WO2021073973A2 - Organische leiterplatte, getriebe mit einer organischen leiterplatte und herstellungsverfahren zum herstellen einer organischen leiterplatte - Google Patents

Organische leiterplatte, getriebe mit einer organischen leiterplatte und herstellungsverfahren zum herstellen einer organischen leiterplatte Download PDF

Info

Publication number
WO2021073973A2
WO2021073973A2 PCT/EP2020/078101 EP2020078101W WO2021073973A2 WO 2021073973 A2 WO2021073973 A2 WO 2021073973A2 EP 2020078101 W EP2020078101 W EP 2020078101W WO 2021073973 A2 WO2021073973 A2 WO 2021073973A2
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
organic
printed circuit
pressure sensor
pressure
Prior art date
Application number
PCT/EP2020/078101
Other languages
English (en)
French (fr)
Other versions
WO2021073973A3 (de
Inventor
Johannes Hofmann
Simon Porscha
Bernhard Schuch
Original Assignee
Vitesco Technologies Germany Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies Germany Gmbh filed Critical Vitesco Technologies Germany Gmbh
Publication of WO2021073973A2 publication Critical patent/WO2021073973A2/de
Publication of WO2021073973A3 publication Critical patent/WO2021073973A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0005Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • G01L19/0069Electrical connection means from the sensor to its support
    • G01L19/0076Electrical connection means from the sensor to its support using buried connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general
    • G01L19/0645Protection against aggressive medium in general using isolation membranes, specially adapted for protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance

Definitions

  • Organic printed circuit board gears with an organic printed circuit board, and manufacturing method for manufacturing an organic printed circuit board
  • sensors are increasingly being used.
  • these sensors form a basis for the functioning of a wide variety of systems.
  • For the operation of a transmission for example, it is important to know the current pressure value of the transmission oil inside the transmission housing. Different sensor concepts are used for this.
  • an electrical signal caused by deformation of a piezoelectric element is used as a measure of the pressure acting on the piezoelectric element.
  • Capacitive pressure sensors are also used in which, for example, a ceramic substrate is provided with an electrode layer formed from a metal and a membrane, which is also usually ceramic and is also provided with an electrode layer, is arranged opposite this. When the membrane is deflected, a capacitance of a plate capacitor formed by the two electrode layers changes.
  • sensors with so-called strain gauges can also be used.
  • strain gauge (s) are also arranged on a membrane, the pressure-related deformation of which can be recorded by means of the strain gauges and converted into the applied pressure with knowledge of the mechanical properties of the membrane.
  • sensors with electroactive polymers are also used, with the electroactive polymers having to be protected from the gear oil environment with its sometimes aggressive environmental properties by a housing.
  • the object is therefore to propose an organic printed circuit board with a pressure sensor, which is improved compared to an organic printed circuit board with sensors known from the prior art and, in particular, has more flexibility and / or a smaller overall size.
  • a further object is to propose a transmission with such an organic printed circuit board and a production method for producing such an organic printed circuit board.
  • An organic printed circuit board is proposed with an organic substrate comprising several layers and at least one polymeric pressure sensor embedded in the intermediate layers of the organic substrate for measuring the pressure of a fluid.
  • the pressure sensor comprises a polymer film and two electrode layers, the electrode layers being arranged on the opposite outer surfaces of the polymer film.
  • the two electrode layers with the polymer film in between form a capacitor.
  • the external pressure can be determined by measuring the capacitance of the capacitor or the electrical properties of the capacitor that are related to the capacitance of the capacitor. So that such a measurement can be carried out, the pressure sensor is connected to electrically conductive inner layers of the organic substrate by means of electrodes.
  • a separating membrane seals the pressure sensor from the fluid space surrounding the organic circuit board in a media-tight manner. This ensures that the pressure sensor does not come into contact with the partially aggressive fluids that are in the fluid space.
  • the fact that a polymer pressure sensor is embedded in the organic circuit board also gives the organic circuit board its flexibility. By embedding the polymer pressure sensor in the organic circuit board, a housing for the pressure sensor can also be dispensed with, so that no flexibility is lost here either. In addition, a particularly space-saving design is possible with such an embedded pressure sensor.
  • the polymer film is advantageously formed from silicone. Silicone is a flexible material and can withstand heavy use.
  • the electrode layers are formed from an electrically conductive material, in particular carbon black or graphite paste.
  • This electrically conductive material is arranged on both outer surfaces of the polymer film.
  • carbon black or graphite paste are very flexible, so they do not impair the flexibility of the pressure sensor and also withstand frequent deformations.
  • the electrode layers can be formed from a polymer filled with conductive particles.
  • graphene or carbon nanotubes come into consideration as conductive particles. Flexibility is also guaranteed in this case.
  • the polymer which is filled with the conductive particles is particularly preferably the same material as the polymer film. Then the properties in terms of flexibility and thermal expansion of the electrode layers and the polymer film are the same, whereby the occurrence of stresses between the electrode layers and the polymer film is suppressed.
  • the separating membrane is made of metal. Suitable metal can withstand the aggressive fluids in the fluid space.
  • a thin metal separating membrane also has the preferred flexibility and can transmit the pressure of the fluid to the pressure sensor in a well-defined manner. Because the separating membrane is itself placed under tension by an applied pressure, the pressure transmitted to the pressure sensor is generally less than the pressure that the fluid exerts on the separating membrane.
  • the separating membrane advantageously has a three-dimensional structure, the three-dimensional structure in particular comprising beads in the edge region of the separating membrane.
  • the transmission of the pressure exerted by the fluid to the pressure sensor is further influenced by the three-dimensional structure. If beads are arranged in the edge area of the separating membrane, then deformation of the separating membrane occurs preferably in this area and the inner area of the The separating membrane, which transmits the pressure to the pressure sensor, moves plane-parallel, which means that the pressure is transmitted even better.
  • the electrodes are designed as micro-vias, by sintering, soldering and / or by means of conductive adhesive.
  • a via is a through-hole connection (Vertical Interconnect Access).
  • the exact configuration of the electrodes depends, among other things, on the conductive layers of the organic circuit board and on the configuration of the electrode layers of the pressure sensor.
  • the organic circuit board comprises a frame, in particular made of epoxy, for fixing and / or pretensioning the pressure sensor.
  • the pressure sensor is therefore fixed in the intermediate layers of the organic substrate by means of the frame, so that the pressure sensor is located at a predetermined position in the organic circuit board.
  • Pre-tensioning the pressure sensor also improves the response of the pressure sensor to changing pressures, so that an even more precise measurement of the pressures is made possible.
  • the organic printed circuit board advantageously comprises a pressure channel which fluidly connects the fluid space with the separating membrane. Fluid reaches the separating membrane via this pressure channel, so that the pressure of the fluid is applied to the separating membrane.
  • the organic printed circuit board comprises a pressure transmitter for transmitting the pressure from the separating membrane to the pressure sensor.
  • the pressure of the fluid applied to the separating membrane is transmitted to the pressure sensor via this pressure transmitter.
  • a possible pressure mediator is a bolt, whereby the length and the cross section of the bolt can be adapted as required.
  • Another possible pressure mediator is a, preferably largely incompressible, mediating fluid that transfers the pressure from the separating membrane to the pressure sensor evenly.
  • an evaluation unit connected to the pressure sensor for evaluating the electrical properties of the pressure sensor is integrated on the organic printed circuit board.
  • These electrical properties can be directly the capacitance of the pressure sensor, but also electrical properties that are dependent on the capacitance of the pressure sensor. Since the capacitance or the electrical properties, which are dependent on the capacitance, of the pressure sensor with the am Pressure sensor applied pressure are correlated, the evaluation unit is used to determine the pressure acting on the pressure sensor. Integration of the evaluation unit on the organic circuit board also requires a smaller and more compact design.
  • the evaluation unit is advantageously designed to determine the fluid pressure prevailing in the fluid space from the electrical properties of the pressure sensor. This takes place on the basis of the evaluated electrical properties of the pressure sensor, in particular by means of a characteristic curve.
  • the characteristic curve is an assignment of the electrical property of the pressure sensor, for example the capacitance of the pressure sensor, to the fluid pressure prevailing in the fluid space.
  • This characteristic curve already contains the mechanical data and effects of the separating membrane and the pressure transmitter as well as the deformation of the pressure sensor due to the pressure and the dependence of the capacity of the pressure sensor due to this deformation, so no complicated calculations have to be carried out.
  • the organic circuit board is designed to measure at least one fluid pressure prevailing in a transmission interior.
  • the organic circuit board also offers flexibility and a small size. The organic circuit board can therefore be used in many places in the transmission and it is possible to reduce the size, and thus also the weight, of the transmission.
  • a transmission control unit for controlling at least one transmission function is integrated on the organic printed circuit board.
  • This transmission function is preferably dependent on a fluid pressure that is present in the transmission chamber and is measured by means of the pressure sensor. The fluid pressure is measured by the pressure sensor and evaluated by the evaluation unit. The result of this evaluation is forwarded directly to the transmission control unit, so that all of the electronics are integrated in an organic circuit board.
  • the pressure sensor is embedded in the intermediate layers of the organic substrate as a functional unit when the organic substrate is built up.
  • at least one layer of the organic substrate is first built up.
  • the pressure sensor is placed on this at least one layer, preferably in a frame.
  • One or more intermediate layers surrounding the pressure sensor are then built up around the pressure sensor.
  • at least one further layer is built up that closes the pressure sensor at the top.
  • the built-up organic circuit board is exposed to predetermined fluid pressures and the electrical properties of the pressure sensor are used to generate a characteristic curve at these predetermined fluid pressures.
  • the fully assembled organic circuit board is therefore calibrated with the specified fluid pressures. It is possible to generate a separate characteristic curve for each organic printed circuit board, or to use a characteristic curve determined for a specific organic printed circuit board for the other identically structured organic printed circuit boards. Using the characteristic curve, the prevailing fluid pressure is then calculated from the electrical properties of the pressure sensor during operation of the organic circuit board.
  • FIG. 1 shows a longitudinal section through a first exemplary embodiment of an organic printed circuit board with an embedded pressure sensor
  • FIG. 2 shows a longitudinal section through a further exemplary embodiment of an organic printed circuit board with an embedded pressure sensor.
  • FIG. 1 shows a longitudinal section through a first exemplary embodiment of an organic printed circuit board 1 with an embedded pressure sensor 2.
  • the organic printed circuit board 1 comprises a plurality of layers 3.
  • the pressure sensor 2 is embedded in one of the intermediate layers 4 of the organic substrate. It is also conceivable that the pressure sensor 2 extends over several intermediate layers 4.
  • the pressure sensor 2 has a polymer film 5, which is preferably made of silicone.
  • Two electrode layers 6 are arranged on the two opposite outer surfaces of the polymer film 5.
  • the electrode layers 6 can for example consist of a conductive material such as carbon black or graphite paste, but can also be formed from a polymer filled with conductive particles. For example, graphene or carbon nanotubes come into consideration as conductive particles.
  • the polymer of the electrode layer 6 is particularly preferably the same material as the polymer film 5, so that effects due to different coefficients of thermal expansion are reduced to a minimum.
  • the electrode layers 6 are connected to electrically conductive inner layers 8 of the organic substrate by means of electrodes 7.
  • the electrodes 7 are designed as micro-vias, but can also be formed by sintering, soldering and / or by means of conductive adhesive. Electrical properties of the pressure sensor 2, in particular the capacitance of the capacitor formed by the two electrode layers 6 and the polymer film 5, or electrical properties dependent on this capacitance, are determined via the electrodes 7. Since a deformation of the polymer film 5 occurs when pressure is exerted on the pressure sensor 2, which results in a change in the capacitance of the pressure sensor 2, the pressure acting on the pressure sensor can be determined via the measured electrical properties of the pressure sensor 2.
  • a characteristic curve is preferably recorded which relates the pressure prevailing outside to the measured electrical property of the pressure sensor 2.
  • this characteristic curve On the basis of this characteristic curve, during operation of the organic circuit board 1 with the pressure sensor 2, conclusions can be drawn from the measured electrical properties of the pressure sensor 2 about the external pressure, without major calculations.
  • an optional but preferred evaluation unit which evaluates the electrical properties of the pressure sensor 2 and uses the characteristic curve to determine the external pressure.
  • the pressure sensor 2 itself is fixed and prestressed in a frame 9, preferably made of epoxy. By fixing the pressure sensor 2 is always on one predetermined position. The preloading of the pressure sensor 2 improves the accuracy of the determination of the external pressure.
  • the pressure sensor 2 is sealed off from the fluid space 11 surrounding the organic printed circuit board 1 in a media-tight manner via a separating membrane 10.
  • the separating membrane 10 is preferably made of metal. In its edge area it comprises beads 12 which give it a three-dimensional structure. As a result, the deformation of the separating membrane 10 when a pressure is applied is shifted to the edge regions of the separating membrane 10. In the central area of the separating membrane 10, when pressure is applied, there is a predominantly plane-parallel displacement.
  • the pressure of the fluid space 11 surrounding the organic printed circuit board 1 is conveyed to the separating membrane 10 via a pressure channel 13.
  • the separating membrane 10 then forwards this pressure to the pressure sensor 2 by means of a pressure transmitter 14, which is designed here as a bolt.
  • the length and cross-section of the bolt can be adapted to the required conditions.
  • FIG. 2 shows a longitudinal section through a further exemplary embodiment of an organic printed circuit board 1 with an embedded pressure sensor 2.
  • the separating membrane 10 of this exemplary embodiment has no beads 12.
  • the pressure mediator 14 is not designed as a bolt, but rather as a preferably incompressible mediation fluid. As a result, the pressure is transmitted from the separating membrane 10 to the pressure sensor 2 in a particularly uniform manner.
  • An organic printed circuit board 1 with an embedded pressure sensor 2 is in a transmission, not shown here.
  • the pressure sensor 2 measures the fluid pressure prevailing in a transmission interior.
  • a transmission control unit which controls one or more functions of the transmission as a function of the measured fluid pressure, is advantageously also integrated on the organic printed circuit board.

Abstract

Die Erfindung betrifft eine Organische Leiterplatte (1) mit einem mehrere Lagen (3) umfassenden organischen Substrat und zumindest einem in die Zwischenlagen (4) des organischen Substrats eingebetteten polymeren Drucksensor (2) zur Messung des Drucks eines Fluids. Dabei umfasst der Drucksensor (2) eine Polymerfolie (5) und zwei Elektrodenschichten (6), wobei die Elektrodenschichten (6) an den gegenüberliegenden Außenflächen der Polymerfolie (5) angeordnet sind, wobei der Drucksensor (2) mittels Elektroden (7) an elektrisch leitende Innenlagen (8) des organischen Substrats angebunden ist und wobei eine Trennmembran (10) den Drucksensor (2) von dem die organische Leiterplatte (1) umgebenden Fluidraum (11) mediendicht abschließt. Des Weiteren wird ein Getriebe mit einer organischen Leiterplatte (1) gemäß der vorangegangenen Beschreibung zum Messen von zumindest einem in einem Getriebeinnenraum herrschenden Fluiddruck sowie ein Herstellungsverfahren zum Herstellen einer organischen Leiterplatte (1) gemäß der vorangegangenen Beschreibung vorgeschlagen, wobei der Drucksensor (2) beim Aufbau des organischen Substrats als funktionale Einheit in die Zwischenlagen (4) des organischen Substrats eingebettet wird.

Description

Beschreibung
Organische Leiterplatte, Getriebe mit einer organischen Leiterplatte und Herstellungsverfahren zum Herstellen einer organischen Leiterplatte
Vorgeschlagen wird eine organische Leiterplatte mit einem mehrere Lagen umfassenden organischen Substrat und einem Drucksensor, ein Getriebe mit einer organischen Leiterplatte sowie ein Herstellungsverfahren zum Herstellen einer organischen Leiterplatte.
Unter anderem im Bereich der Fahrzeugtechnik kommen vermehrt Sensoren zum Einsatz. Beispielsweise bilden diese Sensoren eine Grundlage für die Funktion unterschiedlichster Systeme. Für den Betrieb eines Getriebes ist zum Beispiel die Kenntnis eines aktuellen Druckwerts des Getriebeöls innerhalb des Getriebegehäuses wichtig. Hierfür kommen unterschiedliche Sensor-Konzepte zum Einsatz.
Bei auf dem Piezo-Effekt beruhenden Drucksensoren wird beispielsweise ein durch eine Verformung eines piezo-elektrischen Elements hervorgerufenes elektrisches Signal als Maß für den auf das Piezo-Element wirkenden Druck herangezogen. Weiter kommen auch kapazitive Drucksensoren zum Einsatz, bei denen beispielsweise ein keramisches Substrat mit einer aus einem Metall gebildeten Elektrodenschicht versehen ist und in Gegenüberstellung zu dieser eine meist ebenfalls keramische Membran angeordnet ist, die auch mit einer Elektrodenschicht versehen ist. Bei einer Auslenkung der Membran ändert sich mithin eine Kapazität eines durch die beiden Elektrodenschichten gebildeten Plattenkondensators. Als weitere Option können auch Sensoren mit sogenannten Dehnungsmessstreifen zum Einsatz kommen. Bei diesen sind der oder die Dehnungsmessstreifen ebenfalls auf einer Membran angeordnet, deren druckbedingte Deformation mittels der Dehnungsmessstreifen erfasst und in Kenntnis der mechanischen Eigenschaften der Membran in den anliegenden Druck umgerechnet werden kann. Schließlich werden auch Sensoren mit elektroaktiven Polymeren eingesetzt, wobei die elektroaktiven Polymere durch ein Gehäuse von der Getriebeöl-Umgebung mit ihren teilweise aggressiven Umwelteigenschaften geschützt werden müssen.
Aufgrund seines Gehäuses ist der Platzbedarf der genannten Sensoren vorgegeben und kann somit nicht anwenderspezifisch modifiziert werden. Außerdem sind die meisten der genannten Sensoren bzw. ihre Gehäuse starr und somit unflexibel. An sich flexible organische Leiterplatten mit einem oder mehreren der genannten Sensoren verlieren daher zumindest teilweise ihre Flexibilität und gewinnen durch den Platzbedarf der Sensoren an Größe.
Die Aufgabe ist es daher, eine organische Leiterplatte mit einem Drucksensor vorzuschlagen, die im Vergleich zu einer organischen Leiterplatte mit aus dem Stand der Technik bekannten Sensoren verbessert ist und insbesondere mehr Flexibilität und/oder eine kleinere Baugröße aufweist. Des Weiteren ist es die Aufgabe, ein Getriebe mit einer derartigen organischen Leiterplatte sowie ein Herstellungsverfahren zum Herstellen einer derartigen organischen Leiterplatte vorzuschlagen.
Diese Aufgabe wird gelöst durch eine Organische Leiterplatte mit einem Drucksensor gemäß Patentanspruch 1 , ein Getriebe mit einer organischen Leiterplatte gemäß Patentanspruch 12 und ein Herstellungsverfahren zum Herstellen einer organischen Leiterplatte gemäß Patentanspruch 14. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche, der folgenden Beschreibung sowie der Figuren.
Vorgeschlagen wird eine organische Leiterplatte mit einem mehrere Lagen umfassenden organischen Substrat und zumindest einem in die Zwischenlagen des organischen Substrats eingebetteten polymeren Drucksensor zur Messung des Drucks eines Fluids. Dabei umfasst der Drucksensor eine Polymerfolie und zwei Elektrodenschichten, wobei die Elektrodenschichten an den gegenüberliegenden Außenflächen der Polymerfolie angeordnet sind. Die beiden Elektrodenschichten mit der dazwischenliegenden Polymerfolie bilden einen Kondensator. Bei Anlegen eines äußeren Drucks auf den Drucksensor verformt sich die Polymerfolie und damit ändert sich die Kapazität des Kondensators. Über eine Messung der Kapazität des Kondensators beziehungsweise mit der Kapazität des Kondensators zusammenhängenden elektrischen Eigenschaften des Kondensators kann der äußere Druck bestimmt werden. Damit eine solche Messung durchgeführt werden kann ist der Drucksensor mittels Elektroden an elektrisch leitende Innenlagen des organischen Substrats angebunden. Schließlich schließt eine Trennmembran den Drucksensor von dem die organische Leiterplatte umgebenden Fluidraum mediendicht ab. So wird gewährleistet, dass der Drucksensor nicht mit den teilweise aggressiven Fluiden in Kontakt kommt, die sich im Fluidraum befinden. Dadurch, dass ein polymerer Drucksensor in die organische Leiterplatte eingebettet ist, ist auch die Flexibilität der organischen Leiterplatte gegeben. Durch das Einbetten des polymeren Drucksensors in die organische Leiterplatte kann zudem auf ein Gehäuse für den Drucksensor verzichtet werden, so dass auch hier keine Flexibilität verloren geht. Zudem ist mit einem solchen eingebetteten Drucksensor eine besonders platzsparende Bauweise möglich.
Vorteilhafterweise ist die Polymerfolie aus Silikon gebildet. Silikon ist dabei ein flexibles Material und hält starken Beanspruchungen Stand.
Es ist von Vorteil, wenn die Elektrodenschichten aus einem elektrisch leitfähigen Material, insbesondere Ruß oder Graphitpaste, gebildet sind. Dieses elektrisch leitfähige Material ist auf beiden Außenflächen der Polymerfolie angeordnet. Zudem sind Ruß oder Graphitpaste sehr flexibel, beeinträchtigen damit nicht die Flexibilität des Drucksensors und halten auch häufigen Verformungen Stand. Alternativ oder zusätzlich zum elektrisch leitfähigen Material können die Elektrodenschichten aus einem mit leitfähigen Partikeln gefülltem Polymer gebildet sein. Als leitfähigen Partikel kommen dabei insbesondere Graphen oder Kohlenstoffnanoröhren in Betracht. Auch in diesem Fall ist die Flexibilität gewährleistet. Besonders vorzugsweise ist das Polymer, das mit den leitfähigen Partikeln gefüllt ist, das gleiche Material wie die Polymerfolie. Dann sind die Eigenschaften hinsichtlich Flexibilität und Temperaturausdehnung von den Elektrodenschichten und der Polymerfolie gleich, wodurch das Auftreten von Spannungen zwischen den Elektrodenschichten und der Polymerfolie unterdrückt wird.
Vorteilhaft ist es, wenn die Trennmembran aus Metall gebildet ist. Geeignetes Metall kann dabei den im Fluidraum befindlichen aggressiven Fluiden Stand halten. Eine dünne Trennmembran aus Metall besitzt zudem auch die bevorzugte Flexibilität und kann den Druck des Fluids wohldefiniert an den Drucksensor weiterleiten. Dadurch, dass die Trennmembran von einem angelegten Druck selbst unter Spannung gesetzt wird, ist der an den Drucksensor weitergeleitete Druck in der Regel kleiner als der Druck, den das Fluid auf die Trennmembran ausübt.
Vorteilhafterweise weist die Trennmembran eine dreidimensionale Struktur auf, wobei die dreidimensionale Struktur insbesondere Sicken im Randbereich der Trennmembran umfasst. Durch die dreidimensionale Struktur wird die Weitergabe des von dem Fluid ausgeübten Drucks an den Drucksensor weiter beeinflusst. Sind im Randbereich der Trennmembran Sicken angeordnet, dann tritt eine Verformung der Trennmembran bevorzugt in diesem Bereich auf und der innere Bereich der Trennmembran, der den Druck an den Drucksensor weitergibt, bewegt sich planparallel, was eine noch besser definierte Weitergabe des Drucks bedingt.
Es ist von Vorteil, wenn die Elektroden als Mikro-Vias, durch Sintern, Löten und/oder mittels Leitkleber ausgebildet sind. Ein Via ist dabei eine Durchkontaktierung (Vertical Interconnect Access). Die genaue Ausgestaltung der Elektroden hängt dabei unter anderem von den leitenden Schichten der organischen Leiterplatte und von der Ausgestaltung der Elektrodenschichten des Drucksensors ab.
Vorteilhaft ist es, wenn die organische Leiterplatte einen Rahmen, insbesondere aus Epoxy, umfasst, zum Fixieren und/oder Vorspannen des Drucksensors. Mittels des Rahmens wird der Drucksensor also in den Zwischenlagen des organischen Substrats fixiert, so dass sich der Drucksensor an einer vorgegebenen Position in der organischen Leiterplatte befindet. Ein Vorspannen des Drucksensors verbessert zudem die Reaktion des Drucksensors auf sich ändernde Drücke, so dass eine noch genauere Messung der Drücke ermöglicht wird.
Vorteilhafterweise umfasst die organische Leiterplatte einen Druckkanal, der den Fluidraum fluidisch mit der Trennmembran verbindet. Über diesen Druckkanal gelangt Fluid zur Trennmembran, so dass der Druck des Fluids an der Trennmembran anliegt.
Es ist von Vorteil, wenn die organische Leiterplatte einen Druckvermittler zur Übertragung des Drucks von der Trennmembran auf den Drucksensor umfasst. Der an der Trennmembran anliegende Druck des Fluids wird über diesen Druckvermittler auf den Drucksensor übertragen. Ein möglicher Druckvermittler ist dabei ein Bolzen, wobei die Länge und der Querschnitt des Bolzens nach Bedarf angepasst werden können. Ein weiterer möglicher Druckvermittler ist ein, vorzugsweise weitgehend inkompressibles, Vermittlungsfluid, das den Druck von der Trennmembran gleichmäßig an den Drucksensor weitergibt.
Vorteilhaft ist es, wenn auf der organischen Leiterplatte eine mit dem Drucksensor verbundene Auswerteeinheit zum Auswerten der elektrischen Eigenschaften des Drucksensors integriert ist. Diese elektrischen Eigenschaften können direkt die Kapazität des Drucksensors aber auch von der Kapazität des Drucksensors abhängige elektrische Eigenschaften sein. Da die Kapazität oder die von der Kapazität abhängigen elektrischen Eigenschaften des Drucksensors mit dem am Drucksensor anliegenden Druck korreliert sind, dient die Auswerteeinheit dem Bestimmen des auf den Drucksensor wirkenden Drucks. Eine Integration der Auswerteeinheit auf der organischen Leiterplatte bedingt zudem eine kleinere und kompaktere Bauform.
Vorteilhafterweise ist die Auswerteeinheit dazu ausgebildet, aus den elektrischen Eigenschaften des Drucksensors den im Fluidraum herrschenden Fluiddruck zu bestimmen. Dies erfolgt auf Grund der ausgewerteten elektrischen Eigenschaften des Drucksensors, insbesondere mittels einer Kennlinie. Die Kennlinie ist dabei eine Zuordnung der elektrischen Eigenschaft des Drucksensors, beispielsweise der Kapazität des Drucksensors, zu dem im Fluidraum herrschenden Fluiddruck. In dieser Kennlinie sind die mechanischen Daten und Wirkungen der Trennmembran und des Druckvermittlers sowie die Verformung des Drucksensors auf Grund des Drucks und die Abhängigkeit der Kapazität des Drucksensors auf Grund dieser Verformung schon enthalten, es müssen also keine komplizierten Berechnungen durchgeführt werden.
Des Weiteren wird ein Getriebe mit einer organischen Leiterplatte nach der vorangegangenen Beschreibung vorgeschlagen. Die organische Leiterplatte ist dabei zum Messen von zumindest einem in einem Getriebeinnenraum herrschenden Fluiddruck ausgebildet. Die organische Leiterplatte bietet darüber hinaus Flexibilität sowie eine geringe Baugröße. Die organische Leiterplatte kann daher an vielen Stellen im Getriebe eingesetzt werden und es ist möglich, die Baugröße, und damit auch das Gewicht, des Getriebes zu verringern.
Es ist von Vorteil, wenn auf der organischen Leiterplatte eine Getriebesteuereinheit zum Steuern von zumindest einer Getriebefunktion integriert ist. Diese Getriebefunktion ist dabei vorzugsweise von einem mittels des Drucksensors gemessenen im Getrieberaum herrschenden Fluiddrucks abhängig. Der Fluiddruck wird dabei von dem Drucksensor gemessen und von der Auswerteeinheit ausgewertet. Das Ergebnis dieser Auswertung wird direkt an die Getriebesteuereinheit weitergeleitet, so dass diese gesamte Elektronik in einer organischen Leiterplatte integriert ist. Neben einer geringen Baugröße ist hierbei auch von Vorteil, dass die Anzahl der externen elektrischen Kontakte, die vom teilweise aggressiven Fluid abgeschirmt sein müssen, verringert ist.
Ferner wird ein Herstellungsverfahren zum Herstellen einer organischen Leiterplatte nach der vorangegangenen Beschreibung vorgeschlagen. Dabei wird der Drucksensor beim Aufbau des organischen Substrats als funktionale Einheit in die Zwischenlagen des organischen Substrats eingebettet. Insbesondere wird zunächst zumindest eine Lage des organischen Substrats aufgebaut. Auf diese zumindest eine Lage wird der Drucksensor, vorzugweise in einem Rahmen, aufgesetzt. Um den Drucksensor herum werden sodann eine oder mehrere den Drucksensor umschließende Zwischenlagen aufgebaut. Schließlich wird zumindest eine weitere Lage aufgebaut, die den Drucksensor nach oben hin abschließt.
Vorteilhaft ist es, wenn die aufgebaute organische Leiterplatte vorgegebenen Fluiddrücken ausgesetzt wird und die elektrischen Eigenschaften des Drucksensors bei diesen vorgegebenen Fluiddrücken zur Erzeugung einer Kennlinie verwendet werden. Die fertig aufgebaute organische Leiterplatte wird also mit den vorgegebenen Fluiddrücken kalibriert. Dabei ist es möglich, für jede organische Leiterplatte eine eigene Kennlinie zu erzeugen, oder eine für eine bestimmte organische Leiterplatte ermittelte Kennlinie für die weiteren identisch aufgebauten organischen Leiterplatten zu verwenden. Mittels der Kennlinie wird dann im Betrieb der organischen Leiterplatte aus den elektrischen Eigenschaften des Drucksensors der herrschende Fluiddruck berechnet.
Nachfolgend werden Ausführungsbeispiele einer organischen Leiterplatte mit einem Drucksensor anhand einer Zeichnung näher dargestellt. Darin zeigen:
Fig. 1 einen Längsschnitt durch ein erstes Ausführungsbeispiel einer organischen Leiterplatte mit einem eingebetteten Drucksensor und
Fig. 2 einen Längsschnitt durch ein weiteres Ausführungsbeispiel einer organischen Leiterplatte mit einem eingebetteten Drucksensor.
Einander entsprechende Teile sind in allen Figuren stets mit gleichen Bezugszeichen versehen.
Figur 1 zeigt einen Längsschnitt durch ein erstes Ausführungsbeispiel einer organischen Leiterplatte 1 mit einem eingebetteten Drucksensor 2. Die organische Leiterplatte 1 umfasst dabei eine Mehrzahl an Lagen 3. In eine der Zwischenlagen 4 des organischen Substrats ist der Drucksensor 2 eingebettet. Dabei ist es auch denkbar, dass sich der Drucksensor 2 über mehrere Zwischenlagen 4 erstreckt. Der Drucksensor 2 weist dabei eine Polymerfolie 5 auf, die bevorzugt aus Silikon besteht. Auf den beiden gegenüberliegenden Außenflächen der Polymerfolie 5 sind dabei zwei Elektrodenschichten 6 angeordnet. Die Elektrodenschichten 6 können dabei beispielsweise aus einem leitfähigen Material, wie zum Beispiel Ruß oder Graphitpaste, bestehen, können aber auch aus einem mit leitfähigen Partikeln gefülltem Polymer gebildet sein. Als leitfähige Partikel kommen dabei beispielsweise Graphen oder Kohlenstoffnanoröhrchen in Betracht. Besonders bevorzugt ist das Polymer der Elektrodenschicht 6 das gleiche Material wie die Polymerfolie 5, so dass sich Effekte durch unterschiedliche Wärmeausdehnungskoeffizienten auf ein Minimum reduzieren.
Die Elektrodenschichten 6 sind mittels Elektroden 7 an elektrisch leitende Innenlagen 8 des organischen Substrats angebunden. Die Elektroden 7 sind im vorliegenden Ausführungsbeispiel als Mikro-Vias ausgebildet, können aber auch durch Sintern, Löten und/oder mittels Leitkleber gebildet werden. Über die Elektroden 7 werden elektrische Eigenschaften des Drucksensors 2, insbesondere die Kapazität des durch die beiden Elektrodenschichten 6 und die Polymerfolie 5 gebildeten Kondensators oder von dieser Kapazität abhängige elektrische Eigenschaften bestimmt. Da bei Ausübung eines Drucks auf den Drucksensor 2 eine Verformung der Polymerfolie 5 auftritt, die eine Änderung der Kapazität des Drucksensors 2 zur Folge hat, lässt sich über die gemessenen elektrischen Eigenschaften des Drucksensors 2 der auf den Drucksensor wirkende Druck bestimmen.
Vorzugsweise wird zur Bestimmung des Drucks eine Kennlinie aufgenommen, die den außen herrschenden Druck mit der gemessenen elektrischen Eigenschaft des Drucksensors 2 in Zusammenhang bringt. Anhand dieser Kennlinie kann dann im Betrieb der organischen Leiterplatte 1 mit dem Drucksensor 2, ohne größere Berechnungen, von den gemessenen elektrischen Eigenschaften des Drucksensors 2 auf den außen anliegenden Druck geschlossen werden.
In der Figur nicht gezeigt ist eine optionale, aber bevorzugte Auswerteeinheit, die die elektrischen Eigenschaften des Drucksensors 2 auswertet und über die Kennlinie den außen anliegenden Druck bestimmt.
Der Drucksensor 2 selbst ist in einem Rahmen 9, vorzugsweise aus Epoxy, fixiert und vorgespannt. Durch das Fixieren befindet sich der Drucksensor 2 stets an einer vorbestimmten Position. Das Vorspannen des Drucksensors 2 verbessert dabei die Genauigkeit der Bestimmung des außen anliegenden Drucks.
Über eine Trennmembran 10 ist der Drucksensor 2 von dem die organische Leiterplatte 1 umgebenden Fluidraum 11 mediendicht abgeschlossen. Die Trennmembran 10 ist dabei vorzugsweise aus Metall gebildet. Sie umfasst in ihrem Randbereich Sicken 12, die ihr eine dreidimensionale Struktur verleihen. Hierdurch wird die Verformung der Trennmembran 10 beim Einwirken eines Drucks an die Randbereiche der Trennmembran 10 verlagert. Im zentralen Bereich der Trennmembran 10 erfolgt bei einwirkendem Druck eine vorwiegend planparallele Verschiebung.
Der Druck des die organische Leiterplatte 1 umgebenden Fluidraums 11 wird dabei über einen Druckkanal 13 an die Trennmembran 10 geleitet. Die Trennmembran 10 leitet diesen Druck dann mittels eines Druckvermittlers 14, der hier als Bolzen ausgebildet ist, an den Drucksensor 2 weiter. Der Bolzen kann dabei in seiner Länge und seinem Querschnitt an die benötigten Bedingungen angepasst werden.
Figur 2 zeigt einen Längsschnitt durch ein weiteres Ausführungsbeispiel einer organischen Leiterplatte 1 mit einem eingebetteten Drucksensor 2. Im Vergleich zum Ausführungsbeispiel der Figur 1 weist die Trennmembran 10 dieses Ausführungsbeispiels keine Sicken 12 auf.
Des Weiteren ist der Druckvermittler 14 nicht als Bolzen, sondern als vorzugsweise inkompressibles Vermittlungsfluid ausgestaltet. Hierdurch wird der Druck von der Trennmembran 10 besonders gleichmäßig auf den Drucksensor 2 übertragen.
Eine mögliche Anwendung einer organischen Leiterplatte 1 mit einem eingebetteten Drucksensor 2 ist in einem hier nicht dargestellten Getriebe. Der Drucksensor 2 misst dann den in einem Getriebeinnenraum herrschenden Fluiddruck. Vorteilhafterweise ist auf der organischen Leiterplatte noch eine Getriebesteuereinheit integriert, die in Abhängigkeit vom gemessenen Fluiddruck eine oder mehrere Funktionen des Getriebes steuert.
Der vorgeschlagene Gegenstand ist nicht auf die vorstehend beschriebenen Ausführungsbeispiele beschränkt. Vielmehr können weitere Ausführungsformen von dem Fachmann aus der vorstehenden Beschreibung und im Rahmen der Patentansprüche abgeleitet werden. Insbesondere können die anhand der verschiedenen Ausführungsbeispiele beschriebenen Einzelmerkmale auch in anderer Weise miteinander kombiniert werden.
Bezugszeichenliste
1 organische Leiterplatte
2 Drucksensor 3 Lage
4 Zwischenlage
5 Polymerfolie
6 Elektrodenschicht
7 Elektrode 8 elektrisch leitende Innenlage
9 Rahmen
10 Trennmembran
11 Fluidraum
12 Sicke 13 Druckkanal
14 Druckvermittler

Claims

Patentansprüche
1. Organische Leiterplatte mit einem mehrere Lagen (3) umfassenden organischen Substrat und zumindest einem in die Zwischenlagen (4) des organischen Substrats eingebetteten polymeren Drucksensor (2) zur Messung des Drucks eines Fluids, wobei der Drucksensor (2) eine Polymerfolie (5) und zwei Elektrodenschichten (6) umfasst, wobei die Elektrodenschichten (6) an den gegenüberliegenden Außenflächen der Polymerfolie (5) angeordnet sind, wobei der Drucksensor (2) mittels Elektroden (7) an elektrisch leitende Innenlagen (8) des organischen Substrats angebunden ist und wobei eine Trennmembran (10) den Drucksensor (2) von dem die organische Leiterplatte (1 ) umgebenden Fluidraum (11 ) mediendicht abschließt.
2. Organische Leiterplatte nach Anspruch 1 , wobei die Polymerfolie (5) aus Silikon gebildet ist.
3. Organische Leiterplatte nach Anspruch 1 oder 2, wobei die Elektrodenschichten
(6) aus einem elektrisch leitfähigen Material, insbesondere Ruß oder Graphitpaste, und/oder aus einem mit leitfähigen Partikeln gefülltem Polymer gebildet sind, wobei die leitfähigen Partikel insbesondere Graphen oder Kohlenstoffnanoröhren sind und das Polymer insbesondere das gleiche Material wie die Polymerfolie (5) ist.
4. Organische Leiterplatte nach einem der Ansprüche 1 bis 3, wobei die Trennmembran (10) aus Metall gebildet ist.
5. Organische Leiterplatte nach einem der Ansprüche 1 bis 4, wobei die Trennmembran (10) eine dreidimensionale Struktur aufweist, wobei die dreidimensionale Struktur insbesondere Sicken (12) im Randbereich der Trennmembran (10) umfasst.
6. Organische Leiterplatte nach einem der Ansprüche 1 bis 5, wobei die Elektroden
(7) als Mikro-Vias, durch Sintern, Löten und/oder mittels Leitkleber ausgebildet sind.
7. Organische Leiterplatte nach einem der Ansprüche 1 bis 6, wobei die organische Leiterplatte (1 ) einen Rahmen (9), insbesondere aus Epoxy, umfasst, zum Fixieren und/oder Vorspannen des Drucksensors (2).
8. Organische Leiterplatte nach einem der Ansprüche 1 bis 7, wobei die organische Leiterplatte (1 ) einen Druckkanal (13) umfasst, der den Fluidraum (11 ) fluidisch mit der Trennmembran (10) verbindet.
9. Organische Leiterplatte nach einem der Ansprüche 1 bis 8, wobei die organische Leiterplatte (1 ) einen Druckvermittler (14), insbesondere einen Bolzen oder ein Vermittlungsfluid, zur Übertragung des Drucks von der Trennmembran (10) auf den Drucksensor (2) umfasst.
10. Organische Leiterplatte nach einem der Ansprüche 1 bis 9, wobei auf der organischen Leiterplatte (1 ) eine mit dem Drucksensor (2) verbundene Auswerteeinheit zum Auswerten der elektrischen Eigenschaften des Drucksensors (2) integriert ist.
11 . Organische Leiterplatte nach Anspruch 10, wobei die Auswerteeinheit dazu ausgebildet ist, aus den elektrischen Eigenschaften des Drucksensors (2), insbesondere mittels einer Kennlinie, den im Fluidraum (11 ) herrschenden Fluiddruck zu bestimmen.
12. Getriebe mit einer organischen Leiterplatte (1 ) nach einem der Ansprüche 1 bis 11 zum Messen von zumindest einem in einem Getriebeinnenraum herrschenden Fluiddruck.
13. Getriebe nach Anspruch 12, wobei auf der organischen Leiterplatte (1 ) eine Getriebesteuereinheit zum Steuern von zumindest einer Getriebefunktion integriert ist.
14. Herstellungsverfahren zum Herstellen einer organischen Leiterplatte (1) nach einem der Ansprüche 1 bis 11 , wobei der Drucksensor (2) beim Aufbau des organischen Substrats als funktionale Einheit in die Zwischenlagen (4) des organischen Substrats eingebettet wird.
15. Herstellungsverfahren nach Anspruch 14, wobei die aufgebaute organische Leiterplatte (1 ) vorgegebenen Fluiddrücken ausgesetzt wird und die elektrischen Eigenschaften des Drucksensors (2) bei diesen vorgegebenen Fluiddrücken zur Erzeugung einer Kennlinie verwendet werden.
PCT/EP2020/078101 2019-10-14 2020-10-07 Organische leiterplatte, getriebe mit einer organischen leiterplatte und herstellungsverfahren zum herstellen einer organischen leiterplatte WO2021073973A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019215711.4 2019-10-14
DE102019215711.4A DE102019215711A1 (de) 2019-10-14 2019-10-14 Organische Leiterplatte, Getriebe mit einer organischen Leiterplatte und Herstellungsverfahren zum Herstellen einer organischen Leiterplatte

Publications (2)

Publication Number Publication Date
WO2021073973A2 true WO2021073973A2 (de) 2021-04-22
WO2021073973A3 WO2021073973A3 (de) 2021-07-29

Family

ID=72801487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/078101 WO2021073973A2 (de) 2019-10-14 2020-10-07 Organische leiterplatte, getriebe mit einer organischen leiterplatte und herstellungsverfahren zum herstellen einer organischen leiterplatte

Country Status (2)

Country Link
DE (1) DE102019215711A1 (de)
WO (1) WO2021073973A2 (de)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4206675C2 (de) * 1992-02-28 1995-04-27 Siemens Ag Verfahren zum Herstellen von Druckdifferenz-Sensoren
DE59900959D1 (de) * 1998-08-24 2002-04-11 Siemens Ag Steuergerät in einem kraftfahrzeug
DE10211992C2 (de) * 2001-05-04 2003-11-27 Trafag Ag Maennedorf Drucksensor zur Druckerfassung in einem Motorbrennraum sowie Verfahren zu dessen Herstellung
US7208960B1 (en) * 2006-02-10 2007-04-24 Milliken & Company Printed capacitive sensor
DE102007028467A1 (de) * 2007-06-18 2008-12-24 Polyic Gmbh & Co. Kg Messvorrichtung mit RFID-Transponder und Sensor
DE102011082522B3 (de) * 2011-09-12 2012-11-22 Kuhnke Automotive Gmbh & Co. Kg Drucksensor und Füllstandsmesseinrichtung
DE102012210752A1 (de) * 2012-06-25 2014-01-23 Robert Bosch Gmbh Druckerfassungsmodul sowie Drucksensorvorrichtung mit einem solchen Druckerfassungsmodul
DE102014216585A1 (de) * 2014-03-12 2015-09-17 Conti Temic Microelectronic Gmbh Kompakte Mehrlagenleiterplatte mit integriertem Sensor zum Einsatz in einem KFZ-Steuergerät
DE102015110351A1 (de) * 2015-06-26 2016-12-29 Endress + Hauser Gmbh + Co. Kg Druckübertragungsmodul und Druckmessaufnehmer mit einem Druckübertragungsmodul
DE102015219070A1 (de) * 2015-10-02 2017-04-06 Robert Bosch Gmbh Sensorvorrichtung zur Erfassung mindestens einer Eigenschaft eines fluiden Mediums
US10685763B2 (en) * 2016-01-19 2020-06-16 Xerox Corporation Conductive polymer composite
DE102016209542A1 (de) * 2016-06-01 2017-12-07 Robert Bosch Gmbh Drucksensor, Drucksensoranordnung, Verfahren zur Detektion eines Drucks
DE102017209366A1 (de) * 2017-06-02 2018-12-06 Conti Temic Microelectronic Gmbh Elektrische Komponente und Verfahren zu deren Herstellung
DE102017213527A1 (de) * 2017-08-03 2019-02-07 Robert Bosch Gmbh Verfahren zum Herstellen einer Drucksensoreinrichtung zum Messen eines Drucks eines Fluids und Drucksensoreinrichtung zum Messen eines Drucks eines Fluids

Also Published As

Publication number Publication date
DE102019215711A1 (de) 2021-04-15
WO2021073973A3 (de) 2021-07-29

Similar Documents

Publication Publication Date Title
EP1946060A1 (de) Drucksensor für hydraulische medien in kraftfahrzeugbremssystemen und dessen verwendung
DE102011082522B3 (de) Drucksensor und Füllstandsmesseinrichtung
DE10249238B4 (de) Sensorchip für einen Differenzdrucksensor mit beidseitigem Überlastschutz
EP2784462A1 (de) Kapazitive Druckmesszelle zur Erfassung des Druckes eines an die Messzelle angrenzenden Mediums
EP2335039B1 (de) Sensoranordnung, verfahren zum betrieb einer sensoranordnung und verfahren zur herstellung einer sensoranordnung
DE19601078C2 (de) Druckkraftsensor
DE102012102020A1 (de) Mikromechanisches Messelement
EP0373536A2 (de) Überlastfester kapazitiver Drucksensor
WO1992001912A1 (de) Druckgeber zur druckerfassung im brennraum von brennkraftmaschinen
DE4103706A1 (de) Druckgeber zur druckerfassung im brennraum von brennkraftmaschinen
DE102005001298A1 (de) Vorrichtung zum Messen von Kräften, insbesondere Drucksensor, und zugehöriges Herstellverfahren
DE102010055934B4 (de) Aktuator und Verfahren zu dessen Herstellung
WO2021073973A2 (de) Organische leiterplatte, getriebe mit einer organischen leiterplatte und herstellungsverfahren zum herstellen einer organischen leiterplatte
EP2554964B1 (de) Druck- und Temperaturmessvorrichtung
DE10130507A1 (de) Luftfeder mit einem verformbarer Sensorelement
EP3063518B1 (de) Kapazitives sensorelement mit integrierter mess- und referenzkapazität
DE102011105756A1 (de) Elektrische Messeinrichtung zur Kraft- und/oder Druckmessung
DE3148403A1 (de) "differenzdruckmesser"
DE102009045158A1 (de) Sensoranordnung und Verfahren zur Herstellung einer Sensoranordnung
DE102008041937A1 (de) Drucksensoranordnung und Verfahren zur Herstellung einer Drucksensoranordnung
DE102005047535B4 (de) Verwendung eines Hochtemperatur-Drucksensors in einem Triebwerkselement
DE102007057694A1 (de) Leckageerkennung bei einem Gehäuse eines elektronischen Steuergeräts
DE102007015476A1 (de) Druckübertragungsmedium und Verfahren zu seiner Herstellung
EP0868658A1 (de) Kraftmessvorrichtung
DE102007054027B4 (de) Vorrichtung und Verfahren zur kapazitiven Kraftmessung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788759

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788759

Country of ref document: EP

Kind code of ref document: A2