WO2021075309A1 - 粒子群特性測定装置、粒子群特性測定方法、粒子群特性測定装置用プログラム、粒子径分布測定装置及び粒子径分布測定方法 - Google Patents

粒子群特性測定装置、粒子群特性測定方法、粒子群特性測定装置用プログラム、粒子径分布測定装置及び粒子径分布測定方法 Download PDF

Info

Publication number
WO2021075309A1
WO2021075309A1 PCT/JP2020/037815 JP2020037815W WO2021075309A1 WO 2021075309 A1 WO2021075309 A1 WO 2021075309A1 JP 2020037815 W JP2020037815 W JP 2020037815W WO 2021075309 A1 WO2021075309 A1 WO 2021075309A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
particle group
time
swarm
group
Prior art date
Application number
PCT/JP2020/037815
Other languages
English (en)
French (fr)
Inventor
康弘 立脇
真悟 藤原
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2021552335A priority Critical patent/JPWO2021075309A1/ja
Priority to EP20877474.5A priority patent/EP4033221A4/en
Priority to CN202080071290.2A priority patent/CN114556080A/zh
Priority to US17/754,831 priority patent/US20240102907A1/en
Publication of WO2021075309A1 publication Critical patent/WO2021075309A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0227Investigating particle size or size distribution by optical means using imaging; using holography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0294Particle shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1493Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1497Particle shape

Definitions

  • the present invention is for a particle group characteristic measuring device, a particle group characteristic measuring method, and a particle group characteristic measuring device for measuring time fluctuations in the characteristics (also referred to as particle group characteristics) of a particle group composed of a plurality of particles dispersed in a dispersion medium. It relates to a program, a particle size distribution measuring device, and a particle size distribution measuring method.
  • the state of the particle group dispersed in the dispersion medium changes with time due to the dispersion and aggregation of the particles. Therefore, for example, when measuring the particle size distribution of a particle group, the state of the particle group is monitored by measuring the time variation of the particle group characteristics such as the representative particle size of the particle group in advance. There is a desire to measure the particle size distribution after the particle size is in the desired state.
  • a laser diffraction / scattering type measuring device that detects the light intensity of diffracted light or scattered light generated by irradiating a particle group with laser light may be used to measure the time variation of such particle group characteristics.
  • Patent Document 1 a laser diffraction / scattering type measuring device that detects the light intensity of diffracted light or scattered light generated by irradiating a particle group with laser light may be used to measure the time variation of such particle group characteristics.
  • this laser diffraction / scattering method has a problem that it is difficult to measure the time variation of the particle group characteristics over a long period of time because it is necessary to perform blank measurement before measurement due to the problem of laser stability.
  • the captured image obtained by imaging the particle group irradiated with light is processed, and the particle information (also referred to as particle information) reflected in the captured image is extracted to obtain the particle group characteristics such as the representative particle size. It is considered to measure the time variation of the particle group characteristics by using a so-called image analysis type device for calculation. Since this image analysis type device does not require blank measurement, it is possible to measure the time variation of particle swarm characteristics over a long period of time.
  • the present invention has been made in view of the above problems, measures the time variation of the particle swarm characteristics based on the captured image, and can reduce the statistical error included in the calculated particle swarm characteristics. Moreover, it is a main object to provide a particle swarm property measuring device which can easily grasp the time fluctuation.
  • the particle group characteristic measuring apparatus measures the time variation of the particle group characteristics, which is the characteristic of the particle group composed of a plurality of particles dispersed in the dispersion medium, and images the particle group.
  • a particle information extraction unit that processes a captured image captured by the imaging unit and extracts particle information that is information on particles reflected in the captured image, and the particle group at a plurality of time points in chronological order.
  • the particle group characteristic calculation unit includes a particle group characteristic calculation unit that calculates the characteristics based on the particle information extracted from the plurality of captured images captured before each time point, and the particle group characteristic calculation unit is the particle at each time point.
  • the group characteristics are based on the plurality of captured images used for calculating the particle group characteristics at a time point earlier than that and the particle information extracted from the plurality of captured images in which the imaging time zones partially overlap. It is characterized by calculating.
  • the particle group characteristics at each time point are calculated based on the particle information extracted from a plurality of captured images, the particle group characteristics are calculated based on the particle information extracted from one captured image.
  • the statistic of particle information can be increased as compared with the case of calculation, and the statistical error included in the calculated particle group characteristics can be reduced.
  • the time required to secure the number of particle information required to reduce the statistical error to the permissible range can be shortened, and the particle swarm characteristics at each time point can be calculated in a short time. As a result, it is possible to easily grasp the time fluctuation while reducing the statistical error included in the calculated particle swarm characteristics.
  • the particle group characteristic calculation unit uses the particle group characteristics at each time point to calculate the particle group characteristics at the time immediately before the plurality of captured images and a part thereof. It is preferable to calculate based on the particle information extracted from the plurality of captured images in which the above are duplicated. In this way, the particles extracted from the plurality of captured images in which the particle swarm characteristics at each time point partially overlap with the plurality of captured images used for calculating the particle group characteristics at the previous time point. It is calculated based on the information, that is, the particle swarm characteristics at each time point are calculated by adding a part of the particle information used for calculating the particle group characteristics at the previous time point, so that the adjacent time points are calculated. The amount of change in particle swarm characteristics between them can be reduced. As a result, by reducing the amount of change in the particle group characteristics between adjacent time points, the particle group characteristics at each time point can be smoothed and its time variation can be dramatically grasped.
  • the particle group characteristic calculation unit calculates the particle group characteristic based on a plurality of the particle information including the particle information extracted most recently at each time point. In this way, the particle swarm characteristics calculated at each time point can reflect the latest state of the particle group at each time point.
  • the particle swarm property calculation unit there may be one that calculates the particle swarm characteristics at each time point based on the particle information extracted from a certain number of captured images in which the order of imaging is continuous. ..
  • the particle group characteristic measuring device further includes a calculation command unit that outputs a calculation command signal for commanding the calculation of the particle group characteristics to the particle group characteristic calculation unit, and the calculation command unit calculates the calculation at predetermined time intervals. It is preferable to output a command signal. By doing so, it is possible to grasp the fluctuation of the particle swarm characteristics at regular time intervals, so that the user convenience can be improved.
  • the particle group characteristic measuring device further includes a calculation command unit that outputs a calculation command signal for commanding the calculation of the particle group characteristics to the particle group characteristic calculation unit, and the calculation command unit is predetermined by the particle information extraction unit. It is preferable to output the calculation command signal every time the particle information is extracted from the number of captured images. By doing so, it is possible to grasp the fluctuation of the particle swarm with respect to the time when the particle swarm is imaged, so that the user convenience can be improved.
  • the particle swarm property measuring device further includes a display control unit that displays the calculation result at each time point calculated by the particle swarm optimization unit in real time. In this way, the user can confirm the time variation of the particle swarm characteristics in real time.
  • the particle group characteristic measuring device calculates a plurality of the particle group characteristics having different particle group characteristic calculation units, and it is preferable that the display control unit displays the plurality of the particle group characteristics on the same screen. In this way, it is possible to grasp the time variation of the state of the particle group by displaying a plurality of different types of particle group characteristics on the same screen. For example, when displaying the representative particle diameter D 50 and the representative aspect ratio as the characteristics of a plurality of particle groups, if the value of the representative particle diameter D 50 decreases with time and the aspect ratio increases with time, the particles are dispersed. It is possible to understand that the particles that are being used may be broken or deformed.
  • a representative particle size of a plurality of particles constituting the particle group can be mentioned.
  • the particle group characteristic measuring method of the present invention is a method of measuring the time variation of the particle group characteristic, which is the characteristic of the particle group composed of a plurality of particles dispersed in the dispersion medium, and is an imaging step of imaging the particle group.
  • the particle information extraction step of processing the captured image captured in the imaging step and extracting the particle information which is the information of the particles reflected in the captured image, and the particle group characteristics at a plurality of time points along the time series.
  • a particle group characteristic calculation step calculated based on the particle information extracted from a plurality of captured images captured before each time point is provided, and in the particle group characteristic calculation step, the particle group at each time point is provided.
  • the characteristics are based on the plurality of captured images used for calculating the particle group characteristics at a time point earlier than that and the particle information extracted from the plurality of captured images in which the imaging time zones partially overlap. It is characterized by calculating. With such a particle swarm property measuring method, it is possible to obtain the same effects as those of the particle swarm property measuring device of the present invention described above.
  • the program for the particle group characteristic measuring device of the present invention is for a particle group characteristic measuring device that measures the time variation of the particle group characteristic, which is the characteristic of the particle group composed of a plurality of particles dispersed in the dispersion medium.
  • a particle group characteristic measuring device measures the time variation of the particle group characteristic, which is the characteristic of the particle group composed of a plurality of particles dispersed in the dispersion medium.
  • an imaging unit that captures the particle group
  • a particle information extracting unit that processes the captured image captured by the imaging unit and extracts particle information that is information on the particles reflected in the captured image.
  • the particle group characteristics at a plurality of time points along the time series are calculated based on the particle information extracted from the plurality of captured images captured before each time point.
  • the particle group characteristics are combined with the plurality of captured images used for calculating the particle group characteristics at a time point earlier than that and the particle information extracted from the plurality of captured images in which the captured time zones partially overlap. It is characterized by having a computer exert a function as a particle group characteristic calculation unit that is calculated based on the above. With such a program for a particle swarm property measuring device, the same effect as that of the particle swarm property measuring device of the present invention can be obtained.
  • the particle size distribution measuring device of the present invention measures the particle size distribution of a group of particles composed of a plurality of particles dispersed in a dispersion medium, and the dispersion medium and the particles are mixed to form a suspension.
  • the present invention includes the above-mentioned particle group characteristic measuring device of the present invention, which measures the time variation of the characteristics of the particle group in the suspension flowing through the circulation system, and an optical measuring system for measuring the particle size distribution. It is characterized by.
  • the particle group characteristics in the suspension flowing through the circulatory system are monitored by the particle group characteristic device of the present invention described above, so that the time variation of the particle group characteristics in the circulatory system can be measured. Easy to grasp. Therefore, it is possible to start the measurement of the particle size distribution using the optical measurement system at a more appropriate timing as compared with the conventional case.
  • the particle size distribution measuring method of the present invention is a method of measuring the particle size distribution of a group of particles composed of a plurality of particles dispersed in a dispersion medium, and the dispersion medium and the particles are mixed to form a suspension. Time for the characteristics of the particle group in the suspension to be circulated by the circulation step of circulating the suspension between the mixing tank and the measurement cell and the particle group characteristic measurement method of the present invention described above.
  • the time variation of the particle swarm characteristics is measured based on the captured image of the particle swarm, and the statistical error included in the calculated particle swarm characteristics can be reduced. Moreover, it is possible to provide a particle swarm property measuring device that makes it easy to grasp the time fluctuation.
  • the particle group characteristic measuring device 200 of the present embodiment constitutes a part of the particle size distribution measuring device 100 for measuring the particle size distribution of a particle group composed of a plurality of particles dispersed in a dispersion medium.
  • the overall configuration of the particle size distribution measuring device 100 will be described first, and then the configuration of the particle group characteristic measuring device 200 will be described.
  • the particle size distribution measuring device 100 measures the particle size distribution of the particle group by detecting the light intensity of the scattered light generated when the particle group is irradiated with the laser light. Specifically, as shown in FIG. 1, the particle size distribution measuring device 100 connects the sample charging tank 111 and the laser diffraction cell 112 via the circulation flow path 113, and disperses the powder sample in the dispersion medium. Optical to measure the particle size distribution of the particle group based on the circulating system 11 that circulates the suspended suspension and the scattered light generated by irradiating the suspension flowing in the laser diffraction cell 112 with laser light.
  • the sample charging tank 111 is a suspension made by mixing a powder sample containing a plurality of charged particles and a dispersion medium (for example, pure water or alcohol) for dispersing the powder sample. By mixing the powder sample and the dispersion medium, the particles contained in the powder sample are dispersed in the dispersion medium to form a particle group.
  • a dispersion medium for example, pure water or alcohol
  • the circulation system 11 is provided with a centrifugal circulation pump 114 for forcibly circulating the suspension so that the suspension mixed in the sample charging tank 111 can be sent out to the laser diffraction cell 112. It has become.
  • the laser diffraction cell 112 is of a so-called flow type, and is configured so that a suspension introduced from the outside can be liquid-tightly circulated between a pair of light-transmitting plates facing each other and led out to the outside. ..
  • the laser beam is irradiated so as to go from the one light-transmitting plate side to the other light-transmitting plate side.
  • the optical measurement system 12 includes a laser light source 121 that irradiates the suspension in the laser diffraction cell 112 with laser light, and a plurality of photodetectors that detect the intensity of scattered light generated by the irradiation of the laser light according to the scattering angle.
  • a device 122 and a first information processing device 123 that calculates a particle size distribution of a particle group based on light intensity signals output by a plurality of photodetectors 122 are provided.
  • the first information processing apparatus 123 is a general-purpose or dedicated computer provided with a CPU, a memory, an input / output interface, and the like, and cooperates with the CPU and peripheral devices according to a predetermined program stored in a predetermined area of the memory. By working, at least the function as the particle size distribution calculation unit 123a is exhibited.
  • the particle size distribution calculation unit 123a calculates the particle size distribution of the particle group in the suspension based on the light intensity signals output from the plurality of photodetectors 122. Specifically, the scattering pattern consisting of the scattering angle and the intensity of the scattered light at the scattering angle indicated by the light intensity signals output from the plurality of light detectors 122, the Mie scattering theory, the Rayleigh scattering theory, the Fraunhofer diffraction theory, etc. The particle size distribution corresponding to the scattering pattern is calculated based on a predetermined theoretical calculation formula derived from.
  • the particle swarm property measuring device 200 measures the time variation of particle swarm characteristics by processing an captured image obtained by continuously imaging a particle swarm in a suspension. Specifically, the particle group characteristic measuring device 200 irradiates the image acquisition cell 21 connected to the circulation flow path 113 and the suspension flowing inside the circulation flow path 113 and the suspension in the image acquisition cell 21 with light.
  • a second information processing apparatus that processes an image acquisition light source 22 to be imaged, an image pickup unit 23 that images a suspension in an image acquisition cell 21, and an image captured by the image pickup unit 23 to calculate particle group characteristics. 24 and a display 25 for displaying the calculation result of the second information processing apparatus 24.
  • the image acquisition cell 21 is a so-called flow type, and allows a suspension introduced from the outside to be circulated between a pair of translucent plates facing each other so that the suspension can be led out to the outside. Light is emitted from one light-transmitting plate toward the other light-transmitting plate.
  • the image acquisition light source 22 irradiates the suspension in the image acquisition cell 21 with parallel light, and condenses an LED device such as a white LED and the light emitted from the LED device. It is equipped with a condensing mechanism such as a lens that produces parallel light.
  • the imaging unit 23 continuously images a group of particles in the suspension flowing in the image acquisition cell 21, and sequentially outputs captured image data showing the captured image (see FIG. 2) to the second information processing apparatus 24. Is what you do.
  • the image pickup unit 23 includes an image pickup element such as a color or monochrome CCD or CMOS image sensor.
  • the imaging unit 23 of the present embodiment is configured to receive an imaging command signal commanding imaging from the second information processing device 24 and to use this as a trigger to image a group of particles in the suspension.
  • the imaging unit 23 is configured to image the particle group in the suspension once each time it receives an imaging command signal and output the image.
  • the second information processing device 24 is a general-purpose or dedicated computer equipped with a CPU, a memory, an input / output interface, and the like. As shown in FIG. 3, this information processing device cooperates with a CPU and peripheral devices according to a predetermined program stored in a predetermined area of a memory, thereby forming a particle information extraction unit 241 and a storage unit 242, and particle group characteristics. At least the functions of the calculation unit 243, the calculation command unit 244, and the display control unit 245 are exhibited.
  • the particle information extraction unit 241 receives the captured image data output from the imaging unit 23, sequentially processes the captured image indicated by the captured image data, and extracts the particle information which is the information of the particles reflected in the captured image. .. Specifically, the particle information extraction unit 241 refers to an image such as smoothing, noise removal, separation, circular separation, thinning, binarization, enhancement and / or edge detection with respect to the captured image indicated by the captured image data. The processing is performed, and the particle information of each of the particles (specifically, the so-called in-focus particles within a predetermined depth of field) reflected in the captured image is extracted.
  • particle information is a physical property value of each particle constituting the particle group, for example, particle diameter (diameter equivalent to an area circle), aspect ratio, major axis length, minor axis length, maximum distance, and perimeter. , Area (actual measurement ⁇ m 2 ), area (pixel: number of pixels in the particle), roundness, convex flatness, strength of imaged pixel, etc., but are not limited to this.
  • the particle information extraction unit 241 When the particle information extraction unit 241 receives the captured image data, it immediately processes the captured image and extracts individual particle information. Then, particle data indicating particle information of individual particles extracted from one captured image is stored in a storage unit 242 set in a predetermined area of a memory as one particle data group. The particle information extraction unit 241 stores the new particle data group extracted by processing the captured image data each time it is received in the storage unit 242 separately from the particle data group stored so far.
  • the particle information extraction unit 241 determines the particle size of each of the three particles from the captured image. Extract as particle information. Then, the particle data relating to the three extracted particle diameters is stored in the storage unit 242 as the nth particle data group.
  • the particle information extraction unit 241 is configured to immediately output an imaging command signal to the imaging unit 23 when the particle information has been extracted from one received captured image.
  • the particle information extraction unit 241 of the present embodiment is configured to erase the captured image data indicating the captured image without storing it in the storage unit 242 when the particle information has been extracted from the captured image. As a result, the amount of data stored in the storage unit 242 can be reduced.
  • the storage unit 242 is configured to store a predetermined upper limit number of particle data groups. When the number of stored particle data groups reaches the upper limit, the storage unit 242 deletes one particle data group having the oldest stored order when it receives a new particle data group. It is configured.
  • the particle swarm property calculation unit 243 calculates the particle swarm characteristics at a plurality of time points along the time series based on the particle information extracted from the plurality of captured images captured before each time point.
  • the particle group characteristic calculation unit 243 refers to the particle data group stored in the storage unit 242, and based on the particle information included in the plurality of particle data groups extracted before each time point, each time point. It is configured to calculate the particle group characteristics in.
  • This "particle group characteristic” means a representative value of particle information of individual particles constituting the particle group. For example, when the particle information is "particle size", the particle group characteristic is "representative particle size (D 10 , D 50, D 90, etc.)".
  • the particle swarm property calculation unit 243 of the present embodiment partially overlaps the particle swarm characteristics at each time point with the plurality of particle data groups used for calculating the particle swarm property at least one time point before the time point. It is calculated based on the particle information contained in a plurality of particle data groups. That is, it can be said that the particle group characteristic calculation unit 243 is configured to calculate the particle group characteristics at the next time point by adding the particle information used for calculating the particle group characteristics at the previous time point.
  • the particle group characteristic calculation unit 243 includes a plurality of particle group characteristics at each time point, including a particle data group extracted most recently at the time immediately before the time point and a particle data group having a newer extraction order. Calculated based on the particle data group. More specifically, the particle group characteristic calculation unit 243 calculates the particle group characteristics based on the particle information included in the plurality of particle data groups including the particle data group extracted most recently at each time point. Furthermore, the particle swarm characteristics at each time point are calculated based on the particle information contained in a certain number of particle data groups whose extraction order is continuous. Here, the number of particle data groups to be referred to at each time point can be arbitrarily set by the user.
  • the particle group characteristic calculation unit 243 extracts the particle group characteristics at a certain time point P most recently. It is calculated based on 20 consecutive particle data groups that trace back to the n-19th particle data group from the nth particle group information data group. Then, the particle group characteristic calculation unit 243 traces the particle group characteristics at the next Q time point from the most recently extracted n + 6 particle group information data group to the n-13 particle data group of 20 consecutive particles. Calculate based on the data group.
  • the particle swarm property calculation unit 243 calculates the particle swarm characteristics at each time point in a histogram (horizontal axis: class) based on a plurality of particle information included in the plurality of particle data groups. , Vertical axis: frequency), and the particle swarm characteristics are calculated based on the histogram.
  • the particle swarm property calculation unit 243 may be configured to calculate a plurality of different particle swarm characteristics at each time point.
  • the particle group characteristic calculation unit 243 may calculate a plurality of particles of the same type such as representative particle diameters D 10 , D 50, and D 90 at each time point, and may calculate representative particle diameter, aspect ratio, and roundness. You may calculate the characteristics of different kinds of particle swarms such as.
  • the particle swarm property calculation unit 243 calculates the particle swarm property at each time point, it immediately outputs the particle swarm property data indicating this. At the same time, the histogram data showing the histogram calculated for the particle swarm characteristics may be output.
  • the calculation command unit 244 outputs a calculation command signal for commanding the calculation of the particle group characteristics to the particle group calculation unit 243.
  • the calculation command unit 244 of the present embodiment is configured to measure the time based on the signal from the clock built in the second information processing device 24 and output the calculation command signal at a predetermined timing.
  • the timing at which the calculation command unit 244 outputs the calculation command signal may be a fixed time interval (for example, a 1-second interval) or a predetermined time. Then, when the particle group characteristic calculation unit 243 receives the calculation command signal, it reads the particle data from the storage unit 242 and calculates the particle group characteristics.
  • the display control unit 245 receives the particle swarm property data and displays it on the display 25 as a calculation result. Specifically, the display control unit 245 displays a graph on the display 25 in which the horizontal axis is the time and the vertical axis is the value of the particle group characteristics, and the particle group characteristics at each time point calculated by the particle group characteristic calculation unit 243 are displayed. Plot sequentially on the graph.
  • the position on the horizontal axis of each plot indicates the time when the particle swarm characteristics are calculated, and is based on the clock built in the second information processing apparatus 24. Specifically, this time is the time when the clock outputs the calculation command signal.
  • the display control unit 245 may plot the plurality of types of particle group characteristics on the same graph. Further, the display control unit 245 determines that the particles are displayed when the value indicated by the particle group characteristics at the latest time point is within a predetermined range (for example, when the representative particle diameter D 50 exceeds a predetermined threshold value D th). A message indicating that the diameter distribution measurement may be started is displayed on the display 25.
  • the display unit control unit may receive the histogram data and display it on the display 25 as a calculation result.
  • the display 25 displays a particle group characteristic variation graph showing time variation of particle group characteristics (here, representative particle diameters D 10 , D 50, and D 90).
  • the latest values are plotted at regular time intervals (here, every second).
  • D 50 the value of the predetermined particle swarm property
  • D th the set threshold value
  • the display 25 has a histogram (horizontal axis: particle diameter, vertical axis: frequency) calculated from particle information extracted from a plurality of consecutive latest captured images at each time point. Diameter distribution) is displayed in real time. This histogram is updated to the latest state at regular time intervals (here, every second).
  • the screens shown in FIGS. 5 and 6 may be displayed on separate screens or on the same screen.
  • Particle information extraction operation The operation of extracting particle information from the suspension will be described. This operation is started after the powder sample is charged into the sample charging tank 111, the dispersion medium is mixed, and the obtained suspension is started to be circulated in the circulation system 11 in the particle size distribution measuring device 100. ..
  • the suspension flowing in the image acquisition cell 21 is irradiated with light from the image acquisition light source 22.
  • the particle group in the suspension flowing in the image acquisition cell 21 is imaged by the image pickup unit 23 (step S11), and the image pickup data is immediately output to the second information processing apparatus 24.
  • the output captured image is processed by the particle information extraction unit 241 to extract information (particle information) of individual particles reflected in the captured image (step S12).
  • the extracted one or more particle information is stored in the storage unit 242 as a particle data group (step S14).
  • the operations of steps S11 to S14 are repeated until a predetermined time elapses from the start of the operation (step S15).
  • Particle swarm property calculation operation The operation of calculating the particle group characteristics of the particle group based on the particle information extracted by the particle information extraction operation will be described. The operation is started after the particle information extraction operation is started, and is performed in parallel with the operation. In the particle swarm characteristic calculation operation, the particle swarm characteristics are calculated at predetermined fixed time intervals.
  • the storage unit 242 is referred to at a predetermined timing, a plurality of predetermined particle data groups having a continuous order of the most recently extracted particles are acquired (step S21), and a histogram is obtained based on the particle information included in the plurality of particle data groups. Is calculated (step S22). The particle swarm characteristics are calculated based on the calculated histogram (step S23). The calculated particle swarm property values are plotted on a graph on the display 25 (step S24). When the calculated particle group characteristic value is within a predetermined range (for example, equal to or higher than a predetermined threshold value) (step S27), a message indicating that laser diffraction may be performed in the particle size distribution measuring device 100 is displayed on the display 25 (step). S26).
  • a predetermined range for example, equal to or higher than a predetermined threshold value
  • step S27 When a predetermined time has not elapsed from the start of the operation (step S27), a plurality of predetermined particle data groups having a continuous order of the most recently extracted particles at the next predetermined timing are acquired (step S21).
  • the particle group characteristic calculation unit 243 acquires the particle data group so as to partially overlap the particle data group acquired at the previous timing. Then, the operations of steps S21 to S26 are repeated until a predetermined time elapses from the start of the operation (step S27).
  • the particle group characteristics at each time point are calculated based on the particle information extracted from a plurality of consecutive captured images including the latest captured image. Therefore, the statistic of the particle information can be increased and the statistical error included in the calculated particle group characteristics can be reduced as compared with the case of calculating based on the particle information extracted from one captured image. .. Moreover, since the captured images already obtained up to the previous time point are used as a part of the plurality of captured images used for calculating the particle swarm characteristics at each time point, the statistical error is reduced to an allowable range. The time required to secure the required number of particle information can be shortened, and the particle swarm characteristics at each time point can be calculated in a short time. As a result, it is possible to easily grasp the time fluctuation while reducing the statistical error included in the calculated particle swarm characteristics.
  • the particle size distribution measuring device 100 of the present embodiment can monitor the time variation of the characteristics of the particle group in the suspension flowing through the circulation system 11 by using such a particle group characteristic measuring device 200. Therefore, for example, the particle size is measured.
  • the measurement of the particle size distribution using the optical measuring system 12 can be started at an appropriate timing while observing the degree of dispersion and the like.
  • the calculation command unit 244 is configured to measure the time based on the signal from the clock and output the calculation command signal at a predetermined timing, but the present invention is not limited to this. As shown in FIG. 9, the calculation command unit 244 of another embodiment is configured to count the number of captured images processed by the particle information extraction unit 241, and the particle information extraction unit 241 captures a predetermined number of images. Each time the particle information is extracted from the image, the calculation command signal may be output to the particle group characteristic calculation unit 243.
  • the particle information extraction unit 241 processes the captured image, extracts the imaging time of the captured image, associates it with the particle data group extracted from the captured image, and stores it in the storage unit 242. Then, when the particle group characteristic calculation unit 243 receives the calculation command signal, it calculates the particle group characteristics with reference to a predetermined number of particle data groups, and calculates a plurality of imaging times associated with the predetermined number of particle groups. With reference to this, one time associated with the calculated particle swarm characteristics is determined, and this is output to the display control unit 245 as imaging time data.
  • the time indicated by the imaging time data may be any one of the plurality of referenced imaging times, or the elapsed time from a predetermined reference time calculated based on the plurality of referenced imaging times. It may be shown.
  • the particle information extraction unit 241 of the embodiment has a plurality of particle data groups in which the particle group characteristics at each time point partially overlap with the plurality of particle data groups used for calculating the particle group characteristics at the time immediately before. It was calculated based on the particle information contained in, but it is not limited to this.
  • the particle information extraction unit 241 extracts the particle swarm characteristics at each time point from a plurality of captured images used for calculating the particle group characteristics at a time point earlier than that, and from a plurality of captured images in which the captured time zones partially overlap. It may be calculated based on the extracted particle information.
  • the image acquisition cell 21 of the above embodiment was of the flow type, but it is not limited to this and may be of the batch type.
  • the batch type image acquisition cell 21 it is possible to grasp the time variation of the particle swarm characteristics due to the temperature change of the dispersion medium.
  • the particle group characteristic calculation unit 243 of the above embodiment has calculated the particle group characteristics at each time point based on the particle information included in the recently extracted particle data group, but the present invention is not limited to this. In another embodiment, the particle group characteristics may be calculated based on the particle information contained in a plurality of particle data groups excluding the most recently extracted particle data group.
  • the particle group characteristic calculation unit 243 of the above-described embodiment has calculated the particle group characteristics at each time point based on the particle information included in the plurality of particle data groups in which the extraction order is continuous, but the present invention is not limited to this. In another embodiment, the particle swarm characteristics may be calculated based on the particle information included in the plurality of particle data groups whose extraction order is discontinuous.
  • the particle group characteristic measuring device 200 of the above embodiment constitutes a part of the particle size distribution measuring device 100, but is not limited to this. As a matter of course, the particle swarm optimization device 200 may be used alone.
  • the functions as the particle size distribution calculation unit 123a and the functions as the particle information extraction unit 241 and the storage unit 242, the particle group characteristic calculation unit 243 and the display control unit 245 are exhibited by separate computers. However, it doesn't work. In other embodiments, these functions may be exerted by a common computer.
  • the functions as the particle information extraction unit 241 and the storage unit 242, the particle group characteristic calculation unit 243, and the display control unit 245 are exhibited by one computer, but the present invention is not limited to this. In other embodiments, these functions may be exerted by multiple computers.
  • the particle information extraction operation and the particle group characteristic calculation operation are completed after a lapse of a predetermined time from the start of the operation, but the operation is not limited to this.
  • the particle information extraction operation may be terminated by extracting particle information from a predetermined number of captured images.
  • the particle swarm property calculation operation may be terminated when the calculated particle swarm property value exceeds or falls below a predetermined value, or may be terminated when the particle swarm property value is calculated a predetermined number of times.
  • both the particle information extraction operation and the particle group characteristic calculation operation may be terminated by the user pressing the end button.
  • the time variation of the particle group characteristics is measured based on the captured image of the particle group, the statistical error included in the calculated particle group characteristics can be reduced, and the time variation can be reduced. It is possible to provide a particle swarm property measuring device that is easy to grasp.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

分散媒中に分散した複数の粒子から成る粒子群の特性である粒子群特性の時間変動を測定するものであって、前記粒子群を撮像する撮像部と、前記撮像部により撮像された撮像画像を処理し、当該撮像画像に映り込んだ粒子の情報である粒子情報を抽出する粒子情報抽出部と、時系列に沿った複数時点における前記粒子群特性を、それぞれの時点以前に撮像された複数の前記撮像画像から抽出される前記粒子情報に基づいて算出する粒子群特性算出部と、を備え、前記粒子群特性算出部が、各時点における前記粒子群特性を、それよりも前の時点における前記粒子群特性の算出に用いた複数の前記撮像画像と、撮像した時間帯が一部重複する複数の前記撮像画像から抽出された前記粒子情報に基づいて算出する粒子群特性測定装置である。

Description

粒子群特性測定装置、粒子群特性測定方法、粒子群特性測定装置用プログラム、粒子径分布測定装置及び粒子径分布測定方法
 本発明は、分散媒中に分散した複数の粒子から成る粒子群の特性(粒子群特性ともいう)の時間変動を測定する粒子群特性測定装置、粒子群特性測定方法、粒子群特性測定装置用プログラム、粒子径分布測定装置及び粒子径分布測定方法に関するものである。
 分散媒中に分散させた粒子群は、粒子の分散や凝集等によりその状態が経時的に変化することが知られている。そのため、例えば粒子群の粒子径分布等の測定を行う際には、予め粒子群の例えば代表粒子径等の粒子群特性の時間変動を測定して粒子群の状態をモニタリングしておき、粒子群が所望の状態になってから粒子径分布測定を行いたいといった要望がある。
 従来このような粒子群特性の時間変動の測定には、粒子群にレーザ光を照射して生じる回折光や散乱光の光強度を検出するレーザ回折・散乱方式の測定装置が用いられることがある(特許文献1)。しかしこのレーザ回折・散乱方式では、レーザの安定性の問題から測定前にブランク測定を行う必要があるため、長時間にわたって粒子群特性の時間変動を測定することが難しいという問題がある。
 そこで、光を照射した粒子群を撮像して得られる撮像画像を処理し、撮像画像に写り込んだ粒子の情報(粒子情報ともいう)を抽出する等して代表粒子径等の粒子群特性を算出する、所謂画像解析方式の装置を用いて粒子群特性の時間変動を測定することが考えられている。この画像解析方式の装置であれば、ブランク測定を必要としないため、長時間にわたる粒子群特性の時間変動の測定が可能となる。
特開2002-207001号公報
 しかしながら画像解析方式の装置を用いる場合には、撮像時のサンプルからの透過光量を十分に確保すべくサンプル中の粒子の濃度を低くする必要があるため、1つの撮像画像に写り込む粒子の数が少なくなってしまう。そのため、1つの撮像画像を処理してこれに写り込む粒子の粒子径等の粒子情報に基づいて粒子群特性を算出する従来の画像解析方式の装置では、算出される粒子群特性に含まれる統計的な誤差が大きくなってしまう。この問題を解決するには、統計誤差を許容範囲まで低減するのに必要な数の撮像画像が得られる度に当該複数の撮像画像を用いて粒子群特性を算出することも考えられる。しかしながらこのやり方では、必要な数の撮像画像を取得するのに時間が掛かってしまうため、粒子群特性の更新間隔が長くなり、その時間変動を把握しにくいという問題がある。
 本発明は上記した問題に鑑みてなされたものであり、撮像画像に基づいて粒子群特性の時間変動を測定するものであって、算出される粒子群特性に含まれる統計的な誤差を低減でき、かつその時間変動を把握し易い粒子群特性測定装置を提供することを主たる課題とするものである。
 すなわち本発明に係る粒子群特性測定装置は、分散媒中に分散した複数の粒子から成る粒子群の特性である粒子群特性の時間変動を測定するものであって、前記粒子群を撮像する撮像部と、前記撮像部により撮像された撮像画像を処理し、当該撮像画像に映り込んだ粒子の情報である粒子情報を抽出する粒子情報抽出部と、時系列に沿った複数時点における前記粒子群特性を、それぞれの時点以前に撮像された複数の前記撮像画像から抽出される前記粒子情報に基づいて算出する粒子群特性算出部とを備え、前記粒子群特性算出部が、各時点における前記粒子群特性を、それよりも前の時点における前記粒子群特性の算出に用いた複数の前記撮像画像と、撮像した時間帯が一部重複する複数の前記撮像画像から抽出された前記粒子情報に基づいて算出することを特徴とする。
 このようなものであれば、各時点における粒子群特性を、複数の撮像画像から抽出される粒子情報に基づいて算出するようにしているので、1つの撮像画像から抽出される粒子情報に基づいて算出する場合に比べて粒子情報の統計量を多くでき、算出される粒子群特性に含まれる統計的な誤差を低減できる。しかも、各時点における粒子群特性を、それよりも前の時点における粒子群特性の算出に用いた複数の前記撮像画像と撮像した時間帯が一部重複する複数の撮像画像から抽出された粒子情報に基づいて算出するように構成されており、すなわち各時点における粒子群特性の算出に用いられる複数の撮像画像の一部として、それよりも前の時点までに既に得られている撮像画像を利用するので、統計誤差を許容範囲まで低減するのに必要な数の粒子情報を確保するのにかかる時間を短縮でき、各時点における粒子群特性を短時間で算出することができる。これにより、算出される粒子群特性に含まれる統計的な誤差を低減しながらも、その時間変動を把握しやすくできる。
 前記粒子群特性測定装置は、前記粒子群特性算出部が、各時点における前記粒子群特性を、その1つ前の時点における前記粒子群特性の算出に用いられた複数の前記撮像画像と一部が重複する複数の前記撮像画像から抽出された前記粒子情報に基づいて算出することが好ましい。
 このようにすれば、各時点における前記粒子群特性を、その1つ前の時点における粒子群特性の算出に用いられた複数の撮像画像と一部が重複する複数の撮像画像から抽出された粒子情報に基づいて算出するようにしており、すなわち各時点における粒子群特性をその1つ前の時点における粒子群特性の算出に用いられる粒子情報の一部を加味して算出するので、隣り合う時点間における粒子群特性の変化量を小さくできる。これにより、隣り合う時点間における粒子群特性の変化量を小さくすることで、各時点における粒子群特性を平滑化し、その時間変動を劇的に把握しやすくできる。
 前記粒子群特性測定装置は、前記粒子群特性算出部が、各時点においてその直近に抽出された前記粒子情報を含む複数の前記粒子情報に基づいて前記粒子群特性を算出することが好ましい。
 このようにすれば、各時点において算出される粒子群特性を、各時点における粒子群の最新状態を反映したものにできる。
 前記粒子群特性算出部の態様として、撮像された順番が連続する一定数の前記撮像画像から抽出された前記粒子情報に基づいて、各時点における前記粒子群特性を算出するものを挙げることができる。
 前記粒子群特性測定装置は、前記粒子群特性の算出を指令する算出指令信号を前記粒子群特性算出部に出力する算出指令部をさらに備え、前記算出指令部が所定の時間間隔毎に前記算出指令信号を出力することが好ましい。
 このようにすれば、一定の時間毎の粒子群特性の変動を把握できるので、ユーザ利便性を高められる。
 前記粒子群特性測定装置は、前記粒子群特性の算出を指令する算出指令信号を前記粒子群特性算出部に出力する算出指令部をさらに備え、前記算出指令部は、前記粒子情報抽出部が所定数の前記撮像画像から前記粒子情報を抽出する毎に前記算出指令信号を出力することが好ましい。
 このようにすれば、粒子群を撮像した時刻に対する粒子群の変動を把握できるので、ユーザ利便性を高められる。
 前記粒子群特性測定装置は、前記粒子群特性算出部により算出された前記各時点における算出結果をリアルタイムで表示させる表示制御部をさらに備えることが好ましい。
 このようにすれば、ユーザは、粒子群特性の時間変動をリアルタイムで確認することができる。
 粒子群特性測定装置は、前記粒子群特性算出部が異なる複数の前記粒子群特性を算出するものであり、前記表示制御部が当該複数の前記粒子群特性を同一画面に表示することが好ましい。
 このようにすれば、複数の粒子群特性として互いに異なる種類のものを同一画面に表示することにより、粒子群の状態の時間変動を把握することができる。例えば、複数の粒子群特性として代表粒子径D50と代表アスペクト比とを表示する場合、代表粒子径D50の値が経時的に小さくなり、アスペクト比が経時的に大きくなっていると、分散している粒子が壊れたり変形したりしている可能性があることを把握できる。
 前記粒子群特性の具体的態様としては、前記粒子群を構成する複数の粒子の代表粒子径を挙げることができる。
 また本発明の粒子群特性測定方法は、分散媒中に分散した複数の粒子から成る粒子群の特性である粒子群特性の時間変動を測定する方法であって、前記粒子群を撮像する撮像ステップと、前記撮像ステップにおいて撮像した撮像画像を処理し、当該撮像画像に映り込んだ粒子の情報である粒子情報を抽出する粒子情報抽出ステップと、時系列に沿った複数時点における前記粒子群特性を、それぞれの時点以前に撮像された複数の前記撮像画像から抽出される前記粒子情報に基づいて算出する粒子群特性算出ステップと、を備え、前記粒子群特性算出ステップにおいて、各時点における前記粒子群特性を、それよりも前の時点における前記粒子群特性の算出に用いた複数の前記撮像画像と、撮像した時間帯が一部重複する複数の前記撮像画像から抽出された前記粒子情報に基づいて算出することを特徴とする。
 このような粒子群特性測定方法であれば、前記した本発明の粒子群特性測定装置と同様の作用効果を奏することができる。
 また本発明の粒子群特性測定装置用のプログラムは、分散媒中に分散した複数の粒子から成る粒子群の特性である粒子群特性の時間変動を測定する粒子群特性測定装置用のものであって、前記粒子群を撮像する撮像部としての機能と、前記撮像部により撮像された撮像画像を処理し、当該撮像画像に映り込んだ粒子の情報である粒子情報を抽出する粒子情報抽出部としての機能と、時系列に沿った複数時点における前記粒子群特性をそれぞれの時点以前に撮像された複数の前記撮像画像から抽出される前記粒子情報に基づいて算出するものであり、各時点における前記粒子群特性を、それよりも前の時点における前記粒子群特性の算出に用いた複数の前記撮像画像と、撮像した時間帯が一部重複する複数の前記撮像画像から抽出された前記粒子情報に基づいて算出する粒子群特性算出部としての機能と、をコンピュータに発揮させることを特徴とする。
 このような粒子群特性測定装置用プログラムであれば、本発明の粒子群特性測定装置と同様の作用効果を奏することができる。
 また本発明の粒子径分布測定装置は、分散媒中に分散した複数の粒子から成る粒子群の粒子径分布を測定するものであって、前記分散媒と前記粒子を混合して懸濁液とする混合槽と、測定セルとの間で、前記懸濁液を循環させる循環系と、前記測定セル内を流れる前記懸濁液にレーザ光を照射して生じる散乱光に基づいて前記粒子群の粒子径分布を測定する光学式測定系と、前記循環系を流れる前記懸濁液中の前記粒子群の特性の時間変動を測定する、前記した本発明の粒子群特性測定装置と、を備えることを特徴とする。
 このような粒子径分布測定装置であれば、前記した本発明の粒子群特性装置により循環系を流れる懸濁液中の粒子群特性をモニタリングするので、循環系内における粒子群特性の時間変動を把握しやすい。このため、従来に比べてより適切なタイミングで光学式測定系を用いた粒子径分布の測定を開始することができる。
 また本発明の粒子径分布測定方法は、分散媒中に分散した複数の粒子から成る粒子群の粒子径分布を測定する方法であって、前記分散媒と前記粒子を混合して懸濁液とする混合槽と、測定セルとの間で、前記懸濁液を循環させる循環ステップと、前記した本発明の粒子群特性測定方法により、循環する前記懸濁液中の前記粒子群の特性の時間変動を測定する粒子群特性測定ステップと、測定セル内を流れる前記懸濁液にレーザ光を照射して生じる散乱光に基づいて前記粒子群の粒子径分布を測定する粒子径分布測定ステップと、を含むことを特徴とする。
 このような粒子径分布測定方法によれば、本発明の粒子径分布測定装置と同様の作用効果を奏することができる。
 このように構成した本発明によれば、粒子群の撮像画像に基づいて粒子群特性の時間変動を測定するものであって、算出される粒子群特性に含まれる統計的な誤差を低減でき、かつその時間変動を把握し易い粒子群特性測定装置を提供することができる。
本実施形態の粒子径分布測定装置の全体構成を模式的に示す図。 同実施形態の撮像部による撮像画像の一例を示す図。 同実施形態の粒子群特性測定装置の機能ブロック図。 同実施形態の粒子群特性測定装置による粒子群特性算出の流れを説明する図。 同実施形態のディスプレイの表示画面の一部を例示する画面図。 同実施形態のディスプレイの表示画面の一部を例示する画面図。 同実施形態の粒子径分布測定装置の粒子情報抽出動作を示すフローチャート。 同実施形態の粒子径分布測定装置の粒子群特性算出動作を示すフローチャート。 他の実施形態の粒子群特性測定装置の機能ブロック図。
 200・・・粒子群特性測定装置
 21・・・画像取得用セル
 22・・・画像取得用光源
 23・・・撮像部
 24・・・第2情報処理装置
 241・・・粒子情報抽出部
 242・・・記憶部
 243・・・粒子群特性算出部
 245・・・表示制御部
 25・・・ディスプレイ
 以下、本発明の一実施形態に係る粒子群特性測定装置200について図面を参照して説明する。なお本実施形態の粒子群特性測定装置200は、分散媒中に分散された複数の粒子から成る粒子群の粒子径分布を測定する粒子径分布測定装置100の一部を構成している。以下では、粒子径分布測定装置100の全体構成をまず説明し、その後に粒子群特性測定装置200の構成を説明する。
 粒子径分布測定装置100は、粒子群にレーザ光を照射した際に生じる散乱光の光強度を検出することにより、粒子群の粒子径分布を測定するものである。具体的にこの粒子径分布測定装置100は、図1に示すように、試料投入槽111とレーザ回折用セル112の間を循環流路113を介し接続し、粉体試料を分散媒中に分散させた懸濁液を循環させるようにした循環系11と、レーザ回折用セル112内を流れる懸濁液にレーザ光を照射して生じる散乱光に基づいて粒子群の粒子径分布を測定する光学式(具体的には回折/散乱式)測定系12と、循環系11を流れる懸濁液中の粒子群の特性(粒子群特性ともいう)の時間変動を測定する粒子群特性測定装置200と、により構成される。
 試料投入槽111は、投入された複数の粒子を含む粉体試料とこれを分散させる分散媒(例えば純水やアルコールなど)とを混合して懸濁液とするものである。粉体試料と分散媒とを混合することで、粉体試料が含む粒子が分散媒中に分散されて粒子群を成す。
 循環系11には、懸濁液を強制的に循環させる遠心型の循環ポンプ114が設けられており、試料投入槽111内で混合された懸濁液をレーザ回折用セル112に送り出せるようになっている。
 レーザ回折用セル112は、所謂フロー式のものであり、外部から導入される懸濁液を、対向する一対の透光板の間に液密に流通させて外部に導出し得るように構成されている。この一方の透光板側から他方の透光板側に向かうようにレーザ光が照射される。
 光学式測定系12は、レーザ回折用セル112内の懸濁液にレーザ光を照射するレーザ光源121と、レーザ光の照射により生じる散乱光の強度を散乱角に応じて検出する複数の光検出器122と、複数の光検出器122により出力される光強度信号に基づいて粒子群の粒子径分布を算出する第1情報処理装置123とを備える。
 第1情報処理装置123は、物理的にいえば、CPU、メモリ、入出力インターフェース等を備えた汎用乃至専用のコンピュータであり、メモリの所定領域に格納された所定プログラムに従ってCPUや周辺機器を協働させることにより、粒子径分布算出部123aとしての機能を少なくとも発揮する。
 粒子径分布算出部123aは、複数の光検出器122から出力される光強度信号に基づいて、懸濁液中の粒子群の粒子径分布を算出する。具体的には、複数の光検出器122から出力された光強度信号が示す、散乱角とその散乱角における散乱光の強度から成る散乱パターンと、Mie散乱理論やRayleigh散乱理論やFraunhofer回折理論等から導かれる所定の理論演算式に基づいて、散乱パターンに対応する粒子径分布を算出する。
 粒子群特性測定装置200は、懸濁液中の粒子群を連続的に撮像して得られる撮像画像を処理することにより、粒子群特性の時間変動を測定するものである。具体的にこの粒子群特性測定装置200は、循環流路113に接続され、その内部を懸濁液が流通する画像取得用セル21と、画像取得用セル21内の懸濁液に光を照射する画像取得用光源22と、画像取得用セル21内の懸濁液を撮像する撮像部23と、撮像部23により撮像された撮像画像を処理して粒子群特性を算出する第2情報処理装置24と、第2情報処理装置24の算出結果を表示するディスプレイ25と、を備える。
 画像取得用セル21は、所謂フロー式のものであり、外部から導入される懸濁液を対向する一対の透光板の間に流通させて外部に導出し得るようにしたものである。一方の透光板から他方の透光板に向かうように光が照射される。
 画像取得用光源22は、画像取得用セル21内の懸濁液に対して平行光を照射するものであり、例えば白色LED等のLED装置と、当該LED装置から発せられた光を集光して平行光にするレンズ等の集光機構とを備えている。
 撮像部23は、画像取得用セル21内を流れる懸濁液中の粒子群を連続的に撮像し、その撮像画像(図2参照)を示す撮像画像データを第2情報処理装置24に逐次出力するものである。撮像部23は、具体的には、カラーもしくはモノクロのCCDやCMOSイメージセンサ等の撮像素子を備えるものである。
 本実施形態の撮像部23は、撮像を指令する撮像指令信号を第2情報処理装置24から受け付け、これをトリガとして懸濁液中の粒子群の撮像を行うように構成されている。ここでは撮像部23は、撮像指令信号を受け付ける度に懸濁液中の粒子群を1回撮像し、これを出力するように構成されている。
 第2情報処理装置24は、物理的にいえば、CPU、メモリ、入出力インターフェース等を備えた汎用乃至専用のコンピュータである。この情報処理装置は、メモリの所定領域に格納された所定プログラムに従ってCPUや周辺機器を協働させることにより、図3に示すように、粒子情報抽出部241と、記憶部242と、粒子群特性算出部243と、算出指令部244と、表示制御部245としての機能を少なくとも発揮する。
 粒子情報抽出部241は、撮像部23から出力された撮像画像データを受け付け、当該撮像画像データが示す撮像画像を逐次処理し、当該撮像画像に写り込んだ粒子の情報である粒子情報を抽出する。具体的にこの粒子情報抽出部241は、撮像画像データが示す撮像画像に対して、例えば平滑化、ノイズ除去、切り離し、円形分離、細線化、二値化、強調及び/又はエッジ検出等の画像処理を施し、撮像画像内に写り込んだ粒子(具体的には、所定の被写界深度内にある、所謂ピントが合っている粒子)のそれぞれの粒子情報を抽出する。この「粒子情報」とは、粒子群を構成する個々の粒子の物性値であり、例えば粒子径(面積円相当径)、アスペクト比、長軸長さ、短軸長さ、最大距離、周長、面積(実測μm)、面積(ピクセル:粒子内の画素数)、真円度、凸性扁平率、撮像画素の強度等が挙げられるがこれに限らない。
 粒子情報抽出部241は、撮像画像データを受け付けると、当該撮像画像を即時処理して個々の粒子情報を抽出する。そして、1つの撮像画像から抽出した個々の粒子の粒子情報を示す粒子データを、1つの粒子データ群としてメモリの所定領域に設定された記憶部242に格納する。粒子情報抽出部241は、撮像画像データを受け付ける度にこれを処理して抽出した新たな粒子データ群を、それまでに格納した粒子データ群と区別して記憶部242に格納する。
 例えば図4に示すように、粒子情報抽出部241は、撮像部23から受け付けたn番目の撮像画像に3つの粒子が写り込んでいる場合、当該撮像画像から3つの粒子のそれぞれの粒子径を粒子情報として抽出する。そしてこの抽出した3つの粒子径に関する粒子データを、第n粒子データ群として記憶部242に格納する。
 そして粒子情報抽出部241は、受け付けた1つの撮像画像から粒子情報を抽出し終えると、撮像指令信号を撮像部23に即時出力するように構成されている。なお本実施形態の粒子情報抽出部241は、撮像画像から粒子情報を抽出し終えると、当該撮像画像を示す撮像画像データを記憶部242に格納することなく消去するように構成されている。これにより、記憶部242に格納されるデータ量を軽減することができる。
 記憶部242は、所定の上限数の粒子データ群を格納するように構成されている。記憶部242は、格納している粒子データ群の数が上限に達している場合、粒子データ群を新たに1つ受け付けると、格納された順番が最も古い1つの粒子データ群を消去するように構成されている。
 粒子群特性算出部243は、時系列に沿った複数時点における粒子群特性を、それぞれの時点以前に撮像された複数の撮像画像から抽出された粒子情報に基づいて算出する。具体的にこの粒子群特性算出部243は、記憶部242に格納されている粒子データ群を参照し、各時点以前に抽出された複数の粒子データ群に含まれる粒子情報に基づいて、各時点における粒子群特性を算出するように構成されている。この「粒子群特性」とは、粒子群を構成する個々の粒子の粒子情報の代表値を意味する。例えば粒子情報が「粒子径」である場合、粒子群特性は「代表粒子径(D10、D50、90等)」である。
 しかして本実施形態の粒子群特性算出部243は、各時点における粒子群特性を、少なくともその1つ前の時点における粒子群特性の算出に用いられた複数の粒子データ群と一部が重複する複数の粒子データ群に含まれる粒子情報に基づいて算出する。すなわち粒子群特性算出部243は、1つ前の時点における粒子群特性の算出に用いる粒子情報を加味して、その次の時点における粒子群特性を算出するように構成されているといえる。
 粒子群特性算出部243は、各時点における粒子群特性を、少なくともその1つ前の時点において直近に抽出された粒子データ群と、これよりも抽出順が新しい粒子データ群と、を含む複数の粒子データ群に基づいて算出する。より具体的にこの粒子群特性算出部243は、各時点において、その直近に抽出された粒子データ群を含む複数の粒子データ群に含まれる粒子情報に基づいて粒子群特性を算出する。さらには、抽出された順番が連続する一定数の粒子データ群に含まれる粒子情報に基づいて、各時点における粒子群特性を算出する。ここで、各時点において参照する粒子データ群の数はユーザが任意に設定することができる。
 例えば、各時点において参照する粒子データ群の数が「20」に設定されている場合、図4に示すように、粒子群特性算出部243は、あるP時点における粒子群特性を、直近に抽出された第n粒子群情報データ群から、第n-19粒子データ群まで遡った連続する20個の粒子データ群に基づいて算出する。そして粒子群特性算出部243は、その次のQ時点における粒子群特性を、直近に抽出された第n+6粒子群情報データ群から、第n-13粒子データ群まで遡った連続する20個の粒子データ群に基づいて算出する。
 具体的にこの粒子群特性算出部243は、図4に示すように、各時点における粒子群特性を算出するにあたり、複数の粒子データ群に含まれる複数の粒子情報に基づくヒストグラム(横軸:階級、縦軸:頻度)を算出し、当該ヒストグラムに基づき粒子群特性を算出する。粒子群特性算出部243は、各時点において、異なる複数の粒子群特性を算出するように構成されてもよい。粒子群特性算出部243は、各時点において、例えば代表粒子径D10、D50及びD90等の複数の同種の粒子群特性を算出してもよく、代表粒子径とアスペクト比と真円度等の異なる種類の粒子群特性を算出してもよい。
 粒子群特性算出部243は、各時点における粒子群特性を算出すると、これを示す粒子群特性データを即時出力する。またこれとともに、粒子群特性のために算出したヒストグラムを示すヒストグラムデータを出力するようにしてもよい。
 算出指令部244は、粒子群特性の算出を指令する算出指令信号を粒子群算出部243に出力する。本実施形態の算出指令部244は、第2情報処理装置24に内蔵されたクロックからの信号に基づいて時間を計測し、所定のタイミングで算出指令信号を出力するように構成されている。算出指令部244が算出指令信号を出力するタイミングは、一定の時間間隔(例えば1秒間隔)であってもよく、所定の時刻であってもよい。そして粒子群特性算出部243は、算出指令信号を受け付けると、記憶部242から粒子データを読み込み、粒子群特性を算出する。
 表示制御部245は、粒子群特性データを受け付け、これを算出結果としてディスプレイ25に表示させる。具体的に表示制御部245は、横軸を時間とし、縦軸を粒子群特性の値とするグラフをディスプレイ25に表示し、粒子群特性算出部243が算出した各時点における粒子群特性をこのグラフ上に順次プロットしてゆく。ここで、各プロットの横軸の位置は、粒子群特性を算出した時刻を示しており、第2情報処理装置24に内蔵されたクロックに基づくものである。具体的にこの時刻は、クロックが算出指令信号を出力した時刻である。なお、粒子群特性算出部243により算出された粒子群特性が複数種類ある場合、表示制御部245は、当該複数種の粒子群特性を同一グラフ上にプロットしてもよい。また表示制御部245は、表示されている最新時点における粒子群特性が示す値が所定の範囲内にある場合(例えば、代表粒子径D50が所定の閾値Dthを超えた場合)に、粒子径分布測定を開始してよい旨を示すメッセージをディスプレイ25に表示させる。
 また表示部制御部は、ヒストグラムデータを受け付け、これを算出結果としてディスプレイ25に表示させてもよい。
 ディスプレイ25に表示される画面の一例を図5及び6に示す。図5に示すように、ディスプレイ25には、粒子群特性(ここでは代表粒子径であるD10、D50及びD90)の時間変動を示す粒子群特性変動グラフが表示される。この粒子群特性グラフは、一定時間毎(ここでは1秒毎)に最新値がプロットされる。図5に示すように、所定の粒子群特性(ここではD50)の値が設定した閾値Dthを下回ると、レーザ回折の実行をユーザに促すメッセージが表示される。また、図6に示すように、ディスプレイ25には、各時点における連続する直近複数枚の撮像画像から抽出された粒子情報から算出されるヒストグラム(横軸:粒子径、縦軸:頻度とする粒子径分布)がリアルタイムで表示される。このヒストグラムは、一定時間毎(ここでは1秒毎)に最新の状態に更新される。図5及び図6に示す画面は、別々の画面に表示されてもよく、同一画面に表示されてもよい。
 次に、かかる構成の粒子群特性測定装置200の動作について、図7のフローチャートを参照して説明する。
(粒子情報抽出動作)
 懸濁液から粒子情報を抽出する動作について説明する。当該動作は、粒子径分布測定装置100において、試料投入槽111内に粉体試料を投入して分散媒を混合し、得られた懸濁液を循環系11で循環させ始めた後に開始される。
 まず画像取得用セル21内を流れる懸濁液に対して画像取得用光源22から光を照射する。そして画像取得用セル21内を流れる懸濁液中の粒子群を撮像部23により撮像し(ステップS11)、当該撮像データを第2情報処理装置24に即時出力する。出力された撮像画像を粒子情報抽出部241により処理し、当該撮像画像に映り込んだ個々の粒子の情報(粒子情報)を抽出する(ステップS12)。撮像画像からの粒子情報の抽出が完了すると(ステップS13)、抽出した1又は複数の粒子情報を粒子データ群として記憶部242に格納する(ステップS14)。動作開始から所定時間が経過するまで(ステップS15)、ステップS11~ステップS14の動作を繰り返す。
(粒子群特性算出動作)
 粒子情報抽出動作により抽出された粒子情報に基づき、粒子群の粒子群特性を算出する動作について説明する。当該動作は、粒子情報抽出動作が開始した後に開始し、当該動作と並列して行われる。粒子群特性算出動作では、所定の一定の時間間隔で粒子群特性が算出される。
 所定のタイミングで記憶部242を参照し、直近に抽出された順番が連続する所定の複数個の粒子データ群を取得し(ステップS21)、当該複数粒子データ群に含まれる粒子情報に基づいてヒストグラムを算出する(ステップS22)。算出したヒストグラムに基づき、粒子群特性を算出する(ステップS23)。算出した粒子群特性の値を、ディスプレイ25上のグラフにプロットする(ステップS24)。算出した粒子群特性の値が所定範囲内(例えば所定の閾値以上)にある場合(ステップS27)、粒子径分布測定装置100においてレーザ回折をしてよい旨のメッセージをディスプレイ25に表示する(ステップS26)。動作開始から所定時間が経過していない場合(ステップS27)、次の所定のタイミングで直近に抽出された順番が連続する所定の複数個の粒子データ群を取得する(ステップS21)。ここで粒子群特性算出部243は、1つ前のタイミングで取得した粒子データ群と一部が重複するように粒子データ群を取得する。そして、動作開始から所定時間が経過するまで(ステップS27)、ステップS21~ステップS26の動作を繰り返す。
 このように構成した本実施形態の粒子群特性測定装置200によれば、各時点における粒子群特性を、最新の撮像画像を含む連続した複数の撮像画像から抽出される粒子情報に基づいて算出するようにしているので、1つの撮像画像から抽出される粒子情報に基づいて算出する場合に比べて粒子情報の統計量を多くでき、算出される粒子群特性に含まれる統計的な誤差を低減できる。しかも、各時点における粒子群特性の算出に用いられる複数の撮像画像の一部として、それよりも前の時点までに既に得られている撮像画像を利用するので、統計誤差を許容範囲まで低減するのに必要な数の粒子情報を確保するのにかかる時間を短縮でき、各時点における粒子群特性を短時間で算出することができる。これにより、算出される粒子群特性に含まれる統計的な誤差を低減しながらも、その時間変動を把握しやすくできる。
 そして本実施形態の粒子径分布測定装置100は、このような粒子群特性測定装置200を用いて循環系11を流れる懸濁液中の粒子群の特性の時間変動をモニタリングできるので、例えば粒子の分散具合等を観察しながら、適切なタイミングで光学式測定系12を用いた粒子径分布の測定を開始することができる。
<その他の変形実施形態>
 なお、本発明は前記実施形態に限られるものではない。
 前記実施形態では、算出指令部244は、クロックからの信号に基づいて時間を計測し、所定のタイミングで算出指令信号を出力するように構成されていたが、これに限定されない。図9に示すように、他の実施形態の算出指令部244は、粒子情報抽出部241が処理した撮像画像の数をカウントするように構成されており、粒子情報抽出部241が所定数の撮像画像から粒子情報を抽出する毎に、粒子群特性算出部243に算出指令信号を出力するように構成されてもよい。
 またこの場合、粒子情報抽出部241は、撮像画像を処理して当該撮像画像の撮像時刻を抽出し、当該撮像画像から抽出した粒子データ群と紐づけて記憶部242に格納することが好ましい。そして粒子群特性算出部243は、算出指令信号を受け付けると、所定数の粒子データ群を参照して粒子群特性を算出するとともに、当該所定数の粒子群に紐づけられた複数の撮像時刻を参照して、算出した粒子群特性に紐づける1つの時刻を決定し、これを撮像時刻データとして表示制御部245に出力する。ここで撮像時刻データが示す時刻は、参照した複数の撮像時刻のいずれか1つであってもよいし、参照した複数の撮像時刻に基づいて算出される、所定の基準時刻からの経過時間を示すものであってもよい。
 前記実施形態の粒子情報抽出部241は、各時点における粒子群特性をその1つ前の時点における粒子群特性の算出に用いられた複数の粒子データ群と一部が重複する複数の粒子データ群に含まれる粒子情報に基づいて算出していたが、これに限らない。粒子情報抽出部241は、各時点における粒子群特性を、それよりも前の時点における粒子群特性の算出に用いた複数の撮像画像と、撮像した時間帯が一部重複する複数の撮像画像から抽出された粒子情報に基づいて算出するものであればよい。
 前記実施形態の画像取得用セル21はフロー式のものであったが、これに限らずバッチ式のものであってもよい。バッチ式の画像取得用セル21を用いた場合、分散媒の温度変化による粒子群特性の時間変動を把握することができる。
 前記実施形態の粒子群特性算出部243は、直近に抽出された粒子データ群に含まれる粒子情報に基づいて各時点における粒子群特性を算出していたが、これに限らない。他の実施形態では、直近に抽出された粒子データ群を除く複数の粒子データ群に含まれる粒子情報に基づいて粒子群特性を算出してもよい。
 前記実施形態の粒子群特性算出部243は、抽出順番が連続する複数の粒子データ群に含まれる粒子情報に基づいて各時点における粒子群特性を算出していたが、これに限らない。他の実施形態では、抽出順番が不連続な複数の粒子データ群に含まれる粒子情報に基づいて粒子群特性を算出してもよい。
 前記実施形態の粒子群特性測定装置200は、粒子径分布測定装置100の一部を構成するものであったがこれに限らない。当然ながら、粒子群特性測定装置200が単独で用いられてもよい。
 前記実施形態では、粒子径分布算出部123aとしての機能と、粒子情報抽出部241、記憶部242、粒子群特性算出部243及び表示制御部245としての機能とが、別々のコンピュータにより発揮されていたが、これにかがらない。他の実施形態では、これらの機能が共通のコンピュータにより発揮されてもよい。
 前記実施形態では、粒子情報抽出部241、記憶部242、粒子群特性算出部243及び表示制御部245としての機能が一つのコンピュータにより発揮されていたがこれに限らない。他の実施形態では、これらの機能が複数のコンピュータによって発揮されてもよい。
 前記実施形態では、粒子情報抽出動作及び粒子群特性算出動作は、動作開始から所定時間経過することにより終了したがこれに限らない。他の実施形態では、粒子情報抽出動作は、所定枚数の撮像画像から粒子情報を抽出することで終了するようにしてもよい。粒子群特性算出動作は、算出した粒子群特性の値が所定値を超える又は下回ると終了するようにしてもよく、粒子群特性の値を所定回数算出すると終了するようにしてもよい。また粒子情報抽出動作及び粒子群特性算出動作のいずれも、ユーザが終了ボタンを押すことにより終了させてもよい。
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
 本発明によれば、粒子群の撮像画像に基づいて粒子群特性の時間変動を測定するものであって、算出される粒子群特性に含まれる統計的な誤差を低減でき、かつその時間変動を把握し易い粒子群特性測定装置を提供することができる。

Claims (13)

  1.  分散媒中に分散した複数の粒子から成る粒子群の特性である粒子群特性の時間変動を測定するものであって、
     前記粒子群を撮像する撮像部と、
     前記撮像部により撮像された撮像画像を処理し、当該撮像画像に映り込んだ粒子の情報である粒子情報を抽出する粒子情報抽出部と、
     時系列に沿った複数時点における前記粒子群特性を、それぞれの時点以前に撮像された複数の前記撮像画像から抽出される前記粒子情報に基づいて算出する粒子群特性算出部と、を備え、
     前記粒子群特性算出部が、各時点における前記粒子群特性を、それよりも前の時点における前記粒子群特性の算出に用いた複数の前記撮像画像と、撮像した時間帯が一部重複する複数の前記撮像画像から抽出された前記粒子情報に基づいて算出する粒子群特性測定装置。
  2.  前記粒子群特性算出部が、各時点における前記粒子群特性を、その1つ前の時点における前記粒子群特性の算出に用いられた複数の前記撮像画像と一部が重複する複数の前記撮像画像から抽出された前記粒子情報に基づいて算出する、請求項1に記載の粒子群特性測定装置。
  3.  前記粒子群特性算出部が、各時点において、その直近に前記撮像画像から抽出された前記粒子情報を含む複数の前記粒子情報に基づいて前記粒子群特性を算出する請求項1又は2に記載の粒子群特性測定装置。
  4.  前記粒子群特性算出部が、撮像された順番が連続する一定数の前記撮像画像から抽出された前記粒子情報に基づいて、各時点における前記粒子群特性を算出する請求項1~3のいずれか一項に記載の粒子群特性測定装置。
  5.  前記粒子群特性の算出を指令する算出指令信号を前記粒子群特性算出部に出力する算出指令部をさらに備え、
     前記算出指令部が所定の時間間隔毎に前記算出指令信号を出力する請求項1~4のいずれか一項に記載の粒子群特性測定装置。
  6.  前記粒子群特性の算出を指令する算出指令信号を前記粒子群特性算出部に出力する算出指令部をさらに備え、
     前記算出指令部は、前記粒子情報抽出部が所定数の前記撮像画像から前記粒子情報を抽出する毎に前記算出指令信号を出力する請求項1~4のいずれか一項に記載の粒子群特性測定装置。
  7.  前記粒子群特性算出部により算出された前記各時点における算出結果をリアルタイムで表示させる表示制御部をさらに備える請求項1~6のいずれか一項に記載の粒子群特性測定装置。
  8.  前記粒子群特性算出部が異なる複数の前記粒子群特性を算出するものであり、
     前記表示制御部が、当該複数の前記粒子群特性を同一画面に表示する請求項7に記載の粒子群特性測定装置。
  9.  前記粒子群特性が、前記粒子群を構成する複数の粒子の代表粒子径である請求項1~8のいずれか一項に記載の粒子群特性測定装置。
  10.  分散媒中に分散した複数の粒子から成る粒子群の特性である粒子群特性の時間変動を測定する方法であって、
     前記粒子群を撮像する撮像ステップと、
     前記撮像ステップにおいて撮像した撮像画像を処理し、当該撮像画像に映り込んだ粒子の情報である粒子情報を抽出する粒子情報抽出ステップと、
     時系列に沿った複数時点における前記粒子群特性を、それぞれの時点以前に撮像された複数の前記撮像画像から抽出される前記粒子情報に基づいて算出する粒子群特性算出ステップと、を備え、
     前記粒子群特性算出ステップにおいて、各時点における前記粒子群特性を、それよりも前の時点における前記粒子群特性の算出に用いた複数の前記撮像画像と、撮像した時間帯が一部重複する複数の前記撮像画像から抽出された前記粒子情報に基づいて算出する、粒子群特性測定方法。
  11.  分散媒中に分散した複数の粒子から成る粒子群の特性である粒子群特性の時間変動を測定する粒子群特性測定装置用のプログラムであって、
     前記粒子群を撮像する撮像部としての機能と、
     前記撮像部により撮像された撮像画像を処理し、当該撮像画像に映り込んだ粒子の情報である粒子情報を抽出する粒子情報抽出部としての機能と、
     時系列に沿った複数時点における前記粒子群特性をそれぞれの時点以前に撮像された複数の前記撮像画像から抽出される前記粒子情報に基づいて算出するものであり、各時点における前記粒子群特性を、それよりも前の時点における前記粒子群特性の算出に用いた複数の前記撮像画像と、撮像した時間帯が一部重複する複数の前記撮像画像から抽出された前記粒子情報に基づいて算出する粒子群特性算出部としての機能と、
    をコンピュータに発揮させることを特徴とする粒子群特性測定装置用のプログラム。
  12.  分散媒中に分散した複数の粒子から成る粒子群の粒子径分布を測定するものであって、
     前記分散媒と前記粒子を混合して懸濁液とする混合槽と、測定セルとの間で、前記懸濁液を循環させる循環系と、
     前記測定セル内を流れる前記懸濁液にレーザ光を照射して生じる散乱光に基づいて前記粒子群の粒子径分布を測定する光学式測定系と、
     前記循環系を流れる前記懸濁液中の前記粒子群の特性の時間変動を測定する請求項1に記載の粒子群特性測定装置と、
    を備える粒子径分布測定装置。
  13.  分散媒中に分散した複数の粒子から成る粒子群の粒子径分布を測定する方法であって、
     前記分散媒と前記粒子を混合して懸濁液とする混合槽と、測定セルとの間で、前記懸濁液を循環させる循環ステップと、
     請求項10に記載の方法により、循環する前記懸濁液中の前記粒子群の特性の時間変動を測定する粒子群特性測定ステップと、
     測定セル内を流れる前記懸濁液にレーザ光を照射して生じる散乱光に基づいて前記粒子群の粒子径分布を測定する粒子径分布測定ステップと、
    を含む粒子径分布測定方法。
PCT/JP2020/037815 2019-10-15 2020-10-06 粒子群特性測定装置、粒子群特性測定方法、粒子群特性測定装置用プログラム、粒子径分布測定装置及び粒子径分布測定方法 WO2021075309A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021552335A JPWO2021075309A1 (ja) 2019-10-15 2020-10-06
EP20877474.5A EP4033221A4 (en) 2019-10-15 2020-10-06 Particle group characteristic measurement device, particle group characteristic measurement measurement process, program for particle group characteristic measurement measuring device, particle diameter distribution measuring device and distribution process of diameter diameters PARTICLES
CN202080071290.2A CN114556080A (zh) 2019-10-15 2020-10-06 粒子群特性测定装置、粒子群特性测定方法、粒子群特性测定装置用程序、粒径分布测定装置和粒径分布测定方法
US17/754,831 US20240102907A1 (en) 2019-10-15 2020-10-06 Particle group characteristic measurement device, particle group characteristic measurement method, storage medium recording program for particle group characteristic measurement device, particle diameter distribution measurement device, and particle diameter distribution measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-188443 2019-10-15
JP2019188443 2019-10-15

Publications (1)

Publication Number Publication Date
WO2021075309A1 true WO2021075309A1 (ja) 2021-04-22

Family

ID=75537483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037815 WO2021075309A1 (ja) 2019-10-15 2020-10-06 粒子群特性測定装置、粒子群特性測定方法、粒子群特性測定装置用プログラム、粒子径分布測定装置及び粒子径分布測定方法

Country Status (5)

Country Link
US (1) US20240102907A1 (ja)
EP (1) EP4033221A4 (ja)
JP (1) JPWO2021075309A1 (ja)
CN (1) CN114556080A (ja)
WO (1) WO2021075309A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255770B1 (ja) * 2021-11-30 2023-04-14 Jfeスチール株式会社 粒状物体の計測装置及び計測方法、異常検知方法並びに粒状鉄の製造方法
WO2023100696A1 (ja) * 2021-11-30 2023-06-08 Jfeスチール株式会社 粒状物体の計測装置及び計測方法、異常検知方法並びに粒状鉄の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436637A (ja) * 1990-05-31 1992-02-06 Canon Inc 検体測定方法及び検体測定装置
JPH06277687A (ja) * 1993-03-24 1994-10-04 Toshiba Corp Mlss計
JP2000146817A (ja) * 1998-11-12 2000-05-26 Nikkiso Co Ltd 粒度分布測定装置
JP2002207001A (ja) 2001-01-11 2002-07-26 Nikkiso Co Ltd 多点粒度分布測定システム
JP2013015357A (ja) * 2011-07-01 2013-01-24 Shimadzu Corp フローサイトメータ
JP2015105898A (ja) * 2013-11-30 2015-06-08 鹿島建設株式会社 地盤材料の表面水量管理方法及びシステム
JP2015520397A (ja) * 2012-06-22 2015-07-16 マルバーン インストゥルメンツ リミテッド 不均質流体試料の特性評価
JP2017116260A (ja) * 2015-12-21 2017-06-29 花王株式会社 粉粒体質量検査装置及び検査方法、並びに粉粒体含有物品の製造装置及び製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10943692B1 (en) * 2008-05-07 2021-03-09 Lawrence A. Lynn System and method for generating quaternary images of biologic force propagation and recovery
CN102365543A (zh) * 2009-01-16 2012-02-29 纽约大学 用全息视频显微术的自动实时粒子表征和三维速度计量
WO2013141923A2 (en) * 2011-12-20 2013-09-26 Sadar 3D, Inc. Scanners, targets, and methods for surveying
JP6174915B2 (ja) * 2012-06-07 2017-08-02 花王株式会社 電子写真用トナー
JP6412824B2 (ja) * 2015-05-01 2018-10-24 富士フイルム株式会社 レンチキュラー印刷物の製造方法
JP6530509B2 (ja) * 2015-12-07 2019-06-12 富士フイルム株式会社 透明樹脂基材印画物の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436637A (ja) * 1990-05-31 1992-02-06 Canon Inc 検体測定方法及び検体測定装置
JPH06277687A (ja) * 1993-03-24 1994-10-04 Toshiba Corp Mlss計
JP2000146817A (ja) * 1998-11-12 2000-05-26 Nikkiso Co Ltd 粒度分布測定装置
JP2002207001A (ja) 2001-01-11 2002-07-26 Nikkiso Co Ltd 多点粒度分布測定システム
JP2013015357A (ja) * 2011-07-01 2013-01-24 Shimadzu Corp フローサイトメータ
JP2015520397A (ja) * 2012-06-22 2015-07-16 マルバーン インストゥルメンツ リミテッド 不均質流体試料の特性評価
JP2015105898A (ja) * 2013-11-30 2015-06-08 鹿島建設株式会社 地盤材料の表面水量管理方法及びシステム
JP2017116260A (ja) * 2015-12-21 2017-06-29 花王株式会社 粉粒体質量検査装置及び検査方法、並びに粉粒体含有物品の製造装置及び製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4033221A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7255770B1 (ja) * 2021-11-30 2023-04-14 Jfeスチール株式会社 粒状物体の計測装置及び計測方法、異常検知方法並びに粒状鉄の製造方法
WO2023100696A1 (ja) * 2021-11-30 2023-06-08 Jfeスチール株式会社 粒状物体の計測装置及び計測方法、異常検知方法並びに粒状鉄の製造方法

Also Published As

Publication number Publication date
JPWO2021075309A1 (ja) 2021-04-22
EP4033221A1 (en) 2022-07-27
US20240102907A1 (en) 2024-03-28
CN114556080A (zh) 2022-05-27
EP4033221A4 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
WO2021075309A1 (ja) 粒子群特性測定装置、粒子群特性測定方法、粒子群特性測定装置用プログラム、粒子径分布測定装置及び粒子径分布測定方法
US8772738B2 (en) Particle analyzing apparatus and particle imaging method
CN101933065B (zh) 车辆周围监测装置、车辆及车辆周围监测方法
CN101849834B (zh) 放射线成像设备及其暗电流校正方法
US8675196B2 (en) Analyzer and particle imaging method
CN108801601B (zh) 菲涅尔透镜杂散光噪声的测试方法、设备及存储介质
CN108027362B (zh) 用于流式细胞仪的阈值选择器
US20230314782A1 (en) Sample observation device and sample observation method
US10691956B2 (en) Information processing apparatus, information processing system, information processing method, and storage medium having determination areas corresponding to waiting line
JP2005069725A (ja) 粒子径計測装置
JP2018004450A (ja) 気泡径分布測定装置及び気泡径分布測定方法
US20190051005A1 (en) Image depth sensing method and image depth sensing apparatus
JP6284024B2 (ja) 細胞生死判定システム、細胞生死判定方法
US20190273845A1 (en) Vibration monitoring of an object using a video camera
JP2014082957A (ja) 細胞計数装置及び細胞計数プログラム
JPWO2017195785A1 (ja) 粒子分析装置、及び、粒子分析システム
WO2018211982A1 (ja) 画像処理装置および方法、並びに画像処理システム
JP2018196426A (ja) 毛穴検出方法及び毛穴検出装置
JP2018051244A5 (ja)
JP4490061B2 (ja) 粒子画像分析装置
EP4361596A1 (en) Particle image analysis apparatus, particle image analysis system, particle image analysis method, and program for particle image analysis apparatus
JPH11337470A (ja) フロー式粒子画像分析装置
JP2020094925A (ja) 品質評価方法
WO2023095414A1 (ja) 微小粒子の計測方法、微小粒子計測装置及び微小粒子計測システム
US11238566B2 (en) Image processing device, system, and method for improving signal-to-noise of microscopy images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552335

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17754831

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020877474

Country of ref document: EP

Effective date: 20220420