WO2021078051A1 - 生产低碳烯烃和低硫燃料油组分的方法 - Google Patents

生产低碳烯烃和低硫燃料油组分的方法 Download PDF

Info

Publication number
WO2021078051A1
WO2021078051A1 PCT/CN2020/121005 CN2020121005W WO2021078051A1 WO 2021078051 A1 WO2021078051 A1 WO 2021078051A1 CN 2020121005 W CN2020121005 W CN 2020121005W WO 2021078051 A1 WO2021078051 A1 WO 2021078051A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
weight
catalyst
less
zeolite
Prior art date
Application number
PCT/CN2020/121005
Other languages
English (en)
French (fr)
Inventor
许友好
王新
左严芬
崔守业
白旭辉
谢昕宇
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to KR1020227017546A priority Critical patent/KR20220087536A/ko
Priority to JP2022524232A priority patent/JP2022554207A/ja
Publication of WO2021078051A1 publication Critical patent/WO2021078051A1/zh
Priority to ZA2022/03462A priority patent/ZA202203462B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/302Viscosity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/308Gravity, density, e.g. API
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/023Specifically adapted fuels for internal combustion engines for gasoline engines

Definitions

  • This application relates to the field of catalytic conversion of hydrocarbon oils, and in particular to a method for catalytically converting hydrocarbon-containing feedstock oils into low-carbon olefins and low-sulfur fuel oil components.
  • CN109722303A discloses a method for producing low-sulfur marine fuel oil blending components from high-sulfur heavy oil.
  • the method includes the following steps: a) the high-sulfur heavy oil feedstock enters the visbreaking unit for visbreaking to obtain a visbreaking residue; b) adding a composite modifier to the visbreaking residue obtained in step a), and then adding a compound modifier to the mixture Continuous sedimentation is carried out, the upper part obtains the overflow material, the lower part obtains the underflow material; c) the overflow material obtained in step b) enters the fixed bed residue hydrogenation unit for hydrodesulfurization to obtain the blending component of the low-sulfur marine oil fuel.
  • the quality of crude oil is becoming increasingly inferior with the continuous increase in the amount of crude oil extracted.
  • the main manifestations are that the density of crude oil becomes higher, the viscosity becomes higher, and the content of heavy metals, sulfur, nitrogen, gum and asphaltene becomes higher.
  • the price difference between inferior crude oil and high-quality crude oil is increasing with the shortage of petroleum resources.
  • To increase the yield of high-value products from inferior crude oil as much as possible has brought huge challenges to traditional crude oil processing technology.
  • the key to the processing of inferior crude oil is how to process the heaviest atmospheric residue fraction among the crude oil fractions.
  • Residue catalytic cracking is currently a key process for the production of low-carbon olefins and high-octane gasoline in modern refineries, while by-products of light cycle oil (LCO).
  • LCO light cycle oil
  • the blending of vacuum residue and LCO can produce low-sulfur marine fuel oil, due to the low viscosity of LCO, the proportion of fuel oil components should not be too high.
  • the hydrogen content of saturated hydrocarbons in vacuum residue is too high, which affects the economic benefits of enterprises as a fuel oil component.
  • An object of this application is to provide a catalytic conversion method for producing propylene and low-sulfur fuel oil components, which can greatly increase the selectivity of propylene and the yield of propylene while producing more fuel oil components, and significantly reduce dry gas and The coke yield has good economic and social benefits.
  • this application provides a method for producing propylene and low-sulfur fuel oil components, which includes the following steps:
  • step ii) Separating the catalytically cracked distillate from the reaction product obtained in step i), wherein the initial boiling point of the catalytically cracked distillate is not less than about 200°C, the final boiling point is not greater than about 550°C, and the hydrogen content is not greater than about 12.0 Weight %;
  • the catalytic conversion catalyst includes about 1-50% by weight of zeolite, about 5-99% by weight of inorganic oxides, and about 0-70% by weight of clay,
  • the reaction conditions of step i) include: the reaction temperature is about 460-750°C, the weight hourly space velocity is about 10-100 h -1 or the reaction time is about 1-10 seconds, and the weight ratio of agent to oil is about 4-20.
  • the reaction product obtained in step i) contains about 8-25% by weight of propylene and about 15-50% by weight of catalytic cracking distillate relative to the weight of the hydrocarbon-containing feedstock oil.
  • the method of the present application can selectively crack the alkanes and hydrocarbons with alkyl side chains in the hydrocarbon-containing feedstock to obtain propylene to the maximum, and at the same time generate short side chain polycyclic aromatic hydrocarbons and remain in the catalytic cracking distillate (which can be As a fuel oil component).
  • the hydrocarbon-containing feedstock oil can be converted into propylene, butene and marine fuel oil components, and the yield of dry gas and coke can be greatly reduced, thereby realizing the effective utilization of petroleum resources.
  • the method of the present application has at least one of the following technical effects:
  • the total liquid yield is significantly increased, thereby improving the utilization efficiency of petroleum resources.
  • Fig. 1 is a schematic flow diagram of a preferred embodiment of the method for producing propylene and low-sulfur fuel oil components of the present application.
  • any specific numerical value (including the end point of the numerical range) disclosed in this article is not limited to the precise value of the numerical value, but should be understood to also cover values close to the precise value, for example, within the range of ⁇ 5% of the precise value All possible values.
  • between the endpoints of the range, between the endpoints and the specific point values in the range, and between the specific point values can be arbitrarily combined to obtain one or more new Numerical ranges, these new numerical ranges should also be regarded as specifically disclosed herein.
  • the term "catalytic cracking distillate” refers to the reaction product in the initial boiling point of not less than about 200°C, preferably not less than about 250°C, and the final boiling point of not greater than about 550°C, preferably not greater than about 520°C, most preferably The distillation section not greater than about 500°C, that is, the distillation section whose distillation range is in the range of about 200-550°C, preferably in the range of about 250-520°C, and more preferably in the range of about 250-500°C.
  • fluidized bed reactor also known as “fluidized reactor”
  • fluidized reactor should be understood in its broadest sense, which includes various forms of gaseous raw materials used to make gaseous raw materials and The reactor in which the solid catalyst particles in the chemical state are contacted for chemical reaction, including but not limited to dense phase bed, bubbling bed, ebullating bed, turbulent bed, fast bed, gas-phase conveying bed (such as ascending bed and descending bed), etc.
  • It can be a fluidized bed reactor of constant linear velocity, a fluidized bed reactor of equal diameter, a fluidized bed reactor of variable diameter, etc., and it can also be a series of fluidized beds of two or more different forms Or a composite reactor obtained by a parallel combination, for example, a riser reactor or a composite reactor in which a riser and a dense phase bed are combined.
  • the gas velocity of the dense bed can be about 0.1-2 m/s
  • the gas velocity of the riser can be about 1-30 m/s (excluding the catalyst).
  • any matters or matters not mentioned are directly applicable to those known in the art without any changes.
  • any embodiment described herein can be freely combined with one or more other embodiments described herein, and the technical solutions or technical ideas formed thereby shall be regarded as part of the original disclosure or original record of the present invention, and shall not be It is regarded as new content that has not been disclosed or anticipated in this article, unless those skilled in the art think that the combination is obviously unreasonable.
  • the catalytic wax oil can be used as an effective blending component of marine fuel oil.
  • this application provides a method for producing propylene and low-sulfur fuel oil components, including the following steps:
  • the low-sulfur hydrogenated distillate oil can be used as a low-sulfur fuel oil component.
  • the hydrocarbon-containing feedstock oil can be selected from petroleum hydrocarbons, other mineral oils or their mixtures, wherein the petroleum hydrocarbons can be selected from vacuum gas oil (VGO), atmospheric gas oil, coking gas oil, Deasphalted oil, vacuum residue (VR), atmospheric residue, hydrogenated heavy oil, or various mixtures thereof.
  • the other mineral oil can be selected from coal liquefied oil, oil sands oil, shale oil or their mixtures. Various mixtures.
  • the catalytic conversion reactor can be fluidized bed reactors of various forms, for example, it can be a single fluidized bed reactor, or a composite obtained by combining multiple fluidized bed reactors connected in series or in parallel. reactor.
  • the fluidized bed reactor may be an equal-diameter riser reactor or various fluidized bed reactors with variable diameters, such as the reactor disclosed in Chinese Patent No. CN1078094C.
  • the catalytic conversion catalyst may include about 1-50% by weight of zeolite, about 5-99% by weight of inorganic oxides, and about 0-70% by weight of clay.
  • the catalyst may include about 5-45% by weight of zeolite, more preferably about 10-40% by weight of zeolite, about 5-80% by weight of inorganic oxides, and about 10-70% by weight of clay.
  • the zeolite includes about 51-100% by weight, preferably about 70-100% by weight of medium pore zeolite and about 0-49% by weight, preferably about 0-30% by weight.
  • the silica to aluminum ratio of the medium pore zeolite is greater than about 10, preferably greater than about 50, and more preferably greater than about 100.
  • the medium pore zeolite is preferably selected from ZSM series zeolite and ZRP zeolite; the large pore zeolite is preferably Y series zeolite.
  • the above-mentioned zeolite can be modified with non-metal elements such as phosphorus and/or transition metal elements such as iron, cobalt, and nickel.
  • the inorganic oxide is preferably selected from silica, alumina, and any combination thereof; the clay is preferably selected from kaolin and/or hallucinite.
  • the “effective conditions” means that the hydrocarbon-containing feedstock can undergo a catalytic conversion reaction to obtain propylene and catalytically cracked distillate oil, preferably containing about 8-25 relative to the weight of the hydrocarbon-containing feedstock oil.
  • the conditions of the reaction products of 15-50% by weight of propylene and about 15-50% by weight of catalytic cracking oil.
  • the reaction conditions of the catalytic conversion step i) include: the reaction temperature is about 460-750°C, preferably about 480-700°C, more preferably about 480-600°C, most preferably about 500-560°C;
  • the weight hourly space velocity (for example, for dense bed reactors, fast bed reactors, etc.) is about 5-100 h -1 , preferably about 10-70 h -1 , more preferably about 15-50 h -1 , most preferably about 18-40 h -1 or the reaction time (for example, for a riser reactor) is about 1-10 seconds, preferably about 1.5-10 seconds, more preferably about 2.0-8.0 seconds, most preferably about 4-8 seconds;
  • the weight ratio of agent to oil is about 1 -30, preferably about 5-15, more preferably about 5-10.
  • step i) is controlled so that the mass ratio of propylene/propane in the resulting reaction product is not less than about 4, preferably not less than about 6, and most preferably not less than about 8; and/or isobutene/isobutane
  • the mass ratio of is not less than about 1, preferably not less than about 1.5, and most preferably not less than about 1.8.
  • step i) is controlled so that the yield of the catalytically cracked distillate in the resulting reaction product relative to the weight of the hydrocarbon-containing feed oil is not less than about 15%, preferably not less than about 20%, more preferably not Less than about 25% and not more than about 50%.
  • the conversion rate of the feedstock oil in the catalytic conversion process is usually expressed by the sum of the yields of gas, gasoline and coke.
  • the final product of the catalytic conversion process only includes dry gas, liquefied gas, gasoline, catalytic cracking distillate and coke. Therefore, in this application, the conversion rate of the feedstock oil is basically equal to 100% minus the yield of the catalytic cracking distillate. Therefore, the conversion rate of the catalytic conversion process in this application is controlled to be no more than about 85%, preferably no more than about 80%. %, most preferably not more than about 75%, and not less than about 50%.
  • the method further includes separating the reaction product of step i) and the spent catalyst, the spent catalyst is stripped, coke-burned and regenerated, and then returned to the reactor.
  • the separated reaction product includes propylene. , Gasoline and catalytic cracking distillate. The method for separating products such as propylene from the reaction product is well known to those skilled in the art, and will not be repeated here.
  • the catalyst used in the hydrodesulfurization step iii) is a catalyst comprising a group VIB metal and/or a group VIII metal supported on an alumina and/or amorphous silica-alumina support. Further preferably, the catalyst used in the hydrodesulfurization step iii) contains about 0-10% by weight of additives, about 1-40% by weight of at least one Group VIII metal (calculated as metal oxide), and about 1-50% by weight.
  • the additive contains non-metal elements selected from fluorine, phosphorus, etc., Metal elements such as titanium and platinum or their combination.
  • the additive may be a phosphorus-containing auxiliary or a fluorine-containing auxiliary, such as ammonium fluoride.
  • the group VIB metal is preferably selected from molybdenum, tungsten or a combination thereof; the group VIII metal is preferably selected from nickel, cobalt or a combination thereof.
  • the conditions of the hydrodesulfurization step iii) include: the reaction pressure is about 2.0-24.0MPa, preferably about 3.0-15.0MPa; the reaction temperature is about 200-500°C, preferably about 300-400°C ; hydrogen oil volume ratio of about 50-5000Nm 3 / m 3, preferably from about 200-2000Nm 3 / m 3; liquid hourly space velocity of about 0.1-30.0h -1, preferably from about 0.2-10.0h -1.
  • the initial boiling point of the catalytically cracked distillate is not less than about 200°C, the final boiling point is not greater than about 550°C, and the hydrogen content is not greater than about 12.0% by weight; preferably, the initial distillation of the catalytically cracked distillate The point is not less than about 250°C, the final boiling point is not greater than about 520°C, more preferably not greater than about 500°C, and the hydrogen content is not greater than about 11.5% by weight.
  • the low-sulfur hydrogenated distillate oil obtained after hydrodesulfurization treatment of the catalytic cracking distillate is used as a fuel oil blending component, and the sulfur content is not more than about 0.1%, preferably not more than about 0.05%.
  • the pre-lifting medium enters the bottom of the variable-diameter fluidized bed reactor 2 (for example, the reactor disclosed in Chinese Patent No. CN1078094C) through the pipeline 1, and the regenerated catalyst from the regeneration inclined pipe 16 moves along the reactor under the lifting action of the pre-lifting medium.
  • the feed oil is injected into the bottom of the first reaction zone 8 of the variable-diameter fluidized bed reactor 2 through line 3 together with the atomized steam from line 4, and is mixed with the existing stream in the reactor.
  • the feed oil is hot A cracking reaction occurs on the catalyst and moves upward into the second reaction zone 9 of the variable-diameter fluidized bed reactor 2 to continue the reaction.
  • the generated oil and gas and the deactivated spent catalyst enter the cyclone separator in the settler 7 to realize the separation of the spent catalyst from the oil and gas.
  • the reaction oil and gas enter the large oil and gas pipeline 17, and the fine catalyst powder is returned to the settler 7 from the feed leg of the cyclone. .
  • the spent catalyst in the settler 7 flows to the stripping section 10 and contacts with the stripping steam from the pipeline 11.
  • the oil and gas steamed from the waiting catalyst enters the large oil and gas pipeline 17 after passing through the cyclone separator.
  • the stripped spent catalyst enters the regenerator 13 through the standby inclined pipe 12, and the main air enters the regenerator through the line 14 to burn off the coke on the standby catalyst, so that the deactivated standby catalyst is regenerated, and the flue gas passes through the line 15 Lead out.
  • the regenerated catalyst enters the variable-diameter fluidized bed reactor 2 through the regeneration inclined pipe 16 for recycling.
  • the reacted oil gas passes through the large oil and gas pipeline 17 and enters the subsequent fractionation unit 18, and the separated dry gas is led out through the pipeline 19; the liquefied gas is led out through the pipeline 20, and is separated into propylene, propane and carbon four hydrocarbons through the gas separation unit 25.
  • the distillation range and processing scheme of each fraction can be adjusted according to the actual needs of the refinery.
  • the gasoline is cut to obtain the light gasoline fraction and enters the variable-diameter fluidized bed reactor 2 through the line 6 together with the atomized steam from the line 5.
  • the second reaction zone 9 undergoes refining to increase the production of propylene.
  • this application provides the following technical solutions:
  • a method for producing low-carbon olefins (especially propylene) and low-sulfur fuel oil components including the raw material oil being contacted with a catalyst in a catalytic conversion reactor to react, and the reaction temperature, weight hourly space velocity, and the weight ratio of the catalyst to the raw oil are sufficient
  • the reaction is carried out to obtain a reaction product containing 8-25% by weight of the feedstock propylene and 15-50% by weight of catalytic cracking distillate oil, and the catalytic cracking distillate is hydrodesulfurized to obtain low-sulfur hydrogenated distillate oil as a fuel oil component.
  • the raw material oil is selected from petroleum hydrocarbons and/or other mineral oils
  • the petroleum hydrocarbons are selected from vacuum gas oil, atmospheric gas oil, coking gas oil, deasphalted oil, and One or more mixtures of pressure residue, atmospheric residue, and hydrogenated heavy oil, and other mineral oils are one or more mixtures of coal liquefied oil, oil sand oil, and shale oil.
  • the catalytic conversion reactor is selected from one or two of a riser, a fluidized bed of constant linear velocity, a fluidized bed of constant diameter, an upward conveying line, and a downward conveying line.
  • a combination of two or more kinds of reactors, or a combination of two or more than two reactors of the same kind, the combination includes series or/and parallel, wherein the riser is a conventional equal-diameter riser or various forms of variable-diameter flow Bed.
  • the catalytic conversion catalyst includes zeolite, inorganic oxide and optional clay, and each component accounts for the total weight of the catalyst: 1-50% by weight of zeolite and 5-99% by weight of inorganic oxide.
  • the catalyst used for hydrodesulfurization is composed of 0-10% by weight of additives, 1-40% by weight of one or more Group VIII metals, 1-50% by weight of one or It is composed of one or more Group VIB metals and the remainder of alumina and/or amorphous silicon-alumina support, wherein the additives are selected from non-metal elements and metal elements such as fluorine, phosphorus, titanium, and platinum.
  • the properties of the feedstock oil and catalyst used in the following examples and comparative examples are listed in Table 1 and Table 2, respectively.
  • the catalytic conversion catalyst used in the comparative example is MMC-1, which is produced by Sinopec Catalyst Qilu Branch.
  • the hydrogen content of the catalytic cracking distillate in each example was measured by a hydrocarbon element analyzer with reference to the NB/SH/T 0656-2017 standard.
  • the test was carried out according to the process shown in Figure 1, the feed oil was VGO+30% VR-1, and the catalyst A was used as the catalytic conversion catalyst.
  • the test was carried out on a medium-sized catalytic cracking unit of a variable-diameter fluidized bed reactor. The oil and gas and the spent catalyst are separated in the settler, and the product oil and gas are cut according to the distillation range in the fractionation unit to obtain propylene, butene, gasoline and catalytic cracking distillate (distillation range 250-500°C, hydrogen content 11.2wt%).
  • the reaction conditions and product distribution are listed in Table 3.
  • the obtained catalytic cracking distillate and hydrogen enter the hydrodesulfurization reactor to contact with the hydrodesulfurization catalyst B, and react at a reaction pressure of 6.0MPa, a reaction temperature of 350°C, a hydrogen-to-oil volume ratio of 350, and a liquid hourly space velocity of 2.0h -1 to obtain low Sulfur hydrogenated distillate.
  • the low-sulfur hydrogenated distillate is used as a fuel oil component and blended with another fuel oil component "Vacuum Residue VR-2" to obtain RMG 380 fuel oil product that meets the national standard GB 17411-2015 "Marine Fuel Oil” ,
  • the properties are shown in Table 4.
  • the test was carried out according to the process shown in Figure 1, the feed oil was VGO, and the catalyst A was used as the catalytic conversion catalyst.
  • the test was carried out on a medium-sized catalytic cracking unit of a variable-diameter fluidized bed reactor. The oil and gas and the spent catalyst are separated in the settler, and the product oil and gas are cut according to the distillation range in the fractionation unit to obtain propylene, butene, gasoline and catalytic cracking distillate (distillation range 250-500°C, hydrogen content 11.3wt%).
  • the reaction conditions and product distribution are listed in Table 3.
  • the test was carried out according to the process shown in Figure 1, the feed oil was VGO+30% VR-1, and the catalyst A was used as the catalytic conversion catalyst, and the test was carried out on a medium-sized catalytic cracking unit in an equal-diameter riser reactor.
  • the oil and gas and the spent catalyst are separated in the settler, and the product oil and gas are cut according to the distillation range in the fractionation unit to obtain propylene, butene, gasoline and catalytic cracking distillate (distillation range 250-500°C, hydrogen content 11.2w%).
  • the reaction conditions and product distribution are listed in Table 3.
  • the test was carried out with reference to the conventional deep catalytic cracking process described in CN1004878B, the feed oil was VGO, the catalyst MMC-1 was used as the catalytic cracking catalyst, and the experiment was carried out on a medium-sized device of the dense phase fluidized bed of the riser reactor.
  • the oil and gas and the spent catalyst are separated in the settler, and the product is cut according to the distillation range in the fractionation unit to obtain propylene, butene, gasoline and light cycle oil fractions (distillation range 200-350°C, hydrogen content 9.8wt%).
  • the reaction conditions and product distribution are listed in Table 3.
  • the test was carried out according to the process shown in Fig. 1, the feed oil was hydrogenated heavy oil, and the catalyst A was used as the catalytic conversion catalyst, and the test was carried out on a medium-sized catalytic cracking unit of a variable-diameter fluidized bed reactor.
  • the oil and gas and the spent catalyst are separated in the settler, and the product oil and gas are cut according to the distillation range in the fractionation unit to obtain propylene, butene, gasoline and catalytic cracking distillate (distillation range 250-500°C, hydrogen content 10.9wt%).
  • the reaction conditions and product distribution are listed in Table 3.
  • the obtained catalytically cracked distillate and hydrogen enter the hydrodesulfurization reactor to contact with the hydrodesulfurization catalyst B, and react at a reaction pressure of 9.0MPa, a reaction temperature of 330°C, a hydrogen-to-oil volume ratio of 650, and a liquid hourly space velocity of 8.0h -1 to obtain a low Sulfur hydrogenated distillate.
  • the low-sulfur hydrogenated distillate is used as a fuel oil component and blended with another fuel oil component "Vacuum Residue VR-3" to obtain RMG 180 fuel oil product that meets the national standard GB 17411-2015 "Marine Fuel Oil” , The properties are shown in Table 5.
  • Example 1-a and Example 1-c can not only obtain up to 14.42% by weight and 13.45% by weight, respectively, when using inferior raw materials.
  • the yield of propylene can also be 29.32 wt% and 28.32 wt% of catalytic cracking distillate oil respectively, and the dry gas yield and coke yield are significantly reduced, and the total liquid yield is significantly increased; and
  • Example 1- b In the case of using the same raw materials, a propylene yield of up to 15.00% by weight can be obtained, and a catalytic cracking distillate yield of 27.73% by weight can be obtained at the same time, and the dry gas yield and coke yield are significantly reduced, and the total liquid yield Significantly increase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

生产丙烯和低硫燃料油组分的方法,包括如下步骤:i)使含烃原料油在催化转化反应器内在不存在氢的情况下、在有效条件下与催化转化催化剂接触反应,得到包含丙烯的反应产物;ii)从步骤i)所得的反应产物中分离出催化裂化馏分油,以及iii)使所述催化裂化馏分油经加氢脱硫,得到低硫加氢馏分油作为燃料油组分。所述方法在多产燃料油组分的同时可以大幅提高丙烯选择性和丙烯产率,并且明显降低干气和焦炭产率,具有较好的经济社会效益。

Description

生产低碳烯烃和低硫燃料油组分的方法
相关申请的交叉引用
本申请要求2019年10月24日提交的、申请号为201911014993.7、名称为“生产低碳烯烃和低硫燃料油组分的方法”的专利申请的优先权,其内容经此引用全文并入本文。
技术领域
本申请涉及烃油催化转化的领域,具体涉及将含烃原料油催化转化为低碳烯烃和低硫燃料油组分的方法。
背景技术
随着国民经济的快速发展,环境污染问题越来越受到人们的重视,环保法规也日益严格。根据国际海事组织(IMO)《国际防止船舶造成污染公约》规定,2020年1月1日起,全球船舶必须使用硫含量不高于0.5%的船用燃料,无疑将给全球船用油市场带来巨大变革。根据BP预测,2020年全球船用燃料年消费规模将达到3亿吨左右,无疑将对低硫燃料油的供应带来巨大挑战,全球主要石油加工企业相继公布的供应能力和全球市场需求之间仍存在较大差距。
CN109722303A公开了一种高硫重油生产低硫船用燃料油调和组分的方法。该方法包括如下步骤:a)高硫重油原料进入减粘裂化装置进行减粘裂化,得到减粘渣油;b)在步骤a)得到的减粘渣油中加入复合改性剂,然后对混合物进行连续沉降,上部得到溢流物料,下部得到底流物料;c)步骤b)所得的溢流物料进入固定床渣油加氢装置中进行加氢脱硫,得到低硫船用油燃料的调和组分。
原油品质随着原油开采量的不断增加而越来越劣质,主要表现在原油密度变大,粘度变高,重金属含量、硫含量、氮含量、胶质和沥青质含量变高。目前,劣质原油与优质原油的价格差别随着石油资源的短缺也越来越大,从劣质原油中尽可能地提高高价值产品收率,给传统的原油加工技术带来了巨大的挑战。然而,劣质原油的加工关键是如何加工原油馏分中最重质的常压渣油馏分。
渣油催化裂化目前是现代炼油厂用于生产低碳烯烃和高辛烷值汽 油的关键工艺,同时副产一部分轻循环油(LCO)。近期,LCO被认为是潜在的船用燃料油调和组分。尽管减压渣油与LCO调和能够生产低硫船用燃料油,但由于LCO黏度较小,作为燃料油组分的比例不宜太高,同时LCO馏程与减压渣油馏程之间不重叠,两者简单混兑可能导致在长时间储存时两者分层。此外,减压渣油饱和烃的氢含量太高,作为燃料油组分影响企业的经济效益。
随着聚丙烯等衍生物需求的迅速增长,当前我国丙烯需求仍呈供不应求趋势,重油催化裂化多产丙烯将发挥更重要作用。由于船用燃料油价格比车用柴油低,生产船用燃料油难以取得较好的经济效益,需要针对原料油组分特点,在生产船用燃料油同时,生产高价值产品丙烯与丁烯具有重要意义。
针对当前国内炼油能力过剩,利用核心炼油装置一催化裂化,开发一种既可以多产高价值丙烯又能够供应低硫船用燃料油组分的方法,是进行炼油结构调整的重要战略,既可以满足环保标准提高的需要,又可以满足市场需求和提高企业竞争力的需要。
发明内容
本申请的一个目的是提供一种生产丙烯和低硫燃料油组分的催化转化方法,其能够在多产燃料油组分的同时大幅提高丙烯选择性和丙烯产率,并且明显降低干气和焦炭产率,具有较好的经济社会效益。
为了实现上述目的,本申请提供了一种生产丙烯和低硫燃料油组分的方法,包括如下步骤:
i)使含烃原料油在催化转化反应器内在不存在氢的情况下与催化转化催化剂接触反应,得到包含丙烯的反应产物;
ii)从步骤i)所得的反应产物中分离出催化裂化馏分油,其中所述催化裂化馏分油的初馏点不小于约200℃,终馏点不大于约550℃,氢含量不大于约12.0重%;以及
iii)使所述催化裂化馏分油加氢脱硫,得到低硫加氢馏分油作为所述燃料油组分,
其中,以催化剂总重量计,所述催化转化催化剂包括约1-50重%的沸石、约5-99重%的无机氧化物和约0-70重%的粘土,
步骤i)的反应条件包括:反应温度为约460-750℃,重时空速为 约10-100h -1或反应时间为约1-10秒,剂油重量比为约4-20。
优选地,步骤i)所得的反应产物包含相对于所述含烃原料油的重量为约8-25重%的丙烯和约15-50重%的催化裂化馏分油。
本申请的方法可以选择性地裂化含烃原料油中的烷烃和具有烷基侧链的烃类等,最大限度地得到丙烯,同时生成短侧链多环芳烃保留在催化裂化馏分油(其可作为燃料油组分)中。通过本申请的方法,可以将含烃原料油转化为丙烯、丁烯和船用燃料油组分,并且大幅度降低干气和焦炭的产率,从而实现石油资源的有效利用。
具体而言,本申请的方法与现有技术相比具有至少一种以下所述的技术效果:
1、在多产燃料油组分的同时,大幅提高丙烯选择性和丙烯产率,具有一定的经济社会效益;
2、在丙烯等高价值产品大幅度增加的情况下,干气和焦炭产率明显地降低;
3、总液体收率明显增加,从而石油资源利用效率得到改善。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1是本申请的生产丙烯和低硫燃料油组分的方法的一种优选实施方式的流程示意图。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值,例如在该精确值±5%范围内的所有可能的数值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围, 这些新的数值范围也应被视为在本文中具体公开。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
根据本申请,术语“催化裂化馏分油”是指反应产物中初馏点不小于约200℃、优选不小于约250℃,终馏点不大于约550℃、优选不大于约520℃,最优选不大于约500℃的馏分段,亦即馏程在约200-550℃范围,优选在约250-520℃范围,更优选在约250-500℃范围的馏分段。
在本申请中,术语“流化床反应器”,也称为“流态化反应器”,应当按照其最宽泛的含义来理解,其包括各种形式的、用于使气态原料与处于流化状态的固体催化剂颗粒在其中接触进行化学反应的反应器,包括但不限于密相床、鼓泡床、沸腾床、湍动床、快速床、气相输送床(如上行床和下行床)等等,可以是等线速的流化床反应器、等直径的流化床反应器、变直径的流化床反应器等,并且还可以是两种或更多种不同形式的流化床串联或并联组合得到的复合反应器,例如为提升管反应器或者提升管与密相床组合的复合反应器。通常,密相床的气速可以为约0.1-2米/秒,而提升管的气速可以为约1-30米/秒(不计催化剂)。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本发明原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
长期以来,本领域普通技术人员认为,重油催化裂化的转化率越高越好。但发明人经过创造性地思考和反复实验发现,重油催化裂化的转化率并非越高越好,当转化率高到一定程度,目的产物增加很少,副产物干气和焦炭的产率却大幅度增加。因此,发明人提出了一种缓和催化裂解工艺,基于烷烃结构基团选择性裂化这一思想,使烃类原 料在最佳转化率区间内实现转化,此时干气和焦炭产率之和与转化率之比最小、丙烯选择性好,难以转化的多环芳烃类保留在裂化产物的300-500℃馏分(称之为催化蜡油)中,而极大程度上避免生成焦炭。基于其物理化学性质,该催化蜡油可作为船用燃料油的有效调和组分。
据此,本申请提供了一种生产丙烯和低硫燃料油组分的方法,包括以下步骤:
i)使含烃原料油在催化转化反应器内在不存在氢的情况下、在有效条件下与催化转化催化剂接触反应,得到包含丙烯的反应产物;
ii)从步骤i)所得的反应产物中分离出催化裂化馏分油,以及
iii)使所述催化裂化馏分油经加氢脱硫得到低硫加氢馏分油,
其中所述低硫加氢馏分油可作为低硫燃料油组分。
根据本申请,所述含烃原料油可以选自石油烃、其它矿物油或它们的混合物,其中所述石油烃可以选自减压瓦斯油(简称VGO)、常压瓦斯油、焦化瓦斯油、脱沥青油、减压渣油(简称VR)、常压渣油、加氢重油或者它们的各种混合物,所述其它矿物油可以选自煤液化油、油砂油、页岩油或者它们的各种混合物。
根据本申请,所述催化转化反应器可以为各种形式的流化床反应器,例如可以为单个流化床反应器,也可以为多个串联或者并联的流化床反应器组合得到的复合反应器。在某些优选的实施方式中,所述流化床反应器可以为等直径提升管反应器或者各种变径形式的流化床反应器,例如中国专利CN1078094C号中所公开的反应器。
根据本申请,以催化剂的总重量计,所述催化转化催化剂可以包括约1-50重%的沸石、约5-99重%的无机氧化物和约0-70重%的粘土。优选地,所述催化剂可以包括约5-45重%的沸石,更优选约10-40重%的沸石,约5-80重%的无机氧化物和约10-70重%的粘土。
在优选的实施方式中,以沸石的总重量计,所述沸石包括约51-100重%、优选约70-100重%的中孔沸石和约0-49重%、优选约0-30重%的大孔沸石,优选地,所述中孔沸石的硅铝比大于约10,优选大于约50,更优选大于约100。所述中孔沸石优选选自ZSM系列沸石和ZRP沸石;所述大孔沸石优选为Y系列沸石。任选地,可以对上述沸石用磷等非金属元素和/或铁、钴、镍等过渡金属元素进行改性。所述无机氧化物优选选自二氧化硅、三氧化铝和它们的任意组合;所述粘土优 选选自高岭土和/或多水高岭土。
根据本申请,所述“有效条件”是指能够使所述含烃原料发生催化转化反应,得到包含丙烯和催化裂化馏分油,优选包含相对于所述含烃原料油的重量为约8-25重%的丙烯和约15-50重%的催化裂化馏分油,的反应产物的条件。在优选的实施方式中,催化转化步骤i)的反应条件包括:反应温度为约460-750℃,优选为约480-700℃,更优选约480-600℃,最优选约500-560℃;重时空速(例如对于密相床反应器、快速床反应器等)为约5-100h -1,优选为约10-70h -1,更优选约15-50h -1,最优选约18-40h -1或者反应时间(例如对于提升管反应器)为约1-10秒,优选约1.5-10秒,更优选约2.0-8.0秒,最优选约4-8秒;剂油重量比为约1-30,优选为约5-15,更优选约5-10。
在优选的实施方式中,步骤i)控制为使所得反应产物中丙烯/丙烷的质量比不小于约4,优选不小于约6,最优选不小于约8;和/或,异丁烯/异丁烷的质量比不小于约1,优选不小于约1.5,最优选不小于约1.8。
在优选的实施方式中,步骤i)控制为使所得反应产物中催化裂化馏分油的产率相对于所述含烃原料油的重量不小于约15%,优选不小于约20%,更优选不小于约25%,且不大于约50%。
本领域技术人员所熟知的,催化转化过程中原料油的转化率通常以气体、汽油和焦炭的产率之和来表示。在本申请的方法中,催化转化过程的最终产物仅包括干气、液化气、汽油、催化裂化馏分油和焦炭。因此,在本申请中,原料油的转化率基本上等于100%减去催化裂化馏分油的产率,故本申请中催化转化过程的转化率控制在不大于约85%,优选不大于约80%,最优选不大于约75%,且不小于约50%。
在某些优选的实施方案中,所述方法进一步包括将步骤i)的反应产物和待生催化剂进行分离,待生催化剂经汽提、烧焦再生后返回反应器,分离后的反应产物包括丙烯、汽油和催化裂化馏分油。从反应产物中分离丙烯等产物的方法是本领域技术人员所熟知的,在此不再赘述。
在优选的实施方式中,所述加氢脱硫步骤iii)所用的催化剂是包含负载在氧化铝和/或无定型硅铝载体上的VIB族金属和/或VIII族金属的催化剂。进一步优选地,所述加氢脱硫步骤iii)所用的催化剂包 含约0-10重%添加剂、约1-40重%的至少一种第VIII族金属(以金属氧化物计)、约1-50重%的至少一种第VIB族金属(以金属氧化物计)和余量的选自氧化铝和无定型硅铝的载体,其中所述添加剂包含选自氟、磷等的非金属元素、选自钛、铂等的金属元素或者它们的组合。例如,所述添加剂可以为含磷助剂或含氟助剂,如氟化铵。所述第VIB族金属优选选自钼、钨或其组合;所述第VIII族金属优选选自镍、钴或其组合。
在优选的实施方式中,所述加氢脱硫步骤iii)的条件包括:反应压力为约2.0-24.0MPa,优选约3.0-15.0MPa;反应温度为约200-500℃,优选约300-400℃;氢油体积比为约50-5000Nm 3/m 3,优选约200-2000Nm 3/m 3;液时空速为约0.1-30.0h -1,优选约0.2-10.0h -1
根据本申请,所述催化裂化馏分油的初馏点不小于约200℃,终馏点不大于约550℃,氢含量不大于约12.0重%;优选地,所述催化裂化馏分油的初馏点不小于约250℃,终馏点不大于约520℃,更优选不大于约500℃,氢含量不大于约11.5重%。
在优选的实施方式中,所述催化裂化馏分油经加氢脱硫处理后得到的低硫加氢馏分油作为燃料油调和组分,其中硫含量不大于约0.1%,优选不大于约0.05%。
下面结合图1对本申请方法的一种具体实施方式予以说明。
预提升介质经管线1由变径流化床反应器2(例如中国专利CN1078094C号中所公开的反应器)底部进入,来自再生斜管16的再生催化剂在预提升介质的提升作用下沿反应器向上运动,原料油经管线3与来自管线4的雾化蒸汽一起注入变径流化床反应器2的第一反应区8的底部,与反应器内已有的物流混合,原料油在热的催化剂上发生裂化反应,并向上运动进入变径流化床反应器2的第二反应区9继续反应。生成的油气和失活的待生催化剂进入沉降器7中的旋风分离器,实现待生催化剂与油气的分离,反应油气进入大油气管线17,催化剂细粉由旋风分离器料腿返回沉降器7。沉降器7中的待生催化剂流向汽提段10,与来自管线11的汽提蒸汽接触。从待生催化剂中汽提出的油气经旋风分离器后进入大油气管线17。汽提后的待生催化剂经待生斜管12进入再生器13,主风经管线14进入再生器,烧去待生催化剂上的焦炭,使失活的待生催化剂再生,烟气经管线15引出。再生 后的催化剂经再生斜管16进入变径流化床反应器2循环使用。
反应油气经过大油气管线17,进入后续的分馏单元18,分离得到的干气经管线19引出;液化气经管线20引出,经过气体分离单元25分离为丙烯、丙烷和碳四烃,分别由管线26、27、28引出;汽油经管线21引出;馏程为200-250℃的轻循环油馏分经管线22引出,然后经管线31与来自管线32的雾化蒸汽一起返回变径流化床反应器2的第一反应区8的中上部;油浆由管线24引出,返回变径流化床反应器2的第一反应区8(任选与来自管线3的原料油一起经由原料喷嘴进入第一反应区8)进行回炼,以回收催化剂细粉;催化裂化馏分油经管线23进入到加氢处理装置29,加氢处理得到加氢馏分油,经管线30输出。其中各馏分馏程及加工流程方案根据炼厂实际需要可以进行调节,比如将汽油切割得到轻汽油馏分并通过管线6与来自管线5的雾化蒸汽一起进入到变径流化床反应器2第二反应区9进行回炼以增产丙烯。
在某些优选的实施方式中,本申请提供了如下的技术方案:
1、生产低碳烯烃(特别是丙烯)和低硫燃料油组分的方法,包括原料油在催化转化反应器内与催化剂接触进行反应,反应温度、重时空速、催化剂与原料油重量比足以使反应得到包含占原料油8-25重%丙烯和15-50重%催化裂化馏分油的反应产物,催化裂化馏分油经加氢脱硫得到低硫加氢馏分油作为燃料油组分。
2、按照项目1的方法,其中所述原料油选自选自石油烃和/或其它矿物油,其中石油烃选自减压瓦斯油、常压瓦斯油、焦化瓦斯油、脱沥青油、减压渣油、常压渣油、加氢重油中的一种或两种以上的混合物,其它矿物油为煤液化油、油砂油、页岩油中的一种或两种以上的混合物。
3、按照项目1的方法,其中所述催化转化反应器选自提升管、等线速的流化床、等直径的流化床、上行式输送线、下行式输送线中的一种或两种及两种以上的组合,或同一种反应器两个或两个以上的组合,所述组合包括串联或/和并联,其中提升管是常规的等直径提升管或者各种形式变径的流化床。
4、按照项目1的方法,其中所述催化转化催化剂包括沸石、无机氧化物和任选的粘土,各组分分别占催化剂总重量:沸石1-50重%、无机氧化物5-99重%、粘土0-70重%,其中,所述沸石为中孔沸石和 任选的大孔沸石,其中,中孔沸石占沸石总重量的51-100重%,中孔沸石硅铝比应大于50,最好大于80,大孔沸石占沸石总重量的0-49重%。
5、按照项目1的方法,其中所述催化转化的条件如下:反应温度为460-750℃,重时空速为10-100h -1,催化剂与催化转化原料油的重量比为4-20。
6、按照项目5的方法,其中所述催化转化的条件如下:反应温度为480-700℃,重时空速为30-80h -1,催化剂与催化转化原料油的重量比为5-12。
7、按照项目1的方法,其中所述催化裂化馏分油初馏点体积馏出温度不小于200℃的馏分,氢含量不大于12.0重%。
8、按照项目7的方法,其中所述催化裂化馏分油初馏点体积馏出温度不小于250℃的馏分,氢含量不大于11.5重%。
9、按照项目1的方法,其中所述加氢脱硫所用催化剂是负载在氧化铝和/或无定型硅铝载体上的VIB族金属和/或VIII族金属催化剂。
10、按照项目9的方法,其中所述加氢脱硫所用催化剂是由0-10重%添加剂、1-40重%的一种或一种以上第VIII族金属、1-50重%一种或一种以上第VIB族金属和余量氧化铝和/或无定型硅铝载体构成,其中所述添加剂选自氟、磷、钛、铂等非金属元素和金属元素。
11、按照项目1的方法,其中所述加氢脱硫的条件:所述加氢脱硫的条件:反应压力为2.0-24.0MPa,反应温度为200-500℃,氢油体积比为50-5000Nm 3/m 3,液时空速为0.1-30.0h -1
12、按照项目11的方法,其中所述加氢脱硫的条件:所述加氢脱硫的条件:反应压力为3.0-15.0MPa;反应温度为300-400℃;氢油体积比为200-2000Nm 3/m 3;液时空速为0.2-10.0h -1
13、按照项目1的方法,其中步骤(3)所述加氢馏分油中的硫含量不大于0.1%,优选不大于0.05%。
实施例
下面将结合实施例将对本申请予以进一步说明,但并不因此而限制本申请。
以下实施例和对比例中所使用的原料油和催化剂的性质分别列于 表1和表2。对比例所用的催化转化催化剂牌号为MMC-1,由中国石化催化剂齐鲁分公司生产。
各实施例中催化裂化馏分油氢含量参照NB/SH/T 0656-2017标准通过碳氢元素分析仪测得。
各实施例中所用的催化转化催化剂的制备过程如下:
用4300克脱阳离子水将969克多水高岭土(中国高岭土公司产物,固含量73%)打浆,再加入781克拟薄水铝石(山东淄博铝石厂产物,固含量64%)和144毫升盐酸(浓度30%,比重1.56)搅拌均匀,在60℃静置老化1小时,保持pH为2-4,降至常温,再加入预先准备好的5000克浆液,其中包含含化学水的硅铝比大于150中孔择形ZSM-5沸石(中国石化催化剂齐鲁分公司生产)1600g,搅拌均匀,喷雾干燥,洗去游离Na+,得催化剂。将得到的催化剂在800℃和100%水蒸汽下进行老化,老化后的催化剂称为催化剂A,催化剂A性质见表2。
各实施例中所用的加氢脱硫催化剂的制备过程如下:
称取1000克由中国石化催化剂长岭分公司生产的拟薄水铝石,之后加入含硝酸(化学纯)10毫升的水溶液1000毫升,在双螺杆挤条机上挤条成型,并在120℃干燥4小时,800℃焙烧4小时后得到催化剂载体。用含氟化铵120克的水溶液900毫升浸渍2小时,120℃干燥3小时,600℃焙烧3小时;降至室温后,用含偏钼酸铵133克的水溶液950毫升浸渍3小时,120℃干燥3小时,600℃焙烧3小时,降至室温后,用含硝酸镍180克、偏钨酸铵320克水溶液900毫升浸渍4小时,120℃烘干3小时,在600℃下焙烧4小时,制得催化剂B。
表1实施例和对比例中所用的原料油的性质
原料油名称 VGO+30%VR-1 加氢重油 VGO
密度(20℃),g/cm 3 0.8905 0.963 0.8597
残炭,重% 2.94 8.0 0.07
元素/重%      
86.48 87.28 85.63
13.18 11.63 13.45
0.15 0.4 0.06
0.19 0.2 0.08
四组分/重%      
饱和烃 64.5 49.4 86.6
芳烃 24.2 37.3 13.4
胶质 11.1 11.4 0.0
沥青质 0.2 1.9 0.0
表2实施例和对比例中所用催化转化催化剂的性质
催化剂牌号 A MMC-1
化学组成/重%    
A1 2O 3 49.2 50.2
Na 2O 0.07 0.052
物理性质    
比表面积/(m 2·g -1) / 115
堆密度/(g·cm -3) 0.79 0.80
磨损指数/(%·h -1) 1.1 2.8
筛分组成/重%    
0-40μm 14.2 15.8
0-80μm 53.8 75.5
0-105μm / 90.5
0-149μm 89.5 /
实施例1-a
按照图1所示的流程进行试验,原料油为VGO+30%VR-1,采用催化剂A作为催化转化催化剂,在变径流化床反应器的中型催化裂化装置上进行试验。油气和待生催化剂在沉降器分离,产物油气在分馏单元按馏程进行切割,得到丙烯、丁烯、汽油和催化裂化馏分油(馏程250-500℃,氢含量11.2wt%)。反应条件和产品分布列于表3。
所得催化裂化馏分油和氢气进入加氢脱硫反应器与加氢脱硫催化剂B接触,在反应压力6.0MPa、反应温度350℃、氢油体积比350、液时空速2.0h -1下反应,得到低硫加氢馏分油。将该低硫加氢馏分油作为燃料油组分与另一燃料油组分“减压渣油VR-2”调和,得到符合国家标准GB 17411-2015《船用燃料油》的RMG 380燃料油产品,性质见表4。
实施例1-b
按照图1所示的流程进行试验,原料油为VGO,采用催化剂A作为催化转化催化剂,在变径流化床反应器的中型催化裂化装置上进行试验。油气和待生催化剂在沉降器分离,产物油气在分馏单元按馏程进行切割,得到丙烯、丁烯、汽油和催化裂化馏分油(馏程250-500℃,氢含量11.3wt%)。反应条件和产品分布列于表3。
实施例1-c
按照图1所示的流程进行试验,原料油为VGO+30%VR-1,采用催化剂A作为催化转化催化剂,在等径提升管反应器的中型催化裂化装置上进行试验。油气和待生催化剂在沉降器分离,产物油气在分馏单元按馏程进行切割,得到丙烯、丁烯、汽油和催化裂化馏分油(馏程250-500℃,氢含量11.2w%)。反应条件和产品分布列于表3。
对比例1
参照CN1004878B中所述的常规深度催化裂解流程进行试验,原料油为VGO,采用催化剂MMC-1作为催化裂解催化剂,在提升管反应器加密相流化床的中型装置上进行试验。油气和待生催化剂在沉降器分离,产品在分馏单元按馏程进行切割,得到丙烯、丁烯、汽油和轻循环油馏分(馏程200-350℃,氢含量9.8wt%)。反应条件和产品分 布列于表3。
实施例2
按照图1所示的流程进行试验,原料油为加氢重油,采用催化剂A作为催化转化催化剂,在变径流化床反应器的中型催化裂化装置上进行试验。油气和待生催化剂在沉降器分离,产物油气在分馏单元按馏程进行切割,得到丙烯、丁烯、汽油和催化裂化馏分油(馏程250-500℃,氢含量10.9wt%)。反应条件和产品分布列于表3。
所得催化裂化馏分油和氢气进入加氢脱硫反应器与加氢脱硫催化剂B接触,在反应压力9.0MPa、反应温度330℃、氢油体积比650、液时空速8.0h -1下反应,得到低硫加氢馏分油。将该低硫加氢馏分油作为燃料油组分与另一燃料油组分“减压渣油VR-3”调和,得到符合国家标准GB 17411-2015《船用燃料油》的RMG 180燃料油产品,性质见表5。
表3实施例和对比例的反应条件和产品分布
Figure PCTCN2020121005-appb-000001
*转化率=干气产率+液化气产率+汽油产率+焦炭产率。
从表3的反应结果可以看出,相对于对比例1,实施例1-a和实施例1-c在使用更为劣质的原料的情况下,不仅能够分别得到高达14.42 重%和13.45重%的丙烯产率,还可以分别得到29.32重%和28.32重%的催化裂化馏分油产率,而且干气产率和焦炭产率明显地降低,总液体收率明显地增加;而实施例1-b在使用相同原料的情况下,能够得到高达15.00重%的丙烯产率,同时得到27.73重%的催化裂化馏分油产率,而且干气产率和焦炭产率明显地降低,总液体收率明显地增加。
表4实施例1-a所得的低硫加氢馏分油和燃料油产品的性质
Figure PCTCN2020121005-appb-000002
表5实施例2所得的低硫加氢馏分油和燃料油产品的性质
Figure PCTCN2020121005-appb-000003
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (12)

  1. 生产丙烯和低硫燃料油组分的方法,包括如下步骤:
    i)使含烃原料油在催化转化反应器内在不存在氢的情况下与催化转化催化剂接触反应,得到包含丙烯的反应产物;
    ii)从步骤i)所得的反应产物中分离出催化裂化馏分油,其中所述催化裂化馏分油的初馏点不小于约200℃,终馏点不大于约550℃,氢含量不大于约12.0重%;以及
    iii)使所述催化裂化馏分油加氢脱硫,得到低硫加氢馏分油作为所述燃料油组分,
    其中,以催化剂总重量计,所述催化转化催化剂包括约1-50重%的沸石、约5-99重%的无机氧化物和约0-70重%的粘土,
    步骤i)的反应条件包括:反应温度为约460-750℃,重时空速为约10-100h -1或反应时间为约1-10秒,剂油重量比为约4-20,
    优选地,步骤i)所得的反应产物包含相对于所述含烃原料油的重量为约8-25重%的丙烯和约15-50重%的催化裂化馏分油。
  2. 按照权利要求1所述的方法,其中,在所述催化转化催化剂中,以所述沸石的总重量计,所述沸石包括约51-100重%的中孔沸石和约0-49重%的大孔沸石,其中所述中孔沸石具有大于约10,优选大于约50,最优选大于约100的硅铝比;
    优选地,所述中孔沸石选自ZSM系列沸石和ZRP沸石;所述大孔沸石为Y系列沸石。
  3. 按照在先权利要求中任一项所述的方法,其中步骤i)控制为使所得反应产物中丙烯/丙烷的质量比不小于约4,优选不小于约6,最优选不小于约8;和/或,异丁烯/异丁烷的质量比不小于约1,优选不小于约1.5,最优选不小于约1.8。
  4. 按照在先权利要求中任一项所述的方法,其中步骤i)控制为使所得反应产物中催化裂化馏分油的产率相对于所述含烃原料油的重量不小于约15%,优选不小于约20%,更优选不小于约25%,且不大于约50%。
  5. 按照在先权利要求中任一项所述的方法,其中所述含烃原料油选自石油烃、其它矿物油或它们的混合物,其中所述石油烃选自减压 瓦斯油、常压瓦斯油、焦化瓦斯油、脱沥青油、减压渣油、常压渣油、加氢重油或它们的任意混合物,所述其它矿物油选自煤液化油、油砂油、页岩油或它们的任意混合物。
  6. 按照在先权利要求中任一项所述的方法,其中所述催化转化反应器为流化床反应器,包括单个流化床反应器或者多个流化床反应器串联或者并联得到的复合反应器,优选为等直径提升管反应器或者各种变径形式的流化床反应器。
  7. 按照在先权利要求中任一项所述的方法,其中步骤i)的反应条件包括:反应温度为约480-700℃,重时空速为约30-100h -1或反应时间为约2-8秒,剂油重量比为约5-12。
  8. 按照在先权利要求中任一项所述的方法,其中所述催化裂化馏分油的初馏点不小于约250℃,终馏点不大于约520℃,优选不大于约500℃,氢含量不大于约11.5重%。
  9. 按照在先权利要求中任一项所述的方法,其中所述加氢脱硫步骤iii)所用的催化剂是包含负载在氧化铝和/或无定型硅铝载体上的VIB族金属和/或VIII族金属的催化剂。
  10. 按照权利要求9所述的方法,其中所述加氢脱硫步骤iii)所用的催化剂包含约0-10重%的添加剂、约1-40重%的至少一种第VIII族金属(以金属氧化物计)、约1-50重%的至少一种第VIB族金属(以金属氧化物计)和余量的选自氧化铝和无定型硅铝的载体,其中所述添加剂包含选自氟、磷、钛、铂或者它们的组合的元素。
  11. 按照在先权利要求中任一项所述的方法,其中所述加氢脱硫步骤iii)的条件包括:反应压力为约2.0-24.0MPa,反应温度为约200-500℃,氢油体积比为约50-5000Nm 3/m 3,液时空速为约0.1-30.0h -1
    优选地,所述加氢脱硫步骤iii)的条件包括:反应压力为约3.0-15.0MPa;反应温度为约300-400℃;氢油体积比为约200-2000Nm 3/m 3;液时空速为约0.2-10.0h -1
  12. 按照在先权利要求中任一项所述的方法,其中步骤iii)所得加氢馏分油中的硫含量不大于约0.1%,优选不大于约0.05%。
PCT/CN2020/121005 2019-10-24 2020-10-15 生产低碳烯烃和低硫燃料油组分的方法 WO2021078051A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227017546A KR20220087536A (ko) 2019-10-24 2020-10-15 저-탄소 올레핀 및 저-황 연료 오일 성분의 제조 방법
JP2022524232A JP2022554207A (ja) 2019-10-24 2020-10-15 軽質オレフィンおよび低硫黄燃料油成分の製造方法
ZA2022/03462A ZA202203462B (en) 2019-10-24 2022-03-24 Process for producing light olefins and low-sulfur fuel oil components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911014993.7A CN112708460A (zh) 2019-10-24 2019-10-24 生产低碳烯烃和低硫燃料油组分的方法
CN201911014993.7 2019-10-24

Publications (1)

Publication Number Publication Date
WO2021078051A1 true WO2021078051A1 (zh) 2021-04-29

Family

ID=75540224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121005 WO2021078051A1 (zh) 2019-10-24 2020-10-15 生产低碳烯烃和低硫燃料油组分的方法

Country Status (8)

Country Link
US (1) US11512259B2 (zh)
JP (1) JP2022554207A (zh)
KR (1) KR20220087536A (zh)
CN (1) CN112708460A (zh)
FR (1) FR3102488B1 (zh)
TW (1) TW202116991A (zh)
WO (1) WO2021078051A1 (zh)
ZA (1) ZA202203462B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85104438A (zh) * 1985-06-13 1986-08-06 中国石油化工总公司石油化工科学研究院 一种馏分油加氢精制催化剂
CN1402771A (zh) * 1999-11-10 2003-03-12 埃克森美孚化学专利公司 用于生产低排放物、高辛烷值燃料的石脑油裂解和加氢处理工艺
CN1513951A (zh) * 2003-08-20 2004-07-21 大连理工大学 一种馏分油深度加氢脱硫催化剂的制备方法
CN101531924A (zh) * 2008-03-13 2009-09-16 中国石油化工股份有限公司 一种从劣质原料油制取轻质燃料油和丙烯的方法
CN101724431A (zh) * 2008-10-31 2010-06-09 中国石油化工股份有限公司 一种制取轻质燃料油和丙烯的催化转化方法
CN101942340A (zh) * 2009-07-09 2011-01-12 中国石油化工股份有限公司 一种从劣质原料油制取轻质燃料油和丙烯的方法
WO2018073018A1 (fr) * 2016-10-20 2018-04-26 IFP Energies Nouvelles Procédé de conversion comprenant un hydrotraitement en lit fixe, une separation d'une fraction residu hydrotraitee, une etape de craquage catalytique pour la production de combustibles marins

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891540A (en) 1974-04-02 1975-06-24 Mobil Oil Corp Combination operation to maximize fuel oil product of low pour
US3951781A (en) 1974-11-20 1976-04-20 Mobil Oil Corporation Combination process for solvent deasphalting and catalytic upgrading of heavy petroleum stocks
US4054512A (en) 1976-10-22 1977-10-18 Exxon Research And Engineering Company Deasphalting with liquid hydrogen sulfide
CN1004878B (zh) 1987-08-08 1989-07-26 中国石油化工总公司 制取低碳烯烃的烃类催化转化方法
US4940529A (en) 1989-07-18 1990-07-10 Amoco Corporation Catalytic cracking with deasphalted oil
US5098554A (en) 1990-03-02 1992-03-24 Chevron Research Company Expedient method for altering the yield distribution from fluid catalytic cracking units
US5192421A (en) 1991-04-16 1993-03-09 Mobil Oil Corporation Integrated process for whole crude deasphalting and asphaltene upgrading
DK29598A (da) 1998-03-04 1999-09-05 Haldor Topsoe As Fremgangsmåde til afsvovlning af FCC-tung benzin
CN1078094C (zh) 1999-04-23 2002-01-23 中国石油化工集团公司 一种用于流化催化转化的提升管反应器
FR2889539B1 (fr) 2005-08-08 2011-05-13 Inst Francais Du Petrole Procede de desulfuration des essences comportant une desulfuration par adsorption de la fraction legere et une hydrodesulfuration de la fraction lourde
BRPI0504854A (pt) 2005-10-31 2007-09-18 Petroleo Brasileiro Sa processo de fcc para a maximização de destilados médios
CN101531923B (zh) * 2008-03-13 2012-11-14 中国石油化工股份有限公司 一种制取丙烯和高辛烷值汽油的催化转化方法
WO2009089681A1 (fr) 2007-12-20 2009-07-23 China Petroleum & Chemical Corporation Procédé intégré amélioré d'hydrogénation et de craquage catalytique d'hydrocarbures liquides
CN101987972B (zh) 2009-08-06 2013-06-05 中国石油化工股份有限公司 一种组合工艺加工劣质原油的方法
CN101993328B (zh) * 2009-08-31 2014-08-20 中国石油化工股份有限公司 一种多产丙烯和优质燃料油的催化转化组合方法
CN102031147B (zh) * 2009-09-28 2014-12-31 中国石油化工股份有限公司 多产柴油和丙烯的催化转化方法
CN102031138B (zh) * 2009-09-28 2014-12-31 中国石油化工股份有限公司 一种多产柴油和丙烯的催化转化方法
KR101796782B1 (ko) * 2010-05-07 2017-11-13 에스케이이노베이션 주식회사 고급 납센계 윤활기유 및 중질 윤활기유를 병산 제조하는 방법
CN102373084B (zh) 2010-08-19 2013-12-25 中国石油化工股份有限公司 一种从劣质渣油制取轻质燃料油和丙烯的方法
CN102399585B (zh) 2010-09-09 2014-07-02 中国石油化工股份有限公司 一种生产低硫汽油的方法
CN102746890A (zh) 2011-04-22 2012-10-24 中国石油化工股份有限公司 一种船用燃料油及其制备方法
CN103059954B (zh) 2011-10-21 2015-04-15 中国石油化工股份有限公司 一种降低催化裂化汽油硫含量的方法
FR3014897B1 (fr) 2013-12-17 2017-04-07 Ifp Energies Now Nouveau procede integre de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre et en sediments
CN105623725B (zh) 2014-10-27 2017-11-03 中国石油化工股份有限公司 一种重/渣油加工的组合工艺
US10221367B2 (en) 2015-12-28 2019-03-05 Exxonmobil Research And Engineering Company Lubricant base stock production from disadvantaged feeds
CN109705913B (zh) 2017-10-26 2021-05-14 中国石油化工股份有限公司 一种多产高辛烷值汽油和低碳烯烃的方法和系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85104438A (zh) * 1985-06-13 1986-08-06 中国石油化工总公司石油化工科学研究院 一种馏分油加氢精制催化剂
CN1402771A (zh) * 1999-11-10 2003-03-12 埃克森美孚化学专利公司 用于生产低排放物、高辛烷值燃料的石脑油裂解和加氢处理工艺
CN1513951A (zh) * 2003-08-20 2004-07-21 大连理工大学 一种馏分油深度加氢脱硫催化剂的制备方法
CN101531924A (zh) * 2008-03-13 2009-09-16 中国石油化工股份有限公司 一种从劣质原料油制取轻质燃料油和丙烯的方法
CN101724431A (zh) * 2008-10-31 2010-06-09 中国石油化工股份有限公司 一种制取轻质燃料油和丙烯的催化转化方法
CN101942340A (zh) * 2009-07-09 2011-01-12 中国石油化工股份有限公司 一种从劣质原料油制取轻质燃料油和丙烯的方法
WO2018073018A1 (fr) * 2016-10-20 2018-04-26 IFP Energies Nouvelles Procédé de conversion comprenant un hydrotraitement en lit fixe, une separation d'une fraction residu hydrotraitee, une etape de craquage catalytique pour la production de combustibles marins

Also Published As

Publication number Publication date
KR20220087536A (ko) 2022-06-24
US20210122987A1 (en) 2021-04-29
ZA202203462B (en) 2023-03-29
CN112708460A (zh) 2021-04-27
US11512259B2 (en) 2022-11-29
TW202116991A (zh) 2021-05-01
FR3102488B1 (fr) 2023-12-08
FR3102488A1 (fr) 2021-04-30
JP2022554207A (ja) 2022-12-28

Similar Documents

Publication Publication Date Title
US8597500B2 (en) Process for converting inferior feedstock to high quality fuel oil
US10808188B2 (en) Catalytic cracking process with increased production of a gasoline having a low olefin content and a high octane number
CN102206509B (zh) 一种生产丙烯和轻芳烃的烃类催化转化方法
US20200291306A1 (en) Catalytic cracking of crude oil to light olefins
GB2474119A (en) A catalytic conversion process for producing more diesel and propylene
US11427773B2 (en) Catalytic cracking process for producing isobutane and/or light aromatics in high yield
US8932457B2 (en) Catalytic conversion method for increasing cetane number barrel of diesel
WO2021078051A1 (zh) 生产低碳烯烃和低硫燃料油组分的方法
CN109722305B (zh) 生产低碳烯烃的方法
WO2021078052A1 (zh) 一种生产丙烯和低硫燃料油组分的方法
CN107267190A (zh) 一种高烯烃含量汽油改质的方法
RU2802511C1 (ru) Способ получения легких олефинов и топливных компонентов c низким содержанием серы
RU2803778C1 (ru) Способ изготовления пропилена и низкосернистого мазутного компонента
CN111286359B (zh) 一种加工重质烃油原料的方法
CN102965141B (zh) 一种重油转化方法
CN112745899B (zh) 一种生产低碳烯烃的催化转化方法和催化转化装置
RU2776179C2 (ru) Способ каталитического крекинга для получения изобутана и/или легких ароматических соединений с высоким выходом
CN102618323B (zh) 一种提高液体产物收率的重油原料加工方法
CN108659884B (zh) 汽油脱硫的方法
TW202237806A (zh) 一種最大化生產丙烯的流化催化轉化方法
CN107557069B (zh) 煤焦油原料加氢转化的方法和煤焦油原料加氢转化的系统
TWI399431B (zh) A method for producing light fuel oil from inferior raw material oils
CN116925810A (zh) 原料油催化裂化的方法及催化裂化装置
CN112745902A (zh) 一种生产低碳烯烃的催化转化方法和催化转化装置
WO2024015836A1 (en) Methods for processing a hydrocarbon oil feed stream utilizing a gasification unit, steam enhanced catalytic cracker, and an aromatics complex

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524232

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227017546

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022111485

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 20879314

Country of ref document: EP

Kind code of ref document: A1