WO2021077444A1 - 一种基于改变富铁相形态的高性能再生铝的加工工艺 - Google Patents

一种基于改变富铁相形态的高性能再生铝的加工工艺 Download PDF

Info

Publication number
WO2021077444A1
WO2021077444A1 PCT/CN2019/113615 CN2019113615W WO2021077444A1 WO 2021077444 A1 WO2021077444 A1 WO 2021077444A1 CN 2019113615 W CN2019113615 W CN 2019113615W WO 2021077444 A1 WO2021077444 A1 WO 2021077444A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
aluminum
iron
rich phase
morphology
Prior art date
Application number
PCT/CN2019/113615
Other languages
English (en)
French (fr)
Inventor
杨勇
张枫
张育玮
杨晨
Original Assignee
安徽枫慧金属股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽枫慧金属股份有限公司 filed Critical 安徽枫慧金属股份有限公司
Publication of WO2021077444A1 publication Critical patent/WO2021077444A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/062Obtaining aluminium refining using salt or fluxing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of alloy processing, in particular to a processing technology of high-performance secondary aluminum based on changing the morphology of the iron-rich phase.
  • Fe element is the most common impurity element in secondary aluminum. It has high solubility in aluminum melt. The maximum solubility can be as high as 2.5% and 5.0% at 700°C and 800°C, but the solid solubility at room temperature is very low. Only 0.05wt%, the rest of the iron phase exists in the form of the second phase, usually called the iron-rich phase. According to the morphology of the iron-rich phase, it can be roughly divided into two categories, ⁇ -Fe phase and ⁇ -Fe phase. The ⁇ -Fe phase is mainly distributed in the grain boundary in the form of long and narrow needles. When stressed, the matrix is severely split and the plasticity drops sharply.
  • the main method of removing iron or changing the morphology of the iron-rich phase is used to reduce its adverse effects on the performance of secondary aluminum alloys.
  • changing the morphology of the iron-rich phase not only has the advantages of simple process, easy operation, lower cost, etc., but also can turn harmful impurity elements into beneficial elements and realize the comprehensive utilization of impurity elements.
  • the methods commonly used to change the morphology of the iron-rich phase include: adding alloying elements, such as Mn, Cr, Be, Co, Sr, Sc, etc.; melt processing methods, such as melt insulation, ultrasonic, electromagnetic, mechanical vibration, etc. Treatment; change the cooling rate and subsequent heat treatment method.
  • the method of adding alloying elements has the unique advantages of simple operation and low cost.
  • Patent CN106319275B discloses a modification agent and modification method for the iron-rich phase in regenerated aluminum. Mn agent and B agent are used as modifiers, and the Mn/Fe atomic ratio and B/Fe atomic ratio are controlled to obtain the regeneration after the modification treatment. aluminum.
  • the present invention improves the modification method of the patent and achieves a more superior technical effect than the patent.
  • the technical problem to be solved by the present invention is to provide a processing technology of high-performance recycled aluminum based on changing the morphology of the iron-rich phase.
  • the technology is easy to operate, realizes low-cost processing without adding equipment, and uses the produced recycled aluminum. Excellent performance, can greatly expand the scope of application of recycled aluminum.
  • a processing technology of high-performance secondary aluminum based on changing the morphology of the iron-rich phase including the following steps:
  • modifier mix Al-Mn alloy, Al-V alloy and flux according to the proportion, first heat to 500-600°C for preheating, and then continue to heat to 950-1050°C for smelting to obtain a melt, which is kept warm for later use;
  • the present invention changes the dominant growth orientation of the iron-rich phase by introducing the element Mn and the element V to eliminate the ⁇ -Fe phase.
  • the present invention uses the element Mn that has been disclosed in the art to change the morphology of the iron-rich phase, the application of the element V in cooperation with the element Mn to change the morphology of the iron-rich phase does not belong to the prior art and common knowledge in the field.
  • the Mn content in the Al-Mn alloy is 10-40%, and the V content in the Al-V alloy is 0.5-5%.
  • the flux is composed of CaF 2 and KCl with a mass ratio of 1:1-25.
  • the amount of the flux is 5-20% of the total mass of the Al-Mn alloy and Al-V alloy.
  • the amount of the Al-Mn alloy and Al-V alloy is such that the atomic ratio of Mn/Fe in the regenerated aluminum is 0.1-0.5, and the atomic ratio of V/Fe is 0.01-0.25.
  • the present invention also adds tellurium dioxide TeO 2 during the preparation of the modifier.
  • TeO 2 tellurium dioxide
  • the element Te is introduced to adsorb on the surface of the iron-rich phase at the initial stage of formation of the iron-rich phase, thereby suppressing the iron-rich phase Growing up, the specific technical solutions are as follows:
  • a processing technology of high-performance secondary aluminum based on changing the morphology of the iron-rich phase including the following steps:
  • modifier mix Al-Mn alloy, Al-V alloy, TeO 2 and flux in proportions, and then heat to 500-600°C for preheating, and then continue to heat to 950-1050°C for smelting to obtain a melt. Keep warm and standby;
  • the Mn content in the Al-Mn alloy is 10-40%, and the V content in the Al-V alloy is 0.5-5%.
  • the flux is composed of CaF 2 and KCl with a mass ratio of 1:1-25.
  • the dosage of the flux is 5-20% of the total mass of Al-Mn alloy, Al-V alloy and TeO 2.
  • the amount of the Al-Mn alloy, Al-V alloy and TeO 2 is such that the atomic ratio of Mn/Fe in the regenerated aluminum is 0.1-0.5, the atomic ratio of V/Fe is 0.01-0.25, and the atomic ratio of Te/Fe The ratio is 0.005-0.1.
  • the present invention also adds yttrium fluoride YF 3 during the preparation of the modifier.
  • yttrium fluoride YF 3 is added during the preparation of the modifier.
  • modifier mix Al-Mn alloy, Al-V alloy, TeO 2 , YF 3 and flux in proportion, then heat to 500-600°C for preheating, and then continue to heat to 950-1050°C for smelting. Melt, heat preservation and standby;
  • the Mn content in the Al-Mn alloy is 10-40%, and the V content in the Al-V alloy is 0.5-5%.
  • the flux is composed of CaF 2 and KCl with a mass ratio of 1:1-25.
  • the dosage of the flux is 5-20% of the total mass of Al-Mn alloy, Al-V alloy and TeO 2.
  • the amount of the Al-Mn alloy, Al-V alloy, TeO 2 and YF 3 is such that the atomic ratio of Mn/Fe in the regenerated aluminum is 0.1-0.5, the atomic ratio of V/Fe is 0.01-0.25, and Te/ The atomic ratio of Fe is 0.005-0.1, and the atomic ratio of Y/Fe is 0.005-0.1.
  • the beneficial effect of the present invention is: the present invention uses scrap aluminum as a raw material and adds a modifier to change the shape of the iron-rich phase, thereby reducing the adverse effect of the presence of high-content iron in the scrap aluminum on the performance of recycled aluminum, and realizing waste
  • the reuse of aluminum material optimizes the performance of the recycled aluminum; the performance of the recycled aluminum is tested, and the results show that the tensile strength of the recycled aluminum can reach more than 32% after the modifier treatment, and the elongation rate The increase can reach more than 106%.
  • the raw materials used in the following examples and comparative examples are all materials of the same batch and the same specifications purchased from the same manufacturer, so the corresponding raw materials used in the examples and comparative examples are completely the same in composition.
  • the Mn content in the Al-Mn alloy is 26%, and the V content in the Al-V alloy is 2.8%;
  • the flux is composed of CaF 2 and KCl with a mass ratio of 1:18;
  • the amount of flux is Al-Mn alloy and Al-V 12% of the total mass of the alloy;
  • the amount of Al-Mn alloy and Al-V alloy is such that the atomic ratio of Mn/Fe in the regenerated aluminum is 0.25, and the atomic ratio of V/Fe is 0.03.
  • Example 1 The atomic ratio of V/Fe in Example 1 is replaced with 0.04, and the rest is the same as in Example 1.
  • Example 1 Replace the step (1) of Example 1 with "Preparation of modifier: mix Al-Mn alloy, Al-V alloy, TeO 2 and flux, first heat to 550°C for 15 minutes, and then continue to heat to 1050°C for smelting The melt is obtained in 30 minutes and kept warm for later use", and the atomic ratio of Te/Fe is 0.02, and the rest is the same as in Example 1.
  • Example 1 Replace step (1) of Example 1 with "Preparation of modifier: mix Al-Mn alloy, Al-V alloy, TeO 2 , YF 3 and flux, then heat to 550°C for 15 min, and then continue heating to Melt at 1050°C for 30 minutes to obtain a melt, keep it warm for later use", and the atomic ratio of Te/Fe is 0.02, and the atomic ratio of Y/Fe is 0.02, and the rest is the same as in Example 1.
  • Example 1 Replace the step (1) of Example 1 with "After mixing the Al-Mn alloy and the flux, first heat to 550°C for 15 minutes, and then continue to heat to 1050°C for 30 minutes to obtain a melt, keep it warm for later use", and the rest is the same as the example 1.
  • Example 1 The step (1) of Example 1 is deleted, that is, no modifier is added, and the rest is the same as in Example 1.
  • Example 1 307 32.9 16.3 106.3
  • Example 2 308 33.3 16.5 108.9
  • Example 3 315 36.4 17.2 117.7
  • Example 4 320 38.5 18.0 127.8 Comparison 292 26.4 14.8 87.3 Blank example 231 / 7.9 /

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种基于改变富铁相形态的高性能再生铝的加工工艺,涉及合金加工技术领域,包括步骤:(1)变质剂的制备,(2)再生铝的制备;本发明以废铝料作为原料,通过添加变质剂来改变富铁相的形态,从而降低废铝料中高含量铁的存在对再生铝使用性能的不利影响,实现了废铝料的再利用并优化了所制再生铝的使用性能;对所制再生铝的使用性能进行测试,结果显示经变质剂处理所制再生铝的抗拉强度增幅能够达到32%以上,延伸率增幅能够达到106%以上。

Description

一种基于改变富铁相形态的高性能再生铝的加工工艺 技术领域:
本发明涉及合金加工技术领域,具体涉及一种基于改变富铁相形态的高性能再生铝的加工工艺。
背景技术:
Fe元素是再生铝中最为常见的杂质元素,在铝熔体中具有较高的溶解度,700℃、800℃时最大溶解度可高达2.5%和5.0%,但在室温下的固溶度很低,仅为0.05wt%,其余铁相均以第二相的形式存在,通常称为富铁相。根据富铁相形态大致可以分为两类,α-Fe相和β-Fe相,其中β-Fe相主要以狭长针状形态分布在晶界中,受力时严重割裂基体,塑性急剧下降。目前,主要通过除铁或改变富铁相形态的方式来减轻其对再生铝合金性能的不利影响。其中,改变富铁相形态不仅具有工艺简单、易操作、成本较低等优点,而且可将有害的杂质元素变成有益元素,实现杂质元素的综合利用。
目前,常用于改变富铁相形态的方法有:添加合金元素法,如Mn、Cr、Be、Co、Sr、Sc等元素;熔体处理法,如熔体保温、超声、电磁、机械振动等处理;改变冷却速度和后续热处理法。其中,添加合金元素法具有操作简便、成本低的独特优势。专利CN106319275B公开了一种再生铝中富铁相的变质剂及变质方法,以Mn剂和B剂作为变质剂,并控制Mn/Fe的原子比以及B/Fe的原子比,得到变质处理后的再生铝。为了在该专利的基础上更加优化变质处理后的再生铝的使用性能,本发明对该专利的变质方法进行了改进,并取得了更加优于该专利的技术效果。
发明内容:
本发明所要解决的技术问题在于提供一种基于改变富铁相形态的高性能再生铝的加工工艺,该工艺操作简便,在不增添设备的条件下实现低成本加 工,并且所制再生铝的使用性能优良,能够大大扩宽再生铝的应用范围。
本发明所要解决的技术问题采用以下的技术方案来实现:
一种基于改变富铁相形态的高性能再生铝的加工工艺,包括以下步骤:
(1)变质剂的制备:将Al-Mn合金、Al-V合金和熔剂按比例混合后先加热至500-600℃预热,再继续加热至950-1050℃熔炼得到熔体,保温备用;
(2)再生铝的制备:将经过配料后的废铝料装入熔炼炉中,使各元素的含量分别达到Si 3-10%,Fe 1-5%,Mg 0.1-2%,Cu 0.05-1%,不可避免的杂质0-0.1%,余量为Al;升温至700-800℃后加入步骤(1)所制变质剂,保温熔炼,搅拌除气并扒渣,静置,出炉浇铸。
本发明通过元素Mn和元素V的引入来改变富铁相的优势生长取向从而消除β-Fe相。虽然本发明采用了本领域已经公开的元素Mn来改变富铁相形态,但将元素V协同元素Mn来改变富铁相形态的应用不属于本领域的现有技术和公知常识。
所述Al-Mn合金中的Mn含量为10-40%,Al-V合金中的V含量为0.5-5%。
所述熔剂由质量比1:1-25的CaF 2和KCl组成。
所述熔剂的用量为Al-Mn合金和Al-V合金总质量的5-20%。
所述Al-Mn合金和Al-V合金的用量为使所制再生铝中Mn/Fe的原子比为0.1-0.5,V/Fe的原子比为0.01-0.25。
为了进一步优化所制再生铝的使用性能,本发明还在变质剂制备时添加了二氧化碲TeO 2,通过引入元素Te来在富铁相形成初期吸附在富铁相表面,抑制富铁相的长大,具体技术方案如下:
一种基于改变富铁相形态的高性能再生铝的加工工艺,包括以下步骤:
(1)变质剂的制备:将Al-Mn合金、Al-V合金、TeO 2和熔剂按比例混合后先加热至500-600℃预热,再继续加热至950-1050℃熔炼得到熔体,保温备用;
(2)再生铝的制备:将经过配料后的废铝料装入熔炼炉中,使各元素的含量分别达到Si 3-10%,Fe 1-5%,Mg 0.1-2%,Cu 0.05-1%,不可避免的杂质0-0.1%,余量为Al;升温至700-800℃后加入步骤(1)所制变质剂,保温熔炼,搅拌除气并扒渣,静置,出炉浇铸。
所述Al-Mn合金中的Mn含量为10-40%,Al-V合金中的V含量为0.5-5%。
所述熔剂由质量比1:1-25的CaF 2和KCl组成。
所述熔剂的用量为Al-Mn合金、Al-V合金和TeO 2总质量的5-20%。
所述Al-Mn合金、Al-V合金和TeO 2的用量为使所制再生铝中Mn/Fe的原子比为0.1-0.5,V/Fe的原子比为0.01-0.25,Te/Fe的原子比为0.005-0.1。
为了减少初生富铁相的生长时间和生长空间,本发明还在变质剂制备时添加了氟化钇YF 3,具体技术方案如下:
(1)变质剂的制备:将Al-Mn合金、Al-V合金、TeO 2、YF 3和熔剂按比例混合后先加热至500-600℃预热,再继续加热至950-1050℃熔炼得到熔体,保温备用;
(2)再生铝的制备:将经过配料后的废铝料装入熔炼炉中,使各元素的含量分别达到Si 3-10%,Fe 1-5%,Mg 0.1-2%,Cu 0.05-1%,不可避免的杂质0-0.1%,余量为Al;升温至700-800℃后加入步骤(1)所制变质剂,保温熔炼,搅拌除气并扒渣,静置,出炉浇铸。
所述Al-Mn合金中的Mn含量为10-40%,Al-V合金中的V含量为0.5-5%。
所述熔剂由质量比1:1-25的CaF 2和KCl组成。
所述熔剂的用量为Al-Mn合金、Al-V合金和TeO 2总质量的5-20%。
所述Al-Mn合金、Al-V合金、TeO 2和YF 3的用量为使所制再生铝中Mn/Fe的原子比为0.1-0.5,V/Fe的原子比为0.01-0.25,Te/Fe的原子比为0.005-0.1,Y/Fe的原子比为0.005-0.1。
本发明的有益效果是:本发明以废铝料作为原料,通过添加变质剂来改变富铁相的形态,从而降低废铝料中高含量铁的存在对再生铝使用性能的不利影响,实现了废铝料的再利用并优化了所制再生铝的使用性能;对所制再生铝的使用性能进行测试,结果显示经变质剂处理所制再生铝的抗拉强度增幅能够达到32%以上,延伸率增幅能够达到106%以上。
具体实施方式:
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例,进一步阐述本发明。
以下实施例和对比例中所采用的各原料都是购自于同一厂家的同批同规 格的物料,因此实施例和对比例中所采用的相应各原料在成分上完全相同。
实施例1
(1)变质剂的制备:将Al-Mn合金、Al-V合金和熔剂混合后先加热至550℃预热15min,再继续加热至1050℃熔炼30min得到熔体,保温备用;
(2)再生铝的制备:将经过配料后的废铝料装入熔炼炉中,使各元素的含量分别达到Si 6.1%,Fe 2.7%,Mg 0.5%,Cu 0.4%,不可避免的杂质0.005%,余量为Al;升温至800℃后加入步骤(1)所制变质剂,保温熔炼30min,搅拌除气并扒渣,静置1h,出炉浇铸。
Al-Mn合金中的Mn含量为26%,Al-V合金中的V含量为2.8%;熔剂由质量比1:18的CaF 2和KCl组成;熔剂的用量为Al-Mn合金和Al-V合金总质量的12%;Al-Mn合金和Al-V合金的用量为使所制再生铝中Mn/Fe的原子比为0.25,V/Fe的原子比为0.03。
实施例2
将实施例1中的V/Fe的原子比替换为0.04,其余同实施例1。
实施例3
将实施例1的步骤(1)替换为“变质剂的制备:将Al-Mn合金、Al-V合金、TeO 2和熔剂混合后先加热至550℃预热15min,再继续加热至1050℃熔炼30min得到熔体,保温备用”,并且Te/Fe的原子比为0.02,其余同实施例1。
实施例4
将实施例1的步骤(1)替换为“变质剂的制备:将Al-Mn合金、Al-V合金、TeO 2、YF 3和熔剂混合后先加热至550℃预热15min,再继续加热至1050℃熔炼30min得到熔体,保温备用”,并且Te/Fe的原子比为0.02,Y/Fe的原子比为0.02,其余同实施例1。
对比例
将实施例1的步骤(1)替换为“将Al-Mn合金和熔剂混合后先加热至550℃预热15min,再继续加热至1050℃熔炼30min得到熔体,保温备用”,其余同实施例1。
空白例
将实施例1的步骤(1)删除,即不添加变质剂,其余同实施例1。
分别利用上述实施例和对比例制备再生铝,并依照GB/T 228.1-2010《金属材料拉伸实验第1部分:室温试验方法》测试抗拉强度和延伸率,以空白例为基准,计算抗拉强度增幅和延伸率增幅,测试结果如表1所示。
表1实施例和对比例所制再生铝的抗拉强度和延伸率
组别 抗拉强度/MPa 抗拉强度增幅/% 延伸率/% 延伸率增幅/%
实施例1 307 32.9 16.3 106.3
实施例2 308 33.3 16.5 108.9
实施例3 315 36.4 17.2 117.7
实施例4 320 38.5 18.0 127.8
对比例 292 26.4 14.8 87.3
空白例 231 / 7.9 /
由表1可知,本发明通过变质剂的使用以及变质剂制备时Al-V合金、TeO 2、YF 3的添加能够显著增强所制再生铝的抗拉性能和延伸性能。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

  1. 一种基于改变富铁相形态的高性能再生铝的加工工艺,其特征在于:包括以下步骤:
    (1)变质剂的制备:将Al-Mn合金、Al-V合金和熔剂按比例混合后先加热至500-600℃预热,再继续加热至950-1050℃熔炼得到熔体,保温备用;
    (2)再生铝的制备:将经过配料后的废铝料装入熔炼炉中,使各元素的含量分别达到Si 3-10%,Fe 1-5%,Mg 0.1-2%,Cu 0.05-1%,不可避免的杂质0-0.1%,余量为Al;升温至700-800℃后加入步骤(1)所制变质剂,保温熔炼,搅拌除气并扒渣,静置,出炉浇铸。
  2. 根据权利要求1所述的加工工艺,其特征在于:所述Al-Mn合金中的Mn含量为10-40%,Al-V合金中的V含量为0.5-5%。
  3. 根据权利要求1所述的加工工艺,其特征在于:所述熔剂由质量比1:1-25的CaF 2和KCl组成。
  4. 根据权利要求1所述的加工工艺,其特征在于:所述熔剂的用量为Al-Mn合金和Al-V合金总质量的5-20%。
  5. 根据权利要求1所述的加工工艺,其特征在于:所述Al-Mn合金和Al-V合金的用量为使所制再生铝中Mn/Fe的原子比为0.1-0.5,V/Fe的原子比为0.01-0.25。
PCT/CN2019/113615 2019-10-24 2019-10-28 一种基于改变富铁相形态的高性能再生铝的加工工艺 WO2021077444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911018479.0 2019-10-24
CN201911018479.0A CN110804698A (zh) 2019-10-24 2019-10-24 一种基于改变富铁相形态的高性能再生铝的加工工艺

Publications (1)

Publication Number Publication Date
WO2021077444A1 true WO2021077444A1 (zh) 2021-04-29

Family

ID=69489208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113615 WO2021077444A1 (zh) 2019-10-24 2019-10-28 一种基于改变富铁相形态的高性能再生铝的加工工艺

Country Status (2)

Country Link
CN (1) CN110804698A (zh)
WO (1) WO2021077444A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1521283A (zh) * 2003-01-29 2004-08-18 东华大学 铝硅合金系列硅、铁双相团化剂及其团化方法
CN103045920A (zh) * 2012-12-21 2013-04-17 中国兵器工业第五二研究所 一种高硅铝合金缸套材料及其制造方法
CN107400806A (zh) * 2017-06-15 2017-11-28 中北大学 一种用于再生铝富铁相变质的中间合金及其制备方法
CN110218885A (zh) * 2019-06-24 2019-09-10 广东工程职业技术学院 一种高强韧的挤压铸造铝合金及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555066B (zh) * 2016-11-08 2018-11-02 广西大学 一种用微量复合添加剂制备高性能富铁再生铝的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1521283A (zh) * 2003-01-29 2004-08-18 东华大学 铝硅合金系列硅、铁双相团化剂及其团化方法
CN103045920A (zh) * 2012-12-21 2013-04-17 中国兵器工业第五二研究所 一种高硅铝合金缸套材料及其制造方法
CN107400806A (zh) * 2017-06-15 2017-11-28 中北大学 一种用于再生铝富铁相变质的中间合金及其制备方法
CN110218885A (zh) * 2019-06-24 2019-09-10 广东工程职业技术学院 一种高强韧的挤压铸造铝合金及其制备方法

Also Published As

Publication number Publication date
CN110804698A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
US7708937B2 (en) High-strength, high-toughness, weldable and deformable rare earth magnesium alloy
WO2023125263A1 (zh) 铝合金改性用复合稀土合金及其制备方法
WO2021184827A1 (zh) 一种再生变形铝合金熔体的复合处理方法
CN108977710B (zh) 一种挤压铸造镁合金材料及其制备方法
WO2023226632A1 (zh) 一种6063铝合金型材的生产工艺
WO2023125262A1 (zh) 改性铝合金及其制备方法
WO2021088612A1 (zh) 一种lpso相强化高阻尼稀土镁合金及其制备方法
CN110952001A (zh) 一种添加Mn、Zn的高强韧Al-Si-Cu-Mg铸造铝合金及其热处理方法
WO2023125282A1 (zh) 高塑性复合改性铝合金制件及其制备方法
WO2023035831A1 (zh) 一种挤压用铝合金及其制备方法
CN115094263A (zh) 铜铬锆系合金用变质剂合金、其制备方法及应用
CN109811212A (zh) 一种高性能铝合金及其制备方法
WO2021077444A1 (zh) 一种基于改变富铁相形态的高性能再生铝的加工工艺
WO2023125264A1 (zh) 高强度铝合金制件及其制备方法
WO2023125266A1 (zh) 高塑性铝合金制件及其制备方法
WO2023125265A1 (zh) 高强度复合改性铝合金制件及其制备方法
CN114836656A (zh) 一种可时效强化的高强度高导热压铸铝合金及其制备方法
CN110484792B (zh) 一种提高铝型材抗压强度的熔铸生产工艺
CN108048704B (zh) 一种含镧和镱的耐腐蚀铝合金材料的制备方法
CN111621719A (zh) 一种高强度耐热压铸铝合金和熔炼方法
CN113862529A (zh) 一种铝合金及其制备方法
CN111378876A (zh) 一种真空泵转子用含Sc铝合金及其制备方法
CN115874099B (zh) 一种Cu和Sb联合原位自生的组织优化镁基复合材料及其制备方法
CN110983101A (zh) 一种高屈服高延展率的中高熵合金及其制备方法
CN111455234B (zh) 一种真空泵转子用含Sm铝合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950133

Country of ref document: EP

Kind code of ref document: A1