WO2021077661A1 - 利用激光冲击成形技术将金属材料表面粗糙功能化的方法及其应用 - Google Patents

利用激光冲击成形技术将金属材料表面粗糙功能化的方法及其应用 Download PDF

Info

Publication number
WO2021077661A1
WO2021077661A1 PCT/CN2020/079329 CN2020079329W WO2021077661A1 WO 2021077661 A1 WO2021077661 A1 WO 2021077661A1 CN 2020079329 W CN2020079329 W CN 2020079329W WO 2021077661 A1 WO2021077661 A1 WO 2021077661A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
roughened
micron
sandpaper
imprinting
Prior art date
Application number
PCT/CN2020/079329
Other languages
English (en)
French (fr)
Inventor
卢国鑫
季忠
王佃刚
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to US17/618,150 priority Critical patent/US20220234141A1/en
Publication of WO2021077661A1 publication Critical patent/WO2021077661A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/356Working by laser beam, e.g. welding, cutting or boring for surface treatment by shock processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/3568Modifying rugosity
    • B23K26/3584Increasing rugosity, e.g. roughening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0093Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/3568Modifying rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses

Definitions

  • the invention relates to the technical field of metal material surface processing, in particular to a method for functionalizing the surface roughness of a metal material by using laser shock forming technology and its application.
  • Super-hydrophobic surface refers to a special type of surface layer with an apparent contact angle greater than 150° and a rolling angle less than 10°.
  • the super-hydrophobic surface of metal material has the properties of waterproof and self-cleaning, which can delay the phenomenon of icing and corrosion during the service of the material.
  • technicians In order to change the wettability of the metal material surface, for example, to prepare the super-hydrophobic surface, technicians often need to roughen the surface of the material to be processed.
  • the surface of materials with different roughness obtained by different methods generally exhibits inconsistent functional characteristics. Sandpapers of different meshes have different surface morphologies and corresponding surface roughness values.
  • sandpapers of different meshes are used to grind the material to be processed to make the surface of the material have different roughness.
  • the inventor of the present invention found that the surface of the metal material is easily introduced into grinding scratches during the grinding process, which leads to a change in the stress state of the material surface, which in turn affects the mechanical properties of the material surface. Therefore, seeking a more effective and promising method for preparing rough surfaces has become a problem that researchers need to solve.
  • the method for functionalizing the surface roughness of the metal material proposed by the present invention is based on the force effect induced by the pulsed laser.
  • the micro-nano structure is prepared on the metal surface, and the surface roughness and the preparation range are precisely controllable.
  • the present invention discloses a method for functionalizing the surface roughness of metal materials by using laser shock forming technology, which includes the following steps:
  • Imprinting mold preparation using laser shock forming technology to impact the sandpaper, the microstructures on the surface of different mesh sandpapers with micron and nanoscale structures are re-etched to the surface of the mold material to obtain micron imprinting molds and nanoimprinting molds respectively;
  • Pre-treatment of the material to be roughened use the material that has undergone smoothing treatment as the material to be roughened on the surface; and in order to ensure that no other components are introduced during the processing, the material of the imprinting mold must be consistent with the material to be roughened on the surface;
  • the roughening material is a block material with a thickness greater than 0.5 mm, so the thickness of the imprinting mold must be lower than the thickness of the material to be roughened on the surface.
  • the preparation of the microstructure on the surface of the material to be roughened includes:
  • step (c) Cleaning the material to be roughened in step (b) to obtain a surface micronized material.
  • the preparation of nanostructures on the surface of the material to be roughened includes:
  • step (f) Cleaning the material to be roughened finally obtained in step (e), and it is obtained.
  • the pulsed laser can cause plasma explosion on the surface of the material, thereby forming an impact pressure of the order of GPa.
  • the pulsed laser can cause plasma explosion on the surface of the material, thereby forming an impact pressure of the order of GPa.
  • an imprinting mold with a specific surface roughness is set on the surface of the material to be roughened
  • the pulse The laser-induced shock wave effect can re-engrave the surface morphology of the imprinting mold on the material to be roughened.
  • the material surface can be easily, efficiently, accurately controlled, and designed in advance. Micro-nanoization, which is difficult to achieve with traditional methods.
  • the method of the present invention can realize the roughening treatment of the local surface of the metal material without introducing grinding marks.
  • the second feature of the preparation method of the present invention is: the present invention uses sandpaper of different meshes as the template of the imprinting mold, and the laser shock treatment can make the surface of the material approximately produce the surface morphology of the corresponding mesh sandpaper, and then adopt a similar process to remove the sandpaper.
  • the micro-nano structure is replicated to the surface of the material to be roughened.
  • the idea of this physical preparation process is significantly different from the traditional chemical preparation process and mechanical grinding process.
  • the third feature of the preparation method of the present invention is: the dual-scale rough surface and the low surface energy coating material are important factors for preparing the hydrophobic surface; in order to obtain the hydrophobic surface of the metal material, the method of duplicating sandpaper with different surface roughness is adopted.
  • Process the microstructure and nanostructure on the surface of metal materials step by step, and reduce the surface energy by adding materials that can reduce the surface energy in the replica mold, and then impact and press into the material to be roughened on the surface;
  • the structure reduces the surface energy of the micro-nano structure at the same time, turning the ordinary surface of the material into a hydrophobic surface.
  • the present invention discloses that the product prepared by the method for functionalizing the surface roughness of metal materials by using the laser shock forming technology is used in outdoor metal products to prevent snow and icing, anti-fouling and anti-corrosion of ship shells, and anti-sticking of the inner wall of oil pipeline Applies to applications in the aerospace, military, and transportation fields such as anti-clogging.
  • the present invention Compared with the prior art, the present invention has achieved the following beneficial effects: the method proposed by the present invention based on the pulsed laser-induced force effect first prepares the micro-nano imprint mold, and uses it as a template to present the imprint mold on the surface of the material to be processed. With the surface microstructure, this method can realize the roughening treatment of the local surface of the metal material without introducing the grinding marks, and compared with the traditional method, the method of the present invention can quantitatively prepare the microstructure on the metal surface. Nano structure, surface roughness and preparation range are precisely controllable and can be designed in advance.
  • Figure 1 is a schematic diagram of the imprinting mold prepared in Example 1 of the present invention.
  • Figure 2 is a schematic diagram of the imprinting mold prepared in Example 2 of the present invention.
  • the marks in the figure represent: 1, 8 represent pulsed laser beams, 2, 9 represent constrained layers, 3, 10 represent absorbing layers, 4, 12 represent imprinting mold materials, 5, 11 represent sandpaper, and 6, 13 represent robotic arms or Workbench, 7 and 14 represent the rough surface of the imprinting mold surface.
  • the present invention proposes a method for functionalizing the surface roughness of metal materials by using the laser shock forming technology based on the force effect induced by the pulsed laser.
  • the method for preparing the micron imprint mold is: first use sandpaper with micrometer-scale microstructures as the bottom plate, superimpose the mold material and the surface of the bottom plate with the micrometer structure together, and then The absorption layer and constraining layer materials are arranged on one side of the incident direction of the pulsed laser, and the impact imprinting is performed by the laser impact forming technology, so that the micron-scale microstructure of the bottom plate surface is re-engraved on the surface of the mold material to obtain a micron imprinting mold.
  • the method for preparing the nanoimprint mold is: using sandpaper with nanoscale microstructures as the base plate, superimposing the mold material and the surface with nanostructures on the base plate together, and then pulse
  • the absorption layer and constraining layer materials are arranged on one side of the laser incident direction, and impact imprinting is performed by laser impact forming technology, and the nano-scale microstructure on the surface of the bottom plate is re-engraved on the surface of the mold material to obtain a nano-imprint mold.
  • lower and higher mesh sandpapers are used to re-engrave the micro/nano structures on the surface of the imprinting mold to obtain a rough surface with a dual-scale structure.
  • sandpaper with a lower mesh is used to re-engrave the microstructure, and the imprint mold with sandpaper with a relatively higher mesh must be used to form the nano-microstructure.
  • the lower mesh here only needs to meet the required scale of the microstructure, and the higher is for the sandpaper with a relatively low mesh, which can be selected according to the required scale of the nanostructure.
  • the surface roughness of the lower mesh sandpaper is between Ra0.5 and Ra1; the surface roughness of the higher mesh sandpaper is not higher than Ra0.2.
  • the imprinting mold is a foil material, and its thickness must be lower than the thickness of the material to be roughened on the surface to ensure the laser impact process
  • the surface of the material to be processed is deformed, and the micro-nano structure of the surface is re-engraved on the material to be roughened. If the thickness of the imprinting mold is greater than the thickness of the material to be roughened, it will cause the shock wave received by the surface of the material to be processed. The intensity is too high or too low.
  • a partial surface with hydrophobic or other functional properties on the material to be roughened with a thickness of 0.5 mm or less it can also be directly engraved on the foil of the same material as the material to be roughened Sandpaper roughens the surface, and then uses the foil with the rough surface as an imprinting mold to prepare the rough surface by directly impacting the surface of the material to be roughened.
  • the embossing mold is made of foil, since its thickness is generally small, in order to avoid the embossing mold having weaker plastic deformation strength compared with the material to be processed, it is necessary to choose whether to deposit or not according to the actual processing conditions.
  • Ultra-thin hard coating on the rough surface of the imprinting mold The coating of the ultra-thin hard coating can prevent the rough surface of the foil material as an imprinting mold from being damaged.
  • a functionalized rough surface on a plate or block with a thickness of 0.5 mm or more it is necessary to re-engrave the rough surface of sandpaper on a foil of the same material as the plate to be processed. Then a hard coating (such as alumina coating) is deposited on the rough surface of the foil so that the rough surface of the foil material used as an imprinting mold is not damaged.
  • a hard coating such as alumina coating
  • the laser shock forming technology uses a mechanical arm to move once and laser shock to perform, that is, point-by-point processing.
  • the method of the smoothing treatment can be mechanical polishing, electrochemical polishing, etc., and it should be performed before the rough surface preparation.
  • the surface of the material to be roughened targeted by the present invention should have a relatively low surface roughness value, that is, the surface roughness of the material to be roughened should not be higher than the desired surface roughness.
  • ultrasonic cleaning is used to clean the material to be processed.
  • the material of the absorption layer is black lacquer or black tape. When in use, it is coated or pasted on the surface of the corresponding material facing the incident direction of the pulsed laser.
  • the material of the constraining layer is K9 glass or deionized water. When in use, it is placed or coated on the surface of the absorption layer.
  • the material capable of reducing surface energy includes any one of stearic acid, palmitic acid, and n-dodecanethiol.
  • a method for functionalizing the surface roughness of a metal material using laser shock forming technology includes the following steps:
  • the laser shock forming technology uses a mechanical arm to move, and the pulsed laser beam 1 The way of impact, namely point by point processing.
  • an aluminum oxide coating of 0.1 mm is deposited on the micro-structured rough surface of the micro- and nano-imprint molds to enhance the strength of the micro- and nano-structure rough surface of the aluminum foil.
  • step (c) Cleaning the pure aluminum plate after re-engraving in step (b) to obtain a surface micronized material.
  • step (d) Fix the surface micronized material obtained in step (c) on the worktable in the laser impact processing system, and lay a layer of stearic acid on the surface of the surface micronized material with micron structure; then prepare step (7)
  • the nano-imprint mold of the nano-imprint is placed on stearic acid, and then a layer of black lacquer is coated on the side of the pulse laser incident direction of the imprint mold, and then K9 glass is placed on the black lacquer.
  • step (f) Cleaning the pure aluminum plate after step (e) re-engraving to obtain a functional aluminum plate with a micro-nano surface.
  • a method for functionalizing the surface roughness of a metal sheet using laser shock forming technology includes the following steps:
  • the laser shock forming technology uses a mechanical arm to move, pulsed laser beam 8 The way of impact, namely point by point processing.
  • an aluminum oxide coating of 0.1 mm is deposited on the micro-structured rough surface of the micro- and nano-imprint molds to enhance the strength of the micro- and nano-structure rough surface of the aluminum foil.
  • step (4) Fix the micron imprint mold prepared in step (4) on the worktable in the laser impact processing system, place the side of the imprint mold with the micron structure on the surface of the pure aluminum sheet, and then place it on the surface of the pure aluminum sheet. Paste a layer of black tape on one side of the incident direction of the pulsed laser, and then place K9 glass on the black tape;
  • step (c) Cleaning the pure aluminum sheet after re-engraving in step (b) to obtain a surface micronized material.
  • step (d) Fix the surface micronized material obtained in step (c) on the worktable in the laser impact processing system, and lay a layer of stearic acid on the surface of the surface micronized material with micron structure; then prepare step (7) Place the nano-imprint mold on the stearic acid, then paste a layer of black tape on the side of the pulse laser incident direction of the imprint mold, and then place K9 glass on the black tape;
  • step (f) Cleaning the pure aluminum plate after re-engraving in step (e) to obtain a functional aluminum sheet with a micro-nano surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

一种利用激光冲击成形技术将金属材料表面粗糙功能化的方法,基于脉冲激光诱导的力效应提出制备微纳米压印模具后,将其作为模板在待加工材料表面呈现压印模具所具有的表面微结构。还涉及这种方法制备的产品的应用。该方法简单高效,相对于传统的方法,能够定量化在金属材料表面制备微纳米结构,表面粗糙程度和制备范围精准可控,可预先设计。

Description

利用激光冲击成形技术将金属材料表面粗糙功能化的方法及其应用 技术领域
本发明涉及金属材料表面加工技术领域,尤其涉及一种利用激光冲击成形技术将金属材料表面粗糙功能化的方法及其应用。
背景技术
本发明背景技术中公开的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
超疏水表面是指表观接触角大于150°而滚动角小于10°的一类特殊表面层。金属材料超疏水表面具有防水和自清洁等性能,可延缓材料服役过程中的结冰和腐蚀等现象。为改变金属材料表面的润湿性,例如制备所述超疏水表面,技术人员往往需要在待加工材料表面进行粗糙化处理。通过不同方法获得的不同粗糙程度的材料表面一般会呈现不一致的功能特征。不同目数的砂纸具有不同的表面形态及相应的表面粗糙度数值,通常情况下,采用不同目数的砂纸对待加工材料进行研磨处理,便可使得材料表面具备不同的粗糙程度。然而,本发明人研究发现:金属材料表面在研磨过程中容易被引入磨削划痕,导致材料表面应力状态发生变化,进而影响材料表面的力学性能等。因此,寻求更有效且更具有应用前景的粗糙表面制备方法成为研究人员需要解决的难题。
发明内容
针对常规研磨方法制备粗糙表面易引起服役性能降低的问题,面向金属材料较难实现局部粗糙表面制备的技术障碍,本发明基于脉冲激光诱导的力效应 提出的将金属材料表面粗糙功能化的方法能够在金属表面制备微纳结构,并且表面粗糙程度和制备范围精准可控。
为实现上述发明目的,本发明采用的技术手段为:
首先,本发明公开一种利用激光冲击成形技术将金属材料表面粗糙功能化的方法,包括如下步骤:
压印模具制备:通过激光冲击成形技术冲击砂纸,将具有微米和纳米尺度结构的不同目数砂纸表面的微结构复刻至模具材料表面,分别得微米压印模具、纳米压印模具;
待粗糙化材料前处理:采用经过光洁化处理的材料为表面待粗糙化材料;且为了保证加工过程中不引入其他组分,压印模具的材料与表面待粗糙化材料需保持一致;若待粗糙化材料为块材,其厚度大于0.5mm,则所述的压印模具厚度须低于表面待粗糙化材料厚度。
待粗糙化材料表面微米结构的制备,包括:
(a)将所述微米压印模具具有微米结构的一面置于待粗糙化材料表面,然后在所述压印模具的脉冲激光入射方向的一面设置吸收层、约束层材料;
(b)采用激光冲击成形技术对期望加工区域进行单脉冲的激光冲击处理,从而将压印模具表面的微米尺度结构复刻至待粗糙化材料表面;
(c)对步骤(b)复刻的待粗糙化材料进行清洗,得到表面微米化材料。
待粗糙化材料表面纳米结构的制备,包括:
(d)在所述表面微米化材料具有微米结构的一面铺设能够降低表面能的材料,然后将所述纳米压印模具具有纳米结构的一面置于该能够降低表面能的材料上,在纳米压印模具表面设置吸收层、约束层材料;
(e)采用激光冲击成形技术对期望加工区域进行单脉冲的激光冲击处理,从而将压印模具表面的纳米结构复刻至待粗糙化材料表面,并在表面得到了低表面能涂层;
(f)对步骤(e)最后得到的待粗糙化材料进行清洗,即得。
本发明制备方法的特点之一为:脉冲激光可导致材料表面发生等离子体爆炸,从而形成GPa量级的冲击压力,在表面待粗糙化材料表面设置具有特定表面粗糙度的压印模具时,脉冲激光诱导的冲击波效应可将压印模具表面形态复刻于表面待粗糙化材料上,通过选用制备的具有微纳米结构的压印模具,能够简单高效、精准可控、可预先设计地将材料表面微纳米化,这是传统的方法难以具备的。另外,本发明这种方法能够在不引入磨削痕迹的条件下实现金属材料局部表面的粗糙化处理。
本发明制备方法的特点之二为:本发明采用不同目数砂纸作为压印模具的模板,激光冲击处理便可使得材料表面近似产生对应目数砂纸的表面形态,进而采用类似的工艺将砂纸的微纳米结构复刻至表面待粗糙化的材料表面,这种物理制备工艺的思路显著区别于传统的化学制备工艺以及机械研磨工艺。
本发明制备方法的特点之三为:双尺度粗糙表面与低表面能涂层材料的是制备疏水表面的重要因素;为获得金属材料的疏水表面,采用复刻不同表面粗糙度的砂纸的方式来分步加工金属材料表面的微米结构与纳米结构,并通过在复刻模具中加入能够降低表面能的材料,进而冲击压入表面待粗糙化的材料中的手段降低其表面能;在得到微纳米结构的同时降低了微纳米结构的表面能,使材料的普通表面转变为疏水表面。
最后,本发明公开所述利用激光冲击成形技术将金属材料表面粗糙功能化 的方法制备的产品在室外金属制品防积雪和防结冰、舰船外壳防污和防腐以及石油输送管道内壁防粘附和防堵塞等航天军工、交通工具领域中的应用。
与现有技术相比,本发明取得了以下有益效果:本发明基于脉冲激光诱导的力效应提出的方法先制备微纳米压印模具后,将其作为模板在待加工材料表面呈现压印模具所具有的表面微结构,这种方法在不引入磨削痕迹的条件下实现金属材料局部表面的粗糙化处理,而且相对于传统的方法,本发明的这种方法能够定量化地在金属表面制备微纳米结构,表面粗糙程度和制备范围精准可控,可预先设计。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1中制备压印模具的示意图。
图2为本发明实施例2中制备压印模具的示意图。
图中标记分别代表:1、8代表脉冲激光光束,2、9代表约束层,3、10代表吸收层,4、12代表压印模具材料,5、11代表砂纸,6、13代表机械手臂或工作台,7、14代表压印模具表面的粗糙表面。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确 指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如前文所述,采用机械研磨的方法在金属材料表面制备粗糙表面容易被引入磨削划痕,导致材料表面应力状态发生变化,进而影响材料表面的力学性能等。因此,本发明基于脉冲激光诱导的力效应提出了一种利用激光冲击成形技术将金属材料表面粗糙功能化的方法。
在一些典型的实施例中,所述微米压印模具的制备方法为:先以具有微米尺度微结构的砂纸为底板,将模具材料与该底板上具有微米结构的表面叠合在一起,然后在脉冲激光入射方向的一面设置吸收层、约束层材料,通过激光冲击成形技术进行冲击压印,从而将该底板表面的微米尺度微结构复刻至模具材料表面,得到微米压印模具。
在一些典型的实施例中,所述纳米压印模具的制备方法为:以具有纳米尺度微结构的砂纸为底板,将模具材料与该底板上具有纳米结构的表面叠合在一起,然后在脉冲激光入射方向的一面设置吸收层、约束层材料,通过激光冲击成形技术进行冲击压印,而将该底板表面的纳米尺度微结构复刻至模具材料表面,得到纳米压印模具。
在一些典型的实施例中,采用较低和较高目数的砂纸用于压印模具表面微纳米结构的复刻,以获得具有双尺度结构的粗糙表面。
进一步地,采用具有较低目数的砂纸来复刻微米结构,采用相对较高目数的砂纸来复刻的压印模具须形成纳米微结构。需要说明的是,这里的较低目数只要满足需要的微米结构的尺度即可,较高是相对较低目数的砂纸而言,其可 根据需要的纳米结构的尺度选择。
可选地,所述较低目数的砂纸表面粗糙度在Ra0.5-Ra1之间;所述较高目数的砂纸表面粗糙度不高于Ra0.2。
在一些典型的实施例中,若待粗糙化材料为块材,其厚度大于0.5mm,则所述压印模具为箔材,其厚度须低于表面待粗糙化材料的厚度才能保证激光冲击过程中的待加工材料表面发生变形,将其表面的微纳米结构复刻至表面待粗糙化材料上,如果压印模具厚度大于表面待粗糙化材料的厚度,会导致待加工材料表面接收的冲击波作用强度过高或过低。
在一些典型的实施例中,若期望在厚度0.5mm以下的待粗糙化材料上制备疏水或具备其他功能特性的局部表面,则还可直接在与待粗糙化材料相同材料的箔材上复刻砂纸粗糙表面,然后将已形成粗糙表面的箔材作为压印模具,通过直接冲击待粗糙化材料表面的方式制备粗糙表面。
所述压印模具采用箔材时,由于其厚度一般较小,为避免压印模具相比待加工材料具有更弱塑性变形强度而导致的压印模具破坏,则需要根据实际加工情况选择是否沉积超薄的硬质涂层于压印模具的粗糙表面上。超薄硬质涂层的涂覆可使得作为压印模具的箔材材料的粗糙表面不被破坏。
因此,在一些典型的实施例中,若期望在厚度0.5mm以上的板材或块材上成形加工功能化粗糙表面,则需要在与待加工板材相同材料的箔材上复刻砂纸粗糙表面后,再沉积硬质涂层(如氧化铝涂层)于箔材粗糙表面,以使得作为压印模具的箔材材料的粗糙表面不被破坏。
在一些典型的实施例中,所述激光冲击成形技术采用机械臂移动一下,激光冲击一下的方式进行,即逐点加工。
在一些典型的实施例中,所述光洁化处理的方法可采用机械抛光、电化学抛光等,且要在进行粗糙表面制备之前进行。本发明针对的待粗糙化材料表面应具有较低的表面粗糙度数值,即:待粗糙化材料的表面粗糙度应不高于期望获得的表面粗糙度。
在一些典型的实施例中,采用超声清洗的方法对待加工材料进行清洗。
在一些典型的实施例中,所述吸收层材料为黑漆或黑胶带。使用时将其涂覆或者粘贴在相应材料面向脉冲激光入射方向的表面。
在一些典型的实施例中,所述约束层材料为K9玻璃或去离子水。使用时将其放置或涂覆在吸收层的表面。
在一些典型的实施例中,所述能够降低表面能的材料包括硬脂酸、软脂酸以及正十二硫醇等中的任意一种。
现以采用激光冲击处理手段对纯铝试样进行单脉冲激光辐照区域的疏水表面制备为例,并结合图1、2对本发明进一步进行说明。
实施例1
参考图1,一种利用激光冲击成形技术将金属材料表面粗糙功能化的方法,包括如下步骤:
(一)、微米压印模具的制备:
(1)选择纯铝箔材为压印模具材料,厚度约为0.05mm;选择厚度为2mm的纯铝板为表面待粗糙化材料,所述纯铝箔、纯铝板表面均经过了机械抛光处理,表面光洁;激光冲击处理之前,选择厚度约为0.5mm的黑漆为吸收层,选择厚度约为3mm的K9玻璃为约束层,所使用的脉冲激光的参数分别为:波长1064nm、能量1.2J、脉宽16ns、直径为2mm的圆形光束;200目的粗砂纸用于 制备微米压印模具。
(2)首先在激光冲击加工系统中的工作台6上固定好200目的粗砂纸5,并将砂纸的粗糙面朝上设置;然后将纯铝箔材(压印模具材料4)待处理的面放置在砂纸的压印模具表面的粗糙表面7上,完成后在纯铝箔材的另一面涂覆一层黑漆作为吸收层3,然后在吸收层表面放置K9玻璃作为约束层2。
(3)采用激光冲击成形技术对待加工铝箔的期望加工区域进行单脉冲的激光冲击处理(激光光束先到达铝箔,后到达砂纸),所述激光冲击成形技术采用机械臂移动一下,脉冲激光光束1冲击一下的方式进行,即逐点加工。
(4)在激光冲击处理后,对铝箔表面吸收层与约束层材料等进行剥离;待铝箔与粗砂纸接触表面最终呈现单个激光光斑大小的微米结构粗糙表面,且获得的粗糙表面的表面状态与所使用的200目粗砂纸一致,即得微米压印模具。
(二)、纳米压印模具的制备:
(5)选择纯铝箔材为压印模具材料,厚度约为0.05mm,表面光洁;激光冲击处理之前,选择厚度约为0.5mm的黑漆为吸收层,选择厚度约为3mm的K9玻璃为约束层,所使用的脉冲激光的参数分别为:波长1064nm、能量1.2J、脉宽16ns、直径为2mm的圆形光束;1000目的细砂纸用于制备纳米压印模具。
(6)首先在激光冲击加工系统中的工作台6上固定好1000目的细砂纸5,并将砂纸的粗糙面朝上设置;然后将纯铝箔材(压印模具材料4)待处理的面放置在砂纸的压印模具表面的粗糙表面7上,完成后在纯铝箔材的另一面涂覆一层黑漆作为吸收层3,然后在吸收层表面放置K9玻璃作为约束层2。
(7)重复步骤(3)、(4),完成后即得纳米压印模具。
(三)、硬质涂层制备:
在完成激光冲击处理后,在微米和纳米压印模具的微结构粗糙表面沉积氧化铝涂层0.1mm,以增强铝箔微米和纳米结构粗糙表面的强度。
(四)、纯铝板表面微米化:
(a)将纯铝板固定在激光冲击加工系统中的工作台上,将步骤(4)制备的微米压印模具具有微米结构的一面置于纯铝板表面,然后在所述压印模具的脉冲激光入射方向的一面涂覆一层黑漆,然后在黑漆上放置K9玻璃。
(b)采用激光冲击成形技术对期望加工区域进行单脉冲的激光冲击处理(激光光束先到达压印模具,后到达纯铝板),从而将压印模具表面的微米结构复刻至纯铝板表面。
(c)对步骤(b)复刻后的纯铝板进行清洗,得到表面微米化材料。
(五)、纯铝板表面纳米化:
(d)将步骤(c)得到的表面微米化材料固定在激光冲击加工系统中的工作台上,在表面微米化材料具有微米结构的表面铺设一层硬脂酸;然后将步骤(7)制备的纳米压印模具置于硬脂酸上,然后在所述压印模具的脉冲激光入射方向的一面涂覆一层黑漆,然后在黑漆上放置K9玻璃。
(e)采用激光冲击成形技术对期望加工区域进行单脉冲的激光冲击处理(激光光束先到达压印模具,后到达纯铝板),从而将压印模具表面的纳米结构复刻至所述表面微米化材料表面,并在表面压制了一层低表面能涂层。
(f)对步骤(e)复刻后的纯铝板进行清洗,得到表面微纳米化的功能性铝板。
实施例2
参考图2,一种利用激光冲击成形技术将金属片材表面粗糙功能化的方法, 包括如下步骤:
(一)、微米压印模具的制备:
(1)选择纯铝箔材为压印模具材料,厚度约为0.05mm;选择厚度为0.45mm的纯铝片材为表面待粗糙化材料,所述纯铝箔、纯铝片表面均经过了电化学抛光处理,表面光洁;激光冲击处理之前,选择厚度约为0.5mm的黑胶带为吸收层,选择厚度约为3mm的K9玻璃为约束层,所使用的脉冲激光的参数分别为:波长1064nm、能量3.2J、脉宽16ns、直径为2mm的圆形光束;200目的粗砂纸用于制备微米压印模具。
(2)首先在激光冲击加工系统中的工作台13上固定好纯铝箔材(压印模具材料12),并将200目的粗砂纸11放置在所述压印模具材料12的待处理面上,完成后在粗砂纸11的另一面粘贴一层黑胶带作为吸收层10,然后在吸收层表面放置K9玻璃作为约束层9。
(3)采用激光冲击成形技术对待加工铝箔的期望加工区域进行单脉冲的激光冲击处理(激光光束先到达砂纸,后到达铝箔),所述激光冲击成形技术采用机械臂移动一下,脉冲激光光束8冲击一下的方式进行,即逐点加工。
(4)在激光冲击处理后,对铝箔表面吸收层与约束层材料等进行剥离;待铝箔与粗砂纸接触表面最终呈现单个激光光斑大小的微米结构粗糙表面,且获得的粗糙表面的表面状态与所使用的200目粗砂纸一致,即得微米压印模具。
(二)、纳米压印模具的制备:
(5)选择纯铝箔材为压印模具材料,厚度约为0.05mm,表面光洁;激光冲击处理之前,选择厚度约为0.5mm的黑胶带为吸收层,选择厚度约为3mm的K9玻璃为约束层,所使用的脉冲激光的参数分别为:波长1064nm、能量2.4J、 脉宽16ns、直径为2mm的圆形光束;1000目的细砂纸用于制备纳米压印模具。
(6)首先在激光冲击加工系统中的工作台6上固定好纯铝箔材(压印模具材料4),并将1000目的细砂纸5放置在所述压印模具材料4的粗糙表面14上,完成后在细砂纸5的另一面粘贴一层黑胶带作为吸收层3,然后在吸收层表面放置K9玻璃作为约束层2。
(7)重复步骤(3)、(4),完成后即得纳米压印模具。
(三)、硬质涂层制备:
在完成激光冲击处理后,在微米和纳米压印模具的微结构粗糙表面沉积氧化铝涂层0.1mm,以增强铝箔微米和纳米结构粗糙表面的强度。
(四)、纯铝片表面微米化:
(a)将步骤(4)制备的微米压印模具固定在激光冲击加工系统中的工作台上,将压印模具具有微米结构的一面置于纯铝片表面,然后在所述纯铝片的脉冲激光入射方向的一面粘贴一层黑胶带,然后在黑胶带上放置K9玻璃;
(b)采用激光冲击成形技术对期望加工区域进行单脉冲的激光冲击处理(激光光束先到达纯铝片,后到达压印模具),从而将压印模具表面的微米结构复刻至纯铝片表面;
(c)对步骤(b)复刻后的纯铝片进行清洗,得到表面微米化材料。
(五)、纯铝片表面纳米化:
(d)将步骤(c)得到的表面微米化材料固定在激光冲击加工系统中的工作台上,在表面微米化材料具有微米结构的表面铺设一层硬脂酸;然后将步骤(7)制备的纳米压印模具置于硬脂酸上,然后在所述压印模具的脉冲激光入射方向的一面粘贴一层黑胶带,然后在黑胶带上放置K9玻璃;
(e)采用激光冲击成形技术对期望加工区域进行单脉冲的激光冲击处理(激光光束先到达压印模具,后到达纯铝片),从而将压印模具表面的纳米结构复刻至所述表面微米化材料表面,并在表面压制了一层低表面能涂层;
(f)对步骤(e)复刻后的纯铝板进行清洗,得到表面微纳米化的功能性铝片。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 利用激光冲击成形技术将金属材料表面粗糙功能化的方法,其特征在于,包括步骤:
    压印模具制备:通过激光冲击成形技术冲击砂纸,将具有微米和纳米尺度结构的不同目数砂纸表面的微结构复刻至模具材料表面,分别得微米压印模具、纳米压印模具;
    待粗糙化材料前处理:采用经过光洁化处理的材料为表面待粗糙化材料,所述压印模具的材料与表面待粗糙化材料一致;
    待粗糙化材料表面微米结构的制备,包括:
    (a)将所述微米压印模具具有微米结构的一面置于待粗糙化材料表面;
    在所述压印模具的脉冲激光入射方向的一面设置吸收层、约束层材料;
    (b)采用激光冲击成形技术对期望加工区域进行单脉冲的激光冲击处理,从而将压印模具表面的微米结构复刻至待粗糙化材料表面;
    (c)对步骤(b)复刻后的待粗糙化材料进行清洗,得到表面微米化材料;
    待粗糙化材料表面纳米结构的制备:包括:
    (d)在所述表面微米化材料具有微米结构的一面铺设能够降低表面能的材料,然后将所述纳米压印模具具有纳米结构的一面置于该能够降低表面能的材料上,在纳米压印模具表面设置吸收层、约束层材料;依次重复上述的步骤(b)、(c),得到表面微纳米化且具有低表面能涂层的材料。
  2. 如权利要求1所述的方法,其特征在于,所述微米压印模具的制备方法为:先以具有微米尺度微结构的砂纸为底板,将模具材料与该底板上具有微米结构的表面叠合在一起,然后在脉冲激光入射方向的一面设置吸收层、约束层材料,通过激光冲击成形技术进行冲击压印,从而将该底板表面的微米尺度微结构复刻至模具材料表面,得到微米压印模具。
  3. 如权利要求1所述的方法,其特征在于,所述纳米压印模具的制备方法为:以具有纳米尺度微结构的砂纸为底板,将模具材料与该底板上具有纳米结构的表面叠合在一起,然后在脉冲激光入射方向的一面设置吸收层、约束层材料,通过激光冲击成形技术进行冲击压印,而将该底板表面的纳米尺度微结构复刻至模具材料表面,得到纳米压印模具。
  4. 如权利要求2或3所述的方法,其特征在于,采用砂纸用于压印模具表面微纳米结构的复刻,以获得具有双尺度结构的粗糙表面。
  5. 如权利要求4所述的方法,采用具有较低目数的砂纸来复刻微米结构,采用相对较高目数的砂纸来复刻的压印模具须形成纳米微结构;所述较低目数的砂纸表面粗糙度在Ra0.5-Ra1之间;所述较高目数的砂纸表面粗糙度不高于Ra0.2。
  6. 如权利要求1所述的方法,其特征在于,若待粗糙化材料为块材,即厚度大于0.5mm时,则压印模具的厚度须低于表面待粗糙化材料的厚度;优选地,所述压印模具采用箔材时,在沉积超薄的硬质涂层(如氧化铝涂层)于压印模具的粗糙表面上。
  7. 如权利要求1所述的方法,其特征在于所述激光冲击成形技术采用机械臂移动一下,激光冲击一下的方式进行,即逐点加工。
  8. 如权利要求1所述的方法,所述光洁化处理的方法为机械抛光、电化学抛光,且要在进行粗糙表面制备之前进行;
    优选地,采用超声清洗的方法对待加工材料进行清洗。
  9. 如权利要求1所述的方法,所述吸收层材料为黑漆或黑胶带;优选地,使用时将其涂覆或者粘贴在相应材料面向脉冲激光入射方向的表面;
    优选地,所述约束层材料为K9玻璃或去离子水,更优选地,使用时将其 放置或涂覆在吸收层的表面;
    优选地,所述能够降低表面能的材料包括硬脂酸、软脂酸以及正十二硫醇中的任意一种。
  10. 如权利要求1-9任一项所述的方法制备的产品在室外金属制品防积雪和防结冰、舰船外壳防污和防腐以及石油输送管道内壁防粘附和防堵塞中的应用。
PCT/CN2020/079329 2019-10-23 2020-03-13 利用激光冲击成形技术将金属材料表面粗糙功能化的方法及其应用 WO2021077661A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/618,150 US20220234141A1 (en) 2019-10-23 2020-03-13 Method for roughening surface of metal material by using laser shock forming technology and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911013406.2A CN110560888B (zh) 2019-10-23 2019-10-23 利用激光冲击成形技术将金属材料表面粗糙功能化的方法及其应用
CN201911013406.2 2019-10-23

Publications (1)

Publication Number Publication Date
WO2021077661A1 true WO2021077661A1 (zh) 2021-04-29

Family

ID=68785847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079329 WO2021077661A1 (zh) 2019-10-23 2020-03-13 利用激光冲击成形技术将金属材料表面粗糙功能化的方法及其应用

Country Status (3)

Country Link
US (1) US20220234141A1 (zh)
CN (1) CN110560888B (zh)
WO (1) WO2021077661A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058584A (zh) * 2022-05-13 2022-09-16 西安交通大学 一种金属颗粒辅助激光温强化的装置及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560888B (zh) * 2019-10-23 2020-07-10 山东大学 利用激光冲击成形技术将金属材料表面粗糙功能化的方法及其应用
CN113967796B (zh) * 2021-10-26 2023-09-22 江苏大学 一种铝合金表面激光冲击压印微纳米颗粒制备超疏水性表面的方法
CN114406475B (zh) * 2021-12-01 2023-09-22 江苏大学 一种激光喷丸制备铝合金超疏水表面的方法
CN117680808B (zh) * 2023-12-06 2024-06-14 江苏西沙科技有限公司 一种海洋金属油管内壁微结构减阻的造型方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060091123A1 (en) * 2004-10-28 2006-05-04 Hon Hai Precision Industry Co., Ltd. Method for hydrophilic treatment of a surface of a material
CN1986387A (zh) * 2006-09-15 2007-06-27 江苏大学 激光加载实现微纳尺度三维成形的方法及其装置
CN101024862A (zh) * 2006-09-27 2007-08-29 江苏大学 一种基于激光冲击波技术孔壁的强化方法和装置
WO2008097374A2 (en) * 2006-09-29 2008-08-14 University Of Rochester Ultra-short duration laser methods for the nanostructuring of materials
JP2009226479A (ja) * 2008-02-25 2009-10-08 Sumitomo Electric Ind Ltd 表面改質方法
CN104046769A (zh) * 2014-06-09 2014-09-17 江苏大学 一种激光冲击波强化中降低表面粗糙度的方法及装置
CN107253148A (zh) * 2017-04-25 2017-10-17 江苏大学 一种在金属工件表层形成梯度纳米结构的组合方法
CN110560888A (zh) * 2019-10-23 2019-12-13 山东大学 利用激光冲击成形技术将金属材料表面粗糙功能化的方法及其应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219367A (ja) * 2009-03-18 2010-09-30 Sharp Corp 有機プリント基板の製造方法及び有機プリント基板、並びに、有機プリント基板を用いた高周波モジュール
CN102407219A (zh) * 2011-09-19 2012-04-11 北京航空航天大学 一种金属非晶超疏水表面的制备方法
JP5901347B2 (ja) * 2012-02-27 2016-04-06 キヤノン株式会社 撮像装置
CN103273194B (zh) * 2013-05-28 2015-03-04 江苏大学 激光间接冲击下金属薄板微弯曲-压印自动化装置及方法
CN104878189A (zh) * 2015-05-08 2015-09-02 江苏大学 一种合金基体制备非光滑表面的方法
CN109226970A (zh) * 2018-11-01 2019-01-18 徐州工程学院 一种微纳尺度高温激光冲击压印装置及方法
CN109576484B (zh) * 2018-11-19 2020-12-04 东华大学 一种复合尺度织构的加工方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060091123A1 (en) * 2004-10-28 2006-05-04 Hon Hai Precision Industry Co., Ltd. Method for hydrophilic treatment of a surface of a material
CN1986387A (zh) * 2006-09-15 2007-06-27 江苏大学 激光加载实现微纳尺度三维成形的方法及其装置
CN101024862A (zh) * 2006-09-27 2007-08-29 江苏大学 一种基于激光冲击波技术孔壁的强化方法和装置
WO2008097374A2 (en) * 2006-09-29 2008-08-14 University Of Rochester Ultra-short duration laser methods for the nanostructuring of materials
JP2009226479A (ja) * 2008-02-25 2009-10-08 Sumitomo Electric Ind Ltd 表面改質方法
CN104046769A (zh) * 2014-06-09 2014-09-17 江苏大学 一种激光冲击波强化中降低表面粗糙度的方法及装置
CN107253148A (zh) * 2017-04-25 2017-10-17 江苏大学 一种在金属工件表层形成梯度纳米结构的组合方法
CN110560888A (zh) * 2019-10-23 2019-12-13 山东大学 利用激光冲击成形技术将金属材料表面粗糙功能化的方法及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058584A (zh) * 2022-05-13 2022-09-16 西安交通大学 一种金属颗粒辅助激光温强化的装置及方法

Also Published As

Publication number Publication date
CN110560888B (zh) 2020-07-10
US20220234141A1 (en) 2022-07-28
CN110560888A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2021077661A1 (zh) 利用激光冲击成形技术将金属材料表面粗糙功能化的方法及其应用
Lee et al. Wafer‐scale Ni imprint stamps for porous alumina membranes based on interference lithography
CA2800381C (en) Articles with super-hydrophobic and/or self-cleaning surfaces and method of making same
US20070116934A1 (en) Antireflective surfaces, methods of manufacture thereof and articles comprising the same
WO2017048071A1 (ko) 초발수용 몰드 및 그 제조방법, 초발수용 몰드를 이용한 초발수용 재료 및 그 제조방법
Wu et al. Fabrication of a nano/micro hybrid lens using gas-assisted hot embossing with an anodic aluminum oxide (AAO) template
JP2000500708A (ja) 平板印刷版用親水性化基体およびその製造法
CN105911620A (zh) 一种具有毫微纳三级结构复眼透镜的制造方法
CN109722666A (zh) 具有表面微纳结构的金属薄膜模具的制备方法和金属薄膜模具中间体
JP7484979B2 (ja) 赤外線センサカバー、赤外線センサモジュール及びカメラ
CN110640323B (zh) 利用激光冲击技术制备表面微纳米结构的方法及其应用
Choi et al. Direct metal to metal imprinting for developing 1-step manufacturing process of patterned metal surface
WO2008082421A1 (en) Antireflective surfaces, methods of manufacture thereof and articles comprising the same
CN101191227A (zh) 在钛合金上制备超疏水性表面的方法
WO2011021007A1 (en) Production of flake particles
Zhang et al. Joint process of laser shock polishing and imprinting for metallic nanostructure fabrication
JP2007313694A (ja) 反射防止フィルム成形用エンボスロールの製造方法
JP2012137534A (ja) 反射防止フィルム製造用金型
JP6415590B2 (ja) 型の製造方法および反射防止膜の製造方法
Ehrhardt et al. Laser embossing of self-organized nanostructures into metal surfaces by KrF laser irradiation
Schmid et al. Nanostructured surfaces of metals and polymers by imprinting with nanoporous alumina
Ehrhardt et al. Processes at Multi-pulse Laser Embossing of Submicron Surface Structures.
CN115703167A (zh) 超精细金属微纳米结构的多步激光冲击压印方法
KR101607456B1 (ko) 홀로그램 전사장치
US20210155837A1 (en) Superhydrophobic hemispherical array which can realize droplet pancake bouncing phenomenon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879412

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20879412

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20879412

Country of ref document: EP

Kind code of ref document: A1