WO2021075326A1 - コンプレッションリング、及びコンプレッションリングを備えたピストン - Google Patents

コンプレッションリング、及びコンプレッションリングを備えたピストン Download PDF

Info

Publication number
WO2021075326A1
WO2021075326A1 PCT/JP2020/037979 JP2020037979W WO2021075326A1 WO 2021075326 A1 WO2021075326 A1 WO 2021075326A1 JP 2020037979 W JP2020037979 W JP 2020037979W WO 2021075326 A1 WO2021075326 A1 WO 2021075326A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
piston
compression ring
less
weight
Prior art date
Application number
PCT/JP2020/037979
Other languages
English (en)
French (fr)
Inventor
隆 大黒
康志 篠原
隆徳 浅野
伸行 小河
Original Assignee
Tpr株式会社
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tpr株式会社, 日本碍子株式会社 filed Critical Tpr株式会社
Priority to JP2021513492A priority Critical patent/JPWO2021075326A1/ja
Priority to CN202080071533.2A priority patent/CN114555929A/zh
Publication of WO2021075326A1 publication Critical patent/WO2021075326A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F5/00Piston rings, e.g. associated with piston crown

Definitions

  • the present invention relates to a compression ring provided in a piston of an internal combustion engine.
  • the piston of the internal combustion engine is provided with a ring groove for arranging the compression ring and the oil ring on the outer wall thereof, and the compression ring and the oil ring are arranged in each of the grooves in order from the combustion chamber side.
  • the compression ring is required to have excellent sliding characteristics, as well as various performances such as heat resistance for maintaining the spring characteristics for pressing the cylinder bore, good thermal conductivity for cooling the piston, and abrasion resistance.
  • C, Si, Mn, and Cr are essential alloying elements as piston ring materials having better thermal conductivity than silicon and chrome steel that are widely used in the past.
  • a piston ring made of a steel material containing Mo, V, and B as selective alloying elements and having a nitride layer formed on the surface has been proposed (see Patent Document 1).
  • the present inventors have studied to solve the above problems, found that a compression ring using a copper alloy satisfying specific physical properties can solve the above problems, and completed the invention.
  • the present invention is a compression ring used by being mounted on a piston for an internal combustion engine, has a thermal conductivity of 30 W / m ⁇ K or more, and has a tension reduction rate of 50% after being held at 250 ° C. for 3 hours. It is a compression ring made of the following copper alloy.
  • the compression ring preferably has a Young's modulus of 180 GPa or less, a linear expansion coefficient of 15 ⁇ 10 -6 / K or more, and is preferably mounted and used as a second ring of a piston for an internal combustion engine.
  • the copper alloy is preferably a Ni—Sn—Cu alloy, further, the amount of Ni is 20% by weight or more and 22% by weight or less, and the amount of Sn is 4.5% by weight or more and 5.7% by weight or less. , It is preferable that the remaining amount is Cu and unavoidable impurities, including an optional additive component.
  • an internal combustion engine piston including a piston for an internal combustion engine having a ring groove in which a piston ring is mounted, and a top ring, a second ring and an oil ring mounted in the ring groove of the piston.
  • the second ring is a piston for an internal combustion engine made of a copper alloy having a thermal conductivity of 30 W / m ⁇ K or more and a tension reduction rate of 50% or less after being held at 250 ° C. for 3 hours. ..
  • One embodiment of the present invention is a compression ring used by being mounted on a piston for an internal combustion engine, which has a thermal conductivity of 30 W / m ⁇ K or more and a decrease in tension after being held at 250 ° C. for 3 hours. It is made of a copper alloy having a ratio of 50% or less.
  • knocking occurs when the temperature of the top surface (combustion chamber side) of the piston becomes too high, so that it is required to release the heat of the piston in order to improve fuel efficiency. Therefore, in order to efficiently release the heat of the piston to the cylinder bore, the piston ring is required to have good thermal conductivity.
  • the thermal conductivity of the copper alloy constituting the piston ring is 30 W / m ⁇ K or more, preferably 35 W / m ⁇ K or more, more preferably 40 W / m ⁇ K or more, and 50 W. It is more preferably / m ⁇ K or more.
  • the upper limit is not particularly limited, but is usually 300 W / m ⁇ K or less, and may be 250 W / m ⁇ K or less.
  • the compression ring In order to increase the thermal conductivity of the copper alloy, there are methods such as increasing the proportion of copper in the alloy.
  • the compression ring is required to have a function of sealing the combustion gas generated in the combustion chamber so as not to flow out to the crank chamber (blow-by prevention function). Therefore, the compression ring is required to maintain the tension for continuously pressing the cylinder bore even in a high temperature environment, but it is difficult for the compression ring made of pure copper to maintain sufficient springiness in a high temperature environment. When mounted, it did not have sufficient sealing properties in a combustion environment.
  • the copper alloy used in the present embodiment has a tension reduction rate of 50% or less, preferably 40% or less, more preferably 30% or less, and 25% or less after being held at 250 ° C. for 3 hours. Is more preferable. Further, the tension reduction rate after holding at 300 ° C. for 3 hours is preferably 50% or less, more preferably 45% or less, further preferably 40% or less, and further preferably 30% or less. Is particularly preferable.
  • Examples of copper alloys that can satisfy the above thermal conductivity and tension reduction rate include beryllium copper, titanium copper, Corson copper, nickel copper, tin copper, nickel tin copper, chromium copper, zirconium copper, copper / iron alloy, and bronze. , Phosphorus bronze, brass, etc., but not limited to these.
  • the content of copper in the copper alloy is not particularly limited as long as the above-mentioned thermal conductivity and tension reduction rate can be satisfied. Generally speaking, when the copper content is high, the thermal conductivity is high. The tension reduction rate tends to increase.
  • the copper content is usually 10% by weight or more, may be 25% by weight or more, may be 50% by weight or more, preferably 70% by weight or more, and may be 75% by weight or more.
  • the upper limit may be 99% by weight or less, 95% by weight or less, 90% by weight or less, 80% by weight or less, and preferably 75% by weight or less.
  • the copper alloy forming the compression ring of the present embodiment preferably has a Young's modulus of 180 GPa or less, more preferably 170 GPa or less, and further preferably 150 GPa or less.
  • the lower limit is not particularly limited, but is usually 50 GPa or more, and may be 80 GPa or more. When the Young's modulus of the copper alloy is within the above range, it has sufficient springiness as a compression ring.
  • the copper alloy forming the compression ring of the present embodiment usually has a coefficient of linear expansion of 15 ⁇ 10 -6 / K or more, preferably 16 ⁇ 10 -6 / K or more, and preferably 17 ⁇ 10 -6 / K or more.
  • the above is more preferable.
  • the upper limit is not particularly limited, but is usually 30 ⁇ 10-6 / K or less, and may be 20 ⁇ 10-6 / K or less.
  • the copper alloy forming the compression ring of the present embodiment usually has a 0.2% proof stress of 500 MPa or more, preferably 800 MPa or more, and more preferably 900 MPa or more.
  • the 0.2% proof stress can be measured by, for example, JIS Z2241 metal material tensile test method.
  • the physical characteristics of the copper alloy can be adjusted by appropriately adjusting the metal components in the copper alloy.
  • the addition of nickel in a copper alloy can improve corrosion resistance and heat resistance
  • the addition of tin can improve strength, malleability, and wear resistance
  • the addition of chromium improves conductivity and heat resistance. It can be improved, ductility can be increased by adding zinc, mechanical strength can be increased by adding berylium, and heat resistance and wear resistance can be improved by adding titanium component and / or nickel component. Can be made to.
  • Ni—Sn—Cu alloy As the copper alloy, a Ni—Sn—Cu alloy can be mentioned as a preferable example. In particular, an alloy in which the amount of Ni is 5% by weight or more and 25% by weight or less, the amount of Sn is 2% by weight or more and 10% by weight or less, and the remaining amount is Cu and unavoidable impurities is preferable.
  • the Ni—Sn—Cu alloy is selected from Pb, Zn, Fe, Mn, Nb, Mg, Ag, Cr, Ti, Zr, Be, Si, P, Al, S, and B as optional additive components. Can include one or more species.
  • Mn and Fe may be 0.6% by mass or less, respectively, and Mn and Fe may be contained. Any components other than the above may be 1% by mass or less in total. Copper having an Ni content of 5% by weight or more and 25% by weight or less, a Sn amount of 2% by weight or more and 10% by weight or less, a remaining amount of Cu, and a 0.2% strength of 800 MPa or more.
  • a piston ring using an alloy has a low tension reduction rate after being held at 250 ° C. for 3 hours and has a preferable thermal conductivity. Therefore, the piston top surface temperature can be lowered by 10 ° C.
  • the amount of Ni is 20% by weight or more and 22% by weight or less
  • the amount of Sn is 4.5% by weight or more and 5.7% by weight or less
  • contains an optional additive component and the remaining amount is Cu and unavoidable impurities.
  • the alloy is more preferable because it has a small stress relaxation rate over time.
  • the standard: UNS No. Examples thereof include Ni—Sn—Cu alloys that satisfy C72950.
  • FIG. 1 is a cross-sectional view of a piston equipped with a piston ring.
  • the piston 2 is formed with a first groove 3, a second groove 4, and a third groove 5 from the combustion chamber side.
  • a top ring 13 which is a compression ring is attached to the first groove 3
  • a second ring 14 which is a compression ring is attached to the second groove 4
  • a combination oil ring 15 is attached to the third groove 5.
  • the right end of the top ring 13, the second ring 14, and the combination oil ring 15 in the drawing is a sliding surface that slides in contact with the inner wall of the cylinder 1, and may be covered with a coating film.
  • the sliding surface of the top ring 13 with the inner wall of the cylinder 1, that is, the outer peripheral surface of the top ring 13 has a DLC coating
  • At least one of the top ring 13 and the second ring 14 may be a compression ring made of the copper alloy described above.
  • the second ring 14 is a compression ring made of a copper alloy, but the present invention is not limited to this.
  • the outer peripheral surface of the second ring 14 may have a chrome plating film, a PVD film, a DLC film, or the like.
  • the piston ring used for the top ring and the second ring preferably has a tension of 2 N or more, more preferably 2.5 N or more, and 3 N or more after being held at 250 ° C.
  • the tension after holding at 300 ° C. for 3 hours is preferably 1.5 N or more, more preferably 2 N or more, and further preferably 2.5 N or more.
  • the tension of the piston ring can be measured by a method according to JIS B 8032-2 (ISO6621-2).
  • the combination oil ring 15 includes a pair of upper and lower segments 151 and 152 whose outer peripheral surface slides on the inner wall of the cylinder, and an expander spacer 153 arranged between the segments.
  • the combination oil ring 15 is an oil ring having a three-piece structure, but is not limited to this, and may be an oil ring having a two-piece structure.
  • Example 1 to 4 Comparative Examples 1 to 2> As Examples 1 to 4 and Comparative Examples 1 and 2, piston rings made of the materials shown in Table 1 below were prepared and their physical properties were measured.
  • the tension at room temperature was first measured, then the tension after holding at 250 ° C. or 300 ° C. for 3 hours was measured, and the heat reduction rate was calculated from each result.
  • the data of the heat reduction rate is shown in FIG.
  • the tension was measured by a method according to JIS B 8032-2 (ISO6621-2).
  • a piston ring ( ⁇ 63 mm, width 1.0 mm, thickness 2.3 mm) was prepared, and the tension was measured by a method according to JIS B 8032-2 (ISO6621-2). The 0.2% proof stress was measured by a method according to the JIS Z2241 metal material tensile test method.
  • Examples 5 to 9 As Examples 5 to 9, stress relaxation tests were performed on the copper alloys shown in Table 2 below. The stress relaxation test was carried out by measuring the stress relaxation rate of the copper alloys of Examples 5 to 9 at 200 ° C. for up to 250 hours by a method according to JCBA T309-2004. The results are shown in Table 2.
  • Example 5 From Examples 5 to 9, it can be understood that the copper alloy of Example 5 having the largest amount of Ni maintained a low stress relaxation rate of 3% after 250 hours. Further, in Examples 6 and 7 having the next largest amount of Ni, the stress relaxation rates after 250 hours were 7% and 6%, respectively, and in Example 9 having a relatively small amount of Ni, the stress relaxation after 250 hours was achieved. The rate was 16%.
  • the stress relaxation rate measurement is a basic test method for measuring the heat resistance of a strip-shaped material, and the more practical test showing the heat resistance of the piston ring is the tension reduction rate measurement test. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

熱環境下においても張力を維持可能な、良好な熱伝導性を有するコンプレッションリングを提供することを課題とする。 内燃機関用ピストンに装着されて用いられるコンプレッションリングであって、熱伝導率が30W/m・K以上であり、且つ、250℃で3時間保持した後の張力減退率が50%以下である銅合金からなる、コンプレッションリングにより課題を解決する。

Description

コンプレッションリング、及びコンプレッションリングを備えたピストン
 本発明は、内燃機関のピストンに備えられるコンプレッションリングに関する。
 内燃機関のピストンには、その外壁に、コンプレッションリング及びオイルリングを配置するためのリング溝が設けられ、該溝にそれぞれ燃焼室側から順にコンプレッションリング、及びオイルリングが配置される。
 コンプレッションリングは、優れた摺動特性が求められるとともに、シリンダボアを押圧するばね特性を維持するための耐熱性、ピストン冷却のための良好な熱伝導性、耐摩耗性など様々な性能が求められる。
 これらコンプレッションリングに要求される性能のうち熱伝導性に関しては、従来広く使用されているシリコン・クロム鋼より良好な熱伝導性を有するピストンリング材として、C、Si、Mn、Crを必須合金元素、Mo、V、Bを選択合金元素として含む鋼材よりなり、表面に窒化層を形成したピストンリングが提案されている(特許文献1参照)。
 また、内燃機関用圧縮ピストンリングの母材として、耐スカッフィング性が良好な銅合金を使用し得ることが提案されている(特許文献2参照)。
特開2015-137734号公報 実開昭48-62403号公報
 ピストン温度の低減のため、上記記載されたような良好な熱伝導性を有するピストンリング材が提案されているところ、特許文献1に記載の技術は、鋼材を用いていることから熱伝導性の観点からは更に改良の余地があった。そのため本発明者らは、更に熱伝導性の高い材料である銅をコンプレッションリングに用いることを検討した。
 しかしながら、コンプレッションリングはシリンダボアを押圧し、ブローバイ防止機能を備える部材であることから、熱環境下において安定した張力の維持が要求されるところ、銅で製造されたコンプレッションリングは張力の熱減退が大きく、ピストンリングとして使用する際に要求される特性(バネ性)を満たさなかった。
 本発明はこのような課題を解決するものであり、コンプレッションリングとして熱環境下においても張力を維持可能な、良好な熱伝導性を有するコンプレッションリングを提供するものである。
 本発明者らは、上記課題を解決すべく検討し、特定の物性を充足する銅合金を用いたコンプレッションリングが、上記課題を解決できることを見出し、発明を完成させた。
 本発明は、内燃機関用ピストンに装着されて用いられるコンプレッションリングであって、熱伝導率が30W/m・K以上であり、且つ、250℃で3時間保持した後の張力減退率が50%以下である銅合金からなる、コンプレッションリングである。
 前記コンプレッションリングは、ヤング率が180GPa以下であることが好ましく、線膨張係数が15×10-6/K以上であることが好ましく、内燃機関用ピストンのセカンドリングとして装着されて用いられることが好ましい。また、前記銅合金はNi-Sn-Cu合金であることが好ましく、更にNi量が20重量%以上22重量%以下であり、Sn量が4.5重量%以上5.7重量%以下であり、任意添加成分を含み、残量がCu及び不可避的不純物であることが好ましい。
 また、本発明の別の側面は、ピストンリングが装着されるリング溝を有する内燃機関用ピストン、並びに該ピストンのリング溝に装着されたトップリング、セカンドリング及びオイルリング、からなる内燃機関用ピストンであって、
 前記セカンドリングは、熱伝導率が30W/m・K以上であり、且つ、250℃で3時間保持した後の張力減退率が50%以下である銅合金からなる、内燃機関用ピストン、である。
 本発明により、コンプレッションリングとして張力を維持可能な、良好な熱伝導性を有するコンプレッションリングを提供できる。
本発明の一実施形態であるピストンリングを、セカンドリングとして装着したピストンの断面図である。 実施例で行った熱減退試験の結果を示すグラフである。
 本発明の一実施形態は、内燃機関用ピストンに装着されて用いられるコンプレッションリングであって、熱伝導率が30W/m・K以上であり、且つ、250℃で3時間保持した後の張力減退率が50%以下である銅合金からなる。
 内燃機関では、ピストンの頂面(燃焼室側)の温度が高くなりすぎるとノッキングが生じることから、燃費向上のためにはピストンの熱を逃がすことが要求される。そのため、ピストンの熱をシリンダボアへと効率的に逃がすために、ピストンリングには良好な熱伝導性が求められる。本実施形態においては、ピストンリングを構成する銅合金の熱伝導率が30W/m・K以上であり、35W/m・K以上であることが好ましく、40W/m・K以上がより好ましく、50W/m・K以上であることが更に好ましい。上限は特段限定されないが、通常300W/m・K以下であり、250W/m・K以下であってよい。
 銅合金の熱伝導率を高くするためには、合金中の銅の割合を大きくする等の方法がある。しかしながら、コンプレッションリングは、燃焼室で発生した燃焼ガスがクランク室へ流失しないようシールする機能が要求される(ブローバイ防止機能)。そのためコンプレッションリングには、高温環境下であってもシリンダボアを押圧し続けるための張力の維持が要求されるところ、純銅からなるコンプレッションリングでは、高温環境下では十分なバネ性を維持することが困難であり、実装した際に燃焼環境下において十分なシール性を有さなかった。
 そのため本実施形態では銅を合金化し、250℃で3時間保持した後の張力減退率が50%以下である銅合金を用いることで、高温環境下においてもコンプレッションリングとして必要な張力を維持可能な、良好な熱伝導性を有するコンプレッションリングを提供できることに想到した。
 本実施形態で用いる銅合金は、250℃で3時間保持した後の張力減退率が50%以下であり、40%以下であることが好ましく、30%以下であることがより好ましく、25%以下であることが更に好ましい。
 また、300℃で3時間保持した後の張力減退率が50%以下であることが好ましく、45%以下であることがより好ましく、40%以下であることが更に好ましく、30%以下であることが特に好ましい。
 上記熱伝導率及び張力減退率を充足し得る銅合金としては、例えば、ベリリウム銅、チタン銅、コルソン銅、ニッケル銅、スズ銅、ニッケルスズ銅、クロム銅、ジルコニウム銅、銅・鉄合金、青銅、りん青銅、真鍮などがあげられるが、これらに限定されない。
 銅合金中の銅の含有量は、上記熱伝導率及び張力減退率を充足し得る限りにおいて特段限定されず、一般的に言えば、銅の含有量が多い場合には熱伝導率が高く、張力減退率が大きくなる傾向にある。銅の含有量は通常10重量%以上であり、25重量%以上であってよく、50重量%以上であってよく、70重量%以上が好ましく、75重量%以上であってよい。また上限は、99重量%以下であってよく、95重量%以下であってよく、90重量%以下であってよく、80重量%以下であってよく、75重量%以下が好ましい。
 本実施形態のコンプレッションリングを形成する銅合金は、ヤング率が180GPa以下であることが好ましく、170GPa以下であることがより好ましく、150GPa以下であることが更に好ましい。下限は特段限定されないが、通常50GPa以上であってよく、80GPa以上であってよい。
 銅合金のヤング率が上記範囲内であることで、コンプレッションリングとして十分なバネ性を有する。
 本実施形態のコンプレッションリングを形成する銅合金は、線膨張係数が通常15×10-6/K以上であり、16×10-6/K以上であることが好ましく、17×10-6/K以上であることがより好ましい。上限は特段限定されないが、通常30×10-6/K以下であり、20×10-6/K以下であってよい。
 本実施形態のコンプレッションリングを形成する銅合金は、0.2%耐力が通常500MPa以上であり、800MPa以上であることが好ましく、900MPa以上であることがより好ましい。0.2%耐力は、例えばJIS Z2241 金属材料引張試験方法により測定することができる。
 銅合金中の金属成分を適宜調整することで、銅合金の物性を調整することができる。例えば銅合金中のニッケルの添加により耐食性、耐熱性を向上させることができ、スズの添加により強度、展延性、耐摩耗性を向上させることができ、クロムの添加により、導電性、耐熱性を向上させることができ、亜鉛の添加により展延性を高めることができ、ベリリウムの添加により機械的強度を高めることができ、チタン成分及び/又はジルコニウム成分の添加により、耐熱性、耐摩耗性を向上させることができる。
 銅合金としては、Ni-Sn-Cu合金が好適例として挙げられる。特に、Ni量が5重量%以上25重量%以下であり、Sn量が2重量%以上10重量%以下であり、残量がCu及び不可避的不純物からなる合金が好ましい。このとき、Ni-Sn-Cu合金は任意添加成分として、Pb、Zn、Fe、Mn、Nb、Mg、Ag、Cr、Ti、Zr、Be、Si、P、Al、S、及びBから選択される1種以上を含み得る。なお、任意成分を含む場合、その含有量は本発明の効果を阻害しない範囲であれば特に限定されないが、一例では、MnとFeはそれぞれ0.6質量%以下であってよく、MnとFe以外の任意成分は合計1質量%以下であってよい。
 Ni量が5重量%以上25重量%以下であり、Sn量が2重量%以上10重量%以下であり、残量がCuである合金であって、且つ0.2%耐力が800MPa以上の銅合金を用いたピストンリングは、250℃3時間保持後の張力減退率が低く、且つ好ましい熱伝導率を有することから、実機評価においてピストン頂面温度を10℃~15℃下げることができ、好ましい。
 更に、Ni量が20重量%以上22重量%以下であり、Sn量が4.5重量%以上5.7重量%以下であり、任意添加成分を含み、残量がCu及び不可避的不純物である合金は、経時的な応力緩和率が小さく、より好ましい。具体的には、規格:UNS No.C72950を満たすNi-Sn-Cu合金があげられる。
 本実施形態のコンプレッションリングが装着されたピストンについて、図を用いて説明する。
 図1は、ピストンリングが装着されたピストンの断面図である。
 ピストン2には、燃焼室側から第1の溝3、第2の溝4、及び第3の溝5が形成されている。第1の溝3には、コンプレッションリングであるトップリング13が装着され、第2の溝4には、コンプレッションリングであるセカンドリング14が装着され、第3の溝5には、組合せオイルリング15が装着される。
 トップリング13、セカンドリング14、組合せオイルリング15の図中右端部は、シリンダ1の内壁と接触して摺動する摺動面であり、被膜により被覆されていてもよい。一実施形態では、トップリング13の、シリンダ1の内壁との摺動面、即ちトップリング13の外周面は、DLC被膜を有し、オイルリング15の、シリンダ1の内壁との摺動面、即ちオイルリング15の外周面は、PVD被膜を有する。
 トップリング13及びセカンドリング14のうち少なくとも一方が、上記説明した銅合金からなるコンプレッションリングであってよい。一般的に、トップリング13がより過酷な環境下に晒されることから、セカンドリング14が銅合金からなるコンプレッションリングである形態が好ましいが、これに限られない。セカンドリング14が銅合金からなるコンプレッションリングである場合、セカンドリング14の外周面は、クロムめっき被膜、PVD被膜、DLC被膜などを有してもよい。
 本実施形態においては、トップリングやセカンドリングに用いるピストンリングは、250℃で3時間保持した後の張力が2N以上であることが好ましく、2.5N以上であることがより好ましく、3N以上であることが更に好ましい。また300℃で3時間保持した後の張力が1.5N以上であることが好ましく、2N以上であることがより好ましく、2.5N以上であることが更に好ましい。
 なお、ピストンリングの張力は、JIS B 8032-2(ISO6621-2)に準じた方法で測定できる。
 組合せオイルリング15は、その外周面がシリンダ内壁を摺動する上下一対のセグメント151及び152と、該セグメント間に配置されるエキスパンダ・スペーサ153を備える。組合せオイルリング15は3ピース構成のオイルリングであるが、これに限られず、2ピース構成のオイルリングであってよい。
 以下、実施例により本発明を更に詳細に説明する。
<実施例1~4、比較例1~2>
 実施例1~4及び比較例1~2として、以下の表1に示す材料で形成したピストンリングを準備し、物性を測定した。熱減退率の測定は、まず常温での張力を測定し、次いで250℃又は300℃で3時間保持した後の張力を測定し、それぞれの結果から、熱による張力の減退率を算出した。熱減退率のデータを図2に示す。なお、張力の測定は、JIS B 8032-2(ISO6621-2)に準じた方法で行った。具体的には、ピストンリング(φ63mm、幅1.0mm、厚さ2.3mm)を準備し、JIS B 8032-2(ISO6621-2)に準じた方法で張力測定を行った。また、0.2%耐力の測定は、JIS Z2241 金属材料引張試験方法に準じた方法で行った。
Figure JPOXMLDOC01-appb-T000001
リング放熱性試験
 実施例1~4及び比較例1~2のピストンリングについて、以下の条件にて実機評価を行った。
エンジン:直噴3気筒、排気量660cc、ポート噴射 
トップリング:PVD被膜スチール材
オイルリング:スリーピース型、上下セグメントはスチール材、エキスパンダ・スペーサはSUS材
セカンドリング:実施例1~4及び比較例1~2のピストンリング
 エンジンのトルクを35N・m~45N・mとしてピストン頂面温度を測定した。結果、銅合金を用いた実施例1~4のピストンリングをセカンドリングとして用いることで、比較例1のピストンリングをセカンドリングとして用いた場合よりも、10~15℃ピストン頂面温度が低下した。
 一方、銅を用いた比較例2のピストンリングは、ピストンリング成形はできたものの、バネ性が不十分でありピストンリングとして機能せず、評価できなかった。
<実施例5~9>
 実施例5~9として、以下の表2に示す銅合金に対して応力緩和試験を行った。
 応力緩和試験は、実施例5~9の銅合金に対して、200℃で250時間までの応力緩和率をJCBA T309-2004に準じた方法で測定することで行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例5~9より、Ni量が最も多い実施例5の銅合金は、250時間経過時の応力緩和率が3%と低く維持されたことが理解できる。また、次にNi量の多い実施例6及び7においては、250時間経過後の応力緩和率がそれぞれ7%及び6%、Ni量の比較的少ない実施例9においては、250時間後の応力緩和率が16%であった。
 なお、応力緩和率の測定は、板条形状の材料において耐熱性を測定するための基礎試験方法であり、ピストンリングの耐熱性を示すより実用的な試験が、上記張力減退率測定試験である。
 なお、本発明については、具体的な実施例を参照して詳細に説明されるが、本発明の趣旨及び範囲から離れることなく、種々の変更、改変を施すことができることは当業者には明らかである。また、本出願は、2019年10月17日の日本国特許出願(特願2019-190101)に基づく出願であり、当該内容はすべてここに参照として取り込まれる。
1 シリンダ内壁
2 ピストン
3 第1の溝
4 第2の溝
5 第3の溝
13 トップリング
14 セカンドリング
15 組合せオイルリング
151 上セグメント
152 下セグメント
153 エキスパンダ・スペーサ

Claims (7)

  1.  内燃機関用ピストンに装着されて用いられるコンプレッションリングであって、
     熱伝導率が30W/m・K以上であり、且つ、250℃で3時間保持した後の張力減退率が50%以下である銅合金からなる、コンプレッションリング。
  2.  前記コンプレッションリングは、ヤング率が180GPa以下である、請求項1に記載のコンプレッションリング。
  3.  前記コンプレッションリングは、線膨張係数が15×10-6/K以上である、請求項1または2に記載のコンプレッションリング。
  4.  内燃機関用ピストンのセカンドリングとして装着されて用いられる、請求項1から3のいずれか1項に記載のコンプレッションリング。
  5.  前記銅合金はNi-Sn-Cu合金である、請求項1~4のいずれか1項に記載のコンプレッションリング。
  6.  前記Ni-Sn-Cu合金は、Ni量が20重量%以上22重量%以下であり、Sn量が4.5重量%以上5.7重量%以下であり、任意添加成分を含み、残量がCu及び不可避的不純物である、請求項5に記載のコンプレッションリング。
  7.  ピストンリングが装着されるリング溝を有する内燃機関用ピストン、並びに
     該ピストンのリング溝に装着されたトップリング、セカンドリング及びオイルリング、からなる、内燃機関用ピストンであって、
     前記セカンドリングは、熱伝導率が30W/m・K以上であり、且つ、250℃で3時間保持した後の張力減退率が50%以下である銅合金からなる、内燃機関用ピストン。
PCT/JP2020/037979 2019-10-17 2020-10-07 コンプレッションリング、及びコンプレッションリングを備えたピストン WO2021075326A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021513492A JPWO2021075326A1 (ja) 2019-10-17 2020-10-07 コンプレッションリング、及びコンプレッションリングを備えたピストン
CN202080071533.2A CN114555929A (zh) 2019-10-17 2020-10-07 压缩环以及具备压缩环的活塞

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-190101 2019-10-17
JP2019190101 2019-10-17

Publications (1)

Publication Number Publication Date
WO2021075326A1 true WO2021075326A1 (ja) 2021-04-22

Family

ID=75537452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037979 WO2021075326A1 (ja) 2019-10-17 2020-10-07 コンプレッションリング、及びコンプレッションリングを備えたピストン

Country Status (3)

Country Link
JP (1) JPWO2021075326A1 (ja)
CN (1) CN114555929A (ja)
WO (1) WO2021075326A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148934A1 (ja) * 2010-05-25 2011-12-01 株式会社リケン 圧力リング及びその製造方法
WO2018128775A1 (en) * 2017-01-06 2018-07-12 Materion Corporation Piston compression rings of copper-nickel-tin alloys

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148934A1 (ja) * 2010-05-25 2011-12-01 株式会社リケン 圧力リング及びその製造方法
WO2018128775A1 (en) * 2017-01-06 2018-07-12 Materion Corporation Piston compression rings of copper-nickel-tin alloys

Also Published As

Publication number Publication date
JPWO2021075326A1 (ja) 2021-11-04
CN114555929A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
EP0295111B1 (en) A steel having good wear resistance
JP5861184B2 (ja) アンチフレッチング層を有する多層ラジアル軸受
JP5030439B2 (ja) 摺動部材
US8240676B2 (en) Piston ring
CN101435381B (zh) 活塞环
JP6577173B2 (ja) Cu基焼結合金及びその製造方法
KR20070084467A (ko) 구리-아연 합금의 용도
JPH09236125A (ja) すべり軸受の軸受構造
JPWO2009069762A1 (ja) ピストンリング用鋼材およびピストンリング
US20130181409A1 (en) Piston ring having a thermally sprayed coating and method for producing same
JP5222650B2 (ja) ピストンリング
US10590812B2 (en) Sliding mechanism
JPH083135B2 (ja) 耐摩耗性銅合金
JP5060083B2 (ja) ピストンリングの製造方法
WO2021075326A1 (ja) コンプレッションリング、及びコンプレッションリングを備えたピストン
JPWO2016152967A1 (ja) 摺動部品および摺動構造体
JP2018141231A (ja) 銅合金からなる摺動部材
WO2019130553A1 (ja) 低摩擦摺動機構
JP2021139365A (ja) バルブガイド
JPH04173935A (ja) 耐摩耗性アルミニウム合金
JP2003343353A (ja) 内燃機関のシリンダとピストンリングの組み合わせ
JP3690512B2 (ja) アルミ合金摺動部材と相手摺動部材の組合せ
WO2019087562A1 (ja) 圧力リング、内燃機関、圧力リング用線材および圧力リング用線材の製造方法
KR100831094B1 (ko) 고강도 내마모성 니켈계 윤활합금
CN103361638B (zh) 内燃机

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021513492

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876524

Country of ref document: EP

Kind code of ref document: A1