WO2021077429A1 - 显示屏、显示组件及电子设备 - Google Patents

显示屏、显示组件及电子设备 Download PDF

Info

Publication number
WO2021077429A1
WO2021077429A1 PCT/CN2019/113460 CN2019113460W WO2021077429A1 WO 2021077429 A1 WO2021077429 A1 WO 2021077429A1 CN 2019113460 W CN2019113460 W CN 2019113460W WO 2021077429 A1 WO2021077429 A1 WO 2021077429A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
layer
light
display screen
points
Prior art date
Application number
PCT/CN2019/113460
Other languages
English (en)
French (fr)
Inventor
王志
毛信贤
Original Assignee
南昌欧菲生物识别技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲生物识别技术有限公司 filed Critical 南昌欧菲生物识别技术有限公司
Priority to PCT/CN2019/113460 priority Critical patent/WO2021077429A1/zh
Publication of WO2021077429A1 publication Critical patent/WO2021077429A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements

Definitions

  • This application belongs to the field of display, and specifically relates to a display screen, a display assembly and an electronic device.
  • 3D structured light face unlocking technology is currently one of the mainstream ways to unlock mobile phones. It uses the deformation of the light spot to identify the 3D information of the target object, and then realizes the unlocking.
  • the hardware composition of structured light is composed of an IR camera and an infrared projector. After the infrared light spot is emitted by the projector, it reaches the surface of the target object, and the IR camera will shoot the formed light spot pattern.
  • a display screen which includes:
  • the first display layer and the second display area are The first display layer and the second display area;
  • the first display layer and the second display area are spaced apart;
  • the first display layer is provided with a plurality of spaced light-transmitting points, and the light can pass through the light-transmitting points after being projected to the first display layer;
  • the second display area includes a plurality of display compensation points; the display compensation points are set at positions corresponding to the light transmission points, and each of the display compensation points at least covers the corresponding light transmission points;
  • the display content of the display area of the first display layer and the display content of the display compensation point of the second display area cooperate with each other to make the display screen display completely; the area outside the compensation point displayed in the second display area can be Transparent.
  • the projector can be arranged below the display screen to enable full-screen display.
  • the display screen further includes a spacer support layer; the spacer support layer is located between the first display layer and the second display area; the spacer support layer is light-transmissive and is used to connect the first The display layer and the second display area are spaced apart.
  • a spacer support layer is added between the first display layer and the second display area, and a gap is left between the first display layer and the second display area, so that the light projected out of the first display layer is diffracted.
  • it also supports the second display area and/or the touch sensitive layer, increases the stability of each layer of the display screen, and improves the durability of the display screen.
  • the thickness of the spacer support layer is greater than the wavelength of the light projected to the display screen.
  • the thickness of the spacer support layer is 0.01 mm-1 mm.
  • the thickness of the spacer support layer is less than the wavelength of the projected light, the light cannot pass through the first display layer well.
  • the thickness of the spacer support layer is too large, the thickness of the display screen will be too thick, which will increase the thickness of the electronic device using the display screen.
  • the size of the light-transmitting point is smaller than the wavelength of the projection light projected to the first display layer.
  • the size of the light-transmitting dot is less than 940 nm.
  • the size of the light-transmitting spot is larger than the wavelength of the projected light projected to the first display layer, it will affect the occurrence of diffraction, so that the light cannot pass through the first display layer well and is projected onto the touch sensing layer.
  • the light transmission points are distributed according to random speckles, and when the projected light passes through the first display layer, a speckle pattern is formed.
  • speckles can increase the transmittance of the display screen and improve the energy utilization rate.
  • the light-transmitting points are distributed according to coding rules, and when the projected light passes through the first display layer, a coding pattern is formed.
  • the coding pattern is formed, which makes the display effect of the screen better and the algorithm simpler.
  • the size of the display compensation point is larger than the size of the light transmission point.
  • the display function of the display screen will be affected.
  • the size of the display compensation point is 1-3 times the size of the blank point.
  • the size of the display compensation point is 0-3 ⁇ m.
  • the display function of the display screen will be affected.
  • the size of the display compensation point is too much larger than the size of the light-transmitting point, it will affect the light passing through the second display area, thereby affecting the display effect, and it may also affect the touch function of the touch sensing layer.
  • the display screen further includes a touch sensing layer
  • the second display area is a separate layer; the first display layer, the second display area, and the touch sensing layer are stacked in sequence;
  • the second display area and the touch sensing layer are integrated into the same layer, the second display area is composed of display compensation points, and holes are provided on the touch sensing layer at positions corresponding to the light-transmitting points, and It is shown that the compensation point is filled into the hole.
  • the touch sensing layer is added to integrate the display and touch functions into the same display screen, realize the touch and display functions at the same time, and reduce the thickness of the display screen.
  • the application also provides a display component, which includes:
  • the projector is arranged below the first display layer and corresponds to the light transmission point, and the light exit of the projector faces the first display layer.
  • This application also provides an electronic device, which includes:
  • the main body of the equipment, the projector and the above-mentioned display screen
  • the display screen is arranged on the surface of the device body, and the touch sensing layer is arranged back to the device body;
  • the projector is arranged between the device body and the display screen.
  • the display screen of the present application is provided with light-transmitting points on the first display layer, so that the light emitted by the projector can pass through the first display layer after passing through the first display layer.
  • a display compensation point is set at a position corresponding to the light-transmitting point on the second display area to ensure the integrity of the screen display.
  • the display screen of this application can realize full-screen display.
  • Fig. 1 is a schematic structural diagram of a display screen according to an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a display screen according to another embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a display screen according to another embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a display screen according to another embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a display screen according to another embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a display screen according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of a display assembly according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • 3D face recognition currently mainly includes two types of technologies: 3D structured light and TOF (Time of Flight).
  • Structured light is a group of system structures composed of a projector and a camera. After the projector is used to project specific light information on the surface of the object and the background, it is collected by the camera. According to the change of the light signal caused by the object, the position and depth of the object are calculated, and then the entire three-dimensional space is restored.
  • TOF is the abbreviation of Time of Flight (Time of Flight) technology, that is, the sensor emits modulated near-infrared light, which reflects after encountering an object.
  • the sensor calculates the time difference or phase difference between light emission and reflection to convert the distance of the photographed scene to produce Depth information, combined with traditional camera shooting, can present the three-dimensional outline of the object in a topographic map with different colors representing different distances.
  • the display screen 100 provided by the embodiment of the present application includes a first display layer 10 and a second display area 40.
  • the first display layer 10 and the second display area 40 are spaced apart.
  • the first display layer 10 is provided with a plurality of spaced light-transmitting dots 11. After light is projected onto the first display layer 10, the light-transmitting dots 11 can pass through.
  • the second display area 40 includes a plurality of display compensation points 41, the display compensation points 41 are set at positions corresponding to the light transmission points 11, and each display compensation point 41 covers at least the corresponding light transmission point 11; the first display The display content of the display area of the layer 10 and the display content of the display compensation point of the second display area 40 cooperate with each other to enable the display screen 100 to be completely displayed; the second display area 40 displays the area outside the compensation point 41 Can transmit light. When the light is projected to the display screen 100, the projected light will be transmitted through the light-transmitting point 11 on the first display layer 10 and be diffracted. After reaching the second display area 40, it will be emitted from both sides of the display compensation point 41.
  • the second display area 40 compensates for the incomplete display of the first display area 10 due to the existence of the light-transmitting dots 10, so that the screen display viewed from the user's perspective is complete.
  • the first display layer 10 is an OLED layer (Organic Light-Emitting Diode, OLED, organic light-emitting diode), and a circuit is provided thereon.
  • OLED Organic Light-Emitting Diode
  • Each pixel (pixel) emitting light at the bottom of the first display layer 10 is opaque, and the combination of the pixel array will block a considerable part of the light from being transmitted.
  • the light-transmitting point 11 is a hole. After the preparation of the organic light-emitting diode is completed, a laser or other technology is used to punch holes to form the first display area 10.
  • the light-transmitting dot 11 is formed of a fully light-transmitting material, such as a glass substrate.
  • a mask is applied to the glass substrate (not shown) where the light-transmitting spots 11 are to be formed, and then the glass substrate is coated according to the organic light-emitting diode manufacturing process. Or spraying organic light-emitting materials, electroplating anodes, cathodes, etc.
  • the area outside the light-transmitting point 11 is masked, and then photolithography is used to etch to remove the organic light-emitting material layer on the light-transmitting point 11 to form the first display layer 10.
  • the size of the light-transmitting dot 11 is smaller than the wavelength of the projection light projected to the first display layer 10. More specifically, the size of the light-transmitting dot 11 is less than 940 nm. When the size of the light-transmitting dot 11 is larger than the wavelength of the projected light projected to the first display layer 10, the occurrence of diffraction will be affected, so that the light cannot pass through the first display layer 10 and is projected onto the touch sensing layer 50 well.
  • the light-transmitting points 11 are distributed according to random speckles. After the transmitted light passes through the first display layer 10, the arrangement of the light-transmitting dots 11 makes the projected light pass through the light-transmitting dots 11 to form a speckle pattern. The formation of speckles can increase the transmittance of the display screen 100 and improve the energy utilization rate.
  • the light transmission points 11 are distributed according to the encoding procedure. After the transmitted light passes through the first display layer 10, the light-transmitting dots 11 are arranged so that the projected light passes through the light-transmitting dots 11 to form a coded pattern.
  • the coding pattern is formed, which makes the display effect of the screen better and the algorithm simpler.
  • the display screen 100 of the present application further includes a spacer support layer 30.
  • the spacer support layer 30 is located between the first display layer 10 and the second display area 40.
  • the spacing support layer 30 is light-transmissive and is used to support the second display area 40 and space the first display layer 10 and the second display area 40 apart.
  • Add a spacer support layer 30 between the first display layer 10 and the second display area 40 leave a gap between the first display layer 10 and the second display area 40, so that the light projected out of the first display layer 10 occurs diffraction.
  • it also supports the second display area 40, increases the stability of each layer of the display screen 100, and improves the durability of the display screen 100.
  • the spacer support layer 30 is made of chemically tempered glass, and the spacer support layer 30 is fully transparent and has no blocking effect on light.
  • the thickness of the spacer support layer 30 is greater than the wavelength of the light projected to the display screen 100.
  • the thickness of the spacer support layer 30 is 0.01 mm-1 mm. More specifically, the thickness of the spacer support layer 30 is 0.01 mm, 0.05 mm, 0.1 mm, 0.2 mm, 0.5 mm, 0.8 mm, or 1 mm.
  • the thickness of the spacer support layer 30 is less than the wavelength of the projected light, the light cannot pass through the first display layer 10 well.
  • the thickness of the spacer support layer 30 is too large, the thickness of the display screen 100 is too thick, which will increase the thickness of the electronic device using the display screen 100.
  • the display screen 100 of the present application further includes a touch sensing layer 50.
  • the touch sensing layer 50 and the second display area 40 are integrated into the same layer, and the second display area 10 is composed of a plurality of display compensation points 11, and the position on the touch sensing layer 50 corresponding to the light transmitting point 11 is set There is a hole 51, and the display compensation point 11 is filled into the hole 51.
  • the first display layer 10, the spacer support layer 30 and the touch sensing layer 50 are stacked in sequence.
  • the touch sensing layer 50 is disposed on the side of the second display area 40 opposite to the first display layer 10.
  • the first display layer 10, the spacer support layer 30, the second display area 40, and the touch sensing layer 50 are sequentially Cascading settings.
  • the second display area 40 is a single layer, and the second display area 40 is provided with a display compensation point 41.
  • the first display layer 10, the spacer support layer 30, the second display area 40, and the touch sensing layer 50 are stacked in sequence.
  • the display compensation point 41 is used to compensate for the incomplete display caused by the light-transmitting point 11 on the first display layer 10, and the first display layer 10 cooperates with the display compensation point 41 to make the display of the display screen 100 complete.
  • the second display area 40 is made of a fully transparent material such as a glass substrate.
  • the display compensation point 41 can be formed in the following manner: after coating, spraying or electroplating the organic light-emitting diode layer on the surface of the light-transmitting material, covering the area of the display compensation point 41 with a photomask, and etching with photolithography or other techniques; or The area other than the compensation point 41 is masked, and a display compensation area of the same material as that of the first display layer 10 is formed in the area of the display compensation point 41.
  • the second display area 40 is integrated into the touch sensing layer 50.
  • the second display area 40 is composed of display compensation points 41, a hole 51 is provided at a position corresponding to the light-transmitting point 11 on the touch sensing layer 50, and the display compensation point 41 is filled into the hole 51.
  • the first display layer 10, the spacer support layer 30 and the touch sensing layer 50 are stacked in sequence. Integrating the second display area 40 and the touch sensing layer 50 together can reduce the thickness of the display screen 100.
  • the size of the display compensation dot 41 is larger than the size of the light-transmitting dot 11.
  • the size of the display compensation point 41 is 1-3 times the size of the light-transmitting point 11. Specifically, the size of the display compensation point 41 is 0-3 ⁇ m. More specifically, the size of the display compensation point 41 is 0.01 ⁇ m, 0.1 ⁇ m, 0.2 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, or 3 ⁇ m.
  • the display compensation point 41 can be formed in the following manner: a hole 51 is formed on the touch sensing layer 50, and the display compensation point 41 is formed in the hole 51 by coating or spraying organic light-emitting materials, electroplating anodes, and cathodes.
  • the display function of the display screen 100 will be affected; when the size of the display compensation point 41 is too large than the size of the light transmission point 11, it will affect the light transmission second
  • the display area 40 further affects the display effect.
  • the size of the display compensation dot 41 is larger than the size of the light-transmitting dot 11.
  • the display compensation point 41 is used to compensate the incomplete display caused by the light-transmitting point 11 of the first display layer 10.
  • the size of the display compensation point 41 is 1-3 times the size of the light-transmitting point 11.
  • the size of the display compensation point 41 is 0-3 ⁇ m. More specifically, the size of the display compensation point 41 is 0.01 ⁇ m, 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, or 3 ⁇ m.
  • the display function of the display screen 100 When the size of the display compensation point 41 is smaller than the size of the light-transmitting point 11, the display function of the display screen 100 will be affected; when the size of the display compensation point 41 is much larger than the size of the light-transmitting point 11, the size of the touch sensing layer 50 will be affected. Touch function.
  • the touch sensing layer 50 is used to implement the touch operation of the display screen 100, and it is generally completely transparent and has no blocking effect on light.
  • the thickness of the touch sensing layer 50 is 0.05-1 mm.
  • the thickness of the touch-sensitive layer 50 When the thickness of the touch-sensitive layer 50 is too thin, it will increase the difficulty of processing and reduce the strength of the touch-sensitive layer; when the thickness of the touch-sensitive layer 50 is too thick, it will increase the thickness of the display screen 100, which is not conducive to the display screen. 100's ultra-thin.
  • the present application also provides a display assembly 200, its projector 210 and the display screen 100 of the present application.
  • the projector 210 is disposed under the first display layer 10 and corresponds to the light-transmitting point 11, and the light exit of the projector faces the first display layer 10.
  • the present application also provides an electronic device 300, which includes a device body 310, a projector 210, and the display screen 100 of the present application.
  • the display screen 100 is arranged on the surface of the device body 310, and the touch sensing layer 50 is arranged opposite to the device body 310.
  • the projector 210 is provided between the device body 310 and the display screen 100.
  • the electronic device 300 of the present application includes, but is not limited to, electronic devices with display screens such as mobile phones, tablet computers, computers, bracelets, watches, e-book readers, and smart glasses.

Landscapes

  • Projection Apparatus (AREA)

Abstract

一种显示屏(100)、显示组件(200)及电子设备(300)。该显示屏(100)包括第一显示层(10)及第二显示区(40);所述第一显示层(10)与所述第二显示区(40)间隔设置;所述第一显示层(10)上设有多个间隔的透光点(11),光投射至所述第一显示层(10)后,能透过所述透光点(11);所述第二显示区(40)包括多个显示补偿点(41);所述显示补偿点(41)设在与所述透光点(11)相对应的位置,且每个所述显示补偿点(41)至少覆盖对应的所述透光点(11);所述第一显示层(10)的显示区域的显示内容与第二显示区(40)的显示补偿点(41)的显示内容相互配合,用于使所述显示屏(100)完整显示;所述第二显示区(40)显示补偿点(41)之外的区域可透光。该显示屏(100)可以实现全屏显示。

Description

显示屏、显示组件及电子设备 技术领域
本申请属于显示领域,具体涉及一种显示屏、显示组件及电子设备。
背景技术
3D结构光人脸解锁技术是目前应用在手机上解锁的主流方式之一。利用的是光斑的形变来识别目标物体的3D信息,进而实现解锁。
结构光的硬件组成是由IR camera和红外投射器组成,红外光斑经过投射器发出后,到达目标物体的表面,IR camera会拍摄形成的光斑图。
随着手机技术的发展,人们对于全屏手机的需求逐渐增加。目前的显示屏由于红外投射器发出的红外光无法透射OLED屏形成有效的光斑图,所以只能将红外投射器裸露安装在屏幕上,而当红外投射器设在屏幕上时,则无法实现全面屏手机,因此,严重影响了3D解锁的市场应用前景。
申请内容
有鉴于此,有必要提供一种显示屏,其可以实现全屏显示,同时还集成了显示和触摸功能。
还有必要提供一种显示组件。
此外,还有必要提供一种电子设备。
一种显示屏,其包括:
第一显示层及第二显示区;
所述第一显示层与所述第二显示区间隔设置;
所述第一显示层上设有多个间隔的透光点,光投射至所述第一显示层后,能透过所述透光点;
所述第二显示区包括多个显示补偿点;所述显示补偿点设在与所述透光点相对应的位置,且每个所述显示补偿点至少覆盖对应的所述透光点;所述第一显示层的显示区域的显示内容与第二显示区的显示补偿点的显示内容相互配合,用于使所述显示屏完整显示;所述第二显示区显示补偿点之外的区域可透 光。
本申请的显示屏可以将投射器设置在显示屏下方,以能够实现全屏显示。其中,所述显示屏还包括间隔支撑层;所述间隔支撑层位于所述第一显示层和所述第二显示区之间;所述间隔支撑层可透光,用于将所述第一显示层及第二显示区相间隔。在所述第一显示层和第二显示区之间增加间隔支撑层,在第一显示层和第二显示区之间留出间隙,使的投射出第一显示层的光线发生衍射。同时,还对第二显示区和/或触摸感应层起支撑作用,增加显示屏各层的稳定性,提高显示屏的耐用性。
其中,所述间隔支撑层的厚度大于投射至所述显示屏的光的波长。
其中,所述间隔支撑层的厚度为0.01mm-1mm。当间隔支撑层的厚度小于投射光的波长时,会使得光线不能很好的透过第一显示层。当间隔支撑层的厚度过大时,则使得显示屏的厚度过厚,会增加使用该显示屏的电子设备的厚度。
其中,所述透光点的尺寸小于投射至所述第一显示层的投射光的波长。
其中,所述透光点的尺寸小于940nm。当透光点尺寸大于投射至第一显示层的投射光的波长时,则会影响衍射的发生,使得光不能很好的穿过第一显示层并投射到触摸感应层上。
其中,所述透光点按照随机散斑分布,当投射光透过所述第一显示层后,形成散斑图案。形成散斑可以增加显示屏的透过率,提高能量利用率。
其中,所述透光点按照编码规则进行分布,当投射光透过所述第一显示层后,形成编码图案。形成编码图案,使得屏幕的显示效果更好,算法更简单。
其中,所述显示补偿点的尺寸大于所述透光点尺寸。当显示补偿点的尺寸小于透光点的尺寸时,则会影响显示屏的显示功能。
其中,所述显示补偿点的尺寸为所述空白点尺寸的1-3倍。
其中,所述显示补偿点的尺寸为0-3μm。当显示补偿点的尺寸小于透光点的尺寸时,则会影响显示屏的显示功能。当显示补偿点尺寸大于透光点的尺寸过多时,则会影响光透过第二显示区,进而影响显示效果,还看会影响触摸感应层的触摸功能。
其中,所述显示屏还包括触摸感应层;
所述第二显示区为单独的一层;所述第一显示层、第二显示区及所述触摸 感应层依次层叠设置;
或者所述第二显示区与所述触摸感应层集成到同一层,所述第二显示区由显示补偿点组成,所述触摸感应层上与透光点相对应的位置设有孔洞,所述显示补偿点填充至所述孔洞中。
增加触摸感应层,从而将显示和触摸功能集成在同一显示屏中,同时实现触摸和显示功能,减小显示屏的厚度。
本申请还提供了一种显示组件,其包括:
投射器;及
上述的显示屏,所述投射器设置在所述第一显示层的下方且与所述透光点对应,所述投射器的出光口朝向所述第一显示层。
本申请还提供一种电子设备,其包括:
设备本体、投射器及上述的显示屏;
所述显示屏设置在所述设备本体的表面,且所述触摸感应层背对所述设备本体设置;
所述投射器设置在所述设备本体与所述显示屏之间。
由此,本申请的显示屏在第一显示层上设置透光点,使得投射器发出的光经过第一显示层后,能够透过第一显示层。同时,在第二显示区上与透光点相对应的位置设置显示补偿点,以保证屏幕显示的完整性。本申请的显示屏可以实现全屏显示。
附图说明
为更清楚地阐述本申请的构造特征和功效,下面结合附图与具体实施例来对其进行详细说明。
图1是本申请一实施例的显示屏的结构示意图。
图2是本申请又一实施例的显示屏的结构示意图。
图3是本申请又一实施例的显示屏的结构示意图。
图4是本申请又一实施例的显示屏的结构示意图。
图5是本申请又一实施例的显示屏的结构示意图。
图6是本申请又一实施例的显示屏的结构示意图。
图7是本申请一实施例的显示组件结构示意图。
图8是本申请一实施例的电子设备的结构示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本申请保护的范围。
3D人脸识别目前主要有3D结构光和TOF(Time of Flight)两类技术。
结构光是一组由投影仪和摄像头组成的系统结构。用投影仪投射特定的光信息到物体表面后及背景后,由摄像头采集。根据物体造成的光信号的变化来计算物体的位置和深度等信息,进而复原整个三维空间。
TOF是飞行时间(Time of Flight)技术的缩写,即传感器发出经调制的近红外光,遇物体后反射,传感器通过计算光线发射和反射时间差或相位差,来换算被拍摄景物的距离,以产生深度信息,此外再结合传统的相机拍摄,就能将物体的三维轮廓以不同颜色代表不同距离的地形图方式呈现出来。
请参见图1和图2,本申请实施例提供的显示屏100包括第一显示层10、及第二显示区40。第一显示层10与第二显示区40间隔设置。第一显示层10上设有多个间隔的透光点11,光投射至第一显示层10后,能透过透光点11。第二显示区40包括多个显示补偿点41,显示补偿点41设在与透光点11相对应的位置,且每个显示补偿点41至少覆盖对应的透光点11;所述第一显示层10的显示区域的显示内容与第二显示区40的显示补偿点的显示内容相互配合,用于使所述显示屏100完整显示;所述第二显示区40显示补偿点41之外的区域可透光。当光从投射向显示屏100时,投射光会透射过第一显示层10上的透光点11,并发生衍射,到达第二显示区40后,从显示补偿点41的两侧射出。第二显示区40补偿了第一显示区10由于透光点10的存在导致的显示不完整,使得从用户角度看到的屏幕显示是完整的。在一些实施例中,第一显示层10为OLED层(Organic Light-Emitting Diode,OLED,有机发光二极管),其上设有电路。第一显示层10的底部发光的每一个pixel(像素)是不透光的, pixels阵列组合在一起会阻挡相当一部分光进行透射。
在一些实施例中,透光点11为孔洞。在有机发光二极管制备完成后,再采用激光等技术进行打孔,形成第一显示区10。
在另一实施例中,透光点11由全透光材料形成,例如玻璃基板。具体地,在制备第一显示层10时,对在玻璃基板(图未示)上对要形成透光点11的区域覆盖掩膜,接着按照有机发光二极管的制备工序,在玻璃基板上涂覆或喷涂有机发光材料、电镀阳极、阴极等。可选择地,制备完整有机发光二极管后,对透光点11以外的区域进行掩膜,之后采用光刻等技术刻蚀,去除透光点11上的有机发光材料层,以形成第一显示层10。
在一些实施例中,透光点11的尺寸小于投射至第一显示层10的投射光的波长。更具体地,透光点11的尺寸小于940nm。当透光点11尺寸大于投射至第一显示层10的投射光的波长时,则会影响衍射的发生,使得光不能很好的穿过第一显示层10并投射到触摸感应层50上。
在一些实施例中,透光点11按照随机散斑分布。当透射光透射过第一显示层10后,透光点11的排布方式,使得投射光透过透光点11后形成散斑图案。形成散斑可以增加显示屏100的透过率,提高能量利用率。
在另一些实施例中,透光点11按照编码程序进行分布。当透射光透射过第一显示层10后,透光点11的排布方式,使得投射光透过透光点11后形成编码图案。形成编码图案,使得屏幕的显示效果更好,算法更简单。
请参见图3和图4,本申请的显示屏100还包括间隔支撑层30。间隔支撑层30位于第一显示层10和所述第二显示区40之间。间隔支撑层30可透光,用于支撑第二显示区40,并将所述第一显示层10及第二显示区40相间隔。在第一显示层10和第二显示区40之间增加间隔支撑层30,在第一显示层10和第二显示区40之间留出间隙,使的投射出第一显示层10的光线发生衍射。同时,还对第二显示区40起支撑作用,增加显示屏100各层的稳定性,提高显示屏100的耐用性。
在本实施例中,间隔支撑层30由化学钢化玻璃制得,间隔支撑层30是全透光的,对光线没有阻挡作用。
在一些实施例中,间隔支撑层30的厚度大于投射至显示屏100的光的波 长。可选地,间隔支撑层30的厚度为0.01mm-1mm。更具体地,间隔支撑层30的厚度为0.01mm、0.05mm、0.1mm、0.2mm、0.5mm、0.8mm或1mm。当间隔支撑层30的厚度小于投射光的波长时,会使得光线不能很好的透过第一显示层10。当间隔支撑层30的厚度过大时,则使得显示屏100的厚度过厚,会增加使用该显示屏100的电子设备的厚度。
请参见图5和图6,本申请的显示屏100还包括触摸感应层50。如图5所示,触摸感应层50与第二显示区40集成到同一层,第二显示区10由多个显示补偿点11组成,触摸感应层50上与透光点11相对应的位置设有孔洞51,所述显示补偿点11填充至所述孔洞51中。第一显示层10、间隔支撑层30及触摸感应层50依次层叠设置。或者如图6所示,触摸感应层50设置在第二显示区40与第一显示层10相对的一面,第一显示层10、间隔支撑层30、第二显示区40及触摸感应层50依次层叠设置。
请参见图6,在一些实施例中,第二显示区40为单独的一层,第二显示区40上设有显示补偿点41。第一显示层10、间隔支撑层30、第二显示区40及触摸感应层50依次层叠设置。显示补偿点41用于补偿第一显示层10上透光点11造成的显示不完整,第一显示层10与显示补偿点41配合,使得显示屏100的显示是完整的。在本实施例中,第二显示区40由全透光材料例如玻璃基板制备。显示补偿点41可以采用以下方式形成:在透光材料表面涂覆、喷涂或电镀有机发光二极管层后,在显示补偿点41区域覆盖光掩膜,采用光刻等技术进行刻蚀;或者对显示补偿点41以外的区域进行掩膜,在显示补偿点41区域形成与第一显示层10组成材料相同的显示补偿区域。
请参见图5,在一些实施例中,第二显示区40集成到触摸感应层50。第二显示区40由显示补偿点41组成,触摸感应层50上与透光点11相对应的位置设有孔洞51,显示补偿点41填充至孔洞51中。第一显示层10、间隔支撑层30及触摸感应层50依次层叠设置。将第二显示区40与触摸感应层50集成在一起,可以减小显示屏100的厚度。在一些实施例中,当第二显示区40与触摸感应层50独立的两层时,显示补偿点41的尺寸大于透光点11的尺寸。可选地,显示补偿点41的尺寸为透光点11尺寸的1-3倍。具体地,显示补偿点41的尺寸为0-3μm。更具体地,显示补偿点41的尺寸为0.01μm、0.1μ m、0.2μm、0.5μm、1μm、2μm或3μm。在本实施例中,显示补偿点41可以通过以下方式形成:在触摸感应层50上形成孔洞51,在孔洞51中通过涂覆或喷涂有机发光材料、电镀阳极、阴极等工艺形成显示补偿点41;或者在触摸感应层50表面涂覆、喷涂或电镀有机发光二极管层后,在显示补偿点41区域覆盖光掩膜,采用光刻等技术进行刻蚀去除非显示补偿点41的有机发光二极管材料。
当显示补偿点41的尺寸小于透光点11的尺寸时,则会影响显示屏100的显示功能;当显示补偿点41尺寸大于透光点11的尺寸过多时,则会影响光透过第二显示区40,进而影响显示效果。
在一些实施例中,当第二显示区40集成到触摸感应层50时,显示补偿点41的尺寸大于透光点11的尺寸。显示补偿点41用于补偿第一显示层10透光点11造成的显示不完整。可选地,显示补偿点41的尺寸为透光点11尺寸的1-3倍。具体地,显示补偿点41的尺寸为0-3μm。更具体地,显示补偿点41的尺寸为0.01μm、0.1μm、0.5μm、1μm、2μm、2.5μm或3μm。
当显示补偿点41的尺寸小于透光点11的尺寸时,则会影响显示屏100的显示功能;当显示补偿点41尺寸大于透光点11的尺寸很多时,则会影响触摸感应层50的触摸功能。
触摸感应层50用于实现显示屏100的触摸操作,其一般是完全透明的,对光没有阻挡作用。触摸感应层50的厚度为0.05-1mm。
当触摸感应层50的厚度过薄时,会增加加工的难度,同时会使触摸感应层的强度降低;当触摸感应层50的厚度过厚时,会增加显示屏100的厚度,不利于显示屏100的超薄化。
请参见图7,本申请还提供一种显示组件200,其投射器210及本申请的显示屏100。投射器210设置在第一显示层10的下方且与透光点11对应,投射器的出光口朝向第一显示层10。
请参见图8,本申请还提供一种电子设备300,其包括设备本体310、投射器210及本申请的显示屏100。显示屏100设置在设备本体310的表面,且触摸感应层50背对设备本体310设置。投射器210设置在设备本体310与显示屏100之间。
本申请的电子设备300包括但不限于手机、平板电脑、电脑、手环、手表、电子书阅读器、智能眼镜等具有显示屏的电子设备。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易的想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种显示屏,其特征在于,包括:
    第一显示层及第二显示区;
    所述第一显示层与所述第二显示区间隔设置;
    所述第一显示层上设有多个间隔的透光点,光投射至所述第一显示层后,能透过所述透光点;
    所述第二显示区包括多个显示补偿点;所述显示补偿点设在与所述透光点相对应的位置,且每个所述显示补偿点至少覆盖对应的所述透光点;所述第一显示层的显示区域的显示内容与第二显示区的显示补偿点的显示内容相互配合,用于使所述显示屏完整显示;所述第二显示区显示补偿点之外的区域可透光。
  2. 根据权利要求1所述的显示屏,其特征在于,所述显示屏还包括间隔支撑层;所述间隔支撑层位于所述第一显示层和所述第二显示区之间;所述间隔支撑层可透光,用于将所述第一显示层及第二显示区相间隔。
  3. 根据权利要求2所述的显示屏,其特征在于,所述间隔支撑层的厚度大于投射至所述显示屏的光的波长。
  4. 根据权利要求3所述的显示屏,其特征在于,所述间隔支撑层的厚度为0.01mm-1mm。
  5. 根据权利要求1所述的显示屏,其特征在于,所述空白点的尺寸小于投射至所述第一显示层的投射光的波长。
  6. 根据权利要求5所述的显示屏,其特征在于,所述空白点的尺寸小于940nm。
  7. 根据权利要求1所述的显示屏,其特征在于,所述透光点按照随机散斑分布,当投射光透过所述第一显示层后,形成散斑图案。
  8. 根据权利要求1所述的显示屏,其特征在于,所述透光点按照编码规则进行分布,当投射光透过所述第一显示层后,形成编码图案。
  9. 根据权利要求1所述的显示屏,其特征在于,所述显示补偿点的尺寸大于所述透光点尺寸。
  10. 根据权利要求1所述的显示屏,其特征在于,所述显示补偿点的尺寸为所述透光点尺寸的1-3倍。
  11. 根据权利要求1所述的显示屏,其特征在于,所述显示补偿点的尺寸为0-3μm。
  12. 根据权利要求1所述的显示屏,其特征在于,所述显示屏还包括触摸感应层;
    所述第二显示区为单独的一层;所述第一显示层、第二显示区及所述触摸感应层依次层叠设置;
    或者所述第二显示区与所述触摸感应层集成到同一层,所述第二显示区由显示补偿点组成,所述触摸感应层上与透光点相对应的位置设有孔洞,所述显示补偿点填充至所述孔洞中。
  13. 一种显示组件,其特征在于,包括:
    投射器;及
    权利要求1-12任一项所述的显示屏,所述投射器设置在所述第一显示层的下方且与所述透光点对应,所述投射器的出光口朝向所述第一显示层。
  14. 一种电子设备,其特征在于,包括:
    设备本体、投射器及权利要求1-12任一项所述的显示屏;
    所述显示屏设置在所述设备本体的表面,且所述触摸感应层背对所述设备本体设置;
    所述投射器设置在所述设备本体与所述显示屏之间。
PCT/CN2019/113460 2019-10-25 2019-10-25 显示屏、显示组件及电子设备 WO2021077429A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/113460 WO2021077429A1 (zh) 2019-10-25 2019-10-25 显示屏、显示组件及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/113460 WO2021077429A1 (zh) 2019-10-25 2019-10-25 显示屏、显示组件及电子设备

Publications (1)

Publication Number Publication Date
WO2021077429A1 true WO2021077429A1 (zh) 2021-04-29

Family

ID=75620375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113460 WO2021077429A1 (zh) 2019-10-25 2019-10-25 显示屏、显示组件及电子设备

Country Status (1)

Country Link
WO (1) WO2021077429A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160019830A1 (en) * 2013-04-08 2016-01-21 Koninklijke Philip N.V. Large-area display system
CN106228148A (zh) * 2016-08-05 2016-12-14 汤棋 一种面部识别装置及使用方式
CN108666351A (zh) * 2018-05-14 2018-10-16 武汉华星光电半导体显示技术有限公司 一种显示面板及其制作方法、显示装置
CN108900676A (zh) * 2018-08-13 2018-11-27 华南理工大学 一种全面屏手机及实现全面屏显示的方法
CN109616015A (zh) * 2019-01-29 2019-04-12 上海天马微电子有限公司 显示面板和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160019830A1 (en) * 2013-04-08 2016-01-21 Koninklijke Philip N.V. Large-area display system
CN106228148A (zh) * 2016-08-05 2016-12-14 汤棋 一种面部识别装置及使用方式
CN108666351A (zh) * 2018-05-14 2018-10-16 武汉华星光电半导体显示技术有限公司 一种显示面板及其制作方法、显示装置
CN108900676A (zh) * 2018-08-13 2018-11-27 华南理工大学 一种全面屏手机及实现全面屏显示的方法
CN109616015A (zh) * 2019-01-29 2019-04-12 上海天马微电子有限公司 显示面板和显示装置

Similar Documents

Publication Publication Date Title
WO2018153065A1 (zh) 一种显示装置
US20190172887A1 (en) Array substrate, display device and pattern recognition method thereof
WO2020207131A1 (zh) 掩膜板组件、oled显示面板及其制作方法、显示装置
CN109920936B (zh) 一种显示面板、其制作方法及显示装置
JP2014089457A5 (zh)
CN111725264B (zh) 显示装置
CN112331806A (zh) 显示基板
CN109546005B (zh) 显示模组及其制备方法
CN104700721B (zh) 一种显示面板及其制造方法、显示装置
CN108258017A (zh) 显示面板和显示装置
CN116261353B (zh) 显示面板及显示装置
US20240049580A1 (en) Display panel and display device
TWM464737U (zh) 觸控面板
CN112331710A (zh) 显示面板和具有其的显示装置
TWM595262U (zh) 屏下指紋辨識裝置
WO2022088992A1 (zh) 显示基板及其制备方法、显示装置
JP2012252984A (ja) 表示装置
CN109545825A (zh) 一种顶发光显示面板
WO2022247180A1 (zh) 显示面板及显示装置
WO2016169159A1 (zh) 彩膜基板及其制作方法、显示装置
WO2019233246A1 (zh) 一种显示面板及显示装置
WO2021077429A1 (zh) 显示屏、显示组件及电子设备
TW201525797A (zh) 裝飾面板及觸控裝置
US20230105947A1 (en) Display screen and electronic device
CN112599573A (zh) 显示面板与显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949941

Country of ref document: EP

Kind code of ref document: A1