WO2021075437A1 - 太陽光発電装置用清掃装置、及び太陽光発電装置の清掃システム - Google Patents

太陽光発電装置用清掃装置、及び太陽光発電装置の清掃システム Download PDF

Info

Publication number
WO2021075437A1
WO2021075437A1 PCT/JP2020/038673 JP2020038673W WO2021075437A1 WO 2021075437 A1 WO2021075437 A1 WO 2021075437A1 JP 2020038673 W JP2020038673 W JP 2020038673W WO 2021075437 A1 WO2021075437 A1 WO 2021075437A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiper
light receiving
receiving surface
power generation
pair
Prior art date
Application number
PCT/JP2020/038673
Other languages
English (en)
French (fr)
Inventor
和志 飯屋谷
義哉 安彦
塁 三上
靖和 古結
岩崎 孝
エマニュエル アレクサンドル ジウディチェリ
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2021075437A1 publication Critical patent/WO2021075437A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/30Cleaning by methods involving the use of tools by movement of cleaning members over a surface
    • B08B1/32Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members
    • B08B1/34Cleaning by methods involving the use of tools by movement of cleaning members over a surface using rotary cleaning members rotating about an axis parallel to the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/10Cleaning by methods involving the use of tools characterised by the type of cleaning tool
    • B08B1/14Wipes; Absorbent members, e.g. swabs or sponges
    • B08B1/143Wipes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to a cleaning device for a photovoltaic power generation device and a cleaning system for a photovoltaic power generation device.
  • Patent Document 1 discloses a cleaning device for cleaning such dirt.
  • the photovoltaic power generation device cleaning device is a photovoltaic power generation device cleaning device that cleans the light receiving surface of the photovoltaic power generation device, holds the rod-shaped wiper and the wiper, and moves the wiper.
  • the wiper comprises a rod-shaped core material and a wiping layer made of a material provided on the outer surface of the core material and adsorbing dirt adhering to the light receiving surface.
  • the moving device brings the wiping layer into contact with the light receiving surface, holds the wiper in a state where the wiper is restricted from rotating around the center of the axis, and holds the wiper in an intersecting direction intersecting the longitudinal direction of the wiper. To move in parallel.
  • the photovoltaic power generation device cleaning system is a photovoltaic power generation device cleaning system including a photovoltaic power generation device and a cleaning device for cleaning the light receiving surface of the photovoltaic power generation device.
  • the cleaning device includes a rod-shaped wiper and a moving device that holds the wiper and moves the wiper.
  • the wiper is provided on a rod-shaped core material and an outer surface of the core material and is provided on the light receiving surface. It has a wiping layer made of a material that adsorbs adhered dirt, and the moving device brings the wiping layer into contact with the light receiving surface and restricts the wiper from rotating around the center of the axis. Holds the wiper and moves the wiper in parallel in an intersecting direction intersecting the longitudinal direction of the wiper.
  • FIG. 1 is a perspective view of an example of a concentrating type photovoltaic power generation device for one unit as viewed from the light receiving surface side, and shows the completed solar power generation device.
  • FIG. 2 is a perspective view of the photovoltaic power generation device in FIG.
  • FIG. 3 is a perspective view showing the upper end portion and the lower end portion of the array, and shows a part of the cleaning device according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the array in the left-right direction in FIG. 3, showing a cross section of the support bracket.
  • FIG. 5A is an enlarged view of a portion of the support bracket on the left side of the paper in FIG.
  • FIG. 5B is an enlarged view of a portion of the support bracket on the right side of the paper surface in FIG.
  • FIG. 6 is a view when the wiper holding portion is viewed from the end face side of the wiper.
  • FIG. 7 is a view of the drive unit when viewed from the axial direction of the drive shaft.
  • FIG. 8 is a cross-sectional view of the wiper.
  • FIG. 9 is a diagram showing a state when the wiper moves on the light receiving surfaces of a pair of modules arranged in the vertical direction and adjacent to each other.
  • FIG. 10 is a diagram showing test results regarding the width dimension of the side surface of the wiping layer.
  • FIG. 11 is a diagram showing a state in which the wiper of the cleaning device according to the second embodiment moves on the light receiving surfaces of a pair of modules arranged in the vertical direction and adjacent to each other.
  • FIG. 12A is a cross-sectional view showing a modified example of the wiper.
  • FIG. 12B is a cross-sectional view showing another modified example of the wiper.
  • FIG. 13 is a cross-sectional view of the array according to the third embodiment in the left-right direction.
  • FIG. 14 is a view when the wiper holding portion is viewed from the side surface side of the wiper.
  • FIG. 15 is a partial cross-sectional view of the array according to the fourth embodiment in the left-right direction.
  • FIG. 16 is a view when the wiper holding portion is viewed from the side surface side of the wiper.
  • FIG. 17 is a block diagram showing a configuration example for controlling the actuator.
  • the cleaning device has a rotary cleaning brush that can be moved in the vertical direction and the horizontal direction, and is configured to clean the photovoltaic panel with the rotary cleaning brush.
  • the rotary cleaning brush is configured to be rotated by being driven by a motor, and the cleaning device has a transmission mechanism for transmitting the rotational force of the motor to the rotary cleaning brush and a rotary mechanism for rotating the rotary cleaning brush.
  • the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a compact and lightweight cleaning device for a photovoltaic power generation device.
  • the photovoltaic power generation device cleaning device is a photovoltaic power generation device cleaning device that cleans the light receiving surface of the photovoltaic power generation device, and holds a rod-shaped wiper and the wiper.
  • the wiper includes a moving device for moving the wiper, and the wiper has a rod-shaped core material and a wiping layer made of a material provided on the outer surface of the core material and adsorbing dirt adhering to the light receiving surface.
  • the moving device holds the wiper in a state where the wiping layer is brought into contact with the light receiving surface and the wiper is restricted from rotating around the center of the axis, and the wiper intersects in the longitudinal direction of the wiper and said.
  • the wiper is moved in parallel in the crossing direction along the light receiving surface.
  • the wiping layer is brought into contact with the light receiving surface, and the wiper is translated in the crossing direction in a state where the wiper is restricted from rotating around the axis center.
  • the light receiving surface can be cleaned without providing a transmission mechanism for transmitting force to the rotary cleaning brush or a rotary mechanism for rotating the rotary cleaning brush.
  • the cleaning device can be made compact and lightweight.
  • the wiping layer has a polygonal cross section and has a plurality of side surfaces extending in the longitudinal direction corresponding to each side of the polygon, and the moving device. May rotatably hold the wiper around the center of the axis. In this case, after using one side surface of the plurality of side surfaces as the contact surface, the wiper can be rotated to use the other side surface other than the one side surface as the contact surface. As a result, the dirty contact surface can be switched to a clean surface a plurality of times, and the frequency of wiper replacement can be reduced.
  • the photovoltaic power generation device has a plurality of modules arranged in the intersecting direction to form the light receiving surface, and the core material and the wiping layer. At least one of the plurality of modules maintains contact with the wiping layer with respect to each of the pair of modules as the wiper passes through a step existing at the boundary of a pair of modules adjacent to each other among the plurality of modules. It may have an elastically deformable property. In this case, even if there is a step at the boundary between the pair of modules, the wiper elastically deforms to maintain the contact between the pair of modules and the wiping layer, so that the step is absorbed without leaving a wiping residue on the light receiving surface. , The wiper can be moved smoothly.
  • the wiping layer has a rectangular cross section, a pair of first side surfaces, and a pair of second side surfaces wider than the pair of first side surfaces.
  • the photovoltaic power generation device has a plurality of modules arranged in the intersecting direction to form the light receiving surface, and the moving device has the first side surface in contact with the light receiving surface. It occurred at the boundary between the pair of modules when climbing a step generated at the boundary between a pair of modules arranged adjacent to each other among the plurality of modules, and with the second side surface in contact with the light receiving surface.
  • the wiper may be held so as to allow the wiper to rotate when going down the step. In this case as well, even if there is a step between the pair of modules, the step can be absorbed and the wiper can be moved smoothly.
  • the moving device holds both ends in the longitudinal direction of the wiper, and a pair of holding portions that move together with the wiper in the intersecting direction and the pair of holding portions.
  • the moving device includes a pair of holding portions that hold both ends of the wiper in the longitudinal direction and move together with the wiper in the crossing direction, and the pair of holdings.
  • the unit includes a pair of arms that hold both ends of the wiper in the longitudinal direction and an actuator that moves the arms in a direction intersecting the light receiving surface, and the moving device further includes strain generated in the wiper.
  • a sensor for detecting the above and a control unit for controlling the actuator based on the output of the sensor may be provided. In this case, the height position of the arm portion with respect to the light receiving surface can be adjusted based on the strain generated in the wiper.
  • the height position of the arm with respect to the light receiving surface is adjusted so that the strain generated in the wiper is within a certain range, when the wiper is deformed by reaching the step, the wiper is deformed.
  • the height position of the arm with respect to the light receiving surface can be adjusted so as to alleviate the strain caused by the deformation.
  • the arm portion can be moved so as to absorb the step, and the wiper can be smoothly moved even when there is a step or the like on the light receiving surface.
  • the width dimension of the side surface of the wiping layer in the crossing direction is preferably 30 mm or more and 50 mm or less. If the width dimension of the contact surface is less than 30 mm, an effective contact area cannot be secured between the light receiving surface and the wiping layer, and the cleaning ability of the light receiving surface is lowered. Further, when the width dimension of the contact surface is larger than 50 mm, the contact area becomes large, the frictional resistance between the light receiving surface and the contact surface becomes large, and the load on the moving device becomes large. Further, as the frictional resistance between the light receiving surface and the contact surface increases, the force acting on the wiper along the crossing direction increases, which may cause the wiper to be deformed.
  • the width dimension of the contact surface is preferably 30 mm or more and 50 mm or less.
  • the cleaning system of the photovoltaic power generation device is a cleaning system of the photovoltaic power generation device including the photovoltaic power generation device and the cleaning device for cleaning the light receiving surface of the photovoltaic power generation device.
  • the cleaning device includes a rod-shaped wiper and a moving device that holds the wiper and moves the wiper, and the wiper is provided on the rod-shaped core material and the outer surface of the core material. It has a wiping layer made of a material that adsorbs dirt adhering to the light receiving surface, and the moving device brings the wiping layer into contact with the light receiving surface and causes the wiper to rotate about the center of the axis.
  • the wiper is held in a regulated state, and the wiper is moved in parallel in an intersecting direction that intersects the longitudinal direction of the wiper and along the light receiving surface. According to the above configuration, the cleaning device can be made compact and lightweight.
  • the photovoltaic power generation device has a plurality of modules arranged in the intersecting direction to form the light receiving surface, and the plurality of modules are arranged adjacent to each other. At the boundary between the pair of modules, there is a gap for downwardly discharging dirt on the light receiving surface swept by the wiper when the wiper is translated with the light receiving surface facing upward. It may have been. In this case, the light receiving surface can be cleaned while discharging the dirt swept away by the movement of the wiper.
  • FIG. 1 is a front view of an example of a condensing type photovoltaic power generation device for one unit as viewed from the light receiving surface 1f side.
  • FIG. 2 is a perspective view of the photovoltaic power generation device in FIG.
  • FIG. 1 shows a photovoltaic power generation device 100 in a completed state
  • FIG. 2 shows a photovoltaic power generation device 100 in a state in the middle of assembly.
  • a condensing type photovoltaic power generation module hereinafter, also simply referred to as a module
  • 1M is attached in only one row on the left end of the paper surface, and the framework of the tracking mount 25 is shown. When actually attaching the module 1M to the tracking pedestal 25, the tracking pedestal 25 is attached while lying on the ground.
  • the photovoltaic power generation device 100 includes an array (photovoltaic power generation panel) 1 which is continuous on the upper side and is divided into left and right on the lower side to form a planar light receiving surface as a whole, and a support mechanism 2 thereof.
  • the array 1 is configured by arranging the modules 1M on the tracking mount 25 (FIG. 2) on the back side.
  • the module 1M a known configuration is mounted in which optical systems that collect sunlight and guide it to a power generation element are provided side by side in a matrix.
  • the support mechanism 2 includes a support column 21, a foundation 22, a drive unit 23, a horizontal axis 24 (FIG. 2) as a drive axis, and a tracking stand 25.
  • the lower end of the support column 21 is fixed to the foundation 22, and the upper end is provided with a drive unit 23.
  • the foundation 22 is firmly buried in the ground so that only the upper surface can be seen.
  • the columns 21 are vertical and the horizontal axis 24 (FIG. 2) is horizontal.
  • the drive unit 23 can rotate the horizontal axis 24 in two directions, an azimuth angle (an angle centered on the support column 21) and an elevation angle (an angle centered on the horizontal axis 24).
  • a reinforcing member 25a for reinforcing the tracking pedestal 25 is attached to the horizontal shaft 24.
  • a plurality of horizontal fixed rails 25b are attached to the reinforcing member 25a.
  • the module 1M is fixed to the fixed rail 25b. If the horizontal axis 24 rotates in the direction of the azimuth or elevation, the array 1 also rotates in that direction.
  • Array 1 is usually vertical as shown in FIG. 1 before dawn and sunset.
  • the drive unit 23 operates so that the light receiving surface 1f of the array 1 always faces the sun, and the array 1 performs the tracking operation of the sun.
  • the photovoltaic power generation device 100 is provided with a cleaning device 30 for a photovoltaic power generation device for cleaning the light receiving surface 1f.
  • the cleaning device 30 for a photovoltaic power generation device (hereinafter, also referred to as a cleaning device 30) is a plurality of (five in the example) wipers 32 and a plurality of (five in the example) moving devices for moving the plurality of wipers 32. It has 34 and.
  • the wiper 32 is a rod-shaped member for cleaning by wiping off dirt on the light receiving surface 1f, and is provided so that the longitudinal direction is along the left-right direction.
  • the moving device 34 includes a pair of guide rails 36 that guide the movement of the wiper 32 in the vertical direction, a driving unit 38 that generates a driving force for moving the wiper 32, and the like.
  • Two wipers 32 and two moving devices 34 are provided on each of the left and right wings.
  • the length of the wiper 32 provided on the wing is set corresponding to the module 1M for four rows.
  • the length of the wiper 32 is, for example, about 4 meters.
  • the moving device 34 provided in the wing is configured to reciprocate the wiper 32 between the upper end and the lower end of the array 1. Therefore, the two wipers 32 provided in one wing can wipe the entire surface of one wing composed of 96 modules 1M arranged in eight rows.
  • a wiper 32 and a moving device 34 are also provided at the central crossover portion composed of eight modules 1M.
  • the length of the wiper 32 provided at the crossover portion is set to the length of the module 1M for two rows.
  • the moving device 34 provided in the crossover portion is configured to reciprocate the upper and lower ends of the crossover portion with the wiper 32. Therefore, the wiper 32 of the crossover portion can wipe off the dirt on the entire surface of the crossover portion composed of eight modules 1M arranged in two rows.
  • the light receiving surface 1f of the array 1 of the present embodiment is divided into five cleaning areas cleaned by the five wipers 32.
  • a plurality of wipers 32 and a plurality of moving devices 34 of the cleaning device 30 are provided in each cleaning area. Therefore, the pair of guide rails 36 of each moving device 34 extend in the vertical direction on both the left and right sides of each cleaning area.
  • FIG. 3 is a perspective view showing the upper end portion and the lower end portion of the array 1, and shows a part of the cleaning device 30 according to the first embodiment.
  • FIG. 3 shows a wiper 32 and a moving device 34 provided in the cleaning area at the left end of the paper surface in FIG.
  • the direction indicated by the arrow in the figure is the vertical direction. That is, the vertical direction is a direction along the light receiving surface 1f as shown in FIG.
  • the moving device 34 is fixed to the pair of guide rails 36, the drive unit 38, the pair of toothed belts 40 running in the pair of guide rails 36, and the pair of toothed belts 40, and is fixed to the wiper 32.
  • a pair of wiper holding portions 42 for holding both ends are provided.
  • the drive unit 38 in FIG. 3 is shown by omitting a cover for accommodating each unit for easy understanding.
  • the pair of guide rails 36 provided on the left and right sides of the cleaning area are formed in an elongated rectangular shape along the vertical direction, and are formed on both the left and right sides of the cleaning area by a plurality of support brackets 44 extending from the fixed rail 25b. It is fixed.
  • FIG. 4 is a cross-sectional view of the array 1 in the left-right direction in FIG. 3, showing a cross section of the support bracket 44.
  • FIG. 4 also shows the module 1M of the cleaning area adjacent to the cleaning area shown in FIG. 3 and the wiper 32.
  • FIG. 5A is an enlarged view of the portion of the support bracket 44 on the left side of the paper surface in FIG.
  • the support bracket 44 extending from the fixed rail 25b is provided so as to pass by the side of the module 1M and project from the light receiving surface 1f.
  • a fixing portion 44a for fixing the guide rail 36 is provided at the tip of the support bracket 44. The fixing portion 44a projects toward the module 1M along the left-right direction.
  • the guide rail 36 is fixed to the fixed surface 44a1 facing the light receiving surface 1f in the fixed portion 44a.
  • the guide rail 36 is fixed to the fixing surface 44a1 by a screw, an adhesive layer with an adhesive, caulking, or the like.
  • the guide rail 36 is formed in a C-shaped cross section having an opening 36a on the module 1M side.
  • a toothed belt 40 is housed inside the guide rail 36 so as to be able to travel.
  • the tooth portion 40a of the toothed belt 40 projects from the opening 36a.
  • FIG. 5B is an enlarged view of the portion of the support bracket 44 on the right side of the paper surface in FIG.
  • the support bracket 44 in FIG. 5B is provided between the modules 1M adjacent to each other in the left-right direction.
  • a pair of fixing portions 44a are provided at the tip of the support bracket 44.
  • Two guide rails 36 of the moving devices 34 of the modules 1M adjacent to each other are fixed to the pair of fixing portions 44a.
  • two toothed belts 40 of both moving devices 34 are housed.
  • the pair of wiper holding portions 42 described above are fixed to the pair of toothed belts 40.
  • the pair of wiper holding portions 42 project from the pair of toothed belts 40 toward the module 1M side and hold both ends of the wiper 32.
  • the tip of the wiper holding portion 42 is provided with a protrusion 42a that is inserted into a central hole 32a provided on the end surface of the wiper 32.
  • the pair of wiper holding portions 42 hold the wipers 32 so that the wipers 32 are parallel to each other in the left-right direction.
  • the pair of wiper holding portions 42 rotatably hold the wiper 32 around the center of the axis by inserting the protrusion 42a into the center hole 32a.
  • FIG. 6 is a view when the wiper holding portion 42 is viewed from the end surface side of the wiper 32.
  • the wiper holding portion 42 has a meshing portion 42b that meshes with the tooth portion 40a of the toothed belt 40.
  • the meshing portion 42b meshes with the tooth portion 40a and is fixed to the toothed belt 40 by a screw, an adhesive layer with an adhesive, or the like. Therefore, when the pair of toothed belts 40 travel in the vertical direction, the wiper 32 held by the pair of wiper holding portions 42 and the pair of wiper holding portions 42 also moves in the vertical direction.
  • the pair of toothed belts 40 travel in synchronization with each other as described later. Therefore, the pair of wiper holding portions 42 are fixed to the pair of toothed belts 40 so that the wiper 32 is held in parallel in the left-right direction. As a result, the pair of wiper holding portions 42 moves the wiper 32 in the vertical direction while maintaining the state in which the wiper 32 is parallel to the left and right direction.
  • the outer shape of the wiper 32 is a regular octagon. Therefore, the wiper 32 has eight rectangular side surfaces extending in the longitudinal direction.
  • the wiper holding portion 42 holds the wiper 32 so that one of the eight side surfaces of the wiper 32 becomes a contact surface in contact with the light receiving surface 1f. Further, when the wiper 32 is moved by bringing one side surface into contact with the light receiving surface 1f, the wiper holding portion 42 does not rotate the wiper 32 around the axis center due to the frictional force between the side surface and the light receiving surface 1f. The wiper 32 is held so that the resistance of the wiper 32 is generated.
  • the wiper holding portion 42 holds the wiper 32 so as to restrict the wiper 32 from rotating around the center of the axis when the wiper 32 is moved by bringing one side surface into contact with the light receiving surface 1f.
  • the wiper holding portion 42 regulates the rotation of the wiper 32 by a frictional force between the central hole 32a of the wiper 32 and the protrusion 42a of the wiper holding portion 42.
  • the drive unit 38 includes a pair of drive gears 50 in which a pair of toothed belts 40 mesh with each other, a drive shaft 52 in which the pair of drive gears 50 are fixed at both ends, and a motor 54 for driving the drive shaft 52. And has a function of driving a pair of toothed belts 40.
  • the pair of drive gears 50 are fixed to the drive shaft 52 so as to be integrally rotatable. Therefore, when the drive shaft 52 is driven by the motor 54, the pair of toothed belts 40 travel in synchronization with each other.
  • FIG. 7 is a view of the drive unit 38 as viewed from the axial direction of the drive shaft 52.
  • the drive unit 38 includes a cover 56 for accommodating each unit of the drive unit 38.
  • the cover 56 is fixed to the fixed rail 25b by a bracket 56a extending from the fixed rail 25b.
  • the cover 56 is shown by a broken line.
  • the guide rail 36 is formed in a U shape, and is configured to guide the pair of toothed belts 40 to the light receiving surface 1f side and the light receiving surface 1f opposite side.
  • the guide rail 36 in FIG. 7 is shown by cutting out a part thereof.
  • the drive shaft 52 is rotatably supported by a shaft support portion (not shown) provided in the cover 56.
  • the pair of drive gears 50 fixed to both ends of the drive shaft 52 mesh with the pair of toothed belts 40 in the cover 56. Further, one of the drive gears 50 of the pair of drive gears 50 also meshes with the output gear 58 provided on the motor 54.
  • the output gear 58 is integrally rotatably fixed to the output shaft of the motor 54.
  • the motor 54 is fixed in the cover 56, and the rotation operation is controlled by a control unit (not shown).
  • the motor 54 transmits the rotational force generated by the motor 54 by the output gear 58 to one of the drive gears 50.
  • one drive gear 50 and the other drive gear 50 can integrally rotate via the drive shaft 52. Therefore, the rotational force of the motor 54 is transmitted to the drive shaft 52 and the pair of drive gears 50.
  • the control unit controls the motor 54 to operate, for example, at night when the photovoltaic power generation device 100 does not generate electricity.
  • the control unit controls the motor 54 so that the wiper 32 reciprocates between the upper end and the lower end of the cleaning area. As a result, the wiper 32 reciprocates between the upper end and the lower end of the cleaning area.
  • FIG. 8 is a cross-sectional view of the wiper 32.
  • the outer shape of the wiper 32 is a regular octagon.
  • the wiper 32 has a core material 60 on the center side and a wiping layer 62 provided on the side surface 60a which is the outer surface of the core material 60.
  • the core material 60 is a rod-shaped (cylindrical) member having a circular cross section, and is formed of an elastic material such as urethane rubber.
  • the wiping layer 62 is a tubular member formed so as to cover the entire circumference of the side surface 60a of the core material 60. Further, the wiping layer 62 extends so as to cover the entire area in the longitudinal direction of the core material 60.
  • the wiping layer 62 is made of a material that adsorbs and wipes dirt such as sand adhering to the light receiving surface 1f.
  • Microfiber is used as a material constituting the wiping layer 62.
  • the wiping layer 62 is formed by a fiber layer using microfibers.
  • the microfiber is a fine fiber such as nylon or polyester having a fiber diameter of several micrometers.
  • the wiping layer 62 is formed in a layer using such microfibers.
  • Fibers using microfibers have more gaps between fibers than general fibers, and can adsorb dirt due to a capillary phenomenon or the like. Further, the fiber using the microfiber is particularly suitable for adsorbing relatively fine sand of about several tens of microns. Therefore, the wiping layer 62 can suitably adsorb and wipe the sand adhering to the light receiving surface 1f.
  • the wiping layer 62 may be fixed to the side surface 60a of the core material 60 by an adhesive layer with an adhesive, or may be detachably fixed to the side surface 60a by a hook-and-loop fastener or the like.
  • the wiping layer 62 constitutes the outermost surface of the wiper 32, and the outer shape of the wiping layer 62 is a regular octagon. Therefore, the wiping layer 62 has eight rectangular side surfaces 62a. As shown in FIG. 8, one side surface of the eight side surfaces 62a is a contact surface that contacts the light receiving surface 1f. That is, the wiping layer 62 has a regular octagonal cross section and has eight side surfaces 62a extending in the longitudinal direction corresponding to each side of the regular octagon.
  • the moving device 34 translates the wiper 32 in the vertical direction (intersection direction intersecting the longitudinal direction of the wiper 32) with one side surface of the eight side surfaces 62a of the wiping layer 62 in contact with the light receiving surface 1f. .. That is, as shown in FIG. 8, the wiper 32 moves in parallel with one side surface of the eight side surfaces 62a in contact with the light receiving surface 1f.
  • the wiper holding portion 42 regulates the rotation of the wiper 32 around the center of the axis when the wiper 32 is moved by bringing one side surface into contact with the light receiving surface 1f. To hold. Therefore, the wiper 32 wipes off the dirt on the light receiving surface 1f using the side surface 62a of one of the eight side surfaces 62a.
  • the light receiving surface 1f can be cleaned without providing a transmission mechanism for transmitting the rotational force of the motor to the rotary cleaning brush or a rotary mechanism for rotating the rotary cleaning brush as in the conventional example. it can.
  • the cleaning device 30 can be made compact and lightweight.
  • the wiper 32 is rotatably held around the center of the axis by the pair of wiper holding portions 42. Therefore, any one of the eight side surfaces 62a of the wiping layer 62 can be selectively used as the contact surface. Therefore, after one side surface of the eight side surfaces 62a is used as the contact surface, the wiper 32 can be rotated to use the other side surface other than the one side surface as the contact surface. As a result, the dirty contact surface can be switched to a clean surface a plurality of times, and the frequency of replacement of the wiper 32 can be reduced. If the wiping layer 62 is removable, only the wiping layer 62 can be replaced.
  • the operator operating the cleaning device 30 may rotate the wiper 32, and the wiper 32 reaches the upper end or the lower end of the cleaning area.
  • a rotation mechanism for mechanically rotating the wiper 32 may be provided.
  • the core material 60 and the wiping layer 62 have a property of elastically deforming so as to absorb the step when passing through the step generated on the light receiving surface 1f.
  • FIG. 9 is a diagram showing a state when the wiper 32 moves on the light receiving surface 1f of a pair of modules 1M arranged in the vertical direction and adjacent to each other.
  • a step D1 exists at the boundary K between the modules 1M-1 and the module 1M-2 adjacent to each other, and the wiper 32 moves from the module 1M-1 to the module 1M-2. Shows the case.
  • the wiper 32 rides on the step D1.
  • the light receiving surface 1f is composed of a plurality of module surfaces which are light receiving surfaces of the plurality of modules 1M.
  • the module surface of the module 1M-2 projects toward the light receiving surface 1f with respect to the module surface of the module 1M-1.
  • the wiper 32 moves from the left side to the right side of the paper surface in a state where the wiper 32 is in contact with the module 1M-1 with one side surface 62a as a contact surface before passing through the step D1. There is. When the wiper 32 reaches the step D1, it is compressed and deformed so as to be recessed while contacting the corner 70 of the module 1M-2, and absorbs the step D1. After absorbing the step D1 and riding on the step D1, the wiper 32 moves in a state where one side surface 62a is in contact with the module 1M-2 while being compressed and deformed.
  • a step D2 exists at the boundary K between the modules 1M-2 and the module 1M-3 adjacent to each other, and the wiper 32 moves from the module 1M-2 to the module 1M-3. Shows the case.
  • the wiper 32 goes down the step D2.
  • the wiper 32 moves from the left side to the right side of the paper surface in a state of being in contact with the module 1M-2 with one side surface 62a as a contact surface before passing through the step D2. There is. Further, at this time, the wiper 32 is compressed and deformed so as to be recessed. When the wiper 32 reaches the step D2, the wiper 32 elastically deforms so as to recover from the compressed state while descending the corner portion 72 of the module 1M-2, and absorbs the step D2. After absorbing the step D2 and descending the step D2, the wiper 32 moves as it is with the one side surface 62a in contact with the module 1M-3.
  • the wiper 32 passes.
  • a gap S is provided at the boundary K between the module 1M-1 (1M-2) and the module 1M-2 (1M-3). Therefore, when the wiper 32 moves and the dirt H on the light receiving surface 1f is swept by the wiper 32, when the wiper 32 passes through the step D1 (D2), the swept dirt H is discharged from the gap S. can do. That is, the gap S is a gap for discharging the dirt H on the light receiving surface 1f swept away by the wiper 32 downward when the wiper 32 is translated with the light receiving surface 1f facing upward. By providing this gap S, the light receiving surface 1f can be cleaned while discharging the dirt H swept away by the movement of the wiper 32.
  • the vertical width dimension W (FIG. 8) of the eight side surfaces 62a of the wiping layer 62 which is the contact surface when the wiper 32 contacts the light receiving surface 1f, is 30 mm or more and 50 mm or less. preferable.
  • the width dimension W of the side surface 62a serving as the contact surface is a parameter that determines the contact area of the wiper 32, it is necessary to set it appropriately.
  • the contact area of the wiper 32 affects the cleaning ability of the wiper 32, the load of the motor 54 when moving the wiper 32, and the deflection of the wiper 32 in the longitudinal direction.
  • the deflection of the wiper 32 in the longitudinal direction means a state in which the wiper 32 is deformed in a bow shape caused by a frictional force with the light receiving surface 1f.
  • the test created five types of wipers 32 with the width dimensions W of the side surface 62a set to 20 mm, 30 mm, 40 mm, 50 mm, and 60 mm.
  • the longitudinal dimension of the wiper 32 was about 4 meters. These wipers 32 were used in the cleaning device 30 for testing, and the cleaning ability, motor load, and deflection of the wiper 32 were evaluated.
  • FIG. 10 is a diagram showing test results regarding the width dimension W of the side surface 62a.
  • “Good” in the cleaning ability indicates that the dirt on the light receiving surface 1f is cleaned without any problem.
  • “poor” indicates that dirt on the light receiving surface 1f remains to the extent that it affects the power generation.
  • “good” indicates that the load is within the rated range of the motor 54, and “bad” indicates that a load exceeding the rated range of the motor 54 is applied.
  • “good” indicates that the deflection is such that there is no problem in cleaning the light receiving surface 1f
  • “bad” indicates that the deflection is such that there is a problem in cleaning the light receiving surface 1f. Shown.
  • the cleaning ability was "poor” when the width dimension W of the side surface 62a was 20 mm, and was “good” otherwise. From this result, when the width dimension W of the side surface 62a is 20 mm or less, an effective contact area cannot be secured between the light receiving surface 1f and the wiping layer 62, and the cleaning ability of the light receiving surface 1f may be reduced. I understand.
  • the motor load was "poor” when the width dimension W of the side surface 62a was 60 mm, and was “good” otherwise. From this result, when the width dimension W of the side surface 62a is 60 mm or more, the contact area between the light receiving surface 1f and the wiping layer 62 becomes large, and the frictional resistance between the light receiving surface 1f and the wiping layer 62 becomes large. It can be seen that the motor load becomes large.
  • the deflection of the wiper was “poor” when the width dimension W of the side surface 62a was 60 mm, and was “good” otherwise. From this result, when the width dimension W of the side surface 62a is 60 mm or more, the frictional resistance between the light receiving surface 1f and the wiping layer 62 increases, the force acting on the wiper 32 in the vertical direction increases, and the wiper It can be seen that the 32 is bent.
  • the range of the width dimension W of the side surface 62a can be set appropriately if it is set to 30 mm or more and 50 mm or less.
  • FIG. 11 is a diagram showing a state in which the wiper 32 of the cleaning device 30 according to the second embodiment moves on the light receiving surfaces 1f of a pair of modules 1M arranged in the vertical direction and adjacent to each other.
  • the cleaning device 30 of the present embodiment is different from the above-described embodiment in that the outer shape of the wiping layer 62 of the wiper 32 has a rectangular cross section.
  • the wiping layer 62 Since the outer shape of the wiping layer 62 of the present embodiment is rectangular in cross section, the wiping layer 62 has a pair of first side surfaces 62a1 and a pair of second side surfaces 62a2 wider than the pair of first side surfaces 62a1. There is. Either of the pair of first side surfaces 62a1 and the pair of second side surfaces 62a2 selectively serves as contact surfaces.
  • FIG. 11 The upper part of FIG. 11 is the same as that of FIG. 9, and shows a case where the wiper 32 moves from the module 1M-1 to the module 1M-2 through the step D1 existing at the boundary K. ..
  • the wiper 32 moves from the left side to the right side of the paper surface in a state where the first side surface 62a1 is used as a contact surface and is in contact with the module 1M-1 before passing through the step D1.
  • the wiper 32 reaches the step D1
  • a force that tends to rotate the wiper 32 in the axial direction acts on the wiper 32.
  • the pair of wiper holding portions 42 that hold the wiper 32 have a holding force that causes the wiper 32 to rotate when a force that tries to rotate the wiper 32 acts by abutting on the corner portion 70. Holds 32.
  • the wiper 32 rotates about the axial direction.
  • the wiper 32 rides on the step D1 and the contact surface of the wiping layer 62 with respect to the light receiving surface 1f is switched from the first side surface 62a1 to the second side surface 62a2.
  • the wiper 32 after riding on the step D1 moves in a state where the second side surface 62a2 is in contact with the module 1M-2.
  • the lower part of FIG. 11 is the same as that of FIG. 9, and shows the case where the wiper 32 moves from the module 1M-2 to the module 1M-3 through the step D2 existing at the boundary K. ..
  • the wiper 32 moves from the left side to the right side of the paper surface in a state of being in contact with the module 1M-2 with the second side surface 62a2 as the contact surface before passing through the step D2.
  • the wiper 32 reaches the step D2
  • it goes down the corner 72 of the module 1M-2.
  • a force that tends to rotate the wiper 32 in the axial direction acts on the wiper 32.
  • the wiper 32 rotates about the axial direction in the same manner as when riding on the step D1. As a result, the wiper 32 descends the step D2 and the contact surface of the wiping layer 62 with respect to the light receiving surface 1f is switched from the second side surface 62a2 to the first side surface 62a1. The wiper 32 after descending the step D2 moves in a state where the first side surface 62a1 is in contact with the module 1M-3.
  • the wiper 32 when the first side surface 62a1 of the wiper 32 is in contact with the light receiving surface 1f and the step D1 is climbed, and the second side surface 62a2 of the wiper 32 is in contact with the light receiving surface 1f.
  • the wiper 32 is configured to allow rotation when going down the step D2.
  • FIG. 13 is a cross-sectional view of the array according to the third embodiment in the left-right direction
  • FIG. 14 is a view when the wiper holding portion 42 is viewed from the side surface side of the wiper.
  • the moving device 34 of the present embodiment is different from the first embodiment in that it includes a pair of wiper holding portions 42 and a support member 76 provided between the pair of wiper holding portions 42.
  • the pair of wiper holding portions 42 moves the wiper 32 in the vertical direction while maintaining the state in which the wiper 32 is parallel in the horizontal direction. That is, the pair of wiper holding portions 42 hold both ends of the wiper 32 in the longitudinal direction and move in the vertical direction together with the wiper 32.
  • the wiper holding portion 42 has an arm portion 43 provided with a protrusion 42a at the tip portion.
  • the arm portion 43 extends from the meshing portion 42b toward the module 1M side.
  • the cylindrical protrusion 42a is inserted into the center holes 32a at both the left and right ends of the wiper 32.
  • the arm portion 43 holds the wiper 32 so as to be rotatable around the center of the axis.
  • the support member 76 is fixed to the arm portion 43 and the meshing portion 42b. Therefore, it moves in the vertical direction together with the wiper 32.
  • the support member 76 is a long member extending in the left-right direction, and is formed of, for example, a metal such as a steel material or an aluminum alloy.
  • the support member 76 extends along the longitudinal direction of the wiper 32.
  • the support member 76 includes a first support plate 76a fixed to the pair of arm portions 43, and a pair of second support plates 76b extending from both ends in the vertical direction of the first support plate 76a toward the module 1M side.
  • the first support plate 76a extends in the left-right direction between the pair of wiper holding portions 42.
  • the plate surface 76a1 of the first support plate 76a faces the light receiving surface 1f.
  • the pair of second support plates 76b also extend in the left-right direction between the pair of wiper holding portions 42.
  • the pair of plate surfaces 76b1 in the pair of second support plates 76b face each other.
  • the wiper 32 is arranged inside the support member 76 so as to be sandwiched between the pair of plate surfaces 76b1.
  • the side surface 62a3 facing the vertical direction (intersection direction) faces the plate surface 76b1 with a slight gap.
  • a gap is provided between the tip of the pair of second support plates 76b facing the light receiving surface 1f and the light receiving surface 1f. Through this gap, the wiper 32 can be projected from the inside of the support member 76, and the wiper 32 can be brought into contact with the light receiving surface 1f.
  • This gap is set to such a size that the pair of second support plates 76b does not come into contact with the light receiving surface 1f even if the wiper 32 is deformed.
  • the moving device 34 moves the wiper holding portion 42 downward as indicated by the arrow in FIG.
  • a force acting in the direction opposite to the moving direction acts on the wiper 32. Therefore, the wiper 32 is deformed in the longitudinal direction, and the plate surface 76b1 of the second support plate 76b on the left side of the paper surface and the side surface 62a3 of the wiper 32 facing the plate surface 76b1 come into contact with each other.
  • the plate surface 76b1 of the second support plate 76b on the left side of the paper surface faces downward, which is the moving direction.
  • the wiper 32 reaches the step between the pair of modules 1M.
  • a force acting in the direction opposite to the moving direction acts more strongly on the entire wiper 32 due to the resistance when passing through the step.
  • the wiper 32 is greatly deformed in the longitudinal direction such as deflection in the longitudinal direction due to the resistance force due to the step.
  • Such deformation of the wiper 32 in the longitudinal direction increases resistance such as friction between the wiper 32 and the light receiving surface 1f. Therefore, a large load acts on the moving device 34 for moving the wiper 32.
  • the wiper holding portion 42 since the wiper holding portion 42 has the second support plate 76b, the wiper 32 is moved to push it back to the wiper 32 in the direction opposite to the moving direction. Even if a force is applied, the deformation of the wiper 32 in the longitudinal direction can be suppressed. That is, even if the wiper 32 is moved, the plate surface 76b1 of the second support plate 76b facing downward (moving direction) abuts on the side surface 62a3 of the wiper 32, and the second support plate 76b makes the wiper 32 longitudinally. Hold along. As a result, it is possible to prevent the wiper 32 from being bent in the longitudinal direction. As a result, an increase in resistance such as friction between the wiper 32 and the light receiving surface 1f can be suppressed, and the load acting on the moving device 34 can be reduced.
  • the side surface 62a3 facing in the vertical direction and the plate surface 76b1 of the second support plate 76b face each other with a slight gap is illustrated.
  • the side surface 62a3 and the plate surface 76b1 may be in contact with each other at a stage before the wiper holding portion 42 is moved.
  • FIG. 15 is a partial cross-sectional view of the array according to the fourth embodiment in the left-right direction
  • FIG. 16 is a view when the wiper holding portion 42 is viewed from the side surface side of the wiper 32.
  • the pair of wiper holding portions 42 of the present embodiment is different from the first embodiment in that it includes an actuator for moving the arm portion 43. Although one of the pair of wiper holding portions 42 is shown in FIGS. 15 and 16, the other wiper holding portion 42 has the same configuration.
  • the pair of wiper holding portions 42 of the present embodiment is attached with a pair of arm portions 43 that hold both ends of the wiper 32 in the longitudinal direction, an actuator 80 that moves the arm portions 43 in a direction intersecting the light receiving surface 1f, and an actuator 80. It is provided with the attached mounting plate 82.
  • the mounting plate 82 is provided on the meshing portion 42b.
  • the mounting plate 82 extends from the meshing portion 42b toward the light receiving surface 1f side.
  • the actuator 80 is mounted on the mounting surface 82a of the mounting plate 82.
  • the mounting surface 82a is a surface of the mounting plate 82 facing the module 1M side.
  • the actuator 80 includes, for example, an air cylinder 81.
  • the air cylinder 81 includes a cylinder body 81a and a piston rod 81b.
  • the cylinder body 81a is fixed to the mounting surface 82a.
  • the piston rod 81b is provided so as to be retractable from the cylinder body 81a.
  • the arm portion 43 is provided at the tip of the piston rod 81b.
  • a protrusion 42a inserted into the central hole 32a of the wiper 32 is provided at the tip of the arm 43.
  • the arm portion 43 holds both ends of the wiper 32 in the longitudinal direction by the protrusion portion 42a.
  • the piston rod 81b is configured to move in and out along a direction orthogonal to the light receiving surface 1f.
  • the actuator 80 can move the arm portion 43 in the direction orthogonal to the light receiving surface 1f. Therefore, the actuator 80 can adjust the height position of the arm portion 43 with respect to the light receiving surface 1f. Further, the actuator 80 can move the wiper 32 together with the arm portion 43 in the direction orthogonal to the light receiving surface 1f.
  • the piston rod 81b moves in and out when compressed air is supplied to the cylinder body 81a.
  • the piston rod 81b is configured to retract into the cylinder body 81a when compressed air is not supplied. Therefore, the piston rod 81b moves the arm portion 43 and the wiper 32 in a direction away from the light receiving surface 1f when the compressed air is not supplied. Therefore, even if the supply of compressed air is stopped for some reason, the wiper 32 moves in a direction away from the light receiving surface 1f. As a result, it is possible to suppress the influence of the wiper 32 on the light receiving surface 1f, such as the wiper 32 unnecessarily pressing the light receiving surface 1f.
  • a pair of strain sensors 86 are provided on the end surface 32b of the wiper 32.
  • the strain sensor 86 is a sensor for detecting the strain generated in the wiper 32.
  • the pair of strain sensors 86 are provided side by side in the vertical direction with the axis center of the wiper 32 interposed therebetween.
  • the strain of the wiper 32 when one moves upward is detected, and the strain of the wiper 32 when the other moves downward is detected.
  • the strain sensor 86 provided on the right side of the paper surface detects the strain of the wiper 32.
  • the strain sensor 86 provided on the left side of the paper surface detects the strain of the wiper 32.
  • the pair of strain gauges 86a has a strain gauge 86a and a base 86b.
  • the base 86b is a metal plate made of a steel plate or the like.
  • the base 86b is attached to the end surface 32b of the wiper 32.
  • the strain gauge 86a is attached to the surface of the base 86b.
  • the strain gauge 86a is attached so that the strain in the direction intersecting the light receiving surface 1f can be detected.
  • the base 86b is distorted.
  • the strain gauge 86a detects and outputs the strain generated in the base 86b. That is, the strain gauge 86a indirectly detects the strain generated in the wiper 32 via the base 86b.
  • the strain gauge 86a is a sensor capable of measuring minute strain, it is difficult to detect the strain by directly attaching it to the wiper 32 made of an elastic material. On the other hand, in the present embodiment, since the strain gauge 86a is attached to the surface of the base 86b attached to the end surface 32b of the wiper 32, the deformation generated in the wiper 32 can be appropriately detected.
  • FIG. 17 is a block diagram showing a configuration example for controlling the actuator 80.
  • the moving device 34 includes a control device 90 that controls the actuator 80.
  • the control device 90 is composed of a processing unit including a CPU (Central Processing Unit) and the like, a microcomputer having a storage unit which is a non-transitory recording medium such as a memory and a hard disk that can be read by a computer, and the like.
  • the storage unit stores a program to be executed by the processing unit and information necessary for various processes.
  • the processing unit realizes the following functions of the control device 90 by executing the program stored in the storage unit.
  • the control device 90 is connected to a pair of strain gauges 86a, and outputs from the pair of strain gauges 86a are given.
  • the pair of actuators 80 include a solenoid valve 88 for supplying or exhausting compressed air to the air cylinder 81.
  • the solenoid valve 88 is connected between, for example, a compressor that is a supply source of compressed air and an air cylinder 81, and can supply compressed air to the air cylinder 81.
  • the solenoid valve 88 supplies compressed air to the air cylinder 81 so that the piston rod 81b either moves in the advancing direction or moves in the retracting direction.
  • the solenoid valve 88 can switch the mode of supplying compressed air to the air cylinder 81 to switch the moving direction of the piston rod 81b.
  • the control device 90 can control the operation of the piston rod 81b by adjusting the solenoid valve 88, and can adjust the height position of the arm portion 43 with respect to the light receiving surface 1f.
  • the control device 90 controls the pair of solenoid valves 88 based on the output from the strain gauge 86a. For example, the control device 90 controls the pair of actuators 80 so that the strain indicated by the output of the strain gauge 86a is within a certain range. With this control, the control device 90 adjusts the height position of the arm portion 43 with respect to the light receiving surface 1f so that the pressure applied to the light receiving surface 1f by the wiper 32 is maintained within a certain range. In other words, the control device 90 maintains the pressing force of the wiper 32 with respect to the light receiving surface 1f within a certain range.
  • the control device 90 moves the arm portion 43 in the direction of separating from the light receiving surface 1f by the amount of movement corresponding to the amount of change in the strain.
  • the control device 90 moves the arm portion 43 in the direction approaching the light receiving surface 1f by the amount of movement corresponding to the amount of change in the strain.
  • the control device 90 moves the arm portion 43 in a direction away from the light receiving surface 1f. As a result, the strain of the wiper 32 due to the step D1 is relaxed and the strain amount is reduced. After that, even after the wiper 32 has passed the step D1, the control device 90 adjusts the height position of the arm portion 43 so that the strain of the wiper 32 is within a certain range. On the contrary, when going down the step D1, the strain indicated by the output of the strain gauge 86a becomes small. Therefore, the control device 90 moves the arm portion 43 in the direction approaching the light receiving surface 1f. As a result, the strain of the wiper 32 is increased and the strain is maintained within a certain range.
  • the height position of the arm portion 43 with respect to the light receiving surface 1f can be adjusted based on the strain generated in the wiper 32. Therefore, as described above, if the height position of the arm portion 43 with respect to the light receiving surface 1f is adjusted so that the strain generated in the wiper 32 is within a certain range, the wiper 32 is deformed by reaching the step. Occasionally, the height position of the arm 43 with respect to the light receiving surface 1f can be adjusted so as to alleviate the strain caused by the deformation. As a result, the arm portion 43 can be moved so as to absorb the step, and the wiper 32 can be smoothly moved even when the light receiving surface 1f has a step or the like. Further, since the pressing force of the wiper 32 with respect to the light receiving surface 1f is maintained within a certain range, the light receiving surface 1f can be wiped uniformly in the vertical direction.
  • the case where the core material 60 of the wiper 32 is formed of an elastic material such as urethane rubber is illustrated, but since the pressing force of the wiper 32 can be maintained within a certain range, the core material 60 can be made of metal or the like. , Resin, wood and other materials other than elastic materials.
  • the case where the actuator 80 provided with the air cylinder 81 is used is illustrated, but a motor or other actuator using other power may be used.
  • the speed at which the piston rod 80b of the actuator 80 is moved back and forth is set in consideration of the height of the step D1 and the traveling speed of the wiper 32.
  • the outer shape of the wiper layer 62 of the wiper 32 has an example of a regular octagonal cross section and a case of a rectangular cross section.
  • a regular hexagonal cross section may be used.
  • the outer shape of the wiping layer 62 is not limited to a regular polygon in cross section, and may be a polygon having different lengths on each side. In particular, when the internal angle is 90 degrees or more, it is possible to easily climb on the step, so that a polygon having an internal angle of 90 degrees or more is preferable.
  • the case where the core material 60 is a rod-shaped member having a circular cross section has been illustrated, but for example, as shown in FIG. 12B, a polygonal cross section may be formed according to the outer shape of the wiping layer 62.
  • the case where the wiper 32 is composed of two layers of the core material 60 and the wiping layer 62 is illustrated, but as shown in FIG. 12B, the core material 60 is composed of the central layer 64 and the central layer 64.
  • the wiper 32 may be composed of three layers as a whole, which is composed of an outer layer 66 laminated on the outside of the wiper 32.
  • both the central layer 64 and the outer layer 66 may be formed of an elastic material, or the central layer 64 may be formed of a structural steel or a metal such as an aluminum alloy. Further, the entire core material 60 shown in the above embodiment may be formed of metal.
  • the wiping layer 62 is a tubular member formed so as to cover the entire side surface of the core material 60 is illustrated.
  • a linear wiping layer 62 may be provided along the line, and the wiper 32 may be translated in the vertical direction with the linear wiping layer 62 in contact with the light receiving surface 1f. That is, the wiping layer 62 may be provided linearly on a part of the side surface 60a of the core material 60 in the circumferential direction.
  • the case where the wiping layer 62 extends so as to cover the entire longitudinal direction of the core material 60 is illustrated, but it is provided on a part of the side surface 60a of the core material 60 in the longitudinal direction. You may be.
  • the wiper holding portion 42 regulates the rotation of the wiper 32 by the frictional force between the central hole 32a of the wiper 32 and the protruding portion 42a of the wiper holding portion 42 has been illustrated.
  • the wiper holding portion 42 has a contact surface that comes into contact with the side surface 62a other than the side surface 62a, which is the contact surface, and regulates the wiper 32 from rotating around the axis center due to the frictional force between the side surface 62a and the light receiving surface 1f. It may be provided.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

太陽光発電装置の受光面を清掃する太陽光発電装置用清掃装置であって、棒状のワイパと、前記ワイパを保持し、前記ワイパを移動させる移動装置と、を備え、前記ワイパは、棒状の芯材と、前記芯材の外面に設けられ前記受光面に付着した汚れを吸着する素材により構成された拭き取り層と、を有し、前記移動装置は、前記拭き取り層を前記受光面に接触させるとともに、前記ワイパが軸中心周りに回転するのを規制した状態で前記ワイパを保持し、前記ワイパの長手方向に交差しかつ前記受光面に沿う交差方向に前記ワイパを平行移動させる。

Description

太陽光発電装置用清掃装置、及び太陽光発電装置の清掃システム
 本開示は、太陽光発電装置用清掃装置、及び太陽光発電装置の清掃システムに関する。
 本出願は、2019年10月17日出願の日本出願第2019-190433号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 太陽光発電装置のアレイ(パネル)の表面には砂等の汚れが付着することがある。特許文献1には、このような汚れを清掃するための清掃装置が開示されている。
再表2015/132816号公報
 一実施形態である太陽光発電装置用清掃装置は、太陽光発電装置の受光面を清掃する太陽光発電装置用清掃装置であって、棒状のワイパと、前記ワイパを保持し、前記ワイパを移動させる移動装置と、を備え、前記ワイパは、棒状の芯材と、前記芯材の外面に設けられ前記受光面に付着した汚れを吸着する素材により構成された拭き取り層と、を有し、前記移動装置は、前記拭き取り層を前記受光面に接触させるとともに、前記ワイパが軸中心周りに回転するのを規制した状態で前記ワイパを保持し、前記ワイパの長手方向に交差する交差方向に前記ワイパを平行移動させる。
 他の実施形態である太陽光発電装置の清掃システムは、太陽光発電装置と、前記太陽光発電装置の受光面を清掃する清掃装置と、を備えた太陽光発電装置の清掃システムであって、前記清掃装置は、棒状のワイパと、前記ワイパを保持し、前記ワイパを移動させる移動装置と、を備え、前記ワイパは、棒状の芯材と、前記芯材の外面に設けられ前記受光面に付着した汚れを吸着する素材により構成された拭き取り層と、を有し、前記移動装置は、前記拭き取り層を前記受光面に接触させるとともに、前記ワイパが軸中心周りに回転するのを規制した状態で前記ワイパを保持し、前記ワイパの長手方向に交差する交差方向に前記ワイパを平行移動させる。
図1は、1基分の、集光型の太陽光発電装置の一例を、受光面側から見た斜視図であり、完成した状態での太陽光発電装置を示している。 図2は、図1中の太陽光発電装置の斜視図である。 図3は、アレイの上端部及び下端部を示した斜視図であり、第1実施形態に係る清掃装置の一部を示している。 図4は、図3中、アレイの左右方向の断面図であり、支持ブラケットの断面を示している。 図5Aは、図4中の紙面左側の支持ブラケットの部分を拡大した図である。 図5Bは、図4中の紙面右側の支持ブラケットの部分を拡大した図である。 図6は、ワイパ保持部をワイパの端面側から見たときの図である。 図7は、駆動部を、駆動軸の軸方向から見たときの図である。 図8は、ワイパの断面図である。 図9は、上下方向に並べられ互いに隣接する一対のモジュールの受光面をワイパが移動するときの状態を示した図である。 図10は、拭き取り層の側面の幅寸法に関する試験結果を示す図である 図11は、上下方向に並べられ互いに隣接する一対のモジュールの受光面を、第2実施形態に係る清掃装置のワイパが移動するときの状態を示した図である。 図12Aは、ワイパの変形例を示す断面図である。 図12Bは、ワイパの他の変形例を示す断面図である。 図13は、第3実施形態に係るアレイの左右方向の断面図である。 図14は、ワイパ保持部をワイパの側面側から見たときの図である。 図15は、第4実施形態に係るアレイの左右方向の一部断面図である。 図16は、ワイパ保持部をワイパの側面側から見たときの図である。 図17は、アクチュエータを制御するための構成例を示すブロック図である。
[本開示が解決しようとする課題]
 上記清掃装置は、上下方向及び水平方向に移動可能な回転洗浄ブラシを有しており、この回転洗浄ブラシによって太陽光発電パネルを洗浄するように構成されている。
 回転洗浄ブラシは、モータによる駆動によって回転するように構成されており、上記清掃装置は、モータの回転力を回転洗浄ブラシへ伝達するための伝達機構や回転洗浄ブラシを回転させるための回転機構を有する。
 しかし、太陽光発電装置が大規模な発電に用いられる大型の太陽光発電装置の場合、伝達機構や回転機構も大型となり、清掃装置の重量を増加させる一因となる。
 本開示はこのような事情に鑑みてなされたものであり、コンパクトかつ軽量な太陽光発電装置用清掃装置を提供することを目的とする。
[本開示の効果]
 本開示によれば、太陽光発電装置用清掃装置のコンパクト化及び軽量化を図ることができる。
[本開示の実施形態の説明]
 最初に実施形態の内容を列記して説明する。
(1)一実施形態である太陽光発電装置用清掃装置は、太陽光発電装置の受光面を清掃する太陽光発電装置用清掃装置であって、棒状のワイパと、前記ワイパを保持し、前記ワイパを移動させる移動装置と、を備え、前記ワイパは、棒状の芯材と、前記芯材の外面に設けられ前記受光面に付着した汚れを吸着する素材により構成された拭き取り層と、を有し、前記移動装置は、前記拭き取り層を前記受光面に接触させるとともに、前記ワイパが軸中心周りに回転するのを規制した状態で前記ワイパを保持し、前記ワイパの長手方向に交差しかつ前記受光面に沿う交差方向に前記ワイパを平行移動させる。
 上記構成によれば、拭き取り層を受光面に接触させるとともに、ワイパが軸中心周りに回転するのを規制した状態でワイパを交差方向に平行移動させるので、上記従来例のように、モータの回転力を回転洗浄ブラシへ伝達するための伝達機構や回転洗浄ブラシを回転させるための回転機構を設けずとも、受光面を清掃することができる。この結果、清掃装置のコンパクト化及び軽量化を図ることができる。
(2)上記太陽光発電装置用清掃装置において、前記拭き取り層は、断面多角形であるとともに、前記多角形の各辺に対応して前記長手方向に延びる複数の側面を有し、前記移動装置は、前記ワイパを軸中心周りに回転可能に保持するものであってもよい。
 この場合、複数の側面のうちの一の側面を接触面に用いた後、ワイパを回転させて一の側面以外の他の側面を接触面に用いることができる。これにより、汚れた接触面を複数回清浄な面に切り換えることができ、ワイパの交換頻度を少なくすることができる。
(3)また、上記太陽光発電装置清掃装置において、前記太陽光発電装置は、前記交差方向に並べられて前記受光面を構成する複数のモジュールを有し、前記芯材、及び前記拭き取り層の少なくともいずれか一方は、前記複数のモジュールのうちの互いに隣接する一対のモジュールの境界に存在する段差を前記ワイパが通過するときに、前記一対のモジュールそれぞれに対する前記拭き取り層の接触を維持するように弾性変形可能な性質を有していてもよい。
 この場合、一対のモジュールの境界に段差があったとしても、ワイパが弾性変形して一対のモジュールと拭き取り層との接触を維持するので、受光面に拭き残しを生じさせることなく段差を吸収し、ワイパをスムーズに移動させることができる。
(4)また、上記太陽光発電装置用清掃装置において、前記拭き取り層は、断面矩形であるとともに、一対の第1側面と、前記一対の第1側面よりも幅広の一対の第2側面と、を有し、前記太陽光発電装置は、前記交差方向に並べられて前記受光面を構成する複数のモジュールを有し、前記移動装置は、前記第1側面が前記受光面に接触した状態で、前記複数のモジュールのうちの互いに隣接配置された一対のモジュールの境界に生じた段差を上る際、及び、前記第2側面が前記受光面に接触した状態で、前記一対のモジュールの境界に生じた段差を下る際に、前記ワイパの回転を許容するように前記ワイパを保持するものであってもよい。
 この場合も、一対のモジュール間に段差があったとしても、段差を吸収し、ワイパをスムーズに移動させることができる。
(5)また、上記太陽光発電装置用清掃装置において、前記移動装置は、前記ワイパの長手方向両端を保持し、前記ワイパとともに前記交差方向に移動する一対の保持部と、前記一対の保持部の間に亘って設けられ、前記一対の保持部とともに前記交差方向に移動する、金属からなるサポート板と、を備え、前記サポート板は、移動方向に向く板面を有し、前記板面は、前記ワイパに当接するように構成されていてもよい。
 この場合、ワイパを移動させたときに、移動方向に向くサポート板の板面がワイパに当接し、サポート板がワイパを長手方向に沿って保持する。これにより、長手方向のたわみといった長手方向の変形がワイパに生じるのを抑制することができる。
 この結果、ワイパと受光面との間の摩擦等の抵抗の増加を抑制でき、移動装置に作用する負荷を低減することができる。
(6)また、上記太陽光発電装置用清掃装置において、前記移動装置は、前記ワイパの長手方向両端を保持し、前記ワイパとともに前記交差方向に移動する一対の保持部を備え、前記一対の保持部は、前記ワイパの長手方向両端を保持する一対の腕部と、前記腕部を前記受光面に交差する方向に移動させるアクチュエータと、を備え、前記移動装置は、さらに、前記ワイパに生じるひずみを検出するセンサと、前記センサの出力に基づいて前記アクチュエータを制御する制御部と、を備えていてもよい。
 この場合、ワイパに生じるひずみに基づいて、受光面に対する腕部の高さ位置を調整することができる。
 よって、例えば、ワイパに生じるひずみが一定の範囲となるように、受光面に対する腕部の高さ位置を調整するように構成すれば、段差に到達することでワイパに変形が生じたときに、その変形によるひずみを緩和するように受光面に対する腕部の高さ位置を調整することができる。この結果、段差を吸収するように腕部を移動させることができ、受光面に段差等がある場合であっても、ワイパをスムーズに移動させることができる。
(7)また、上記太陽光発電装置用清掃装置において、前記拭き取り層が有する側面の前記交差方向の幅寸法は、30ミリメートル以上、50ミリメートル以下であることが好ましい。
 接触面の幅寸法が30ミリメートル未満の場合、受光面と拭き取り層との間で有効な接触面積が確保できず、受光面の清掃能力が低下してしまう。また、接触面の幅寸法が50ミリメートルより大きい場合、前記接触面積が大きくなり、受光面と接触面との間の摩擦抵抗が大きくなり、移動装置の負荷が大きくなる。また、受光面と接触面との間の摩擦抵抗が大きくなることで、ワイパに作用する交差方向に沿う力が大きくなり、ワイパを変形させるおそれが生じる。このため、接触面の幅寸法は、30ミリメートル以上、50ミリメートル以下であることが好ましい。接触面の幅寸法を上記のように設定することで、移動装置に負荷をかけず、ワイパの変形を抑制するとともに、必要な清掃能力を確保することができる。
(8)他の実施形態である太陽光発電装置の清掃システムは、太陽光発電装置と、前記太陽光発電装置の受光面を清掃する清掃装置と、を備えた太陽光発電装置の清掃システムであって、前記清掃装置は、棒状のワイパと、前記ワイパを保持し、前記ワイパを移動させる移動装置と、を備え、前記ワイパは、棒状の芯材と、前記芯材の外面に設けられ前記受光面に付着した汚れを吸着する素材により構成された拭き取り層と、を有し、前記移動装置は、前記拭き取り層を前記受光面に接触させるとともに、前記ワイパが軸中心周りに回転するのを規制した状態で前記ワイパを保持し、前記ワイパの長手方向に交差しかつ前記受光面に沿う交差方向に前記ワイパを平行移動させる。
 上記構成によれば、清掃装置のコンパクト化及び軽量化を図ることができる。
(9)上記太陽光発電装置の清掃システムにおいて、前記太陽光発電装置は、前記交差方向に並べられて前記受光面を構成する複数のモジュールを有し、前記複数のモジュールのうちの互いに隣接配置された一対のモジュールの境界には、前記受光面を上方へ向けた状態で前記ワイパを平行移動させたときに、前記ワイパにより掃き寄せられる前記受光面上の汚れを下方へ排出する隙間が設けられていてもよい。
 この場合、ワイパの移動により掃き寄せられる汚れを排出しながら受光面を清掃することができる。
[実施形態の詳細]
 以下、好ましい実施形態について図面を参照しつつ説明する。
 なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
〔清掃装置を備えた太陽光発電装置の構成〕
 図1は、1基分の、集光型の太陽光発電装置の一例を、受光面1f側から見た正面図である。図2は、図1中の太陽光発電装置の斜視図である。図1は、完成した状態での太陽光発電装置100を示し、図2は、組立途中の状態での太陽光発電装置100を示している。図2では、集光型太陽光発電モジュール(以下、単にモジュールとも言う。)1Mを紙面左端の一列だけ取り付けた状態とし、追尾架台25の骨組みを示している。なお、実際にモジュール1Mを追尾架台25に取り付ける際は、追尾架台25を地面に寝かせた状態で取り付けを行う。
 図1において、この太陽光発電装置100は、上部側で連続し、下部側で左右に分かれた全体として面状の受光面を成すアレイ(太陽光発電パネル)1と、その支持機構2とを備えている。
 アレイ1は、背面側の追尾架台25(図2)上にモジュール1Mを整列させて構成されている。図1の例では、左右のウイングを構成する(96(=12×8)×2)個と、中央の渡り部分の8個との、合計200個のモジュール1Mの集合体として、アレイ1が構成されている。モジュール1M内には、太陽光を集光させて発電素子に導く光学系がマトリックス状に並んで設けられた既知の構成が搭載されている。
 支持機構2は、支柱21と、基礎22と、駆動部23と、駆動軸となる水平軸24(図2)と、追尾架台25とを備えている。支柱21は、下端が基礎22に固定され、上端に駆動部23を備えている。
 図1において、基礎22は、上面のみが見える程度に地中に堅固に埋設される。基礎22を地中に埋設した状態で、支柱21は鉛直となり、水平軸24(図2)は水平となる。
 駆動部23は、水平軸24を、方位角(支柱21を中心軸とした角度)及び仰角(水平軸24を中心軸とした角度)の2方向に回動させることができる。
 図2において、水平軸24には、追尾架台25を補強する補強材25aが取り付けられている。また、補強材25aには、複数本の水平方向への固定レール25bが取り付けられている。モジュール1Mは、この固定レール25bに固定される。水平軸24が方位角又は仰角の方向に回動すれば、アレイ1もその方向に回動する。
 図1のようにアレイ1が鉛直になっているのは、通常、夜明け及び日没前である。
 日中は、アレイ1の受光面1fが常に太陽に正対する姿勢となるよう、駆動部23が動作し、アレイ1は太陽の追尾動作を行う。
 太陽光発電装置100には、受光面1fを清掃するための太陽光発電装置用清掃装置30が設けられている。
 太陽光発電装置用清掃装置30(以下、清掃装置30ともいう)は、複数(図例では5つ)のワイパ32と、複数のワイパ32を移動させる複数(図例では5つ)の移動装置34とを備えている。
 ワイパ32は、受光面1fの汚れを拭き取ることで清掃するための棒状の部材であり、長手方向が左右方向に沿うように設けられている。
 移動装置34は、ワイパ32の上下方向への移動を案内する一対のガイドレール36や、ワイパ32を移動させるための駆動力を発生する駆動部38等を備えている。
 左右のウイングそれぞれには、ワイパ32及び移動装置34が2つずつ設けられている。
 ウイングに設けられたワイパ32の長さは、4列分のモジュール1Mに対応して設定されている。ワイパ32の長さは、例えば、4メートル程度である。
 このウイングに設けられた移動装置34は、ワイパ32をアレイ1の上端と下端との間を往復移動させるように構成されている。
 よって、一つのウイングに設けられた2つのワイパ32は、8列に配置された96個のモジュール1Mからなる一つのウイングの全面の汚れを拭き取ることができる。
 また、8個のモジュール1Mからなる中央の渡り部分についても、ワイパ32及び移動装置34が設けられている。渡り部分に設けられたワイパ32の長さは、2列分のモジュール1Mの長さに設定されている。
 また、渡り部分に設けられた移動装置34は、ワイパ32を渡り部分の上下端を往復移動させるように構成されている。
 よって、渡り部分のワイパ32は、2列に配置された8個のモジュール1Mからなる渡り部分の全面の汚れを拭き取ることができる。
 このように、本実施形態のアレイ1の受光面1fは、5つのワイパ32によって清掃される5つの清掃エリアに分けられる。
 清掃装置30の複数のワイパ32及び複数の移動装置34は、各清掃エリアに設けられる。よって、各移動装置34の一対のガイドレール36は、各清掃エリアの左右両側に上下方向に沿って延びている。
〔第1実施形態に係る清掃装置の詳細について〕
〔移動装置について〕
 図3は、アレイ1の上端部及び下端部を示した斜視図であり、第1実施形態に係る清掃装置30の一部を示している。図3では、図1中の紙面左端の清掃エリアに設けられたワイパ32及び移動装置34を示している。図3では、図中の矢印で示す方向が上下方向である。つまり、上下方向とは、図3に示すように、受光面1fに沿う方向である。
 移動装置34は、上述の一対のガイドレール36や、駆動部38の他、一対のガイドレール36内を走行する一対の歯付きベルト40と、一対の歯付きベルト40に固定されてワイパ32の両端を保持する一対のワイパ保持部42とを備える。
 なお、図3中の駆動部38は、理解容易のため、各部を収容するカバーを省略して示している。
 清掃エリアの左右両側に設けられている一対のガイドレール36は、上下方向に沿った長四角形の無端状に形成されており、固定レール25bから延びる複数の支持ブラケット44によって清掃エリアの左右両側に固定されている。
 図4は、図3中、アレイ1の左右方向の断面図であり、支持ブラケット44の断面を示している。図4では、図3にて示した清掃エリアに隣接する清掃エリアのモジュール1M、及びワイパ32も示している。
 また、図5Aは、図4中の紙面左側の支持ブラケット44の部分を拡大した図である。
 図4及び図5Aに示すように、固定レール25bから延びる支持ブラケット44は、モジュール1Mの側方を通過し受光面1fから突出するように設けられている。
 支持ブラケット44の先端には、ガイドレール36を固定するための固定部44aが設けられている。固定部44aは、左右方向に沿ってモジュール1M側に突出している。固定部44aにおいて受光面1fに対向する固定面44a1には、ガイドレール36が固定されている。
 ガイドレール36は、ビスや、接着剤による接着層、かしめ等によって、固定面44a1に固定される。ガイドレール36は、モジュール1M側に開口36aを有する断面C型に形成されている。ガイドレール36の内部には歯付きベルト40が走行可能に収容されている。歯付きベルト40の歯部40aは、開口36aから突出している。
 図5Bは、図4中の紙面右側の支持ブラケット44の部分を拡大した図である。図5B中の支持ブラケット44は、互いに左右方向に隣接するモジュール1Mの間に設けられている。この支持ブラケット44の先端には、固定部44aが一対設けられている。一対の固定部44aには、互いに隣接するモジュール1Mそれぞれの移動装置34の2つのガイドレール36が固定されている。
 両移動装置34の2つのガイドレール36の内部には、両移動装置34の2つの歯付きベルト40が収容されている。
 また、図5A及び図5Bに示すように、一対の歯付きベルト40には、上述の一対のワイパ保持部42が固定されている。
 一対のワイパ保持部42は、一対の歯付きベルト40から、モジュール1M側へ突出し、ワイパ32の両端を保持している。
 ワイパ保持部42の先端部には、ワイパ32の端面に設けられた中心孔32aに差し込まれる突起部42aが設けられている。
 一対のワイパ保持部42は、ワイパ32が左右方向に平行となるようにワイパ32を保持する。
 一対のワイパ保持部42は、突起部42aを中心孔32aに差し込むことで、ワイパ32を軸中心周りに回転可能に保持する。
 図6は、ワイパ保持部42をワイパ32の端面側から見たときの図である。
 図6に示すように、ワイパ保持部42は、歯付きベルト40の歯部40aに噛み合う噛み合い部42bを有する。噛み合い部42bは、歯部40aに噛み合うとともに歯付きベルト40にねじや、接着剤による接着層等により固定されている。
 よって、一対の歯付きベルト40が上下方向に走行すると、一対のワイパ保持部42及び一対のワイパ保持部42に保持されるワイパ32も上下方向に移動する。
 一対の歯付きベルト40は、後述するように互いに同期して走行する。よって、一対のワイパ保持部42は、ワイパ32が左右方向に平行に保持されるように一対の歯付きベルト40に固定される。
 これにより一対のワイパ保持部42は、ワイパ32を左右方向に平行な状態を維持しつつワイパ32を上下方向に移動させる。
 図6に示すように、ワイパ32の外形は、正8角形である。よって、ワイパ32は、長手方向に延びる8つの矩形状の側面を有する。
 ワイパ保持部42は、ワイパ32の8つの側面のうちの一つが受光面1fに接触する接触面となるようにワイパ32を保持する。
 また、ワイパ保持部42は、一つの側面を受光面1fに接触させてワイパ32を移動させたときに、側面と受光面1fとの間の摩擦力によってワイパ32が軸中心周りに回転しない程度の抵抗が生じるように、ワイパ32を保持する。言い換えると、ワイパ保持部42は、一つの側面を受光面1fに接触させてワイパ32を移動させたときにワイパ32が軸中心周りに回転するのを規制するようにワイパ32を保持する。
 なお、ワイパ保持部42は、ワイパ32の中心孔32aと、ワイパ保持部42の突起部42aとの間の摩擦力等によって、ワイパ32の回転を規制する。
 図3に戻って、駆動部38は、一対の歯付きベルト40が噛み合う一対の駆動ギア50と、一対の駆動ギア50が両端に固定された駆動軸52と、駆動軸52を駆動するモータ54とを備えており、一対の歯付きベルト40を駆動する機能を有する。
 一対の駆動ギア50は、駆動軸52に一体回転可能に固定されている。よって、駆動軸52がモータ54によって駆動されると、一対の歯付きベルト40は、互いに同期して走行する。
 図7は、駆動部38を、駆動軸52の軸方向から見たときの図である。
 図7に示すように、駆動部38は、駆動部38の各部を収容するカバー56を備えている。カバー56は、固定レール25bから延びるブラケット56aによって固定レール25bに固定されている。なお,図7では、カバー56を破線で示している。
 カバー56内において、ガイドレール36は、U字型に形成されており、一対の歯付きベルト40を、受光面1f側、及び受光面1fの反対面側に案内するように構成されている。なお、図7中のガイドレール36は、その一部を切り欠いて示している。
 駆動軸52は、カバー56内に設けられた軸支持部(図示省略)によって回転自在に支持されている。
 駆動軸52の両端に固定された一対の駆動ギア50は、カバー56内において一対の歯付きベルト40に噛み合う。
 また、一対の駆動ギア50のうちの一方の駆動ギア50は、モータ54に設けられた出力ギア58にも噛み合う。出力ギア58は、モータ54の出力軸に一体回転可能に固定されている。
 モータ54は、カバー56内に固定されており、図示しない制御部によって回転動作が制御される。モータ54は、出力ギア58によってモータ54が発生する回転力を一方の駆動ギア50に伝達する。一方の駆動ギア50及び他方の駆動ギア50は、上述したように、駆動軸52を介して一体回転可能である。よって、モータ54の回転力は、駆動軸52及び一対の駆動ギア50に伝達される。
 モータ54の回転力によって、一対の駆動ギア50が回転すると、一対の歯付きベルト40は、ガイドレール36内を走行し、一対のワイパ保持部42及びワイパ32を上下方向に移動させる。
 前記制御部は、例えば、太陽光発電装置100が発電しない夜間等にモータ54を動作させるように制御する。前記制御部は、清掃エリアの上端から下端までの間でワイパ32が往復移動するようにモータ54を制御する。これにより、ワイパ32は、清掃エリアの上端から下端までの間を往復移動する。
〔ワイパについて〕
 図8は、ワイパ32の断面図である。
 上述したように、ワイパ32の外形は、正8角形である。
 ワイパ32は、中心側の芯材60と、芯材60の外面である側面60aに設けられた拭き取り層62とを有する。
 芯材60は、断面円形の棒状(円筒状)の部材であり、ウレタンゴム等の弾性素材によって形成されている。
 拭き取り層62は、芯材60の側面60a全周を覆うように形成された筒状の部材である。また、拭き取り層62は、芯材60の長手方向の全域を覆うように延びている。拭き取り層62は、受光面1fに付着した砂等の汚れを吸着して拭き取る素材により構成される。
 拭き取り層62を構成する素材として、マイクロファイバーが用いられる。拭き取り層62は、マイクロファイバーを用いた繊維層によって形成されている。なお、マイクロファイバーとは、繊維径が数マイクロメートルのナイロンやポリエステルなどの細い繊維である。拭き取り層62は、このようなマイクロファイバーを用いて層状に形成されている。
 マイクロファイバーを用いた繊維は、一般的な繊維と比較して、繊維の隙間が多く、毛管現象等によって汚れを吸着することができる。また、マイクロファイバーを用いた繊維は、特に、数10ミクロン程度の比較的細かい砂を吸着するのに適している。よって、拭き取り層62は、受光面1f上に付着する砂を好適に吸着し拭き取ることができる。
 拭き取り層62は、芯材60の側面60aに接着剤による接着層によって固定されていてもよいし、面ファスナー等によって側面60aに対して取り外し可能に固定されていてもよい。
 また、拭き取り層62は、ワイパ32の最外面を構成しており、拭き取り層62の外形は、正8角形とされている。よって、拭き取り層62は、8つの矩形状の側面62aを有している。図8に示すように、8つの側面62aのうちの一の側面が、受光面1fに接触する接触面となる。
 つまり、拭き取り層62は、断面正8角形であるとともに、正8角形の各辺に対応して長手方向に延びる8つの側面62aを有する。
 移動装置34は、拭き取り層62の8つの側面62aのうちの一の側面を受光面1fに接触させた状態でワイパ32を上下方向(ワイパ32の長手方向に交差する交差方向)に平行移動させる。つまり、ワイパ32は、図8に示すように、8つの側面62aのうちの一の側面が受光面1fに接触した状態で、平行移動する。
 このとき、上述のように、ワイパ保持部42は、一つの側面を受光面1fに接触させてワイパ32を移動させたときにワイパ32が軸中心周りに回転するのを規制するようにワイパ32を保持する。
 よって、ワイパ32は、8つの側面62aのうちの一の側面62aを用いて受光面1f上の汚れを拭き取る。
 この構成により、上記従来例のように、モータの回転力を回転洗浄ブラシへ伝達するための伝達機構や回転洗浄ブラシを回転させるための回転機構を設けずとも、受光面1fを清掃することができる。この結果、清掃装置30のコンパクト化及び軽量化を図ることができる。
 また、ワイパ32は、上述したように、一対のワイパ保持部42によって軸中心周りに回転可能に保持されている。
 よって、拭き取り層62の8つの側面62aのいずれかを選択的に接触面とすることができる。
 このため、8つの側面62aのうちの一の側面を接触面に用いた後、ワイパ32を回転させて一の側面以外の他の側面を接触面に用いることができる。これにより、汚れた接触面を複数回清浄な面に切り換えることができ、ワイパ32の交換頻度を少なくすることができる。なお、拭き取り層62が取り外し可能な場合は、拭き取り層62のみを交換することができる。
 なお、接触面を他の側面に切り換えるためのワイパ32の回転動作は、清掃装置30を操作する操作者がワイパ32を回転させてもよいし、ワイパ32が清掃エリアの上端又は下端に到達したときにワイパ32を機械的に回転させる回転機構を設けてもよい。
 また、本実施形態において、芯材60及び拭き取り層62は、受光面1f上に生じる段差を通過するときに、その段差を吸収するように弾性変形する性質を有している。
 図9は、上下方向に並べられ互いに隣接する一対のモジュール1Mの受光面1fをワイパ32が移動するときの状態を示した図である。
 図9中、上段に示す図は、互いに隣接するモジュール1M-1、及びモジュール1M-2の境界Kに段差D1が存在し、ワイパ32が、モジュール1M-1から、モジュール1M-2へ移動する場合を示している。ここで、モジュール1M-1に対してモジュール1M-2が受光面1f側へ突出しているので、ワイパ32は、段差D1に乗り上がることとなる。
 受光面1fは、複数のモジュール1Mの受光面である複数のモジュール面によって構成されている。段差D1では、モジュール1M-1のモジュール面に対してモジュール1M-2のモジュール面が受光面1f側へ突出している。
 図9中、上段に示す図において、ワイパ32は、段差D1通過前においては、一の側面62aを接触面としてモジュール1M-1に接触させた状態で、紙面左側から右側へ向かって移動している。
 ワイパ32は、段差D1に到達すると、モジュール1M-2の角部70に当接しつつ凹むように圧縮変形して、段差D1を吸収する。
 段差D1を吸収し、段差D1に乗り上がった後のワイパ32は、圧縮変形したまま、一の側面62aをモジュール1M-2に接触させた状態で移動する。
 図9中、下段に示す図は、互いに隣接するモジュール1M-2、及びモジュール1M-3の境界Kに段差D2が存在し、ワイパ32が、モジュール1M-2から、モジュール1M-3へ移動する場合を示している。ここで、モジュール1M-3に対してモジュール1M-2が受光面1f側へ突出しているので、ワイパ32は、段差D2を下ることになる。
 図9中、下段に示す図において、ワイパ32は、段差D2通過前においては、一の側面62aを接触面としてモジュール1M-2に接触させた状態で、紙面左側から右側へ向かって移動している。また、このときワイパ32は、凹むように圧縮変形している。
 ワイパ32は、段差D2に到達すると、モジュール1M-2の角部72を下りつつ圧縮状態から回復するように弾性変形して、段差D2を吸収する。
 段差D2を吸収し、段差D2を下った後のワイパ32は、そのまま、一の側面62aをモジュール1M-3に接触させた状態で移動する。
 このように、本実施形態のワイパ32を構成する芯材60及び拭き取り層62は、上下方向に互いに隣接する一対のモジュール1Mの境界Kに存在する段差D1,D2をワイパ32が通過するときに、一対のモジュール1M(のモジュール面)それぞれに対する拭き取り層62の接触を維持するように弾性変形可能な性質を有する。
 このため、一対のモジュール1Mの境界に段差があったとしても、ワイパ32は、弾性変形することにより一対のモジュール1Mと拭き取り層62との接触を維持するので、受光面1fに拭き残しを生じさせることなくスムーズに移動することができる。
 また、図9に示すように、モジュール1M-1(1M-2)、及びモジュール1M-2(1M-3)の境界Kには、隙間Sが設けられている。
 よって、ワイパ32が移動し、ワイパ32によって受光面1f上の汚れHが掃き寄せられた場合、ワイパ32が段差D1(D2)を通過するときに、掃き寄せられた汚れHを隙間Sから排出することができる。
 つまり、隙間Sは、受光面1fを上方へ向けた状態でワイパ32を平行移動させたときに、ワイパ32により掃き寄せられる受光面1f上の汚れHを下方へ排出するための隙間である。
 この隙間Sを設けることにより、ワイパ32の移動により掃き寄せられる汚れHを排出しながら受光面1fを清掃することができる。
 また、ワイパ32が受光面1fに接触する際の接触面となる、拭き取り層62の8つの側面62aの上下方向の幅寸法W(図8)は、30ミリメートル以上、50ミリメートル以下であることが好ましい。
 接触面となる側面62aの幅寸法Wはワイパ32の接触面積を定めるパラメータであるため、適切に設定する必要がある。
 ワイパ32の接触面積は、ワイパ32の清掃能力や、ワイパ32を移動させるときのモータ54の負荷、ワイパ32の長手方向のたわみに影響を及ぼす。なお、ワイパ32の長手方向のたわみとは、ワイパ32が受光面1fとの摩擦力によって生じる、弓なりに変形した状態をいう。
 そこで、拭き取り層62の側面62aの幅寸法Wの変化が、清掃能力、モータ負荷、及びワイパ32のたわみに与える影響を把握するための試験を行った。
 試験は、側面62aの幅寸法Wを20ミリメートル、30ミリメートル、40ミリメートル、50ミリメートル、及び60ミリメートルに設定した5種類のワイパ32を作成した。ワイパ32の長手寸法は約4メートルとした。
 これらワイパ32を清掃装置30に用いて試験を行い、清掃能力、モータ負荷、及びワイパ32のたわみについて評価した。
 図10は、側面62aの幅寸法Wに関する試験結果を示す図である。
 清掃能力において「良」は、受光面1fの汚れが問題無く清掃されていることを示している。清掃能力において「不良」は、発電力に影響を与える程度に受光面1fの汚れが残っていることを示している。
 モータ負荷において「良」は、モータ54の定格範囲内であることを示しており、「不良」は、モータ54の定格範囲を超える負荷が加わっていることを示している。
 ワイパのたわみにおいて「良」は、受光面1fの清掃に問題がない程度のたわみであることを示しており、「不良」は、受光面1fの清掃に問題が生じる程度のたわみであることを示している。
 図10に示すように、清掃能力については、側面62aの幅寸法Wが20ミリメートルのときに「不良」であり、それ以外では「良」であった。
 この結果から、側面62aの幅寸法Wが20ミリメートル以下の場合、受光面1fと拭き取り層62との間で有効な接触面積が確保できず、受光面1fの清掃能力が低下してしまうことが判る。
 また、モータ負荷については、側面62aの幅寸法Wが60ミリメートルのときに「不良」であり、それ以外では「良」であった。
 この結果から、側面62aの幅寸法Wが60ミリメートル以上である場合、受光面1fと拭き取り層62との間の接触面積が大きくなり、受光面1fと拭き取り層62との間の摩擦抵抗が大きくなり、モータ負荷が大きくなることが判る。
 また、ワイパのたわみについては、側面62aの幅寸法Wが60ミリメートルのときに「不良」であり、それ以外では「良」であった。
 この結果から、側面62aの幅寸法Wが60ミリメートル以上である場合、受光面1fと拭き取り層62との間の摩擦抵抗が大きくなり、ワイパ32に作用する上下方向に沿う力が大きくなり、ワイパ32にたわみが生じることが判る。
 以上のように、上記試験結果から、側面62aの幅寸法Wの範囲は、30ミリメートル以上、50ミリメートル以下とすれば適切な設定とすることができることが判る。
 側面62aの幅寸法Wを上記のように設定することで、モータ54に負荷をかけず、ワイパ32の変形を抑制するとともに、必要な清掃能力を確保することができる。
〔第2実施形態について〕
 図11は、上下方向に並べられ互いに隣接する一対のモジュール1Mの受光面1fを、第2実施形態に係る清掃装置30のワイパ32が移動するときの状態を示した図である。
 本実施形態の清掃装置30は、ワイパ32の拭き取り層62の外形が断面矩形である点において、上述の実施形態と相違する。
 本実施形態の拭き取り層62の外形が断面矩形であるため、拭き取り層62は、一対の第1側面62a1と、一対の第1側面62a1よりも幅広の一対の第2側面62a2とを有している。これら一対の第1側面62a1及び一対の第2側面62a2のいずれかが選択的に接触面となる。
 図11中、上段に示す図は、図9と同様であり、ワイパ32が、境界Kに存在する段差D1を通過してモジュール1M-1から、モジュール1M-2へ移動する場合を示している。
 図11中、上段に示す図において、ワイパ32は、段差D1通過前においては、第1側面62a1を接触面としてモジュール1M-1に接触させた状態で、紙面左側から右側へ向かって移動している。
 ワイパ32は、段差D1に到達すると、モジュール1M-2の角部70に当接する。角部70に当接することで、ワイパ32には、当該ワイパ32を軸方向周りに回転させようとする力が作用する。
 ここで、ワイパ32を保持する一対のワイパ保持部42は、角部70に当接することでワイパ32を回転させようとする力が作用したときに、ワイパ32が回転する程度の保持力でワイパ32を保持している。
 よって、角部70に当接することで、ワイパ32に回転させようとする力が作用すると、ワイパ32は、軸方向周りに回転する。これにより、ワイパ32は、段差D1に乗り上がるとともに、受光面1fに対する拭き取り層62の接触面が第1側面62a1から第2側面62a2へ切り替わる。
 段差D1に乗り上がった後のワイパ32は、第2側面62a2をモジュール1M-2に接触させた状態で移動する。
 図11中、下段に示す図は、図9と同様であり、ワイパ32が、境界Kに存在する段差D2を通過してモジュール1M-2から、モジュール1M-3へ移動する場合を示している。
 図11中、下段に示す図において、ワイパ32は、段差D2通過前においては、第2側面62a2を接触面としてモジュール1M-2に接触させた状態で、紙面左側から右側へ向かって移動している。
 ワイパ32は、段差D2に到達すると、モジュール1M-2の角部72を下る。角部72を下ることで、ワイパ32には、当該ワイパ32を軸方向周りに回転させようとする力が作用する。
 角部72を下ることで、ワイパ32に回転させようとする力が作用すると、段差D1に乗り上がったときと同様に、ワイパ32は、軸方向周りに回転する。これにより、ワイパ32は、段差D2を下るとともに、受光面1fに対する拭き取り層62の接触面が第2側面62a2から第1側面62a1へ切り替わる。
 段差D2を下った後のワイパ32は、第1側面62a1をモジュール1M-3に接触させた状態で移動する。
 以上のように、本実施形態では、ワイパ32の第1側面62a1が受光面1fに接触した状態で、段差D1を上る際、及び、ワイパ32の第2側面62a2が受光面1fに接触した状態で、段差D2を下る際に、ワイパ32の回転を許容するように構成されている。
 このように、本実施形態では、上下方向に互いに隣接する一対のモジュール1Mの境界Kに存在する段差D1,D2によってワイパ32を軸方向周りに回転させようとする力がワイパ32に作用したときに、第1側面62a1及び第2側面62a2のいずれか一方から他方へ接触面が切り替わるようにワイパ32の回転を許容し、境界K以外の部分においては、前記ワイパの回転を規制するように一対のワイパ保持部42がワイパ32を保持している。
 これにより、一対のモジュール1Mの境界Kに段差があったとしても、段差を吸収し、ワイパ32をスムーズに移動させることができる。
〔第3実施形態について〕
 図13は、第3実施形態に係るアレイの左右方向の断面図であり、図14は、ワイパ保持部42をワイパの側面側から見たときの図である。
 本実施形態の移動装置34は、一対のワイパ保持部42の他、一対のワイパ保持部42の間に亘って設けられたサポート部材76を備えている点において、第1実施形態と相違する。
 一対のワイパ保持部42は、上述のように、ワイパ32を左右方向に平行な状態を維持しつつワイパ32を上下方向に移動させる。すなわち、一対のワイパ保持部42は、ワイパ32の長手方向両端を保持し、ワイパ32とともに上下方向に移動する。
 ワイパ保持部42は、第1実施形態でも示したように、先端部に突起部42aが設けられた腕部43を有する。腕部43は、噛み合い部42bからモジュール1M側へ延びている。円筒状の突起部42aは、ワイパ32の左右両端の中心孔32aに差し込まれる。これにより、腕部43は、軸中心周りに回転可能にワイパ32を保持する。
 サポート部材76は、腕部43及び噛み合い部42bに固定されている。よって、ワイパ32とともに上下方向に移動する。
 サポート部材76は、左右方向に延びる長尺の部材であり、例えば、鉄鋼材料やアルミニウム合金等の金属によって形成される。サポート部材76は、ワイパ32の長手方向に沿って延びている。
 サポート部材76は、一対の腕部43に固定された第1サポート板76aと、第1サポート板76aの上下方向両端からモジュール1M側へ延びる一対の第2サポート板76bとを備える。
 第1サポート板76aは、一対のワイパ保持部42の間に亘って左右方向に延びている。第1サポート板76aの板面76a1は、受光面1fに対向している。
 一対の第2サポート板76bも、一対のワイパ保持部42の間に亘って左右方向に延びている。一対の第2サポート板76bにおける一対の板面76b1は、互いに対向している。
 ワイパ32は、一対の板面76b1の間に挟まれるようにサポート部材76の内部に配置される。
 ワイパ32が有する8つの側面62aのうち、上下方向(交差方向)に向く側面62a3は、板面76b1に対して僅かな隙間をおいて対向する。
 一対の第2サポート板76bの受光面1fに向く先端と、受光面1fとの間には、隙間が設けられている。この隙間によって、ワイパ32をサポート部材76の内部から突出させ、ワイパ32を受光面1fに接触させることができる。この隙間は、ワイパ32が変形したとしても、一対の第2サポート板76bが受光面1fに接触しない程度の寸法に設定される。
 ここで、移動装置34が、図14中の矢印で示す下方向へワイパ保持部42を移動させたとする。このとき、ワイパ32と受光面1fとの間の摩擦により、ワイパ32には、移動方向と反対の方向に向く力が作用する。このため、ワイパ32は、長手方向に変形し紙面左側の第2サポート板76bの板面76b1と、板面76b1に対向するワイパ32の側面62a3とが当接する。紙面左側の第2サポート板76bの板面76b1は、移動方向である下方向に向いている。
 さらに、ワイパ32が一対のモジュール1Mの間の段差に到達したとする。
 ワイパ32が段差に到達し、通過しようとすると、ワイパ32全体には、段差を通過する際の抵抗によって移動方向と反対の方向に向く力がさらに強く作用する。
 仮に、第2サポート板76bが無ければ、段差による抵抗力によってワイパ32には長手方向のたわみ等、ワイパ32の長手方向に大きな変形が生じる。このような、ワイパ32の長手方向の変形は、ワイパ32と受光面1fとの間の摩擦等の抵抗を増加させる。このため、ワイパ32を移動させようとする移動装置34に大きな負荷が作用する。
 これに対して、本実施形態では、ワイパ保持部42が、第2サポート板76bを有しているので、ワイパ32を移動させることでワイパ32に移動方向と反対の方向に押し戻そうとする力が作用したとしても、ワイパ32の長手方向の変形を抑制することができる。すなわち、ワイパ32を移動させたとしても、下方向(移動方向)に向く第2サポート板76bの板面76b1がワイパ32の側面62a3に当接し、第2サポート板76bがワイパ32を長手方向に沿って保持する。これにより、ワイパ32に長手方向のたわみが生じるのを抑制することができる。
 この結果、ワイパ32と受光面1fとの間の摩擦等の抵抗の増加を抑制でき、移動装置34に作用する負荷を低減することができる。
 なお、上記実施形態では、ワイパ保持部42を移動させる前において、上下方向に向く側面62a3と、第2サポート板76bの板面76b1とが、僅かな隙間をおいて対向する場合を例示したが、側面62a3と、板面76b1とはワイパ保持部42を移動させる前の段階において当接していてもよい。
〔第4実施形態について〕
 図15は、第4実施形態に係るアレイの左右方向の一部断面図であり、図16は、ワイパ保持部42をワイパ32の側面側から見たときの図である。
 本実施形態の一対のワイパ保持部42は、腕部43を移動させるアクチュエータを備える点において、第1実施形態と相違する。
 図15及び図16では、一対のワイパ保持部42のうちの一方を示しているが、他方のワイパ保持部42も同様の構成である。
 本実施形態の一対のワイパ保持部42は、ワイパ32の長手方向両端を保持する一対の腕部43と、腕部43を受光面1fに交差する方向に移動させるアクチュエータ80と、アクチュエータ80が取り付けられた取付プレート82とを備える。
 取付プレート82は、噛み合い部42bに設けられている。取付プレート82は、噛み合い部42bから受光面1f側へ向かって延びている。
 アクチュエータ80は、取付プレート82の取付面82aに取り付けられている。取付面82aは、取付プレート82においてモジュール1M側に向く面である。
 アクチュエータ80は、例えば、エアシリンダ81を備える。エアシリンダ81は、シリンダ本体81aと、ピストンロッド81bとを備える。シリンダ本体81aは、取付面82aに固定されている。ピストンロッド81bは、シリンダ本体81aから出退自在に設けられている。
 腕部43は、ピストンロッド81bの先端に設けられている。腕部43の先端には、ワイパ32の中心孔32aに差し込まれた突起部42aが設けられている。腕部43は、突起部42aによって、ワイパ32の長手方向両端を保持する。
 ピストンロッド81bは、受光面1fに直交する方向に沿って出退するように構成されている。これにより、アクチュエータ80は、腕部43を受光面1fに直交する方向に移動させることができる。よって、アクチュエータ80は、受光面1fに対する腕部43の高さ位置を調整することができる。
 さらに、アクチュエータ80は、腕部43とともにワイパ32も、受光面1fに直交する方向に移動させることができる。
 ピストンロッド81bは、シリンダ本体81aに圧縮空気が供給されることで出退する。
 ピストンロッド81bは、圧縮空気が未供給の状態においては、シリンダ本体81a内に退避するように構成されている。よって、ピストンロッド81bは、圧縮空気が未供給の状態においては、腕部43及びワイパ32を受光面1fから離間させる方向に移動させる。
 このため、何らかの原因で圧縮空気の供給が停止したとしても、ワイパ32は、受光面1fから離間する方向に移動する。これにより、ワイパ32が受光面1fを不必要に押圧する等、ワイパ32が受光面1fに与える影響を抑制することができる。
 図16に示すように、ワイパ32の端面32bには、一対のひずみセンサ86が設けられている。
 ひずみセンサ86は、ワイパ32に生じるひずみを検出するためのセンサである。一対のひずみセンサ86は、ワイパ32の軸中心を挟んで上下方向に並べて設けられている。一対のひずみセンサ86のうち、一方が上方向に移動する際におけるワイパ32のひずみを検出し、他方が下方向に移動する際におけるワイパ32のひずみを検出する。
 例えば、移動装置34が、図16中の矢印で示す下方向へワイパ保持部42を移動させる場合、紙面右側に設けられたひずみセンサ86によってワイパ32のひずみが検出される。逆に、上方向へワイパ保持部42を移動させる場合、紙面左側に設けられたひずみセンサ86によってワイパ32のひずみが検出される。
 一対のひずみゲージ86aは、ひずみゲージ86aと、ベース86bとを有する。
 ベース86bは、鋼板等からなる金属板である。ベース86bは、ワイパ32の端面32bに貼り付けられている。
 ひずみゲージ86aはベース86bの表面に貼り付けられている。ひずみゲージ86aは、受光面1fに対して交差する方向のひずみを検出することができるように貼り付けられる。
 ワイパ32にひずみや変形が生じると、ベース86bにひずみが生じる。ひずみゲージ86aは、ベース86bに生じるひずみを検出して出力する。
 つまり、ひずみゲージ86aは、ベース86bを介して間接的にワイパ32に生じるひずみを検出する。
 ひずみゲージ86aは、微小なひずみを計測可能なセンサであるため、弾性素材からなるワイパ32に直接貼り付けてひずみを検出することが困難である。これに対して、本実施形態では、ワイパ32の端面32bに貼り付けたベース86bの表面に、ひずみゲージ86aを貼り付けたので、ワイパ32に生じる変形を適切に検出することができる。
 図17は、アクチュエータ80を制御するための構成例を示すブロック図である。
 図17に示すように、移動装置34は、アクチュエータ80を制御する制御装置90を備える。
 制御装置90は、CPU(Central Processing Unit)等からなる処理部や、メモリやハードディスク等のコンピュータ読み取り可能な非一過性の記録媒体である記憶部を備えたマイクロコンピュータ等により構成されている。前記記憶部には、前記処理部に実行させるためのプログラムや、各種処理に必要な情報が記憶されている。
 前記処理部は、前記記憶部に記憶されたプログラムを実行することで、制御装置90が有する以下の機能を実現する。
 制御装置90は、一対のひずみゲージ86aに接続されており、一対のひずみゲージ86aからの出力が与えられる。
 一対のアクチュエータ80は、エアシリンダ81に圧縮空気を供給し又は排気するための電磁バルブ88を備える。電磁バルブ88は、例えば、圧縮空気の供給源であるコンプレッサと、エアシリンダ81との間に接続されており、圧縮空気をエアシリンダ81に供給することができる。
 電磁バルブ88は、ピストンロッド81bの進出方向への移動、又は退避方向への移動のいずれかを行わせるようにエアシリンダ81に圧縮空気を供給する。電磁バルブ88は、エアシリンダ81に対する圧縮空気の供給態様を切り替えて、ピストンロッド81bの移動方向を切り替えることができる。
 制御装置90は、電磁バルブ88を調整することでピストンロッド81bの動作を制御し、受光面1fに対する腕部43の高さ位置を調整することができる。
 制御装置90は、ひずみゲージ86aからの出力に基づいて一対の電磁バルブ88を制御する。
 例えば、制御装置90は、ひずみゲージ86aの出力が示すひずみが一定の範囲内となるように一対のアクチュエータ80を制御する。このように制御すれば、制御装置90は、ワイパ32によって受光面1fに与える圧力が一定の範囲内で維持されるように、受光面1fに対する腕部43の高さ位置を調整する。言い換えると、制御装置90は、受光面1fに対するワイパ32の押圧力を一定の範囲に維持する。
 この場合、制御装置90は、ひずみゲージ86aの出力が示すひずみが大きくなれば、ひずみの変化量に応じた移動量だけ腕部43を受光面1fから離間させる方向へ移動させる。
 逆に、制御装置90は、ひずみゲージ86aの出力が示すひずみが小さくなれば、ひずみの変化量に応じた移動量だけ腕部43を受光面1fへ接近する方向へ移動させる。
 例えば、図16に示すように、ワイパ32が段差D1に到達し変形したとすると、ひずみゲージ86aの出力が示すひずみは、それまでのひずみよりも大きくなる。よって、制御装置90は、腕部43を受光面1fから離間させる方向へ移動させる。これにより、段差D1によるワイパ32のひずみは緩和されてひずみ量は減少する。その後、ワイパ32が段差D1を通過した後も、制御装置90は、ワイパ32のひずみが一定の範囲内となるように腕部43の高さ位置を調整する。
 逆に段差D1を下る場合、ひずみゲージ86aの出力が示すひずみは小さくなる。よって、制御装置90は、腕部43を受光面1fへ接近する方向へ移動させる。これにより、ワイパ32のひずみを増加させひずみが一定の範囲内となるように維持する。
 このように、本実施形態によれば、ワイパ32に生じるひずみに基づいて、受光面1fに対する腕部43の高さ位置を調整することができる。
 よって、上記のように、ワイパ32に生じるひずみが一定の範囲となるように、受光面1fに対する腕部43の高さ位置を調整すれば、段差に到達することでワイパ32に変形が生じたときに、その変形によるひずみを緩和するように受光面1fに対する腕部43の高さ位置を調整することができる。この結果、段差を吸収するように腕部43を移動させることができ、受光面1fに段差等がある場合であっても、ワイパ32をスムーズに移動させることができる。
 また、受光面1fに対するワイパ32の押圧力が一定の範囲で維持されるので、上下方向における受光面1fの拭き取りを均一に行うことができる。
 なお、本実施形態では、ワイパ32の芯材60をウレタンゴム等の弾性素材によって形成した場合を例示したが、ワイパ32の押圧力を一定の範囲で維持できるので、芯材60を、金属や、樹脂、木材といった弾性素材以外の素材によって形成してもよい。
 また、本実施形態では、エアシリンダ81を備えたアクチュエータ80を用いた場合を例示したが、モータやその他、他の動力を用いたアクチュエータを用いてもよい。
 本実施形態において、アクチュエータ80のピストンロッド80bを出退させる際の速度は、段差D1の高さやワイパ32の走行速度を考慮して設定される。
〔その他〕
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。
 上記実施形態では、ワイパ32の拭き取り層62の外形を断面正8角形の場合と、断面矩形の場合とを例示したが、例えば、図12Aに示すように、断面正6角形としてもよい。また、拭き取り層62の外形は、断面正多角形に限られず、各辺の長さが異なる多角形であってもよい。特に内角が90度以上である場合に段差に容易に乗り上がることができるため、内角が90度以上である多角形であることが好ましい。
 また、上記各実施形態では、芯材60を断面円形の棒状部材とした場合を例示したが、例えば、図12Bに示すように、拭き取り層62の外形に合わせて断面多角形としてもよい。
 また、上記各実施形態では、ワイパ32を、芯材60及び拭き取り層62の2層で構成した場合を例示したが、図12Bに示すように、芯材60を中心層64と、中心層64の外側に積層された外層66とによって構成し、ワイパ32全体として3層で構成してもよい。
 この場合、中心層64及び外層66の両方を弾性素材で形成してもよいし、中心層64を構造用鋼や、アルミニウム合金等の金属で形成してもよい。また、上記実施形態で示した芯材60全体を金属で形成してもよい。
 また、上記各実施形態では、拭き取り層62が、芯材60の側面全周を覆うように形成された筒状の部材である場合を例示したが、例えば、芯材60の側面に左右方向に沿う線状の拭き取り層62を設け、この線状の拭き取り層62を受光面1fに接触させた状態でワイパ32を上下方向に平行移動させてもよい。つまり、拭き取り層62は、芯材60の側面60aのうち周方向の一部に線状に設けられていてもよい。
 また、上記各実施形態では、拭き取り層62が、芯材60の長手方向の全域を覆うように延びている場合を例示したが、芯材60の側面60aのうち長手方向の一部に設けられていてもよい。
 また、上記各実施形態では、ワイパ保持部42が、ワイパ32の中心孔32aと、ワイパ保持部42の突起部42aとの間の摩擦力によって、ワイパ32の回転を規制する場合を例示したが、接触面となる側面62a以外の側面62aに当接し、側面62aと受光面1fとの間の摩擦力によってワイパ32が軸中心周りに回転するのを規制する当接面がワイパ保持部42に設けられていてもよい。
 本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1 アレイ
1M,1M-1,1M-2,1M-3 モジュール
1f 受光面
2 支持機構
21 支柱
22 基礎
23 駆動部
24 水平軸
25 追尾架台
25a 補強材
25b 固定レール
30 清掃装置
32 ワイパ
32a 中心孔
32b 端面
34 移動装置
36 ガイドレール
36a 開口
38 駆動部
40 歯付きベルト
40a 歯部
42 ワイパ保持部
42a 突起部
42b 噛み合い部
43 腕部
44 支持ブラケット
44a 固定部
44a1 固定面
50 駆動ギア
52 駆動軸
54 モータ
56 カバー
56a ブラケット
58 出力ギア
60 芯材
60a 側面
62 拭き取り層
62a 側面
62a1 第1側面
62a2 第2側面
62a3 側面
64 中心層
66 外層
70 角部
72 角部
76 サポート部材
76a 第1サポート板
76a1 板面
76b 第2サポート板
76b1 板面
80 アクチュエータ
81 エアシリンダ
81a シリンダ本体
81b ピストンロッド
82 取付プレート
82a 取付面
86 ひずみセンサ
86a ひずみゲージ
86b ベース
88 電磁バルブ
90 制御装置
100 太陽光発電装置
D1 段差
D2 段差
K 境界
S 隙間

Claims (9)

  1.  太陽光発電装置の受光面を清掃する太陽光発電装置用清掃装置であって、
     棒状のワイパと、
     前記ワイパを保持し、前記ワイパを移動させる移動装置と、を備え、
     前記ワイパは、棒状の芯材と、前記芯材の外面に設けられ前記受光面に付着した汚れを吸着する素材により構成された拭き取り層と、を有し、
     前記移動装置は、前記拭き取り層を前記受光面に接触させるとともに、前記ワイパが軸中心周りに回転するのを規制した状態で前記ワイパを保持し、前記ワイパの長手方向に交差しかつ前記受光面に沿う交差方向に前記ワイパを平行移動させる
    太陽光発電装置用清掃装置。
  2.  前記拭き取り層は、断面多角形であるとともに、前記多角形の各辺に対応して前記長手方向に延びる複数の側面を有し、
     前記移動装置は、前記ワイパを軸中心周りに回転可能に保持する
    請求項1に記載の太陽光発電装置用清掃装置。
  3.  前記太陽光発電装置は、前記交差方向に並べられて前記受光面を構成する複数のモジュールを有し、
     前記芯材、及び前記拭き取り層の少なくともいずれか一方は、前記複数のモジュールのうちの互いに隣接する一対のモジュールの境界に存在する段差を前記ワイパが通過するときに、前記一対のモジュールそれぞれに対する前記拭き取り層の接触を維持するように弾性変形可能な性質を有する
    請求項1又は請求項2に記載の太陽光発電装置用清掃装置。
  4.  前記拭き取り層は、断面矩形であるとともに、一対の第1側面と、前記一対の第1側面よりも幅広の一対の第2側面と、を有し、
     前記太陽光発電装置は、前記交差方向に並べられて前記受光面を構成する複数のモジュールを有し、
     前記移動装置は、前記第1側面が前記受光面に接触した状態で、前記複数のモジュールのうちの互いに隣接配置された一対のモジュールの境界に生じた段差を上る際、及び、前記第2側面が前記受光面に接触した状態で、前記一対のモジュールの境界に生じた段差を下る際に、前記ワイパの回転を許容するように前記ワイパを保持する
    請求項1に記載の太陽光発電装置用清掃装置。
  5.  前記移動装置は、
     前記ワイパの長手方向両端を保持し、前記ワイパとともに前記交差方向に移動する一対の保持部と、
     前記一対の保持部の間に亘って設けられ、前記一対の保持部とともに前記交差方向に移動する、金属からなるサポート板と、を備え、
     前記サポート板は、移動方向に向く板面を有し、
     前記板面は、前記ワイパに当接する
    請求項1から請求項3のいずれか一項に記載の太陽光発電装置用清掃装置。
  6.  前記移動装置は、
     前記ワイパの長手方向両端を保持し、前記ワイパとともに前記交差方向に移動する一対の保持部を備え、
     前記一対の保持部は、前記ワイパの長手方向両端を保持する一対の腕部と、前記腕部を前記受光面に交差する方向に移動させるアクチュエータと、を備え、
     前記移動装置は、さらに、
     前記ワイパに生じるひずみを検出するセンサと、
     前記センサの出力に基づいて前記アクチュエータを制御する制御部と、を備える
    請求項1から請求項5のいずれか一項に記載の太陽光発電装置用清掃装置。
  7.  前記拭き取り層が有する側面の前記交差方向の幅寸法は、30ミリメートル以上、50ミリメートル以下である
    請求項2から請求項6のいずれか一項に記載の太陽光発電装置用清掃装置。
  8.  太陽光発電装置と、前記太陽光発電装置の受光面を清掃する清掃装置と、を備えた太陽光発電装置の清掃システムであって、
     前記清掃装置は、
     棒状のワイパと、
     前記ワイパを保持し、前記ワイパを移動させる移動装置と、を備え、
     前記ワイパは、棒状の芯材と、前記芯材の外面に設けられ前記受光面に付着した汚れを吸着する素材により構成された拭き取り層と、を有し、
     前記移動装置は、前記拭き取り層を前記受光面に接触させるとともに、前記ワイパが軸中心周りに回転するのを規制した状態で前記ワイパを保持し、前記ワイパの長手方向に交差しかつ前記受光面に沿う交差方向に前記ワイパを平行移動させる
    太陽光発電装置の清掃システム。
  9.  前記太陽光発電装置は、
     前記交差方向に並べられて前記受光面を構成する複数のモジュールを有し、
     前記複数のモジュールのうちの互いに隣接配置された一対のモジュールの境界には、前記受光面を上方へ向けた状態で前記ワイパを平行移動させたときに、前記ワイパにより掃き寄せられる前記受光面上の汚れを下方へ排出する隙間が設けられている
    請求項8に記載の太陽光発電装置の清掃システム。
PCT/JP2020/038673 2019-10-17 2020-10-13 太陽光発電装置用清掃装置、及び太陽光発電装置の清掃システム WO2021075437A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019190433 2019-10-17
JP2019-190433 2019-10-17

Publications (1)

Publication Number Publication Date
WO2021075437A1 true WO2021075437A1 (ja) 2021-04-22

Family

ID=75538501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038673 WO2021075437A1 (ja) 2019-10-17 2020-10-13 太陽光発電装置用清掃装置、及び太陽光発電装置の清掃システム

Country Status (1)

Country Link
WO (1) WO2021075437A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113731898A (zh) * 2021-09-08 2021-12-03 安徽联维新能源科技有限公司 一种光伏发电用光伏板清洁装置
CN114142803A (zh) * 2021-11-10 2022-03-04 徐州工业职业技术学院 光伏发电板系统的表面尘垢清除机构与工作方法
CN114543709A (zh) * 2022-02-23 2022-05-27 万桂英 一种智能型光伏组件测试仪及光伏组件测试系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194994A (ja) * 2013-03-29 2014-10-09 Kowa Co Ltd 着脱式ソーラーパネル清掃装置
JP2015080779A (ja) * 2013-10-24 2015-04-27 シンフォニアテクノロジー株式会社 ソーラーパネル清掃装置
JP2015150492A (ja) * 2014-02-14 2015-08-24 株式会社タイトウトレーディング ソーラーパネル清掃機
JP2015159152A (ja) * 2014-02-21 2015-09-03 シンフォニアテクノロジー株式会社 ソーラーパネル清掃装置
WO2015166480A2 (en) * 2014-04-30 2015-11-05 Evermore United S.A. Docking and locking system for solar panel cleaning system
JP2016030255A (ja) * 2014-07-28 2016-03-07 勝弥 山内 太陽光パネルの洗浄と除雪をするワイパー
US20170179873A1 (en) * 2014-06-19 2017-06-22 King Abdullah University Of Science And Technology System and method for conveying an assembly
KR20180011432A (ko) * 2016-07-22 2018-02-01 (주)에코브라이트코리아 태양전지 패널 청소로봇장치
JP2019500833A (ja) * 2015-11-25 2019-01-10 アリオン エナジー,インコーポレーテッド 太陽光発電モジュールのレールベースアレイを保守するためのシステム、輸送手段、及び方法
US20190214940A1 (en) * 2016-07-08 2019-07-11 Henry Ouri Allouche Method and apparatus for cleaning surfaces

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194994A (ja) * 2013-03-29 2014-10-09 Kowa Co Ltd 着脱式ソーラーパネル清掃装置
JP2015080779A (ja) * 2013-10-24 2015-04-27 シンフォニアテクノロジー株式会社 ソーラーパネル清掃装置
JP2015150492A (ja) * 2014-02-14 2015-08-24 株式会社タイトウトレーディング ソーラーパネル清掃機
JP2015159152A (ja) * 2014-02-21 2015-09-03 シンフォニアテクノロジー株式会社 ソーラーパネル清掃装置
WO2015166480A2 (en) * 2014-04-30 2015-11-05 Evermore United S.A. Docking and locking system for solar panel cleaning system
US20170179873A1 (en) * 2014-06-19 2017-06-22 King Abdullah University Of Science And Technology System and method for conveying an assembly
JP2016030255A (ja) * 2014-07-28 2016-03-07 勝弥 山内 太陽光パネルの洗浄と除雪をするワイパー
JP2019500833A (ja) * 2015-11-25 2019-01-10 アリオン エナジー,インコーポレーテッド 太陽光発電モジュールのレールベースアレイを保守するためのシステム、輸送手段、及び方法
US20190214940A1 (en) * 2016-07-08 2019-07-11 Henry Ouri Allouche Method and apparatus for cleaning surfaces
KR20180011432A (ko) * 2016-07-22 2018-02-01 (주)에코브라이트코리아 태양전지 패널 청소로봇장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113731898A (zh) * 2021-09-08 2021-12-03 安徽联维新能源科技有限公司 一种光伏发电用光伏板清洁装置
CN114142803A (zh) * 2021-11-10 2022-03-04 徐州工业职业技术学院 光伏发电板系统的表面尘垢清除机构与工作方法
CN114142803B (zh) * 2021-11-10 2023-06-23 徐州工业职业技术学院 光伏发电板系统的表面尘垢清除机构与工作方法
CN114543709A (zh) * 2022-02-23 2022-05-27 万桂英 一种智能型光伏组件测试仪及光伏组件测试系统
CN114543709B (zh) * 2022-02-23 2023-08-29 长峡数字能源科技(湖北)有限公司 一种智能型光伏组件测试仪及光伏组件测试系统

Similar Documents

Publication Publication Date Title
WO2021075437A1 (ja) 太陽光発電装置用清掃装置、及び太陽光発電装置の清掃システム
AU2019271929B2 (en) System and method for conveying an assembly
WO2017097065A1 (zh) 清洁装置
US20180316303A1 (en) Systems and methods for cleaning arrays of solar panels
WO2015187693A2 (en) Solar module cleaner
CN111959807B (zh) 一种土地资源管理用遥感影像采集装置
CN110125941A (zh) 一种变尺度驱动仿生干黏附机构
JP2012044832A5 (ja)
US20240225399A1 (en) Cleaning robot and motion control method thereof
CN103068291B (zh) 用于清洁装置的驱动系统以及清洁装置
CN106100437A (zh) 钳位力可调节的直线式惯性压电作动器及作动方法
CN109338961B (zh) 一种车用节能环保路面清扫设备
CN108708573B (zh) 一种人行道遮阳棚
CN108284799B (zh) 一种具有摄像头自动更换及保护功能的城市测绘车
KR101829283B1 (ko) 태양광 패널 청소로봇의 흡착장치
CN102016562A (zh) 带有运动传感器的超声扫描器
CN216029222U (zh) 一种螺丝锁附机构
WO2021024968A1 (ja) 掃除ロボットおよび太陽光発電設備
CN114273364A (zh) 玻璃修复设备
CN213614950U (zh) 一种移动式建筑施工用电焊装置
DE102021006163A1 (de) Solar-Tracking-System für Solarmodule
CN209494247U (zh) 幕墙清洗装置
CN217928479U (zh) 一种隧道施工用照明装置
CN109507816A (zh) 对位结构和偏光片贴附装置
JP4475633B2 (ja) 送り装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20877185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP