JP7208569B2 - ハイドロゲル流体デバイス、ハイドロゲル流体デバイスの製造方法 - Google Patents

ハイドロゲル流体デバイス、ハイドロゲル流体デバイスの製造方法 Download PDF

Info

Publication number
JP7208569B2
JP7208569B2 JP2021553178A JP2021553178A JP7208569B2 JP 7208569 B2 JP7208569 B2 JP 7208569B2 JP 2021553178 A JP2021553178 A JP 2021553178A JP 2021553178 A JP2021553178 A JP 2021553178A JP 7208569 B2 JP7208569 B2 JP 7208569B2
Authority
JP
Japan
Prior art keywords
hydrogel
substrate
gel
fluid device
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021553178A
Other languages
English (en)
Other versions
JPWO2021079399A1 (ja
Inventor
陸 高橋
あや 田中
祐子 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JPWO2021079399A1 publication Critical patent/JPWO2021079399A1/ja
Application granted granted Critical
Publication of JP7208569B2 publication Critical patent/JP7208569B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0004Use of compounding ingredients, the chemical constitution of which is unknown, broadly defined, or irrelevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/163Biocompatibility
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/022Hydrogel, i.e. a gel containing an aqueous composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、ハイドロゲル流体デバイス、ハイドロゲル流体デバイスの製造方法に関する。
ハイドロゲルが知られている。ハイドロゲルは生体親和性、高含水性、高柔軟性、高潤滑性、物質透過性等の性質を具備する。ハイドロゲルのこれらの性質は生体組織の性質と類似する。そのため、ハイドロゲルは、生体システムを人工的に再現したデバイスの素材として適している。
ハイドロゲルを三次元的な形状、例えば、中空状に成形し、流路とすることが提案されている。例えば、ハイドロゲルで形成された流路の内側に液体を流し込み、流路とハイドロゲルとの間で液体中の物質の授受が可能となる生体システムの構築が検討されている。ハイドロゲルを用いた生体システムは、医療、細胞培養、ロボット工学等の種々の産業上の分野での用途が期待される。
ハイドロゲルに流路を形成する技術として、例えば非特許文献1の方法が知られている。非特許文献1は3Dプリンティングと犠牲層を組み合わせることで、ハイドロゲルに流路を形成する方法を開示している。しかし、非特許文献1に開示された方法においては、材料の選択肢が制限され、任意の基材を使用できない。また、形成される流路の最小サイズがミリメートルスケールであり、流路の形状の選択にも制限がある。加えて、非特許文献1に開示された方法では、犠牲層を取り除くプロセスが煩雑であり、簡便な方法ではない。
そこで、本発明者らは、ハイドロゲルに流路を形成する方法として、非特許文献2に記載の方法を開示している。例えば、図28、29に示すように、非特許文献2に記載の方法では、任意の基材102とハイドロゲル103との接着領域103aと非接着領域103bを任意のパターン状に配置する。非接着領域103bのハイドロゲル103の薄膜を自由膨潤させることで、マイクロメートルスケールの微小構造として、任意形状のハイドロゲルを有する流路104(以下、「ハイブリット流路」と記載することがある。)を備えるデバイス100を簡便に形成できる。
DOI=10.3389/conf.FBIOE.2016.01.01021 R.Takahashi,et al.ACS Appl.Mater.Interfaces 2019,11,28267-28277
しかしながら、従来のハイブリット流路を備えるデバイスにおいては、ハイブリット流路の薄膜部分のハイドロゲルが力学的に脆弱である。そのため、例えば、液体を送液するためのチューブ等の管状構造物をハイブリット流路に取り付ける際に、加工が困難であるという課題がある。
そこで、流路の形状の選択、基材の選択の幅広さ、ハイブリット流路の形成プロセスの簡便性を維持したまま、加工の際に充分な強度を具備するハイブリット流路を備えるデバイスが求められている。
本発明の目的は、簡便な方法で形成可能な任意の形状の流路を備え、基材の材料を任意に選択でき、流路を加工する際の力学的強度に優れる、ハイドロゲル流体デバイスと、その製造方法を提供することである。
本発明の一態様は、基材と、前記基材に設けられ、かつ、前記基材と接着する接着領域と前記基材と接着しない非接着領域とを有するフィルム状のハイドロゲルと、前記ハイドロゲルを構成する第1の高分子材料の膨潤により前記非接着領域の前記第1の高分子材料が前記基材から離間することで、前記ハイドロゲルと前記基材との界面に形成された流路と、前記流路の外側の前記ハイドロゲルの一面を被覆し、かつ、前記第1の高分子材料より膨潤度が低い第2の高分子材料で構成されるバルク状のゲルと、を備える、ハイドロゲル流体デバイスである。
本発明により、簡便な方法で形成可能な任意の形状の流路を備え、基材の材料を任意に選択でき、流路を加工する際の力学的強度に優れる、ハイドロゲル流体デバイスと、その製造方法を提供することが可能となる。
一実施形態に係るハイドロゲル流体デバイスを示す斜視図である。 図1のハイドロゲル流体デバイスのII-II断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 一実施形態に係るハイドロゲル流体デバイスの製造方法を説明する断面図である。 実施例1のハイドロゲル流体デバイスの写真である。 実施例1のハイドロゲル流体デバイスの断面蛍光観察像である。 実施例1のハイドロゲル流体デバイスの流路に、蛍光色素の液体を流した時の変化を示す写真である。 実施例1のハイドロゲル流体デバイスの流路に、蛍光色素の液体を流した時の変化を示す断面蛍光観察像である。 従来のハイブリット流路を備えるデバイスを説明する斜視図である。 図28のハイドロゲル流体デバイスのIXXX-IXXX断面図である。
以下、図1~図23を参照して好適な実施形態について説明するが、本発明は、以下に説明する実施形態に限定されない。以下の説明で用いる図面においては、本発明の特徴を分かりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同様であるとは限らない。
<ハイドロゲル流体デバイス>
図1は、一実施形態に係るハイドロゲル流体デバイス1の斜視図である。図2は、ハイドロゲル流体デバイス1の線分II-IIにおける矢視断面図である。図1、2に示すように、ハイドロゲル流体デバイス1は、基材2とフィルム状のハイドロゲル3と流路4とバルク状のゲル5と管状構造物6、6を備える。
(基材)
基材2は、フィルム状のハイドロゲル3を支持する。基材2の形状は特に限定されない。基材2の形状としては、微細加工技術等によって、より複雑な外部刺激を受信できる立体形状に加工してもよい。基材2の力学物性は限定されない。基材2の剛性率は、フィルム状のハイドロゲル3の剛性率とは異なる。例えば、一実施形態において基材2の剛性率は、フィルム状のハイドロゲル3の剛性率よりも高い。
基材2の剛性率がフィルム状のハイドロゲル3の剛性率に対して著しく高い場合、フィルム状のハイドロゲル3のみを大きく変形させて、基材2との非接着領域3bに大きな空間を誘起できる。そのため、フィルム状のハイドロゲル3の膨潤による流路4、すなわち、ハイブリット流路の形成の自由度が向上する。
本明細書において、「膨潤」とは、ゲルの網目構造中に水等の液体が流入し、ゲルの体積が増加することをいう。
基材2の材質の種類は、特に限定されない。基材2は、光透過性を具備してもよく、光透過性を具備しなくてもよい。基材2の材料としては、透明性、化学的安定性に優れるガラス;力学刺激によって大変形を誘起できるポリシリコーン、合成ゴム等のエラストマー;光刺激によって熱刺激を誘起できるカーボンナノチューブ、金ナノ構造体、ポルフィリン誘導体、ポリドーパミン、インドシアニングリーン等を含有するフィルム;電気刺激によって熱刺激を誘起できる導電体;磁場刺激によって熱刺激を誘起できる磁性金属体;力学刺激によって電気刺激を誘起できる圧電素子;電気刺激によって光刺激を誘起できる発光ダイオード等が挙げられる。基材2は、フィルム状のハイドロゲル3と膨潤度が異なる他のハイドロゲルでもよい。
基材2の材料はこれらの例示に限定されない。基材2は、種々の材料及び材質から選択できる。
(フィルム状のハイドロゲル)
フィルム状のハイドロゲル3は、基材2の一面2aに設けられている。フィルム状のハイドロゲル3は、基材2と接着する接着領域3aと、基材2と接着しない非接着領域3bとを有する。接着領域3aにおいては、接着性官能基の層11によって、フィルム状のハイドロゲル3と基材2とが接着されている。
図1、2に示すように、非接着領域3bは、流路4の内側に帯状に配置されている。そして、接着領域3aは、非接着領域3bの延在方向の両側に配置されている。ここで、図1、2に示す接着領域3a、非接着領域3bのパターンは一例であり、設計に応じて種々のパターン形状を採用できる。
ハイドロゲル流体デバイス1において、フィルム状のハイドロゲル3は、ハイドロゲルを構成する第1の高分子材料が膨潤した後のハイドロゲルである。すなわち、フィルム状のハイドロゲル3は、水等の液体が第1の高分子材料の網目構造等に流入し、膨潤したものである。そのため、フィルム状のハイドロゲル3は、第1の高分子材料の膨潤物であるとも言える。第1の高分子材料の膨潤度は、後述の第2の高分子材料より相対的に高く、かつ、膨潤の際の体積増加の際に、所望の流路を形成できる範囲であれば特に限定されない。
前記第1の高分子材料は、化学架橋による化学架橋ゲルでもよく、物理架橋により得られる物理架橋ゲルでもよい。前記第1の高分子材料としては、例えば、ポリアクリルアミド、ポリビニルアルコール等の合成水溶性高分子;キトサン、アルギン酸、セルロース等の多糖類;コラーゲン、アルブミン等のタンパク質が挙げられる。
第1の高分子材料の合成方法は特に限定されない。例えば、アクリル系高分子の場合、アクリル基の重合反応による化学架橋によるゲル化反応が挙げられる。多糖類及びタンパク質の場合、物理結合によるゲル化を用いてもよく、グルタルアルデヒドに代表される化学架橋剤を用いてもよい。第1の高分子材料の合成方法の一例については、後述の<ハイドロゲル流体デバイスの製造方法>の項で詳細に説明する。フィルム状のハイドロゲル3の一例としては、例えば、後述の第1の高分子材料31が膨潤した後のハイドロゲルである。
第1の高分子材料の種類は、ハイドロゲルを構成する高分子材料であれば、特に限定されない。例えば、外部刺激応答性のハイドロゲルを第1の高分子材料として用いると、ハイドロゲル流体デバイス1の形状変形の制御が可能である。
本明細書において、「外部刺激応答性」とは、高分子材料が、熱、光、電気、pH等の外部刺激に応じて分子構造が変化する性質を意味する。
外部刺激応答性のハイドロゲルの例としては、熱応答性のハイドロゲル、pH応答性のハイドロゲル、光応答性のハイドロゲルが挙げられる。
熱応答性のハイドロゲルとしては、ポリ(N-イソプロピルアクリルアミド)、ポリ(メチルビニルエーテル)等を含むゲルが挙げられる。
pH応答性のハイドロゲルとしては、アニオン又はカチオンモノマーから合成された高分子電解質を含むゲルが挙げられる。
光応答性のハイドロゲルとしては、スピロピラン又はアゾベンゼンを骨格に有する高分子を含むゲルが挙げられる。
さらに、ハイドロゲルとしては、ダブルネットワークゲル、スライドリングゲル、Tetra-PEGゲル、ナノクレイゲル等の強靭性ハイドロゲルを用いてもよい。ここで「PEG」は、polyethylene glycolの略である。
これらのハイドロゲルは一種単独で用いてもよく、複数を併用してもよい。例えば、これらのハイドロゲルのうち複数種を混合することで、複数種の刺激に応答するハイドロゲルとしてもよい。
フィルム状のハイドロゲル3を構成する第1の高分子材料は、種々の添加剤をさらに含んでもよい。添加剤は、ハイドロゲルの形成を阻害しなければ特に限定されない。任意の添加剤の使用により、ハイドロゲル3に任意の機能を付与できる。
ハイドロゲル3における添加剤としては、例えば、生体親和性を向上させる生体分子;抗菌性を発現させるための銀ナノ粒子、界面活性剤;導電性を増加させるためのイオン液体、導電性高分子;磁場に反応させるための磁性ナノ粒子等が挙げられる。ただし、添加剤はこれらの例示に限定されない。
フィルム状のハイドロゲル3の厚みは特に限定されないが、自重でつぶれない程度の構造強度を保てる厚みであることが好ましい。フィルム状のハイドロゲル3の厚みを薄く維持したまま、自重を支えられるだけの強度を保つために、化学架橋の架橋度、物理架橋の架橋度又はゲル中の高分子の濃度を高くすることにより、ハイドロゲル3の力学物性を向上させてもよい。
ハイドロゲル3を構成する第1の高分子材料の形状は、そのすべてがフィルム状である必要はない。すなわち、第1の高分子材料は、一部にフィルム状以外の形状部分を有してもよい。フィルム状以外の形状としては、特に限定されず、使用形態に応じて様々な形状を選択できる。例えばフィルム状の他に、板形状、ブロック形状等が挙げられる。
一方、チャネル状の形状変形を誘起させたい場合は、相対的に小さな力で大変形が可能であることから、フィルム状が好ましい。
(流路)
流路4は、基材2とフィルム状のハイドロゲル3との界面に形成されている。流路4は、ハイドロゲル3を構成する第1の高分子材料の膨潤により非接着領域3bの第1の高分子材料が基材2から離間することで形成されている。
具体的には、基材2とフィルム状のハイドロゲル3の界面において、接着領域3aと非接着領域3bとのパターン配置によって、第1の高分子材料が基材2から離間する部分の位置の制御が行われたものである。第1の高分子材料が膨潤し、非接着領域3bの第1の高分子材料が基材2から選択的に離間することにより、第1の高分子材料の座屈変形が起き、フィルム状のハイドロゲル3となる。
その結果として、基材2とフィルム状のハイドロゲル3とで囲まれた空間としてハイブリット流路、すなわち流路4が形成されている。
流路4は、基材2から離間した部分のフィルム状のハイドロゲル3を流路面4cとして有する。流路4は、第1の開口面4aと第2の開口面4bとを有する。流路4の流路面cは、第1の開口面4aと第2の開口面4bとの間において、非接着領域3bの延在方向に沿って帯状に形成されている。そして、基材2とフィルム状のハイドロゲル3との界面に形成された流路4が、バルク状のゲル5の第1の面5a側から第2の面5b側に貫通している。
(バルク状のゲル)
ハイドロゲル流体デバイス1において、バルク状のゲル5は、ゲルを構成する第2の高分子材料が膨潤した後のゲルである。すなわち、バルク状のゲル5は、水等の液体が第2の高分子材料の網目構造等に流入し、膨潤したものである。そのため、フィルム状のハイドロゲル3は、第2の高分子材料の膨潤物であるとも言える。
第2の高分子材料は、フィルム状のハイドロゲル3を構成する第1の高分子材料より膨潤度が低い。第2の高分子材料の膨潤度は、第1の高分子材料の膨潤度より低ければ特に限定されない。第2の高分子材料の膨潤度は、例えば、一方向への膨潤度が膨潤前のサイズを基準として0.8倍~1.2倍程度が望ましい。
ここで、「膨潤度」は、例えば、重合直後の第1の高分子材料又は第2の高分子材料を適当な直径の円板形状の試料として切り出し、円板形状の試料をサイズ変化が生じなくなるまで純水中で静置し、下式(1)によって算出できる。
(膨潤度)=d/d ・・・式(1)
式(1)中、dは、純水中に静置した後の試料の最大部分の直径であり、dは、純水中に静置する前の円形形状の試料の直径である。
バルク状のゲル5を構成する第2の高分子材料は、ハイドロゲルでもよく、ハイドロゲル以外のゲルでもよい。第2の高分子材料がハイドロゲルである場合、第2の高分子材料は、上述の(フィルム状のハイドロゲル)の項で説明した第1の高分子材料と同一でもよく、異なってもよい。第2の高分子材料として、具体的には、例えば、モノマーのラジカル重合反応による共有結合によって架橋される化学架橋ゲルが挙げられる。
化学架橋ゲルとしては、例えば、ポリアクリルアミド及びその誘導体(ポリジメチルアクリルアミド、ポリN-イソプロピルアクリルアミド等)が挙げられる。この場合、架橋剤としてメチレンビスアクリルアミドを用いることで、架橋密度を高め、第2の高分子材料の膨潤度を上記の数値範囲内に収めてもよい。
第2の高分子材料としては、正電荷又は負電荷を有するポリマーと、それらと反対の多価電荷を有するイオンを組み合わせた物理架橋ゲルも挙げられる。
物理架橋ゲルとしては、例えば、負電荷を有するポリマーであるアルギン酸ナトリウム溶液と、塩化カルシウム、硫酸カルシウム等のカルシウム溶液とを組み合わせてゲル化した物理架橋ゲルが挙げられる。他にも、水溶性のポリアラミドであるpoly(2,2’-disulfo-4,4’-bensidine terephthalamide :PBDT)と様々な金属多価カチオン(Ca2+,Fe2+,Al3+,Zr4+,Ti4+等)と組み合わせた物理架橋ゲルが挙げられる。PBDTの代わりに同じく負電荷を帯びているTEMPO酸化されたセルロースナノファイバー(NIPPON PAPER INDUSTRIES CO.,LTD.)、リン酸エステル化法によって解繊されたセルロースナノファイバー(Oji Holdings Corporation)を用いてもよい。
ここで「TEMPO」は、2,2,6,6-tetramethylpiperidine 1-oxyl(2,2,6,6-テトラメチルピペリジン-1-オキシルラジカル)の略である。
バルク状のゲル5は、流路4の外側のフィルム状のハイドロゲル3の一面を被覆している。ハイドロゲル流体デバイス1においては、バルク状のゲル5が、フィルム状のハイドロゲル3が基材2と接触しない方の面を被覆している。すなわち、バルク状のゲル5によって被覆されるフィルム状のハイドロゲル3の一面は、基材2と接触する面と反対側の(すなわち、基材2と接触する面と対向する)一面である。
バルク状のゲル5は、流路4の外側を被覆している。そのため、流路4の内側に水性液体を流し込むと、水性液体が流路面4cのハイドロゲルを透過し、流路4の外側に拡散し、ゲル5に到達する。
例えば、ゲル5がハイドロゲルで構成されている場合、ゲル5に到達した水性液体がゲル5の内部に拡散可能である。そのため、ゲル5の内部にあらかじめ任意の対象物(例えば、細胞、培養組織)を配置しておくことで、ゲル5の内部の所定の領域の対象物に水性液体を選択的に供給できる。
例えば、ゲル5を構成する第2の高分子材料として、正電荷又は負電荷を有するハイドロゲルを用いる場合、流路4に特定の電荷をもった低分子の拡散を防ぐ機能を付与できる。すなわち、流路4の内側から外側に特定の電荷をもった低分子が拡散しないように遮蔽する機能をゲル5に付与できる。
他にも、例えば、ゲル5を構成する第2の高分子材料として、外部刺激に応答して親水性、疎水性の性質が切り替わるハイドロゲル;外部刺激に応答して膨潤度を変化させることができるハイドロゲルを用いることもできる。
外部刺激に応答して親水性、疎水性の性質が切り替わるハイドロゲルを用いる場合、ゲル5が外部刺激に応答した結果として親水性であるときは、ゲル5内を拡散する低分子を親水性のものに選択的に限定できる。一方、ゲル5が外部刺激に応答した結果として疎水性であるときは、ゲル5内を拡散する低分子を疎水性のものに選択的に限定できる。
この一例のように、ハイドロゲル流体デバイス1によれば、ゲル5の性質の選択により、流路4の内側から外側に拡散する低分子拡散のフィルタリングが可能となる。このフィルタリング機能は、上述の一例のように外部刺激に応答して変化させることが可能であるため、時間的な制御が可能である。
外部刺激に応答して膨潤率(含水率)を変化させることができるハイドロゲルを用いる場合、ゲル5の膨潤率が外部刺激に応答した結果として相対的に高いときは、ゲル5内を拡散する低分子の拡散速度が相対的に遅くなる。一方、ゲル5の膨潤率が外部刺激に応答した結果として相対的に低いときは、ゲル5内を拡散する低分子の拡散速度が相対的に速くなる。
この一例のように、ハイドロゲル流体デバイス1によれば、ゲル5の性質の選択により、バルク状のゲル5内を拡散する低分子の拡散速度の制御が可能となる。この拡散速度の制御機能は、上述の一例のように外部刺激に応答して変化させることが可能であるため、時間的な制御が可能である。
他にも、バルク状のゲル5は、流路4から拡散してくる低分子に対して蛍光等の所定の応答を示す官能基を有してもよい。この場合、低分子がゲル5内を拡散するときに、ゲル5が蛍光等の所定の応答を示すため、拡散した低分子のセンサーとしての機能をハイドロゲル流体デバイス1に付与できる。
バルク状のゲル5の力学強度は特に限定されない。例えば、Polydimethylsiloxane(PDMS)と同程度の弾性率(~1.3MPa)をバルク状のゲル5に求める場合、第2の高分子材料としては、物理架橋ゲルと化学架橋ゲルとを複合化したダブルネットワークゲルが好ましい。ダブルネットワークゲルは、強靭なダブルネットワーク構造を有するため、力学強度がさらに向上する。
バルク状のゲル5の形状は特に限定されない。ただし、バルク状のゲル5の厚みは、流路4を被覆する点から、流路4の高さHよりは厚くする必要がある。チューブとの接合部に十分な強度を持たせるために、バルク状のゲル5の厚みをさらに厚くしてもよい。
バルク状のゲル5を構成する第2の高分子材料は、極端な膨潤度の変化のない範囲内であれば種々の添加剤を含んでもよい。任意の添加剤の使用により、ゲル5に任意の機能を付与できる。
ゲル5における添加剤は、ゲル形成を阻害しなければ特に限定されない。例えば、生体親和性を向上させる生体分子;抗菌性を発現させるための銀ナノ粒子、界面活性剤;導電性を増加させるためのイオン液体、導電性高分子;磁場に反応させるための磁性ナノ粒子;グルコースと結合して蛍光強度が増強されるタンパク質等が挙げられる。
第2の高分子材料の合成方法は、第1の高分子材料より膨潤度が低くなるような方法であれば、特に限定されない。第2の高分子材料の合成方法の一例については、後述の<ハイドロゲル流体デバイスの製造方法>の項で詳細に説明する。バルク状のゲル5の一例としては、例えば、後述の第2の高分子材料51が膨潤した後のゲルである。
(管状構造物)
管状構造物6、6は、流路4の第1の開口面4a、第2の開口面4bに接着剤7、7によってそれぞれ固定されている。具体的には流路4の第1の開口面4a、第2の開口面4bのそれぞれにおいて、管状構造物6、6が基材2とハイドロゲル3との間で接着剤7、7によってそれぞれ固定されている。
管状構造物6は、流路4内に任意の流体を供給するためのものである。
管状構造物6は例えば、送液チューブである。送液チューブは、外部から送液可能な携帯であれば特に限定されない。送液チューブの種類は、特に限定されない。送液チューブとしては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン(PFA)、ポリウレタン、ポリエチレン、シリコーン、ポリイミド等からなるチューブが挙げられる。
管状構造物6の外径は特に制限されない。ただし、流路4の高さHと同程度の外径のチューブが望ましい。
接着剤7、7は、送液チューブを流路4に固定する。すなわち、接着剤7、7は、管状構造物6を基材2とフィルム状のハイドロゲル3との間で固定する。
図2に示すようにハイドロゲル流体デバイス1においては、接着剤7、7は、流路4の入り口の開口面4a、4bにおいて管状構造物6の周囲に、流路4の流路面4cと接する空間に密に充填されている。接着剤7、7は、耐水性を具備し、かつ、基材2及びフィルム状のハイドロゲル3と接着性を具備するものが望ましい。接着剤7、7としては、例えば、シアノアクリレート系の接着剤、シリコーン系接着剤、エポキシ系接着剤等が挙げられる。
(作用機序)
以上説明したハイドロゲル流体デバイス1は、流路の外側のハイドロゲルの一面を被覆し、かつ、ハイドロゲルを構成する第1の高分子材料より膨潤度が低い第2の高分子材料で構成されるバルク状のゲルを備える。膨潤度が相対的に低い第2の高分子材料で構成されるバルク状のゲルは、フィルム状のハイドロゲルの外骨格として機能するため、フィルム状のハイドロゲルの構造を強靭化できる。加えて、フィルム状のハイドロゲルとバルク状のゲルとの間で、ゲル中の網目構造が互いに侵入し合い、網目構造同士が絡み合った構造を構築でき、強固な接着が実現される。
そのため、従来、力学的に脆弱であった流路の薄膜部分が、バルク状のゲルによる被覆により強靭化される。強靭化された薄膜部分の構造は、送液チューブ等の管状構造物を接合するのに十分な強度を具備する。したがって、ハイドロゲル流体デバイス1は、流路を加工する際の力学的強度に優れる。
加えて、ハイドロゲル流体デバイス1は、ハイドロゲルを構成する第1の高分子材料の膨潤により非接着領域のハイドロゲルが基材から離間することで形成された流路を備える。そのため、ハイドロゲル流体デバイス及び流路は簡便な方法で形成可能である。またハイドロゲル流体デバイス1にあっては、フィルム状のハイドロゲルを構成する第1の高分子材料の自由膨潤を利用して流路が形成されることから、流路4は任意の形状及び構造をとることができる。
以上説明したハイドロゲル流体デバイス1においては、流路の形状を任意に選択できる。加えて、基材、フィルム状のハイドロゲル、バルク状のゲルの各材料をそれぞれ任意かつ互いに独立に選択できる。そのため、ハイドロゲル流体デバイスによって実現すべき所望の機能に応じて様々の基材、フィルム状のハイドロゲル、バルク状のゲルを組み合わせることができる。
したがって、ハイドロゲル流体デバイス1によれば、幅広い機能及び特性を具備する流体デバイスが提供される。
以上説明したハイドロゲル流体デバイス1においては、非特許文献1に記載の従来のハイドロゲルを用いる流体デバイスと比較して、材料選択の幅、及び流路のサイズスケールの幅が広いという利点がある。例えば、弾性体の力学的不安定性に基づいた複雑な形状(蛇行形状等)の流路でも簡便に作製できる。
加えて、PDMSベースの従来の流体デバイスとは異なり、水溶性の低分子が拡散し得るバルク状のゲルを備えるため、ハイドロゲル流体デバイスの内部への水溶性の低分子が拡散可能となるという利点もある。
(用途)
以上説明したハイドロゲル流体デバイス1においては、流路を加工する際の力学的強度に優れるため、送液チューブ等の管状構造物を接合可能な強靭性を具備する。加えて、強靭性を付与するための補強材として使用しているバルク状のゲル5も物質透過性を具備する。そのため、ハイドロゲル流体デバイス1によれば、流体がその内部を拡散可能なデバイスが提供される。すなわち、送液チューブ等が接合されハイドロゲル流体デバイスにあっては、送液チューブ等を介して流路内に注入した低分子をゲルフィルム状のハイドロゲル3及びバルク状のゲル5の内部へと順次拡散させることができる。
以上説明したハイドロゲル流体デバイス1によれば、例えば、バルク状のゲルとして、細胞を包埋できるものを使用することで、流路から細胞の栄養、分化因子等を任意の3次元方向に拡散可能な3次元細胞培養基材としての利用が期待できる。
以上説明したハイドロゲル流体デバイス1によれば、例えば、バルク状のゲルの上に細胞を播種し、流路から分化因子等を拡散させることで、細胞の分化を制御できる細胞培養基材としての利用が期待できる。
以上説明したハイドロゲル流体デバイス1によれば、バルク状のゲルに、流路から拡散してきた低分子に対して蛍光等の応答を示す官能基を導入しておくことができる。この場合、ハイドロゲル流体デバイス1は、特定の低分子に応答するセンサーに適用できる。
加えて、これらのゲル5の機能とフィルム状のハイドロゲルの機能とを複合させることで、より複雑な機能を有するハイドロゲル流体デバイス1の作製が可能である。
このように、ハイドロゲル流体デバイスは、例えば、細胞に栄養、種々の分化因子を流路に供給し、バルク状のゲルに拡散させることで人工組織を培養する製造システム;バルク状のゲルに内包された刺激応答ユニットによって流路から拡散してくる物質を検知するセンサー等の幅広い用途に適用できる。
<ハイドロゲル流体デバイスの製造方法>
本発明のハイドロゲル流体デバイスの製造方法の一例では、図3~図11に示すように、基材2の一面2aに、基材2と接着する接着領域3aと、基材と接着しない非接着領域3bとが形成されるように、ハイドロゲルを構成する第1の高分子材料31の層31Aを設ける。
次に、図12に示すように、第1の高分子材料31を膨潤させることで、非接着領域3bの第1の高分子材料31を基材2から離間させ、基材2と第1の高分子材料31の層との界面に流路4を形成するとともに、第1の高分子材料31をフィルム状のハイドロゲル3とする。
次に、図13、14に示すように、流路4の外側を第1の高分子材料31より膨潤度が低いバルク状の第2の高分子材料51で被覆し、次いで、第2の高分子材料51を膨潤させてバルク状のゲル5とする。
なお、本明細書において、「第1の高分子材料31」は、膨潤前のフィルム状のハイドロゲルを意味し、膨潤後のフィルム状のハイドロゲル3と区別する。同様に、「バルク状の第2の高分子材料51」は、膨潤前のバルク状のゲルを意味し、膨潤後のバルク状のゲル5と区別する。
以下、本発明のハイドロゲル流体デバイスの製造方法の第1の態様、第2の態様、第3の態様、第4の態様について順に説明する。
(第1の態様)
第1の態様に係るハイドロゲル流体デバイスの製造方法においては、まず、図3~図8に示すように、基材2の一面2aに接着性官能基の第1のパターン11を形成する。具体的には、図3、図4に示すように、基材2の一面2aに接着性官能基の層11Aを設ける。層11Aにより、基材2の一面2aに接着性官能基が提示される。
基材2の詳細及び好ましい態様は、上述の<ハイドロゲル流体デバイス>の項で説明した内容と同内容とすることができる。例えば、基材2として、ガラス基板が挙げられる。
接着性官能基の層11Aとしては、例えば、接着性官能基を有するシランカップリング剤の層が挙げられる。
本明細書において「接着性官能基」とは、後述の第1の重合性モノマーと接着可能な官能基を意味する。
例えば、第1の重合性モノマーとしてアクリルモノマーを用いる場合、接着性官能基としては、(メタ)アクリル基を例示することができる。この場合、シランカップリング剤としては、例えば3-(メタクリロイルオキシ)プロピルトリメトキシシランが挙げられる。
層11Aの形成方法は、特に限定されない。例えば、基材2の一面2aを、水酸化ナトリウム水溶液で洗浄し、3-(メタクリロイルオキシ)プロピルトリメトキシシランを酸素プラズマ又はピラニア洗浄によって活性化した後、基材2の一面2aにシランカップリング剤を塗布することで、層11Aを形成できる。ピラニア洗浄とは、濃硫酸と過酸化水素水溶液との混合液を使用する洗浄方法を指す通称である。
以下の説明では、一例として層11Aがシランカップリング剤の単分子層である場合について説明するが、本発明はこの一例に限定されない。
次に、図5に示すように、レジスト層40Aを接着性官能基の層11Aの一面11aにさらに設ける。レジスト層40Aは特に限定されない。例えば、ポジ型フォトレジストの層である。この場合、レジスト層40Aは、層11Aの表面にポジ型フォトレジストを塗布することで形成できる。ポジ型フォトレジストの塗布方法は、特に限定されない。例えばスピンコート法を用いることができる。
次に、レジスト層40Aに対し、遮光部M1と透光部M2とを有するマスクMを介して紫外線UV1を照射する。紫外線UV1のピーク波長は、ポジ型フォトレジストの吸収波長帯の範囲内であれば特に限定されない。
次に、図6に示すように、紫外線UV1の照射後、現像することにより、レジスト層40Aにおける紫外線UV1の照射部分が除去され、開口部40Xが形成され、レジスト層40のパターンが層11の一面に形成される。
次に、図7に示すように、開口部40Xが形成されたレジスト層40を介して、開口部40Xによって露出した層11Aに酸素プラズマOを用いた酸素プラズマ処理を施す。これにより、開口部40Xに露出した部分の層11Aのシランカップリング剤が除去される。
次に、図8に示すように、レジスト層40を除去することで、パターン形状を有するシランカップリング剤の層11が得られる(リフトオフ)。層11の形状は、マスクMにおける透光部M2の形状を変更することで適宜調整することができる。
この一例のように、接着性官能基を基材2の一面2aに提示した後に、リソグラフィー技術を用いてフォトレジストを任意のパターンで形成することで、基材2の一面2aに接着性官能基の第1のパターン11を形成できる。
次に、図9に示すように、接着性官能基と化学結合を形成する官能基を有する第1の重合性モノマーを含む第1の組成物30を、基材2の一面2aに塗布する。具体的には、層11が形成された一面2aにスペーサー60を配置し、第1の重合性モノマーを含む第1の組成物30をスペーサー60で囲まれた領域の基材2の一面2aに滴下する。その後、第1の組成物30を覆うように、紫外線透過性を有するシール基板70を被せる。これにより、スペーサー60で囲まれた領域に第1の組成物30を行き渡らせて、基材2の一面2aに第1の組成物30を塗布する。
シール基板70としては、例えばガラス基板を用いることができる。シール基板70において第1の組成物30と接触する面は、酸素プラズマ処理を施して洗浄しておくとよい。
シール基板70の一面70aは、例えば、後述の第1の高分子材料31の表面を平滑に保つため、フラットな面でもよく、後述の第1の高分子材料31の表面に任意の微細な立体形状を転写するために、当該任意の微細な立体形状に加工されてもよい。
第1の組成物30は、第1の重合性モノマーと、重合開始剤と、必要に応じて有機溶媒、重合促進剤とを含む。
第1の重合性モノマーは、重合することによりポリマーを生成しうる単量体である。そして、第1の重合性モノマーは、接着性官能基と化学結合を形成する官能基を有する。第1の重合性モノマーは、重合反応によって、ハイドロゲルを構成する第1の高分子材料31となる。基材に塗布された第1の組成物30は、第1の高分子材料31の前駆体であるとも言える。
第1の重合性モノマーは、重合により第1の高分子材料31の網目構造を形成できる化合物であれば特に限定されない。第1の重合性モノマーとしては、例えば、アクリル基を有するアクリルモノマーが挙げられる。ただし、第1の重合性モノマーは、この例示に限定されない。
重合開始剤としては、光重合開始剤、熱重合開始剤が挙げられる。重合開始剤は水溶性のものが好ましい。
水溶性の光重合開始剤としては、2-オキソグルタル酸、4’-(2-ヒドロキシエトキシ)-2-ヒドロキシ-2-メチルプロピオフェノン(Irgacure 2959)、フェニル(2,4,6-トリメチルベンゾイル)ホスフィン酸リチウム(LAP)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド](VA-086)等が挙げられる。
熱重合開始剤としては、ペルオキソ二硫酸アンモニウム(APS)、ペルオキソ二硫酸カリウム(KPS)等が挙げられる。
有機溶媒としては、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMA)、エチレンカーボネート(EC)等が挙げられる。
重合促進剤としては、N,N,N’,N’-テトラメチルエタン-1,2-ジアミン(TEMED)が挙げられる。重合促進剤の使用により、室温で数分のうちに重合させることもできる。
TEMED等の重合促進剤を使用する場合、酸素による重合阻害を防ぐため、脱酸素剤としてグルコース及びグルコースオキシダーゼを使用するか、窒素又はアルゴン等の不活性ガス雰囲気下で十分に脱気した後に重合反応を行ってもよい。
次に、図10に示すように、第1の重合性モノマーを重合させ、第1の組成物30をゲル化させることで、第1の組成物30を第1の高分子材料31の層31Aとする。ゲル化に際しては、重合開始剤に合わせた適切な刺激を第1の組成物30に与えてラジカル重合を誘起する。これによりラジカル重合を開始し、第1の高分子材料31の層を基材2の一面2aに設けることができる。
以下の説明においては、第1の組成物30が重合開始剤として、光重合開始剤を含む場合を一例に、第1の態様に係るハイドロゲル流体デバイスの製造方法について説明するが、本発明は、以下の一例に限定されない。
図10に示すように、本発明の第1の態様においては、シール基板70を介して紫外線UV2を照射する。紫外線UV2のピーク波長は、第1の組成物30に含まれる光重合開始剤の吸収波長帯の範囲内であれば、特に限定されない。紫外線UV2のピーク波長は、例えば365nmである。
紫外線UV2の照射により、第1の重合性モノマーを重合させ、第1の組成物30をゲル化させることで、第1の組成物30をフィルム状の第1の高分子材料31とする。
図10、11に示すように、第1の態様に係るハイドロゲル流体デバイスの製造方法では、第1の組成物30のゲル化により、第1の高分子材料31と基材2との界面に、基材2と第1の高分子材料31とが接着する接着領域3aと、基材2とハイドロゲルとが接着しない非接着領域3bとを形成する。
具体的には、第1の重合性モノマーを重合させることで、重合反応の際、第1の重合性モノマーが有する官能基と、層11のシランカップリング剤が有する接着性官能基とが反応する。その結果、第1の組成物30と第1のパターン11(層11)とが重なる部分では、ゲル化後の第1の高分子材料31が基材2の一面2aに接着し、接着領域3aが形成される。
一方、基材2において第1のパターン11(層11)が形成されていない部分では、第1の高分子材料31が基材2に接着せず、非接着領域3bが形成される。非基材2において第1のパターン11(層11)が形成されていない領域では、第1の組成物30に含まれる第1の重合性モノマー同士が重合する。
その結果、図11に示すように、接着領域3aと非接着領域3bとが形成されるように、ハイドロゲルを構成する第1の高分子材料31の層31Aを設けることができる。
ゲル化の際の重合反応の種類は、特に限定されない。通常、第1の組成物30中の重合開始剤に応じた重合反応から選択される。重合反応としては、例えば、光重合開始剤、熱重合開始剤等の重合開始剤を用いたラジカル重合が挙げられる。例えば、第1の重合性モノマーがアクリルモノマーの場合、アクリル基の重合反応による化学架橋が挙げられる。
次に、図11、12に示すように、第1の高分子材料31を膨潤させることで、非接着領域3bの第1の高分子材料31を基材2から離間させ、基材2と第1の高分子材料の層31Aとの界面に流路4を形成するとともに、第1の高分子材料31をフィルム状のハイドロゲル3とする。
第1の高分子材料31の膨潤に使用する液体は、特に限定されず、第1の高分子材料31中のポリマーに応じて適宜選択できる。例えば、水等の水性液体が挙げられる。
例えば、図11に示す第1の高分子材料31の層31Aを基材2とともに、大過剰量の純水に浸漬することで、第1の高分子材料31に水を膨潤させ、第1の高分子材料31から未反応の第1の重合性モノマーを除去してもよい。これにより、第1の高分子材料31が水で膨潤したフィルム状のハイドロゲル3が得られる。
ここで、第1の高分子材料31の膨潤に際しては、第1の高分子材料31の層31Aにおいては、層11と重なる部分が接着領域3aとなり、層11と重ならない部分が非接着領域3bとなる。
第1の高分子材料31の層31Aは、非接着領域3bにおいて基材2に固定されていない。そのため、第1の高分子材料31のうち、非接着領域3bと平面的に重なる部分は、第1の高分子材料31の膨潤による体積増加の際に、非接着領域3bの延在方向と交差する方向に、基材2から離間するように自由に体積増加可能である。
第1の高分子材料31の31Aは、接着領域3aにおいて基材2に固定されている。そのため、第1の高分子材料31のうち、接着領域3aと平面的に重なる部分は、接着領域3aの延在方向と交差する方向への体積増加が規制される。
その結果、第1の高分子材料31の膨潤度に応じて、非接着領域3bと重なる部分の第1の高分子材料31が変形し、基材2から離間し、流路4が形成される。例えば、図12に示すように、第1の高分子材料31の膨潤により第1の高分子材料31が形状変化する結果、第1の高分子材料31が基材2の一面2aから屈曲するように離間する。
非接着領域3bにおいて、第1の高分子材料31は大きく自由膨潤するため、体積増加による内部圧力の上昇を緩和するために、基材2から離れる方向に大きく膨らみ変形する。その結果、第1の高分子材料31が基材2と反対側へ大きく離間し、非接着領域のフィルム状のハイドロゲル3が座屈変形した形状をとる。このように、フィルム状のハイドロゲル3と基材2とで囲まれた空間に流路4、すなわち、ハイブリット流路が形成される。
流路4の形状は、第1のパターン11のパターン形状を適宜変更し、接着領域3a、非接着領域3bのパターン形状を制御することにより制御可能である。また、流路4の形状は、例えば、第1の高分子材料31の種類、基材2の剛性率と第1の高分子材料31の剛性率との比、第1の高分子材料31の層31Aの厚み等を調整することで制御できる。第1の高分子材料31の剛性率及び第1の高分子材料31の膨潤率は、第1の組成物に使用する第1の重合性モノマーの種類、架橋剤の種類及び量等を変更することで制御できる。
フィルム状のハイドロゲル3の形状及び厚みは、スペーサー60の大きさ、スペーサー60の形状等によって第1の高分子材料31の形状及び厚みを調整することで制御できる。フィルム状のハイドロゲル3には、シール基板70の基材2と対向する面70a(図9、10参照)の形状が転写されるため、面70aの形状を制御することでフィルム状のハイドロゲル3の形状を制御してもよい。
膨潤の前後における第1の高分子材料31とフィルム状のハイドロゲル3との間の変化は、可逆的な変化である。そのため、フィルム状のハイドロゲル3の膨潤率を変化させることでも、流路4の形状を制御できる。例えば、ハイドロゲル3の膨潤率は、ハイドロゲル3に水を接触させて膨潤させる、又はハイドロゲル3を乾燥させる、等の方法により変化させることができる。
第1の高分子材料31が外部刺激応答性のハイドロゲルである場合においては、第1の高分子材料31に入力する刺激に応じて、第1の高分子材料31の膨潤率を変化させ、流路4の形状を制御してもよい。
次に、図13、14に示すように、流路4の外側を、第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料51で被覆し、第2の高分子材料51を膨潤させてバルク状のゲル5とする。第2の高分子材料51の膨潤に使用する液体は、特に限定されず、第2の高分子材料51中のポリマーに応じて適宜選択できる。例えば、水等の水性液体、ベンゼン等の油性液体が挙げられる。
具体的には、例えば、層11が形成された一面2aにスペーサー61を配置する。その後、スペーサー61で囲まれた領域の流路4の外側のフィルム状のハイドロゲル3の一面3cに、低膨潤性ゲル用モノマーを含む低膨潤性ゲル用組成物50を滴下する。その後、低膨潤性ゲル用組成物50を覆うように、紫外線透過性を有するシール基板71を被せる。これにより、スペーサー61で囲まれた領域に低膨潤性ゲル用組成物50を行き渡らせて、流路4の外側のフィルム状のハイドロゲル3の一面3cに低膨潤性ゲル用組成物50を塗布する。
シール基板71としては、例えばガラス基板を用いることができる。シール基板71において低膨潤性ゲル用組成物50と接触する面は、酸素プラズマ処理を施して洗浄しておくとよい。
シール基板71の一面71aは、例えば、後述の第2の高分子材料51の表面を平滑に保つため、フラットな面でもよく、後述の第2の高分子材料51の表面に任意の微細な立体形状を転写するために、当該任意の微細な立体形状に加工されてもよい。
低膨潤性ゲル用組成物50は、例えば、低膨潤性ゲル用モノマーと、重合開始剤と、必要に応じて有機溶媒、重合促進剤と架橋用ポリマーを含む。
低膨潤性ゲル用モノマーは、重合することによりポリマーを生成しうる単量体である。低膨潤性ゲル用モノマーは、第1の重合性モノマーと同一でもよく、異なっていてもよい。低膨潤性ゲル用モノマーは、重合反応によって、バルク状のゲルを構成する第2の高分子材料となる。ハイドロゲル3の一面3cに塗布された低膨潤性ゲル用組成物50は、バルク状のゲル5の前駆体であるとも言える。
低膨潤性ゲル用モノマーは、重合により第2の高分子材料51の網目構造を形成できる化合物であれば特に限定されない。低膨潤性ゲル用モノマーとしては、例えば、アクリル基を有するアクリルモノマーが挙げられる。ただし、低膨潤性ゲル用モノマーは、この例示に限定されない。
低膨潤性ゲル用組成物50における重合開始剤としては、光重合開始剤、熱重合開始剤が挙げられる。重合開始剤は水溶性のものが好ましい。
光重合開始剤としては、2-オキソグルタル酸、4’-(2-ヒドロキシエトキシ)-2-ヒドロキシ-2-メチルプロピオフェノン(Irgacure 2959)、フェニル(2,4,6-トリメチルベンゾイル)ホスフィン酸リチウム(LAP)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド](VA-086)等が挙げられる。
熱重合開始剤としては、ペルオキソ二硫酸アンモニウム(APS)、ペルオキソ二硫酸カリウム(KPS)等が挙げられる。
これらの熱重合開始剤と重合促進剤と組み合わせることで、室温で数分のうちに重合させることもできる。重合促進剤としては、例えば、N,N,N’,N’-テトラメチルエタン-1,2-ジアミン(TEMED)が挙げられる。
次に、低膨潤性ゲル用組成物50中の重合開始剤に応じた適切な刺激を与えてラジカル重合を誘起する。これによりラジカル重合を開始することで、低膨潤性ゲル用組成物50をゲル化させ、膨潤度が低いバルク状の第2の高分子材料51で流路4の外側のフィルム状のハイドロゲル3の一面3cを被覆する。
このように、低膨潤性ゲル用組成物50をフィルム状のハイドロゲル3の一面3cの表面でゲル化させることで、フィルム状のハイドロゲル3内に一部のポリマーが浸潤した状態の第2の高分子材料51を得ることができる。
次いで、バルク状の第2の高分子材料51を膨潤させ、バルク状のゲル5とする。バルク状の第2の高分子材料51は、第1の高分子材料31より膨潤度が小さいため、フィルム状のハイドロゲル3及び流路4の形状を安定させる外骨格として機能できる。したがって、通常、膨潤度が変化すると形状も変化してしまう流路4の形状の変化を起こさずに、流路としての機能を維持したまま、フィルム状のハイドロゲル3の化学的性質を変化させることができる。
バルク状のゲル5におけるラジカル重合反応の種類は、特に限定されない。通常、低膨潤性ゲル用組成物50中の重合開始剤に応じた重合反応から選択される。
重合反応としては、例えば、光重合開始剤、熱重合開始剤等の重合開始剤を用いたラジカル重合が挙げられる。
例えば、PDMSと同程度の弾性率(~1.3MPa)をバルク状のゲル5に求める場合、前述した化学架橋ゲルと物理架橋ゲルを複合させることで、強靭なダブルネットワーク構造を有するバルク状のゲル5を得ることができる。
例えば、化学架橋ゲルのモノマーとしてアクリルアミド、架橋剤としてメチレンビスアクリルアミド、重合開始剤としてKPS、必要に応じて重合促進剤としてTEMED、物理架橋ゲルのポリマーとしてPBDT(を含有する水溶液)の混合物を低膨潤性ゲル用組成物50として流路4の外側のフィルム状のハイドロゲル3の一面3cに滴下することで、ポリアクリルアミドゲルがラジカル重合によって形成される。その後、ZrClO水溶液に含侵することで、PBDTとZr4+イオンによる物理架橋ゲルがポリアクリルアミドゲル内に形成される。この場合、得られたハイドロゲル流体デバイスを純水中に浸漬しても、強靭な力学物性は失われない。
バルク状のゲル5の形状及び厚みは、スペーサー61の大きさ、スペーサー61の形状等によって第2の高分子材料51の形状及び厚みを調整することで制御できる。バルク状のゲル5には、シール基板71のフィルム状のハイドロゲル3と対向する面71a(図13参照)の形状が転写されるため、面71aの形状を制御することでバルク状のゲル5の形状を制御してもよい。
バルク状のゲル5を構成する第2の高分子材料の合成方法として、正電荷又は負電荷を有するポリマーと、それらと反対の多価電荷を有するイオンを組み合わせることで、物理架橋ゲルを得る方法も挙げられる。この場合は、まずポリマー溶液をハイドロゲル3の一面3cに滴下する。その後多価イオンを滴下及び拡散させることで、フィルム状のハイドロゲル3内に一部のポリマーが浸潤した状態の第2の高分子材料51を得ることができる。
例としては、負電荷を有するポリマーであるアルギン酸ナトリウム溶液と塩化カルシウム、硫酸カルシウム等のカルシウム溶液の組み合わせが挙げられる。
他にも、水溶性のポリアラミドであるpoly(2,2’-disulfo-4,4’-bensidine terephthalamide: PBDT)は負電荷を帯びており、様々な金属多価カチオン(Ca2+,Fe2+,Al3+,Zr4+,Ti4+等)と組み合わせることで低膨潤性の物理架橋ゲルを得ることができる。
また、PBDTの代わりに同じく負電荷を帯びているTEMPO酸化されたセルロースナノファイバー(NIPPON PAPER INDUSTRIES CO.,LTD.)、リン酸エステル化法によって解繊されたセルロースナノファイバー(Oji Holdings Corporation)を用いてもよい。
第2の高分子材料51として、温度によってゲル化するカラギーナンを含むアガー、コラーゲンからなるゼラチン、テングサ、オゴノリからなる寒天を用いてもよい。
温度によってゲル化するカラギーナンを含むアガー、コラーゲンからなるゼラチン、テングサ、オゴノリからなる寒天を用いる場合は、まず昇温によって流動性のある低膨潤性ゲル用組成物50を調製し、フィルム状のハイドロゲル3内に一部のポリマーが浸潤した状態のバルク状の第2の高分子材料51を得ることができる。
バルク状の第2の高分子材料51で流路4の外側を被覆する方法としては、他にも、反応性の側鎖を有するポリマー(例えば水酸基を有するポリビニルアルコール、セルロース等)をグルタルアルデヒドで架橋する方法が挙げられる。この場合は、まずポリマー溶液を流路4の外側に滴下し、その後架橋剤を滴下及び拡散させる。これによりフィルム状のハイドロゲル3内に一部のポリマーが浸潤した状態のバルク状の第2の高分子材料51を得ることができる。
さらに、本実施形態に係るハイドロゲル流体デバイスの製造方法においては、図15に示すように、流路4の開口面に管状構造物6を接着剤7によって接合する。管状構造物6及び接着剤7については、上述の<ハイドロゲル流体デバイス>の項でこれらについて説明した内容と同内容とすることができる。
なお、送液チューブ等の管状構造物を流路に接合する時期は、特に限定されない。すなわち、先に流路4をバルク状のゲル5で被覆し、力学物性を向上させ、その後管状構造物6を流路4の開口面に取り付け、その後、接着剤7によって接合してもよく、先に流路4の開口面に管状構造物6を接着剤7で接合し、その後、バルク状のゲル5で被覆してもよい。
(作用機序)
以上説明したハイドロゲル流体デバイスの製造方法では、流路の外側を、ハイドロゲルを構成する第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆し、次いで、バルク状の第2の高分子材料を膨潤させる。
そのため、バルク状のゲルのゲル化の際には、バルク状のゲルとフィルム状のハイドロゲルとの間でゲル中の網目構造が互いに侵入し合い、網目構造同士が絡み合った構造を構築でき、強固な接着を実現できる。すなわち、ゲル化前のバルク状のゲルが流路面のハイドロゲルに対して浸潤することで、両ゲルの間で相互陥入した網目構造が形成され、強固に接着されるため、流路面のハイドロゲルの力学的強度が向上する。さらに、液体状態でバルク状のゲルの原材料を流路の外側の表面に滴下し、ゲル化させることができるため、流路の形状が複雑である場合であっても、その形状に沿って、バルク状のゲルで流路を被覆できる。
加えて、バルク状のゲルが膨潤する際には、バルク状のゲルはフィルム状のハイドロゲルより膨潤度が低いため、バルク状のゲルが流路の流路面のハイドロゲルの形状を安定させる外骨格として機能する。そのため、通常、膨潤度が変化すると形状も変化してしまう流路のハイドロゲルの形状の変化が少なく、流路としての機能を維持したままハイドロゲルの化学的性質を変化させることができる。
その結果、従来、力学的に脆弱であった流路の薄膜部分が、バルク状のゲルによる被覆により強靭化される。
強靭化された薄膜部分の構造は、送液チューブ等の管状構造物を接合するのに十分な強度を具備する。したがって、ハイドロゲル流体デバイス1は、流路を加工する際の力学的強度に優れる。
以上説明したハイドロゲル流体デバイスの製造方法では、基材の一面に接着領域と非接着領域とが形成されるように第1の高分子材料の層を設け、第1の高分子材料を膨潤させることで、非接着領域の第1の高分子材料を基材から離間させ、流路を形成する。ここで、第1の高分子材料の膨潤は、例えば、水等への浸漬等の操作により実施できるため、流路を簡便に形成できる。
加えて、接着領域と非接着性領域のパターン配置は任意に決定可能であり、フィルム状のハイドロゲルの自由膨潤を利用して流路が形成される。そのため、任意の形状及び構造の流路を形成できる。
以上説明したハイドロゲル流体デバイスの製造方法では、流路の形状を任意に選択でき、加えて、基材、ハイドロゲル、ゲルの各材料をそれぞれ任意かつ互いに独立に選択できる。そのため、ハイドロゲル流体デバイスによって実現すべき所望の機能に応じて様々の基材、ハイドロゲル及びゲルの組み合わせることができる。したがって、本実施形態に係るハイドロゲル流体デバイスの製造方法によれば、幅広い機能及び特性を具備する流体デバイスを簡便に作製できる。
以上説明したハイドロゲル流体デバイスの製造方法によれば、様々な化学種のハイドロゲルで作成したハイブリット流路を、バルク状のゲルで被覆することで、外部からの送液によって低分子をゲル内部に拡散させることが可能なハイドロゲル流体デバイスを作製できる。
このように、ハイドロゲル流体デバイスの製造方法によれば、簡便な手法で様々な化学種のフィルム状のハイドロゲルを流路形状に加工できるという利点を維持したまま、実用に耐えうる流路の優れた力学強度及び優れた機能性をハイドロゲル流体デバイスに付与できる。
(第2の態様)
以下、第2の態様に係るハイドロゲル流体デバイスの製造方法について説明する。第2の態様に係るハイドロゲル流体デバイスの製造方法においては、まず、図16、17に示すように、第1の高分子材料の層を基材2の一面2aに設ける際に、基材2の一面2aに光重合開始剤の層80を形成する。
具体的には、図16に示すように、基材2の一面2aに光重合開始剤溶液の塗膜80Aを形成する。基材2として、第2の態様においては、例えば、有機溶媒が浸潤可能なエラストマー、高分子フィルム等の樹脂基板を用いることが好ましい。
樹脂基板に浸潤可能な有機溶媒としては、例えば、メタノール、エタノール、アセトン等の極性溶媒が挙げられる。
第2の態様に係るハイドロゲル流体デバイスの製造方法においては、光重合開始剤としては、水素引き抜き型の光重合開始剤を用いる。
水素引き抜き型の光重合開始剤として、例えば、ベンゾフェノン、ミヒラーズケトン、ミヒラーズエチルケトン等が挙げられる。
光重合開始剤溶液の溶媒として、例えば、エタノール、アセトン等の極性溶媒が挙げられる。
図17に示すように、塗膜80Aから溶媒を除去して、光重合開始剤の層80を基材2に設ける。また、光重合開始剤溶液に用いられる極性溶媒は、樹脂基板に浸潤可能であることから、樹脂基板への溶媒の浸潤に伴って、光重合開始剤の一部は、樹脂基板の内部に含侵する。
次に、図18に示すように、スペーサー60を配置し、光重合開始剤の層80の一部をマスク材85で覆った状態で、重合開始剤と化学結合を形成する第2の重合性モノマーを含む第2の組成物32をスペーサー60で囲まれた領域に第2の組成物32を滴下する。その後、紫外線透過性を有するシール基板70を被せ、スペーサー60で囲まれた領域に第2の組成物32を行き渡らせて塗布する。
マスク材85は、フィルム状のハイドロゲルにおいて、非接着領域3bを形成したい部分に配置する。マスク材85としては、第2の重合性モノマーと反応しないものを用いる。例えば、マスク材85としてパラフィンフィルムを用いることができる。
第2の組成物32は、第2の重合性モノマーと、水素引き抜き型の光重合開始剤と、必要に応じて有機溶媒とを含む。ただし、層80に含まれる水素引き抜き型の光重合開始剤の濃度が十分に高い場合、第2の組成物32は、水素引き抜き型の光重合開始剤を含まないこととしてもよい。「濃度が十分に高い」とは、塗膜80Aの形成に用いる光重合開始剤溶液において、例えば、光重合開始剤の濃度が10質量%以上であるような場合を指す。
第2の重合性モノマーは、重合することによりポリマーを生成しうる単量体である。そして、第2の重合性モノマーは、重合開始剤と化学結合を形成する官能基を有する。第2の重合性モノマーは、重合反応によって、ハイドロゲルを構成する第1の高分子材料となる。
第2の重合性モノマーは、重合により第1の高分子材料31の網目構造を形成できる化合物であれば特に限定されない。第2の重合性モノマーとしては、例えば、アクリル基を有するアクリルモノマーが挙げられる。ただし、第2の重合性モノマーは、この例示に限定されない。
次に、図19、20に示すように、第2の重合性モノマーを重合させ、第2の組成物32をゲル化させることで、光重合開始剤の層80と重なる部分に接着領域を形成するとともに、第2の組成物32を第1の高分子材料31とする。
具体的には、図19に示すように、シール基板70を介して紫外線UV3を照射する。紫外線UV3のピーク波長は、層80に含まれる光重合開始剤の吸収波長帯に含まれる。紫外線UV3のピーク波長は、例えば365nmである。
紫外線UV3の照射により、所定のパターン状に光重合開始剤を反応させる。紫外線UV3の照射により、層80のマスク材85が重なっていない部分、すなわち、層80と第2の組成物32とが重なる部分では、マスク材85のパターン状に層80の光重合開始剤が基材2から水素原子を引き抜く。これにより、基材2には、反応開始点であるラジカルが生じる。第2の組成物32に含まれるモノマーは、基材2に生じたラジカルを起点に重合し、第1の高分子材料31が得られる。そのため、第1の高分子材料31は、光重合開始剤の層80と重なる部分で基材2と接着される。
これに対して、光重合開始剤の層80のマスク材85が重なっている部分、すなわち、層80と第2の組成物32とが重ならない部分では、紫外線UV3が遮光され、光重合開始剤による基材2からの水素原子引き抜きが生じない。基材2から水素原子が引き抜かれラジカルが生じたとしても、第2の組成物32が接していない。そのため、生じたラジカルが第2の組成物32中の第2の重合性モノマーと反応しない。そのため、層80のマスク材85が重なっている部分では、基材2に結合することなく第2の組成物32に含まれる第2の重合性モノマー同士で重合する。
次に、図20に示すように、シール基板70を取り除く。このようにして、第2の態様に係るハイドロゲル流体デバイスの製造方法においては、基材2と接着する接着領域3aと、基材2と接着しない非接着領域3bとが形成されるように、ハイドロゲルを構成する第1の高分子材料31の層31Aを設ける。
上記一例では、マスク材85を用いることで、パターン状に重合開始剤を反応させてモノマーを重合させることとしたが、本態様はこれに限定されない。
例えば、図17に示す層80において、非接着領域を形成したい部分にのみ選択的に紫外線を照射すると、紫外線が照射された部分の光重合開始剤が励起し、基材の表面の水素を引き抜いて基材の表面に結合する。このようにして、紫外線を照射した部分の光重合開始剤の層を予め基材に設ける。この紫外線照射を「1回目の紫外線照射」とする。
1回目の紫外線照射の後に、光重合開始剤溶液に含まれる極性溶媒を用いて、基材の表面を洗浄する。これにより、基材表面から、基材に設けた光重合開始剤の層以外の光重合開始剤を除去することができる。
次に、1回目の紫外線照射を行った基材に、さらに2回目となる紫外線を照射すると、1回目の紫外線照射で基材の表面に設けられ、所定のパターン状に残った光重合開始剤の層が反応する。そのため、1回目の紫外線照射により光重合開始剤の層パターンを形成した後、基材の一面に第2の組成物を塗布し、2回目の紫外線照射を行って第2の重合性モノマーを重合させることにより、基材表面に固定された光重合開始剤と第2の重合性モノマーとが反応し、光重合開始剤の層と第2の組成物とが重なる部分に接着領域3aを形成する。
このようにして、基材2と接着する接着領域3aと、基材2と接着しない非接着領域3bとが形成されるように、ハイドロゲルを構成する第1の高分子材料31の層31Aを設けてもよい。
他にも、図16に示す塗膜80Aを形成する前に、予め基材2の一面2aに選択的に撥水撥油性官能基を有するシランカップリング剤の膜を成膜しておいてもよい。撥水撥油性官能基を有するシランカップリング剤の膜は、例えば、リソグラフィーによって基材の一面に設けることができる。
このような処理を行った基材2に塗膜80Aを成膜すると、シランカップリング剤の膜が光重合開始剤溶液をはじき、シランカップリング剤の膜と相補的なパターン形状に、光重合開始剤溶液の塗膜80Aが形成される。このようなシランカップリング剤としては、例えば、(トリクロロ(1H,1H,2H,2H-ヘプタデカフルオロデシル)シランが挙げられる。
その後、シランカップリング剤の膜と相補的なパターン形状に形成した塗膜80Aから層80を形成し、基材2の一面に第2の組成物を塗布する。この状態で紫外線を照射すると、シランカップリング剤の膜と相補的なパターン形状の部分で、第2の重合性モノマーが重合するとともに、光重合開始剤の層80と反応する。このとき、光重合開始剤の層と第2の組成物とが重なる部分では、第2の重合性モノマーが、光重合開始剤と反応し、接着領域が形成される。
これに対して、基材の一面に撥水撥油性官能基を有するシランカップリング剤が提示された部分では、撥水撥油性官能基上には水素引き抜き型開始剤が導入されず、重合能がないため、基板と第1の高分子材料とをパターン化接着できる。
このようにして、基材2と接着する接着領域3aと、基材2と接着しない非接着領域3bとが形成されるように、ハイドロゲルを構成する第1の高分子材料の層31Aを設けてもよい。
第2の態様に係るハイドロゲル流体デバイスの製造方法において、下記の(A)、(B)、(C)、(D)の構成についての詳細及び好ましい態様は、上述の第1の態様に係るハイドロゲル流体デバイスの製造方法で説明した内容と同内容とすることができる。
構成(A):第1の高分子材料を膨潤させることで、非接着領域の第1の高分子材料を基材から離間させ、基材と第1の高分子材料の層との界面に流路を形成するとともに、第1の高分子材料をフィルム状のハイドロゲルとすること。
構成(B):流路の外側を、第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆すること。
構成(C):第2の高分子材料を膨潤させてバルク状のゲルとすること。
構成(D):さらに、流路の開口面に管状構造物を接着剤によって接合すること。
これらの重複する構成(A)、(B)、(C)、(D)について、その説明を省略する。
以上説明した第2の態様に係るハイドロゲル流体デバイスの製造方法においても、第1の態様に係るハイドロゲル流体デバイスの製造方法と同様の作用機序が得られる。
(第3の態様)
以下、第3の態様に係るハイドロゲル流体デバイスの製造方法について説明する。
第3の態様に係るハイドロゲル流体デバイスの製造方法においては、まず、図21に示すように、第1の高分子材料の層を基材2の一面2aに設ける際に、基材2の一面2aにゲル陥入性高分子の層90の第2のパターンを形成する。
具体的には、図21に示すように、基材2の一面2aにパターン形状を有するシランカップリング剤の層11を形成する。シランカップリング剤及びパターンの形成方法としては、第1の態様に係るハイドロゲル流体デバイスの製造方法で説明した内容と同内容とすることができる。
その後、層11の表面に、ゲル陥入性高分子の層90を形成し、ゲル陥入性高分子のパターンを形成する。ゲル陥入性高分子としては、例えば、キトサン、アルギン酸、ポリビニルアルコール等が挙げられる。
層90の形成においては、grafting to法又はgrafting from法を用いることができる。これにより、シランカップリング剤が有する接着性官能基とゲル陥入性高分子とを反応させることができる。
次に、図22、23に示すように、パターン状に形成された層90を覆うように、第2のパターンが形成された基材2の一面2aに第1の高分子材料31を形成材料とするシート材35を配置する。
その後、シート材35とゲル陥入性高分子とを接触させる。層90とシート材35とが接触することで、層90に含まれるゲル陥入性高分子がシート材35の内部に浸透し、第1の高分子材料31の網目構造と絡み合う。これにより、ゲル陥入性高分子とハイドロゲルとが物理的又は化学的に結合し、シート材35と基材2とを接着させることができる。
シート材35を層90に接触させる際、シート材35を構成する第1の高分子材料のpHを変化させてもよく、グルタルアルデヒドに代表される低分子架橋剤をシート材35に同時に拡散させてもよい。これにより、ゲル陥入性高分子同士の物理結合又は化学結合が形成され、より強固にゲル陥入性高分子と第1の高分子材料とを接着させることができる。
このようにして接着領域と非接着領域とが形成されるように、ハイドロゲルを構成する第1の高分子材料の層31Aを設けてもよい。図23においては、シート材35において層90と重なる部分が接着領域3aとなり、シート材35において層90と重ならない部分が非接着領域3bとなる。
第3の態様に係るハイドロゲル流体デバイスの製造方法において、下記の(A)、(B)、(C)、(D)の構成についての詳細及び好ましい態様は、第2の態様に係るハイドロゲル流体デバイスの製造方法と同様に、上述の第1の態様に係るハイドロゲル流体デバイスの製造方法で説明した内容と同内容とすることができる。
構成(A):第1の高分子材料を膨潤させることで、非接着領域の第1の高分子材料を基材から離間させ、基材と第1の高分子材料の層との界面に流路を形成するとともに、第1の高分子材料をフィルム状のハイドロゲルとすること。
構成(B):流路の外側を、第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆すること。
構成(C):第2の高分子材料を膨潤させてバルク状のゲルとすること。
構成(D):さらに、流路の開口面に管状構造物を接着剤によって接合すること。
これらの重複する構成(A)、(B)、(C)、(D)について、その説明を省略する。
以上説明した第3の態様に係るハイドロゲル流体デバイスの製造方法においても、第1の態様に係るハイドロゲル流体デバイスの製造方法と同様の作用機序が得られる。
(第4の態様)
以下、第4の態様に係るハイドロゲル流体デバイスの製造方法について説明する。第4の態様に係るハイドロゲル流体デバイスの製造方法においては、まず、第1の高分子材料の層を基材の一面に設ける際に、基材の一面に接着性分子の層の第2のパターンを形成する。
接着性分子としては、シアノアクリレート系の化合物等が挙げられる。接着性分子のパターンは、リソグラフィー技術により形成できる。この場合、接着性分子のパターンの大きさは、用いるリソグラフィー技術の解像度に依存する。
接着性分子のパターンのサイズはリソグラフィー技術の範囲で特に限定されない。リソグラフィーの手法は特に限定されない。例えば、フォトマスクを用いる手法、パターン状のUV光源を用いる手法、PDMS等の弾性材料であらかじめパターンを形成しておきスタンプの要領で化学物質を転写するマイクロコンタクトパターニング(μCP)等が挙げられる。
次に、接着性分子の層の第2のパターンが形成された基材の一面に第1の高分子材料を形成材料とするシート材を配置する。そして、シート材と接着性分子とを接触させる。接着性分子の層とシート材とが接触することで、接着性分子の層に含まれる接着性分子がシート材の内部に浸透し、第1の高分子材料の網目構造と絡み合う。その結果、接着性分子とハイドロゲルとが物理的又は化学的に結合し、シート材と基材とを接着させることができる。
このようにして接着領域と非接着領域とが形成されるように、ハイドロゲルを構成する第1の高分子材料の層31Aを設けてもよい。この場合、シート材において接着性分子の層と重なる部分が接着領域となり、シート材において接着性分子の層と重ならない部分が非接着領域となる。
第4の態様に係るハイドロゲル流体デバイスの製造方法において、下記の(A)、(B)、(C)、(D)の構成についての詳細及び好ましい態様は、第2の態様に係るハイドロゲル流体デバイスの製造方法と同様に、上述の第1の態様に係るハイドロゲル流体デバイスの製造方法で説明した内容と同内容とすることができる。
構成(A):第1の高分子材料を膨潤させることで、非接着領域の第1の高分子材料を基材から離間させ、基材と第1の高分子材料の層との界面に流路を形成するとともに、第1の高分子材料をフィルム状のハイドロゲルとすること。
構成(B):流路の外側を、第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆すること。
構成(C):第2の高分子材料を膨潤させてバルク状のゲルとすること。
構成(D):さらに、流路の開口面に管状構造物を接着剤によって接合すること。
これらの重複する構成(A)、(B)、(C)、(D)について、その説明を省略する。
以上説明した第4の態様に係るハイドロゲル流体デバイスの製造方法においても、第1の態様に係るハイドロゲル流体デバイスの製造方法と同様の作用機序が得られる。
以上、図面を参照しながら本発明のいくつかの実施形態について説明したが、本発明は上述の実施形態及び例に限定されない。上述した例において示した各構成の諸形状、組み合わせ等は一例であり、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。そして、上述の実施形態にそれぞれ開示された技術的手段を任意に適宜組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。
組み合わせの具体的な一例として、本発明の一態様は、下記[1]~[8]に関するとも言える。
[1] 基材と、前記基材に設けられ、かつ、前記基材と接着する接着領域と前記基材と接着しない非接着領域とを有するフィルム状のハイドロゲルと、前記ハイドロゲルを構成する第1の高分子材料の膨潤により前記非接着領域の前記第1の高分子材料が前記基材から離間することで、前記ハイドロゲルと前記基材との界面に形成された流路と、前記流路の外側の前記ハイドロゲルの一面を被覆し、かつ、前記第1の高分子材料より膨潤度が低い第2の高分子材料で構成されるバルク状のゲルと、を備える、ハイドロゲル流体デバイス。
[2] 前記非接着領域は、前記流路の内側に帯状に配置され、前記接着領域は、前記非接着領域の延在方向の両側に配置されている、[1]のハイドロゲル流体デバイス。
[3] 前記基材と前記ハイドロゲルとの間で接着剤によって固定された管状構造物をさらに備える、[1]又は[2]のハイドロゲル流体デバイス。
[4] 基材の一面に、前記基材と接着する接着領域と、前記基材と接着しない非接着領域とが形成されるように、ハイドロゲルを構成する第1の高分子材料の層を設け、前記第1の高分子材料を膨潤させることで、前記非接着領域の前記第1の高分子材料を前記基材から離間させ、前記基材と前記第1の高分子材料の層との界面に流路を形成するとともに、前記第1の高分子材料をフィルム状のハイドロゲルとし、前記流路の外側を、前記第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆し、前記第2の高分子材料を膨潤させてバルク状のゲルとする、ハイドロゲル流体デバイスの製造方法。
[5] 前記第1の高分子材料の層を前記基材の前記一面に設ける際に、前記基材の前記一面に接着性官能基の第1のパターンを形成し、前記接着性官能基と化学結合を形成する官能基を有する第1の重合性モノマーを含む第1の組成物を、前記一面に塗布し、前記第1の重合性モノマーを重合させ、前記第1の組成物をゲル化させることで、前記第1の組成物を前記第1の高分子材料とする、[4]のハイドロゲル流体デバイスの製造方法。
[6] 前記第1の高分子材料の層を前記基材の前記一面に設ける際に、前記基材の前記一面に重合開始剤の層を形成し、前記重合開始剤と化学結合を形成する第2の重合性モノマーを含む第2の組成物を、前記重合開始剤の層の一面に塗布し、前記第2の重合性モノマーを重合させ、前記第2の組成物をゲル化させることで、前記重合開始剤の層と前記第2の組成物とが重なる部分に前記接着領域を形成するとともに、前記第2の組成物を前記第1の高分子材料とする、[4]のハイドロゲル流体デバイスの製造方法。
[7] 前記第1の高分子材料の層を前記基材の前記一面に設ける際に、前記基材の前記一面にゲル陥入性高分子又は接着性分子の第2のパターンを形成し、前記第2のパターンが形成された前記基材の前記一面に前記第1の高分子材料を形成材料とするシート材を配置し、前記シート材と前記ゲル陥入性高分子又は接着性分子とを接触させる、[4]のハイドロゲル流体デバイスの製造方法。
[8] さらに、前記流路の開口面に管状構造物を接着剤によって接合する、[4]~[7]のいずれかのハイドロゲル流体デバイスの製造方法。
以下、本発明を実施例によって具体的に説明する。ただし、本発明は以下の記載に限定されない。
まず、ガラス基板を洗浄し、洗浄ガラス基板を得た。洗浄ガラス基板を酸素プラズマで処理することで、表面活性化ガラス基板を得た。表面活性化ガラス基板とラジカル反応性のシランカップリング剤を用いて、シラン化ガラス基板を得た。次に、シラン化ガラス基板上にポジ型フォトレジストの薄膜をスピンコーティングによって形成した。その後、線幅1mmの短冊状のパターンUV光を照射し、現像することで、線幅1mmの短冊状部位のみレジストがついていないシラン化ガラス基板を得た。
その後、酸素プラズマで処理することで、レジストのついていない部位は洗浄し、レジストをアセトンによってリフトオフすることで、短冊状の部位以外に接着性官能基の第1のパターンが形成された基材を得た(以下、「パターン状シラン化基板」と記載する。)。
次に、パターン状シラン化基板上でポリアクリルアミドゲルの重合を行った。その後、パターン状シラン化基板上の両端に、スペーサーを配置した後、下記のゲル前駆体溶液1をパターン状シラン化基板の中央に滴下した。
ゲル前駆体溶液1:第1の重合性モノマーとしてアクリルアミドを含み、蛍光モノマーとしてフルオレセイン-o-アクリレートを含み、架橋剤としてメチレンビスアクリルアミドを含み、熱重合開始剤としてKPSを含み、重合促進剤としてTEMEDを含む溶液。
次に、ゲル前駆体溶液1を塗布したパターン状シラン化基板に、酸素プラズマ処理したカバーガラス(以下、「シール基板1E」と記載する。)を上面から乗せ、ゲル前駆体溶液1をパターン状シラン化ガラス基板とシール基板1Eで挟み込んだ。その後、UVの照射によりゲル前駆体溶液1を完全にゲル化させ、ゲル前駆体溶液1を第1の高分子材料(すなわち、ハイドロゲル)とした。
ゲル化の後、シール基板1Eを取り除き、第1の高分子材料を水で膨潤させ、未反応のゲル前駆体分子を除去し、フィルム状のハイドロゲルとガラス基板からなる実施例1のハイブリット流路を得た。
実施例1のハイブリット流路においては、線幅1mmの短冊状に非接着領域を配置したため、当該領域の第1の高分子材料のみ選択的に自由膨潤した。その結果、非接着領域の第1の高分子材料のみ平面形状から立体的な流路形状へと大きく変化した。
次に、実施例1のハイブリット流路の基板の両端にスペーサーを配置した後、下記のゲル前駆体溶液2をハイブリット流路上に滴下した。
ゲル前駆体溶液2:低膨潤性ゲル用モノマーとしてアクリルアミドを含み、架橋剤としてメチレンビスアクリルアミドを含み、熱重合開始剤としてKPSを含み、重合促進剤としてTEMEDを含み、物理架橋用ポリマーとしてPBDTを含む溶液。
ゲル前駆体溶液2をハイブリット流路上に滴下した基板に、酸素プラズマ処理したカバーガラス(以下、「シール基板2E」と記載する。)を上面から乗せ、ゲル前駆体溶液2をハイブリット流路とシール基板2Eで挟み込んだ。
次に、ゲル前駆体溶液2を完全にゲル化させ、前駆体溶液2をバルク状の第2の高分子材料とした。その後、ゲル化後、シール基板2Eを取り除き、ZrClO溶液に浸漬し、PBDTとZr4+イオンによる物理架橋を形成させた。その後、余剰のイオン等を洗い流し、基材、フィルム状のハイドロゲル、バルク状のゲル5を有するハイドロゲル流体デバイスを得た。
さらに、外径1mmのPTFEチューブをハイブリット流路に差し込み、接着剤を用いてガラス基板とフィルム状のハイドロゲルとPTFEチューブを接合し、実施例1のハイドロゲル流体デバイスを得た。
図24に示すように、実施例1のハイドロゲル流体デバイスは、ハイブリット流路4Eがバルク状のゲル5Eによって被覆されている。このとき、このように、実施例1のハイドロゲル流体デバイスは、送液チューブ6EとしてPTFEを接着剤7Eによって接合可能であった。
従来のデバイスではチューブ接合部が脆く、少し力がかかると崩壊してしまうという問題がある。これに対して、実施例1のハイドロゲル流体デバイスにおいては、バルク状のゲルの被覆により、流路の構造を強靭化でき、接合部に十分な強度を付与できることを確認した。
このように、実施例1で作製したハイドロゲル流体デバイスにあっては、流路(ハイブリット流路)が加工の際の力学的強度に優れていた。
図25に示すように、共焦点蛍光顕微鏡で断面観察像を撮影すると、蛍光モノマーによって蛍光染色したフィルム状のハイドロゲル3Eが、バルク状のゲル5Eで被覆された流路構造としてハイブリット流路4Eを確認できた。加えて、ハイブリット流路4Eがガラス基板2Eの上側の空間として形成されていることを確認できた。
次に、実施例1のハイドロゲル流体デバイス内に、0.5mg/mlのローダミンB溶液を送液チューブから注入し、実施例1のハイドロゲル流体デバイスの上面から経時観察を行った。
図26に示すように、流路内に色素を注入した後、0秒、180秒、2時間と時間が経過するにしたがって、赤色のローダミンB(低分子)が、ハイドロゲル流体デバイス中で流路からフィルム状のハイドロゲル、バルク状のゲルの順に拡散していく様子が観察された。
図27に示すように、共焦点蛍光顕微鏡で断面観察像を撮影すると、ハイブリット流路4Eの壁面を構成するフィルム状のハイドロゲル3Eが緑色に蛍光染色されていることに加えて、バルク状のゲル5Eの内部も赤色の蛍光を示した。このように、赤色のローダミンBが、緑色に蛍光染色されたハイブリット流路4Eの壁面(フィルム状のハイドロゲル3E)を透過し、バルク状のゲル5Eの内部まで、赤色の蛍光を示すローダミンBが拡散している様子が観察された。
本発明のハイドロゲル流体デバイスは、簡便な方法で形成可能な任意の形状の流路を備え、基材の材料を任意に選択でき、流路を加工する際の力学的強度に優れる。
本発明のハイドロゲル流体デバイスの製造方法によれば、任意の形状の流路を簡便に形成でき、基材の材料を任意に選択でき、流路を加工する際の力学的強度に優れるハイドロゲル流体デバイスが得られる。
本発明に係るハイドロゲル流体デバイスは、拡散性の流路形状を生かした細胞培養デバイス、反応容器及びセンシングデバイスとして有用である。
本発明に係るハイドロゲル流体デバイスは、組織工学、化学工学分野等の産業上の分野に幅広く適用できる。
1:ハイドロゲル流体デバイス
2:基材
3:フィルム状のハイドロゲル
4:流路(ハイブリット流路)
5:バルク状のゲル
6:管状構造物
7:接着剤
11:接着性官能基の層(第1のパターン)
30:第1の組成物
31:第1の高分子材料
32:第2の組成物
35:シート材
40:レジスト層
50:低膨潤性ゲル用組成物
51:第2の高分子材料
60、61:スペーサー
70、71:シール基板
80:光重合開始剤の層
85:マスク材
90:ゲル陥入性高分子の層

Claims (8)

  1. 基材と、
    前記基材に設けられ、かつ、前記基材と接着する接着領域と前記基材と接着しない非接着領域とを有するフィルム状のハイドロゲルと、
    前記ハイドロゲルを構成する第1の高分子材料の膨潤により前記非接着領域の前記第1の高分子材料が前記基材から離間することで、前記ハイドロゲルと前記基材との界面に形成された流路と、
    前記流路の外側の前記ハイドロゲルの一面を被覆し、かつ、前記第1の高分子材料より膨潤度が低い第2の高分子材料で構成されるバルク状のゲルと、
    を備える、ハイドロゲル流体デバイス。
  2. 前記非接着領域は、前記流路の内側に帯状に配置され、
    前記接着領域は、前記非接着領域の延在方向の両側に配置されている、請求項1に記載のハイドロゲル流体デバイス。
  3. 前記基材と前記ハイドロゲルとの間で接着剤によって固定された管状構造物をさらに備える、請求項1又は2に記載のハイドロゲル流体デバイス。
  4. 基材の一面に、前記基材と接着する接着領域と、前記基材と接着しない非接着領域とが形成されるように、ハイドロゲルを構成する第1の高分子材料の層を設け、
    前記第1の高分子材料を膨潤させることで、前記非接着領域の前記第1の高分子材料を前記基材から離間させ、前記基材と前記第1の高分子材料の層との界面に流路を形成するとともに、前記第1の高分子材料をフィルム状のハイドロゲルとし、
    前記流路の外側を、前記第1の高分子材料より膨潤度が低いバルク状の第2の高分子材料で被覆し、
    前記第2の高分子材料を膨潤させてバルク状のゲルとする、ハイドロゲル流体デバイスの製造方法。
  5. 前記第1の高分子材料の層を前記基材の前記一面に設ける際に、前記基材の前記一面に接着性官能基の第1のパターンを形成し、
    前記接着性官能基と化学結合を形成する官能基を有する第1の重合性モノマーを含む第1の組成物を、前記一面に塗布し、
    前記第1の重合性モノマーを重合させ、前記第1の組成物をゲル化させることで、前記第1の組成物を前記第1の高分子材料とする、請求項4に記載のハイドロゲル流体デバイスの製造方法。
  6. 前記第1の高分子材料の層を前記基材の前記一面に設ける際に、前記基材の前記一面に重合開始剤の層を形成し、
    前記重合開始剤と化学結合を形成する第2の重合性モノマーを含む第2の組成物を、前記重合開始剤の層の一面に塗布し、
    前記第2の重合性モノマーを重合させ、前記第2の組成物をゲル化させることで、前記重合開始剤の層と前記第2の組成物とが重なる部分に前記接着領域を形成するとともに、前記第2の組成物を前記第1の高分子材料とする、請求項4に記載のハイドロゲル流体デバイスの製造方法。
  7. 前記第1の高分子材料の層を前記基材の前記一面に設ける際に、前記基材の前記一面にゲル陥入性高分子又は接着性分子の第2のパターンを形成し、
    前記第2のパターンが形成された前記基材の前記一面に前記第1の高分子材料を形成材料とするシート材を配置し、
    前記シート材と前記ゲル陥入性高分子又は接着性分子とを接触させる、請求項4に記載のハイドロゲル流体デバイスの製造方法。
  8. さらに、前記流路の開口面に管状構造物を接着剤によって接合する、請求項4~7のいずれか一項に記載の製造方法。
JP2021553178A 2019-10-21 2019-10-21 ハイドロゲル流体デバイス、ハイドロゲル流体デバイスの製造方法 Active JP7208569B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/041262 WO2021079399A1 (ja) 2019-10-21 2019-10-21 ハイドロゲル流体デバイス、ハイドロゲル流体デバイスの製造方法

Publications (2)

Publication Number Publication Date
JPWO2021079399A1 JPWO2021079399A1 (ja) 2021-04-29
JP7208569B2 true JP7208569B2 (ja) 2023-01-19

Family

ID=75620588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021553178A Active JP7208569B2 (ja) 2019-10-21 2019-10-21 ハイドロゲル流体デバイス、ハイドロゲル流体デバイスの製造方法

Country Status (3)

Country Link
US (1) US20230132700A1 (ja)
JP (1) JP7208569B2 (ja)
WO (1) WO2021079399A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100218A1 (ja) * 2021-11-30 2023-06-08 日本電信電話株式会社 ハイドロゲル流体デバイスおよびハイドロゲル流体デバイスの製造方法
WO2023119467A1 (ja) * 2021-12-22 2023-06-29 日本電信電話株式会社 運動素子
WO2023162042A1 (ja) * 2022-02-22 2023-08-31 日本電信電話株式会社 センサー付きハイドロゲル流路型デバイス
CN116003700B (zh) * 2022-12-29 2023-12-01 江南大学 一种基于螺吡喃的具有温度和水含量响应性的亲水聚合物及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319942A (ja) 2006-05-30 2007-12-13 Fuji Xerox Co Ltd マイクロ流路デバイス
JP2008156405A (ja) 2006-12-21 2008-07-10 Kawamura Inst Of Chem Res 局所膨潤高分子ゲル
JP2018051155A (ja) 2016-09-30 2018-04-05 積水化成品工業株式会社 導電性積層ハイドロゲルシート

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141090A (ja) * 1995-11-22 1997-06-03 Dainippon Ink & Chem Inc 多孔質膜で表面を被覆されたゲルおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319942A (ja) 2006-05-30 2007-12-13 Fuji Xerox Co Ltd マイクロ流路デバイス
JP2008156405A (ja) 2006-12-21 2008-07-10 Kawamura Inst Of Chem Res 局所膨潤高分子ゲル
JP2018051155A (ja) 2016-09-30 2018-04-05 積水化成品工業株式会社 導電性積層ハイドロゲルシート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAHASHI, Riku et al.,Dynamic Creation of 3D Hydrogel Architectures via Selective Swelling Programmed by Interfacial Bondi,ACS APPLIED MATERIALS AND INTERFACES,米国,American Chemical Society,2019年07月15日,Vol.11, No.31,p.28267-28277

Also Published As

Publication number Publication date
US20230132700A1 (en) 2023-05-04
WO2021079399A1 (ja) 2021-04-29
JPWO2021079399A1 (ja) 2021-04-29

Similar Documents

Publication Publication Date Title
JP7208569B2 (ja) ハイドロゲル流体デバイス、ハイドロゲル流体デバイスの製造方法
Shakeri et al. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices
Kabb et al. Photoreversible covalent hydrogels for soft-matter additive manufacturing
Wang et al. Covalent micropatterning of poly (dimethylsiloxane) by photografting through a mask
JP7071641B2 (ja) 積層体、積層体の製造方法および形状制御デバイス
Yang et al. Advances in design and biomedical application of hierarchical polymer brushes
Nguyen et al. Robust chemical bonding of PMMA microfluidic devices to porous PETE membranes for reliable cytotoxicity testing of drugs
US7476523B2 (en) Method of patterning a surface using a deformable stamp
US6491061B1 (en) Stimuli responsive hybrid materials containing molecular actuators and their applications
KR101682910B1 (ko) 그래프트형 광감응성 수화겔, 이를 포함하는 엑츄에이터 및 이의 제조방법
EP1576040B1 (en) Patterned polymeric structures, particularly microstructures, and methods for making same
Ebara et al. Surface modification of microfluidic channels by UV-mediated graft polymerization of non-fouling and ‘smart’polymers
Di Benedetto et al. Patterning polyacrylamide hydrogels by soft lithography
WO2003102133A2 (en) Chemical modifications to polymer surfaces and the application of polymer grafting to biomaterials
US20210079178A1 (en) Polymeric devices and methods of making
Li et al. Simple strategy to functionalize polymeric substrates via surface-initiated ATRP for biomedical applications
JP2021500975A (ja) 多孔性伝導電極層を含む電気泳動活性分子送達システム
Gumuscu et al. Photopatterning of hydrogel microarrays in closed microchips
Dübner et al. From pH-to light-response: postpolymerization modification of polymer brushes grafted onto microporous polymeric membranes
EP2617759B1 (en) Method of modifying the properties of a surface
Koh et al. Photoreaction injection molding of biomaterial microstructures
WO2023100218A1 (ja) ハイドロゲル流体デバイスおよびハイドロゲル流体デバイスの製造方法
Fernandez et al. Simultaneous biochemical and topographical patterning on curved surfaces using biocompatible sacrificial molds
Shirtcliffe et al. Surface treatments for microfluidic biocompatibility
WO2023119467A1 (ja) 運動素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R150 Certificate of patent or registration of utility model

Ref document number: 7208569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150