WO2021075488A1 - Combustion state evaluation method and combustion control method - Google Patents

Combustion state evaluation method and combustion control method Download PDF

Info

Publication number
WO2021075488A1
WO2021075488A1 PCT/JP2020/038878 JP2020038878W WO2021075488A1 WO 2021075488 A1 WO2021075488 A1 WO 2021075488A1 JP 2020038878 W JP2020038878 W JP 2020038878W WO 2021075488 A1 WO2021075488 A1 WO 2021075488A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
waste
grate
flow rate
change
Prior art date
Application number
PCT/JP2020/038878
Other languages
French (fr)
Japanese (ja)
Inventor
達之 下川
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2021075488A1 publication Critical patent/WO2021075488A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/04Means for supervising combustion, e.g. windows

Definitions

  • the present invention mainly relates to a method of evaluating a combustion state in order to appropriately maintain stable combustion in a grate-type incinerator that incinerates waste while transporting it by a grate.
  • the grate-type waste incinerator is divided into a drying section for drying the waste, a combustion section for burning the waste with flame, and a post-combustion section for post-combusting the waste (Oki combustion).
  • a drying section for drying the waste
  • a combustion section for burning the waste with flame
  • a post-combustion section for post-combusting the waste (Oki combustion).
  • Patent Documents 1 to 9 disclose methods for acquiring and controlling information on waste.
  • Patent Document 1 a visible image of a flame and an infrared image (thermal image) of waste on a grate are acquired by two imaging means provided on the wall of an incinerator, and the visible image and the thermal image are obtained. And are used for combustion control.
  • the inside of the incinerator is photographed by using two TV cameras to acquire a visible image, a stereoscopic image is created based on these images, and this stereoscopic image is used for combustion control. ..
  • one or a plurality of thermal image capturing units capture a thermal image of waste on a grate, and the one or a plurality of thermal images are used for combustion control.
  • Patent Documents 3 and 4 describe that a thermal image imaging unit that detects infrared rays having a specific wavelength is used in order to exclude the influence of flame.
  • a radar device is used to acquire the three-dimensional distribution of fuel on the grate, and an infrared camera is used to acquire the temperature distribution of fuel on the grate, and this information is used for combustion control. Used for.
  • the height of waste on the grate is obtained by using a stereo camera having an optical filter for removing the wavelength of the flame, the burnout position is estimated, and the burnout position is burned. Used for control.
  • the thermal image of the waste moving in the furnace is continuously imaged through the flame, and the boundary line with the inner wall surface of both sides of the furnace body of the waste is detected from the thermal image data.
  • the estimated volume of waste in the region is calculated and the estimated volume of waste is used for combustion control.
  • Japanese Unexamined Patent Publication No. 10-54532 Japanese Unexamined Patent Publication No. 5-118524 Tokuseki 2017-187228 Japanese Unexamined Patent Publication No. 2018-21686 JP-A-2017-116252 Japanese Unexamined Patent Publication No. 8-355630 JP-A-2018-155411 Japanese Patent No. 6472035
  • Patent Documents 1 and 2 When a visible image is used as in Patent Documents 1 and 2, the flame generated in the combustion part becomes an obstacle, and the shape and movement of the waste on the grate cannot be sufficiently obtained.
  • Patent Document 2 acquires an image to detect the position of abnormal combustion and creates a stereoscopic image, and does not target waste on the grate.
  • Patent Documents 3 to 5 since the thermal images of one or more wastes are used as they are, the detailed shape and movement of the wastes cannot be sufficiently obtained.
  • the fuel on the grate is detected by the radar as in Patent Document 6, it is necessary to detect the electromagnetic wave reflected by the waste in a high temperature environment and in the presence of flame, so that the cost of the radar itself is high. It gets higher.
  • Patent Document 6 the infrared camera is used to acquire the temperature distribution instead of the shape of the fuel.
  • the burnout position is estimated using the waste height information, but since not only the height of the waste but also the feed rate of the waste changes depending on the properties of the waste, the waste It may not be possible to calculate an appropriate burnout position in order to control the combustion state from the height alone.
  • Patent Document 8 since only the boundary line with the inner wall surface of both sides of the furnace body of the waste is used as the information used for calculating the estimated volume of the waste, the difference in the height of the waste in the furnace width direction is not considered. As a result, the accuracy of the estimated volume of waste becomes low, and the error may be too large to be used as an index of combustion control.
  • the present invention has been made in view of the above circumstances, and its main purpose is to provide a method for calculating appropriate information for use as an index of combustion control.
  • this combustion condition evaluation method is divided into a drying part, a burning part, and a post-burning part, and incineration provided with a grate for transporting the waste by operating intermittently in a state where the waste is accumulated. Performed on the furnace.
  • This combustion state evaluation method includes a preparation step, a division step, a first calculation step, a second calculation step, a third calculation step, a first prediction step, and a second prediction step.
  • a plurality of infrared cameras are used to observe at least the waste accumulated in the dry portion and the combustion portion through a filter that selectively transmits light having a wavelength not emitted by the flame.
  • a plurality of thermal images having different viewpoints are acquired, and a three-dimensional thermal image is created based on the plurality of thermal images.
  • the division step the waste of the three-dimensional thermal image is mesh-divided into a plurality of elements.
  • the first calculation step the thickness of the waste and the surface moving speed of the waste are calculated for each of the elements based on the three-dimensional thermal image.
  • the second calculation step based on the calculation result of the first calculation step, the thickness elapsed indicating how the thickness of the waste located in the element changed in time series until it was located in the element. Information is calculated for each of the elements.
  • volumetric flow rate progress information indicating whether or not the change has occurred is calculated for each of the above elements.
  • the volume flow rate progress information for each element and the time change of the control value including at least a value used for combustion control for setting the transport speed of the grate. Based on the tendency of the volume flow rate to be obtained over time, the future change of the volume flow rate is predicted for each of the above factors.
  • the combustion start evaluation position which is an index of the position where combustion has started in the entire incinerator and is a position for evaluating combustion
  • incineration Predict the position change of at least one of the burnout evaluation positions, which is an index of the position where the flame combustion is completed in the entire furnace and is the position for evaluating the combustion.
  • the position change of the combustion start evaluation position / burnout evaluation position can be predicted with high reliability. Furthermore, by dividing the waste into meshes and evaluating it, it is possible to predict the position change of the combustion start evaluation position / burnout evaluation position with higher reliability than the method of evaluating only the end portion in the furnace width direction. ..
  • Functional block diagram of the incinerator A three-dimensional schematic view of an incinerator showing the mounting position of an infrared camera.
  • the figure explaining the thickness progress information The figure explaining the volume flow rate progress information and its prediction.
  • FIG. 1 is a schematic configuration diagram of a waste incinerator 100 including an incinerator 10 for performing the method of the present invention.
  • upstream and downstream mean upstream and downstream in the direction in which waste, combustion gas, exhaust gas, primary air, secondary air, circulating exhaust gas, etc. flow.
  • the waste incineration facility 100 includes an incinerator 10, a boiler 30, and a steam turbine power generation facility 35.
  • the incinerator 10 incinerates the supplied waste.
  • the detailed configuration of the incinerator 10 will be described later.
  • the boiler 30 uses the heat generated by the combustion of waste to generate steam.
  • the boiler 30 generates steam (superheated steam) by exchanging heat between high-temperature combustion gas generated in the furnace and water in a large number of water pipes 31 and superheater pipes 32 provided on the flow path wall.
  • the steam generated in the water pipe 31 and the superheater pipe 32 is supplied to the steam turbine power generation facility 35.
  • the steam turbine power generation facility 35 includes a turbine and a power generation device (not shown).
  • the turbine is rotationally driven by steam supplied from the water pipe 31 and the superheater pipe 32.
  • the power generation device uses the rotational driving force of the turbine to generate electricity.
  • the incinerator 10 is provided with a dust supply device 40 for supplying waste into the furnace.
  • the dust supply device 40 includes a waste input hopper 41 and a dust supply device main body 42.
  • the waste input hopper 41 is a portion where waste is input from outside the furnace.
  • the dust supply device main body 42 is located at the bottom of the waste input hopper 41 and is configured to be movable in the horizontal direction.
  • the dust supply device main body 42 supplies the waste charged into the waste input hopper 41 to the downstream side.
  • the movement speed of the dust supply device main body 42, the number of movements per unit time, the movement amount (stroke), and the position of the stroke end (movement range) are controlled by the control device 90.
  • the dust supply device may be of a type that moves at a slight angle with respect to the horizontal direction.
  • the waste supplied into the furnace by the dust supply device 40 is supplied by the transport unit 20 in the order of the drying unit 11, the combustion unit 12, and the post-combustion unit 13.
  • the transport unit 20 is composed of a dry grate 21 provided in the drying unit 11, a combustion grate 22 provided in the combustion unit 12, and a post-combustion grate 23 provided in the post-combustion unit 13. There is. Therefore, the transport unit 20 is composed of a plurality of stages of grate. Each grate is provided on the bottom surface of each part, and waste is placed on it.
  • the grate is composed of a movable grate and a fixed grate arranged side by side in the waste transport direction, and the movable grate operates in the order of forward, stop, reverse, stop, etc. to dispose of waste.
  • the waste can be agitated while being transported to the downstream side.
  • By increasing (decelerating) the operating speed of the movable grate it is possible to increase (decelerate) the transport speed of waste.
  • the stop time of the movable grate it is possible to increase (decelerate) the transport speed of waste.
  • the grate is arranged side by side with a gap large enough for gas to pass through.
  • the drying unit 11 is a portion for drying the waste supplied to the incinerator 10.
  • the waste of the drying unit 11 is dried by the primary air supplied from under the drying grate 21 and the radiant heat of combustion in the adjacent combustion unit 12. At that time, thermal decomposition gas is generated from the waste of the drying portion 11 by thermal decomposition. Further, the waste of the drying unit 11 is conveyed toward the combustion unit 12 by the drying grate 21.
  • the combustion unit 12 is a portion that mainly burns the waste dried in the drying unit 11.
  • the waste mainly causes flame combustion to generate a flame.
  • the waste in the combustion unit 12, the ash generated by combustion, and the unburned material that cannot be completely burned are conveyed toward the post-combustion unit 13 by the combustion grate 22. Further, the combustion gas and the flame generated in the combustion unit 12 pass through the throttle unit 17 and flow toward the post-combustion unit 13.
  • the combustion grate 22 is provided at the same height as the dry grate 21, but may be provided at a position lower than the dry grate 21.
  • the post-combustion unit 13 is a portion that burns the waste (unburned material) that could not be completely burned by the combustion unit 12.
  • the radiant heat of the combustion gas and the primary air promote the combustion of the unburned material that could not be completely burned in the combustion unit 12.
  • most of the unburned matter becomes ash, and the unburned matter decreases.
  • the ash generated in the post-combustion unit 13 is conveyed toward the chute 24 by the post-combustion grate 23 provided on the bottom surface of the post-combustion unit 13.
  • the ash conveyed to the chute 24 is discharged to the outside of the waste incineration facility 100.
  • the rear combustion grate 23 of the present embodiment is provided at a position lower than the combustion grate 22, it may be provided at the same height as the combustion grate 22.
  • each wall surface or the like is configured according to the reaction that occurs.
  • flame combustion occurs in the combustion unit 12
  • a structure having a higher refractory level than the drying unit 11 is adopted.
  • the reburning unit 14 is a part that burns the unburned gas contained in the combustion gas.
  • the re-combustion unit 14 extends upward from the drying unit 11, the combustion unit 12, and the post-combustion unit 13, and secondary air is supplied in the middle thereof.
  • the combustion gas is mixed and agitated with the secondary air, and the unburned gas contained in the combustion gas is burned in the reburning unit 14.
  • the combustion generated in the combustion unit 12 and the post-combustion unit 13 is referred to as primary combustion
  • the combustion generated in the recombustion unit 14 (that is, the combustion of the unburned gas remaining in the primary combustion) is referred to as secondary combustion.
  • the gas supply device 50 is a device that supplies gas into the furnace.
  • the gas supply device 50 of the present embodiment includes a primary air supply unit 51, a secondary air supply unit 52, and an exhaust gas supply unit 53.
  • Each supply unit is composed of a blower for attracting or sending out gas.
  • the gas supplied for primary combustion is referred to as a primary combustion gas.
  • the primary combustion gas includes primary air, circulating exhaust gas, and a mixed gas thereof.
  • the primary air is air taken in from the outside and is not used for combustion or the like (that is, excluding circulating exhaust gas). Therefore, the primary air also includes a gas obtained by heating the air taken in from the outside.
  • the gas supplied for secondary combustion is referred to as a secondary combustion gas.
  • the secondary combustion gas includes secondary air, circulating exhaust gas, and a mixed gas thereof. The definition of secondary air is similar to that of primary air.
  • the primary air supply unit 51 supplies the primary air into the furnace via the primary air supply path 71.
  • the primary air supply path 71 is branched into a first supply path 71a, a second supply path 71b, and a third supply path 71c.
  • a heater may be provided in the primary air supply path 71 so that the temperature of the primary air supplied to each part can be adjusted.
  • the first supply path 71a is a path for supplying primary air to the drying step air box 25 provided below the drying grate 21.
  • a first damper 81 is provided in the first supply path 71a, and the amount of primary air supplied to the drying stage air box 25 can be adjusted. Further, the first damper 81 is controlled by the control device 90.
  • the second supply path 71b is a path for supplying primary air to the combustion stage air box 26 provided below the combustion grate 22.
  • a second damper 82 is provided in the second supply path 71b, and the amount of primary air supplied to the combustion stage air box 26 can be adjusted. Further, the second damper 82 is controlled by the control device 90.
  • the third supply path 71c is a path for supplying primary air to the post-combustion stage air box 27 provided below the post-combustion grate 23.
  • a third damper 83 is provided in the third supply path 71c, and the amount of primary air supplied to the post-combustion stage air box 27 can be adjusted. Further, the third damper 83 is controlled by the control device 90.
  • the secondary air supply unit 52 supplies the secondary air to the air gas holding space 16 of the incinerator 10 from the upper part (ceiling part) via the secondary air supply path 72, and the combustion gas is generated by the throttle unit 17. Secondary air is supplied to the portion that changes direction (near the throttle portion 17). Further, the secondary air supply path 72 is provided with a fourth damper 84 controlled by the control device 90, and the amount of secondary air supplied to each part can be adjusted.
  • the exhaust gas supply unit 53 supplies (recirculates) the exhaust gas discharged from the waste incineration facility 100 into the furnace via the circulating exhaust gas supply path 73.
  • the exhaust gas discharged from the waste incineration facility 100 is purified by a filtration type dust collector 60, and a part of the exhaust gas is incinerated by the exhaust gas supply unit 53 from both side surfaces (front side of the paper surface and the back side of the paper surface) of the combustion unit 12. It is supplied to the furnace 10.
  • the position where the exhaust gas is supplied is not particularly limited.
  • the exhaust gas may be supplied from above (ceiling portion) of the incinerator 10, or may be supplied from only one side surface.
  • the circulating exhaust gas supply path 73 is provided with a fifth damper 85 controlled by the control device 90, and the supply amount of the circulating exhaust gas can be adjusted.
  • the incinerator 10 is provided with a plurality of sensors for grasping the combustion state and the like. Specifically, an incinerator gas temperature sensor 91, an incinerator outlet gas temperature sensor 92, a CO gas concentration sensor 93, a NOx gas concentration sensor 94, and an infrared camera 95 are provided.
  • the gas temperature sensor 91 in the incinerator is arranged in the incinerator 10 (for example, downstream of the air gas holding space 16 and upstream of the post-combustion unit 13), detects the gas temperature in the incinerator, and controls the control device 90. Output to.
  • the incinerator outlet gas temperature sensor 92 is arranged near the outlet of the incinerator 10 (for example, downstream of the reburning unit 14 and upstream of the boiler 30), detects the incinerator outlet gas temperature, and sends it to the control device 90. Output.
  • the CO gas concentration sensor 93 is arranged downstream of the dust collector 60, detects the CO gas concentration contained in the exhaust gas (CO gas concentration discharged from the incinerator), and outputs the CO gas concentration sensor 93 to the control device 90.
  • the NOx gas concentration sensor 94 is arranged downstream of the dust collector 60, detects the NOx gas concentration contained in the exhaust gas (NOx gas concentration discharged from the incinerator), and outputs the NOx gas concentration sensor 94 to the control device 90.
  • the infrared cameras 95 are provided in pairs. Each infrared camera 95 has the same structure. Further, the infrared camera 95 may be provided as a set of three or more. Since the purpose of the infrared camera 95 is to create a three-dimensional thermal image (an image showing the temperature distribution in three dimensions), a plurality of infrared cameras 95 form a set. Therefore, the relative positions of the plurality of infrared cameras 95 of the same set are stored in advance.
  • the infrared camera 95 may be a device whose main purpose is to continuously capture still images at appropriate intervals, or a device whose main purpose is to capture moving images. Since a moving image is a plurality of continuous still images, the function of acquiring a thermal image is the same regardless of the device.
  • the infrared camera 95 acquires a thermal image in the furnace by detecting infrared rays radiated from an object in the furnace.
  • the thermal image acquired by each infrared camera 95 is an image showing the temperature distribution in the furnace as seen from the viewpoint of the infrared camera 95.
  • the viewpoint indicates a position where the infrared camera 95, which is a measuring instrument, is arranged.
  • the infrared camera 95 of the present embodiment acquires a thermal image in the furnace via a selective transmission filter (filter) 95a.
  • the selective transmission filter 95a is a filter that selectively transmits light having a wavelength (for example, 3.9 ⁇ m band) that the flame does not emit.
  • the phrase "flame does not radiate” here means that the light intensity is significantly lower (almost no irradiation) than the light of other wavelengths emitted by the flame, and the flame does not radiate at all. Does not indicate.
  • the selective transmission filter 95a is integrally configured with the infrared camera 95, but may be a separate body. That is, the selective transmission filter 95a may be arranged on the path through which the light in the furnace passes, and the transmitted light transmitted through the selective transmission filter 95a may be processed by a normal infrared camera.
  • the purpose of the infrared camera 95 is mainly to acquire a thermal image of the waste transported through the dry grate 21 and the combustion grate 22.
  • two sets of infrared cameras 95 are provided, and the first set of infrared cameras 95 mainly carries the waste grate 21 (more specifically, the combustion start position is included).
  • the purpose is to acquire the waste in the range), and the second set of infrared cameras 95 mainly acquires the waste (waste in the range including the burnout position) that is mainly conveyed to the combustion grate 22.
  • the purpose is to do.
  • the imaging range of the first set of infrared cameras 95 may include waste to be conveyed by the combustion grate 22, or the post-combustion grate 23 is conveyed to the imaging range of the second set of infrared cameras 95. Waste may be included. Further, in order to observe the waste without omission, it is preferable that the imaging ranges of the first and second sets of the infrared cameras 95 partially overlap.
  • the infrared camera 95 may have a configuration in which the imaging range of the image can be changed. In this case, the infrared camera 95 may be able to change the imaging range without stopping the incinerator 10.
  • the infrared camera 95 is arranged at a position higher than the grate and the waste for the purpose of appropriately acquiring an image even when the amount of accumulated waste is large. Therefore, the infrared camera 95 is arranged so as to be inclined downward.
  • the infrared camera 95 may be arranged without being tilted.
  • the first set of infrared cameras 95 is provided on the side wall 11a, which is a wall portion formed at the end portion of the drying portion 11 in the furnace width direction.
  • the two infrared cameras 95 acquire a thermal image (infrared ray) of the surface of the waste through the window portion 11b formed on the side wall 11a.
  • two infrared cameras 95 are arranged only on one side wall 11a of the left and right side walls 11a, but one or a plurality of infrared cameras 95 may be arranged on both side walls 11a, respectively.
  • the second set of infrared cameras 95 is provided on the back wall 13a, which is a wall on the downstream side in the transport direction from the rear combustion unit 13.
  • the two infrared cameras 95 acquire a thermal image (infrared ray) of the surface of the waste through the window portion 13b formed on the back wall 13a.
  • the positions where the first and second sets of infrared cameras 95 are provided are examples, and for example, the infrared cameras 95 may be provided on a wall or ceiling different from the above.
  • the control device 90 is composed of a CPU, RAM, ROM, etc., performs various calculations, and controls the entire waste incineration facility 100.
  • the image processing device 96 is composed of a CPU, RAM, ROM, etc., and performs a process (image composition process) of creating a three-dimensional thermal image based on the thermal images acquired by the two infrared cameras 95 of each set. It can be carried out.
  • the control device 90 and the image processing device 96 are separate hardware, but one piece of hardware may have the functions of both the control device 90 and the image processing device 96.
  • FIGS. 4 and 5 are flowcharts showing the control performed by the control device 90 to stabilize the combustion.
  • the control device 90 stores a three-dimensional thermal image created by the image processing device 96 based on the thermal image acquired by the infrared camera 95 (S101).
  • the first three-dimensional thermal image is created based on the thermal image acquired by the first set of infrared cameras 95
  • the second is based on the thermal image acquired by the second set of infrared cameras 95.
  • a three-dimensional thermal image of is created.
  • the position range (waste range, imaging range) where the first 3D thermal image is created is called the first range
  • the position range (waste range, imaging range) where the second 3D thermal image is created is called the first range.
  • ⁇ and ⁇ may be added in order to distinguish the two infrared cameras 95 of each set. Since the thermal image acquired by the infrared camera 95 of the present embodiment does not include a flame, the thermal image acquired by the infrared camera ⁇ shows the temperature distribution of the surface of the waste as seen from the position of the infrared camera ⁇ . ing. The same applies to the infrared camera ⁇ . Then, the specific location A on the surface of the waste is specified where each of the two thermal images is displayed.
  • the distance from the infrared camera ⁇ and the infrared camera ⁇ to the specific location A of the waste can be calculated based on the triangular method or the like. By performing this treatment on other parts of the waste surface, the position (three-dimensional coordinates) of the waste surface can be specified.
  • the control device 90 mesh-divides the surface of the waste of the three-dimensional thermal image into a plurality of elements (division units), and (1) the thickness of the waste and (2) the surface for each element.
  • the movement speed is calculated and stored in association with the control value (S102). This process is performed individually for each of the first three-dimensional thermal image (first range) and the second three-dimensional thermal image (second range).
  • the mesh division is to divide the waste of the three-dimensional thermal image into a plurality of regions under predetermined conditions. In the present embodiment, as shown in FIG. 6, the waste is divided into a grid pattern by drawing a plurality of parallel lines in the transport direction and a plurality of parallel lines in the furnace width direction.
  • the mesh-divided elements are quadrangular, but may have different shapes.
  • the shapes and areas of the plurality of elements may be the same or different. For example, only the parts considered to be important may be finely divided into meshes. Further, since the waste thickness and the surface moving speed are used to correct the control values of the combustion control as described later, these values are referred to as correction data.
  • the thickness of the waste is the length along the vertical direction from the grate to the surface of the waste, as shown in FIG.
  • the position of the surface (upper surface) of the grate is stored in advance in the control device 90 or the like.
  • the position of the surface of the waste can be specified based on the three-dimensional thermal image. Therefore, by comparing these two positions (coordinates), the thickness of the waste can be calculated for each element.
  • the distribution of the thickness of waste for each element at a certain time can be calculated based on one three-dimensional thermal image. Since the three-dimensional thermal images are sequentially created, the thickness of the waste is calculated in the same manner for the newly created three-dimensional thermal images. In this way, the control device 90 calculates the thickness of the waste for each element and stores it in a predetermined storage unit in chronological order.
  • the significance of calculating the thickness of waste is as follows. That is, the waste accumulated in the drying portion 11 is dried by evaporating the water contained in the waste as the drying operation (feeding operation) of the drying grate 21 is performed, and the mass is reduced and the volume is also reduced. .. That is, the time change of the thickness of the waste indicates the progress of the drying of the waste, and is a kind of index of the progress of the drying operation. Further, the waste accumulated in the combustion unit 12 is thermally decomposed by the combustion operation (feeding operation) of the combustion grate 22, and the thermal decomposition gas is discharged, so that the mass and volume are reduced. That is, the time change of the thickness of the waste indicates the process of thermal decomposition of the waste, and is a kind of index of the progress of the combustion operation.
  • the surface moving speed of waste is the speed at which the surface of waste moves in the transport direction, as shown in FIG. In FIG. 6, a thick line is drawn on a relatively thick portion for easy understanding, and a state in which this portion moves is shown. Since the shape of the surface of the waste is shown in the three-dimensional thermal image, it is possible to obtain how the surface of the waste is moving based on the three-dimensional thermal image created in time series. Therefore, the surface moving speed of each mesh-divided element can be calculated based on the moving distance of a specific portion of the surface of the waste, the time interval at which the three-dimensional thermal image is acquired, and the like. As described above, the distribution of the surface moving speed of waste for each element can be calculated.
  • the control device 90 calculates the surface moving speed of the waste and stores it in a predetermined storage unit in chronological order.
  • the time change of the moving speed of the waste in the drying unit 11 is such that the waste accumulated in the drying unit 11 is sent in the transport direction while reducing the volume by the drying operation (feeding operation) of the drying grate 21. It shows the actual speed, and is an index of how the waste has been "moved” by the drying operation.
  • the surface moving speed of the waste in the combustion unit 12 is such that the waste accumulated in the combustion unit 12 is sent in the feed direction while reducing the volume by the combustion operation (feed operation) of the combustion grate 22. It is an indicator of velocity and an indicator of how waste has been "moved” by the combustion operation. Since it is not possible to calculate how the surface other than the surface of the waste moves from the three-dimensional thermal image, in the present embodiment, the "surface movement speed of the waste” indicates the "movement speed of the entire waste". Assuming that, the following calculations are performed.
  • the control value is a value changed to control the combustion state of the incinerator 10, and is, for example, the transfer speed of each grate, the supply amount of the primary combustion gas, the supply amount of the secondary combustion gas, and the like. It is a value for determining. The thickness of the waste, the surface moving speed, and the volumetric flow rate described later are affected by this control value. Therefore, in order to perform evaluation and control in consideration of the influence of the control value, the control device 90 stores the thickness of the waste and the surface movement speed in association with the control value set in the incinerator 10.
  • control device 90 stores the thickness of the waste and the surface movement speed in association with the control values corresponding to the corresponding elements.
  • the control device 90 calculates the thickness progress information for each element based on the thickness of the waste for each element and the surface movement speed, and stores the information in association with the control value (S103). This process is performed separately for the information in the first range and the second range.
  • the thickness progress information is information indicating how the thickness changes in time series until the waste located in the element is located in the element.
  • the thickness progress information of each element is schematically shown graphically. As shown in this graph, the thickness progress information is information in which "thickness" and "position in the transport direction with the passage of time" are associated with each other.
  • the thickness progress information is information indicating, for example, the thickness of the waste in the element A at the present time when the waste in the element A was present at the upstream position in the past when the element A is focused on. ..
  • the thickness progress information may be information in which the thickness and the time are associated with each other.
  • the thickness progress information can be calculated as follows, for example. For example, when focusing on a certain element A, the progress of transporting the waste at the position of the element A at the present time (that is, which element was located at which time) is the current state of the element A and the element on the upstream side thereof. It can be calculated based on the past surface movement speed. Further, the thickness of the waste for each element and each time is calculated and stored in step S102. Therefore, the thickness progress information can be calculated by associating the time and elements indicated by the waste transportation progress with the thickness of the waste. In this way, the control device 90 calculates the thickness progress information based on the thickness of the waste and the surface moving speed.
  • control device 90 Since the three-dimensional thermal images are sequentially created, new thickness progress information of the waste is calculated by performing the same calculation using the newly created three-dimensional thermal images.
  • the control device 90 stores the calculated thickness progress information in a predetermined storage unit in chronological order. The process and the reason for associating the thickness progress information with the control value are the same as in step S102.
  • the significance of obtaining thickness progress information is as follows. That is, how the thickness progress information of the drying portion 11 is obtained while the waste accumulated in the drying portion 11 is deposited and passed on the grate by the drying operation (feeding operation) of the drying grate 21. It shows the process of being sent in the feeding direction while reducing the volume, and is an index of how the volume of waste has been reduced by the drying operation. Further, the thickness progress information of the combustion unit 12 can be obtained as to how the waste accumulated in the combustion unit 12 is accumulated and passed on the grate by the combustion operation (feed operation) of the combustion grate 22. It shows the process of being sent in the feeding direction while reducing the volume, and is an index of how the volume of waste has been reduced by the combustion operation.
  • the control device 90 calculates the volume flow rate progress information for each element based on the surface movement speed and the thickness progress information of the waste for each element, and the volume flow rate progress in the first range and the second range.
  • the information is also stored in association with the control value (S104).
  • a process of calculating the volume flow rate progress information is performed for each of the first range and the second range.
  • the volume flow rate progress information is information indicating how the volume flow rate has changed in time series until the waste located in the element is located in the element.
  • the volumetric flow rate progress information of each element is schematically shown graphically.
  • the volume flow rate progress information is information in which the “volume flow rate” and the “transportation direction position with the passage of time” are associated with each other. That is, the volumetric flow rate progress information is information indicating what kind of volumetric flow rate the waste in the element A at the present time had when it was present at the upstream position in the past, for example, when focusing on the element A.
  • the volume flow rate progress information may be information indicating the correspondence between the volume flow rate and the time.
  • volumetric flow rate is the volume of waste that moves per unit time. Therefore, the volumetric flow rate can be calculated by multiplying the "waste thickness”, “waste surface moving speed”, and “furnace width length”, respectively. Further, the furnace width length when calculating the volume flow rate for each element is the furnace width length of each element. Therefore, the volume flow rate progress information is the value obtained by multiplying the "thickness of waste indicated by the thickness progress information" and the "surface movement speed of waste” by combining the elements (positions) and the time, and "the furnace width of each element". It can be calculated by multiplying by "length". In this way, the control device 90 calculates the volume flow rate progress information for each element.
  • the control device 90 combines the volume flow rate progress information of the first range and the second range to generate one volume flow rate progress information.
  • the first range and the second range partially overlap. Therefore, for the overlapping range, the value is determined by taking an average or using one of the volume flow rate progress information. Thereby, the volume flow rate progress information including the first range and the second range (that is, including the range from the drying section 11 to a part of the post-combustion section 13) can be calculated.
  • the control device 90 stores this volume flow rate progress information in a predetermined storage unit. Since the three-dimensional thermal images are sequentially created, new volume flow rate progress information of the waste is calculated by performing the same calculation using the newly created three-dimensional thermal images. The control device 90 stores the calculated volumetric flow rate progress information in a predetermined storage unit in time series in association with the control value. The process and the reason for associating the volume flow rate progress information with the control value are the same as in step S102. Moreover, since the furnace width and length are constant, the volumetric flow rate progress information is a function of only the waste thickness and the surface moving speed. In other words, the volumetric flow rate progress information is conceptual information that includes not only the thickness of waste but also the moving speed.
  • the process of multiplying the furnace width length is omitted when calculating the volume flow rate progress information. May be good. This is because what is required for combustion control is not a specific value of the volumetric flow rate, but a variation mode thereof.
  • the vertical axis of the graph in the upper figure of FIG. 8 is not limited to a specific volume flow rate, and may be a value proportional (correlated) to the volume flow rate.
  • volumetric flow rate progress information indicates the progress of the waste drying, and is a direct index of the degree of progress of the drying operation.
  • drying of the waste progresses and the moisture from the waste evaporates (dry state)
  • the amount of evaporation of the moisture decreases and the internal temperature of the waste layer rises, so that the waste heats up. It shifts to the state where decomposition gas is generated (thermal decomposition state).
  • combustion startable state the state after the transition to the pyrolysis state is referred to as a "combustion startable state". Further, by shifting to the state where combustion can be started, the degree of change in the volume of waste becomes smaller. Therefore, the volumetric flow rate progress information is the most suitable index for evaluating the degree of the state in which combustion can be started.
  • the volumetric flow rate progress information indicates the progress of thermal decomposition of waste, and is a direct index of the degree of progress of the combustion operation.
  • the pyrolysis gasification reaction of waste reaction with a large degree of change in the volume of waste
  • the post-combustion reaction of residual unburned carbon change in volume of waste
  • the volumetric flow rate progress information is the most suitable index for evaluating the degree of "burnout state”.
  • the control device 90 creates trend data showing the tendency of the volume flow rate to change with time based on the volume flow rate progress information for each element and the time change of the control value associated therewith (S105).
  • S105 the control value associated therewith
  • Waste is a mixture of substances with various properties in various proportions, and the properties and mixing proportions are unknown.
  • the change in the volume of waste also depends on the configuration and control of the incinerator 10. Therefore, in general, it is difficult to grasp the tendency of changes in the volumetric flow rate of waste.
  • the waste is divided into meshes and the volume flow rate progress information for each element is calculated, it is difficult to average the change in the volume flow rate.
  • the control value that affects the volume flow rate progress information is stored in association with the volume flow rate progress information. From the above, in the present embodiment, it is possible to create trend data capable of specifying the change tendency of the volume flow rate and the influence of the control value on the volume flow rate to some extent.
  • the tendency data created here may be a database of volume flow rate progress information and control values stored in the storage unit.
  • it may be a model constructed by machine learning the volume flow rate progress information and the control value stored in the storage unit. In order to predict the volume flow rate, it is preferable that this model outputs the change of the volume flow rate in the future by inputting the volume flow rate up to the present and the control value, for example.
  • control device 90 predicts the future change of the volume flow rate for each element based on the trend data (S106). As shown in FIG. 8, for example, when focusing on the element A, it is predicted how the volumetric flow rate of the waste located in the element A will change in the future.
  • the control device 90 first reads out the change in the volumetric flow rate and the change in the control value of the element of interest up to the present.
  • the tendency data can be used to determine the future volume flow rate of the waste located in this element. Change can be predicted. By making this prediction for a plurality of elements, it is possible to predict the overall movement of the waste in the incinerator 10. In addition, by predicting future changes in volume flow rate, it is possible to calculate volume flow rate progress information for the period from the past to the future.
  • the control device 90 searches for past data similar to, for example, the "change in volume flow rate and control value up to the present" of the element of interest. Then, the control device 90 extracts one or a plurality of similar past data, and predicts the change in the volume flow rate of the data of interest based on how the volume flow rate changes in the extracted data. ..
  • the trend data is a model constructed by machine learning, by inputting the "change in volume flow rate up to the present and control value" of the element of interest, the future change in volume flow rate of the data of interest is output. Will be done.
  • the control device 90 predicts the position change of the combustion start evaluation position based on the current and future volume flow rate progress information for each element (S107).
  • the combustion start evaluation position is an index of the position where combustion has started in the incinerator 10 as a whole, and is a position for evaluating combustion.
  • the combustion start evaluation position is a position that represents "where combustion started” in the entire incinerator 10 in the waste incineration process.
  • the control device 90 first determines for each element whether or not the current combustion start is possible state based on the volume flow rate progress information for each element.
  • FIG. 9 shows the determination result of whether or not the combustion can be started.
  • FIG. 9 is a schematic view of the transport unit 20 viewed in the vertical direction, and each of the squares shown in FIG. 9 is a mesh-divided element. In FIG. 9, diagonal lines are drawn on the elements that are in a combustible state.
  • the volumetric flow rate of the waste is greatly reduced at the timing of shifting to the combustion startable state. Therefore, it is possible to determine whether or not the combustion has started based on the change in the volumetric flow rate.
  • the degree of change in the volumetric flow rate differs depending on the control value of the incinerator 10, it is preferable to perform the determination using a condition (for example, a threshold value) according to the control value.
  • a condition for example, a threshold value
  • control device 90 specifies the combustion start evaluation position based on the determination result for each element as to whether or not the combustion start is possible state. Since the position of the combustion startable state varies depending on the transport direction, the judgment result of whether or not the combustion startable state is possible for each element is comprehensively evaluated, and the combustion start evaluation position of the incinerator 10 as a whole is specified. ..
  • the current combustion start evaluation position is specified. Further, by performing the same processing on the predicted volume flow rate progress information, the future combustion start evaluation position can be specified. By comparing the two, the position change of the combustion start evaluation position can be predicted. Further, FIG. 8 shows an example in which the combustion start evaluation position is changed to the upstream side.
  • the burnout evaluation position is an index of the position where the flame combustion is completed in the incinerator 10 as a whole, and is a position for evaluating the combustion.
  • the burnout evaluation position is a position where "where the burnout state is reached" in the waste incineration process is represented by the entire incinerator 10.
  • the control device 90 In order to specify the burn-out evaluation position, the control device 90 first determines for each element whether or not the current state is burn-out based on the volume flow rate progress information for each element. Further, FIG. 9 shows a determination result of whether or not the state is burned out. As described above, the volumetric flow rate of the waste is greatly reduced at the timing of transition to the burnout state. Therefore, it is possible to determine whether or not the state is burned out based on the change in the volumetric flow rate. Also in this case, it is preferable to perform the determination using the conditions (for example, the threshold value) according to the control value.
  • the conditions for example, the threshold value
  • the control device 90 specifies the burnout evaluation position based on the determination result for each element of whether or not it is in the burnout state. Since the position of the burn-out state varies depending on the transport direction, the burn-out evaluation position of the incinerator 10 as a whole is specified by comprehensively evaluating the determination result of whether or not the burn-out state is obtained for each element.
  • the current burnout evaluation position is specified. Further, by performing the same processing on the predicted volume flow rate progress information, the future burnout evaluation position can be specified. By comparing the two, the position change of the burnout evaluation position can be predicted. Further, FIG. 8 shows an example in which the burnout evaluation position is changed to the downstream side.
  • volume flow rate progress information that shows the same behavior even when the properties and mixing ratios of substances having various properties contained in each of the "lumps" of waste are changed is provided. Since it is used to determine the combustion startable state and the burnout state, these determinations can be performed with high reliability. As a result, it is possible to specify a highly reliable combustion start evaluation position and burnout evaluation position.
  • the control device 90 determines whether or not the combustion start evaluation position will move to the upstream side in the future based on the position change of the combustion start evaluation position (S109). However, since the prediction accuracy of the combustion start evaluation position is limited, if the combustion start evaluation position changes slightly in the future, it is not necessary to perform control based on it. Therefore, the control device 90 determines whether or not to move to the upstream side in the future based on whether or not the degree of the position change of the combustion start evaluation position is equal to or more than the threshold value.
  • the waste when the amount of water contained in the waste supplied to the incinerator 10 is reduced or the combustible waste is supplied, the waste is dried (and thermally decomposed by drying) in the drying unit 11.
  • the time actually required (actual drying time) is shortened in order to make it (the same applies hereinafter). Therefore, the actual drying time is shorter than the estimated drying time of the waste (difference occurs).
  • the drying since the drying is completed in the middle part of the drying part 11, flame combustion occurs in the middle part of the drying part 11 (the combustion start position moves to the upstream side).
  • the control device 90 basically determines that the combustion start evaluation position will move to the upstream side in the future (in the case of Yes in S109), the dry grate 21
  • the waste transport speed (hereinafter, simply transport speed) is increased (S110). This makes it possible to prevent the positions of drying, burning, and post-combustion on the grate from moving to the upstream side. Therefore, since the burnout position can be contained in an appropriate range, stable combustion can be maintained.
  • the change in the operating speed or the stop time of the movable grate is an example of the control value in the control of the transport speed.
  • the control device 90 corrects this control value based on the above correction data. For example, even if the combustion start evaluation position and the burnout evaluation position are appropriate, if there is a local waste thickness or the like that is too large or too small, the combustion start evaluation position and the burnout evaluation position are set. Proper combustion may not be maintained even if it is maintained properly. Therefore, in such a case, the change in the thickness of the local waste is eliminated by changing the transport speed of the waste and moving the combustion start evaluation position or the burnout evaluation position.
  • the drying and combustion generated in the incinerator 10 greatly differs depending on the shape and structure of the incinerator 10 and the waste to be input.
  • the target state differs greatly depending on the required processing amount, the durability of the incinerator 10, the laws and regulations regarding exhaust gas, and the like. Therefore, even if it is predicted that the combustion start evaluation position will move to the upstream side in the future, it is possible that the control for increasing the transport speed is not performed.
  • the control device 90 sets the control value regarding the necessity and degree of the increase in the transport speed of the drying grate 21 to further detection data (for example, from the incinerator gas temperature sensor 91 to the NOx gas concentration sensor 94, etc.). It is preferable to make corrections based on the detection data).
  • the actual drying time for drying the waste in the drying unit 11 is increased. become longer. Therefore, the actual drying time is longer than the assumed drying time of the waste that is assumed in advance (difference occurs).
  • the drying since the drying is not completed even at the downstream end of the drying unit 11, flame combustion starts in the middle of the combustion unit 12 (the combustion start position moves to the downstream side). ) Will be.
  • the control device 90 basically determines that the combustion start evaluation position will move to the downstream side in the future (in the case of Yes in S111), the dry grate 21 The transport speed is reduced (S112). This makes it possible to prevent the combustion position of each part on the grate from moving to the downstream side. Therefore, the combustion start position and the burnout position can be kept in an appropriate range, so that stable combustion can be maintained. Further, also in the control at the time of deceleration of the transport speed, it is preferable to correct this control value based on the above correction data or another detection data.
  • control device 90 specifies whether or not the burnout evaluation position will move to the upstream side in the future (S113). In this determination as well, it is preferable to use the threshold value as in step S109.
  • the amount of gasified pyrolysis component (the amount of gasified component gasified by thermal decomposition) contained in the waste supplied to the incinerator 10 is reduced, the waste is actually burned by flame in the combustion unit 12.
  • the time required for this (actual combustion time) is shortened. Therefore, the actual combustion time is shorter than the estimated combustion time of the waste that is assumed in advance (a difference occurs).
  • the burnout state is reached in the middle part of the combustion part 12 (the burnout position moves to the upstream side). If this state is left unattended, the position where combustion is performed in the combustion unit 12 and the position where post-combustion is performed in the post-combustion unit 13 gradually move to the upstream side, respectively, and stable combustion is achieved. It becomes unsustainable.
  • the control device 90 basically determines that the burnout evaluation position will move to the upstream side in the future (in the case of Yes in S113), the combustion grate 22
  • the waste transport speed (hereinafter, simply transport speed) is increased (S114). This makes it possible to prevent the positions of combustion and post-combustion on the grate from moving to the upstream side. Therefore, since the burnout position can be contained in an appropriate range, stable combustion can be maintained.
  • the control device 90 sets the control value based on whether or not the burnout evaluation position moves to the upstream side in the future with respect to whether or not the transfer speed of the combustion grate 22 needs to be increased and the degree thereof. It is preferable to make corrections based on the correction data or other detection data.
  • the actual combustion time for burning the waste in the combustion unit 12 becomes long. Therefore, the actual combustion time becomes longer than the estimated combustion time of the waste that is assumed in advance (difference occurs).
  • the combustion is burnt out in the middle of the post-combustion unit 13 (the burnout position moves to the downstream side). To do). If this state is left unattended, the positions of combustion and post-combustion on the grate will gradually move to the downstream side as a whole, and stable combustion cannot be maintained.
  • the control device 90 basically determines that the burnout evaluation position will move to the downstream side in the future (in the case of Yes in S115), the combustion grate 22 The transport speed is reduced (S116). This makes it possible to prevent the positions of combustion and post-combustion on the grate from moving to the downstream side. Therefore, since the burnout position can be contained in an appropriate range, stable combustion can be maintained. Further, also in the control at the time of deceleration of the transport speed, it is preferable to correct this control value based on the above correction data or another detection data.
  • the change in the position of the combustion start evaluation position / burnout evaluation position means that the state of the properties of the waste supplied to the incinerator 10 has changed. Therefore, since the time required for drying, burning, and post-burning is changing, it is necessary to change the transport speed of the entire grate. Therefore, the control device 90 changes the transport speed of another grate according to the state of change in the properties of the waste (S117).
  • Another grate is a grate in which the transport speed is not changed in the processes of steps S109 to S116.
  • control device 90 determines the transfer speed of the dry grate 21 or the combustion grate 22 whose transfer speed is changed in the processes of steps S109 to S116 regarding the necessity of changing the transfer speed of the other grate and the amount to be changed. It is preferable to make corrections based on not only the detection data but also other detection data.
  • the control device 90 uses the first damper 81 to the fifth damper 85 according to the state of the change in the properties of the waste, which is the cause of the change in the position of the combustion start evaluation position / burnout evaluation position. By adjusting at least one of them, the supply amounts of the primary combustion gas and the secondary combustion gas are adjusted (S118). That is, the opening degree of the first damper 81 to the fifth damper 85 is an example of the control value. Conventionally, for example, the supply amounts of the primary combustion gas and the secondary combustion gas are adjusted by using the detection data of the NOx gas concentration sensor 94 from the gas temperature sensor 91 in the incinerator.
  • the combustion start evaluation position moves to the upstream side or the burnout evaluation position moves to the downstream side, it is generally related to the properties of the waste, but generally, the pyrolysis gas is generated per hour. As the amount increases, the amount of primary combustion gas (including unburned gas such as CO) generated by the primary combustion increases per hour. Therefore, it is necessary to increase the supply amount of the primary combustion gas and the secondary combustion gas.
  • control device 90 performs the processing of step S101 and subsequent steps again after the case of No in step S115 and the processing of step S118.
  • the control device 90 performs the processing of step S101 and subsequent steps again after the case of No in step S115 and the processing of step S118.
  • the combustion state evaluation method of the present embodiment is divided into a drying unit 11, a combustion unit 12, and a post-combustion unit 13, and operates intermittently in a state where waste is accumulated. This is done for an incinerator 10 having a grate for transporting the waste.
  • This combustion state evaluation method includes a preparation step, a division step, a first calculation step, a second calculation step, a third calculation step, a first prediction step, and a second prediction step.
  • a plurality of infrared cameras 95 are used to observe at least the waste accumulated in the drying section 11 and the burning section 12 through the selective transmission filter 95a that selectively transmits light having a wavelength not emitted by the flame.
  • a plurality of thermal images having different viewpoints are acquired, and a three-dimensional thermal image is created based on the plurality of thermal images.
  • the waste of the three-dimensional thermal image is mesh-divided into a plurality of elements.
  • the thickness of the waste and the surface movement speed of the waste are calculated for each element based on the three-dimensional thermal image.
  • the element includes thickness progress information indicating how the thickness of the waste located in the element changes in time series until it is located in the element. Calculated for each.
  • the third calculation step based on the calculation results of the first calculation step and the second calculation step, it is shown how the volume flow rate changes in time series until the waste located in the element is located in the element.
  • Volumetric flow rate progress information is calculated for each element.
  • the first prediction step it is obtained based on the volume flow rate progress information for each element and the time change of the control value including at least the value used for combustion control for setting the transport speed of the grate. Based on the tendency of the volume flow rate over time, the future change of the volume flow rate is predicted for each element.
  • the combustion start evaluation position which is an index of the position where combustion has started in the incinerator 10 as a whole and is a position for evaluating combustion
  • the incinerator 10 As a whole, the position change of at least one of the burnout evaluation positions, which is an index of the position where the flame combustion is completed and is the position for evaluating the combustion, is predicted.
  • the position change of the combustion start evaluation position / burnout evaluation position can be predicted with high reliability. Furthermore, by dividing the waste into meshes and evaluating it, it is possible to predict the position change of the combustion start evaluation position / burnout evaluation position with higher reliability than the method of evaluating only the end portion in the furnace width direction. ..
  • At least two sets of infrared cameras 95 are used in the creation process, and the first range of waste is imaged by the first set of infrared cameras 95, and the second set of infrared rays is captured. A second area of waste is imaged by the camera 95.
  • the calculation result of the first range and the calculation result of the second range are combined, and the calculation result of the range including the first range and the second range is combined. Is created.
  • the volume flow rate progress information of the first range and the second range is calculated in the third calculation step, respectively.
  • the volume flow rate progress information of the range including the first range and the second range is obtained.
  • An example of calculation has been described.
  • the calculation can be simplified as compared with the process of synthesizing the three-dimensional thermal image of the first range and the three-dimensional thermal image of the second range.
  • At least the position change of the combustion start evaluation position is predicted in the second prediction step.
  • the dry grate 21 controls to increase the transport speed of the waste.
  • the dry grate 21 controls to reduce the transport speed of the waste.
  • the combustion start position can be adjusted to be appropriate, so stable combustion can be maintained.
  • the control is performed based on the position change of the combustion start evaluation position from the present to the future, not the position change of the combustion start evaluation position from the past to the present, very stable combustion can be maintained.
  • At least the position change of the burnout evaluation position is predicted in the second prediction step.
  • the combustion grate 22 controls to increase the transport speed of the waste.
  • the combustion grate 22 controls to reduce the transport speed of the waste.
  • the burnout position can be adjusted to be appropriate, so stable combustion can be maintained.
  • the control is performed based on the position change of the burnout evaluation position from the present to the future, not the position change of the burnout evaluation position from the past to the present, very stable combustion can be maintained.
  • the transport speed of the combustion grate 22 is changed based on at least one of the thickness of the waste and the surface movement speed of the waste calculated in the first calculation step. Correct the control value for.
  • the waste transfer speed by at least one grate of the drying unit 11 and the combustion unit 12 is changed based on the position change of the evaluation position predicted in the second prediction step.
  • the transport speed of waste by another grate is changed according to the state of change in the properties of waste that is the cause of the change in the position of the evaluation position.
  • combustion control method of the present embodiment according to the state of change in the properties of the waste that causes the position change of the evaluation position (combustion start evaluation position, burnout evaluation position) predicted in the second prediction step.
  • the amount of primary combustion gas supplied to at least one of the drying unit 11, the combustion unit 12, and the post-combustion unit 13 is adjusted.
  • the primary combustion performed in the drying section 11, the combustion section 12, and the post-combustion section 13 and the primary combustion gas containing the unburned gas generated in the primary combustion are included.
  • Secondary combustion, which burns, is performed. The supply amount of the secondary combustion gas is adjusted according to the state of the change in the properties of the waste that causes the position change of the evaluation position predicted in the second prediction step.
  • the progress of primary combustion (that is, the amount of primary combustion gas generated, etc.) can be estimated based on the moving direction of the combustion start evaluation position, and the supply amount of secondary combustion gas is adjusted accordingly.
  • the unburned gas contained in the primary combustion gas can be sufficiently burned in the secondary combustion.
  • both the combustion start evaluation position and the burnout evaluation position are specified, but only one of them may be specified.
  • two sets of infrared cameras 95 are used to observe the wastes from the drying section 11 to the post-burning section 13, but one set or three or more sets of infrared cameras 95 are used to observe these wastes. It may be.
  • the process of changing the transport speed of the grate and the supply amount of the primary combustion gas and the secondary combustion gas is performed based on the future movement direction of the combustion start position / burnout evaluation position.
  • the process of changing these values may be performed using the future moving speed of the combustion start position / burnout evaluation position.
  • the first and second three-dimensional thermal images are created, and the processes of steps S102 to S104 are performed on each of the three-dimensional thermal images.
  • one three-dimensional thermal image (a thermal image showing the three-dimensional position of the waste from the drying portion 11 to the post-combustion portion 13) is created based on the thermal images acquired by the two sets of infrared cameras 95. You may. In this case, the processes of steps S102 to S104 are performed on one three-dimensional thermal image.
  • the volume flow rate progress information is calculated for each of the first range and the second range, and then the two are combined.
  • the thickness and the surface movement speed ( Alternatively, after calculating the thickness progress information), both may be combined.
  • combustion control may be performed by omitting at least one detection data, or combustion control may be performed by adding detection data different from the above.
  • detection data for example, the amount of boiler evaporation associated with the recovery of heat from the exhaust gas, or the amount of water for water spray cooling when cooling by water spray can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)

Abstract

This combustion state evaluation method includes a creation step, a division step, a first calculation step, a second calculation step, a third calculation step, a first prediction step, and a second prediction step. In the creation step, three-dimensional thermal images of at least the waste accumulated in a drying section and a combustion section are created. In the division step, the waste in the three-dimensional thermal images is mesh divided into a plurality of elements. In the first calculation step, the thickness of the waste and the surface movement speed of the waste is calculated for each of the elements. In the second calculation step, thickness progression information is calculated for each of the elements. In the third calculation step, volume flow rate progression information is calculated for each of the elements. In the first prediction step, future change in the volume flow rate is predicted for each of the elements. In the second prediction step, positional change in at least one of a combustion start evaluation position and a burnout evaluation position is predicted.

Description

燃焼状況評価方法及び燃焼制御方法Combustion status evaluation method and combustion control method
 本発明は、主として、火格子により廃棄物を搬送しながら焼却する火格子式の焼却炉において、安定な燃焼を適切に維持するために燃焼状況を評価する方法に関する。 The present invention mainly relates to a method of evaluating a combustion state in order to appropriately maintain stable combustion in a grate-type incinerator that incinerates waste while transporting it by a grate.
 焼却炉には、多種多様な廃棄物が投入されるため、投入された廃棄物の性状が変化した場合であっても、安定な燃焼を適切に維持できることが重要となる。また、火格子式の廃棄物焼却炉では、廃棄物を乾燥させる乾燥部と、廃棄物を火炎燃焼させる燃焼部と、廃棄物を後燃焼(オキ燃焼)させる後燃焼部と、に区分されている。安定な燃焼を適切に維持する燃焼制御を行うためには、例えば、火格子に堆積されている廃棄物に関する十分な情報を取得することが重要となる。特許文献1から9には、廃棄物に関する情報を取得して制御する方法が開示されている。 Since a wide variety of wastes are put into the incinerator, it is important to be able to properly maintain stable combustion even if the properties of the put wastes change. In addition, the grate-type waste incinerator is divided into a drying section for drying the waste, a combustion section for burning the waste with flame, and a post-combustion section for post-combusting the waste (Oki combustion). There is. In order to perform combustion control to properly maintain stable combustion, for example, it is important to obtain sufficient information on the waste deposited on the grate. Patent Documents 1 to 9 disclose methods for acquiring and controlling information on waste.
 特許文献1の方法では、焼却炉の壁部に設けた2つの撮像手段により、火炎の可視画像と、火格子上の廃棄物の赤外線画像(熱画像)を取得し、この可視画像と熱画像とを燃焼制御のために用いる。特許文献2の方法では、2台のテレビカメラを用いて焼却炉内を撮影して可視画像を取得し、これらの画像に基づいて立体画像を作成し、この立体画像を燃焼制御のために用いる。特許文献3から5の方法では、1又は複数の熱画像撮像部により、火格子上の廃棄物の熱画像を撮像し、1又は複数の熱画像を燃焼制御のために用いる。特に、特許文献3及び4では、火炎の影響を除外するために、特定の波長の赤外線を検出する熱画像撮像部を用いることが記載されている。特許文献6の方法では、レーダ装置を用いて火格子上の燃料の3次元分布を取得するとともに、赤外線カメラを用いて火格子上の燃料の温度分布を取得し、これらの情報を燃焼制御のために用いる。特許文献7の方法では、火炎の波長を除去する光学フィルタを有しているステレオカメラを用いて火格子上の廃棄物の高さを取得して燃え切り位置を推定し、燃え切り位置を燃焼制御のために用いる。特許文献8の方法では、炉内を移動するごみの熱画像を炎越しに連続的に撮像し、熱画像データからごみの炉本体の両側の内壁面との境界線を検出することで、撮影領域におけるごみの推定体積を算出し、ごみの推定体積を燃焼制御に用いる。 In the method of Patent Document 1, a visible image of a flame and an infrared image (thermal image) of waste on a grate are acquired by two imaging means provided on the wall of an incinerator, and the visible image and the thermal image are obtained. And are used for combustion control. In the method of Patent Document 2, the inside of the incinerator is photographed by using two TV cameras to acquire a visible image, a stereoscopic image is created based on these images, and this stereoscopic image is used for combustion control. .. In the methods of Patent Documents 3 to 5, one or a plurality of thermal image capturing units capture a thermal image of waste on a grate, and the one or a plurality of thermal images are used for combustion control. In particular, Patent Documents 3 and 4 describe that a thermal image imaging unit that detects infrared rays having a specific wavelength is used in order to exclude the influence of flame. In the method of Patent Document 6, a radar device is used to acquire the three-dimensional distribution of fuel on the grate, and an infrared camera is used to acquire the temperature distribution of fuel on the grate, and this information is used for combustion control. Used for. In the method of Patent Document 7, the height of waste on the grate is obtained by using a stereo camera having an optical filter for removing the wavelength of the flame, the burnout position is estimated, and the burnout position is burned. Used for control. In the method of Patent Document 8, the thermal image of the waste moving in the furnace is continuously imaged through the flame, and the boundary line with the inner wall surface of both sides of the furnace body of the waste is detected from the thermal image data. The estimated volume of waste in the region is calculated and the estimated volume of waste is used for combustion control.
特開平10-54532号公報Japanese Unexamined Patent Publication No. 10-54532 特開平5-118524号公報Japanese Unexamined Patent Publication No. 5-118524 特関2017-187228号公報Tokuseki 2017-187228 特開2018-21686号公報Japanese Unexamined Patent Publication No. 2018-21686 特開2017-116252号公報JP-A-2017-116252 特開平8-35630号公報Japanese Unexamined Patent Publication No. 8-355630 特開2018-155411号公報JP-A-2018-155411 特許6472035号公報Japanese Patent No. 6472035
 特許文献1及び2のように可視画像を用いる場合、燃焼部で発生している火炎が邪魔となり、火格子上の廃棄物の形状及び動きを十分に取得できない。そもそも、特許文献2は、異常燃焼の位置を検出するために画像を取得し立体画像を作成しており、火格子上の廃棄物を検出対象としていない。特許文献3から5は、1又は複数の廃棄物の熱画像をそのまま用いるため、廃棄物の詳細な形状及びその動きを十分に取得できない。また、特許文献6のように火格子上の燃料をレーダで検出する場合、高温環境かつ火炎が存在する状況において、廃棄物で反射された電磁波を検出する必要があるため、レーダ自体のコストが高くなる。また、特許文献6では、赤外線カメラは、燃料の形状ではなく温度分布を取得するために用いられている。特許文献7では、廃棄物高さ情報を用いて燃え切り位置を推定しているが、廃棄物の性状に応じて廃棄物の高さだけでなく廃棄物の送り速度も変化するため、廃棄物高さのみからでは、燃焼状態制御を行うために適切な燃え切り位置を算出できないことがある。特許文献8では、ごみの推定体積の算出に使用する情報として、ごみの炉本体の両側の内壁面との境界線のみを使用するため、炉幅方向のごみ高さの違いが考慮されない。その結果、ごみの推定体積の精度が低くなるため、燃焼制御の指標とするためには、誤差が大き過ぎる可能性がある。 When a visible image is used as in Patent Documents 1 and 2, the flame generated in the combustion part becomes an obstacle, and the shape and movement of the waste on the grate cannot be sufficiently obtained. In the first place, Patent Document 2 acquires an image to detect the position of abnormal combustion and creates a stereoscopic image, and does not target waste on the grate. In Patent Documents 3 to 5, since the thermal images of one or more wastes are used as they are, the detailed shape and movement of the wastes cannot be sufficiently obtained. Further, when the fuel on the grate is detected by the radar as in Patent Document 6, it is necessary to detect the electromagnetic wave reflected by the waste in a high temperature environment and in the presence of flame, so that the cost of the radar itself is high. It gets higher. Further, in Patent Document 6, the infrared camera is used to acquire the temperature distribution instead of the shape of the fuel. In Patent Document 7, the burnout position is estimated using the waste height information, but since not only the height of the waste but also the feed rate of the waste changes depending on the properties of the waste, the waste It may not be possible to calculate an appropriate burnout position in order to control the combustion state from the height alone. In Patent Document 8, since only the boundary line with the inner wall surface of both sides of the furnace body of the waste is used as the information used for calculating the estimated volume of the waste, the difference in the height of the waste in the furnace width direction is not considered. As a result, the accuracy of the estimated volume of waste becomes low, and the error may be too large to be used as an index of combustion control.
 本発明は以上の事情に鑑みてされたものであり、その主要な目的は、燃焼制御の指標とするために適切な情報を算出する方法を提供することにある。 The present invention has been made in view of the above circumstances, and its main purpose is to provide a method for calculating appropriate information for use as an index of combustion control.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。 The problem to be solved by the present invention is as described above, and next, the means for solving this problem and its effect will be described.
 本発明の観点によれば、以下の燃焼状況評価方法が提供される。即ち、この燃焼状況評価方法は、乾燥部と燃焼部と後燃焼部とに区分されており、廃棄物が堆積した状態で間欠的に動作することで当該廃棄物を搬送する火格子を備える焼却炉に対して行われる。この燃焼状況評価方法は、作成工程と、分割工程と、第1算出工程と、第2算出工程と、第3算出工程と、第1予測工程と、第2予測工程と、を含む。前記作成工程では、複数の赤外線カメラを用いて、火炎が放射しない波長の光を選択的に透過させるフィルタを介して、少なくとも前記乾燥部及び前記燃焼部に堆積した前記廃棄物を観測して、視点が異なる複数の熱画像を取得し、当該複数の熱画像に基づいて、3次元熱画像を作成する。前記分割工程では、前記3次元熱画像の前記廃棄物を複数の要素にメッシュ分割する。前記第1算出工程では、前記3次元熱画像に基づいて、前記廃棄物の厚み、及び、前記廃棄物の表面移動速度を前記要素毎に算出する。前記第2算出工程では、前記第1算出工程の算出結果に基づいて、前記要素に位置する前記廃棄物が当該要素に位置するまでに厚みが時系列でどのように変化したかを示す厚み経過情報を、前記要素毎に算出する。前記第3算出工程では、前記第1算出工程及び前記第2算出工程の算出結果に基づいて、前記要素に位置する前記廃棄物が当該要素に位置するまでに体積流量が時系列でどのように変化したかを示す体積流量経過情報を、前記要素毎に算出する。前記第1予測工程では、前記要素毎の前記体積流量経過情報と、燃焼制御用に用いる値であって前記火格子の搬送速度を設定するための値を少なくとも含む制御値の時間変化と、に基づいて得られる体積流量の時間経過の傾向に基づいて、体積流量の将来の変化を前記要素毎に予測する。前記第2予測工程では、前記第1予測工程の予測結果に基づいて、焼却炉全体として燃焼が開始した位置の指標であって燃焼を評価するための位置である燃焼開始評価位置、及び、焼却炉全体として火炎燃焼が終了した位置の指標であって燃焼を評価するための位置である燃え切り評価位置の少なくとも一方の位置変化を予測する。 From the viewpoint of the present invention, the following combustion condition evaluation method is provided. That is, this combustion condition evaluation method is divided into a drying part, a burning part, and a post-burning part, and incineration provided with a grate for transporting the waste by operating intermittently in a state where the waste is accumulated. Performed on the furnace. This combustion state evaluation method includes a preparation step, a division step, a first calculation step, a second calculation step, a third calculation step, a first prediction step, and a second prediction step. In the preparation step, a plurality of infrared cameras are used to observe at least the waste accumulated in the dry portion and the combustion portion through a filter that selectively transmits light having a wavelength not emitted by the flame. A plurality of thermal images having different viewpoints are acquired, and a three-dimensional thermal image is created based on the plurality of thermal images. In the division step, the waste of the three-dimensional thermal image is mesh-divided into a plurality of elements. In the first calculation step, the thickness of the waste and the surface moving speed of the waste are calculated for each of the elements based on the three-dimensional thermal image. In the second calculation step, based on the calculation result of the first calculation step, the thickness elapsed indicating how the thickness of the waste located in the element changed in time series until it was located in the element. Information is calculated for each of the elements. In the third calculation step, based on the calculation results of the first calculation step and the second calculation step, how the volume flow rate before the waste located in the element is located in the element is in chronological order. Volumetric flow rate progress information indicating whether or not the change has occurred is calculated for each of the above elements. In the first prediction step, the volume flow rate progress information for each element and the time change of the control value including at least a value used for combustion control for setting the transport speed of the grate. Based on the tendency of the volume flow rate to be obtained over time, the future change of the volume flow rate is predicted for each of the above factors. In the second prediction step, based on the prediction result of the first prediction step, the combustion start evaluation position, which is an index of the position where combustion has started in the entire incinerator and is a position for evaluating combustion, and incineration. Predict the position change of at least one of the burnout evaluation positions, which is an index of the position where the flame combustion is completed in the entire furnace and is the position for evaluating the combustion.
 これにより、廃棄物の体積流量が時系列でどのように変化してきたかに基づいて、将来の体積流量の変化を予測して、燃焼開始評価位置/燃え切り評価位置の位置変化を予測するため、廃棄物の厚みのみを用いる方法等と比較して、高い信頼性で燃焼開始評価位置/燃え切り評価位置の位置変化を予測できる。更に、廃棄物をメッシュ分割して評価することで、炉幅方向の端部のみを評価する方法と比較して、より高い信頼性で燃焼開始評価位置/燃え切り評価位置の位置変化を予測できる。 As a result, in order to predict future changes in volumetric flow rate based on how the volumetric flow rate of waste has changed over time, and to predict changes in the combustion start evaluation position / burnout evaluation position, Compared with a method using only the thickness of waste, the position change of the combustion start evaluation position / burnout evaluation position can be predicted with high reliability. Furthermore, by dividing the waste into meshes and evaluating it, it is possible to predict the position change of the combustion start evaluation position / burnout evaluation position with higher reliability than the method of evaluating only the end portion in the furnace width direction. ..
 本発明によれば、燃焼制御の指標とするために適切な情報を算出することができる。 According to the present invention, it is possible to calculate appropriate information for using it as an index for combustion control.
本発明の方法を行う対象の焼却炉を含む廃棄物焼却設備の概略構成図。The schematic block diagram of the waste incinerator including the incinerator which performs the method of this invention. 焼却炉の機能ブロック図。Functional block diagram of the incinerator. 赤外線カメラの取付位置を示す焼却炉の立体模式図。A three-dimensional schematic view of an incinerator showing the mounting position of an infrared camera. 燃焼を安定させるために制御装置が行う制御の一部を示すフローチャート。A flowchart showing a part of the control performed by the control device to stabilize combustion. 燃焼を安定させるために制御装置が行う制御の残りを示すフローチャート。A flowchart showing the rest of the control performed by the controller to stabilize combustion. 廃棄物の厚み、表面移動速度、及びメッシュ分割を示す斜視図。Perspective view showing waste thickness, surface moving speed, and mesh division. 厚み経過情報について説明する図。The figure explaining the thickness progress information. 体積流量経過情報及びその予測について説明する図。The figure explaining the volume flow rate progress information and its prediction. 燃焼開始可能状態と燃え切り状態の判定結果、燃焼開始評価位置と燃え切り評価位置、及びそれらの予測について説明する平面模式図。The plan schematic diagram explaining the judgment result of the combustion start possible state and the burnout state, the combustion start evaluation position and the burnout evaluation position, and their prediction. 燃焼開始位置及び燃え切り位置が上流側に移動したときの様子を示す廃棄物焼却設備の概略構成図。A schematic configuration diagram of a waste incineration facility showing a state when the combustion start position and the burnout position move to the upstream side. 燃焼開始位置及び燃え切り位置が下流側に移動したときの様子を示す廃棄物焼却設備の概略構成図。A schematic configuration diagram of a waste incineration facility showing a state when the combustion start position and the burnout position move to the downstream side.
 <廃棄物焼却設備の全体構成>初めに、図1を参照して、本実施形態の焼却炉(廃棄物焼却炉)10を含む廃棄物焼却設備(廃棄物焼却施設)100について説明する。図1は、本発明の方法を行う対象の焼却炉10を含む廃棄物焼却設備100の概略構成図である。なお、以下の説明では、単に上流、下流と記載したときは、廃棄物、燃焼ガス、排ガス、一次空気、二次空気、循環排ガス等が流れる方向の上流及び下流を意味するものとする。 <Overall configuration of waste incinerator> First, the waste incinerator (waste incinerator) 100 including the incinerator (waste incinerator) 10 of the present embodiment will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a waste incinerator 100 including an incinerator 10 for performing the method of the present invention. In the following description, when the terms "upstream" and "downstream" are used, they mean upstream and downstream in the direction in which waste, combustion gas, exhaust gas, primary air, secondary air, circulating exhaust gas, etc. flow.
 図1に示すように、廃棄物焼却設備100は、焼却炉10と、ボイラ30と、蒸気タービン発電設備35と、を備える。焼却炉10は、供給された廃棄物を焼却する。なお、焼却炉10の詳細な構成は後述する。 As shown in FIG. 1, the waste incineration facility 100 includes an incinerator 10, a boiler 30, and a steam turbine power generation facility 35. The incinerator 10 incinerates the supplied waste. The detailed configuration of the incinerator 10 will be described later.
 ボイラ30は、廃棄物の燃焼によって発生した熱を利用して蒸気を生成する。ボイラ30は、流路壁に設けられた多数の水管31及び過熱器管32で、炉内で発生した高温の燃焼ガスと水との熱交換を行うことにより蒸気(過熱蒸気)を生成する。水管31及び過熱器管32で生成された蒸気は、蒸気タービン発電設備35へ供給される。 The boiler 30 uses the heat generated by the combustion of waste to generate steam. The boiler 30 generates steam (superheated steam) by exchanging heat between high-temperature combustion gas generated in the furnace and water in a large number of water pipes 31 and superheater pipes 32 provided on the flow path wall. The steam generated in the water pipe 31 and the superheater pipe 32 is supplied to the steam turbine power generation facility 35.
 蒸気タービン発電設備35は、図略のタービン及び発電装置を含んで構成されている。タービンは、水管31及び過熱器管32から供給された蒸気によって回転駆動される。発電装置は、タービンの回転駆動力を用いて発電を行う。 The steam turbine power generation facility 35 includes a turbine and a power generation device (not shown). The turbine is rotationally driven by steam supplied from the water pipe 31 and the superheater pipe 32. The power generation device uses the rotational driving force of the turbine to generate electricity.
 ここで、安定した発電を行うには、ボイラ30での蒸気(過熱蒸気)の生成量を安定化させることが必要である。ボイラ30での蒸気(過熱蒸気)の生成量を安定化させるためには、ボイラ30への入熱を安定させる必要がある。つまり、発電量を一定に保つには、焼却炉10からボイラ30へ供給される燃焼ガスの保有熱量を安定させて、ボイラ30への入熱を安定に保つ必要がある。 Here, in order to generate stable power generation, it is necessary to stabilize the amount of steam (superheated steam) generated in the boiler 30. In order to stabilize the amount of steam (superheated steam) generated in the boiler 30, it is necessary to stabilize the heat input to the boiler 30. That is, in order to keep the amount of power generation constant, it is necessary to stabilize the amount of heat possessed by the combustion gas supplied from the incinerator 10 to the boiler 30 and keep the heat input to the boiler 30 stable.
 <焼却炉10の構成>焼却炉10は、廃棄物を炉内に供給するための給じん装置40を備える。給じん装置40は、廃棄物投入ホッパ41と、給じん装置本体42と、を備える。廃棄物投入ホッパ41は、炉外から廃棄物が投入される部分である。給じん装置本体42は、廃棄物投入ホッパ41の底部分に位置し、水平方向に移動可能に構成されている。給じん装置本体42は、廃棄物投入ホッパ41に投入された廃棄物を下流側に供給する。この給じん装置本体42の移動速度、単位時間あたりの移動回数、移動量(ストローク)、及びストローク端の位置(移動範囲)は、制御装置90によって制御されている。なお、給じん装置は水平方向に対し多少の角度をもって移動する型式でもよい。 <Structure of incinerator 10> The incinerator 10 is provided with a dust supply device 40 for supplying waste into the furnace. The dust supply device 40 includes a waste input hopper 41 and a dust supply device main body 42. The waste input hopper 41 is a portion where waste is input from outside the furnace. The dust supply device main body 42 is located at the bottom of the waste input hopper 41 and is configured to be movable in the horizontal direction. The dust supply device main body 42 supplies the waste charged into the waste input hopper 41 to the downstream side. The movement speed of the dust supply device main body 42, the number of movements per unit time, the movement amount (stroke), and the position of the stroke end (movement range) are controlled by the control device 90. The dust supply device may be of a type that moves at a slight angle with respect to the horizontal direction.
 給じん装置40によって炉内に供給された廃棄物は、搬送部20によって、乾燥部11、燃焼部12、及び後燃焼部13の順に供給されていく。搬送部20は、乾燥部11に設けられた乾燥火格子21と、燃焼部12に設けられた燃焼火格子22と、後燃焼部13に設けられた後燃焼火格子23と、で構成されている。従って、搬送部20は複数段の火格子から構成されている。それぞれの火格子は、各部の底面に設けられており、廃棄物が載置される。 The waste supplied into the furnace by the dust supply device 40 is supplied by the transport unit 20 in the order of the drying unit 11, the combustion unit 12, and the post-combustion unit 13. The transport unit 20 is composed of a dry grate 21 provided in the drying unit 11, a combustion grate 22 provided in the combustion unit 12, and a post-combustion grate 23 provided in the post-combustion unit 13. There is. Therefore, the transport unit 20 is composed of a plurality of stages of grate. Each grate is provided on the bottom surface of each part, and waste is placed on it.
 火格子は、廃棄物搬送方向に並べて配置された可動火格子と固定火格子とから構成されており、可動火格子が前進、停止、後進、停止等の順で動作することで、廃棄物を下流側へ搬送するとともに、廃棄物を攪拌することができる。可動火格子の動作速度を増速(減速)させることで、廃棄物の搬送速度を増速(減速)させることができる。また、可動火格子の停止時間を短く(長く)することで、廃棄物の搬送速度を増速(減速)させることができる。また、火格子は、気体が通過可能な大きさの隙間を空けて並べて配置されている。 The grate is composed of a movable grate and a fixed grate arranged side by side in the waste transport direction, and the movable grate operates in the order of forward, stop, reverse, stop, etc. to dispose of waste. The waste can be agitated while being transported to the downstream side. By increasing (decelerating) the operating speed of the movable grate, it is possible to increase (decelerate) the transport speed of waste. Further, by shortening (longening) the stop time of the movable grate, it is possible to increase (decelerate) the transport speed of waste. In addition, the grate is arranged side by side with a gap large enough for gas to pass through.
 乾燥部11は、焼却炉10に供給された廃棄物を乾燥させる部分である。乾燥部11の廃棄物は、乾燥火格子21の下から供給される一次空気及び隣接する燃焼部12における燃焼の輻射熱によって乾燥する。その際、熱分解によって乾燥部11の廃棄物から熱分解ガスが発生する。また、乾燥部11の廃棄物は、乾燥火格子21によって燃焼部12に向かって搬送される。 The drying unit 11 is a portion for drying the waste supplied to the incinerator 10. The waste of the drying unit 11 is dried by the primary air supplied from under the drying grate 21 and the radiant heat of combustion in the adjacent combustion unit 12. At that time, thermal decomposition gas is generated from the waste of the drying portion 11 by thermal decomposition. Further, the waste of the drying unit 11 is conveyed toward the combustion unit 12 by the drying grate 21.
 燃焼部12は、乾燥部11で乾燥した廃棄物を主に燃焼させる部分である。燃焼部12では、廃棄物が主に火炎燃焼を起こし火炎が発生する。燃焼部12における廃棄物及び燃焼により発生した灰及び燃焼しきれなかった未燃物は、燃焼火格子22によって後燃焼部13に向かって搬送される。また、燃焼部12で発生した燃焼ガス及び火炎は、絞り部17を通過して後燃焼部13に向かって流れる。なお、燃焼火格子22は、乾燥火格子21と同じ高さに設けられているが、乾燥火格子21よりも低い位置に設けられていてもよい。 The combustion unit 12 is a portion that mainly burns the waste dried in the drying unit 11. In the combustion unit 12, the waste mainly causes flame combustion to generate a flame. The waste in the combustion unit 12, the ash generated by combustion, and the unburned material that cannot be completely burned are conveyed toward the post-combustion unit 13 by the combustion grate 22. Further, the combustion gas and the flame generated in the combustion unit 12 pass through the throttle unit 17 and flow toward the post-combustion unit 13. The combustion grate 22 is provided at the same height as the dry grate 21, but may be provided at a position lower than the dry grate 21.
 後燃焼部13は、燃焼部12で燃焼しきれなかった廃棄物(未燃物)を燃焼させる部分である。後燃焼部13では、燃焼ガスの輻射熱と一次空気によって、燃焼部12で燃焼しきれなかった未燃物の燃焼が促進される。その結果、未燃物の殆どが灰となって、未燃物は減少する。なお、後燃焼部13で発生した灰は、後燃焼部13の底面に設けられた後燃焼火格子23によってシュート24に向かって搬送される。シュート24に搬送された灰は、廃棄物焼却設備100の外部に排出される。なお、本実施形態の後燃焼火格子23は、燃焼火格子22よりも低い位置に設けられているが、燃焼火格子22と同じ高さに設けられていてもよい。 The post-combustion unit 13 is a portion that burns the waste (unburned material) that could not be completely burned by the combustion unit 12. In the post-combustion unit 13, the radiant heat of the combustion gas and the primary air promote the combustion of the unburned material that could not be completely burned in the combustion unit 12. As a result, most of the unburned matter becomes ash, and the unburned matter decreases. The ash generated in the post-combustion unit 13 is conveyed toward the chute 24 by the post-combustion grate 23 provided on the bottom surface of the post-combustion unit 13. The ash conveyed to the chute 24 is discharged to the outside of the waste incineration facility 100. Although the rear combustion grate 23 of the present embodiment is provided at a position lower than the combustion grate 22, it may be provided at the same height as the combustion grate 22.
 上述したように、乾燥部11、燃焼部12、及び後燃焼部13では、生じる反応が異なるため、それぞれの壁面等は、生じる反応に応じた構成となっている。例えば、燃焼部12では火炎燃焼が生じるため、乾燥部11よりも耐火レベルが高い構造が採用されている。 As described above, since the reactions that occur in the drying unit 11, the combustion unit 12, and the post-combustion unit 13 are different, each wall surface or the like is configured according to the reaction that occurs. For example, since flame combustion occurs in the combustion unit 12, a structure having a higher refractory level than the drying unit 11 is adopted.
 再燃焼部14は、燃焼ガスに含まれる未燃ガスを燃焼させる部分である。再燃焼部14は、乾燥部11、燃焼部12、及び後燃焼部13から上方に向かって延び、その途中に二次空気が供給される。これにより、燃焼ガスは二次空気と混合及び撹拌され、燃焼ガスに含まれる未燃ガスが再燃焼部14で燃焼される。なお、燃焼部12及び後燃焼部13で生じる燃焼を一次燃焼と称し、再燃焼部14で生じる燃焼(つまり、一次燃焼で残存した未燃ガスの燃焼)を二次燃焼と称する。 The reburning unit 14 is a part that burns the unburned gas contained in the combustion gas. The re-combustion unit 14 extends upward from the drying unit 11, the combustion unit 12, and the post-combustion unit 13, and secondary air is supplied in the middle thereof. As a result, the combustion gas is mixed and agitated with the secondary air, and the unburned gas contained in the combustion gas is burned in the reburning unit 14. The combustion generated in the combustion unit 12 and the post-combustion unit 13 is referred to as primary combustion, and the combustion generated in the recombustion unit 14 (that is, the combustion of the unburned gas remaining in the primary combustion) is referred to as secondary combustion.
 気体供給装置50は、炉内に気体を供給する装置である。本実施形態の気体供給装置50は、一次空気供給部51と、二次空気供給部52と、排ガス供給部53と、を有している。それぞれの供給部は、気体を誘引又は送出するための送風機によって構成されている。 The gas supply device 50 is a device that supplies gas into the furnace. The gas supply device 50 of the present embodiment includes a primary air supply unit 51, a secondary air supply unit 52, and an exhaust gas supply unit 53. Each supply unit is composed of a blower for attracting or sending out gas.
 本明細書では、一次燃焼のために供給する気体を一次燃焼用気体と称する。一次燃焼用気体としては、一次空気、循環排ガス、それらの混合ガスが含まれる。一次空気とは、外部から取り込んだ空気であって、燃焼等に用いられていない(即ち、循環排ガスを除く)気体である。従って、一次空気には、外部から取り込んだ空気を加熱等した気体も含まれる。同様に、本明細書では、二次燃焼のために供給する気体を二次燃焼用気体と称する。二次燃焼用気体としては、二次空気、循環排ガス、それらの混合ガスが含まれる。二次空気の定義は一次空気と同様である。 In this specification, the gas supplied for primary combustion is referred to as a primary combustion gas. The primary combustion gas includes primary air, circulating exhaust gas, and a mixed gas thereof. The primary air is air taken in from the outside and is not used for combustion or the like (that is, excluding circulating exhaust gas). Therefore, the primary air also includes a gas obtained by heating the air taken in from the outside. Similarly, in the present specification, the gas supplied for secondary combustion is referred to as a secondary combustion gas. The secondary combustion gas includes secondary air, circulating exhaust gas, and a mixed gas thereof. The definition of secondary air is similar to that of primary air.
 一次空気供給部51は、一次空気供給経路71を介して炉内に一次空気を供給する。一次空気供給経路71は、第1供給経路71aと、第2供給経路71bと、第3供給経路71cと、に分岐されている。なお、一次空気供給経路71にヒータを設け、各部に供給する一次空気の温度を調整できるようにしてもよい。 The primary air supply unit 51 supplies the primary air into the furnace via the primary air supply path 71. The primary air supply path 71 is branched into a first supply path 71a, a second supply path 71b, and a third supply path 71c. A heater may be provided in the primary air supply path 71 so that the temperature of the primary air supplied to each part can be adjusted.
 第1供給経路71aは、乾燥火格子21の下方に設けられた乾燥段風箱25に一次空気を供給するための経路である。第1供給経路71aには第1ダンパ81が設けられており、乾燥段風箱25に供給する一次空気の供給量を調整することができる。また、第1ダンパ81は制御装置90によって制御されている。 The first supply path 71a is a path for supplying primary air to the drying step air box 25 provided below the drying grate 21. A first damper 81 is provided in the first supply path 71a, and the amount of primary air supplied to the drying stage air box 25 can be adjusted. Further, the first damper 81 is controlled by the control device 90.
 第2供給経路71bは、燃焼火格子22の下方に設けられた燃焼段風箱26に一次空気を供給するための経路である。第2供給経路71bには第2ダンパ82が設けられており、燃焼段風箱26に供給する一次空気の供給量を調整することができる。また、第2ダンパ82は制御装置90によって制御されている。 The second supply path 71b is a path for supplying primary air to the combustion stage air box 26 provided below the combustion grate 22. A second damper 82 is provided in the second supply path 71b, and the amount of primary air supplied to the combustion stage air box 26 can be adjusted. Further, the second damper 82 is controlled by the control device 90.
 第3供給経路71cは、後燃焼火格子23の下方に設けられた後燃焼段風箱27に一次空気を供給するための経路である。第3供給経路71cには第3ダンパ83が設けられており、後燃焼段風箱27に供給する一次空気の供給量を調整することができる。また、第3ダンパ83は制御装置90によって制御されている。 The third supply path 71c is a path for supplying primary air to the post-combustion stage air box 27 provided below the post-combustion grate 23. A third damper 83 is provided in the third supply path 71c, and the amount of primary air supplied to the post-combustion stage air box 27 can be adjusted. Further, the third damper 83 is controlled by the control device 90.
 二次空気供給部52は、二次空気供給経路72を介して、焼却炉10の空気ガス保有空間16にその上部(天井部)から二次空気を供給するとともに、絞り部17によって燃焼ガスが方向を転換する部分(絞り部17の近傍)に二次空気を供給する。また、二次空気供給経路72には、制御装置90によって制御される第4ダンパ84が設けられており、各部への二次空気の供給量を調整することができる。 The secondary air supply unit 52 supplies the secondary air to the air gas holding space 16 of the incinerator 10 from the upper part (ceiling part) via the secondary air supply path 72, and the combustion gas is generated by the throttle unit 17. Secondary air is supplied to the portion that changes direction (near the throttle portion 17). Further, the secondary air supply path 72 is provided with a fourth damper 84 controlled by the control device 90, and the amount of secondary air supplied to each part can be adjusted.
 排ガス供給部53は、循環排ガス供給経路73を介して、廃棄物焼却設備100から排出された排ガスを炉内に供給する(再循環させる)。廃棄物焼却設備100から排出された排ガスはろ過式の集じん器60で浄化され、その一部が排ガス供給部53によって燃焼部12の両側面(紙面手前側及び紙面奥側の面)から焼却炉10へ供給される。なお、排ガスが供給される位置は、特に限定されない。例えば、排ガスは焼却炉10の上方(天井部)から供給されてもよく、一方の側面のみから供給されていてもよい。排ガスを焼却炉10に供給することで、焼却炉10内の酸素濃度が低下し、燃焼温度の局所的な過上昇を抑えることができる。その結果、NOxの発生を抑えることができる。循環排ガス供給経路73には、制御装置90によって制御される第5ダンパ85が設けられており、循環排ガスの供給量を調整することができる。 The exhaust gas supply unit 53 supplies (recirculates) the exhaust gas discharged from the waste incineration facility 100 into the furnace via the circulating exhaust gas supply path 73. The exhaust gas discharged from the waste incineration facility 100 is purified by a filtration type dust collector 60, and a part of the exhaust gas is incinerated by the exhaust gas supply unit 53 from both side surfaces (front side of the paper surface and the back side of the paper surface) of the combustion unit 12. It is supplied to the furnace 10. The position where the exhaust gas is supplied is not particularly limited. For example, the exhaust gas may be supplied from above (ceiling portion) of the incinerator 10, or may be supplied from only one side surface. By supplying the exhaust gas to the incinerator 10, the oxygen concentration in the incinerator 10 is lowered, and the local excessive rise in the combustion temperature can be suppressed. As a result, the generation of NOx can be suppressed. The circulating exhaust gas supply path 73 is provided with a fifth damper 85 controlled by the control device 90, and the supply amount of the circulating exhaust gas can be adjusted.
 焼却炉10には、図1及び図2に示すように、燃焼状態等を把握するための複数のセンサが設けられている。具体的には、焼却炉内ガス温度センサ91と、焼却炉出口ガス温度センサ92と、COガス濃度センサ93と、NOxガス濃度センサ94と、赤外線カメラ95と、が設けられている。 As shown in FIGS. 1 and 2, the incinerator 10 is provided with a plurality of sensors for grasping the combustion state and the like. Specifically, an incinerator gas temperature sensor 91, an incinerator outlet gas temperature sensor 92, a CO gas concentration sensor 93, a NOx gas concentration sensor 94, and an infrared camera 95 are provided.
 焼却炉内ガス温度センサ91は、焼却炉10内(例えば空気ガス保有空間16よりも下流かつ後燃焼部13よりも上流)に配置されており、焼却炉内ガス温度を検出して制御装置90へ出力する。焼却炉出口ガス温度センサ92は、焼却炉10の出口近傍(例えば再燃焼部14よりも下流かつボイラ30よりも上流)に配置されており、焼却炉出口ガス温度を検出して制御装置90へ出力する。COガス濃度センサ93は、集じん器60の下流に配置されており、排ガスに含まれるCOガス濃度(焼却炉排出COガス濃度)を検出して制御装置90へ出力する。NOxガス濃度センサ94は、集じん器60の下流に配置されており、排ガスに含まれるNOxガス濃度(焼却炉排出NOxガス濃度)を検出して制御装置90へ出力する。 The gas temperature sensor 91 in the incinerator is arranged in the incinerator 10 (for example, downstream of the air gas holding space 16 and upstream of the post-combustion unit 13), detects the gas temperature in the incinerator, and controls the control device 90. Output to. The incinerator outlet gas temperature sensor 92 is arranged near the outlet of the incinerator 10 (for example, downstream of the reburning unit 14 and upstream of the boiler 30), detects the incinerator outlet gas temperature, and sends it to the control device 90. Output. The CO gas concentration sensor 93 is arranged downstream of the dust collector 60, detects the CO gas concentration contained in the exhaust gas (CO gas concentration discharged from the incinerator), and outputs the CO gas concentration sensor 93 to the control device 90. The NOx gas concentration sensor 94 is arranged downstream of the dust collector 60, detects the NOx gas concentration contained in the exhaust gas (NOx gas concentration discharged from the incinerator), and outputs the NOx gas concentration sensor 94 to the control device 90.
 赤外線カメラ95は、2つ1組で設けられている。それぞれの赤外線カメラ95は同じ構造である。また、赤外線カメラ95は、3つ以上が1組として設けられていてもよい。赤外線カメラ95は、3次元熱画像(温度分布を3次元的に示す画像)を作成することを目的としているため、複数で1組となっている。そのため、同じ組の複数の赤外線カメラ95の相対位置は予め記憶されている。なお、赤外線カメラ95は、静止画を適切なインターバルで連続して撮像することを主目的とする機器であってもよいし、動画を撮像することを主目的とする機器であってもよい。動画は連続する複数の静止画であるため、何れの機器であっても、熱画像を取得するという機能は同じである。 The infrared cameras 95 are provided in pairs. Each infrared camera 95 has the same structure. Further, the infrared camera 95 may be provided as a set of three or more. Since the purpose of the infrared camera 95 is to create a three-dimensional thermal image (an image showing the temperature distribution in three dimensions), a plurality of infrared cameras 95 form a set. Therefore, the relative positions of the plurality of infrared cameras 95 of the same set are stored in advance. The infrared camera 95 may be a device whose main purpose is to continuously capture still images at appropriate intervals, or a device whose main purpose is to capture moving images. Since a moving image is a plurality of continuous still images, the function of acquiring a thermal image is the same regardless of the device.
 赤外線カメラ95は、炉内の物体から放射される赤外線を検出することで、炉内の熱画像を取得する。個々の赤外線カメラ95が取得する熱画像は、赤外線カメラ95の視点から見た炉内の温度分布を示す画像である。視点とは、計測器である赤外線カメラ95が配置されている位置を示す。また、本実施形態の赤外線カメラ95は、選択透過フィルタ(フィルタ)95aを介して、炉内の熱画像を取得する。選択透過フィルタ95aは、火炎が放射しない波長(例えば3.9μm帯)の光を選択的に透過させるフィルタである。なお、ここでの「火炎が放射しない」という文言は、火炎が放射する他の波長の光と比較して大幅に光強度が低い(殆ど照射しない)という意味であり、火炎が全く放射しないことを示すものではない。選択透過フィルタ95aを介して炉内の熱画像を取得することで、火炎以外の物体についての熱画像を取得できる。言い換えれば、火炎を透過して、その奥にある物体の熱画像を取得できる。なお、本実施形態において、選択透過フィルタ95aは、赤外線カメラ95と一体的に構成されているが、別体であってもよい。つまり、炉内の光が通る経路上に選択透過フィルタ95aを配置し、この選択透過フィルタ95aを透過した透過光を通常の赤外線カメラで処理してもよい。 The infrared camera 95 acquires a thermal image in the furnace by detecting infrared rays radiated from an object in the furnace. The thermal image acquired by each infrared camera 95 is an image showing the temperature distribution in the furnace as seen from the viewpoint of the infrared camera 95. The viewpoint indicates a position where the infrared camera 95, which is a measuring instrument, is arranged. Further, the infrared camera 95 of the present embodiment acquires a thermal image in the furnace via a selective transmission filter (filter) 95a. The selective transmission filter 95a is a filter that selectively transmits light having a wavelength (for example, 3.9 μm band) that the flame does not emit. The phrase "flame does not radiate" here means that the light intensity is significantly lower (almost no irradiation) than the light of other wavelengths emitted by the flame, and the flame does not radiate at all. Does not indicate. By acquiring the thermal image in the furnace through the selective transmission filter 95a, it is possible to acquire a thermal image of an object other than the flame. In other words, it can penetrate the flame and obtain a thermal image of the object behind it. In the present embodiment, the selective transmission filter 95a is integrally configured with the infrared camera 95, but may be a separate body. That is, the selective transmission filter 95a may be arranged on the path through which the light in the furnace passes, and the transmitted light transmitted through the selective transmission filter 95a may be processed by a normal infrared camera.
 赤外線カメラ95は、主に乾燥火格子21及び燃焼火格子22を搬送される廃棄物の熱画像を取得することを目的としている。具体的には、本実施形態では2組の赤外線カメラ95が設けられており、1組目の赤外線カメラ95が主に乾燥火格子21を搬送される廃棄物(更に言えば燃焼開始位置を含む範囲の廃棄物)を取得することを目的としており、2組目の赤外線カメラ95が主に燃焼火格子22を搬送される廃棄物(更に言えば燃え切り位置を含む範囲の廃棄物)を取得することを目的としている。 The purpose of the infrared camera 95 is mainly to acquire a thermal image of the waste transported through the dry grate 21 and the combustion grate 22. Specifically, in the present embodiment, two sets of infrared cameras 95 are provided, and the first set of infrared cameras 95 mainly carries the waste grate 21 (more specifically, the combustion start position is included). The purpose is to acquire the waste in the range), and the second set of infrared cameras 95 mainly acquires the waste (waste in the range including the burnout position) that is mainly conveyed to the combustion grate 22. The purpose is to do.
 また、火炎燃焼開始位置及び燃え切り位置は、供給される廃棄物の性状及び焼却炉10の制御によって位置が変化する。そのため、1組目の赤外線カメラ95の撮像範囲に燃焼火格子22を搬送される廃棄物が含まれてもよいし、2組目の赤外線カメラ95の撮像範囲に後燃焼火格子23を搬送される廃棄物が含まれてもよい。また、廃棄物を漏れなく観察するために、1組目と2組目の赤外線カメラ95の撮像範囲は、一部が重複することが好ましい。 In addition, the flame combustion start position and burnout position change depending on the properties of the supplied waste and the control of the incinerator 10. Therefore, the imaging range of the first set of infrared cameras 95 may include waste to be conveyed by the combustion grate 22, or the post-combustion grate 23 is conveyed to the imaging range of the second set of infrared cameras 95. Waste may be included. Further, in order to observe the waste without omission, it is preferable that the imaging ranges of the first and second sets of the infrared cameras 95 partially overlap.
 また、赤外線カメラ95は、画像の撮像範囲を変更可能な構成であってもよい。この場合、この赤外線カメラ95は、焼却炉10を停止させること無しに、撮像範囲を変更可能であってもよい。赤外線カメラ95は、廃棄物の堆積量が多くなった場合でも適切に画像を取得する等の目的で、火格子及び廃棄物よりも高い位置に配置されている。従って、赤外線カメラ95は、下側に向けて傾斜して配置されている。なお、赤外線カメラ95を傾斜させずに配置してもよい。 Further, the infrared camera 95 may have a configuration in which the imaging range of the image can be changed. In this case, the infrared camera 95 may be able to change the imaging range without stopping the incinerator 10. The infrared camera 95 is arranged at a position higher than the grate and the waste for the purpose of appropriately acquiring an image even when the amount of accumulated waste is large. Therefore, the infrared camera 95 is arranged so as to be inclined downward. The infrared camera 95 may be arranged without being tilted.
 図3に示すように、廃棄物の搬送方向と上下方向(鉛直方向)に垂直な方向を炉幅方向と称する。1組目の赤外線カメラ95は、乾燥部11の炉幅方向の端部に形成されている壁部である側壁11aに設けられている。2つの赤外線カメラ95は、側壁11aに形成された窓部11bを介して、廃棄物の表面の熱画像(赤外線)を取得する。本実施形態では、左右の側壁11aのうち一方の側壁11aのみに2つの赤外線カメラ95が配置されているが、両方の側壁11aにそれぞれ1又は複数の赤外線カメラ95が配置されていてもよい。 As shown in FIG. 3, the direction perpendicular to the waste transport direction and the vertical direction (vertical direction) is referred to as the furnace width direction. The first set of infrared cameras 95 is provided on the side wall 11a, which is a wall portion formed at the end portion of the drying portion 11 in the furnace width direction. The two infrared cameras 95 acquire a thermal image (infrared ray) of the surface of the waste through the window portion 11b formed on the side wall 11a. In the present embodiment, two infrared cameras 95 are arranged only on one side wall 11a of the left and right side walls 11a, but one or a plurality of infrared cameras 95 may be arranged on both side walls 11a, respectively.
 2組目の赤外線カメラ95は、後燃焼部13よりも搬送方向の下流側にある壁である奥壁13aに設けられている。2つの赤外線カメラ95は、奥壁13aに形成された窓部13bを介して、廃棄物の表面の熱画像(赤外線)を取得する。 The second set of infrared cameras 95 is provided on the back wall 13a, which is a wall on the downstream side in the transport direction from the rear combustion unit 13. The two infrared cameras 95 acquire a thermal image (infrared ray) of the surface of the waste through the window portion 13b formed on the back wall 13a.
 また、1組目及び2組目の赤外線カメラ95を設ける位置は一例であり、例えば、上記とは異なる壁又は天井に赤外線カメラ95を設けてもよい。 Further, the positions where the first and second sets of infrared cameras 95 are provided are examples, and for example, the infrared cameras 95 may be provided on a wall or ceiling different from the above.
 <制御装置が行う処理>制御装置90は、CPU、RAM、ROM等によって構成されており、種々の演算を行うとともに、廃棄物焼却設備100全体を制御する。画像処理装置96も同様に、CPU、RAM、ROM等によって構成されており、各組の2つの赤外線カメラ95が取得した熱画像に基づいて3次元熱画像を作成する処理(画像合成処理)を行うことができる。本実施形態では、制御装置90と画像処理装置96は、個別のハードウェアであるが、1つのハードウェアが制御装置90と画像処理装置96の両方の機能を有していてもよい。以下、制御装置90が行う燃焼制御であって、特に3次元熱画像を解析して行う制御について、図4及び図5のフローチャートに沿って説明する。図4及び図5は、燃焼を安定させるために制御装置90が行う制御を示すフローチャートである。 <Processing performed by the control device> The control device 90 is composed of a CPU, RAM, ROM, etc., performs various calculations, and controls the entire waste incineration facility 100. Similarly, the image processing device 96 is composed of a CPU, RAM, ROM, etc., and performs a process (image composition process) of creating a three-dimensional thermal image based on the thermal images acquired by the two infrared cameras 95 of each set. It can be carried out. In the present embodiment, the control device 90 and the image processing device 96 are separate hardware, but one piece of hardware may have the functions of both the control device 90 and the image processing device 96. Hereinafter, the combustion control performed by the control device 90, particularly the control performed by analyzing the three-dimensional thermal image, will be described with reference to the flowcharts of FIGS. 4 and 5. 4 and 5 are flowcharts showing the control performed by the control device 90 to stabilize the combustion.
 <S101>初めに、制御装置90は、赤外線カメラ95が取得した熱画像に基づいて画像処理装置96が作成した3次元熱画像を記憶する(S101)。本実施形態では、1組目の赤外線カメラ95が取得した熱画像に基づいて、第1の3次元熱画像が作成され、2組目の赤外線カメラ95が取得した熱画像に基づいて、第2の3次元熱画像が作成される。第1の3次元熱画像が作成される位置範囲(廃棄物の範囲、撮像範囲)を第1範囲と称し、第2の3次元熱画像が作成される位置範囲(廃棄物の範囲、撮像範囲)を第2範囲と称する。 <S101> First, the control device 90 stores a three-dimensional thermal image created by the image processing device 96 based on the thermal image acquired by the infrared camera 95 (S101). In the present embodiment, the first three-dimensional thermal image is created based on the thermal image acquired by the first set of infrared cameras 95, and the second is based on the thermal image acquired by the second set of infrared cameras 95. A three-dimensional thermal image of is created. The position range (waste range, imaging range) where the first 3D thermal image is created is called the first range, and the position range (waste range, imaging range) where the second 3D thermal image is created is called the first range. ) Is referred to as the second range.
 複数の熱画像から3次元熱画像を作成する処理は公知の技術なので簡単に説明する。ここでは、各組の2つの赤外線カメラ95を区別するためにα,βを付けて説明することがある。本実施形態の赤外線カメラ95が取得する熱画像には、火炎は含まれないため、赤外線カメラαが取得する熱画像には、赤外線カメラαの位置から見た廃棄物の表面の温度分布が表れている。赤外線カメラβについても同様である。そして、廃棄物の表面の特定箇所Aが、2つの熱画像のそれぞれ何処に表示されるかを特定する。上述したように赤外線カメラαと赤外線カメラβの位置関係は既知なので、三角法等に基づいて、赤外線カメラα及び赤外線カメラβから、廃棄物の特定箇所Aまでの距離を計算できる。この処理を廃棄物の表面の他の部分についても行うことで、廃棄物の表面の位置(3次元座標)を特定できる。 The process of creating a three-dimensional thermal image from a plurality of thermal images is a known technique, so it will be explained briefly. Here, α and β may be added in order to distinguish the two infrared cameras 95 of each set. Since the thermal image acquired by the infrared camera 95 of the present embodiment does not include a flame, the thermal image acquired by the infrared camera α shows the temperature distribution of the surface of the waste as seen from the position of the infrared camera α. ing. The same applies to the infrared camera β. Then, the specific location A on the surface of the waste is specified where each of the two thermal images is displayed. Since the positional relationship between the infrared camera α and the infrared camera β is known as described above, the distance from the infrared camera α and the infrared camera β to the specific location A of the waste can be calculated based on the triangular method or the like. By performing this treatment on other parts of the waste surface, the position (three-dimensional coordinates) of the waste surface can be specified.
 <S102>次に、制御装置90は、3次元熱画像の廃棄物の表面を複数の要素(分割単位)にメッシュ分割して、その要素毎に(1)廃棄物の厚みと(2)表面移動速度を算出して制御値と関連付けて記憶する(S102)。この処理は、第1の3次元熱画像(第1範囲)と第2の3次元熱画像(第2範囲)のそれぞれに対して個別に行われる。メッシュ分割とは、所定の条件で3次元熱画像の廃棄物を複数の領域に分割することである。本実施形態では、図6に示すように、搬送方向の平行線と炉幅方向の平行線をそれぞれ複数引くことで、廃棄物を格子状に分割している。本実施形態では、メッシュ分割された要素は四角形であるが、別の形状であってもよい。なお、複数の要素の形状や面積はそれぞれ同じであってもよいし、異なっていてもよい。例えば、重要と考えられる部分だけを細かくメッシュ分割してもよい。また、廃棄物の厚みと表面移動速度は、後述のように燃焼制御の制御値を補正するために用いられるため、これらの値を補正データと称する。 <S102> Next, the control device 90 mesh-divides the surface of the waste of the three-dimensional thermal image into a plurality of elements (division units), and (1) the thickness of the waste and (2) the surface for each element. The movement speed is calculated and stored in association with the control value (S102). This process is performed individually for each of the first three-dimensional thermal image (first range) and the second three-dimensional thermal image (second range). The mesh division is to divide the waste of the three-dimensional thermal image into a plurality of regions under predetermined conditions. In the present embodiment, as shown in FIG. 6, the waste is divided into a grid pattern by drawing a plurality of parallel lines in the transport direction and a plurality of parallel lines in the furnace width direction. In the present embodiment, the mesh-divided elements are quadrangular, but may have different shapes. The shapes and areas of the plurality of elements may be the same or different. For example, only the parts considered to be important may be finely divided into meshes. Further, since the waste thickness and the surface moving speed are used to correct the control values of the combustion control as described later, these values are referred to as correction data.
 上記の(1)に関し、廃棄物の厚みとは、図6に示すように、火格子から廃棄物の表面までの上下方向に沿う長さである。火格子の表面(上面)の位置は、予め制御装置90等に記憶されている。また、3次元熱画像に基づいて、廃棄物の表面の位置を特定できる。従って、この2つの位置(座標)を比較することで、廃棄物の厚みを要素毎に算出できる。以上のようにして、1枚の3次元熱画像に基づいて、ある一時刻における、要素毎の廃棄物の厚みの分布を算出できる。なお、3次元熱画像は順次作成されるので、新たに作成された3次元熱画像に対しても同様に廃棄物の厚みが算出される。このようにして、制御装置90は、要素毎の廃棄物の厚みを算出し、所定の記憶部に時系列で記憶する。 Regarding (1) above, the thickness of the waste is the length along the vertical direction from the grate to the surface of the waste, as shown in FIG. The position of the surface (upper surface) of the grate is stored in advance in the control device 90 or the like. In addition, the position of the surface of the waste can be specified based on the three-dimensional thermal image. Therefore, by comparing these two positions (coordinates), the thickness of the waste can be calculated for each element. As described above, the distribution of the thickness of waste for each element at a certain time can be calculated based on one three-dimensional thermal image. Since the three-dimensional thermal images are sequentially created, the thickness of the waste is calculated in the same manner for the newly created three-dimensional thermal images. In this way, the control device 90 calculates the thickness of the waste for each element and stores it in a predetermined storage unit in chronological order.
 廃棄物の厚みを算出する意義は以下のとおりである。即ち、乾燥部11に堆積した廃棄物は、乾燥火格子21の乾燥操作(送り操作)に伴い、この廃棄物に含まれる水分が蒸発することで乾燥し、質量が低減するとともに体積も減少する。つまり、廃棄物の厚みの時間変化は、廃棄物が乾燥していく経過を示すものであり、乾燥操作の進行の程度の一種の指標となる。また、燃焼部12に堆積した廃棄物は、燃焼火格子22の燃焼操作(送り操作)に伴い、熱分解が生じて熱分解ガスが排出されることで、質量及び体積が低減する。つまり、廃棄物の厚みの時間変化は、廃棄物が熱分解していく経過を示すものであり、燃焼操作の進行の程度の一種の指標となる。 The significance of calculating the thickness of waste is as follows. That is, the waste accumulated in the drying portion 11 is dried by evaporating the water contained in the waste as the drying operation (feeding operation) of the drying grate 21 is performed, and the mass is reduced and the volume is also reduced. .. That is, the time change of the thickness of the waste indicates the progress of the drying of the waste, and is a kind of index of the progress of the drying operation. Further, the waste accumulated in the combustion unit 12 is thermally decomposed by the combustion operation (feeding operation) of the combustion grate 22, and the thermal decomposition gas is discharged, so that the mass and volume are reduced. That is, the time change of the thickness of the waste indicates the process of thermal decomposition of the waste, and is a kind of index of the progress of the combustion operation.
 上記の(2)に関し、廃棄物の表面移動速度とは、図6に示すように、廃棄物の表面が搬送方向に移動する速度である。図6では、分かり易くするために比較的厚みが大きい部分に太線を描き、この部分が移動する様子を示している。3次元熱画像には、廃棄物の表面の形状が表れているため、時系列で作成された3次元熱画像に基づいて、廃棄物の表面がどのように動いているかを得ることができる。従って、廃棄物の表面の特定部分の移動距離と、3次元熱画像が取得された時間間隔等と、に基づいて、メッシュ分割された要素毎の表面移動速度を算出できる。以上のようにして、要素毎の廃棄物の表面移動速度の分布を算出できる。なお、3次元熱画像は順次作成されるので、新たに作成された3次元熱画像及びその過去の3次元熱画像を用いて、廃棄物の新たな表面移動速度が算出される。このようにして、制御装置90は、廃棄物の表面移動速度を算出し、所定の記憶部に時系列で記憶する。 Regarding (2) above, the surface moving speed of waste is the speed at which the surface of waste moves in the transport direction, as shown in FIG. In FIG. 6, a thick line is drawn on a relatively thick portion for easy understanding, and a state in which this portion moves is shown. Since the shape of the surface of the waste is shown in the three-dimensional thermal image, it is possible to obtain how the surface of the waste is moving based on the three-dimensional thermal image created in time series. Therefore, the surface moving speed of each mesh-divided element can be calculated based on the moving distance of a specific portion of the surface of the waste, the time interval at which the three-dimensional thermal image is acquired, and the like. As described above, the distribution of the surface moving speed of waste for each element can be calculated. Since the three-dimensional thermal images are sequentially created, a new surface movement speed of the waste is calculated using the newly created three-dimensional thermal image and the past three-dimensional thermal image. In this way, the control device 90 calculates the surface moving speed of the waste and stores it in a predetermined storage unit in chronological order.
 廃棄物の表面移動速度を算出する意義は以下のとおりである。即ち、乾燥部11の廃棄物の移動速度の時間変化は、乾燥部11に堆積した廃棄物が乾燥火格子21の乾燥操作(送り操作)により、体積を減少させながら、搬送方向に送られていく実速度を示すものであり、乾燥操作によって、廃棄物がどう「動かされてきた」かの指標である。また、燃焼部12の廃棄物の表面移動速度は、燃焼部12に堆積した廃棄物が燃焼火格子22の燃焼操作(送り操作)により、体積を減少させながら、送り方向に送られていく実速度を示すものであり、燃焼操作によって、廃棄物がどう「動かされてきた」かの指標である。なお、廃棄物の表面以外がどのように移動するかは3次元熱画像からは算出できないため、本実施形態では、「廃棄物の表面移動速度」が「廃棄物全体の移動速度」を示すとみなして、以降の計算を行う。 The significance of calculating the surface movement speed of waste is as follows. That is, the time change of the moving speed of the waste in the drying unit 11 is such that the waste accumulated in the drying unit 11 is sent in the transport direction while reducing the volume by the drying operation (feeding operation) of the drying grate 21. It shows the actual speed, and is an index of how the waste has been "moved" by the drying operation. Further, the surface moving speed of the waste in the combustion unit 12 is such that the waste accumulated in the combustion unit 12 is sent in the feed direction while reducing the volume by the combustion operation (feed operation) of the combustion grate 22. It is an indicator of velocity and an indicator of how waste has been "moved" by the combustion operation. Since it is not possible to calculate how the surface other than the surface of the waste moves from the three-dimensional thermal image, in the present embodiment, the "surface movement speed of the waste" indicates the "movement speed of the entire waste". Assuming that, the following calculations are performed.
 制御値とは、焼却炉10の燃焼状態を制御するために変更される値であり、例えば、各火格子の搬送速度、一次燃焼用気体の供給量、及び二次燃焼用気体の供給量等を定めるための値である。廃棄物の厚み、表面移動速度、及び後述の体積流量は、この制御値の影響を受ける。そのため、制御値の影響を考慮して評価及び制御を行うために、制御装置90は、廃棄物の厚み及び表面移動速度を、焼却炉10に設定した制御値と関連付けて記憶している。また、メッシュ分割された要素に応じて制御値が異なる場合(例えば乾燥火格子21上の要素と、燃焼火格子22上の要素と、後燃焼火格子23上の要素と、では火格子の搬送速度が異なる)、制御装置90は、対応する要素に応じた制御値と関連付けて廃棄物の厚み及び表面移動速度を記憶する。 The control value is a value changed to control the combustion state of the incinerator 10, and is, for example, the transfer speed of each grate, the supply amount of the primary combustion gas, the supply amount of the secondary combustion gas, and the like. It is a value for determining. The thickness of the waste, the surface moving speed, and the volumetric flow rate described later are affected by this control value. Therefore, in order to perform evaluation and control in consideration of the influence of the control value, the control device 90 stores the thickness of the waste and the surface movement speed in association with the control value set in the incinerator 10. Further, when the control value is different depending on the mesh-divided elements (for example, the element on the dry grate 21, the element on the combustion grate 22, and the element on the post-combustion grate 23, the grate is conveyed. The control device 90 stores the thickness of the waste and the surface movement speed in association with the control values corresponding to the corresponding elements.
 <S103>次に、制御装置90は、要素毎の廃棄物の厚みと表面移動速度に基づいて、要素毎の厚み経過情報を算出して制御値と関連付けて記憶する(S103)。この処理は、第1範囲と第2範囲の情報に対して個別に行われる。厚み経過情報とは、図7に示すように、前記要素に位置する前記廃棄物が当該要素に位置するまでに、厚みが時系列でどのように変化したかを示す情報である。図7には、各要素の厚み経過情報がそれぞれグラフで模式的に示されている。このグラフに示すように、厚み経過情報は、「厚み」と「時間経過に伴う搬送方向位置」を対応付けた情報である。つまり、厚み経過情報とは、例えば要素Aに着目した場合、現時点で要素Aにある廃棄物が、過去に上流側の位置に存在していた時点でどのような厚みであったかを示す情報である。なお、厚み経過情報は、厚みと時刻を対応付けた情報であってもよい。 <S103> Next, the control device 90 calculates the thickness progress information for each element based on the thickness of the waste for each element and the surface movement speed, and stores the information in association with the control value (S103). This process is performed separately for the information in the first range and the second range. As shown in FIG. 7, the thickness progress information is information indicating how the thickness changes in time series until the waste located in the element is located in the element. In FIG. 7, the thickness progress information of each element is schematically shown graphically. As shown in this graph, the thickness progress information is information in which "thickness" and "position in the transport direction with the passage of time" are associated with each other. That is, the thickness progress information is information indicating, for example, the thickness of the waste in the element A at the present time when the waste in the element A was present at the upstream position in the past when the element A is focused on. .. The thickness progress information may be information in which the thickness and the time are associated with each other.
 厚み経過情報は、例えば以下のようにして算出できる。例えば、ある要素Aに着目した場合、現時点で要素Aの位置にある廃棄物の搬送経過(つまり、どの時刻にどの要素に位置していたか)は、要素A及びその上流側の要素の現在及び過去の表面移動速度に基づいて算出できる。また、要素毎かつ時刻毎の廃棄物の厚みは、ステップS102で算出されて記憶されている。従って、廃棄物の搬送経過が示す時刻及び要素と、廃棄物の厚みと、を対応付けることで、厚み経過情報を算出できる。このようにして、制御装置90は、廃棄物の厚み及び表面移動速度に基づいて、厚み経過情報を算出する。なお、3次元熱画像は順次作成されるので、新たに作成された3次元熱画像を用いて同様の計算を行うことで、廃棄物の新たな厚み経過情報が算出される。制御装置90は、算出した厚み経過情報を所定の記憶部に時系列で記憶する。なお、厚み経過情報を制御値と関連付ける処理及び理由は、ステップS102と同様である。 The thickness progress information can be calculated as follows, for example. For example, when focusing on a certain element A, the progress of transporting the waste at the position of the element A at the present time (that is, which element was located at which time) is the current state of the element A and the element on the upstream side thereof. It can be calculated based on the past surface movement speed. Further, the thickness of the waste for each element and each time is calculated and stored in step S102. Therefore, the thickness progress information can be calculated by associating the time and elements indicated by the waste transportation progress with the thickness of the waste. In this way, the control device 90 calculates the thickness progress information based on the thickness of the waste and the surface moving speed. Since the three-dimensional thermal images are sequentially created, new thickness progress information of the waste is calculated by performing the same calculation using the newly created three-dimensional thermal images. The control device 90 stores the calculated thickness progress information in a predetermined storage unit in chronological order. The process and the reason for associating the thickness progress information with the control value are the same as in step S102.
 厚み経過情報を得る意義は以下のとおりである。即ち、乾燥部11の厚み経過情報は、乾燥部11に堆積した廃棄物が乾燥火格子21の乾燥操作(送り操作)により、火格子上を堆積して通過していくなかで、どのように体積を減少させながら、送り方向に送られていく過程を示すものであり、乾燥操作によって、廃棄物がどう体積を減らしてきたのかの指標である。また、燃焼部12の厚み経過情報は、燃焼部12に堆積した廃棄物が燃焼火格子22の燃焼操作(送り操作)により、火格子上を堆積して通過していくなかで、どのように体積を減少させながら、送り方向に送られていく過程を示すものであり、燃焼操作によって、廃棄物がどう体積を減らしてきたのかの指標である。 The significance of obtaining thickness progress information is as follows. That is, how the thickness progress information of the drying portion 11 is obtained while the waste accumulated in the drying portion 11 is deposited and passed on the grate by the drying operation (feeding operation) of the drying grate 21. It shows the process of being sent in the feeding direction while reducing the volume, and is an index of how the volume of waste has been reduced by the drying operation. Further, the thickness progress information of the combustion unit 12 can be obtained as to how the waste accumulated in the combustion unit 12 is accumulated and passed on the grate by the combustion operation (feed operation) of the combustion grate 22. It shows the process of being sent in the feeding direction while reducing the volume, and is an index of how the volume of waste has been reduced by the combustion operation.
 <S104>次に、制御装置90は、要素毎の廃棄物の表面移動速度と厚み経過情報に基づいて、要素毎の体積流量経過情報を算出し、第1範囲と第2範囲の体積流量経過情報を合わせて制御値と関連付けて記憶する(S104)。初めに、第1範囲と第2範囲のそれぞれに対して、体積流量経過情報を算出する処理がそれぞれ行われる。 <S104> Next, the control device 90 calculates the volume flow rate progress information for each element based on the surface movement speed and the thickness progress information of the waste for each element, and the volume flow rate progress in the first range and the second range. The information is also stored in association with the control value (S104). First, a process of calculating the volume flow rate progress information is performed for each of the first range and the second range.
 体積流量経過情報とは、図8に示すように、前記要素に位置する前記廃棄物が当該要素に位置するまでに体積流量が時系列でどのように変化したかを示す情報である。図8の上側の図には、各要素の体積流量経過情報がそれぞれグラフで模式的に示されている。このグラフに示すように、体積流量経過情報は、「体積流量」と「時間経過に伴う搬送方向位置」を対応付けた情報である。つまり、体積流量経過情報とは、例えば要素Aに着目した場合、現時点で要素Aにある廃棄物が、過去に上流側の位置に存在していた時点でどのような体積流量であったかを示す情報である。なお、体積流量経過情報は、体積流量と時刻の対応関係を示す情報であってもよい。 As shown in FIG. 8, the volume flow rate progress information is information indicating how the volume flow rate has changed in time series until the waste located in the element is located in the element. In the upper figure of FIG. 8, the volumetric flow rate progress information of each element is schematically shown graphically. As shown in this graph, the volume flow rate progress information is information in which the “volume flow rate” and the “transportation direction position with the passage of time” are associated with each other. That is, the volumetric flow rate progress information is information indicating what kind of volumetric flow rate the waste in the element A at the present time had when it was present at the upstream position in the past, for example, when focusing on the element A. Is. The volume flow rate progress information may be information indicating the correspondence between the volume flow rate and the time.
 体積流量は、単位時間に移動する廃棄物の体積である。従って、体積流量は、「廃棄物の厚み」、「廃棄物の表面移動速度」、「炉幅長さ」をそれぞれ掛け合わせることで、算出できる。また、要素毎の体積流量を算出する場合の炉幅長さは、各要素の炉幅長さである。従って、体積流量経過情報は、「厚み経過情報が示す廃棄物の厚み」と「廃棄物の表面移動速度」を要素(位置)及び時刻を合わせて掛け合わせた値に、「各要素の炉幅長さ」を掛けることで算出できる。このようにして、制御装置90は、要素毎の体積流量経過情報を算出する。 Volumetric flow rate is the volume of waste that moves per unit time. Therefore, the volumetric flow rate can be calculated by multiplying the "waste thickness", "waste surface moving speed", and "furnace width length", respectively. Further, the furnace width length when calculating the volume flow rate for each element is the furnace width length of each element. Therefore, the volume flow rate progress information is the value obtained by multiplying the "thickness of waste indicated by the thickness progress information" and the "surface movement speed of waste" by combining the elements (positions) and the time, and "the furnace width of each element". It can be calculated by multiplying by "length". In this way, the control device 90 calculates the volume flow rate progress information for each element.
 次に、制御装置90は、第1範囲と第2範囲の体積流量経過情報を合わせて、1つの体積流量経過情報を生成する。また、第1範囲と第2範囲は一部が重複している。従って、重複している範囲については、平均をとったり、何れか一方の体積流量経過情報を用いる等して、値を決定する。これにより、第1範囲と第2範囲を含む(つまり、乾燥部11から後燃焼部13の一部までの範囲を含む)体積流量経過情報が算出できる。 Next, the control device 90 combines the volume flow rate progress information of the first range and the second range to generate one volume flow rate progress information. In addition, the first range and the second range partially overlap. Therefore, for the overlapping range, the value is determined by taking an average or using one of the volume flow rate progress information. Thereby, the volume flow rate progress information including the first range and the second range (that is, including the range from the drying section 11 to a part of the post-combustion section 13) can be calculated.
 制御装置90は、この体積流量経過情報を所定の記憶部に記憶する。なお、3次元熱画像は順次作成されるので、新たに作成された3次元熱画像を用いて同様の計算を行うことで、廃棄物の新たな体積流量経過情報が算出される。制御装置90は、算出した体積流量経過情報を制御値と関連付けて所定の記憶部に時系列で記憶する。なお、体積流量経過情報を制御値と関連付ける処理及び理由は、ステップS102と同様である。また、炉幅長さは定数なので、体積流量経過情報は、廃棄物の厚み及び表面移動速度のみの関数である。言い換えれば、体積流量経過情報は、廃棄物の厚みだけでなく、移動速度も含む概念の情報である。 The control device 90 stores this volume flow rate progress information in a predetermined storage unit. Since the three-dimensional thermal images are sequentially created, new volume flow rate progress information of the waste is calculated by performing the same calculation using the newly created three-dimensional thermal images. The control device 90 stores the calculated volumetric flow rate progress information in a predetermined storage unit in time series in association with the control value. The process and the reason for associating the volume flow rate progress information with the control value are the same as in step S102. Moreover, since the furnace width and length are constant, the volumetric flow rate progress information is a function of only the waste thickness and the surface moving speed. In other words, the volumetric flow rate progress information is conceptual information that includes not only the thickness of waste but also the moving speed.
 なお、各火格子の炉幅長さが一定であって各要素の炉幅長さが一定である場合は、体積流量経過情報を算出する際に、炉幅長さを掛ける処理を省略してもよい。なぜなら、燃焼制御に必要となるのは、体積流量の具体的な値ではなく、その変化態様だからである。言い換えれば、図8の上側の図のグラフの縦軸は、具体的な体積流量に限られず、体積流量に比例する(相関する)値であってもよい。 If the furnace width length of each grate is constant and the furnace width length of each element is constant, the process of multiplying the furnace width length is omitted when calculating the volume flow rate progress information. May be good. This is because what is required for combustion control is not a specific value of the volumetric flow rate, but a variation mode thereof. In other words, the vertical axis of the graph in the upper figure of FIG. 8 is not limited to a specific volume flow rate, and may be a value proportional (correlated) to the volume flow rate.
 体積流量経過情報を取得する意義は以下のとおりである。即ち、乾燥部11に堆積した廃棄物は、乾燥火格子21の乾燥操作(送り操作)に伴い、水分が蒸発することで圧縮されて、質量及び体積が低減する。つまり、体積流量経過情報は、廃棄物が乾燥していく経過を示すものであり、乾燥操作の進行の程度の直接的な指標である。ここで、廃棄物の乾燥が進行し、廃棄物からの水分が蒸発する状態(乾燥状態)から、水分の蒸発量が減少して廃棄物層の内部温度が上昇することで、廃棄物から熱分解ガスが発生する状態(熱分解状態)に移行する。また、熱分解状態となることで燃焼が開始可能となるため、熱分解状態に移行した後の状態を「燃焼開始可能状態」と称する。また、燃焼開始可能状態に移行することで、廃棄物の体積変化の程度が小さくなる。そのため、体積流量経過情報は、燃焼開始可能状態の程度を評価するのに最も適した指標である。 The significance of acquiring volume flow progress information is as follows. That is, the waste accumulated in the drying portion 11 is compressed by the evaporation of water with the drying operation (feeding operation) of the drying grate 21, and the mass and volume are reduced. That is, the volumetric flow rate progress information indicates the progress of the waste drying, and is a direct index of the degree of progress of the drying operation. Here, as the drying of the waste progresses and the moisture from the waste evaporates (dry state), the amount of evaporation of the moisture decreases and the internal temperature of the waste layer rises, so that the waste heats up. It shifts to the state where decomposition gas is generated (thermal decomposition state). Further, since combustion can be started when the pyrolysis state is reached, the state after the transition to the pyrolysis state is referred to as a "combustion startable state". Further, by shifting to the state where combustion can be started, the degree of change in the volume of waste becomes smaller. Therefore, the volumetric flow rate progress information is the most suitable index for evaluating the degree of the state in which combustion can be started.
 また、燃焼部12に堆積した廃棄物は、燃焼火格子22の燃焼操作(送り操作)に伴い、熱分解が生じて熱分解ガスが排出されることで、質量及び体積が低減する。つまり、体積流量経過情報は、廃棄物が熱分解していく経過を示すものであり、燃焼操作の進行の程度の直接的な指標である。特に、廃棄物燃焼反応が進行するにつれて、廃棄物の熱分解ガス化反応(廃棄物の体積変化の程度が大きい反応)が減少し、残留する未燃炭素の後燃焼反応(廃棄物の体積変化の程度が小さい反応)に移行する。従って、体積流量経過情報は、「燃え切り状態」の程度を評価するのに最も適した指標である。 Further, the waste accumulated in the combustion unit 12 is thermally decomposed by the combustion operation (feed operation) of the combustion grate 22, and the pyrolysis gas is discharged, so that the mass and volume are reduced. That is, the volumetric flow rate progress information indicates the progress of thermal decomposition of waste, and is a direct index of the degree of progress of the combustion operation. In particular, as the waste combustion reaction progresses, the pyrolysis gasification reaction of waste (reaction with a large degree of change in the volume of waste) decreases, and the post-combustion reaction of residual unburned carbon (change in volume of waste) (Reaction with a small degree of) shifts to. Therefore, the volumetric flow rate progress information is the most suitable index for evaluating the degree of "burnout state".
 <S105>次に、制御装置90は、要素毎の体積流量経過情報とそれに関連付けられた制御値の時間変化とに基づいて、体積流量の時間変化の傾向を示す傾向データを作成する(S105)。廃棄物は、様々な性状の物質が様々な割合で混合したものであり、性状及び混合割合は不明である。また、廃棄物の体積変化は、焼却炉10の構成及び制御にも依存する。そのため、一般的には、廃棄物の体積流量の変化の傾向を把握することは困難である。しかし、本実施形態では、廃棄物をメッシュ分割して要素毎の体積流量経過情報を算出しているため、体積流量の変化が平均化されにくい。更に、メッシュ分割することで、体積流量に関する詳細かつ多量の情報を得ることができる。そして、この体積流量経過情報に影響を及ぼす制御値を、体積流量経過情報と関連付けて記憶している。以上により、本実施形態では、体積流量の変化傾向と、制御値が体積流量に及ぼす影響と、をある程度特定することが可能な傾向データを作成できる。 <S105> Next, the control device 90 creates trend data showing the tendency of the volume flow rate to change with time based on the volume flow rate progress information for each element and the time change of the control value associated therewith (S105). .. Waste is a mixture of substances with various properties in various proportions, and the properties and mixing proportions are unknown. The change in the volume of waste also depends on the configuration and control of the incinerator 10. Therefore, in general, it is difficult to grasp the tendency of changes in the volumetric flow rate of waste. However, in the present embodiment, since the waste is divided into meshes and the volume flow rate progress information for each element is calculated, it is difficult to average the change in the volume flow rate. Further, by dividing the mesh, detailed and a large amount of information regarding the volumetric flow rate can be obtained. Then, the control value that affects the volume flow rate progress information is stored in association with the volume flow rate progress information. From the above, in the present embodiment, it is possible to create trend data capable of specifying the change tendency of the volume flow rate and the influence of the control value on the volume flow rate to some extent.
 ここで作成される傾向データは、記憶部に蓄積された体積流量経過情報及び制御値をデータベース化したものであってもよい。あるいは、記憶部に蓄積された体積流量経過情報及び制御値を機械学習させて構築されたモデルであってもよい。体積流量の予測を行うために、このモデルは、例えば現在までの体積流量と制御値を入力として、将来の体積流量の変化を出力するものであることが好ましい。 The tendency data created here may be a database of volume flow rate progress information and control values stored in the storage unit. Alternatively, it may be a model constructed by machine learning the volume flow rate progress information and the control value stored in the storage unit. In order to predict the volume flow rate, it is preferable that this model outputs the change of the volume flow rate in the future by inputting the volume flow rate up to the present and the control value, for example.
 <S106>次に、制御装置90は、傾向データに基づいて、体積流量の将来の変化を要素毎に予測する(S106)。図8に示すように、例えば要素Aに着目した場合、要素Aに位置する廃棄物の体積流量が今後どのように変化するかを予測する。 <S106> Next, the control device 90 predicts the future change of the volume flow rate for each element based on the trend data (S106). As shown in FIG. 8, for example, when focusing on the element A, it is predicted how the volumetric flow rate of the waste located in the element A will change in the future.
 具体的には、制御装置90は、初めに、着目した要素の現在までの体積流量の変化と制御値の変化を読み出す。また、上述した傾向データには、体積流量の変化傾向及び制御値が体積流量に及ぼす影響が含まれているので、傾向データを用いることで、この要素に位置する廃棄物の将来の体積流量の変化を予測できる。この予測を複数の要素に対して行うことで、焼却炉10の廃棄物の全体の動きを予測できる。また、将来の体積流量の変化を予測することで、過去から将来までの期間の体積流量経過情報を算出できる。 Specifically, the control device 90 first reads out the change in the volumetric flow rate and the change in the control value of the element of interest up to the present. In addition, since the above-mentioned trend data includes the change tendency of the volume flow rate and the influence of the control value on the volume flow rate, the tendency data can be used to determine the future volume flow rate of the waste located in this element. Change can be predicted. By making this prediction for a plurality of elements, it is possible to predict the overall movement of the waste in the incinerator 10. In addition, by predicting future changes in volume flow rate, it is possible to calculate volume flow rate progress information for the period from the past to the future.
 なお、傾向データが体積流量経過情報のデータベースである場合、制御装置90は、例えば着目する要素の「現在までの体積流量の変化及び制御値」に類似する過去のデータを検索する。そして、制御装置90は、類似する1又は複数の過去のデータを抽出し、この抽出したデータにおいて体積流量がどのように変化しているかに基づいて、着目するデータの体積流量の変化を予測する。また、傾向データが機械学習により構築されたモデルである場合、着目する要素の「現在までの体積流量の変化及び制御値」を入力することで、着目するデータの将来の体積流量の変化が出力される。 When the trend data is a database of volume flow rate progress information, the control device 90 searches for past data similar to, for example, the "change in volume flow rate and control value up to the present" of the element of interest. Then, the control device 90 extracts one or a plurality of similar past data, and predicts the change in the volume flow rate of the data of interest based on how the volume flow rate changes in the extracted data. .. In addition, when the trend data is a model constructed by machine learning, by inputting the "change in volume flow rate up to the present and control value" of the element of interest, the future change in volume flow rate of the data of interest is output. Will be done.
 <S107>次に、制御装置90は、現在及び将来の要素毎の体積流量経過情報に基づいて、燃焼開始評価位置の位置変化を予測する(S107)。燃焼開始評価位置とは、焼却炉10全体として燃焼が開始した位置の指標であって燃焼を評価するための位置である。言い換えれば、燃焼開始評価位置とは、廃棄物の焼却処理において「どこで燃焼が開始したか」を焼却炉10全体で代表させる位置である。多様な性状の物質の混合物である廃棄物を焼却する場合、それぞれの物質が「燃焼開始可能状態」となるまでの時間も多様であるため、「燃焼開始可能状態となる位置」や「燃焼が開始する位置」も、多様となり、搬送方向における位置が一致するとは限らない。 <S107> Next, the control device 90 predicts the position change of the combustion start evaluation position based on the current and future volume flow rate progress information for each element (S107). The combustion start evaluation position is an index of the position where combustion has started in the incinerator 10 as a whole, and is a position for evaluating combustion. In other words, the combustion start evaluation position is a position that represents "where combustion started" in the entire incinerator 10 in the waste incineration process. When incinerating waste, which is a mixture of substances with various properties, the time required for each substance to reach the "combustion startable state" varies, so the "combustion startable state" and "combustion start state" The "starting position" also varies, and the positions in the transport direction do not always match.
 燃焼開始評価位置を特定するために、制御装置90は、初めに、要素毎の体積流量経過情報に基づいて、現在が燃焼開始可能状態か否かを要素毎に判定する。図9には、燃焼開始可能状態か否かの判定結果が示されている。図9は、搬送部20を上下方向で見た模式図であり、図9に示す正方形の1つ1つがメッシュ分割された要素である。この図9には、燃焼可能状態となった要素には斜線が記載されている。上述したように、燃焼開始可能状態に移行するタイミングで、廃棄物の体積流量が大きく低下する。従って、体積流量の変化に基づいて、燃焼開始状態か否かを判定できる。ただし、体積流量の変化の程度は、焼却炉10の制御値に応じて異なるため、制御値に応じた条件(例えば閾値)を用いて判定を行うことが好ましい。なお、廃棄物が燃焼開始可能状態となっても、実際に燃焼が開始しているとは限らない。なぜなら、廃棄物が燃焼開始可能状態となっても、廃棄物の周囲の酸素量や温度条件によっては、燃焼が発生しないからである。 In order to specify the combustion start evaluation position, the control device 90 first determines for each element whether or not the current combustion start is possible state based on the volume flow rate progress information for each element. FIG. 9 shows the determination result of whether or not the combustion can be started. FIG. 9 is a schematic view of the transport unit 20 viewed in the vertical direction, and each of the squares shown in FIG. 9 is a mesh-divided element. In FIG. 9, diagonal lines are drawn on the elements that are in a combustible state. As described above, the volumetric flow rate of the waste is greatly reduced at the timing of shifting to the combustion startable state. Therefore, it is possible to determine whether or not the combustion has started based on the change in the volumetric flow rate. However, since the degree of change in the volumetric flow rate differs depending on the control value of the incinerator 10, it is preferable to perform the determination using a condition (for example, a threshold value) according to the control value. Even if the waste is ready for combustion, it does not necessarily mean that combustion has actually started. This is because even if the waste is in a state where combustion can be started, combustion does not occur depending on the amount of oxygen around the waste and the temperature conditions.
 次に、制御装置90は、燃焼開始可能状態であるか否かの要素毎の判定結果に基づいて、燃焼開始評価位置を特定する。燃焼開始可能状態となる位置は搬送方向でバラツキがあるため、要素毎の燃焼開始可能状態か否かの判定結果を総括的に評価して、焼却炉10全体としての燃焼開始評価位置を特定する。 Next, the control device 90 specifies the combustion start evaluation position based on the determination result for each element as to whether or not the combustion start is possible state. Since the position of the combustion startable state varies depending on the transport direction, the judgment result of whether or not the combustion startable state is possible for each element is comprehensively evaluated, and the combustion start evaluation position of the incinerator 10 as a whole is specified. ..
 以上により、現在の燃焼開始評価位置が特定される。また、予測した体積流量経過情報について同じ処理を行うことで、将来の燃焼開始評価位置が特定される。両者を比較することで、燃焼開始評価位置の位置変化を予測できる。また、図8では、燃焼開始評価位置が上流側に変化した例が示されている。 From the above, the current combustion start evaluation position is specified. Further, by performing the same processing on the predicted volume flow rate progress information, the future combustion start evaluation position can be specified. By comparing the two, the position change of the combustion start evaluation position can be predicted. Further, FIG. 8 shows an example in which the combustion start evaluation position is changed to the upstream side.
 <S108>次に、制御装置90は、現在及び将来の要素毎の体積流量経過情報に基づいて、燃え切り評価位置の位置変化を予測する(S108)。燃え切り評価位置とは、焼却炉10全体として火炎燃焼が終了した位置の指標であって燃焼を評価するための位置である。言い換えれば、燃え切り評価位置とは、廃棄物の焼却処理において「どこで燃え切り状態となったか」を焼却炉10全体で代表させる位置である。多様な性状の物質の混合物である廃棄物を焼却する場合、それぞれの物質が「燃え切り状態」となるまでの時間も多様であるため、「燃え切り状態」となる位置も多様となり、搬送方向における位置が一致するとは限らない。 <S108> Next, the control device 90 predicts the position change of the burnout evaluation position based on the current and future volume flow rate progress information for each element (S108). The burnout evaluation position is an index of the position where the flame combustion is completed in the incinerator 10 as a whole, and is a position for evaluating the combustion. In other words, the burnout evaluation position is a position where "where the burnout state is reached" in the waste incineration process is represented by the entire incinerator 10. When incinerating waste, which is a mixture of substances with various properties, the time required for each substance to reach the "burn-out state" varies, so the position where the substance reaches the "burn-out state" also varies, and the transport direction The positions in are not always the same.
 燃え切り評価位置を特定するために、制御装置90は、初めに、要素毎の体積流量経過情報に基づいて、現在が燃え切り状態か否かを要素毎に判定する。また、図9には、燃え切り状態か否かの判定結果が示されている。上述したように、燃え切り状態に移行するタイミングで、廃棄物の体積流量が大きく低下する。従って、体積流量の変化に基づいて、燃え切り状態か否かを判定できる。この場合も、制御値に応じた条件(例えば閾値)を用いて判定を行うことが好ましい。 In order to specify the burn-out evaluation position, the control device 90 first determines for each element whether or not the current state is burn-out based on the volume flow rate progress information for each element. Further, FIG. 9 shows a determination result of whether or not the state is burned out. As described above, the volumetric flow rate of the waste is greatly reduced at the timing of transition to the burnout state. Therefore, it is possible to determine whether or not the state is burned out based on the change in the volumetric flow rate. Also in this case, it is preferable to perform the determination using the conditions (for example, the threshold value) according to the control value.
 次に、制御装置90は、燃え切り状態であるか否かの要素毎の判定結果に基づいて、燃え切り評価位置を特定する。燃え切り状態となる位置は搬送方向でバラツキがあるため、要素毎の燃え切り状態か否かの判定結果を総括的に評価して、焼却炉10全体としての燃え切り評価位置を特定する。 Next, the control device 90 specifies the burnout evaluation position based on the determination result for each element of whether or not it is in the burnout state. Since the position of the burn-out state varies depending on the transport direction, the burn-out evaluation position of the incinerator 10 as a whole is specified by comprehensively evaluating the determination result of whether or not the burn-out state is obtained for each element.
 以上により、現在の燃え切り評価位置が特定される。また、予測した体積流量経過情報について同じ処理を行うことで、将来の燃え切り評価位置が特定される。両者を比較することで、燃え切り評価位置の位置変化を予測できる。また、図8では、燃え切り評価位置が下流側に変化した例が示されている。 From the above, the current burnout evaluation position is specified. Further, by performing the same processing on the predicted volume flow rate progress information, the future burnout evaluation position can be specified. By comparing the two, the position change of the burnout evaluation position can be predicted. Further, FIG. 8 shows an example in which the burnout evaluation position is changed to the downstream side.
 なお、本実施形態では、廃棄物の「塊り」内のそれぞれが含有する多様な性状の物質の性状・混合比率が変化した場合であっても同様の挙動を示す「体積流量経過情報」を用いて燃焼開始可能状態及び燃え切り状態の判定を行うため、これらの判定を高い信頼性で行うことができる。その結果、信頼性の高い燃焼開始評価位置及び燃え切り評価位置を特定することができる。 In this embodiment, "volume flow rate progress information" that shows the same behavior even when the properties and mixing ratios of substances having various properties contained in each of the "lumps" of waste are changed is provided. Since it is used to determine the combustion startable state and the burnout state, these determinations can be performed with high reliability. As a result, it is possible to specify a highly reliable combustion start evaluation position and burnout evaluation position.
 <S109>次に、制御装置90は、燃焼開始評価位置の位置変化に基づいて、燃焼開始評価位置が将来的に上流側に移動していくか否かを判定する(S109)。ただし、燃焼開始評価位置の予測精度には限りがあるので、燃焼開始評価位置が将来的に僅かだけ位置変化する場合は、それに基づいて制御を行う必要性は低い。従って、制御装置90は、燃焼開始評価位置の位置変化の程度が閾値以上であるか否かに基づいて、将来的に上流側に移動していくか否かを判定する。 <S109> Next, the control device 90 determines whether or not the combustion start evaluation position will move to the upstream side in the future based on the position change of the combustion start evaluation position (S109). However, since the prediction accuracy of the combustion start evaluation position is limited, if the combustion start evaluation position changes slightly in the future, it is not necessary to perform control based on it. Therefore, the control device 90 determines whether or not to move to the upstream side in the future based on whether or not the degree of the position change of the combustion start evaluation position is equal to or more than the threshold value.
 例えば、焼却炉10に供給される廃棄物に含まれる水分量が少なくなったり、燃え易い廃棄物が供給されるようになった場合、乾燥部11で廃棄物を乾燥(及び乾燥に伴う熱分解を含む、以下同じ)させるために実際に必要な時間(実乾燥時間)が短くなる。従って、実乾燥時間が、予め想定されている廃棄物の想定乾燥時間よりも短くなる(差異が生じる)。この場合、図10に示すように、乾燥部11の中途部で乾燥が完了するため、乾燥部11の中途部で火炎燃焼が発生する(燃焼開始位置が上流側に移動する)こととなる。 For example, when the amount of water contained in the waste supplied to the incinerator 10 is reduced or the combustible waste is supplied, the waste is dried (and thermally decomposed by drying) in the drying unit 11. The time actually required (actual drying time) is shortened in order to make it (the same applies hereinafter). Therefore, the actual drying time is shorter than the estimated drying time of the waste (difference occurs). In this case, as shown in FIG. 10, since the drying is completed in the middle part of the drying part 11, flame combustion occurs in the middle part of the drying part 11 (the combustion start position moves to the upstream side).
 この状態を放置していると、乾燥部11で火炎燃焼が進行してしまうために、燃焼部12における火炎燃焼に必要な滞留時間が短くなることとなり、燃焼部12の途中で火炎燃焼の次の段階である後燃焼が徐々に開始する。その結果、火格子上の乾燥、燃焼、後燃焼のそれぞれの位置が全体的に、上流側へ徐々に移動していくこととなり、燃え切り位置(火炎燃焼の終了位置)が適切な範囲から外れてしまい、安定な燃焼を維持できなくなる。 If this state is left unattended, flame combustion will proceed in the drying unit 11, so that the residence time required for flame combustion in the combustion unit 12 will be shortened, and the flame combustion will occur in the middle of the combustion unit 12. Combustion gradually starts after the stage of. As a result, the positions of drying, combustion, and post-combustion on the grate gradually move to the upstream side as a whole, and the burnout position (end position of flame combustion) deviates from the appropriate range. It becomes impossible to maintain stable combustion.
 <S110>これを防止するため、制御装置90は、基本的には燃焼開始評価位置が将来的に上流側に移動していくと判定した場合(S109でYesの場合)、乾燥火格子21の廃棄物の搬送速度(以下、単に搬送速度)を増速させる(S110)。これにより、火格子上の乾燥、燃焼、後燃焼のそれぞれの位置が上流側に移動する事態を予防することができる。従って、燃え切り位置を適切な範囲に収めることができるので、安定な燃焼を維持することができる。なお、可動火格子の動作速度又は停止時間の変更は、搬送速度の制御における制御値の一例である。 <S110> In order to prevent this, the control device 90 basically determines that the combustion start evaluation position will move to the upstream side in the future (in the case of Yes in S109), the dry grate 21 The waste transport speed (hereinafter, simply transport speed) is increased (S110). This makes it possible to prevent the positions of drying, burning, and post-combustion on the grate from moving to the upstream side. Therefore, since the burnout position can be contained in an appropriate range, stable combustion can be maintained. The change in the operating speed or the stop time of the movable grate is an example of the control value in the control of the transport speed.
 制御装置90は、この制御値を上記の補正データに基づいて補正する。例えば、燃焼開始評価位置及び燃え切り評価位置が適正であったとしても、局所的に廃棄物の厚さ等が大き過ぎる又は小さ過ぎる箇所が存在する場合、燃焼開始評価位置及び燃え切り評価位置を適切に維持し続けても適切な燃焼が維持できなくなる可能性がある。そのため、このような場合は、廃棄物の搬送速度を変更して、燃焼開始評価位置又は燃え切り評価位置を移動させることで、この局所的な廃棄物の厚さの変化を解消させる。 The control device 90 corrects this control value based on the above correction data. For example, even if the combustion start evaluation position and the burnout evaluation position are appropriate, if there is a local waste thickness or the like that is too large or too small, the combustion start evaluation position and the burnout evaluation position are set. Proper combustion may not be maintained even if it is maintained properly. Therefore, in such a case, the change in the thickness of the local waste is eliminated by changing the transport speed of the waste and moving the combustion start evaluation position or the burnout evaluation position.
 なお、焼却炉10で生じる乾燥及び燃焼は、焼却炉10の形状や構造、及び投入される廃棄物によって大きく異なる。また、要求される処理量、焼却炉10の耐久性、及び排ガスに関する法規制等によっても、目標とする状態が大きく異なる。そのため、燃焼開始評価位置が将来的に上流側に移動すると予測した場合でも、搬送速度を増速させる制御が行われない場合も考えられる。なお、制御装置90は、乾燥火格子21の搬送速度の増速の要否及びその程度に関する制御値を、更に別の検出データ(例えば焼却炉内ガス温度センサ91からNOxガス濃度センサ94等の検出データ)に基づいて補正することが好ましい。 The drying and combustion generated in the incinerator 10 greatly differs depending on the shape and structure of the incinerator 10 and the waste to be input. In addition, the target state differs greatly depending on the required processing amount, the durability of the incinerator 10, the laws and regulations regarding exhaust gas, and the like. Therefore, even if it is predicted that the combustion start evaluation position will move to the upstream side in the future, it is possible that the control for increasing the transport speed is not performed. The control device 90 sets the control value regarding the necessity and degree of the increase in the transport speed of the drying grate 21 to further detection data (for example, from the incinerator gas temperature sensor 91 to the NOx gas concentration sensor 94, etc.). It is preferable to make corrections based on the detection data).
 <S111>制御装置90は、燃焼開始評価位置が将来的に上流側に移動していかないと判定した場合(S109でNoの場合)、燃焼開始評価位置が将来的に下流側に移動していくか否かを判定する(S111)。この判定においても、ステップS109と同様に閾値を用いておこなうことが好ましい。 <S111> When the control device 90 determines that the combustion start evaluation position does not move to the upstream side in the future (No in S109), the combustion start evaluation position moves to the downstream side in the future. Whether or not it is determined (S111). In this determination as well, it is preferable to use the threshold value as in step S109.
 例えば、焼却炉10に供給される廃棄物に含まれる水分量が多くなったり、燃えにくい廃棄物が供給されるようになった場合、乾燥部11で廃棄物を乾燥させるための実乾燥時間が長くなる。従って、実乾燥時間が、予め想定されている廃棄物の想定乾燥時間よりも長くなる(差異が生じる)。この場合、図11に示すように、乾燥部11の下流側の端部でも乾燥が完了していないため、燃焼部12の中途部で火炎燃焼が開始する(燃焼開始位置が下流側に移動する)こととなる。 For example, when the amount of water contained in the waste supplied to the incinerator 10 increases or the waste that is hard to burn is supplied, the actual drying time for drying the waste in the drying unit 11 is increased. become longer. Therefore, the actual drying time is longer than the assumed drying time of the waste that is assumed in advance (difference occurs). In this case, as shown in FIG. 11, since the drying is not completed even at the downstream end of the drying unit 11, flame combustion starts in the middle of the combustion unit 12 (the combustion start position moves to the downstream side). ) Will be.
 この状態を放置していると、燃焼部12で必要な火炎燃焼のための滞留時間が確保されないため、燃焼部12で完結されるはずの火炎燃焼が後燃焼部13にズレ込むこととなり、後燃焼部13の中途部で後燃焼が開始することとなる。その結果、火格子上の乾燥、燃焼、後燃焼のそれぞれの位置が全体的に、下流側へ徐々に移動していくこととなり、燃焼開始位置及び燃え切り位置が適切な範囲から外れてしまい、安定な燃焼を維持できなくなる。 If this state is left unattended, the residence time required for flame combustion is not secured in the combustion unit 12, so that the flame combustion that should be completed in the combustion unit 12 shifts to the post-combustion unit 13, and later. Post-combustion starts in the middle of the combustion unit 13. As a result, the respective positions of drying, combustion, and post-combustion on the grate gradually move to the downstream side as a whole, and the combustion start position and the burnout position deviate from the appropriate range. It becomes impossible to maintain stable combustion.
 <S112>これを防止するため、制御装置90は、基本的には燃焼開始評価位置が将来的に下流側に移動していくと判定した場合(S111でYesの場合)、乾燥火格子21の搬送速度を減速させる(S112)。これにより、火格子上の各部の燃焼位置が下流側に移動する事態を防止することができる。従って、燃焼開始位置及び燃え切り位置を適切な範囲に収めることができるので、安定な燃焼を維持することができる。また、搬送速度の減速時の制御においても、この制御値を、上記の補正データ又は別の検出データに基づいて補正することが好ましい。 <S112> In order to prevent this, the control device 90 basically determines that the combustion start evaluation position will move to the downstream side in the future (in the case of Yes in S111), the dry grate 21 The transport speed is reduced (S112). This makes it possible to prevent the combustion position of each part on the grate from moving to the downstream side. Therefore, the combustion start position and the burnout position can be kept in an appropriate range, so that stable combustion can be maintained. Further, also in the control at the time of deceleration of the transport speed, it is preferable to correct this control value based on the above correction data or another detection data.
 <S113>次に、制御装置90は、燃え切り評価位置が将来的に上流側に移動していくか否かを特定する(S113)。この判定においても、ステップS109と同様に閾値を用いておこなうことが好ましい。 <S113> Next, the control device 90 specifies whether or not the burnout evaluation position will move to the upstream side in the future (S113). In this determination as well, it is preferable to use the threshold value as in step S109.
 例えば、焼却炉10に供給される廃棄物に含まれるガス化熱分解成分量(熱分解によりガス化する成分の量)が少なくなった場合、燃焼部12で廃棄物が火炎燃焼するために実際に必要な時間(実燃焼時間)が短くなる。従って、実燃焼時聞が、予め想定されている廃棄物の想定燃焼時間よりも短くなる(差異が生じる)。この場合、図10に示すように、燃焼部12の中途部で燃焼が完了するため、燃焼部12の中途部で燃え切り状態になる(燃え切り位置が上流側に移動する)。この状態を放置していると、燃焼部12での燃焼が行われる位置、後燃焼部13での後燃焼が行われる位置がそれぞれ上流側へ徐々に移動していくこととなり、安定な燃焼を維持できなくなる。 For example, when the amount of gasified pyrolysis component (the amount of gasified component gasified by thermal decomposition) contained in the waste supplied to the incinerator 10 is reduced, the waste is actually burned by flame in the combustion unit 12. The time required for this (actual combustion time) is shortened. Therefore, the actual combustion time is shorter than the estimated combustion time of the waste that is assumed in advance (a difference occurs). In this case, as shown in FIG. 10, since the combustion is completed in the middle part of the combustion part 12, the burnout state is reached in the middle part of the combustion part 12 (the burnout position moves to the upstream side). If this state is left unattended, the position where combustion is performed in the combustion unit 12 and the position where post-combustion is performed in the post-combustion unit 13 gradually move to the upstream side, respectively, and stable combustion is achieved. It becomes unsustainable.
 <S114>これを防止するため、制御装置90は、基本的には燃え切り評価位置が将来的に上流側に移動していくと特定した場合(S113でYesの場合)、燃焼火格子22の廃棄物の搬送速度(以下、単に搬送速度)を増速させる(S114)。これにより、火格子上の燃焼、後燃焼のそれぞれの位置が上流側に移動する事態を防止することができる。従って、燃え切り位置を適切な範囲に収めることができるので、安定な燃焼を維持することができる。 <S114> In order to prevent this, the control device 90 basically determines that the burnout evaluation position will move to the upstream side in the future (in the case of Yes in S113), the combustion grate 22 The waste transport speed (hereinafter, simply transport speed) is increased (S114). This makes it possible to prevent the positions of combustion and post-combustion on the grate from moving to the upstream side. Therefore, since the burnout position can be contained in an appropriate range, stable combustion can be maintained.
 なお、燃え切り評価位置が上流側に移動していても、様々な要因によって、搬送速度を増速させる制御が行われない場合も考えられる。なお、制御装置90は、燃焼火格子22の搬送速度の増速の要否及びその程度について、燃え切り評価位置が将来的に上流側に移動していくか否かに基づく制御値を上記の補正データ又は別の検出データに基づいて補正することが好ましい。 Even if the burnout evaluation position is moved to the upstream side, it is possible that the control to increase the transport speed is not performed due to various factors. The control device 90 sets the control value based on whether or not the burnout evaluation position moves to the upstream side in the future with respect to whether or not the transfer speed of the combustion grate 22 needs to be increased and the degree thereof. It is preferable to make corrections based on the correction data or other detection data.
 <S115>制御装置90は、燃え切り評価位置が将来的に上流側に移動していかないと特定した場合(S113でNoの場合)、燃え切り評価位置が将来的に下流側に移動していくか否かを判定する(S115)。この判定においても、ステップS109と同様に閾値を用いておこなうことが好ましい。 <S115> When the control device 90 specifies that the burnout evaluation position will not move to the upstream side in the future (No in S113), the burnout evaluation position will move to the downstream side in the future. Whether or not it is determined (S115). In this determination as well, it is preferable to use the threshold value as in step S109.
 例えば、焼却炉10に供給される廃棄物に含まれるガス化熱分解成分量が多くなった場合、燃焼部12で廃棄物を燃焼させるための実燃焼時間が長くなる。従って、実燃焼時間が、予め想定されている廃棄物の想定燃焼時間よりも長くなる(差異が生じる)。この場合、図11に示すように、燃焼部12の下流側の端部でも燃焼が完了していないため、後燃焼部13の中途部で燃え切り状態になる(燃え切り位置が下流側に移動する)こととなる。この状態を放置していると、火格子上の燃焼、後燃焼のそれぞれの位置が全体的に、下流側へ徐々に移動していくこととなり、安定な燃焼を維持できなくなる。 For example, when the amount of gasification pyrolysis component contained in the waste supplied to the incinerator 10 increases, the actual combustion time for burning the waste in the combustion unit 12 becomes long. Therefore, the actual combustion time becomes longer than the estimated combustion time of the waste that is assumed in advance (difference occurs). In this case, as shown in FIG. 11, since combustion is not completed even at the downstream end of the combustion unit 12, the combustion is burnt out in the middle of the post-combustion unit 13 (the burnout position moves to the downstream side). To do). If this state is left unattended, the positions of combustion and post-combustion on the grate will gradually move to the downstream side as a whole, and stable combustion cannot be maintained.
 <S116>これを防止するため、制御装置90は、基本的には燃え切り評価位置が将来的に下流側に移動していくと特定した場合(S115でYesの場合)、燃焼火格子22の搬送速度を減速させる(S116)。これにより、火格子上の燃焼、後燃焼のそれぞれの位置が下流側に移動する事態を防止することができる。従って、燃え切り位置を適切な範囲に収めることができるので、安定な燃焼を維持することができる。また、搬送速度の減速時の制御においても、この制御値を、上記の補正データ又は別の検出データに基づいて補正することが好ましい。 <S116> In order to prevent this, the control device 90 basically determines that the burnout evaluation position will move to the downstream side in the future (in the case of Yes in S115), the combustion grate 22 The transport speed is reduced (S116). This makes it possible to prevent the positions of combustion and post-combustion on the grate from moving to the downstream side. Therefore, since the burnout position can be contained in an appropriate range, stable combustion can be maintained. Further, also in the control at the time of deceleration of the transport speed, it is preferable to correct this control value based on the above correction data or another detection data.
 <S117>また、燃焼開始評価位置/燃え切り評価位置の位置が変化するということは、焼却炉10に供給されている廃棄物の性状の状態が変化していることを意味する。そのため、乾燥、燃焼、及び後燃焼に必要な時間は変化しているため、全体の火格子の搬送速度を変更する必要がある。従って、制御装置90は、廃棄物の性状の変化の状態に応じて別の火格子の搬送速度を変更する(S117)。別の火格子とは、ステップS109からS116の処理で搬送速度を変更しなかった火格子である。基本的には、ステップS109からS116の処理で搬送速度を変更した乾燥火格子21又は燃焼火格子22と同様に、他の火格子の搬送速度を増速又は減速することが好ましいが、様々な要因により、上記とは異なる制御を行うことが好ましい場合も考えられる。また、制御装置90は、他の火格子の搬送速度の変更の要否及び変更すべき量について、ステップS109からS116の処理で搬送速度を変更した乾燥火格子21又は燃焼火格子22の搬送速度だけではなく、更に他の検出データに基づいて補正することが好ましい。 <S117> Further, the change in the position of the combustion start evaluation position / burnout evaluation position means that the state of the properties of the waste supplied to the incinerator 10 has changed. Therefore, since the time required for drying, burning, and post-burning is changing, it is necessary to change the transport speed of the entire grate. Therefore, the control device 90 changes the transport speed of another grate according to the state of change in the properties of the waste (S117). Another grate is a grate in which the transport speed is not changed in the processes of steps S109 to S116. Basically, like the dry grate 21 or the combustion grate 22 whose transport speed is changed in the processes of steps S109 to S116, it is preferable to increase or decrease the transport speed of other grate, but various Depending on the factors, it may be preferable to perform control different from the above. Further, the control device 90 determines the transfer speed of the dry grate 21 or the combustion grate 22 whose transfer speed is changed in the processes of steps S109 to S116 regarding the necessity of changing the transfer speed of the other grate and the amount to be changed. It is preferable to make corrections based on not only the detection data but also other detection data.
 <S118>次に、制御装置90は、燃焼開始評価位置/燃え切り評価位置の位置の変化の原因である廃棄物の性状の変化の状態に応じて、第1ダンパ81から第5ダンパ85の少なくとも何れかを調整することで、一次燃焼用気体及び二次燃焼用気体の供給量を調整する(S118)。即ち、この第1ダンパ81から第5ダンパ85の開度が制御値の一例である。従来では、例えば焼却炉内ガス温度センサ91からNOxガス濃度センサ94の検出データ等を用いて、一次燃焼用気体及び二次燃焼用気体の供給量を調整している。 <S118> Next, the control device 90 uses the first damper 81 to the fifth damper 85 according to the state of the change in the properties of the waste, which is the cause of the change in the position of the combustion start evaluation position / burnout evaluation position. By adjusting at least one of them, the supply amounts of the primary combustion gas and the secondary combustion gas are adjusted (S118). That is, the opening degree of the first damper 81 to the fifth damper 85 is an example of the control value. Conventionally, for example, the supply amounts of the primary combustion gas and the secondary combustion gas are adjusted by using the detection data of the NOx gas concentration sensor 94 from the gas temperature sensor 91 in the incinerator.
 これに対し、本実施形態では、他の検出データに加えて、燃焼開始評価位置/燃え切り評価位置の移動方向(上流側に移動しているか、下流側に移動しているか)に基づいて、一次燃焼用気体及び二次燃焼用気体の供給量を調整する。ここで、燃焼開始評価位置が上流側に移動したり燃え切り評価位置が下流側に移動したりする場合、廃棄物の性状にも関係するが一般的には、熱分解ガスの時間あたりの発生量が多くなるとともに、一次燃焼が行われることで生じる一次燃焼ガス(CO等の未燃焼ガスを含む)の時間あたりの発生量が多くなる。従って、一次燃焼用気体及び二次燃焼用気体の供給量を増加させる必要がある。一方で、燃焼開始評価位置が下流側に移動したり燃え切り評価位置が上流側に移動したりする場合、廃棄物の性状にも関係するが一般的には、熱分解ガスの時間あたりの発生量が少なくなるとともに、一次燃焼が行われることで生じる時間あたりの一次燃焼ガス時間あたりの発生量が少なくなる。従って、一次燃焼用気体及び二次燃焼用気体の供給量を低減させる必要がある。 On the other hand, in the present embodiment, in addition to other detection data, based on the movement direction of the combustion start evaluation position / burnout evaluation position (whether it is moving to the upstream side or the downstream side), Adjust the supply amount of primary combustion gas and secondary combustion gas. Here, when the combustion start evaluation position moves to the upstream side or the burnout evaluation position moves to the downstream side, it is generally related to the properties of the waste, but generally, the pyrolysis gas is generated per hour. As the amount increases, the amount of primary combustion gas (including unburned gas such as CO) generated by the primary combustion increases per hour. Therefore, it is necessary to increase the supply amount of the primary combustion gas and the secondary combustion gas. On the other hand, when the combustion start evaluation position moves to the downstream side or the burnout evaluation position moves to the upstream side, it is generally generated per hour of pyrolysis gas, although it is related to the properties of waste. As the amount decreases, the amount of primary combustion gas generated per hour caused by the primary combustion also decreases. Therefore, it is necessary to reduce the supply amount of the primary combustion gas and the secondary combustion gas.
 また、廃棄物の性状は常に変化する可能性があるため、制御装置90は、ステップS115でNoの場合、及びステップS118の処理の後に、再びステップS101以降の処理を行う。これにより、廃棄物の性状が変化した場合であっても、廃棄物の乾燥及び燃焼の進行状況が適正になるように修正することができるため、燃焼開始位置及び燃え切り位置を適切な範囲に収め、安定な燃焼を維持することができる。 Further, since the properties of the waste may change at all times, the control device 90 performs the processing of step S101 and subsequent steps again after the case of No in step S115 and the processing of step S118. As a result, even if the properties of the waste change, it can be corrected so that the progress of drying and burning of the waste becomes appropriate, so that the combustion start position and the burnout position are set within an appropriate range. It can be stored and stable combustion can be maintained.
 以上に説明したように、本実施形態の燃焼状況評価方法は、乾燥部11と燃焼部12と後燃焼部13とに区分されており、廃棄物が堆積した状態で間欠的に動作することで当該廃棄物を搬送する火格子を備える焼却炉10に対して行われる。この燃焼状況評価方法は、作成工程と、分割工程と、第1算出工程と、第2算出工程と、第3算出工程と、第1予測工程と、第2予測工程と、を含む。作成工程では、複数の赤外線カメラ95を用いて、火炎が放射しない波長の光を選択的に透過させる選択透過フィルタ95aを介して、少なくとも乾燥部11及び燃焼部12に堆積した廃棄物を観測して、視点が異なる複数の熱画像を取得し、当該複数の熱画像に基づいて、3次元熱画像を作成する。分割工程では、3次元熱画像の廃棄物を複数の要素にメッシュ分割する。第1算出工程では、3次元熱画像に基づいて、廃棄物の厚み、及び、廃棄物の表面移動速度を要素毎に算出する。第2算出工程では、第1算出工程の算出結果に基づいて、要素に位置する廃棄物が当該要素に位置するまでに厚みが時系列でどのように変化したかを示す厚み経過情報を、要素毎に算出する。第3算出工程では、第1算出工程及び第2算出工程の算出結果に基づいて、要素に位置する廃棄物が当該要素に位置するまでに体積流量が時系列でどのように変化したかを示す体積流量経過情報を、要素毎に算出する。第1予測工程では、要素毎の体積流量経過情報と、燃焼制御用に用いる値であって火格子の搬送速度を設定するための値を少なくとも含む制御値の時間変化と、に基づいて得られる体積流量の時間経過の傾向に基づいて、体積流量の将来の変化を要素毎に予測する。第2予測工程では、第1予測工程の予測結果に基づいて、焼却炉10全体として燃焼が開始した位置の指標であって燃焼を評価するための位置である燃焼開始評価位置、及び、焼却炉10全体として火炎燃焼が終了した位置の指標であって燃焼を評価するための位置である燃え切り評価位置の少なくとも一方の位置変化を予測する。 As described above, the combustion state evaluation method of the present embodiment is divided into a drying unit 11, a combustion unit 12, and a post-combustion unit 13, and operates intermittently in a state where waste is accumulated. This is done for an incinerator 10 having a grate for transporting the waste. This combustion state evaluation method includes a preparation step, a division step, a first calculation step, a second calculation step, a third calculation step, a first prediction step, and a second prediction step. In the preparation process, a plurality of infrared cameras 95 are used to observe at least the waste accumulated in the drying section 11 and the burning section 12 through the selective transmission filter 95a that selectively transmits light having a wavelength not emitted by the flame. Therefore, a plurality of thermal images having different viewpoints are acquired, and a three-dimensional thermal image is created based on the plurality of thermal images. In the dividing step, the waste of the three-dimensional thermal image is mesh-divided into a plurality of elements. In the first calculation step, the thickness of the waste and the surface movement speed of the waste are calculated for each element based on the three-dimensional thermal image. In the second calculation step, based on the calculation result of the first calculation step, the element includes thickness progress information indicating how the thickness of the waste located in the element changes in time series until it is located in the element. Calculated for each. In the third calculation step, based on the calculation results of the first calculation step and the second calculation step, it is shown how the volume flow rate changes in time series until the waste located in the element is located in the element. Volumetric flow rate progress information is calculated for each element. In the first prediction step, it is obtained based on the volume flow rate progress information for each element and the time change of the control value including at least the value used for combustion control for setting the transport speed of the grate. Based on the tendency of the volume flow rate over time, the future change of the volume flow rate is predicted for each element. In the second prediction step, based on the prediction result of the first prediction step, the combustion start evaluation position, which is an index of the position where combustion has started in the incinerator 10 as a whole and is a position for evaluating combustion, and the incinerator 10 As a whole, the position change of at least one of the burnout evaluation positions, which is an index of the position where the flame combustion is completed and is the position for evaluating the combustion, is predicted.
 これにより、廃棄物の体積流量が時系列でどのように変化してきたかに基づいて、将来の体積流量の変化を予測して、燃焼開始評価位置/燃え切り評価位置の位置変化を予測するため、廃棄物の厚みのみを用いる方法等と比較して、高い信頼性で燃焼開始評価位置/燃え切り評価位置の位置変化を予測できる。更に、廃棄物をメッシュ分割して評価することで、炉幅方向の端部のみを評価する方法と比較して、より高い信頼性で燃焼開始評価位置/燃え切り評価位置の位置変化を予測できる。 As a result, in order to predict future changes in volumetric flow rate based on how the volumetric flow rate of waste has changed over time, and to predict changes in the combustion start evaluation position / burnout evaluation position, Compared with a method using only the thickness of waste, the position change of the combustion start evaluation position / burnout evaluation position can be predicted with high reliability. Furthermore, by dividing the waste into meshes and evaluating it, it is possible to predict the position change of the combustion start evaluation position / burnout evaluation position with higher reliability than the method of evaluating only the end portion in the furnace width direction. ..
 また、本実施形態の燃焼状況評価方法において、作成工程では、少なくとも2組の赤外線カメラ95が用いられ、1組目の赤外線カメラ95によって廃棄物の第1範囲が撮像され、2組目の赤外線カメラ95によって廃棄物の第2範囲が撮像される。第1算出工程、第2算出工程、又は第3算出工程では、第1範囲の算出結果と、第2範囲の算出結果と、を合わせて、第1範囲と第2範囲を含む範囲の算出結果が作成される。 Further, in the combustion condition evaluation method of the present embodiment, at least two sets of infrared cameras 95 are used in the creation process, and the first range of waste is imaged by the first set of infrared cameras 95, and the second set of infrared rays is captured. A second area of waste is imaged by the camera 95. In the first calculation step, the second calculation step, or the third calculation step, the calculation result of the first range and the calculation result of the second range are combined, and the calculation result of the range including the first range and the second range is combined. Is created.
 なお、本実施形態で示した例では、第3算出工程で第1範囲と第2範囲の体積流量経過情報をそれぞれ算出した後に、第1範囲と第2範囲を含む範囲の体積流量経過情報を算出する例を説明した。 In the example shown in the present embodiment, after the volume flow rate progress information of the first range and the second range is calculated in the third calculation step, respectively, the volume flow rate progress information of the range including the first range and the second range is obtained. An example of calculation has been described.
 これにより、第1範囲の3次元熱画像と第2範囲の3次元熱画像を合成する処理と比較して、演算を簡単にすることができる。 As a result, the calculation can be simplified as compared with the process of synthesizing the three-dimensional thermal image of the first range and the three-dimensional thermal image of the second range.
 また、本実施形態の燃焼制御方法において、第2予測工程では、少なくとも燃焼開始評価位置の位置変化を予測する。燃焼開始評価位置が搬送方向上流側に移動すると予測された場合は、乾燥火格子21による廃棄物の搬送速度を増速させる制御を行う。燃焼開始評価位置が搬送方向下流側に移動すると予測された場合は、乾燥火格子21による廃棄物の搬送速度を減速させる制御を行う。 Further, in the combustion control method of the present embodiment, at least the position change of the combustion start evaluation position is predicted in the second prediction step. When it is predicted that the combustion start evaluation position will move to the upstream side in the transport direction, the dry grate 21 controls to increase the transport speed of the waste. When it is predicted that the combustion start evaluation position will move to the downstream side in the transport direction, the dry grate 21 controls to reduce the transport speed of the waste.
 これにより、燃焼開始位置が適切になるように調整することができるため、安定な燃焼を維持することができる。特に、過去から現在にかけた燃焼開始評価位置の位置変化ではなく、現在から将来にかけた燃焼開始評価位置の位置変化に基づいて制御を行うため、非常に安定な燃焼を維持できる。 As a result, the combustion start position can be adjusted to be appropriate, so stable combustion can be maintained. In particular, since the control is performed based on the position change of the combustion start evaluation position from the present to the future, not the position change of the combustion start evaluation position from the past to the present, very stable combustion can be maintained.
 また、本実施形態の燃焼制御方法において、第2予測工程では、少なくとも燃え切り評価位置の位置変化を予測する。燃え切り評価位置が搬送方向上流側に移動すると予測された場合は、燃焼火格子22による廃棄物の搬送速度を増速させる制御を行う。燃え切り評価位置が搬送方向下流側に移動すると予測された場合は、燃焼火格子22による廃棄物の搬送速度を減速させる制御を行う。 Further, in the combustion control method of the present embodiment, at least the position change of the burnout evaluation position is predicted in the second prediction step. When it is predicted that the burnout evaluation position will move to the upstream side in the transport direction, the combustion grate 22 controls to increase the transport speed of the waste. When it is predicted that the burnout evaluation position will move to the downstream side in the transport direction, the combustion grate 22 controls to reduce the transport speed of the waste.
 これにより、燃え切り位置が適切になるように調整することができるため、安定な燃焼を維持することができる。特に、過去から現在にかけた燃え切り評価位置の位置変化ではなく、現在から将来にかけた燃え切り評価位置の位置変化に基づいて制御を行うため、非常に安定な燃焼を維持できる。 As a result, the burnout position can be adjusted to be appropriate, so stable combustion can be maintained. In particular, since the control is performed based on the position change of the burnout evaluation position from the present to the future, not the position change of the burnout evaluation position from the past to the present, very stable combustion can be maintained.
 また、本実施形態の燃焼制御方法では、第1算出工程で算出した、廃棄物の厚み、及び、廃棄物の表面移動速度の少なくとも何れかに基づいて、燃焼火格子22の搬送速度を変速させるための制御値を補正する。 Further, in the combustion control method of the present embodiment, the transport speed of the combustion grate 22 is changed based on at least one of the thickness of the waste and the surface movement speed of the waste calculated in the first calculation step. Correct the control value for.
 これにより、例えば、燃焼開始評価位置又は燃え切り評価位置を適切な位置から敢えて変化させて対応すべき状況が生じた場合であっても、当該状況に対応できる。 Thereby, for example, even if a situation should be dealt with by intentionally changing the combustion start evaluation position or the burnout evaluation position from an appropriate position, the situation can be dealt with.
 また、本実施形態の燃焼制御方法において、第2予測工程で予測した評価位置の位置変化に基づいて乾燥部11及び燃焼部12の少なくとも一方の火格子による廃棄物の搬送速度を変更した場合は、評価位置の位置変化の原因である廃棄物の性状の変化の状態に応じて、別の火格子による廃棄物の搬送速度を変更する。 Further, in the combustion control method of the present embodiment, when the waste transfer speed by at least one grate of the drying unit 11 and the combustion unit 12 is changed based on the position change of the evaluation position predicted in the second prediction step. , The transport speed of waste by another grate is changed according to the state of change in the properties of waste that is the cause of the change in the position of the evaluation position.
 これにより、燃焼状態の全体の変動を予防できる。 This can prevent the overall fluctuation of the combustion state.
 また、本実施形態の燃焼制御方法では、第2予測工程で予測した評価位置(燃焼開始評価位置、燃え切り評価位置)の位置変化の原因となる廃棄物の性状の変化の状態に応じて、乾燥部11、燃焼部12、及び後燃焼部13の少なくとも何れかへ供給する一次燃焼用気体の供給量を調整する。 Further, in the combustion control method of the present embodiment, according to the state of change in the properties of the waste that causes the position change of the evaluation position (combustion start evaluation position, burnout evaluation position) predicted in the second prediction step. The amount of primary combustion gas supplied to at least one of the drying unit 11, the combustion unit 12, and the post-combustion unit 13 is adjusted.
 これにより、廃棄物の搬送速度を変更したことに起因する一次燃焼用気体の過不足を予防することができるので、乾燥、燃焼、及び後燃焼をより適切に行うことができる。 As a result, it is possible to prevent excess or deficiency of the primary combustion gas due to the change in the transport speed of the waste, so that drying, combustion, and post-combustion can be performed more appropriately.
 また、本実施形態の燃焼制御方法において、焼却炉10では、乾燥部11、燃焼部12、及び後燃焼部13で行われる一次燃焼と、当該一次燃焼で発生した未燃焼ガスを含む一次燃焼ガスを燃焼させる二次燃焼と、が行われる。第2予測工程で予測した評価位置の位置変化の原因となる廃棄物の性状の変化の状態に応じて、二次燃焼用気体の供給量を調整する。 Further, in the combustion control method of the present embodiment, in the incinerator 10, the primary combustion performed in the drying section 11, the combustion section 12, and the post-combustion section 13 and the primary combustion gas containing the unburned gas generated in the primary combustion are included. Secondary combustion, which burns, is performed. The supply amount of the secondary combustion gas is adjusted according to the state of the change in the properties of the waste that causes the position change of the evaluation position predicted in the second prediction step.
 これにより、燃焼開始評価位置の移動方向に基づいて一次燃焼の進行状況(即ち一次燃焼ガスの発生量等)を推測することができるので、それに応じて二次燃焼用気体の供給量を調整することで、二次燃焼において一次燃焼ガスに含まれる未燃焼ガスを十分に燃焼させることができる。 As a result, the progress of primary combustion (that is, the amount of primary combustion gas generated, etc.) can be estimated based on the moving direction of the combustion start evaluation position, and the supply amount of secondary combustion gas is adjusted accordingly. As a result, the unburned gas contained in the primary combustion gas can be sufficiently burned in the secondary combustion.
 以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。 Although the preferred embodiment of the present invention has been described above, the above configuration can be changed as follows, for example.
 上記実施形態では、燃焼開始評価位置と燃え切り評価位置の両方を特定するが、何れか一方のみを特定する構成であってもよい。 In the above embodiment, both the combustion start evaluation position and the burnout evaluation position are specified, but only one of them may be specified.
 上記実施形態では、2組の赤外線カメラ95で乾燥部11から後燃焼部13の廃棄物を観察する構成であるが、1組又は3組以上の赤外線カメラ95でこれらの廃棄物を観察する構成であってもよい。 In the above embodiment, two sets of infrared cameras 95 are used to observe the wastes from the drying section 11 to the post-burning section 13, but one set or three or more sets of infrared cameras 95 are used to observe these wastes. It may be.
 上記実施形態では、燃焼開始位置/燃え切り評価位置の将来的な移動方向に基づいて、火格子の搬送速度と、一次燃焼用気体と二次燃焼用気体の供給量と、を変更する処理を行ったが、燃焼開始位置/燃え切り評価位置の将来的な移動速度を用いて、これらの値を変更する処理を行ってもよい。 In the above embodiment, the process of changing the transport speed of the grate and the supply amount of the primary combustion gas and the secondary combustion gas is performed based on the future movement direction of the combustion start position / burnout evaluation position. However, the process of changing these values may be performed using the future moving speed of the combustion start position / burnout evaluation position.
 上記実施形態で示したフローチャートは一例であり、一部の処理を省略したり、一部の処理の内容を変更したり、新たな処理を追加したりしてもよい。 The flowchart shown in the above embodiment is an example, and some processes may be omitted, the contents of some processes may be changed, or new processes may be added.
 例えば、上記実施形態では、第1と第2の3次元熱画像を作成し、それぞれの3次元熱画像に対して、ステップS102からS104の処理がそれぞれ行われる。これに代えて、2組の赤外線カメラ95が取得した熱画像に基づいて、1つの3次元熱画像(乾燥部11から後燃焼部13までの廃棄物の3次元位置が表れる熱画像)を作成してもよい。この場合、1つの3次元熱画像に対して、ステップS102からS104の処理が行われる。 For example, in the above embodiment, the first and second three-dimensional thermal images are created, and the processes of steps S102 to S104 are performed on each of the three-dimensional thermal images. Instead of this, one three-dimensional thermal image (a thermal image showing the three-dimensional position of the waste from the drying portion 11 to the post-combustion portion 13) is created based on the thermal images acquired by the two sets of infrared cameras 95. You may. In this case, the processes of steps S102 to S104 are performed on one three-dimensional thermal image.
 また、上記実施形態では、第1範囲及び第2範囲についてそれぞれ体積流量経過情報を算出してから両者を合成したが、それに代えて、第1範囲及び第2範囲について、厚みと表面移動速度(又は厚み経過情報)を算出した後に、両者を合成してもよい。 Further, in the above embodiment, the volume flow rate progress information is calculated for each of the first range and the second range, and then the two are combined. Instead, for the first range and the second range, the thickness and the surface movement speed ( Alternatively, after calculating the thickness progress information), both may be combined.
 上記実施形態では、燃焼制御で用いる検出データとして、焼却炉内ガス温度センサ91、焼却炉出口ガス温度センサ92、COガス濃度センサ93、及びNOxガス濃度センサ94の検出データを挙げて説明したが、少なくとも1つの検出データを省略して燃焼制御を行ってもよいし、上記とは別の検出データを加えて燃焼制御を行ってもよい。別の検出データとしては、例えば、排ガスからの熱量回収に伴うボイラ蒸発量、又は、水噴霧により冷却を行う場合は水噴霧冷却用水量等を用いることができる。 In the above embodiment, as the detection data used in the combustion control, the detection data of the incinerator gas temperature sensor 91, the incinerator outlet gas temperature sensor 92, the CO gas concentration sensor 93, and the NOx gas concentration sensor 94 have been described. , Combustion control may be performed by omitting at least one detection data, or combustion control may be performed by adding detection data different from the above. As another detection data, for example, the amount of boiler evaporation associated with the recovery of heat from the exhaust gas, or the amount of water for water spray cooling when cooling by water spray can be used.
 10 焼却炉
 11 乾燥部
 12 燃焼部
 13 後燃焼部
 21 乾燥火格子
 22 燃焼火格子
 23 後燃焼火格子
 90 制御装置
 95 赤外線カメラ
 96 画像処理装置
10 Incinerator 11 Drying part 12 Combustion part 13 Post-combustion part 21 Dry grate 22 Combustion grate 23 Post-combustion grate 90 Control device 95 Infrared camera 96 Image processing device

Claims (8)

  1.  乾燥部と燃焼部と後燃焼部とに区分されており、廃棄物が堆積した状態で間欠的に動作することで当該廃棄物を搬送する火格子を備える焼却炉に対して、
     複数の赤外線カメラを用いて、火炎が放射しない波長の光を選択的に透過させるフィルタを介して、少なくとも前記乾燥部及び前記燃焼部に堆積した前記廃棄物を観測して、視点が異なる複数の熱画像を取得し、当該複数の熱画像に基づいて、3次元熱画像を作成する作成工程と、
     前記3次元熱画像の前記廃棄物を複数の要素にメッシュ分割する分割工程と、
     前記3次元熱画像に基づいて、前記廃棄物の厚み、及び、前記廃棄物の表面移動速度を前記要素毎に算出する第1算出工程と、
     前記第1算出工程の算出結果に基づいて、前記要素に位置する前記廃棄物が当該要素に位置するまでに厚みが時系列でどのように変化したかを示す厚み経過情報を、前記要素毎に算出する第2算出工程と、
     前記第1算出工程及び前記第2算出工程の算出結果に基づいて、前記要素に位置する前記廃棄物が当該要素に位置するまでに体積流量が時系列でどのように変化したかを示す体積流量経過情報を、前記要素毎に算出する第3算出工程と、
     前記要素毎の前記体積流量経過情報と、燃焼制御用に用いる値であって前記火格子の搬送速度を設定するための値を少なくとも含む制御値の時間変化と、に基づいて得られる体積流量の時間経過の傾向に基づいて、体積流量の将来の変化を前記要素毎に予測する第1予測工程と、
     前記第1予測工程の予測結果に基づいて、焼却炉全体として燃焼が開始した位置の指標であって燃焼を評価するための位置である燃焼開始評価位置、及び、焼却炉全体として火炎燃焼が終了した位置の指標であって燃焼を評価するための位置である燃え切り評価位置の少なくとも一方の位置変化を予測する第2予測工程と、
    を含む処理を行うことを特徴とする燃焼状況評価方法。
    For incinerators equipped with a grate that is divided into a drying section, a combustion section, and a post-combustion section and that transports the waste by operating intermittently in a state where the waste is accumulated.
    A plurality of infrared cameras are used to observe at least the waste accumulated in the dry portion and the combustion portion through a filter that selectively transmits light having a wavelength not emitted by the flame, and a plurality of viewpoints are different. A creation process of acquiring a thermal image and creating a three-dimensional thermal image based on the plurality of thermal images,
    A division step of mesh-dividing the waste of the three-dimensional thermal image into a plurality of elements, and
    A first calculation step of calculating the thickness of the waste and the surface moving speed of the waste for each element based on the three-dimensional thermal image, and
    Based on the calculation result of the first calculation step, thickness progress information indicating how the thickness of the waste located in the element changes in time series until it is located in the element is provided for each element. The second calculation process to calculate and
    Based on the calculation results of the first calculation step and the second calculation step, the volume flow rate showing how the volume flow rate changed in time series until the waste located in the element was located in the element. The third calculation step of calculating the progress information for each of the elements, and
    The volumetric flow rate obtained based on the volumetric flow rate progress information for each element and the time change of the control value including at least a value used for combustion control for setting the transport speed of the grate. The first prediction step of predicting the future change of the volume flow rate for each of the above factors based on the tendency of the passage of time,
    Based on the prediction result of the first prediction step, the combustion start evaluation position, which is an index of the position where combustion started in the incinerator as a whole and is a position for evaluating combustion, and the flame combustion in the incinerator as a whole are completed. A second prediction step that predicts a change in the position of at least one of the burnout evaluation positions, which is an index of the position and is a position for evaluating combustion.
    A combustion condition evaluation method characterized by performing a process including.
  2.  請求項1に記載の燃焼状況評価方法であって、
     前記作成工程では、少なくとも2組の前記赤外線カメラが用いられ、1組目の前記赤外線カメラによって前記廃棄物の第1範囲が撮像され、2組目の前記赤外線カメラによって前記廃棄物の第2範囲が撮像され、
     前記第1算出工程、前記第2算出工程、又は第3算出工程では、前記第1範囲の算出結果と、前記第2範囲の算出結果と、を合わせて、前記第1範囲と前記第2範囲を含む範囲の算出結果が作成されることを特徴とする燃焼状況評価方法。
    The combustion condition evaluation method according to claim 1.
    In the preparation step, at least two sets of the infrared cameras are used, the first range of the waste is imaged by the first set of infrared cameras, and the second range of the waste is imaged by the second set of infrared cameras. Is imaged,
    In the first calculation step, the second calculation step, or the third calculation step, the calculation result of the first range and the calculation result of the second range are combined to form the first range and the second range. A combustion condition evaluation method characterized in that a calculation result in a range including is created.
  3.  請求項1又は2に記載の燃焼状況評価方法を用いて、前記焼却炉の燃焼を制御する燃焼制御方法であって、
     前記第2予測工程では、少なくとも前記燃焼開始評価位置の位置変化を予測し、
     前記燃焼開始評価位置が搬送方向上流側に移動すると予測された場合は、前記乾燥部の前記火格子による前記廃棄物の搬送速度を増速させる制御を行い、
     前記燃焼開始評価位置が搬送方向下流側に移動すると予測された場合は、前記乾燥部の前記火格子による前記廃棄物の搬送速度を減速させる制御を行うことを特徴とする燃焼制御方法。
    A combustion control method for controlling combustion in the incinerator by using the combustion condition evaluation method according to claim 1 or 2.
    In the second prediction step, at least the position change of the combustion start evaluation position is predicted, and the position change is predicted.
    When it is predicted that the combustion start evaluation position will move to the upstream side in the transport direction, control is performed to increase the transport speed of the waste by the grate of the drying portion.
    A combustion control method characterized in that when the combustion start evaluation position is predicted to move to the downstream side in the transport direction, control is performed to reduce the transport speed of the waste by the grate of the drying portion.
  4.  請求項1又は2に記載の燃焼状況評価方法を用いて、前記焼却炉の燃焼を制御する燃焼制御方法であって、
     前記第2予測工程では、少なくとも前記燃え切り評価位置の位置変化を予測し、
     前記燃え切り評価位置が搬送方向上流側に移動すると予測された場合は、前記燃焼部の前記火格子による前記廃棄物の搬送速度を増速させる制御を行い、
     前記燃え切り評価位置が搬送方向下流側に移動すると予測された場合は、前記燃焼部の前記火格子による前記廃棄物の搬送速度を減速させる制御を行うことを特徴とする燃焼制御方法。
    A combustion control method for controlling combustion in the incinerator by using the combustion condition evaluation method according to claim 1 or 2.
    In the second prediction step, at least the position change of the burnout evaluation position is predicted, and the position change is predicted.
    When it is predicted that the burnout evaluation position will move upstream in the transport direction, control is performed to increase the transport speed of the waste by the grate of the combustion unit.
    A combustion control method characterized in that when the burnout evaluation position is predicted to move to the downstream side in the transport direction, control is performed to reduce the transport speed of the waste by the grate of the combustion unit.
  5.  請求項4に記載の燃焼制御方法であって、
     前記第1算出工程で算出した、前記廃棄物の厚み、及び、前記廃棄物の表面移動速度の少なくとも何れかに基づいて、前記燃焼部の前記火格子による前記廃棄物の搬送速度を変速させるための制御値を補正することを特徴とする燃焼制御方法。
    The combustion control method according to claim 4.
    In order to shift the transport speed of the waste by the grate of the combustion unit based on at least one of the thickness of the waste and the surface movement speed of the waste calculated in the first calculation step. Combustion control method characterized by correcting the control value of.
  6.  請求項3から5までの何れか一項に記載の燃焼制御方法であって、
     前記第2予測工程で予測した評価位置の位置変化に基づいて前記乾燥部及び前記燃焼部の少なくとも一方の前記火格子による前記廃棄物の搬送速度を変更した場合は、評価位置の位置変化の原因である前記廃棄物の性状の変化の状態に応じて、別の前記火格子による前記廃棄物の搬送速度を変更することを特徴とする燃焼制御方法。
    The combustion control method according to any one of claims 3 to 5.
    When the transport speed of the waste by the grate of at least one of the drying part and the burning part is changed based on the position change of the evaluation position predicted in the second prediction step, the cause of the position change of the evaluation position is changed. A combustion control method, characterized in that the transport speed of the waste by another grate is changed according to the state of change in the properties of the waste.
  7.  請求項3から6までの何れか一項に記載の燃焼制御方法であって、
     前記第2予測工程で予測した評価位置の位置変化の原因となる前記廃棄物の性状の変化の状態に応じて、前記乾燥部、前記燃焼部、及び前記後燃焼部の少なくとも何れかへ供給する一次燃焼用気体の供給量を調整することを特徴とする燃焼制御方法。
    The combustion control method according to any one of claims 3 to 6.
    It is supplied to at least one of the drying section, the burning section, and the post-combustion section according to the state of the change in the properties of the waste that causes the position change of the evaluation position predicted in the second prediction step. A combustion control method characterized by adjusting the supply amount of gas for primary combustion.
  8.  請求項3から7までの何れか一項に記載の燃焼制御方法であって、
     前記焼却炉では、前記乾燥部、前記燃焼部、及び前記後燃焼部で行われる一次燃焼と、当該一次燃焼で発生した未燃焼ガスを含む一次燃焼ガスを燃焼させる二次燃焼と、が行われ、
     前記第2予測工程で予測した評価位置の位置変化の原因となる前記廃棄物の性状の変化の状態に応じて、二次燃焼用気体の供給量を調整することを特徴とする燃焼制御方法。
    The combustion control method according to any one of claims 3 to 7.
    In the incinerator, primary combustion performed in the drying unit, the combustion unit, and the post-combustion unit, and secondary combustion for burning the primary combustion gas including the unburned gas generated in the primary combustion are performed. ,
    A combustion control method characterized in that the supply amount of a secondary combustion gas is adjusted according to the state of change in the properties of the waste that causes the position change of the evaluation position predicted in the second prediction step.
PCT/JP2020/038878 2019-10-18 2020-10-15 Combustion state evaluation method and combustion control method WO2021075488A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-190895 2019-10-18
JP2019190895A JP6880144B2 (en) 2019-10-18 2019-10-18 Combustion status evaluation method and combustion control method

Publications (1)

Publication Number Publication Date
WO2021075488A1 true WO2021075488A1 (en) 2021-04-22

Family

ID=75538140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038878 WO2021075488A1 (en) 2019-10-18 2020-10-15 Combustion state evaluation method and combustion control method

Country Status (2)

Country Link
JP (1) JP6880144B2 (en)
WO (1) WO2021075488A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113909257A (en) * 2021-10-08 2022-01-11 合肥赛欧机械制造有限公司 Steel waste recovery process
CN117346148A (en) * 2023-10-26 2024-01-05 华北电力大学 Air staged combustion process for combustion section of garbage incinerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239508A (en) * 2003-02-05 2004-08-26 Jfe Engineering Kk Combustion control method of refuse incinerator, and refuse incinerator
JP2018155411A (en) * 2017-03-15 2018-10-04 三菱重工業株式会社 Stoker type incinerator
JP2019052822A (en) * 2017-09-19 2019-04-04 川崎重工業株式会社 In-furnace condition determination method, combustion control method, and waste incinerator
JP6543389B1 (en) * 2018-06-19 2019-07-10 川崎重工業株式会社 Reactor internal condition determination method and combustion control method
JP2019178849A (en) * 2018-03-30 2019-10-17 Jfeエンジニアリング株式会社 Waste incineration method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239508A (en) * 2003-02-05 2004-08-26 Jfe Engineering Kk Combustion control method of refuse incinerator, and refuse incinerator
JP2018155411A (en) * 2017-03-15 2018-10-04 三菱重工業株式会社 Stoker type incinerator
JP2019052822A (en) * 2017-09-19 2019-04-04 川崎重工業株式会社 In-furnace condition determination method, combustion control method, and waste incinerator
JP2019178849A (en) * 2018-03-30 2019-10-17 Jfeエンジニアリング株式会社 Waste incineration method
JP6543389B1 (en) * 2018-06-19 2019-07-10 川崎重工業株式会社 Reactor internal condition determination method and combustion control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113909257A (en) * 2021-10-08 2022-01-11 合肥赛欧机械制造有限公司 Steel waste recovery process
CN117346148A (en) * 2023-10-26 2024-01-05 华北电力大学 Air staged combustion process for combustion section of garbage incinerator

Also Published As

Publication number Publication date
JP2021067379A (en) 2021-04-30
JP6880144B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP6880146B2 (en) Combustion status evaluation method and combustion control method
JP6596121B1 (en) In-furnace situation determination method and combustion control method
JP6671326B2 (en) Combustion control method and waste incinerator
JP6429039B2 (en) Grate-type waste incinerator and waste incineration method using grate-type waste incinerator
JP6543389B1 (en) Reactor internal condition determination method and combustion control method
WO2021075488A1 (en) Combustion state evaluation method and combustion control method
KR20190011282A (en) Control method of waste incineration plant and waste incineration plant
JP7059955B2 (en) Waste supply measuring device and method and waste incinerator device and method
JP2022069679A (en) Device and method for controlling combustion of stoker furnace and device and method for detecting fuel movement amount
WO2021075489A1 (en) Combustion state evaluation method and combustion control method
WO2021075484A1 (en) Combustion state evaluation method and combustion control method
JP2019219108A (en) In-furnace situation determination method and evaporation amount control method
JP6880143B2 (en) Combustion status evaluation method and combustion control method
JP6880142B2 (en) Combustion status evaluation method and combustion control method
TW202311668A (en) Control device for incinerator equipment
JP7384078B2 (en) Waste incineration equipment and waste incineration method
WO2021095431A1 (en) Combustion method and combustion control method
JP2022071891A (en) Furnace interior image creating method, furnace interior situation determining method and combustion situation evaluating method
JP6744843B2 (en) Flame end position detection method, automatic combustion control method, and waste incinerator
JP2021103063A (en) Refuse layer thickness evaluation method of refuse incinerator and combustion control method of refuse incinerator
JP7347339B2 (en) Grate type waste incinerator and waste incineration method using grate type waste incinerator
JP7445058B1 (en) Combustion equipment system and combustion control method
JP6543384B1 (en) Detection method of mercury large input situation of waste incinerator
JP2023050052A (en) Combustion control method
JP2021103062A (en) Burn-off point estimation method for refuse incinerator and burn-off point adjustment method for refuse incinerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875871

Country of ref document: EP

Kind code of ref document: A1