet material 35 to be used is arranged. After that, the sheet material 35 and the gel-injecting polymer are brought into contact with each other. When the layer 90 and the sheet material 35 come into contact with each other, the gel-embedding polymer contained in the layer 90 permeates the inside of the sheet material 35 and is entangled with the network structure of the first polymer material 31. As a result, the gel-injectable polymer and the hydrogel are physically or chemically bonded, and the sheet material 35 and the base material 2 can be adhered to each other.
- the pH of the first polymer material constituting the sheet material 35 may be changed, and a low molecular weight cross-linking agent typified by glutaraldehyde is simultaneously diffused into the sheet material 35. You may. As a result, a physical bond or a chemical bond between the gel-impregnating polymers is formed, and the gel-embedding polymer and the first polymer material can be more firmly adhered to each other.
- the layer 31A of the first polymer material constituting the hydrogel may be provided so that the adhesive region and the non-adhesive region are formed in this way.
- the portion of the sheet material 35 that overlaps with the layer 90 is the adhesive region 3a, and the portion of the sheet material 35 that does not overlap with the layer 90 is the non-adhesive region 3b.
- the details and preferable aspects of the configurations of the following (A), (B), (C), and (D) are the hydrogel according to the second aspect. Similar to the method for manufacturing a fluid device, the content can be the same as that described in the method for manufacturing a hydrogel fluid device according to the first aspect described above.
- Configuration (B) The outside of the flow path is coated with a bulky second polymer material having a lower degree of swelling than the first polymer material.
- Composition (C) A bulky gel is obtained by swelling a second polymer material.
- Configuration (D) Further, a tubular structure is bonded to the opening surface of the flow path with an adhesive. The description of these overlapping configurations (A), (B), (C), and (D) will be omitted.
- the adhesive molecule examples include cyanoacrylate compounds.
- the pattern of adhesive molecules can be formed by lithographic techniques. In this case, the size of the pattern of adhesive molecules depends on the resolution of the lithography technique used.
- the size of the adhesive molecule pattern is not particularly limited within the scope of lithography technology.
- the lithography method is not particularly limited. For example, a method using a photomask, a method using a patterned UV light source, microcontact patterning ( ⁇ CP) in which a pattern is formed in advance with an elastic material such as PDMS and a chemical substance is transferred in the manner of a stamp can be mentioned.
- ⁇ CP microcontact patterning
- a sheet material using the first polymer material as a forming material is placed on one surface of the base material on which the second pattern of the adhesive molecule layer is formed. Then, the sheet material and the adhesive molecule are brought into contact with each other. When the layer of the adhesive molecule and the sheet material come into contact with each other, the adhesive molecule contained in the layer of the adhesive molecule permeates the inside of the sheet material and is entangled with the network structure of the first polymer material. As a result, the adhesive molecule and the hydrogel are physically or chemically bonded, and the sheet material and the base material can be adhered to each other.
- the layer 31A of the first polymer material constituting the hydrogel may be provided so that the adhesive region and the non-adhesive region are formed in this way.
- the portion of the sheet material that overlaps the layer of the adhesive molecule is the adhesive region, and the portion of the sheet material that does not overlap the layer of the adhesive molecule is the non-adhesive region.
- the details and preferred aspects of the configurations of the following (A), (B), (C), and (D) are the hydrogel according to the second aspect. Similar to the method for manufacturing a fluid device, the content can be the same as that described in the method for manufacturing a hydrogel fluid device according to the first aspect described above.
- Configuration (B) The outside of the flow path is coated with a bulky second polymer material having a lower degree of swelling than the first polymer material.
- Composition (C) A bulky gel is obtained by swelling a second polymer material.
- Configuration (D) Further, a tubular structure is bonded to the opening surface of the flow path with an adhesive. The description of these overlapping configurations (A), (B), (C), and (D) will be omitted.
- the present invention is not limited to the above-described embodiments and examples.
- the various shapes, combinations, and the like of each configuration shown in the above-mentioned example are examples, and can be variously changed based on design requirements and the like within a range that does not deviate from the gist of the present invention.
- the technical scope of the present invention also includes embodiments obtained by arbitrarily combining the technical means disclosed in the above-described embodiments as appropriate. As a specific example of the combination, one aspect of the present invention can be said to relate to the following [1] to [8].
- the hydrogel comprises a base material, a film-like hydrogel provided on the base material and having an adhesive region that adheres to the base material and a non-adhesive region that does not adhere to the base material.
- the first polymer material in the non-adhesive region is separated from the base material, and the base material and the layer of the first polymer material are separated from each other.
- a flow path is formed at the interface, the first polymer material is a film-like hydrogel, and the outside of the flow path is a bulk-like second height having a lower degree of swelling than the first polymer material.
- a method for producing a hydrogel fluid device which comprises coating with a molecular material and swelling the second polymer material to form a bulk gel.
- the glass substrate was washed to obtain a washed glass substrate.
- a surface-activated glass substrate was obtained by treating the washed glass substrate with oxygen plasma.
- a silanized glass substrate was obtained using a surface-activated glass substrate and a radically reactive silane coupling agent.
- a thin film of positive photoresist was formed on the silanized glass substrate by spin coating. Then, by irradiating a strip-shaped pattern UV light having a line width of 1 mm and developing the strip-shaped portion, a silanized glass substrate having no resist attached only to the strip-shaped portion having a line width of 1 mm was obtained.
- the substrate on which the first pattern of the adhesive functional group is formed is formed in addition to the strip-shaped part. Obtained (hereinafter, referred to as "patterned silanized substrate").
- Gel precursor solution 1 Contains acrylamide as the first polymerizable monomer, contains fluorescein-o-acrylate as the fluorescent monomer, contains methylenebisacrylamide as the cross-linking agent, contains KPS as the thermal polymerization initiator, and contains as the polymerization accelerator.
- an oxygen plasma-treated cover glass (hereinafter referred to as “seal substrate 1E”) is placed on the patterned silaneized substrate coated with the gel precursor solution 1 from above, and the gel precursor solution 1 is patterned. It was sandwiched between the silanized glass substrate and the seal substrate 1E. Then, the gel precursor solution 1 was completely gelled by UV irradiation, and the gel precursor solution 1 was used as the first polymer material (that is, hydrogel). After gelation, the seal substrate 1E is removed, the first polymer material is swollen with water, unreacted gel precursor molecules are removed, and the hybrid flow of Example 1 consisting of a film-like hydrogel and a glass substrate. I got the road.
- Example 1 Since the non-adhesive region was arranged in a strip shape with a line width of 1 mm, only the first polymer material in the region was selectively and freely swollen. As a result, only the first polymer material in the non-adhesive region changed significantly from a planar shape to a three-dimensional flow path shape.
- Gel precursor solution 2 Contains acrylamide as a low-swelling gel monomer, contains methylenebisacrylamide as a cross-linking agent, contains KPS as a thermal polymerization initiator, contains TEMED as a polymerization accelerator, and contains PBDT as a polymer for physical cross-linking.
- An oxygen plasma-treated cover glass (hereinafter referred to as "seal substrate 2E") is placed on a substrate obtained by dropping the gel precursor solution 2 onto the hybrid flow path from above, and the gel precursor solution 2 is sealed with the hybrid flow path. It was sandwiched between the substrates 2E. Next, the gel precursor solution 2 was completely gelled, and the precursor solution 2 was used as a bulky second polymer material. Then, after gelation, removing the seal substrate 2E, immersed in ZrCl 2 O solution to form a physical crosslinking by PBDT and Zr 4+ ions. Then, excess ions and the like were washed away to obtain a hydrogel fluid device having a base material, a film-like hydrogel, and a bulk-like gel 5. Further, a PTFE tube having an outer diameter of 1 mm was inserted into the hybrid flow path, and the glass substrate, the film-shaped hydrogel and the PTFE tube were joined using an adhesive to obtain the hydrogel fluid device of Example 1.
- the hybrid flow path 4E is coated with a bulk gel 5E.
- the hydrogel fluid device of Example 1 was able to bond PTFE as the liquid feed tube 6E with the adhesive 7E.
- the tube joint is fragile, and there is a problem that it collapses when a little force is applied.
- the structure of the flow path can be toughened and sufficient strength can be imparted to the joint portion by coating the bulk gel.
- the flow path (hybrid flow path) was excellent in mechanical strength during processing.
- the film-like hydrogel 3E fluorescently stained with the fluorescent monomer is formed as a flow path structure coated with the bulk-like gel 5E, and the hybrid flow path 4E. I was able to confirm. In addition, it was confirmed that the hybrid flow path 4E was formed as a space above the glass substrate 2E.
- red rhodamine B small molecule flows in the hydrogel fluid device as time passes, such as 0 seconds, 180 seconds, and 2 hours after injecting the dye into the flow path. It was observed that the film-like hydrogel and the bulk-like gel diffused in this order from the road. As shown in FIG. 27, when a cross-sectional observation image is taken with a confocal fluorescence microscope, the film-like hydrogel 3E constituting the wall surface of the hybrid flow path 4E is fluorescently dyed in green, and the bulk-like form is formed. The inside of the gel 5E also showed red fluorescence.
- red rhodamine B permeates the wall surface (film-like hydrogel 3E) of the hybrid flow path 4E that is fluorescently dyed in green, and shows red fluorescence to the inside of the bulk-like gel 5E. Was observed to be diffused.
- the hydrogel fluid device of the present invention is provided with a flow path having an arbitrary shape that can be formed by a simple method, the material of the base material can be arbitrarily selected, and the flow path is excellent in mechanical strength.
- a flow path having an arbitrary shape can be easily formed, a material of a base material can be arbitrarily selected, and a hydrogel having excellent mechanical strength when processing the flow path.
- a fluid device is obtained.
- the hydrogel fluid device according to the present invention is useful as a cell culture device, a reaction vessel, and a sensing device that make use of the diffusible flow path shape.
- the hydrogel fluid device according to the present invention can be widely applied to industrial fields such as tissue engineering and chemical engineering.
- Hydrogel fluid device 2 Base material 3: Film-like hydrogel 4: Flow path (hybrid flow path) 5: Bulk gel 6: Tubular structure 7: Adhesive 11: Adhesive functional group layer (first pattern) 30: First composition 31: First polymer material 32: Second composition 35: Sheet material 40: Resist layer 50: Composition for low swelling gel 51: Second polymer material 60, 61 : Spacer 70, 71: Seal substrate 80: Photopolymerization initiator layer 85: Mask material 90: Gel-embedding polymer layer
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
簡便な方法で形成可能な任意の形状の流路を備え、基材の材料を任意に選択でき、流路を加工する際の力学的強度に優れる、ハイドロゲル流体デバイスと、その製造方法の提供。 基材2との接着領域3aと基材2との非接着領域3bとを有するフィルム状のハイドロゲル3と、非接着領域3bを構成するハイドロゲルの膨潤により形成された流路4と、流路4の外側のフィルム状のハイドロゲル3の一面を被覆し、かつ、膨潤前のハイドロゲルより膨潤度が低い高分子材料で構成されるバルク状のゲル5を備えるハイドロゲル流体デバイス1;基材2との接着領域3aと基材2との非接着領域3bが形成されるように、ハイドロゲルの層を基材2に設け、ハイドロゲルを膨潤させることで流路4を形成し、流路4の外側を膨潤前のハイドロゲルより膨潤度が低い高分子材料で被覆し、バルク状の高分子材料を膨潤させる、ハイドロゲル流体デバイスの製造方法。
Description
本発明は、ハイドロゲル流体デバイス、ハイドロゲル流体デバイスの製造方法に関する。
ハイドロゲルが知られている。ハイドロゲルは生体親和性、高含水性、高柔軟性、高潤滑性、物質透過性等の性質を具備する。ハイドロゲルのこれらの性質は生体組織の性質と類似する。そのため、ハイドロゲルは、生体システムを人工的に再現したデバイスの素材として適している。
ハイドロゲルを三次元的な形状、例えば、中空状に成形し、流路とすることが提案されている。例えば、ハイドロゲルで形成された流路の内側に液体を流し込み、流路とハイドロゲルとの間で液体中の物質の授受が可能となる生体システムの構築が検討されている。ハイドロゲルを用いた生体システムは、医療、細胞培養、ロボット工学等の種々の産業上の分野での用途が期待される。
ハイドロゲルに流路を形成する技術として、例えば非特許文献1の方法が知られている。非特許文献1は3Dプリンティングと犠牲層を組み合わせることで、ハイドロゲルに流路を形成する方法を開示している。しかし、非特許文献1に開示された方法においては、材料の選択肢が制限され、任意の基材を使用できない。また、形成される流路の最小サイズがミリメートルスケールであり、流路の形状の選択にも制限がある。加えて、非特許文献1に開示された方法では、犠牲層を取り除くプロセスが煩雑であり、簡便な方法ではない。
そこで、本発明者らは、ハイドロゲルに流路を形成する方法として、非特許文献2に記載の方法を開示している。例えば、図28、29に示すように、非特許文献2に記載の方法では、任意の基材102とハイドロゲル103との接着領域103aと非接着領域103bを任意のパターン状に配置する。非接着領域103bのハイドロゲル103の薄膜を自由膨潤させることで、マイクロメートルスケールの微小構造として、任意形状のハイドロゲルを有する流路104(以下、「ハイブリット流路」と記載することがある。)を備えるデバイス100を簡便に形成できる。
DOI=10.3389/conf.FBIOE.2016.01.01021
R.Takahashi,et al.ACS Appl.Mater.Interfaces 2019,11,28267-28277
しかしながら、従来のハイブリット流路を備えるデバイスにおいては、ハイブリット流路の薄膜部分のハイドロゲルが力学的に脆弱である。そのため、例えば、液体を送液するためのチューブ等の管状構造物をハイブリット流路に取り付ける際に、加工が困難であるという課題がある。
そこで、流路の形状の選択、基材の選択の幅広さ、ハイブリット流路の形成プロセスの簡便性を維持したまま、加工の際に充分な強度を具備するハイブリット流路を備えるデバイスが求められている。
そこで、流路の形状の選択、基材の選択の幅広さ、ハイブリット流路の形成プロセスの簡便性を維持したまま、加工の際に充分な強度を具備するハイブリット流路を備えるデバイスが求められている。
本発明の目的は、簡便な方法で形成可能な任意の形状の流路を備え、基材の材料を任意に選択でき、流路を加工する際の力学的強度に優れる、ハイドロゲル流体デバイスと、その製造方法を提供することである。
本発明の一態様は、基材と、前記基材に設けられ、かつ、前記基材と接着する接着領域と前記基材と接着しない非接着領域とを有するフィルム状のハイドロゲルと、前記ハイドロゲルを構成する第1の高分子材料の膨潤により前記非接着領域の前記第1の高分子材料が前記基材から離間することで、前記ハイドロゲルと前記基材との界面に形成された流路と、前記流路の外側の前記ハイドロゲルの一面を被覆し、かつ、前記第1の高分子材料より膨潤度が低い第2の高分子材料で構成されるバルク状のゲルと、を備える、ハイドロゲル流体デバイスである。
本発明により、簡便な方法で形成可能な任意の形状の流路を備え、基材の材料を任意に選択でき、流路を加工する際の力学的強度に優れる、ハイドロゲル流体デバイスと、その製造方法を提供することが可能となる。
以下、図1~図23を参照して好適な実施形態について説明するが、本発明は、以下に説明する実施形態に限定されない。以下の説明で用いる図面においては、本発明の特徴を分かりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同様であるとは限らない。
<ハイドロゲル流体デバイス>
図1は、一実施形態に係るハイドロゲル流体デバイス1の斜視図である。図2は、ハイドロゲル流体デバイス1の線分II-IIにおける矢視断面図である。図1、2に示すように、ハイドロゲル流体デバイス1は、基材2とフィルム状のハイドロゲル3と流路4とバルク状のゲル5と管状構造物6、6を備える。
図1は、一実施形態に係るハイドロゲル流体デバイス1の斜視図である。図2は、ハイドロゲル流体デバイス1の線分II-IIにおける矢視断面図である。図1、2に示すように、ハイドロゲル流体デバイス1は、基材2とフィルム状のハイドロゲル3と流路4とバルク状のゲル5と管状構造物6、6を備える。
(基材)
基材2は、フィルム状のハイドロゲル3を支持する。基材2の形状は特に限定されない。基材2の形状としては、微細加工技術等によって、より複雑な外部刺激を受信できる立体形状に加工してもよい。基材2の力学物性は限定されない。基材2の剛性率は、フィルム状のハイドロゲル3の剛性率とは異なる。例えば、一実施形態において基材2の剛性率は、フィルム状のハイドロゲル3の剛性率よりも高い。
基材2は、フィルム状のハイドロゲル3を支持する。基材2の形状は特に限定されない。基材2の形状としては、微細加工技術等によって、より複雑な外部刺激を受信できる立体形状に加工してもよい。基材2の力学物性は限定されない。基材2の剛性率は、フィルム状のハイドロゲル3の剛性率とは異なる。例えば、一実施形態において基材2の剛性率は、フィルム状のハイドロゲル3の剛性率よりも高い。
基材2の剛性率がフィルム状のハイドロゲル3の剛性率に対して著しく高い場合、フィルム状のハイドロゲル3のみを大きく変形させて、基材2との非接着領域3bに大きな空間を誘起できる。そのため、フィルム状のハイドロゲル3の膨潤による流路4、すなわち、ハイブリット流路の形成の自由度が向上する。
本明細書において、「膨潤」とは、ゲルの網目構造中に水等の液体が流入し、ゲルの体積が増加することをいう。
本明細書において、「膨潤」とは、ゲルの網目構造中に水等の液体が流入し、ゲルの体積が増加することをいう。
基材2の材質の種類は、特に限定されない。基材2は、光透過性を具備してもよく、光透過性を具備しなくてもよい。基材2の材料としては、透明性、化学的安定性に優れるガラス;力学刺激によって大変形を誘起できるポリシリコーン、合成ゴム等のエラストマー;光刺激によって熱刺激を誘起できるカーボンナノチューブ、金ナノ構造体、ポルフィリン誘導体、ポリドーパミン、インドシアニングリーン等を含有するフィルム;電気刺激によって熱刺激を誘起できる導電体;磁場刺激によって熱刺激を誘起できる磁性金属体;力学刺激によって電気刺激を誘起できる圧電素子;電気刺激によって光刺激を誘起できる発光ダイオード等が挙げられる。基材2は、フィルム状のハイドロゲル3と膨潤度が異なる他のハイドロゲルでもよい。
基材2の材料はこれらの例示に限定されない。基材2は、種々の材料及び材質から選択できる。
基材2の材料はこれらの例示に限定されない。基材2は、種々の材料及び材質から選択できる。
(フィルム状のハイドロゲル)
フィルム状のハイドロゲル3は、基材2の一面2aに設けられている。フィルム状のハイドロゲル3は、基材2と接着する接着領域3aと、基材2と接着しない非接着領域3bとを有する。接着領域3aにおいては、接着性官能基の層11によって、フィルム状のハイドロゲル3と基材2とが接着されている。
フィルム状のハイドロゲル3は、基材2の一面2aに設けられている。フィルム状のハイドロゲル3は、基材2と接着する接着領域3aと、基材2と接着しない非接着領域3bとを有する。接着領域3aにおいては、接着性官能基の層11によって、フィルム状のハイドロゲル3と基材2とが接着されている。
図1、2に示すように、非接着領域3bは、流路4の内側に帯状に配置されている。そして、接着領域3aは、非接着領域3bの延在方向の両側に配置されている。ここで、図1、2に示す接着領域3a、非接着領域3bのパターンは一例であり、設計に応じて種々のパターン形状を採用できる。
ハイドロゲル流体デバイス1において、フィルム状のハイドロゲル3は、ハイドロゲルを構成する第1の高分子材料が膨潤した後のハイドロゲルである。すなわち、フィルム状のハイドロゲル3は、水等の液体が第1の高分子材料の網目構造等に流入し、膨潤したものである。そのため、フィルム状のハイドロゲル3は、第1の高分子材料の膨潤物であるとも言える。第1の高分子材料の膨潤度は、後述の第2の高分子材料より相対的に高く、かつ、膨潤の際の体積増加の際に、所望の流路を形成できる範囲であれば特に限定されない。
前記第1の高分子材料は、化学架橋による化学架橋ゲルでもよく、物理架橋により得られる物理架橋ゲルでもよい。前記第1の高分子材料としては、例えば、ポリアクリルアミド、ポリビニルアルコール等の合成水溶性高分子;キトサン、アルギン酸、セルロース等の多糖類;コラーゲン、アルブミン等のタンパク質が挙げられる。
第1の高分子材料の合成方法は特に限定されない。例えば、アクリル系高分子の場合、アクリル基の重合反応による化学架橋によるゲル化反応が挙げられる。多糖類及びタンパク質の場合、物理結合によるゲル化を用いてもよく、グルタルアルデヒドに代表される化学架橋剤を用いてもよい。第1の高分子材料の合成方法の一例については、後述の<ハイドロゲル流体デバイスの製造方法>の項で詳細に説明する。フィルム状のハイドロゲル3の一例としては、例えば、後述の第1の高分子材料31が膨潤した後のハイドロゲルである。
第1の高分子材料の合成方法は特に限定されない。例えば、アクリル系高分子の場合、アクリル基の重合反応による化学架橋によるゲル化反応が挙げられる。多糖類及びタンパク質の場合、物理結合によるゲル化を用いてもよく、グルタルアルデヒドに代表される化学架橋剤を用いてもよい。第1の高分子材料の合成方法の一例については、後述の<ハイドロゲル流体デバイスの製造方法>の項で詳細に説明する。フィルム状のハイドロゲル3の一例としては、例えば、後述の第1の高分子材料31が膨潤した後のハイドロゲルである。
第1の高分子材料の種類は、ハイドロゲルを構成する高分子材料であれば、特に限定されない。例えば、外部刺激応答性のハイドロゲルを第1の高分子材料として用いると、ハイドロゲル流体デバイス1の形状変形の制御が可能である。
本明細書において、「外部刺激応答性」とは、高分子材料が、熱、光、電気、pH等の外部刺激に応じて分子構造が変化する性質を意味する。
本明細書において、「外部刺激応答性」とは、高分子材料が、熱、光、電気、pH等の外部刺激に応じて分子構造が変化する性質を意味する。
外部刺激応答性のハイドロゲルの例としては、熱応答性のハイドロゲル、pH応答性のハイドロゲル、光応答性のハイドロゲルが挙げられる。
熱応答性のハイドロゲルとしては、ポリ(N-イソプロピルアクリルアミド)、ポリ(メチルビニルエーテル)等を含むゲルが挙げられる。
pH応答性のハイドロゲルとしては、アニオン又はカチオンモノマーから合成された高分子電解質を含むゲルが挙げられる。
光応答性のハイドロゲルとしては、スピロピラン又はアゾベンゼンを骨格に有する高分子を含むゲルが挙げられる。
さらに、ハイドロゲルとしては、ダブルネットワークゲル、スライドリングゲル、Tetra-PEGゲル、ナノクレイゲル等の強靭性ハイドロゲルを用いてもよい。ここで「PEG」は、polyethylene glycolの略である。
これらのハイドロゲルは一種単独で用いてもよく、複数を併用してもよい。例えば、これらのハイドロゲルのうち複数種を混合することで、複数種の刺激に応答するハイドロゲルとしてもよい。
熱応答性のハイドロゲルとしては、ポリ(N-イソプロピルアクリルアミド)、ポリ(メチルビニルエーテル)等を含むゲルが挙げられる。
pH応答性のハイドロゲルとしては、アニオン又はカチオンモノマーから合成された高分子電解質を含むゲルが挙げられる。
光応答性のハイドロゲルとしては、スピロピラン又はアゾベンゼンを骨格に有する高分子を含むゲルが挙げられる。
さらに、ハイドロゲルとしては、ダブルネットワークゲル、スライドリングゲル、Tetra-PEGゲル、ナノクレイゲル等の強靭性ハイドロゲルを用いてもよい。ここで「PEG」は、polyethylene glycolの略である。
これらのハイドロゲルは一種単独で用いてもよく、複数を併用してもよい。例えば、これらのハイドロゲルのうち複数種を混合することで、複数種の刺激に応答するハイドロゲルとしてもよい。
フィルム状のハイドロゲル3を構成する第1の高分子材料は、種々の添加剤をさらに含んでもよい。添加剤は、ハイドロゲルの形成を阻害しなければ特に限定されない。任意の添加剤の使用により、ハイドロゲル3に任意の機能を付与できる。
ハイドロゲル3における添加剤としては、例えば、生体親和性を向上させる生体分子;抗菌性を発現させるための銀ナノ粒子、界面活性剤;導電性を増加させるためのイオン液体、導電性高分子;磁場に反応させるための磁性ナノ粒子等が挙げられる。ただし、添加剤はこれらの例示に限定されない。
ハイドロゲル3における添加剤としては、例えば、生体親和性を向上させる生体分子;抗菌性を発現させるための銀ナノ粒子、界面活性剤;導電性を増加させるためのイオン液体、導電性高分子;磁場に反応させるための磁性ナノ粒子等が挙げられる。ただし、添加剤はこれらの例示に限定されない。
フィルム状のハイドロゲル3の厚みは特に限定されないが、自重でつぶれない程度の構造強度を保てる厚みであることが好ましい。フィルム状のハイドロゲル3の厚みを薄く維持したまま、自重を支えられるだけの強度を保つために、化学架橋の架橋度、物理架橋の架橋度又はゲル中の高分子の濃度を高くすることにより、ハイドロゲル3の力学物性を向上させてもよい。
ハイドロゲル3を構成する第1の高分子材料の形状は、そのすべてがフィルム状である必要はない。すなわち、第1の高分子材料は、一部にフィルム状以外の形状部分を有してもよい。フィルム状以外の形状としては、特に限定されず、使用形態に応じて様々な形状を選択できる。例えばフィルム状の他に、板形状、ブロック形状等が挙げられる。
一方、チャネル状の形状変形を誘起させたい場合は、相対的に小さな力で大変形が可能であることから、フィルム状が好ましい。
一方、チャネル状の形状変形を誘起させたい場合は、相対的に小さな力で大変形が可能であることから、フィルム状が好ましい。
(流路)
流路4は、基材2とフィルム状のハイドロゲル3との界面に形成されている。流路4は、ハイドロゲル3を構成する第1の高分子材料の膨潤により非接着領域3bの第1の高分子材料が基材2から離間することで形成されている。
具体的には、基材2とフィルム状のハイドロゲル3の界面において、接着領域3aと非接着領域3bとのパターン配置によって、第1の高分子材料が基材2から離間する部分の位置の制御が行われたものである。第1の高分子材料が膨潤し、非接着領域3bの第1の高分子材料が基材2から選択的に離間することにより、第1の高分子材料の座屈変形が起き、フィルム状のハイドロゲル3となる。
その結果として、基材2とフィルム状のハイドロゲル3とで囲まれた空間としてハイブリット流路、すなわち流路4が形成されている。
流路4は、基材2とフィルム状のハイドロゲル3との界面に形成されている。流路4は、ハイドロゲル3を構成する第1の高分子材料の膨潤により非接着領域3bの第1の高分子材料が基材2から離間することで形成されている。
具体的には、基材2とフィルム状のハイドロゲル3の界面において、接着領域3aと非接着領域3bとのパターン配置によって、第1の高分子材料が基材2から離間する部分の位置の制御が行われたものである。第1の高分子材料が膨潤し、非接着領域3bの第1の高分子材料が基材2から選択的に離間することにより、第1の高分子材料の座屈変形が起き、フィルム状のハイドロゲル3となる。
その結果として、基材2とフィルム状のハイドロゲル3とで囲まれた空間としてハイブリット流路、すなわち流路4が形成されている。
流路4は、基材2から離間した部分のフィルム状のハイドロゲル3を流路面4cとして有する。流路4は、第1の開口面4aと第2の開口面4bとを有する。流路4の流路面cは、第1の開口面4aと第2の開口面4bとの間において、非接着領域3bの延在方向に沿って帯状に形成されている。そして、基材2とフィルム状のハイドロゲル3との界面に形成された流路4が、バルク状のゲル5の第1の面5a側から第2の面5b側に貫通している。
(バルク状のゲル)
ハイドロゲル流体デバイス1において、バルク状のゲル5は、ゲルを構成する第2の高分子材料が膨潤した後のゲルである。すなわち、バルク状のゲル5は、水等の液体が第2の高分子材料の網目構造等に流入し、膨潤したものである。そのため、フィルム状のハイドロゲル3は、第2の高分子材料の膨潤物であるとも言える。
第2の高分子材料は、フィルム状のハイドロゲル3を構成する第1の高分子材料より膨潤度が低い。第2の高分子材料の膨潤度は、第1の高分子材料の膨潤度より低ければ特に限定されない。第2の高分子材料の膨潤度は、例えば、一方向への膨潤度が膨潤前のサイズを基準として0.8倍~1.2倍程度が望ましい。
ここで、「膨潤度」は、例えば、重合直後の第1の高分子材料又は第2の高分子材料を適当な直径の円板形状の試料として切り出し、円板形状の試料をサイズ変化が生じなくなるまで純水中で静置し、下式(1)によって算出できる。
(膨潤度)=d/d0 ・・・式(1)
式(1)中、dは、純水中に静置した後の試料の最大部分の直径であり、d0は、純水中に静置する前の円形形状の試料の直径である。
ハイドロゲル流体デバイス1において、バルク状のゲル5は、ゲルを構成する第2の高分子材料が膨潤した後のゲルである。すなわち、バルク状のゲル5は、水等の液体が第2の高分子材料の網目構造等に流入し、膨潤したものである。そのため、フィルム状のハイドロゲル3は、第2の高分子材料の膨潤物であるとも言える。
第2の高分子材料は、フィルム状のハイドロゲル3を構成する第1の高分子材料より膨潤度が低い。第2の高分子材料の膨潤度は、第1の高分子材料の膨潤度より低ければ特に限定されない。第2の高分子材料の膨潤度は、例えば、一方向への膨潤度が膨潤前のサイズを基準として0.8倍~1.2倍程度が望ましい。
ここで、「膨潤度」は、例えば、重合直後の第1の高分子材料又は第2の高分子材料を適当な直径の円板形状の試料として切り出し、円板形状の試料をサイズ変化が生じなくなるまで純水中で静置し、下式(1)によって算出できる。
(膨潤度)=d/d0 ・・・式(1)
式(1)中、dは、純水中に静置した後の試料の最大部分の直径であり、d0は、純水中に静置する前の円形形状の試料の直径である。
バルク状のゲル5を構成する第2の高分子材料は、ハイドロゲルでもよく、ハイドロゲル以外のゲルでもよい。第2の高分子材料がハイドロゲルである場合、第2の高分子材料は、上述の(フィルム状のハイドロゲル)の項で説明した第1の高分子材料と同一でもよく、異なってもよい。第2の高分子材料として、具体的には、例えば、モノマーのラジカル重合反応による共有結合によって架橋される化学架橋ゲルが挙げられる。
化学架橋ゲルとしては、例えば、ポリアクリルアミド及びその誘導体(ポリジメチルアクリルアミド、ポリN-イソプロピルアクリルアミド等)が挙げられる。この場合、架橋剤としてメチレンビスアクリルアミドを用いることで、架橋密度を高め、第2の高分子材料の膨潤度を上記の数値範囲内に収めてもよい。
化学架橋ゲルとしては、例えば、ポリアクリルアミド及びその誘導体(ポリジメチルアクリルアミド、ポリN-イソプロピルアクリルアミド等)が挙げられる。この場合、架橋剤としてメチレンビスアクリルアミドを用いることで、架橋密度を高め、第2の高分子材料の膨潤度を上記の数値範囲内に収めてもよい。
第2の高分子材料としては、正電荷又は負電荷を有するポリマーと、それらと反対の多価電荷を有するイオンを組み合わせた物理架橋ゲルも挙げられる。
物理架橋ゲルとしては、例えば、負電荷を有するポリマーであるアルギン酸ナトリウム溶液と、塩化カルシウム、硫酸カルシウム等のカルシウム溶液とを組み合わせてゲル化した物理架橋ゲルが挙げられる。他にも、水溶性のポリアラミドであるpoly(2,2’-disulfo-4,4’-bensidine terephthalamide :PBDT)と様々な金属多価カチオン(Ca2+,Fe2+,Al3+,Zr4+,Ti4+等)と組み合わせた物理架橋ゲルが挙げられる。PBDTの代わりに同じく負電荷を帯びているTEMPO酸化されたセルロースナノファイバー(NIPPON PAPER INDUSTRIES CO.,LTD.)、リン酸エステル化法によって解繊されたセルロースナノファイバー(Oji Holdings Corporation)を用いてもよい。
ここで「TEMPO」は、2,2,6,6-tetramethylpiperidine 1-oxyl(2,2,6,6-テトラメチルピペリジン-1-オキシルラジカル)の略である。
物理架橋ゲルとしては、例えば、負電荷を有するポリマーであるアルギン酸ナトリウム溶液と、塩化カルシウム、硫酸カルシウム等のカルシウム溶液とを組み合わせてゲル化した物理架橋ゲルが挙げられる。他にも、水溶性のポリアラミドであるpoly(2,2’-disulfo-4,4’-bensidine terephthalamide :PBDT)と様々な金属多価カチオン(Ca2+,Fe2+,Al3+,Zr4+,Ti4+等)と組み合わせた物理架橋ゲルが挙げられる。PBDTの代わりに同じく負電荷を帯びているTEMPO酸化されたセルロースナノファイバー(NIPPON PAPER INDUSTRIES CO.,LTD.)、リン酸エステル化法によって解繊されたセルロースナノファイバー(Oji Holdings Corporation)を用いてもよい。
ここで「TEMPO」は、2,2,6,6-tetramethylpiperidine 1-oxyl(2,2,6,6-テトラメチルピペリジン-1-オキシルラジカル)の略である。
バルク状のゲル5は、流路4の外側のフィルム状のハイドロゲル3の一面を被覆している。ハイドロゲル流体デバイス1においては、バルク状のゲル5が、フィルム状のハイドロゲル3が基材2と接触しない方の面を被覆している。すなわち、バルク状のゲル5によって被覆されるフィルム状のハイドロゲル3の一面は、基材2と接触する面と反対側の(すなわち、基材2と接触する面と対向する)一面である。
バルク状のゲル5は、流路4の外側を被覆している。そのため、流路4の内側に水性液体を流し込むと、水性液体が流路面4cのハイドロゲルを透過し、流路4の外側に拡散し、ゲル5に到達する。
例えば、ゲル5がハイドロゲルで構成されている場合、ゲル5に到達した水性液体がゲル5の内部に拡散可能である。そのため、ゲル5の内部にあらかじめ任意の対象物(例えば、細胞、培養組織)を配置しておくことで、ゲル5の内部の所定の領域の対象物に水性液体を選択的に供給できる。
例えば、ゲル5がハイドロゲルで構成されている場合、ゲル5に到達した水性液体がゲル5の内部に拡散可能である。そのため、ゲル5の内部にあらかじめ任意の対象物(例えば、細胞、培養組織)を配置しておくことで、ゲル5の内部の所定の領域の対象物に水性液体を選択的に供給できる。
例えば、ゲル5を構成する第2の高分子材料として、正電荷又は負電荷を有するハイドロゲルを用いる場合、流路4に特定の電荷をもった低分子の拡散を防ぐ機能を付与できる。すなわち、流路4の内側から外側に特定の電荷をもった低分子が拡散しないように遮蔽する機能をゲル5に付与できる。
他にも、例えば、ゲル5を構成する第2の高分子材料として、外部刺激に応答して親水性、疎水性の性質が切り替わるハイドロゲル;外部刺激に応答して膨潤度を変化させることができるハイドロゲルを用いることもできる。
外部刺激に応答して親水性、疎水性の性質が切り替わるハイドロゲルを用いる場合、ゲル5が外部刺激に応答した結果として親水性であるときは、ゲル5内を拡散する低分子を親水性のものに選択的に限定できる。一方、ゲル5が外部刺激に応答した結果として疎水性であるときは、ゲル5内を拡散する低分子を疎水性のものに選択的に限定できる。
この一例のように、ハイドロゲル流体デバイス1によれば、ゲル5の性質の選択により、流路4の内側から外側に拡散する低分子拡散のフィルタリングが可能となる。このフィルタリング機能は、上述の一例のように外部刺激に応答して変化させることが可能であるため、時間的な制御が可能である。
外部刺激に応答して親水性、疎水性の性質が切り替わるハイドロゲルを用いる場合、ゲル5が外部刺激に応答した結果として親水性であるときは、ゲル5内を拡散する低分子を親水性のものに選択的に限定できる。一方、ゲル5が外部刺激に応答した結果として疎水性であるときは、ゲル5内を拡散する低分子を疎水性のものに選択的に限定できる。
この一例のように、ハイドロゲル流体デバイス1によれば、ゲル5の性質の選択により、流路4の内側から外側に拡散する低分子拡散のフィルタリングが可能となる。このフィルタリング機能は、上述の一例のように外部刺激に応答して変化させることが可能であるため、時間的な制御が可能である。
外部刺激に応答して膨潤率(含水率)を変化させることができるハイドロゲルを用いる場合、ゲル5の膨潤率が外部刺激に応答した結果として相対的に高いときは、ゲル5内を拡散する低分子の拡散速度が相対的に遅くなる。一方、ゲル5の膨潤率が外部刺激に応答した結果として相対的に低いときは、ゲル5内を拡散する低分子の拡散速度が相対的に速くなる。
この一例のように、ハイドロゲル流体デバイス1によれば、ゲル5の性質の選択により、バルク状のゲル5内を拡散する低分子の拡散速度の制御が可能となる。この拡散速度の制御機能は、上述の一例のように外部刺激に応答して変化させることが可能であるため、時間的な制御が可能である。
この一例のように、ハイドロゲル流体デバイス1によれば、ゲル5の性質の選択により、バルク状のゲル5内を拡散する低分子の拡散速度の制御が可能となる。この拡散速度の制御機能は、上述の一例のように外部刺激に応答して変化させることが可能であるため、時間的な制御が可能である。
他にも、バルク状のゲル5は、流路4から拡散してくる低分子に対して蛍光等の所定の応答を示す官能基を有してもよい。この場合、低分子がゲル5内を拡散するときに、ゲル5が蛍光等の所定の応答を示すため、拡散した低分子のセンサーとしての機能をハイドロゲル流体デバイス1に付与できる。
バルク状のゲル5の力学強度は特に限定されない。例えば、Polydimethylsiloxane(PDMS)と同程度の弾性率(~1.3MPa)をバルク状のゲル5に求める場合、第2の高分子材料としては、物理架橋ゲルと化学架橋ゲルとを複合化したダブルネットワークゲルが好ましい。ダブルネットワークゲルは、強靭なダブルネットワーク構造を有するため、力学強度がさらに向上する。
バルク状のゲル5の形状は特に限定されない。ただし、バルク状のゲル5の厚みは、流路4を被覆する点から、流路4の高さHよりは厚くする必要がある。チューブとの接合部に十分な強度を持たせるために、バルク状のゲル5の厚みをさらに厚くしてもよい。
バルク状のゲル5を構成する第2の高分子材料は、極端な膨潤度の変化のない範囲内であれば種々の添加剤を含んでもよい。任意の添加剤の使用により、ゲル5に任意の機能を付与できる。
ゲル5における添加剤は、ゲル形成を阻害しなければ特に限定されない。例えば、生体親和性を向上させる生体分子;抗菌性を発現させるための銀ナノ粒子、界面活性剤;導電性を増加させるためのイオン液体、導電性高分子;磁場に反応させるための磁性ナノ粒子;グルコースと結合して蛍光強度が増強されるタンパク質等が挙げられる。
ゲル5における添加剤は、ゲル形成を阻害しなければ特に限定されない。例えば、生体親和性を向上させる生体分子;抗菌性を発現させるための銀ナノ粒子、界面活性剤;導電性を増加させるためのイオン液体、導電性高分子;磁場に反応させるための磁性ナノ粒子;グルコースと結合して蛍光強度が増強されるタンパク質等が挙げられる。
第2の高分子材料の合成方法は、第1の高分子材料より膨潤度が低くなるような方法であれば、特に限定されない。第2の高分子材料の合成方法の一例については、後述の<ハイドロゲル流体デバイスの製造方法>の項で詳細に説明する。バルク状のゲル5の一例としては、例えば、後述の第2の高分子材料51が膨潤した後のゲルである。
(管状構造物)
管状構造物6、6は、流路4の第1の開口面4a、第2の開口面4bに接着剤7、7によってそれぞれ固定されている。具体的には流路4の第1の開口面4a、第2の開口面4bのそれぞれにおいて、管状構造物6、6が基材2とハイドロゲル3との間で接着剤7、7によってそれぞれ固定されている。
管状構造物6は、流路4内に任意の流体を供給するためのものである。
管状構造物6、6は、流路4の第1の開口面4a、第2の開口面4bに接着剤7、7によってそれぞれ固定されている。具体的には流路4の第1の開口面4a、第2の開口面4bのそれぞれにおいて、管状構造物6、6が基材2とハイドロゲル3との間で接着剤7、7によってそれぞれ固定されている。
管状構造物6は、流路4内に任意の流体を供給するためのものである。
管状構造物6は例えば、送液チューブである。送液チューブは、外部から送液可能な携帯であれば特に限定されない。送液チューブの種類は、特に限定されない。送液チューブとしては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン(PFA)、ポリウレタン、ポリエチレン、シリコーン、ポリイミド等からなるチューブが挙げられる。
管状構造物6の外径は特に制限されない。ただし、流路4の高さHと同程度の外径のチューブが望ましい。
管状構造物6の外径は特に制限されない。ただし、流路4の高さHと同程度の外径のチューブが望ましい。
接着剤7、7は、送液チューブを流路4に固定する。すなわち、接着剤7、7は、管状構造物6を基材2とフィルム状のハイドロゲル3との間で固定する。
図2に示すようにハイドロゲル流体デバイス1においては、接着剤7、7は、流路4の入り口の開口面4a、4bにおいて管状構造物6の周囲に、流路4の流路面4cと接する空間に密に充填されている。接着剤7、7は、耐水性を具備し、かつ、基材2及びフィルム状のハイドロゲル3と接着性を具備するものが望ましい。接着剤7、7としては、例えば、シアノアクリレート系の接着剤、シリコーン系接着剤、エポキシ系接着剤等が挙げられる。
図2に示すようにハイドロゲル流体デバイス1においては、接着剤7、7は、流路4の入り口の開口面4a、4bにおいて管状構造物6の周囲に、流路4の流路面4cと接する空間に密に充填されている。接着剤7、7は、耐水性を具備し、かつ、基材2及びフィルム状のハイドロゲル3と接着性を具備するものが望ましい。接着剤7、7としては、例えば、シアノアクリレート系の接着剤、シリコーン系接着剤、エポキシ系接着剤等が挙げられる。
(作用機序)
以上説明したハイドロゲル流体デバイス1は、流路の外側のハイドロゲルの一面を被覆し、かつ、ハイドロゲルを構成する第1の高分子材料より膨潤度が低い第2の高分子材料で構成されるバルク状のゲルを備える。膨潤度が相対的に低い第2の高分子材料で構成されるバルク状のゲルは、フィルム状のハイドロゲルの外骨格として機能するため、フィルム状のハイドロゲルの構造を強靭化できる。加えて、フィルム状のハイドロゲルとバルク状のゲルとの間で、ゲル中の網目構造が互いに侵入し合い、網目構造同士が絡み合った構造を構築でき、強固な接着が実現される。
そのため、従来、力学的に脆弱であった流路の薄膜部分が、バルク状のゲルによる被覆により強靭化される。強靭化された薄膜部分の構造は、送液チューブ等の管状構造物を接合するのに十分な強度を具備する。したがって、ハイドロゲル流体デバイス1は、流路を加工する際の力学的強度に優れる。
以上説明したハイドロゲル流体デバイス1は、流路の外側のハイドロゲルの一面を被覆し、かつ、ハイドロゲルを構成する第1の高分子材料より膨潤度が低い第2の高分子材料で構成されるバルク状のゲルを備える。膨潤度が相対的に低い第2の高分子材料で構成されるバルク状のゲルは、フィルム状のハイドロゲルの外骨格として機能するため、フィルム状のハイドロゲルの構造を強靭化できる。加えて、フィルム状のハイドロゲルとバルク状のゲルとの間で、ゲル中の網目構造が互いに侵入し合い、網目構造同士が絡み合った構造を構築でき、強固な接着が実現される。
そのため、従来、力学的に脆弱であった流路の薄膜部分が、バルク状のゲルによる被覆により強靭化される。強靭化された薄膜部分の構造は、送液チューブ等の管状構造物を接合するのに十分な強度を具備する。したがって、ハイドロゲル流体デバイス1は、流路を加工する際の力学的強度に優れる。
加えて、ハイドロゲル流体デバイス1は、ハイドロゲルを構成する第1の高分子材料の膨潤により非接着領域のハイドロゲルが基材から離間することで形成された流路を備える。そのため、ハイドロゲル流体デバイス及び流路は簡便な方法で形成可能である。またハイドロゲル流体デバイス1にあっては、フィルム状のハイドロゲルを構成する第1の高分子材料の自由膨潤を利用して流路が形成されることから、流路4は任意の形状及び構造をとることができる。
以上説明したハイドロゲル流体デバイス1においては、流路の形状を任意に選択できる。加えて、基材、フィルム状のハイドロゲル、バルク状のゲルの各材料をそれぞれ任意かつ互いに独立に選択できる。そのため、ハイドロゲル流体デバイスによって実現すべき所望の機能に応じて様々の基材、フィルム状のハイドロゲル、バルク状のゲルを組み合わせることができる。
したがって、ハイドロゲル流体デバイス1によれば、幅広い機能及び特性を具備する流体デバイスが提供される。
したがって、ハイドロゲル流体デバイス1によれば、幅広い機能及び特性を具備する流体デバイスが提供される。
以上説明したハイドロゲル流体デバイス1においては、非特許文献1に記載の従来のハイドロゲルを用いる流体デバイスと比較して、材料選択の幅、及び流路のサイズスケールの幅が広いという利点がある。例えば、弾性体の力学的不安定性に基づいた複雑な形状(蛇行形状等)の流路でも簡便に作製できる。
加えて、PDMSベースの従来の流体デバイスとは異なり、水溶性の低分子が拡散し得るバルク状のゲルを備えるため、ハイドロゲル流体デバイスの内部への水溶性の低分子が拡散可能となるという利点もある。
加えて、PDMSベースの従来の流体デバイスとは異なり、水溶性の低分子が拡散し得るバルク状のゲルを備えるため、ハイドロゲル流体デバイスの内部への水溶性の低分子が拡散可能となるという利点もある。
(用途)
以上説明したハイドロゲル流体デバイス1においては、流路を加工する際の力学的強度に優れるため、送液チューブ等の管状構造物を接合可能な強靭性を具備する。加えて、強靭性を付与するための補強材として使用しているバルク状のゲル5も物質透過性を具備する。そのため、ハイドロゲル流体デバイス1によれば、流体がその内部を拡散可能なデバイスが提供される。すなわち、送液チューブ等が接合されハイドロゲル流体デバイスにあっては、送液チューブ等を介して流路内に注入した低分子をゲルフィルム状のハイドロゲル3及びバルク状のゲル5の内部へと順次拡散させることができる。
以上説明したハイドロゲル流体デバイス1においては、流路を加工する際の力学的強度に優れるため、送液チューブ等の管状構造物を接合可能な強靭性を具備する。加えて、強靭性を付与するための補強材として使用しているバルク状のゲル5も物質透過性を具備する。そのため、ハイドロゲル流体デバイス1によれば、流体がその内部を拡散可能なデバイスが提供される。すなわち、送液チューブ等が接合されハイドロゲル流体デバイスにあっては、送液チューブ等を介して流路内に注入した低分子をゲルフィルム状のハイドロゲル3及びバルク状のゲル5の内部へと順次拡散させることができる。
以上説明したハイドロゲル流体デバイス1によれば、例えば、バルク状のゲルとして、細胞を包埋できるものを使用することで、流路から細胞の栄養、分化因子等を任意の3次元方向に拡散可能な3次元細胞培養基材としての利用が期待できる。
以上説明したハイドロゲル流体デバイス1によれば、例えば、バルク状のゲルの上に細胞を播種し、流路から分化因子等を拡散させることで、細胞の分化を制御できる細胞培養基材としての利用が期待できる。
以上説明したハイドロゲル流体デバイス1によれば、バルク状のゲルに、流路から拡散してきた低分子に対して蛍光等の応答を示す官能基を導入しておくことができる。この場合、ハイドロゲル流体デバイス1は、特定の低分子に応答するセンサーに適用できる。
加えて、これらのゲル5の機能とフィルム状のハイドロゲルの機能とを複合させることで、より複雑な機能を有するハイドロゲル流体デバイス1の作製が可能である。
加えて、これらのゲル5の機能とフィルム状のハイドロゲルの機能とを複合させることで、より複雑な機能を有するハイドロゲル流体デバイス1の作製が可能である。
このように、ハイドロゲル流体デバイスは、例えば、細胞に栄養、種々の分化因子を流路に供給し、バルク状のゲルに拡散させることで人工組織を培養する製造システム;バルク状のゲルに内包された刺激応答ユニットによって流路から拡散してくる物質を検知するセンサー等の幅広い用途に適用できる。
<ハイドロゲル流体デバイスの製造方法>
本発明のハイドロゲル流体デバイスの製造方法の一例では、図3~図11に示すように、基材2の一面2aに、基材2と接着する接着領域3aと、基材と接着しない非接着領域3bとが形成されるように、ハイドロゲルを構成する第1の高分子材料31の層31Aを設ける。
次に、図12に示すように、第1の高分子材料31を膨潤させることで、非接着領域3bの第1の高分子材料31を基材2から離間させ、基材2と第1の高分子材料31の層との界面に流路4を形成するとともに、第1の高分子材料31をフィルム状のハイドロゲル3とする。
次に、図13、14に示すように、流路4の外側を第1の高分子材料31より膨潤度が低いバルク状の第2の高分子材料51で被覆し、次いで、第2の高分子材料51を膨潤させてバルク状のゲル5とする。
なお、本明細書において、「第1の高分子材料31」は、膨潤前のフィルム状のハイドロゲルを意味し、膨潤後のフィルム状のハイドロゲル3と区別する。同様に、「バルク状の第2の高分子材料51」は、膨潤前のバルク状のゲルを意味し、膨潤後のバルク状のゲル5と区別する。
本発明のハイドロゲル流体デバイスの製造方法の一例では、図3~図11に示すように、基材2の一面2aに、基材2と接着する接着領域3aと、基材と接着しない非接着領域3bとが形成されるように、ハイドロゲルを構成する第1の高分子材料31の層31Aを設ける。
次に、図12に示すように、第1の高分子材料31を膨潤させることで、非接着領域3bの第1の高分子材料31を基材2から離間させ、基材2と第1の高分子材料31の層との界面に流路4を形成するとともに、第1の高分子材料31をフィルム状のハイドロゲル3とする。
次に、図13、14に示すように、流路4の外側を第1の高分子材料31より膨潤度が低いバルク状の第2の高分子材料51で被覆し、次いで、第2の高分子材料51を膨潤させてバルク状のゲル5とする。
なお、本明細書において、「第1の高分子材料31」は、膨潤前のフィルム状のハイドロゲルを意味し、膨潤後のフィルム状のハイドロゲル3と区別する。同様に、「バルク状の第2の高分子材料51」は、膨潤前のバルク状のゲルを意味し、膨潤後のバルク状のゲル5と区別する。
以下、本発明のハイドロゲル流体デバイスの製造方法の第1の態様、第2の態様、第3の態様、第4の態様について順に説明する。
(第1の態様)
第1の態様に係るハイドロゲル流体デバイスの製造方法においては、まず、図3~図8に示すように、基材2の一面2aに接着性官能基の第1のパターン11を形成する。具体的には、図3、図4に示すように、基材2の一面2aに接着性官能基の層11Aを設ける。層11Aにより、基材2の一面2aに接着性官能基が提示される。
基材2の詳細及び好ましい態様は、上述の<ハイドロゲル流体デバイス>の項で説明した内容と同内容とすることができる。例えば、基材2として、ガラス基板が挙げられる。
第1の態様に係るハイドロゲル流体デバイスの製造方法においては、まず、図3~図8に示すように、基材2の一面2aに接着性官能基の第1のパターン11を形成する。具体的には、図3、図4に示すように、基材2の一面2aに接着性官能基の層11Aを設ける。層11Aにより、基材2の一面2aに接着性官能基が提示される。
基材2の詳細及び好ましい態様は、上述の<ハイドロゲル流体デバイス>の項で説明した内容と同内容とすることができる。例えば、基材2として、ガラス基板が挙げられる。
接着性官能基の層11Aとしては、例えば、接着性官能基を有するシランカップリング剤の層が挙げられる。
本明細書において「接着性官能基」とは、後述の第1の重合性モノマーと接着可能な官能基を意味する。
本明細書において「接着性官能基」とは、後述の第1の重合性モノマーと接着可能な官能基を意味する。
例えば、第1の重合性モノマーとしてアクリルモノマーを用いる場合、接着性官能基としては、(メタ)アクリル基を例示することができる。この場合、シランカップリング剤としては、例えば3-(メタクリロイルオキシ)プロピルトリメトキシシランが挙げられる。
層11Aの形成方法は、特に限定されない。例えば、基材2の一面2aを、水酸化ナトリウム水溶液で洗浄し、3-(メタクリロイルオキシ)プロピルトリメトキシシランを酸素プラズマ又はピラニア洗浄によって活性化した後、基材2の一面2aにシランカップリング剤を塗布することで、層11Aを形成できる。ピラニア洗浄とは、濃硫酸と過酸化水素水溶液との混合液を使用する洗浄方法を指す通称である。
以下の説明では、一例として層11Aがシランカップリング剤の単分子層である場合について説明するが、本発明はこの一例に限定されない。
以下の説明では、一例として層11Aがシランカップリング剤の単分子層である場合について説明するが、本発明はこの一例に限定されない。
次に、図5に示すように、レジスト層40Aを接着性官能基の層11Aの一面11aにさらに設ける。レジスト層40Aは特に限定されない。例えば、ポジ型フォトレジストの層である。この場合、レジスト層40Aは、層11Aの表面にポジ型フォトレジストを塗布することで形成できる。ポジ型フォトレジストの塗布方法は、特に限定されない。例えばスピンコート法を用いることができる。
次に、レジスト層40Aに対し、遮光部M1と透光部M2とを有するマスクMを介して紫外線UV1を照射する。紫外線UV1のピーク波長は、ポジ型フォトレジストの吸収波長帯の範囲内であれば特に限定されない。
次に、レジスト層40Aに対し、遮光部M1と透光部M2とを有するマスクMを介して紫外線UV1を照射する。紫外線UV1のピーク波長は、ポジ型フォトレジストの吸収波長帯の範囲内であれば特に限定されない。
次に、図6に示すように、紫外線UV1の照射後、現像することにより、レジスト層40Aにおける紫外線UV1の照射部分が除去され、開口部40Xが形成され、レジスト層40のパターンが層11の一面に形成される。
次に、図7に示すように、開口部40Xが形成されたレジスト層40を介して、開口部40Xによって露出した層11Aに酸素プラズマOを用いた酸素プラズマ処理を施す。これにより、開口部40Xに露出した部分の層11Aのシランカップリング剤が除去される。
次に、図8に示すように、レジスト層40を除去することで、パターン形状を有するシランカップリング剤の層11が得られる(リフトオフ)。層11の形状は、マスクMにおける透光部M2の形状を変更することで適宜調整することができる。
この一例のように、接着性官能基を基材2の一面2aに提示した後に、リソグラフィー技術を用いてフォトレジストを任意のパターンで形成することで、基材2の一面2aに接着性官能基の第1のパターン11を形成できる。
次に、図9に示すように、接着性官能基と化学結合を形成する官能基を有する第1の重合性モノマーを含む第1の組成物30を、基材2の一面2aに塗布する。具体的には、層11が形成された一面2aにスペーサー60を配置し、第1の重合性モノマーを含む第1の組成物30をスペーサー60で囲まれた領域の基材2の一面2aに滴下する。その後、第1の組成物30を覆うように、紫外線透過性を有するシール基板70を被せる。これにより、スペーサー60で囲まれた領域に第1の組成物30を行き渡らせて、基材2の一面2aに第1の組成物30を塗布する。
シール基板70としては、例えばガラス基板を用いることができる。シール基板70において第1の組成物30と接触する面は、酸素プラズマ処理を施して洗浄しておくとよい。
シール基板70の一面70aは、例えば、後述の第1の高分子材料31の表面を平滑に保つため、フラットな面でもよく、後述の第1の高分子材料31の表面に任意の微細な立体形状を転写するために、当該任意の微細な立体形状に加工されてもよい。
シール基板70としては、例えばガラス基板を用いることができる。シール基板70において第1の組成物30と接触する面は、酸素プラズマ処理を施して洗浄しておくとよい。
シール基板70の一面70aは、例えば、後述の第1の高分子材料31の表面を平滑に保つため、フラットな面でもよく、後述の第1の高分子材料31の表面に任意の微細な立体形状を転写するために、当該任意の微細な立体形状に加工されてもよい。
第1の組成物30は、第1の重合性モノマーと、重合開始剤と、必要に応じて有機溶媒、重合促進剤とを含む。
第1の重合性モノマーは、重合することによりポリマーを生成しうる単量体である。そして、第1の重合性モノマーは、接着性官能基と化学結合を形成する官能基を有する。第1の重合性モノマーは、重合反応によって、ハイドロゲルを構成する第1の高分子材料31となる。基材に塗布された第1の組成物30は、第1の高分子材料31の前駆体であるとも言える。
第1の重合性モノマーは、重合により第1の高分子材料31の網目構造を形成できる化合物であれば特に限定されない。第1の重合性モノマーとしては、例えば、アクリル基を有するアクリルモノマーが挙げられる。ただし、第1の重合性モノマーは、この例示に限定されない。
第1の重合性モノマーは、重合することによりポリマーを生成しうる単量体である。そして、第1の重合性モノマーは、接着性官能基と化学結合を形成する官能基を有する。第1の重合性モノマーは、重合反応によって、ハイドロゲルを構成する第1の高分子材料31となる。基材に塗布された第1の組成物30は、第1の高分子材料31の前駆体であるとも言える。
第1の重合性モノマーは、重合により第1の高分子材料31の網目構造を形成できる化合物であれば特に限定されない。第1の重合性モノマーとしては、例えば、アクリル基を有するアクリルモノマーが挙げられる。ただし、第1の重合性モノマーは、この例示に限定されない。
重合開始剤としては、光重合開始剤、熱重合開始剤が挙げられる。重合開始剤は水溶性のものが好ましい。
水溶性の光重合開始剤としては、2-オキソグルタル酸、4’-(2-ヒドロキシエトキシ)-2-ヒドロキシ-2-メチルプロピオフェノン(Irgacure 2959)、フェニル(2,4,6-トリメチルベンゾイル)ホスフィン酸リチウム(LAP)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド](VA-086)等が挙げられる。
熱重合開始剤としては、ペルオキソ二硫酸アンモニウム(APS)、ペルオキソ二硫酸カリウム(KPS)等が挙げられる。
水溶性の光重合開始剤としては、2-オキソグルタル酸、4’-(2-ヒドロキシエトキシ)-2-ヒドロキシ-2-メチルプロピオフェノン(Irgacure 2959)、フェニル(2,4,6-トリメチルベンゾイル)ホスフィン酸リチウム(LAP)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド](VA-086)等が挙げられる。
熱重合開始剤としては、ペルオキソ二硫酸アンモニウム(APS)、ペルオキソ二硫酸カリウム(KPS)等が挙げられる。
有機溶媒としては、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)、エチレンカーボネート(EC)等が挙げられる。
重合促進剤としては、N,N,N’,N’-テトラメチルエタン-1,2-ジアミン(TEMED)が挙げられる。重合促進剤の使用により、室温で数分のうちに重合させることもできる。
TEMED等の重合促進剤を使用する場合、酸素による重合阻害を防ぐため、脱酸素剤としてグルコース及びグルコースオキシダーゼを使用するか、窒素又はアルゴン等の不活性ガス雰囲気下で十分に脱気した後に重合反応を行ってもよい。
TEMED等の重合促進剤を使用する場合、酸素による重合阻害を防ぐため、脱酸素剤としてグルコース及びグルコースオキシダーゼを使用するか、窒素又はアルゴン等の不活性ガス雰囲気下で十分に脱気した後に重合反応を行ってもよい。
次に、図10に示すように、第1の重合性モノマーを重合させ、第1の組成物30をゲル化させることで、第1の組成物30を第1の高分子材料31の層31Aとする。ゲル化に際しては、重合開始剤に合わせた適切な刺激を第1の組成物30に与えてラジカル重合を誘起する。これによりラジカル重合を開始し、第1の高分子材料31の層を基材2の一面2aに設けることができる。
以下の説明においては、第1の組成物30が重合開始剤として、光重合開始剤を含む場合を一例に、第1の態様に係るハイドロゲル流体デバイスの製造方法について説明するが、本発明は、以下の一例に限定されない。
以下の説明においては、第1の組成物30が重合開始剤として、光重合開始剤を含む場合を一例に、第1の態様に係るハイドロゲル流体デバイスの製造方法について説明するが、本発明は、以下の一例に限定されない。
図10に示すように、本発明の第1の態様においては、シール基板70を介して紫外線UV2を照射する。紫外線UV2のピーク波長は、第1の組成物30に含まれる光重合開始剤の吸収波長帯の範囲内であれば、特に限定されない。紫外線UV2のピーク波長は、例えば365nmである。
紫外線UV2の照射により、第1の重合性モノマーを重合させ、第1の組成物30をゲル化させることで、第1の組成物30をフィルム状の第1の高分子材料31とする。
紫外線UV2の照射により、第1の重合性モノマーを重合させ、第1の組成物30をゲル化させることで、第1の組成物30をフィルム状の第1の高分子材料31とする。
図10、11に示すように、第1の態様に係るハイドロゲル流体デバイスの製造方法では、第1の組成物30のゲル化により、第1の高分子材料31と基材2との界面に、基材2と第1の高分子材料31とが接着する接着領域3aと、基材2とハイドロゲルとが接着しない非接着領域3bとを形成する。
具体的には、第1の重合性モノマーを重合させることで、重合反応の際、第1の重合性モノマーが有する官能基と、層11のシランカップリング剤が有する接着性官能基とが反応する。その結果、第1の組成物30と第1のパターン11(層11)とが重なる部分では、ゲル化後の第1の高分子材料31が基材2の一面2aに接着し、接着領域3aが形成される。
一方、基材2において第1のパターン11(層11)が形成されていない部分では、第1の高分子材料31が基材2に接着せず、非接着領域3bが形成される。非基材2において第1のパターン11(層11)が形成されていない領域では、第1の組成物30に含まれる第1の重合性モノマー同士が重合する。
その結果、図11に示すように、接着領域3aと非接着領域3bとが形成されるように、ハイドロゲルを構成する第1の高分子材料31の層31Aを設けることができる。
一方、基材2において第1のパターン11(層11)が形成されていない部分では、第1の高分子材料31が基材2に接着せず、非接着領域3bが形成される。非基材2において第1のパターン11(層11)が形成されていない領域では、第1の組成物30に含まれる第1の重合性モノマー同士が重合する。
その結果、図11に示すように、接着領域3aと非接着領域3bとが形成されるように、ハイドロゲルを構成する第1の高分子材料31の層31Aを設けることができる。
ゲル化の際の重合反応の種類は、特に限定されない。通常、第1の組成物30中の重合開始剤に応じた重合反応から選択される。重合反応としては、例えば、光重合開始剤、熱重合開始剤等の重合開始剤を用いたラジカル重合が挙げられる。例えば、第1の重合性モノマーがアクリルモノマーの場合、アクリル基の重合反応による化学架橋が挙げられる。
次に、図11、12に示すように、第1の高分子材料31を膨潤させることで、非接着領域3bの第1の高分子材料31を基材2から離間させ、基材2と第1の高分子材料の層31Aとの界面に流路4を形成するとともに、第1の高分子材料31をフィルム状のハイドロゲル3とする。
第1の高分子材料31の膨潤に使用する液体は、特に限定されず、第1の高分子材料31中のポリマーに応じて適宜選択できる。例えば、水等の水性液体が挙げられる。
第1の高分子材料31の膨潤に使用する液体は、特に限定されず、第1の高分子材料31中のポリマーに応じて適宜選択できる。例えば、水等の水性液体が挙げられる。
例えば、図11に示す第1の高分子材料31の層31Aを基材2とともに、大過剰量の純水に浸漬することで、第1の高分子材料31に水を膨潤させ、第1の高分子材料31から未反応の第1の重合性モノマーを除去してもよい。これにより、第1の高分子材料31が水で膨潤したフィルム状のハイドロゲル3が得られる。
ここで、第1の高分子材料31の膨潤に際しては、第1の高分子材料31の層31Aにおいては、層11と重なる部分が接着領域3aとなり、層11と重ならない部分が非接着領域3bとなる。
第1の高分子材料31の層31Aは、非接着領域3bにおいて基材2に固定されていない。そのため、第1の高分子材料31のうち、非接着領域3bと平面的に重なる部分は、第1の高分子材料31の膨潤による体積増加の際に、非接着領域3bの延在方向と交差する方向に、基材2から離間するように自由に体積増加可能である。
第1の高分子材料31の31Aは、接着領域3aにおいて基材2に固定されている。そのため、第1の高分子材料31のうち、接着領域3aと平面的に重なる部分は、接着領域3aの延在方向と交差する方向への体積増加が規制される。
第1の高分子材料31の層31Aは、非接着領域3bにおいて基材2に固定されていない。そのため、第1の高分子材料31のうち、非接着領域3bと平面的に重なる部分は、第1の高分子材料31の膨潤による体積増加の際に、非接着領域3bの延在方向と交差する方向に、基材2から離間するように自由に体積増加可能である。
第1の高分子材料31の31Aは、接着領域3aにおいて基材2に固定されている。そのため、第1の高分子材料31のうち、接着領域3aと平面的に重なる部分は、接着領域3aの延在方向と交差する方向への体積増加が規制される。
その結果、第1の高分子材料31の膨潤度に応じて、非接着領域3bと重なる部分の第1の高分子材料31が変形し、基材2から離間し、流路4が形成される。例えば、図12に示すように、第1の高分子材料31の膨潤により第1の高分子材料31が形状変化する結果、第1の高分子材料31が基材2の一面2aから屈曲するように離間する。
非接着領域3bにおいて、第1の高分子材料31は大きく自由膨潤するため、体積増加による内部圧力の上昇を緩和するために、基材2から離れる方向に大きく膨らみ変形する。その結果、第1の高分子材料31が基材2と反対側へ大きく離間し、非接着領域のフィルム状のハイドロゲル3が座屈変形した形状をとる。このように、フィルム状のハイドロゲル3と基材2とで囲まれた空間に流路4、すなわち、ハイブリット流路が形成される。
非接着領域3bにおいて、第1の高分子材料31は大きく自由膨潤するため、体積増加による内部圧力の上昇を緩和するために、基材2から離れる方向に大きく膨らみ変形する。その結果、第1の高分子材料31が基材2と反対側へ大きく離間し、非接着領域のフィルム状のハイドロゲル3が座屈変形した形状をとる。このように、フィルム状のハイドロゲル3と基材2とで囲まれた空間に流路4、すなわち、ハイブリット流路が形成される。
流路4の形状は、第1のパターン11のパターン形状を適宜変更し、接着領域3a、非接着領域3bのパターン形状を制御することにより制御可能である。また、流路4の形状は、例えば、第1の高分子材料31の種類、基材2の剛性率と第1の高分子材料31の剛性率との比、第1の高分子材料31の層31Aの厚み等を調整することで制御できる。第1の高分子材料31の剛性率及び第1の高分子材料31の膨潤率は、第1の組成物に使用する第1の重合性モノマーの種類、架橋剤の種類及び量等を変更することで制御できる。
フィルム状のハイドロゲル3の形状及び厚みは、スペーサー60の大きさ、スペーサー60の形状等によって第1の高分子材料31の形状及び厚みを調整することで制御できる。フィルム状のハイドロゲル3には、シール基板70の基材2と対向する面70a(図9、10参照)の形状が転写されるため、面70aの形状を制御することでフィルム状のハイドロゲル3の形状を制御してもよい。
膨潤の前後における第1の高分子材料31とフィルム状のハイドロゲル3との間の変化は、可逆的な変化である。そのため、フィルム状のハイドロゲル3の膨潤率を変化させることでも、流路4の形状を制御できる。例えば、ハイドロゲル3の膨潤率は、ハイドロゲル3に水を接触させて膨潤させる、又はハイドロゲル3を乾燥させる、等の方法により変化させることができる。
第1の高分子材料31が外部刺激応答性のハイドロゲルである場合においては、第1の高分子材料31に入力する刺激に応じて、第1の高分子材料31の膨潤率を変化させ、流路4の形状を制御してもよい。
第1の高分子材料31が外部刺激応答性のハイドロゲルである場合においては、第1の高分子材料31に入力する刺激に応じて、第1の高分子材料31の膨潤率を変化させ、流路4の形状を制御してもよい。
次に、図13、14に示すように、流路4の外側を、第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料51で被覆し、第2の高分子材料51を膨潤させてバルク状のゲル5とする。第2の高分子材料51の膨潤に使用する液体は、特に限定されず、第2の高分子材料51中のポリマーに応じて適宜選択できる。例えば、水等の水性液体、ベンゼン等の油性液体が挙げられる。
具体的には、例えば、層11が形成された一面2aにスペーサー61を配置する。その後、スペーサー61で囲まれた領域の流路4の外側のフィルム状のハイドロゲル3の一面3cに、低膨潤性ゲル用モノマーを含む低膨潤性ゲル用組成物50を滴下する。その後、低膨潤性ゲル用組成物50を覆うように、紫外線透過性を有するシール基板71を被せる。これにより、スペーサー61で囲まれた領域に低膨潤性ゲル用組成物50を行き渡らせて、流路4の外側のフィルム状のハイドロゲル3の一面3cに低膨潤性ゲル用組成物50を塗布する。
具体的には、例えば、層11が形成された一面2aにスペーサー61を配置する。その後、スペーサー61で囲まれた領域の流路4の外側のフィルム状のハイドロゲル3の一面3cに、低膨潤性ゲル用モノマーを含む低膨潤性ゲル用組成物50を滴下する。その後、低膨潤性ゲル用組成物50を覆うように、紫外線透過性を有するシール基板71を被せる。これにより、スペーサー61で囲まれた領域に低膨潤性ゲル用組成物50を行き渡らせて、流路4の外側のフィルム状のハイドロゲル3の一面3cに低膨潤性ゲル用組成物50を塗布する。
シール基板71としては、例えばガラス基板を用いることができる。シール基板71において低膨潤性ゲル用組成物50と接触する面は、酸素プラズマ処理を施して洗浄しておくとよい。
シール基板71の一面71aは、例えば、後述の第2の高分子材料51の表面を平滑に保つため、フラットな面でもよく、後述の第2の高分子材料51の表面に任意の微細な立体形状を転写するために、当該任意の微細な立体形状に加工されてもよい。
シール基板71の一面71aは、例えば、後述の第2の高分子材料51の表面を平滑に保つため、フラットな面でもよく、後述の第2の高分子材料51の表面に任意の微細な立体形状を転写するために、当該任意の微細な立体形状に加工されてもよい。
低膨潤性ゲル用組成物50は、例えば、低膨潤性ゲル用モノマーと、重合開始剤と、必要に応じて有機溶媒、重合促進剤と架橋用ポリマーを含む。
低膨潤性ゲル用モノマーは、重合することによりポリマーを生成しうる単量体である。低膨潤性ゲル用モノマーは、第1の重合性モノマーと同一でもよく、異なっていてもよい。低膨潤性ゲル用モノマーは、重合反応によって、バルク状のゲルを構成する第2の高分子材料となる。ハイドロゲル3の一面3cに塗布された低膨潤性ゲル用組成物50は、バルク状のゲル5の前駆体であるとも言える。
低膨潤性ゲル用モノマーは、重合により第2の高分子材料51の網目構造を形成できる化合物であれば特に限定されない。低膨潤性ゲル用モノマーとしては、例えば、アクリル基を有するアクリルモノマーが挙げられる。ただし、低膨潤性ゲル用モノマーは、この例示に限定されない。
低膨潤性ゲル用モノマーは、重合することによりポリマーを生成しうる単量体である。低膨潤性ゲル用モノマーは、第1の重合性モノマーと同一でもよく、異なっていてもよい。低膨潤性ゲル用モノマーは、重合反応によって、バルク状のゲルを構成する第2の高分子材料となる。ハイドロゲル3の一面3cに塗布された低膨潤性ゲル用組成物50は、バルク状のゲル5の前駆体であるとも言える。
低膨潤性ゲル用モノマーは、重合により第2の高分子材料51の網目構造を形成できる化合物であれば特に限定されない。低膨潤性ゲル用モノマーとしては、例えば、アクリル基を有するアクリルモノマーが挙げられる。ただし、低膨潤性ゲル用モノマーは、この例示に限定されない。
低膨潤性ゲル用組成物50における重合開始剤としては、光重合開始剤、熱重合開始剤が挙げられる。重合開始剤は水溶性のものが好ましい。
光重合開始剤としては、2-オキソグルタル酸、4’-(2-ヒドロキシエトキシ)-2-ヒドロキシ-2-メチルプロピオフェノン(Irgacure 2959)、フェニル(2,4,6-トリメチルベンゾイル)ホスフィン酸リチウム(LAP)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド](VA-086)等が挙げられる。
熱重合開始剤としては、ペルオキソ二硫酸アンモニウム(APS)、ペルオキソ二硫酸カリウム(KPS)等が挙げられる。
これらの熱重合開始剤と重合促進剤と組み合わせることで、室温で数分のうちに重合させることもできる。重合促進剤としては、例えば、N,N,N’,N’-テトラメチルエタン-1,2-ジアミン(TEMED)が挙げられる。
光重合開始剤としては、2-オキソグルタル酸、4’-(2-ヒドロキシエトキシ)-2-ヒドロキシ-2-メチルプロピオフェノン(Irgacure 2959)、フェニル(2,4,6-トリメチルベンゾイル)ホスフィン酸リチウム(LAP)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド](VA-086)等が挙げられる。
熱重合開始剤としては、ペルオキソ二硫酸アンモニウム(APS)、ペルオキソ二硫酸カリウム(KPS)等が挙げられる。
これらの熱重合開始剤と重合促進剤と組み合わせることで、室温で数分のうちに重合させることもできる。重合促進剤としては、例えば、N,N,N’,N’-テトラメチルエタン-1,2-ジアミン(TEMED)が挙げられる。
次に、低膨潤性ゲル用組成物50中の重合開始剤に応じた適切な刺激を与えてラジカル重合を誘起する。これによりラジカル重合を開始することで、低膨潤性ゲル用組成物50をゲル化させ、膨潤度が低いバルク状の第2の高分子材料51で流路4の外側のフィルム状のハイドロゲル3の一面3cを被覆する。
このように、低膨潤性ゲル用組成物50をフィルム状のハイドロゲル3の一面3cの表面でゲル化させることで、フィルム状のハイドロゲル3内に一部のポリマーが浸潤した状態の第2の高分子材料51を得ることができる。
このように、低膨潤性ゲル用組成物50をフィルム状のハイドロゲル3の一面3cの表面でゲル化させることで、フィルム状のハイドロゲル3内に一部のポリマーが浸潤した状態の第2の高分子材料51を得ることができる。
次いで、バルク状の第2の高分子材料51を膨潤させ、バルク状のゲル5とする。バルク状の第2の高分子材料51は、第1の高分子材料31より膨潤度が小さいため、フィルム状のハイドロゲル3及び流路4の形状を安定させる外骨格として機能できる。したがって、通常、膨潤度が変化すると形状も変化してしまう流路4の形状の変化を起こさずに、流路としての機能を維持したまま、フィルム状のハイドロゲル3の化学的性質を変化させることができる。
バルク状のゲル5におけるラジカル重合反応の種類は、特に限定されない。通常、低膨潤性ゲル用組成物50中の重合開始剤に応じた重合反応から選択される。
重合反応としては、例えば、光重合開始剤、熱重合開始剤等の重合開始剤を用いたラジカル重合が挙げられる。
重合反応としては、例えば、光重合開始剤、熱重合開始剤等の重合開始剤を用いたラジカル重合が挙げられる。
例えば、PDMSと同程度の弾性率(~1.3MPa)をバルク状のゲル5に求める場合、前述した化学架橋ゲルと物理架橋ゲルを複合させることで、強靭なダブルネットワーク構造を有するバルク状のゲル5を得ることができる。
例えば、化学架橋ゲルのモノマーとしてアクリルアミド、架橋剤としてメチレンビスアクリルアミド、重合開始剤としてKPS、必要に応じて重合促進剤としてTEMED、物理架橋ゲルのポリマーとしてPBDT(を含有する水溶液)の混合物を低膨潤性ゲル用組成物50として流路4の外側のフィルム状のハイドロゲル3の一面3cに滴下することで、ポリアクリルアミドゲルがラジカル重合によって形成される。その後、ZrCl2O水溶液に含侵することで、PBDTとZr4+イオンによる物理架橋ゲルがポリアクリルアミドゲル内に形成される。この場合、得られたハイドロゲル流体デバイスを純水中に浸漬しても、強靭な力学物性は失われない。
例えば、化学架橋ゲルのモノマーとしてアクリルアミド、架橋剤としてメチレンビスアクリルアミド、重合開始剤としてKPS、必要に応じて重合促進剤としてTEMED、物理架橋ゲルのポリマーとしてPBDT(を含有する水溶液)の混合物を低膨潤性ゲル用組成物50として流路4の外側のフィルム状のハイドロゲル3の一面3cに滴下することで、ポリアクリルアミドゲルがラジカル重合によって形成される。その後、ZrCl2O水溶液に含侵することで、PBDTとZr4+イオンによる物理架橋ゲルがポリアクリルアミドゲル内に形成される。この場合、得られたハイドロゲル流体デバイスを純水中に浸漬しても、強靭な力学物性は失われない。
バルク状のゲル5の形状及び厚みは、スペーサー61の大きさ、スペーサー61の形状等によって第2の高分子材料51の形状及び厚みを調整することで制御できる。バルク状のゲル5には、シール基板71のフィルム状のハイドロゲル3と対向する面71a(図13参照)の形状が転写されるため、面71aの形状を制御することでバルク状のゲル5の形状を制御してもよい。
バルク状のゲル5を構成する第2の高分子材料の合成方法として、正電荷又は負電荷を有するポリマーと、それらと反対の多価電荷を有するイオンを組み合わせることで、物理架橋ゲルを得る方法も挙げられる。この場合は、まずポリマー溶液をハイドロゲル3の一面3cに滴下する。その後多価イオンを滴下及び拡散させることで、フィルム状のハイドロゲル3内に一部のポリマーが浸潤した状態の第2の高分子材料51を得ることができる。
例としては、負電荷を有するポリマーであるアルギン酸ナトリウム溶液と塩化カルシウム、硫酸カルシウム等のカルシウム溶液の組み合わせが挙げられる。
他にも、水溶性のポリアラミドであるpoly(2,2’-disulfo-4,4’-bensidine terephthalamide: PBDT)は負電荷を帯びており、様々な金属多価カチオン(Ca2+,Fe2+,Al3+,Zr4+,Ti4+等)と組み合わせることで低膨潤性の物理架橋ゲルを得ることができる。
また、PBDTの代わりに同じく負電荷を帯びているTEMPO酸化されたセルロースナノファイバー(NIPPON PAPER INDUSTRIES CO.,LTD.)、リン酸エステル化法によって解繊されたセルロースナノファイバー(Oji Holdings Corporation)を用いてもよい。
例としては、負電荷を有するポリマーであるアルギン酸ナトリウム溶液と塩化カルシウム、硫酸カルシウム等のカルシウム溶液の組み合わせが挙げられる。
他にも、水溶性のポリアラミドであるpoly(2,2’-disulfo-4,4’-bensidine terephthalamide: PBDT)は負電荷を帯びており、様々な金属多価カチオン(Ca2+,Fe2+,Al3+,Zr4+,Ti4+等)と組み合わせることで低膨潤性の物理架橋ゲルを得ることができる。
また、PBDTの代わりに同じく負電荷を帯びているTEMPO酸化されたセルロースナノファイバー(NIPPON PAPER INDUSTRIES CO.,LTD.)、リン酸エステル化法によって解繊されたセルロースナノファイバー(Oji Holdings Corporation)を用いてもよい。
第2の高分子材料51として、温度によってゲル化するカラギーナンを含むアガー、コラーゲンからなるゼラチン、テングサ、オゴノリからなる寒天を用いてもよい。
温度によってゲル化するカラギーナンを含むアガー、コラーゲンからなるゼラチン、テングサ、オゴノリからなる寒天を用いる場合は、まず昇温によって流動性のある低膨潤性ゲル用組成物50を調製し、フィルム状のハイドロゲル3内に一部のポリマーが浸潤した状態のバルク状の第2の高分子材料51を得ることができる。
温度によってゲル化するカラギーナンを含むアガー、コラーゲンからなるゼラチン、テングサ、オゴノリからなる寒天を用いる場合は、まず昇温によって流動性のある低膨潤性ゲル用組成物50を調製し、フィルム状のハイドロゲル3内に一部のポリマーが浸潤した状態のバルク状の第2の高分子材料51を得ることができる。
バルク状の第2の高分子材料51で流路4の外側を被覆する方法としては、他にも、反応性の側鎖を有するポリマー(例えば水酸基を有するポリビニルアルコール、セルロース等)をグルタルアルデヒドで架橋する方法が挙げられる。この場合は、まずポリマー溶液を流路4の外側に滴下し、その後架橋剤を滴下及び拡散させる。これによりフィルム状のハイドロゲル3内に一部のポリマーが浸潤した状態のバルク状の第2の高分子材料51を得ることができる。
さらに、本実施形態に係るハイドロゲル流体デバイスの製造方法においては、図15に示すように、流路4の開口面に管状構造物6を接着剤7によって接合する。管状構造物6及び接着剤7については、上述の<ハイドロゲル流体デバイス>の項でこれらについて説明した内容と同内容とすることができる。
なお、送液チューブ等の管状構造物を流路に接合する時期は、特に限定されない。すなわち、先に流路4をバルク状のゲル5で被覆し、力学物性を向上させ、その後管状構造物6を流路4の開口面に取り付け、その後、接着剤7によって接合してもよく、先に流路4の開口面に管状構造物6を接着剤7で接合し、その後、バルク状のゲル5で被覆してもよい。
なお、送液チューブ等の管状構造物を流路に接合する時期は、特に限定されない。すなわち、先に流路4をバルク状のゲル5で被覆し、力学物性を向上させ、その後管状構造物6を流路4の開口面に取り付け、その後、接着剤7によって接合してもよく、先に流路4の開口面に管状構造物6を接着剤7で接合し、その後、バルク状のゲル5で被覆してもよい。
(作用機序)
以上説明したハイドロゲル流体デバイスの製造方法では、流路の外側を、ハイドロゲルを構成する第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆し、次いで、バルク状の第2の高分子材料を膨潤させる。
そのため、バルク状のゲルのゲル化の際には、バルク状のゲルとフィルム状のハイドロゲルとの間でゲル中の網目構造が互いに侵入し合い、網目構造同士が絡み合った構造を構築でき、強固な接着を実現できる。すなわち、ゲル化前のバルク状のゲルが流路面のハイドロゲルに対して浸潤することで、両ゲルの間で相互陥入した網目構造が形成され、強固に接着されるため、流路面のハイドロゲルの力学的強度が向上する。さらに、液体状態でバルク状のゲルの原材料を流路の外側の表面に滴下し、ゲル化させることができるため、流路の形状が複雑である場合であっても、その形状に沿って、バルク状のゲルで流路を被覆できる。
加えて、バルク状のゲルが膨潤する際には、バルク状のゲルはフィルム状のハイドロゲルより膨潤度が低いため、バルク状のゲルが流路の流路面のハイドロゲルの形状を安定させる外骨格として機能する。そのため、通常、膨潤度が変化すると形状も変化してしまう流路のハイドロゲルの形状の変化が少なく、流路としての機能を維持したままハイドロゲルの化学的性質を変化させることができる。
その結果、従来、力学的に脆弱であった流路の薄膜部分が、バルク状のゲルによる被覆により強靭化される。
強靭化された薄膜部分の構造は、送液チューブ等の管状構造物を接合するのに十分な強度を具備する。したがって、ハイドロゲル流体デバイス1は、流路を加工する際の力学的強度に優れる。
以上説明したハイドロゲル流体デバイスの製造方法では、流路の外側を、ハイドロゲルを構成する第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆し、次いで、バルク状の第2の高分子材料を膨潤させる。
そのため、バルク状のゲルのゲル化の際には、バルク状のゲルとフィルム状のハイドロゲルとの間でゲル中の網目構造が互いに侵入し合い、網目構造同士が絡み合った構造を構築でき、強固な接着を実現できる。すなわち、ゲル化前のバルク状のゲルが流路面のハイドロゲルに対して浸潤することで、両ゲルの間で相互陥入した網目構造が形成され、強固に接着されるため、流路面のハイドロゲルの力学的強度が向上する。さらに、液体状態でバルク状のゲルの原材料を流路の外側の表面に滴下し、ゲル化させることができるため、流路の形状が複雑である場合であっても、その形状に沿って、バルク状のゲルで流路を被覆できる。
加えて、バルク状のゲルが膨潤する際には、バルク状のゲルはフィルム状のハイドロゲルより膨潤度が低いため、バルク状のゲルが流路の流路面のハイドロゲルの形状を安定させる外骨格として機能する。そのため、通常、膨潤度が変化すると形状も変化してしまう流路のハイドロゲルの形状の変化が少なく、流路としての機能を維持したままハイドロゲルの化学的性質を変化させることができる。
その結果、従来、力学的に脆弱であった流路の薄膜部分が、バルク状のゲルによる被覆により強靭化される。
強靭化された薄膜部分の構造は、送液チューブ等の管状構造物を接合するのに十分な強度を具備する。したがって、ハイドロゲル流体デバイス1は、流路を加工する際の力学的強度に優れる。
以上説明したハイドロゲル流体デバイスの製造方法では、基材の一面に接着領域と非接着領域とが形成されるように第1の高分子材料の層を設け、第1の高分子材料を膨潤させることで、非接着領域の第1の高分子材料を基材から離間させ、流路を形成する。ここで、第1の高分子材料の膨潤は、例えば、水等への浸漬等の操作により実施できるため、流路を簡便に形成できる。
加えて、接着領域と非接着性領域のパターン配置は任意に決定可能であり、フィルム状のハイドロゲルの自由膨潤を利用して流路が形成される。そのため、任意の形状及び構造の流路を形成できる。
加えて、接着領域と非接着性領域のパターン配置は任意に決定可能であり、フィルム状のハイドロゲルの自由膨潤を利用して流路が形成される。そのため、任意の形状及び構造の流路を形成できる。
以上説明したハイドロゲル流体デバイスの製造方法では、流路の形状を任意に選択でき、加えて、基材、ハイドロゲル、ゲルの各材料をそれぞれ任意かつ互いに独立に選択できる。そのため、ハイドロゲル流体デバイスによって実現すべき所望の機能に応じて様々の基材、ハイドロゲル及びゲルの組み合わせることができる。したがって、本実施形態に係るハイドロゲル流体デバイスの製造方法によれば、幅広い機能及び特性を具備する流体デバイスを簡便に作製できる。
以上説明したハイドロゲル流体デバイスの製造方法によれば、様々な化学種のハイドロゲルで作成したハイブリット流路を、バルク状のゲルで被覆することで、外部からの送液によって低分子をゲル内部に拡散させることが可能なハイドロゲル流体デバイスを作製できる。
このように、ハイドロゲル流体デバイスの製造方法によれば、簡便な手法で様々な化学種のフィルム状のハイドロゲルを流路形状に加工できるという利点を維持したまま、実用に耐えうる流路の優れた力学強度及び優れた機能性をハイドロゲル流体デバイスに付与できる。
このように、ハイドロゲル流体デバイスの製造方法によれば、簡便な手法で様々な化学種のフィルム状のハイドロゲルを流路形状に加工できるという利点を維持したまま、実用に耐えうる流路の優れた力学強度及び優れた機能性をハイドロゲル流体デバイスに付与できる。
(第2の態様)
以下、第2の態様に係るハイドロゲル流体デバイスの製造方法について説明する。第2の態様に係るハイドロゲル流体デバイスの製造方法においては、まず、図16、17に示すように、第1の高分子材料の層を基材2の一面2aに設ける際に、基材2の一面2aに光重合開始剤の層80を形成する。
以下、第2の態様に係るハイドロゲル流体デバイスの製造方法について説明する。第2の態様に係るハイドロゲル流体デバイスの製造方法においては、まず、図16、17に示すように、第1の高分子材料の層を基材2の一面2aに設ける際に、基材2の一面2aに光重合開始剤の層80を形成する。
具体的には、図16に示すように、基材2の一面2aに光重合開始剤溶液の塗膜80Aを形成する。基材2として、第2の態様においては、例えば、有機溶媒が浸潤可能なエラストマー、高分子フィルム等の樹脂基板を用いることが好ましい。
樹脂基板に浸潤可能な有機溶媒としては、例えば、メタノール、エタノール、アセトン等の極性溶媒が挙げられる。
樹脂基板に浸潤可能な有機溶媒としては、例えば、メタノール、エタノール、アセトン等の極性溶媒が挙げられる。
第2の態様に係るハイドロゲル流体デバイスの製造方法においては、光重合開始剤としては、水素引き抜き型の光重合開始剤を用いる。
水素引き抜き型の光重合開始剤として、例えば、ベンゾフェノン、ミヒラーズケトン、ミヒラーズエチルケトン等が挙げられる。
光重合開始剤溶液の溶媒として、例えば、エタノール、アセトン等の極性溶媒が挙げられる。
水素引き抜き型の光重合開始剤として、例えば、ベンゾフェノン、ミヒラーズケトン、ミヒラーズエチルケトン等が挙げられる。
光重合開始剤溶液の溶媒として、例えば、エタノール、アセトン等の極性溶媒が挙げられる。
図17に示すように、塗膜80Aから溶媒を除去して、光重合開始剤の層80を基材2に設ける。また、光重合開始剤溶液に用いられる極性溶媒は、樹脂基板に浸潤可能であることから、樹脂基板への溶媒の浸潤に伴って、光重合開始剤の一部は、樹脂基板の内部に含侵する。
次に、図18に示すように、スペーサー60を配置し、光重合開始剤の層80の一部をマスク材85で覆った状態で、重合開始剤と化学結合を形成する第2の重合性モノマーを含む第2の組成物32をスペーサー60で囲まれた領域に第2の組成物32を滴下する。その後、紫外線透過性を有するシール基板70を被せ、スペーサー60で囲まれた領域に第2の組成物32を行き渡らせて塗布する。
マスク材85は、フィルム状のハイドロゲルにおいて、非接着領域3bを形成したい部分に配置する。マスク材85としては、第2の重合性モノマーと反応しないものを用いる。例えば、マスク材85としてパラフィンフィルムを用いることができる。
第2の組成物32は、第2の重合性モノマーと、水素引き抜き型の光重合開始剤と、必要に応じて有機溶媒とを含む。ただし、層80に含まれる水素引き抜き型の光重合開始剤の濃度が十分に高い場合、第2の組成物32は、水素引き抜き型の光重合開始剤を含まないこととしてもよい。「濃度が十分に高い」とは、塗膜80Aの形成に用いる光重合開始剤溶液において、例えば、光重合開始剤の濃度が10質量%以上であるような場合を指す。
第2の重合性モノマーは、重合することによりポリマーを生成しうる単量体である。そして、第2の重合性モノマーは、重合開始剤と化学結合を形成する官能基を有する。第2の重合性モノマーは、重合反応によって、ハイドロゲルを構成する第1の高分子材料となる。
第2の重合性モノマーは、重合により第1の高分子材料31の網目構造を形成できる化合物であれば特に限定されない。第2の重合性モノマーとしては、例えば、アクリル基を有するアクリルモノマーが挙げられる。ただし、第2の重合性モノマーは、この例示に限定されない。
第2の重合性モノマーは、重合により第1の高分子材料31の網目構造を形成できる化合物であれば特に限定されない。第2の重合性モノマーとしては、例えば、アクリル基を有するアクリルモノマーが挙げられる。ただし、第2の重合性モノマーは、この例示に限定されない。
次に、図19、20に示すように、第2の重合性モノマーを重合させ、第2の組成物32をゲル化させることで、光重合開始剤の層80と重なる部分に接着領域を形成するとともに、第2の組成物32を第1の高分子材料31とする。
具体的には、図19に示すように、シール基板70を介して紫外線UV3を照射する。紫外線UV3のピーク波長は、層80に含まれる光重合開始剤の吸収波長帯に含まれる。紫外線UV3のピーク波長は、例えば365nmである。
紫外線UV3の照射により、所定のパターン状に光重合開始剤を反応させる。紫外線UV3の照射により、層80のマスク材85が重なっていない部分、すなわち、層80と第2の組成物32とが重なる部分では、マスク材85のパターン状に層80の光重合開始剤が基材2から水素原子を引き抜く。これにより、基材2には、反応開始点であるラジカルが生じる。第2の組成物32に含まれるモノマーは、基材2に生じたラジカルを起点に重合し、第1の高分子材料31が得られる。そのため、第1の高分子材料31は、光重合開始剤の層80と重なる部分で基材2と接着される。
これに対して、光重合開始剤の層80のマスク材85が重なっている部分、すなわち、層80と第2の組成物32とが重ならない部分では、紫外線UV3が遮光され、光重合開始剤による基材2からの水素原子引き抜きが生じない。基材2から水素原子が引き抜かれラジカルが生じたとしても、第2の組成物32が接していない。そのため、生じたラジカルが第2の組成物32中の第2の重合性モノマーと反応しない。そのため、層80のマスク材85が重なっている部分では、基材2に結合することなく第2の組成物32に含まれる第2の重合性モノマー同士で重合する。
次に、図20に示すように、シール基板70を取り除く。このようにして、第2の態様に係るハイドロゲル流体デバイスの製造方法においては、基材2と接着する接着領域3aと、基材2と接着しない非接着領域3bとが形成されるように、ハイドロゲルを構成する第1の高分子材料31の層31Aを設ける。
上記一例では、マスク材85を用いることで、パターン状に重合開始剤を反応させてモノマーを重合させることとしたが、本態様はこれに限定されない。
例えば、図17に示す層80において、非接着領域を形成したい部分にのみ選択的に紫外線を照射すると、紫外線が照射された部分の光重合開始剤が励起し、基材の表面の水素を引き抜いて基材の表面に結合する。このようにして、紫外線を照射した部分の光重合開始剤の層を予め基材に設ける。この紫外線照射を「1回目の紫外線照射」とする。
例えば、図17に示す層80において、非接着領域を形成したい部分にのみ選択的に紫外線を照射すると、紫外線が照射された部分の光重合開始剤が励起し、基材の表面の水素を引き抜いて基材の表面に結合する。このようにして、紫外線を照射した部分の光重合開始剤の層を予め基材に設ける。この紫外線照射を「1回目の紫外線照射」とする。
1回目の紫外線照射の後に、光重合開始剤溶液に含まれる極性溶媒を用いて、基材の表面を洗浄する。これにより、基材表面から、基材に設けた光重合開始剤の層以外の光重合開始剤を除去することができる。
次に、1回目の紫外線照射を行った基材に、さらに2回目となる紫外線を照射すると、1回目の紫外線照射で基材の表面に設けられ、所定のパターン状に残った光重合開始剤の層が反応する。そのため、1回目の紫外線照射により光重合開始剤の層パターンを形成した後、基材の一面に第2の組成物を塗布し、2回目の紫外線照射を行って第2の重合性モノマーを重合させることにより、基材表面に固定された光重合開始剤と第2の重合性モノマーとが反応し、光重合開始剤の層と第2の組成物とが重なる部分に接着領域3aを形成する。
このようにして、基材2と接着する接着領域3aと、基材2と接着しない非接着領域3bとが形成されるように、ハイドロゲルを構成する第1の高分子材料31の層31Aを設けてもよい。
このようにして、基材2と接着する接着領域3aと、基材2と接着しない非接着領域3bとが形成されるように、ハイドロゲルを構成する第1の高分子材料31の層31Aを設けてもよい。
他にも、図16に示す塗膜80Aを形成する前に、予め基材2の一面2aに選択的に撥水撥油性官能基を有するシランカップリング剤の膜を成膜しておいてもよい。撥水撥油性官能基を有するシランカップリング剤の膜は、例えば、リソグラフィーによって基材の一面に設けることができる。
このような処理を行った基材2に塗膜80Aを成膜すると、シランカップリング剤の膜が光重合開始剤溶液をはじき、シランカップリング剤の膜と相補的なパターン形状に、光重合開始剤溶液の塗膜80Aが形成される。このようなシランカップリング剤としては、例えば、(トリクロロ(1H,1H,2H,2H-ヘプタデカフルオロデシル)シランが挙げられる。
このような処理を行った基材2に塗膜80Aを成膜すると、シランカップリング剤の膜が光重合開始剤溶液をはじき、シランカップリング剤の膜と相補的なパターン形状に、光重合開始剤溶液の塗膜80Aが形成される。このようなシランカップリング剤としては、例えば、(トリクロロ(1H,1H,2H,2H-ヘプタデカフルオロデシル)シランが挙げられる。
その後、シランカップリング剤の膜と相補的なパターン形状に形成した塗膜80Aから層80を形成し、基材2の一面に第2の組成物を塗布する。この状態で紫外線を照射すると、シランカップリング剤の膜と相補的なパターン形状の部分で、第2の重合性モノマーが重合するとともに、光重合開始剤の層80と反応する。このとき、光重合開始剤の層と第2の組成物とが重なる部分では、第2の重合性モノマーが、光重合開始剤と反応し、接着領域が形成される。
これに対して、基材の一面に撥水撥油性官能基を有するシランカップリング剤が提示された部分では、撥水撥油性官能基上には水素引き抜き型開始剤が導入されず、重合能がないため、基板と第1の高分子材料とをパターン化接着できる。
このようにして、基材2と接着する接着領域3aと、基材2と接着しない非接着領域3bとが形成されるように、ハイドロゲルを構成する第1の高分子材料の層31Aを設けてもよい。
このようにして、基材2と接着する接着領域3aと、基材2と接着しない非接着領域3bとが形成されるように、ハイドロゲルを構成する第1の高分子材料の層31Aを設けてもよい。
第2の態様に係るハイドロゲル流体デバイスの製造方法において、下記の(A)、(B)、(C)、(D)の構成についての詳細及び好ましい態様は、上述の第1の態様に係るハイドロゲル流体デバイスの製造方法で説明した内容と同内容とすることができる。
構成(A):第1の高分子材料を膨潤させることで、非接着領域の第1の高分子材料を基材から離間させ、基材と第1の高分子材料の層との界面に流路を形成するとともに、第1の高分子材料をフィルム状のハイドロゲルとすること。
構成(B):流路の外側を、第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆すること。
構成(C):第2の高分子材料を膨潤させてバルク状のゲルとすること。
構成(D):さらに、流路の開口面に管状構造物を接着剤によって接合すること。
これらの重複する構成(A)、(B)、(C)、(D)について、その説明を省略する。
構成(A):第1の高分子材料を膨潤させることで、非接着領域の第1の高分子材料を基材から離間させ、基材と第1の高分子材料の層との界面に流路を形成するとともに、第1の高分子材料をフィルム状のハイドロゲルとすること。
構成(B):流路の外側を、第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆すること。
構成(C):第2の高分子材料を膨潤させてバルク状のゲルとすること。
構成(D):さらに、流路の開口面に管状構造物を接着剤によって接合すること。
これらの重複する構成(A)、(B)、(C)、(D)について、その説明を省略する。
以上説明した第2の態様に係るハイドロゲル流体デバイスの製造方法においても、第1の態様に係るハイドロゲル流体デバイスの製造方法と同様の作用機序が得られる。
(第3の態様)
以下、第3の態様に係るハイドロゲル流体デバイスの製造方法について説明する。
第3の態様に係るハイドロゲル流体デバイスの製造方法においては、まず、図21に示すように、第1の高分子材料の層を基材2の一面2aに設ける際に、基材2の一面2aにゲル陥入性高分子の層90の第2のパターンを形成する。
以下、第3の態様に係るハイドロゲル流体デバイスの製造方法について説明する。
第3の態様に係るハイドロゲル流体デバイスの製造方法においては、まず、図21に示すように、第1の高分子材料の層を基材2の一面2aに設ける際に、基材2の一面2aにゲル陥入性高分子の層90の第2のパターンを形成する。
具体的には、図21に示すように、基材2の一面2aにパターン形状を有するシランカップリング剤の層11を形成する。シランカップリング剤及びパターンの形成方法としては、第1の態様に係るハイドロゲル流体デバイスの製造方法で説明した内容と同内容とすることができる。
その後、層11の表面に、ゲル陥入性高分子の層90を形成し、ゲル陥入性高分子のパターンを形成する。ゲル陥入性高分子としては、例えば、キトサン、アルギン酸、ポリビニルアルコール等が挙げられる。
層90の形成においては、grafting to法又はgrafting from法を用いることができる。これにより、シランカップリング剤が有する接着性官能基とゲル陥入性高分子とを反応させることができる。
層90の形成においては、grafting to法又はgrafting from法を用いることができる。これにより、シランカップリング剤が有する接着性官能基とゲル陥入性高分子とを反応させることができる。
次に、図22、23に示すように、パターン状に形成された層90を覆うように、第2のパターンが形成された基材2の一面2aに第1の高分子材料31を形成材料とするシート材35を配置する。
その後、シート材35とゲル陥入性高分子とを接触させる。層90とシート材35とが接触することで、層90に含まれるゲル陥入性高分子がシート材35の内部に浸透し、第1の高分子材料31の網目構造と絡み合う。これにより、ゲル陥入性高分子とハイドロゲルとが物理的又は化学的に結合し、シート材35と基材2とを接着させることができる。
その後、シート材35とゲル陥入性高分子とを接触させる。層90とシート材35とが接触することで、層90に含まれるゲル陥入性高分子がシート材35の内部に浸透し、第1の高分子材料31の網目構造と絡み合う。これにより、ゲル陥入性高分子とハイドロゲルとが物理的又は化学的に結合し、シート材35と基材2とを接着させることができる。
シート材35を層90に接触させる際、シート材35を構成する第1の高分子材料のpHを変化させてもよく、グルタルアルデヒドに代表される低分子架橋剤をシート材35に同時に拡散させてもよい。これにより、ゲル陥入性高分子同士の物理結合又は化学結合が形成され、より強固にゲル陥入性高分子と第1の高分子材料とを接着させることができる。
このようにして接着領域と非接着領域とが形成されるように、ハイドロゲルを構成する第1の高分子材料の層31Aを設けてもよい。図23においては、シート材35において層90と重なる部分が接着領域3aとなり、シート材35において層90と重ならない部分が非接着領域3bとなる。
第3の態様に係るハイドロゲル流体デバイスの製造方法において、下記の(A)、(B)、(C)、(D)の構成についての詳細及び好ましい態様は、第2の態様に係るハイドロゲル流体デバイスの製造方法と同様に、上述の第1の態様に係るハイドロゲル流体デバイスの製造方法で説明した内容と同内容とすることができる。
構成(A):第1の高分子材料を膨潤させることで、非接着領域の第1の高分子材料を基材から離間させ、基材と第1の高分子材料の層との界面に流路を形成するとともに、第1の高分子材料をフィルム状のハイドロゲルとすること。
構成(B):流路の外側を、第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆すること。
構成(C):第2の高分子材料を膨潤させてバルク状のゲルとすること。
構成(D):さらに、流路の開口面に管状構造物を接着剤によって接合すること。
これらの重複する構成(A)、(B)、(C)、(D)について、その説明を省略する。
構成(A):第1の高分子材料を膨潤させることで、非接着領域の第1の高分子材料を基材から離間させ、基材と第1の高分子材料の層との界面に流路を形成するとともに、第1の高分子材料をフィルム状のハイドロゲルとすること。
構成(B):流路の外側を、第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆すること。
構成(C):第2の高分子材料を膨潤させてバルク状のゲルとすること。
構成(D):さらに、流路の開口面に管状構造物を接着剤によって接合すること。
これらの重複する構成(A)、(B)、(C)、(D)について、その説明を省略する。
以上説明した第3の態様に係るハイドロゲル流体デバイスの製造方法においても、第1の態様に係るハイドロゲル流体デバイスの製造方法と同様の作用機序が得られる。
(第4の態様)
以下、第4の態様に係るハイドロゲル流体デバイスの製造方法について説明する。第4の態様に係るハイドロゲル流体デバイスの製造方法においては、まず、第1の高分子材料の層を基材の一面に設ける際に、基材の一面に接着性分子の層の第2のパターンを形成する。
以下、第4の態様に係るハイドロゲル流体デバイスの製造方法について説明する。第4の態様に係るハイドロゲル流体デバイスの製造方法においては、まず、第1の高分子材料の層を基材の一面に設ける際に、基材の一面に接着性分子の層の第2のパターンを形成する。
接着性分子としては、シアノアクリレート系の化合物等が挙げられる。接着性分子のパターンは、リソグラフィー技術により形成できる。この場合、接着性分子のパターンの大きさは、用いるリソグラフィー技術の解像度に依存する。
接着性分子のパターンのサイズはリソグラフィー技術の範囲で特に限定されない。リソグラフィーの手法は特に限定されない。例えば、フォトマスクを用いる手法、パターン状のUV光源を用いる手法、PDMS等の弾性材料であらかじめパターンを形成しておきスタンプの要領で化学物質を転写するマイクロコンタクトパターニング(μCP)等が挙げられる。
次に、接着性分子の層の第2のパターンが形成された基材の一面に第1の高分子材料を形成材料とするシート材を配置する。そして、シート材と接着性分子とを接触させる。接着性分子の層とシート材とが接触することで、接着性分子の層に含まれる接着性分子がシート材の内部に浸透し、第1の高分子材料の網目構造と絡み合う。その結果、接着性分子とハイドロゲルとが物理的又は化学的に結合し、シート材と基材とを接着させることができる。
このようにして接着領域と非接着領域とが形成されるように、ハイドロゲルを構成する第1の高分子材料の層31Aを設けてもよい。この場合、シート材において接着性分子の層と重なる部分が接着領域となり、シート材において接着性分子の層と重ならない部分が非接着領域となる。
第4の態様に係るハイドロゲル流体デバイスの製造方法において、下記の(A)、(B)、(C)、(D)の構成についての詳細及び好ましい態様は、第2の態様に係るハイドロゲル流体デバイスの製造方法と同様に、上述の第1の態様に係るハイドロゲル流体デバイスの製造方法で説明した内容と同内容とすることができる。
構成(A):第1の高分子材料を膨潤させることで、非接着領域の第1の高分子材料を基材から離間させ、基材と第1の高分子材料の層との界面に流路を形成するとともに、第1の高分子材料をフィルム状のハイドロゲルとすること。
構成(B):流路の外側を、第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆すること。
構成(C):第2の高分子材料を膨潤させてバルク状のゲルとすること。
構成(D):さらに、流路の開口面に管状構造物を接着剤によって接合すること。
これらの重複する構成(A)、(B)、(C)、(D)について、その説明を省略する。
構成(A):第1の高分子材料を膨潤させることで、非接着領域の第1の高分子材料を基材から離間させ、基材と第1の高分子材料の層との界面に流路を形成するとともに、第1の高分子材料をフィルム状のハイドロゲルとすること。
構成(B):流路の外側を、第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆すること。
構成(C):第2の高分子材料を膨潤させてバルク状のゲルとすること。
構成(D):さらに、流路の開口面に管状構造物を接着剤によって接合すること。
これらの重複する構成(A)、(B)、(C)、(D)について、その説明を省略する。
以上説明した第4の態様に係るハイドロゲル流体デバイスの製造方法においても、第1の態様に係るハイドロゲル流体デバイスの製造方法と同様の作用機序が得られる。
以上、図面を参照しながら本発明のいくつかの実施形態について説明したが、本発明は上述の実施形態及び例に限定されない。上述した例において示した各構成の諸形状、組み合わせ等は一例であり、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。そして、上述の実施形態にそれぞれ開示された技術的手段を任意に適宜組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。
組み合わせの具体的な一例として、本発明の一態様は、下記[1]~[8]に関するとも言える。
[1] 基材と、前記基材に設けられ、かつ、前記基材と接着する接着領域と前記基材と接着しない非接着領域とを有するフィルム状のハイドロゲルと、前記ハイドロゲルを構成する第1の高分子材料の膨潤により前記非接着領域の前記第1の高分子材料が前記基材から離間することで、前記ハイドロゲルと前記基材との界面に形成された流路と、前記流路の外側の前記ハイドロゲルの一面を被覆し、かつ、前記第1の高分子材料より膨潤度が低い第2の高分子材料で構成されるバルク状のゲルと、を備える、ハイドロゲル流体デバイス。
[2] 前記非接着領域は、前記流路の内側に帯状に配置され、前記接着領域は、前記非接着領域の延在方向の両側に配置されている、[1]のハイドロゲル流体デバイス。
[3] 前記基材と前記ハイドロゲルとの間で接着剤によって固定された管状構造物をさらに備える、[1]又は[2]のハイドロゲル流体デバイス。
[4] 基材の一面に、前記基材と接着する接着領域と、前記基材と接着しない非接着領域とが形成されるように、ハイドロゲルを構成する第1の高分子材料の層を設け、前記第1の高分子材料を膨潤させることで、前記非接着領域の前記第1の高分子材料を前記基材から離間させ、前記基材と前記第1の高分子材料の層との界面に流路を形成するとともに、前記第1の高分子材料をフィルム状のハイドロゲルとし、前記流路の外側を、前記第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆し、前記第2の高分子材料を膨潤させてバルク状のゲルとする、ハイドロゲル流体デバイスの製造方法。
[5] 前記第1の高分子材料の層を前記基材の前記一面に設ける際に、前記基材の前記一面に接着性官能基の第1のパターンを形成し、前記接着性官能基と化学結合を形成する官能基を有する第1の重合性モノマーを含む第1の組成物を、前記一面に塗布し、前記第1の重合性モノマーを重合させ、前記第1の組成物をゲル化させることで、前記第1の組成物を前記第1の高分子材料とする、[4]のハイドロゲル流体デバイスの製造方法。
[6] 前記第1の高分子材料の層を前記基材の前記一面に設ける際に、前記基材の前記一面に重合開始剤の層を形成し、前記重合開始剤と化学結合を形成する第2の重合性モノマーを含む第2の組成物を、前記重合開始剤の層の一面に塗布し、前記第2の重合性モノマーを重合させ、前記第2の組成物をゲル化させることで、前記重合開始剤の層と前記第2の組成物とが重なる部分に前記接着領域を形成するとともに、前記第2の組成物を前記第1の高分子材料とする、[4]のハイドロゲル流体デバイスの製造方法。
[7] 前記第1の高分子材料の層を前記基材の前記一面に設ける際に、前記基材の前記一面にゲル陥入性高分子又は接着性分子の第2のパターンを形成し、前記第2のパターンが形成された前記基材の前記一面に前記第1の高分子材料を形成材料とするシート材を配置し、前記シート材と前記ゲル陥入性高分子又は接着性分子とを接触させる、[4]のハイドロゲル流体デバイスの製造方法。
[8] さらに、前記流路の開口面に管状構造物を接着剤によって接合する、[4]~[7]のいずれかのハイドロゲル流体デバイスの製造方法。
組み合わせの具体的な一例として、本発明の一態様は、下記[1]~[8]に関するとも言える。
[1] 基材と、前記基材に設けられ、かつ、前記基材と接着する接着領域と前記基材と接着しない非接着領域とを有するフィルム状のハイドロゲルと、前記ハイドロゲルを構成する第1の高分子材料の膨潤により前記非接着領域の前記第1の高分子材料が前記基材から離間することで、前記ハイドロゲルと前記基材との界面に形成された流路と、前記流路の外側の前記ハイドロゲルの一面を被覆し、かつ、前記第1の高分子材料より膨潤度が低い第2の高分子材料で構成されるバルク状のゲルと、を備える、ハイドロゲル流体デバイス。
[2] 前記非接着領域は、前記流路の内側に帯状に配置され、前記接着領域は、前記非接着領域の延在方向の両側に配置されている、[1]のハイドロゲル流体デバイス。
[3] 前記基材と前記ハイドロゲルとの間で接着剤によって固定された管状構造物をさらに備える、[1]又は[2]のハイドロゲル流体デバイス。
[4] 基材の一面に、前記基材と接着する接着領域と、前記基材と接着しない非接着領域とが形成されるように、ハイドロゲルを構成する第1の高分子材料の層を設け、前記第1の高分子材料を膨潤させることで、前記非接着領域の前記第1の高分子材料を前記基材から離間させ、前記基材と前記第1の高分子材料の層との界面に流路を形成するとともに、前記第1の高分子材料をフィルム状のハイドロゲルとし、前記流路の外側を、前記第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆し、前記第2の高分子材料を膨潤させてバルク状のゲルとする、ハイドロゲル流体デバイスの製造方法。
[5] 前記第1の高分子材料の層を前記基材の前記一面に設ける際に、前記基材の前記一面に接着性官能基の第1のパターンを形成し、前記接着性官能基と化学結合を形成する官能基を有する第1の重合性モノマーを含む第1の組成物を、前記一面に塗布し、前記第1の重合性モノマーを重合させ、前記第1の組成物をゲル化させることで、前記第1の組成物を前記第1の高分子材料とする、[4]のハイドロゲル流体デバイスの製造方法。
[6] 前記第1の高分子材料の層を前記基材の前記一面に設ける際に、前記基材の前記一面に重合開始剤の層を形成し、前記重合開始剤と化学結合を形成する第2の重合性モノマーを含む第2の組成物を、前記重合開始剤の層の一面に塗布し、前記第2の重合性モノマーを重合させ、前記第2の組成物をゲル化させることで、前記重合開始剤の層と前記第2の組成物とが重なる部分に前記接着領域を形成するとともに、前記第2の組成物を前記第1の高分子材料とする、[4]のハイドロゲル流体デバイスの製造方法。
[7] 前記第1の高分子材料の層を前記基材の前記一面に設ける際に、前記基材の前記一面にゲル陥入性高分子又は接着性分子の第2のパターンを形成し、前記第2のパターンが形成された前記基材の前記一面に前記第1の高分子材料を形成材料とするシート材を配置し、前記シート材と前記ゲル陥入性高分子又は接着性分子とを接触させる、[4]のハイドロゲル流体デバイスの製造方法。
[8] さらに、前記流路の開口面に管状構造物を接着剤によって接合する、[4]~[7]のいずれかのハイドロゲル流体デバイスの製造方法。
以下、本発明を実施例によって具体的に説明する。ただし、本発明は以下の記載に限定されない。
まず、ガラス基板を洗浄し、洗浄ガラス基板を得た。洗浄ガラス基板を酸素プラズマで処理することで、表面活性化ガラス基板を得た。表面活性化ガラス基板とラジカル反応性のシランカップリング剤を用いて、シラン化ガラス基板を得た。次に、シラン化ガラス基板上にポジ型フォトレジストの薄膜をスピンコーティングによって形成した。その後、線幅1mmの短冊状のパターンUV光を照射し、現像することで、線幅1mmの短冊状部位のみレジストがついていないシラン化ガラス基板を得た。
その後、酸素プラズマで処理することで、レジストのついていない部位は洗浄し、レジストをアセトンによってリフトオフすることで、短冊状の部位以外に接着性官能基の第1のパターンが形成された基材を得た(以下、「パターン状シラン化基板」と記載する。)。
その後、酸素プラズマで処理することで、レジストのついていない部位は洗浄し、レジストをアセトンによってリフトオフすることで、短冊状の部位以外に接着性官能基の第1のパターンが形成された基材を得た(以下、「パターン状シラン化基板」と記載する。)。
次に、パターン状シラン化基板上でポリアクリルアミドゲルの重合を行った。その後、パターン状シラン化基板上の両端に、スペーサーを配置した後、下記のゲル前駆体溶液1をパターン状シラン化基板の中央に滴下した。
ゲル前駆体溶液1:第1の重合性モノマーとしてアクリルアミドを含み、蛍光モノマーとしてフルオレセイン-o-アクリレートを含み、架橋剤としてメチレンビスアクリルアミドを含み、熱重合開始剤としてKPSを含み、重合促進剤としてTEMEDを含む溶液。
ゲル前駆体溶液1:第1の重合性モノマーとしてアクリルアミドを含み、蛍光モノマーとしてフルオレセイン-o-アクリレートを含み、架橋剤としてメチレンビスアクリルアミドを含み、熱重合開始剤としてKPSを含み、重合促進剤としてTEMEDを含む溶液。
次に、ゲル前駆体溶液1を塗布したパターン状シラン化基板に、酸素プラズマ処理したカバーガラス(以下、「シール基板1E」と記載する。)を上面から乗せ、ゲル前駆体溶液1をパターン状シラン化ガラス基板とシール基板1Eで挟み込んだ。その後、UVの照射によりゲル前駆体溶液1を完全にゲル化させ、ゲル前駆体溶液1を第1の高分子材料(すなわち、ハイドロゲル)とした。
ゲル化の後、シール基板1Eを取り除き、第1の高分子材料を水で膨潤させ、未反応のゲル前駆体分子を除去し、フィルム状のハイドロゲルとガラス基板からなる実施例1のハイブリット流路を得た。
ゲル化の後、シール基板1Eを取り除き、第1の高分子材料を水で膨潤させ、未反応のゲル前駆体分子を除去し、フィルム状のハイドロゲルとガラス基板からなる実施例1のハイブリット流路を得た。
実施例1のハイブリット流路においては、線幅1mmの短冊状に非接着領域を配置したため、当該領域の第1の高分子材料のみ選択的に自由膨潤した。その結果、非接着領域の第1の高分子材料のみ平面形状から立体的な流路形状へと大きく変化した。
次に、実施例1のハイブリット流路の基板の両端にスペーサーを配置した後、下記のゲル前駆体溶液2をハイブリット流路上に滴下した。
ゲル前駆体溶液2:低膨潤性ゲル用モノマーとしてアクリルアミドを含み、架橋剤としてメチレンビスアクリルアミドを含み、熱重合開始剤としてKPSを含み、重合促進剤としてTEMEDを含み、物理架橋用ポリマーとしてPBDTを含む溶液。
ゲル前駆体溶液2:低膨潤性ゲル用モノマーとしてアクリルアミドを含み、架橋剤としてメチレンビスアクリルアミドを含み、熱重合開始剤としてKPSを含み、重合促進剤としてTEMEDを含み、物理架橋用ポリマーとしてPBDTを含む溶液。
ゲル前駆体溶液2をハイブリット流路上に滴下した基板に、酸素プラズマ処理したカバーガラス(以下、「シール基板2E」と記載する。)を上面から乗せ、ゲル前駆体溶液2をハイブリット流路とシール基板2Eで挟み込んだ。
次に、ゲル前駆体溶液2を完全にゲル化させ、前駆体溶液2をバルク状の第2の高分子材料とした。その後、ゲル化後、シール基板2Eを取り除き、ZrCl2O溶液に浸漬し、PBDTとZr4+イオンによる物理架橋を形成させた。その後、余剰のイオン等を洗い流し、基材、フィルム状のハイドロゲル、バルク状のゲル5を有するハイドロゲル流体デバイスを得た。
さらに、外径1mmのPTFEチューブをハイブリット流路に差し込み、接着剤を用いてガラス基板とフィルム状のハイドロゲルとPTFEチューブを接合し、実施例1のハイドロゲル流体デバイスを得た。
次に、ゲル前駆体溶液2を完全にゲル化させ、前駆体溶液2をバルク状の第2の高分子材料とした。その後、ゲル化後、シール基板2Eを取り除き、ZrCl2O溶液に浸漬し、PBDTとZr4+イオンによる物理架橋を形成させた。その後、余剰のイオン等を洗い流し、基材、フィルム状のハイドロゲル、バルク状のゲル5を有するハイドロゲル流体デバイスを得た。
さらに、外径1mmのPTFEチューブをハイブリット流路に差し込み、接着剤を用いてガラス基板とフィルム状のハイドロゲルとPTFEチューブを接合し、実施例1のハイドロゲル流体デバイスを得た。
図24に示すように、実施例1のハイドロゲル流体デバイスは、ハイブリット流路4Eがバルク状のゲル5Eによって被覆されている。このとき、このように、実施例1のハイドロゲル流体デバイスは、送液チューブ6EとしてPTFEを接着剤7Eによって接合可能であった。
従来のデバイスではチューブ接合部が脆く、少し力がかかると崩壊してしまうという問題がある。これに対して、実施例1のハイドロゲル流体デバイスにおいては、バルク状のゲルの被覆により、流路の構造を強靭化でき、接合部に十分な強度を付与できることを確認した。
このように、実施例1で作製したハイドロゲル流体デバイスにあっては、流路(ハイブリット流路)が加工の際の力学的強度に優れていた。
従来のデバイスではチューブ接合部が脆く、少し力がかかると崩壊してしまうという問題がある。これに対して、実施例1のハイドロゲル流体デバイスにおいては、バルク状のゲルの被覆により、流路の構造を強靭化でき、接合部に十分な強度を付与できることを確認した。
このように、実施例1で作製したハイドロゲル流体デバイスにあっては、流路(ハイブリット流路)が加工の際の力学的強度に優れていた。
図25に示すように、共焦点蛍光顕微鏡で断面観察像を撮影すると、蛍光モノマーによって蛍光染色したフィルム状のハイドロゲル3Eが、バルク状のゲル5Eで被覆された流路構造としてハイブリット流路4Eを確認できた。加えて、ハイブリット流路4Eがガラス基板2Eの上側の空間として形成されていることを確認できた。
次に、実施例1のハイドロゲル流体デバイス内に、0.5mg/mlのローダミンB溶液を送液チューブから注入し、実施例1のハイドロゲル流体デバイスの上面から経時観察を行った。
図26に示すように、流路内に色素を注入した後、0秒、180秒、2時間と時間が経過するにしたがって、赤色のローダミンB(低分子)が、ハイドロゲル流体デバイス中で流路からフィルム状のハイドロゲル、バルク状のゲルの順に拡散していく様子が観察された。
図27に示すように、共焦点蛍光顕微鏡で断面観察像を撮影すると、ハイブリット流路4Eの壁面を構成するフィルム状のハイドロゲル3Eが緑色に蛍光染色されていることに加えて、バルク状のゲル5Eの内部も赤色の蛍光を示した。このように、赤色のローダミンBが、緑色に蛍光染色されたハイブリット流路4Eの壁面(フィルム状のハイドロゲル3E)を透過し、バルク状のゲル5Eの内部まで、赤色の蛍光を示すローダミンBが拡散している様子が観察された。
図27に示すように、共焦点蛍光顕微鏡で断面観察像を撮影すると、ハイブリット流路4Eの壁面を構成するフィルム状のハイドロゲル3Eが緑色に蛍光染色されていることに加えて、バルク状のゲル5Eの内部も赤色の蛍光を示した。このように、赤色のローダミンBが、緑色に蛍光染色されたハイブリット流路4Eの壁面(フィルム状のハイドロゲル3E)を透過し、バルク状のゲル5Eの内部まで、赤色の蛍光を示すローダミンBが拡散している様子が観察された。
本発明のハイドロゲル流体デバイスは、簡便な方法で形成可能な任意の形状の流路を備え、基材の材料を任意に選択でき、流路を加工する際の力学的強度に優れる。
本発明のハイドロゲル流体デバイスの製造方法によれば、任意の形状の流路を簡便に形成でき、基材の材料を任意に選択でき、流路を加工する際の力学的強度に優れるハイドロゲル流体デバイスが得られる。
本発明に係るハイドロゲル流体デバイスは、拡散性の流路形状を生かした細胞培養デバイス、反応容器及びセンシングデバイスとして有用である。
本発明に係るハイドロゲル流体デバイスは、組織工学、化学工学分野等の産業上の分野に幅広く適用できる。
本発明のハイドロゲル流体デバイスの製造方法によれば、任意の形状の流路を簡便に形成でき、基材の材料を任意に選択でき、流路を加工する際の力学的強度に優れるハイドロゲル流体デバイスが得られる。
本発明に係るハイドロゲル流体デバイスは、拡散性の流路形状を生かした細胞培養デバイス、反応容器及びセンシングデバイスとして有用である。
本発明に係るハイドロゲル流体デバイスは、組織工学、化学工学分野等の産業上の分野に幅広く適用できる。
1:ハイドロゲル流体デバイス
2:基材
3:フィルム状のハイドロゲル
4:流路(ハイブリット流路)
5:バルク状のゲル
6:管状構造物
7:接着剤
11:接着性官能基の層(第1のパターン)
30:第1の組成物
31:第1の高分子材料
32:第2の組成物
35:シート材
40:レジスト層
50:低膨潤性ゲル用組成物
51:第2の高分子材料
60、61:スペーサー
70、71:シール基板
80:光重合開始剤の層
85:マスク材
90:ゲル陥入性高分子の層
2:基材
3:フィルム状のハイドロゲル
4:流路(ハイブリット流路)
5:バルク状のゲル
6:管状構造物
7:接着剤
11:接着性官能基の層(第1のパターン)
30:第1の組成物
31:第1の高分子材料
32:第2の組成物
35:シート材
40:レジスト層
50:低膨潤性ゲル用組成物
51:第2の高分子材料
60、61:スペーサー
70、71:シール基板
80:光重合開始剤の層
85:マスク材
90:ゲル陥入性高分子の層
Claims (8)
- 基材と、
前記基材に設けられ、かつ、前記基材と接着する接着領域と前記基材と接着しない非接着領域とを有するフィルム状のハイドロゲルと、
前記ハイドロゲルを構成する第1の高分子材料の膨潤により前記非接着領域の前記第1の高分子材料が前記基材から離間することで、前記ハイドロゲルと前記基材との界面に形成された流路と、
前記流路の外側の前記ハイドロゲルの一面を被覆し、かつ、前記第1の高分子材料より膨潤度が低い第2の高分子材料で構成されるバルク状のゲルと、
を備える、ハイドロゲル流体デバイス。 - 前記非接着領域は、前記流路の内側に帯状に配置され、
前記接着領域は、前記非接着領域の延在方向の両側に配置されている、請求項1に記載のハイドロゲル流体デバイス。 - 前記基材と前記ハイドロゲルとの間で接着剤によって固定された管状構造物をさらに備える、請求項1又は2に記載のハイドロゲル流体デバイス。
- 基材の一面に、前記基材と接着する接着領域と、前記基材と接着しない非接着領域とが形成されるように、ハイドロゲルを構成する第1の高分子材料の層を設け、
前記第1の高分子材料を膨潤させることで、前記非接着領域の前記第1の高分子材料を前記基材から離間させ、前記基材と前記第1の高分子材料の層との界面に流路を形成するとともに、前記第1の高分子材料をフィルム状のハイドロゲルとし、
前記流路の外側を、前記第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆し、
前記第2の高分子材料を膨潤させてバルク状のゲルとする、ハイドロゲル流体デバイスの製造方法。 - 前記第1の高分子材料の層を前記基材の前記一面に設ける際に、前記基材の前記一面に接着性官能基の第1のパターンを形成し、
前記接着性官能基と化学結合を形成する官能基を有する第1の重合性モノマーを含む第1の組成物を、前記一面に塗布し、
前記第1の重合性モノマーを重合させ、前記第1の組成物をゲル化させることで、前記第1の組成物を前記第1の高分子材料とする、請求項4に記載のハイドロゲル流体デバイスの製造方法。 - 前記第1の高分子材料の層を前記基材の前記一面に設ける際に、前記基材の前記一面に重合開始剤の層を形成し、
前記重合開始剤と化学結合を形成する第2の重合性モノマーを含む第2の組成物を、前記重合開始剤の層の一面に塗布し、
前記第2の重合性モノマーを重合させ、前記第2の組成物をゲル化させることで、前記重合開始剤の層と前記第2の組成物とが重なる部分に前記接着領域を形成するとともに、前記第2の組成物を前記第1の高分子材料とする、請求項4に記載のハイドロゲル流体デバイスの製造方法。 - 前記第1の高分子材料の層を前記基材の前記一面に設ける際に、前記基材の前記一面にゲル陥入性高分子又は接着性分子の第2のパターンを形成し、
前記第2のパターンが形成された前記基材の前記一面に前記第1の高分子材料を形成材料とするシート材を配置し、
前記シート材と前記ゲル陥入性高分子又は接着性分子とを接触させる、請求項4に記載のハイドロゲル流体デバイスの製造方法。 - さらに、前記流路の開口面に管状構造物を接着剤によって接合する、請求項4~7のいずれか一項に記載の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021553178A JP7208569B2 (ja) | 2019-10-21 | 2019-10-21 | ハイドロゲル流体デバイス、ハイドロゲル流体デバイスの製造方法 |
US17/768,208 US20230132700A1 (en) | 2019-10-21 | 2019-10-21 | Hydrogel fluid device and method for manufacturing hydrogel fluid device |
PCT/JP2019/041262 WO2021079399A1 (ja) | 2019-10-21 | 2019-10-21 | ハイドロゲル流体デバイス、ハイドロゲル流体デバイスの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/041262 WO2021079399A1 (ja) | 2019-10-21 | 2019-10-21 | ハイドロゲル流体デバイス、ハイドロゲル流体デバイスの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021079399A1 true WO2021079399A1 (ja) | 2021-04-29 |
Family
ID=75620588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/041262 WO2021079399A1 (ja) | 2019-10-21 | 2019-10-21 | ハイドロゲル流体デバイス、ハイドロゲル流体デバイスの製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230132700A1 (ja) |
JP (1) | JP7208569B2 (ja) |
WO (1) | WO2021079399A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116003700A (zh) * | 2022-12-29 | 2023-04-25 | 江南大学 | 一种基于螺吡喃的具有温度和水含量响应性的亲水聚合物及其制备方法和应用 |
WO2023100218A1 (ja) * | 2021-11-30 | 2023-06-08 | 日本電信電話株式会社 | ハイドロゲル流体デバイスおよびハイドロゲル流体デバイスの製造方法 |
WO2023119467A1 (ja) * | 2021-12-22 | 2023-06-29 | 日本電信電話株式会社 | 運動素子 |
WO2023162042A1 (ja) * | 2022-02-22 | 2023-08-31 | 日本電信電話株式会社 | センサー付きハイドロゲル流路型デバイス |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09141090A (ja) * | 1995-11-22 | 1997-06-03 | Dainippon Ink & Chem Inc | 多孔質膜で表面を被覆されたゲルおよびその製造方法 |
JP2007319942A (ja) * | 2006-05-30 | 2007-12-13 | Fuji Xerox Co Ltd | マイクロ流路デバイス |
JP2008156405A (ja) * | 2006-12-21 | 2008-07-10 | Kawamura Inst Of Chem Res | 局所膨潤高分子ゲル |
JP2018051155A (ja) * | 2016-09-30 | 2018-04-05 | 積水化成品工業株式会社 | 導電性積層ハイドロゲルシート |
-
2019
- 2019-10-21 JP JP2021553178A patent/JP7208569B2/ja active Active
- 2019-10-21 WO PCT/JP2019/041262 patent/WO2021079399A1/ja active Application Filing
- 2019-10-21 US US17/768,208 patent/US20230132700A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09141090A (ja) * | 1995-11-22 | 1997-06-03 | Dainippon Ink & Chem Inc | 多孔質膜で表面を被覆されたゲルおよびその製造方法 |
JP2007319942A (ja) * | 2006-05-30 | 2007-12-13 | Fuji Xerox Co Ltd | マイクロ流路デバイス |
JP2008156405A (ja) * | 2006-12-21 | 2008-07-10 | Kawamura Inst Of Chem Res | 局所膨潤高分子ゲル |
JP2018051155A (ja) * | 2016-09-30 | 2018-04-05 | 積水化成品工業株式会社 | 導電性積層ハイドロゲルシート |
Non-Patent Citations (1)
Title |
---|
TAKAHASHI, RIKU ET AL.: "Dynamic Creation of 3D Hydrogel Architectures via Selective Swelling Programmed by Interfacial Bonding", ACS APPLIED MATERIALS AND INTERFACES, vol. 11, no. 31, 15 July 2019 (2019-07-15), pages 28267 - 28277, XP055813349 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023100218A1 (ja) * | 2021-11-30 | 2023-06-08 | 日本電信電話株式会社 | ハイドロゲル流体デバイスおよびハイドロゲル流体デバイスの製造方法 |
WO2023119467A1 (ja) * | 2021-12-22 | 2023-06-29 | 日本電信電話株式会社 | 運動素子 |
WO2023162042A1 (ja) * | 2022-02-22 | 2023-08-31 | 日本電信電話株式会社 | センサー付きハイドロゲル流路型デバイス |
CN116003700A (zh) * | 2022-12-29 | 2023-04-25 | 江南大学 | 一种基于螺吡喃的具有温度和水含量响应性的亲水聚合物及其制备方法和应用 |
CN116003700B (zh) * | 2022-12-29 | 2023-12-01 | 江南大学 | 一种基于螺吡喃的具有温度和水含量响应性的亲水聚合物及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
JP7208569B2 (ja) | 2023-01-19 |
US20230132700A1 (en) | 2023-05-04 |
JPWO2021079399A1 (ja) | 2021-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021079399A1 (ja) | ハイドロゲル流体デバイス、ハイドロゲル流体デバイスの製造方法 | |
Shakeri et al. | Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices | |
Kabb et al. | Photoreversible covalent hydrogels for soft-matter additive manufacturing | |
JP7071641B2 (ja) | 積層体、積層体の製造方法および形状制御デバイス | |
Yang et al. | Advances in design and biomedical application of hierarchical polymer brushes | |
US11148389B2 (en) | Hydrogel-elastomer hybrids | |
KR101682910B1 (ko) | 그래프트형 광감응성 수화겔, 이를 포함하는 엑츄에이터 및 이의 제조방법 | |
Deng et al. | Developments and new applications of UV-induced surface graft polymerizations | |
Xu et al. | Functionalization of nylon membranes via surface-initiated atom-transfer radical polymerization | |
Wang et al. | Covalent micropatterning of poly (dimethylsiloxane) by photografting through a mask | |
JP5190323B2 (ja) | 有機・無機複合ヒドロゲルの成形方法 | |
Di Benedetto et al. | Patterning polyacrylamide hydrogels by soft lithography | |
Bao et al. | Near-infrared light-stimulus-responsive film as a sacrificial layer for the preparation of free-standing films | |
AU2017305431A1 (en) | Polymeric devices and methods of making | |
Li et al. | Simple strategy to functionalize polymeric substrates via surface-initiated ATRP for biomedical applications | |
Gumuscu et al. | Photopatterning of hydrogel microarrays in closed microchips | |
Dübner et al. | From pH-to light-response: postpolymerization modification of polymer brushes grafted onto microporous polymeric membranes | |
Zapotoczny | Stimuli responsive polymers for nanoengineering of biointerfaces | |
Ye et al. | Anisotropic hydrogels constructed via a novel bilayer-co-gradient structure strategy toward programmable shape deformation | |
Liu et al. | Macroscopic self-assembly of gel-based microfibers toward functional nonwoven fabrics | |
WO2023100218A1 (ja) | ハイドロゲル流体デバイスおよびハイドロゲル流体デバイスの製造方法 | |
WO2023119467A1 (ja) | 運動素子 | |
WO2023162042A1 (ja) | センサー付きハイドロゲル流路型デバイス | |
WO2024218855A1 (ja) | 積層体の製造方法及び積層体 | |
JP7492161B2 (ja) | 光導波路デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19950017 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021553178 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19950017 Country of ref document: EP Kind code of ref document: A1 |