WO2021077932A1 - 防止激光器反馈光的方法 - Google Patents
防止激光器反馈光的方法 Download PDFInfo
- Publication number
- WO2021077932A1 WO2021077932A1 PCT/CN2020/114380 CN2020114380W WO2021077932A1 WO 2021077932 A1 WO2021077932 A1 WO 2021077932A1 CN 2020114380 W CN2020114380 W CN 2020114380W WO 2021077932 A1 WO2021077932 A1 WO 2021077932A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- core
- fiber
- target
- output
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2551—Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06716—Fibre compositions or doping with active elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0064—Anti-reflection devices, e.g. optical isolaters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
Definitions
- This application relates to the field of optical fiber communication technology, and more specifically, to a method for preventing laser feedback light.
- High-power fiber optic equipment usually refers to fiber optic equipment with an output power greater than or equal to 100W, and can include high-power fiber amplifiers, etc.
- the end face of the fiber is usually set at an angle of 8 degrees to increase the return loss, that is, to reduce the transmission of the feedback light transmitted in the reverse direction.
- the end cap structure of the fiber laser output terminal can also be improved, and the surface of the end cap cone part of the end cap structure can be made into a serrated pattern to break the smooth interface between the cone surface and the air. , So that the feedback light propagating to this interface cannot be totally reflected, or the feedback light is seriously deflected by the reflection of the cone surface, so as to reduce the coupling of the feedback light into the optical fiber.
- the principle of reducing the feedback light in the above methods is to deviate the transmission direction of the feedback light from the original transmission direction, so that the feedback light cannot continue to be transmitted in the core, and the feedback light cannot be fully utilized, resulting in a waste of resources. Therefore, there is an urgent need to provide a method to prevent laser feedback light.
- embodiments of the present application provide a method for preventing laser feedback light.
- the embodiment of the present application provides a method for preventing laser feedback light, including:
- the core refractive index of the output fiber of the laser is smaller than the core refractive index of the target fiber.
- the core diameter of the output fiber of the laser is smaller than the core diameter of the target fiber.
- the core diameter of the output fiber of the laser is specifically 20 ⁇ m, and the core diameter of the target fiber is specifically 50 ⁇ m.
- the core of the output fiber of the laser is a quartz core
- the core of the target fiber is a germanium-doped silica core or a phosphorous-doped silica core.
- the core of the output fiber of the laser is a fluorine-doped silica core
- the core of the target fiber is a silica core
- the core of the output fiber of the laser is a fluorine-doped silica core
- the core of the target fiber is a germanium-doped silica core or a phosphorous-doped silica core.
- the core center axis of the output fiber of the laser and the core center axis of the target fiber are collinear.
- the method for preventing laser feedback light includes: fusion splicing a target fiber on the output fiber of the laser, so that the laser generated by the laser is output by the target fiber; the core refractive index of the output fiber of the laser It is smaller than the core refractive index of the target optical fiber.
- the total reflection occurs due to the refractive index difference of the fusion surface, so that the feedback light is transmitted along the transmission direction of the laser, and the feedback light is prevented from being along the laser
- the reverse transmission enters the output fiber, and then enters the resonant cavity of the laser to damage the laser device or burn the gain fiber, which ensures the normal operation of the internal devices of the laser and the laser.
- FIG. 1 is a schematic flowchart of a method for preventing laser feedback light according to an embodiment of the application
- FIG. 2 is a schematic structural diagram of optical fiber fusion in a method for preventing laser feedback light provided by an embodiment of the application;
- FIG. 3 is a schematic diagram of the cross-sectional refractive index distribution at the fusion point of the output fiber and the target fiber in a method for preventing laser feedback light provided by an embodiment of the application;
- FIG. 4 is a schematic structural diagram of optical fiber fusion in a method for preventing laser feedback light provided by an embodiment of the application.
- an embodiment of the present application provides a method for preventing laser feedback light, including: S1, fusion splicing a target fiber on the output fiber of the laser, so that the laser generated by the laser is output by the target fiber;
- the core refractive index of the output fiber of the laser is smaller than the core refractive index of the target fiber.
- FIG. 2 is a schematic structural diagram of optical fiber fusion in the method for preventing laser feedback light provided in an embodiment of the application.
- the target fiber 2 is spliced on the output fiber 1 of the laser so that the laser light generated by the laser is output from the target fiber 2.
- the output fiber 1 of the laser includes a core 11 and a cladding 12, and the target optical fiber 2 includes a core 21 and a cladding 22.
- the center axis of the core 11 of the output fiber 1 of the laser is collinear with the center axis of the core 21 of the target fiber 2, that is, coincides, as shown by the dashed line in FIG. 2.
- the end faces of the output fiber 1 of the laser and the target fiber 2 fused to each other are parallel to each other, and the end faces may be perpendicular to the central axis.
- the diameter of the core 11 of the output fiber 1 of the laser in the embodiment of the present application and the diameter of the core 21 of the target optical fiber 2 may be equal or unequal, which is not specifically limited in the embodiment of the present application.
- the diameter of the core 11 of the output fiber 1 of the laser may be less than or equal to the diameter of the core 21 of the target fiber 2.
- the refractive index of the core 11 of the output fiber 1 of the laser is smaller than the refractive index of the core 21 of the target fiber 2.
- the laser generated by the laser is forwardly transmitted in the core along the direction of the output fiber 1 to the target fiber 2
- the laser is either It can be transmitted normally in the core 11 or in the core 21, but when the feedback light of the laser is transmitted in the core in the direction from the target fiber 2 to the output fiber 1, because the core 11 of the output fiber 1
- the refractive index is smaller than the refractive index of the core 21 of the target optical fiber 2, which will cause the laser feedback light to be transmitted to the output fiber 1 and the target optical fiber 2 in the core 11 to be totally reflected at the fusion point, so that the laser feedback light follows the laser
- the transmission is carried out in the transmission direction to prevent the feedback light from being transmitted in the reverse direction of the laser into the output fiber, and then into the resonant cavity of the laser to damage the laser device or burn the gain fiber.
- the method for preventing laser feedback light includes: welding a target fiber to the output fiber of the laser, so that the laser generated by the laser is output from the target fiber; and the core of the output fiber of the laser is refracted The rate is less than the core refractive index of the target optical fiber.
- the total reflection occurs due to the refractive index difference of the fusion surface, so that the feedback light is transmitted along the transmission direction of the laser, and the feedback light is prevented from being along the laser
- the reverse transmission enters the output fiber, and then enters the resonant cavity of the laser to damage the laser device or burn the gain fiber, which ensures the normal operation of the internal devices of the laser and the laser.
- FIG. 3 a schematic diagram of the cross-sectional refractive index distribution at the fusion point of the output fiber and the target fiber in the method for preventing laser feedback light provided in the embodiment of the present application, where r1 is the core diameter of the output fiber, and n1 is the output fiber The refractive index of the core, r2 is the core diameter of the target fiber, and n2 is the core refractive index of the target fiber.
- the core diameter of the output fiber of the laser is smaller than the core diameter of the target fiber.
- FIG. 4 is a schematic structural diagram of fiber fusion in the method for preventing laser feedback light provided in an embodiment of the application.
- the diameter of the core 11 of the output fiber 1 of the laser is smaller than the diameter of the core 21 of the target fiber 2.
- a high-refractive index glue may be applied to the fusion splicing point to filter out a small amount of remaining feedback light.
- the refractive index of the high refractive index glue is greater than the cladding refractive index of the target fiber or the output fiber.
- the laser may also include a mode stripper
- the output fiber of the laser may be a pigtail of the mode stripper
- the mode stripper can filter out part of the feedback light
- the core diameter of the output fiber of the laser is specifically 20 ⁇ m, and the core diameter of the target fiber is specifically 50 ⁇ m.
- the core diameter of the output fiber of the laser is specifically set to 20 ⁇ m, and the core diameter of the target fiber is specifically set to 50 ⁇ m.
- the core of the output fiber of the laser is a quartz core
- the core of the target fiber is a germanium-doped quartz core or Phosphorus-doped quartz core.
- the core of the output fiber of the laser may be a quartz core, that is, the core material of the output fiber of the laser It is quartz.
- Elements such as germanium or phosphorus can be doped in the core of the target fiber, that is, the core of the target fiber is a germanium-doped silica core or a phosphor-doped silica core, so that the core refractive index of the target fiber becomes larger.
- the core of the output fiber of the laser is a fluorine-doped silica core
- the core of the target fiber is a silica core
- the core of the target fiber in order to make the core refractive index of the output fiber of the laser smaller than the core refractive index of the target fiber, the core of the target fiber may be a quartz core, that is, the core material of the target fiber is quartz.
- Elements such as fluorine can be doped in the core of the output fiber of the laser, that is, the core of the output fiber of the laser is a fluorine-doped silica core, so that the core refractive index of the output fiber of the laser becomes smaller.
- the core of the output fiber of the laser is a fluorine-doped silica core
- the core of the target fiber is a germanium-doped silica fiber. Core or phosphorous-doped silica core.
- the core refractive index of the target fiber in order to make the core refractive index of the output fiber of the laser smaller than the core refractive index of the target fiber, the core refractive index of the target fiber can be increased at the same time, that is, the output fiber of the laser adopts a fluorine-doped silica core.
- the target fiber adopts germanium-doped silica core or phosphor-doped silica core to reduce the core refractive index of the output fiber of the laser.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Lasers (AREA)
- Mechanical Coupling Of Light Guides (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
一种防止激光器反馈光的方法,包括:在激光器的输出光纤(1)上熔接目标光纤(2),使激光器产生的激光由目标光纤(2)输出;激光器的输出光纤(1)的纤芯(11)折射率小于目标光纤(2)的纤芯(21)折射率。激光器产生的激光的反馈光通过目标光纤(2)逆向传输至输出光纤(1)与目标光纤(2)的熔接面时,由于熔接面存在折射率差发生全反射,使反馈光沿激光的传输方向传输,防止反馈光沿激光的反向传输进入输出光纤(1)中,进而进入到激光器的谐振腔内将激光器件损坏或增益光纤烧毁,保证了激光器内部器件以及激光器正常工作。
Description
相关申请的交叉引用
本申请要求于2019年10月24日提交的申请号为201911019259.X,发明名称为“防止激光器反馈光的方法”的中国专利申请的优先权,其通过引用方式全部并入本文。
本申请涉及光纤通信技术领域,更具体地,涉及防止激光器反馈光的方法。
高功率光纤设备通常是指输出功率大于等于100W的光纤设备,可包括和高功率光纤放大器等。
目前,高功率光纤激光器在利用光纤传输激光时,通常将光纤的端面设置成倾斜8度角,以此来增大回波损耗,即减少反向传输的反馈光的传输。在中高功率激光输出时,还可以对光纤激光输出端接有的端帽结构进行改进,在端帽结构的端帽锥体部分的表面制作锯齿状纹路,打破锥体表面与空气间平滑的界面,使传播到此界面上的反馈光无法产生全反射,或者使反馈光经过锥体表面反射严重偏离,从而达到减少反馈光耦合进入光纤的目的。
但是上述方法中减少反馈光的原理均是使反馈光的传输方向偏离原来的传输方向,使反馈光无法继续在纤芯内传输,无法使反馈光得到充分利用,造成资源的浪费。因此,现急需提供一种防止激光器反馈光的方法。
发明内容
为克服上述问题或者至少部分地解决上述问题,本申请实施例提供了一种防止激光器反馈光的方法。
本申请实施例提供了一种防止激光器反馈光的方法,包括:
在激光器的输出光纤上熔接目标光纤,使所述激光器产生的激光由所述目标光纤输出;
所述激光器的输出光纤的纤芯折射率小于所述目标光纤的纤芯折射率。
在实施例中,所述激光器的输出光纤的纤芯直径小于所述目标光纤的纤芯直径。
在实施例中,所述激光器的输出光纤的纤芯直径具体为20μm,所述目标光纤的纤芯直径具体为50μm。
在实施例中,所述激光器的输出光纤的纤芯为石英纤芯,所述目标光纤的纤芯为掺锗石英纤芯或掺磷石英纤芯。
在实施例中,所述激光器的输出光纤的纤芯为掺氟石英纤芯,所述目标光纤的纤芯为石英纤芯。
在实施例中,所述激光器的输出光纤的纤芯为掺氟石英纤芯,所述目标光纤的纤芯为掺锗石英纤芯或掺磷石英纤芯。
在实施例中,所述激光器的输出光纤的纤芯中心轴线和所述目标光纤的纤芯中心轴线共线。
本申请实施例提供的防止激光器反馈光的方法,包括:在激光器的输出光纤上熔接目标光纤,使所述激光器产生的激光由所述目标光纤输出;所述激光器的输出光纤的纤芯折射率小于所述目标光纤的纤芯折射率。激光器产生的激光的反馈光通过目标光纤逆向传输至输出光纤与目标光纤的熔接面时,由于熔接面存在折射率差发生全反射,使反馈光沿激光的传输方向传输,防止反馈光沿激光的反向传输进入输出光纤中,进而进入到激光器的谐振腔内将激光器件损坏或增益光纤烧毁,保证了激光器内部器件以及激光器正常工作。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种防止激光器反馈光的方法流程示意图;
图2为本申请实施例提供的一种防止激光器反馈光的方法中光纤熔接的结构示意图;
图3为本申请实施例提供的一种防止激光器反馈光的方法中输出光纤与目标光纤的熔接点处的截面折射率分布示意图;
图4为本申请实施例提供的一种防止激光器反馈光的方法中光纤熔接的结构示意图。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
如图1所示,本申请实施例提供了一种防止激光器反馈光的方法,包括:S1,在激光器的输出光纤上熔接目标光纤,使所述激光器产生的激光由所述目标光纤输出;
所述激光器的输出光纤的纤芯折射率小于所述目标光纤的纤芯折射率。
具体地,如图2所示,图2为本申请实施例中提供的防止激光器反馈光的方法中光纤熔接的结构示意图。在激光器的输出光纤1上熔接目标光 纤2,使激光器产生的激光由目标光纤2输出。其中,激光器的输出光纤1包括纤芯11和包层12,目标光纤2包括纤芯21和包层22。在熔接时,激光器的输出光纤1的纤芯11中心轴线与目标光纤2的纤芯21中心轴线共线,即重合,如图2中虚线所示。而且,激光器的输出光纤1与目标光纤2相熔接的端面相互平行,端面可与中心轴线垂直。需要说明的是,本申请实施例中激光器的输出光纤1的纤芯11直径与目标光纤2的纤芯21直径可相等也可不相等,本申请实施例中对此不作具体限定。例如激光器的输出光纤1的纤芯11直径可以小于等于目标光纤2的纤芯21直径。
激光器的输出光纤1的纤芯11折射率小于目标光纤2的纤芯21折射率,当激光器产生的激光沿输出光纤1至目标光纤2的方向在纤芯内进行正向传输时,激光无论是在纤芯11内还是在纤芯21内均可以正常传输,但是当激光的反馈光沿目标光纤2至输出光纤1的方向在纤芯内进行反向传输时,由于输出光纤1的纤芯11折射率小于目标光纤2的纤芯21折射率,会使激光的反馈光在纤芯11内传输至输出光纤1和目标光纤2的熔接点位置处发生全反射,使激光的反馈光沿激光的传输方向进行传输,防止反馈光沿激光的反向传输进入输出光纤中,进而进入到激光器的谐振腔内将激光器件损坏或增益光纤烧毁。
本申请实施例中提供的防止激光器反馈光的方法,包括:在激光器的输出光纤上熔接目标光纤,使所述激光器产生的激光由所述目标光纤输出;所述激光器的输出光纤的纤芯折射率小于所述目标光纤的纤芯折射率。激光器产生的激光的反馈光通过目标光纤逆向传输至输出光纤与目标光纤的熔接面时,由于熔接面存在折射率差发生全反射,使反馈光沿激光的传输方向传输,防止反馈光沿激光的反向传输进入输出光纤中,进而进入到激光器的谐振腔内将激光器件损坏或增益光纤烧毁,保证了激光器内部器件以及激光器正常工作。
如图3所示,本申请实施例中提供的防止激光器反馈光的方法中输出光纤与目标光纤的熔接点处的截面折射率分布示意图,其中r1为输出光纤的纤芯直径,n1为输出光纤的纤芯折射率,r2为目标光纤的纤芯直径,n2为目标光纤的纤芯折射率。
在上述实施例的基础上,本申请实施例中提供的防止激光器反馈光的 方法,所述激光器的输出光纤的纤芯直径小于所述目标光纤的纤芯直径。
具体地,如图4,图4为本申请实施例中提供的防止激光器反馈光的方法中光纤熔接的结构示意图,激光器的输出光纤1的纤芯11直径小于目标光纤2的纤芯21直径。此时,当激光沿激光器的输出光纤1至目标光纤2的传输方向进行传输时,激光可以正常传输,但是当激光的反馈光沿目标光纤2至激光器的输出光纤1反向传输时,不仅会在激光的反馈光传输至激光器的输出光纤1和目标光纤2的熔接点位置处发生全反射,使激光的反馈光沿激光的传输方向传输。同时,对于少量全反射不完全的反馈光,会在熔接点位置处泄漏至激光器的输出光纤的包层中,泄漏至包层中的反馈光将会被耗散,无法继续反向传输。
在上述实施例的基础上,还可以在输出光纤与目标光纤熔接后,在熔接点位置处涂有高折射率胶,以滤除少量剩余的反馈光。其中,高折射率胶的折射率大于目标光纤或输出光纤的包层折射率。
在上述实施例的基础上,激光器中还可以包括剥模器,激光器的输出光纤可以是剥模器的一个尾纤,剥模器可以滤除部分反馈光。
在上述实施例的基础上,本申请实施例中提供的防止激光器反馈光的方法,所述激光器的输出光纤的纤芯直径具体为20μm,所述目标光纤的纤芯直径具体为50μm。
具体地,本申请实施例中,将激光器的输出光纤的纤芯直径具体设置为20μm,将目标光纤的纤芯直径具体设置为50μm。
在上述实施例的基础上,本申请实施例中提供的防止激光器反馈光的方法,所述激光器的输出光纤的纤芯为石英纤芯,所述目标光纤的纤芯为掺锗石英纤芯或掺磷石英纤芯。
具体地,本申请实施例中为使激光器的输出光纤的纤芯折射率小于目标光纤的纤芯折射率,激光器的输出光纤的纤芯可以采用石英纤芯,即激光器的输出光纤的纤芯材料为石英。可以在目标光纤的纤芯内掺杂锗或磷等元素,即目标光纤的纤芯为掺锗石英纤芯或掺磷石英纤芯,使目标光纤的纤芯折射率变大。
在上述实施例的基础上,本申请实施例中提供的防止激光器反馈光的方法,所述激光器的输出光纤的纤芯为掺氟石英纤芯,所述目标光纤的纤 芯为石英纤芯。
具体地,本申请实施例中为使激光器的输出光纤的纤芯折射率小于目标光纤的纤芯折射率,目标光纤的纤芯可以采用石英纤芯,即目标光纤的纤芯材料为石英。可以在激光器的输出光纤的纤芯内掺杂氟等元素,即激光器的输出光纤的纤芯为掺氟石英纤芯,以使激光器的输出光纤的纤芯折射率变小。
在上述实施例的基础上,本申请实施例中提供的防止激光器反馈光的方法,所述激光器的输出光纤的纤芯为掺氟石英纤芯,所述目标光纤的纤芯为掺锗石英纤芯或掺磷石英纤芯。
具体地,本申请实施例中为使激光器的输出光纤的纤芯折射率小于目标光纤的纤芯折射率,可以同时增加目标光纤的纤芯折射率,即激光器的输出光纤采用掺氟石英纤芯,目标光纤采用掺锗石英纤芯或掺磷石英纤芯,以减小激光器的输出光纤的纤芯折射率。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (7)
- 一种防止激光器反馈光的方法,其特征在于,包括:在激光器的输出光纤上熔接目标光纤,使所述激光器产生的激光由所述目标光纤输出;所述激光器的输出光纤的纤芯折射率小于所述目标光纤的纤芯折射率。
- 根据权利要求1所述的防止激光器反馈光的方法,其特征在于,所述激光器的输出光纤的纤芯直径小于所述目标光纤的纤芯直径。
- 根据权利要求2所述的防止激光器反馈光的方法,其特征在于,所述激光器的输出光纤的纤芯直径具体为20μm,所述目标光纤的纤芯直径具体为50μm。
- 根据权利要求1所述的防止激光器反馈光的方法,其特征在于,所述激光器的输出光纤的纤芯为石英纤芯,所述目标光纤的纤芯为掺锗石英纤芯或掺磷石英纤芯。
- 根据权利要求1所述的防止激光器反馈光的方法,其特征在于,所述激光器的输出光纤的纤芯为掺氟石英纤芯,所述目标光纤的纤芯为石英纤芯。
- 根据权利要求1所述的防止激光器反馈光的方法,其特征在于,所述激光器的输出光纤的纤芯为掺氟石英纤芯,所述目标光纤的纤芯为掺锗石英纤芯或掺磷石英纤芯。
- 根据权利要求1-6中任一项所述的防止激光器反馈光的方法,其特征在于,所述激光器的输出光纤的纤芯中心轴线和所述目标光纤的纤芯中心轴线共线。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112020000066.4T DE112020000066B4 (de) | 2019-10-24 | 2020-09-10 | Verfahren zur Verhinderung von Rückkopplungslicht eines Lasers |
GB2020485.5A GB2593027A (en) | 2019-10-24 | 2020-09-10 | Method for preventing laser from feeding back light |
US17/138,878 US12019273B2 (en) | 2019-10-24 | 2020-12-30 | Method for preventing feedback light of a laser |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911019259.XA CN110768089B (zh) | 2019-10-24 | 2019-10-24 | 防止激光器反馈光的方法 |
CN201911019259.X | 2019-10-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/138,878 Continuation US12019273B2 (en) | 2019-10-24 | 2020-12-30 | Method for preventing feedback light of a laser |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021077932A1 true WO2021077932A1 (zh) | 2021-04-29 |
Family
ID=69333602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/114380 WO2021077932A1 (zh) | 2019-10-24 | 2020-09-10 | 防止激光器反馈光的方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12019273B2 (zh) |
CN (1) | CN110768089B (zh) |
DE (1) | DE112020000066B4 (zh) |
WO (1) | WO2021077932A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2593027A (en) * | 2019-10-24 | 2021-09-15 | Wuhan Raycus Fiber Laser Technologies Co Ltd | Method for preventing laser from feeding back light |
CN110768089B (zh) | 2019-10-24 | 2021-02-26 | 武汉锐科光纤激光技术股份有限公司 | 防止激光器反馈光的方法 |
DE102021202194A1 (de) * | 2021-03-08 | 2022-09-08 | Kjellberg-Stiftung | Vorrichtung und Verfahren zum Detektieren elektromagnetischer Strahlung |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010047668A1 (en) * | 2000-05-23 | 2001-12-06 | Asahi Glass Company, Limited | Method for connecting glass fibers |
US6424765B1 (en) * | 1993-12-24 | 2002-07-23 | Agilent Technologies, Inc. | Optical device and method of making the same |
CN105403954A (zh) * | 2015-12-08 | 2016-03-16 | 北京凯普林光电科技股份有限公司 | 一种光纤输入端结构 |
CN105744896A (zh) * | 2013-11-18 | 2016-07-06 | 住友电气工业株式会社 | 用于光学相干断层扫描的光学探头及制作光学探头的方法 |
CN110768089A (zh) * | 2019-10-24 | 2020-02-07 | 武汉锐科光纤激光技术股份有限公司 | 防止激光器反馈光的方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6542665B2 (en) * | 2001-02-17 | 2003-04-01 | Lucent Technologies Inc. | GRIN fiber lenses |
US20030147606A1 (en) * | 2002-02-01 | 2003-08-07 | Shiho Wang | Sol-gel-based optical preforms and methods of manufacture |
WO2012101579A2 (en) * | 2011-01-28 | 2012-08-02 | Koninklijke Philips Electronics N.V. | Tip reflection reduction for shape-sensing optical fiber |
GB201609278D0 (en) | 2016-05-25 | 2016-07-13 | Spi Lasers Uk Ltd | Optical fibre and optical fibre device |
JP2022522960A (ja) * | 2019-01-13 | 2022-04-21 | ライトラボ・イメージング・インコーポレーテッド | 動脈画像領域及びそれらの特徴を分類するシステム及び方法 |
-
2019
- 2019-10-24 CN CN201911019259.XA patent/CN110768089B/zh active Active
-
2020
- 2020-09-10 DE DE112020000066.4T patent/DE112020000066B4/de active Active
- 2020-09-10 WO PCT/CN2020/114380 patent/WO2021077932A1/zh active Application Filing
- 2020-12-30 US US17/138,878 patent/US12019273B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6424765B1 (en) * | 1993-12-24 | 2002-07-23 | Agilent Technologies, Inc. | Optical device and method of making the same |
US20010047668A1 (en) * | 2000-05-23 | 2001-12-06 | Asahi Glass Company, Limited | Method for connecting glass fibers |
CN105744896A (zh) * | 2013-11-18 | 2016-07-06 | 住友电气工业株式会社 | 用于光学相干断层扫描的光学探头及制作光学探头的方法 |
CN105403954A (zh) * | 2015-12-08 | 2016-03-16 | 北京凯普林光电科技股份有限公司 | 一种光纤输入端结构 |
CN110768089A (zh) * | 2019-10-24 | 2020-02-07 | 武汉锐科光纤激光技术股份有限公司 | 防止激光器反馈光的方法 |
Also Published As
Publication number | Publication date |
---|---|
DE112020000066T5 (de) | 2021-06-10 |
CN110768089B (zh) | 2021-02-26 |
US20210149113A1 (en) | 2021-05-20 |
CN110768089A (zh) | 2020-02-07 |
DE112020000066B4 (de) | 2023-11-23 |
US12019273B2 (en) | 2024-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021077932A1 (zh) | 防止激光器反馈光的方法 | |
US8094370B2 (en) | Cladding pumped fibre laser with a high degree of pump isolation | |
US7333702B2 (en) | Fiber optics transmission line | |
Yoshida et al. | Low-loss and reflection-free fused type fan-out device for 7-core fiber based on a bundled structure | |
US11808973B2 (en) | Optical fiber splice encapsulated by a cladding light stripper | |
CN102944915A (zh) | 一种光纤的连接方法 | |
CN205427234U (zh) | 一种模场匹配器及光纤激光器 | |
Tottori et al. | Integrated optical connection module for 7-core multi-core fiber and 7 single mode fibers | |
Yoshida et al. | Fused type fan-out device for multi-core fiber based on bundled structure | |
JP2017111173A (ja) | ファイバヒューズ抑圧ファイバ及び光コネクタ | |
JP2010078701A (ja) | 光ファイバの接続構造およびシングルモードファイバ | |
JP2002243971A (ja) | フォトニッククリスタルファイバの接続方法及びその接続構造体並びにその接続構造体の構成部材 | |
GB2593027A (en) | Method for preventing laser from feeding back light | |
CN105161959B (zh) | 一种单向光纤包层光滤除器及光纤激光器 | |
JP2002243972A (ja) | フォトニッククリスタルファイバの接続方法及びその接続構造体並びにフォトニッククリスタルファイバ | |
JPH10300970A (ja) | 光ファイバ素子及び光ファイバ接続方法 | |
JP2022551839A (ja) | マルチコアファイバ及びファンアウト組立体 | |
JP2006017816A (ja) | 光ファイバの接続構造、光ファイバ型光部品及び分散補償ファイバモジュール | |
JP4913686B2 (ja) | 光ファイバの接続方法 | |
JP5952854B2 (ja) | マルチコアファイバの接続方法及びこれを用いたマルチコアファイバ接続体 | |
JP2015072466A (ja) | 光ファイバ伝送路 | |
TWI536089B (zh) | 抑制受激布里淵散射的增益光纖 | |
US11073660B2 (en) | Heat treatment of fiber to improve cleaving | |
CN214954199U (zh) | 双包层传能光纤及高功率光纤激光器 | |
JP2005345592A (ja) | フォトニック結晶ファイバ型光減衰器及びその使用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 202020485 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20200910 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20878921 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20878921 Country of ref document: EP Kind code of ref document: A1 |