WO2021073600A1 - 一种lrrk2抑制剂的晶型及其制备方法 - Google Patents

一种lrrk2抑制剂的晶型及其制备方法 Download PDF

Info

Publication number
WO2021073600A1
WO2021073600A1 PCT/CN2020/121420 CN2020121420W WO2021073600A1 WO 2021073600 A1 WO2021073600 A1 WO 2021073600A1 CN 2020121420 W CN2020121420 W CN 2020121420W WO 2021073600 A1 WO2021073600 A1 WO 2021073600A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
compound
formula
hours
add
Prior art date
Application number
PCT/CN2020/121420
Other languages
English (en)
French (fr)
Inventor
吴凌云
王才林
郭唐漾
徐雄彬
陈曙辉
Original Assignee
贵州伊诺其尼科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州伊诺其尼科技有限公司 filed Critical 贵州伊诺其尼科技有限公司
Priority to CN202080072681.6A priority Critical patent/CN114746431A/zh
Publication of WO2021073600A1 publication Critical patent/WO2021073600A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system

Definitions

  • the present invention relates to a crystal form of a compound as an LRRK2 kinase inhibitor and a preparation method thereof, and also includes the application of the crystal form in the preparation of drugs related to the LRRK2 kinase activity inhibitor.
  • LRRK2 kinase Mutations and overexpression of LRRK2 kinase are increasingly proven to be the fundamental factor in inducing neurodegenerative diseases, which are mainly characterized by selective degeneration and cell death of dopaminergic neurons in the substantia nigra. Affects 1% of people over the age of 65, among which genetic patients account for 5-10% of the diseased population. In the early stages of the disease, the most obvious symptoms are shaking, slow movement and difficulty walking. Cognitive and behavioral problems may also occur in the later stage, and dementia usually occurs in the later stage.
  • LRRK2 leucine-rich repeat sequence kinase 2
  • LRRK2 is a 2527 amino acid involved in catalyzing phosphorylation and hydrolysis of GTP-GDP. protein.
  • the NCBI participating sequence of human LRRK2mRNA is NM_198578.2.
  • Evidence shows that LRRK2 phosphorylates a-synuclein at serine-129, and this phosphorylated form constitutes an important part of Lewy bodies.
  • the single nucleotide polypeptidity in the functional domain of LRRK2 causes common and sporadic neurodegenerative diseases.
  • LRRK2 mutations have identified more than 20 LRRK2 mutations in families with delayed-onset neurodegenerative diseases.
  • the G2019S mutation co-segregates with autosomal dominant, and it causes approximately 6% of family cases and 3% of sporadic cases in Europe.
  • G2019S mutation occurs in the highly conserved kinase domain, so G2019S mutation may have an impact on kinase activity.
  • the amino acid substitution at another residue R1441 is also associated with neurodegenerative diseases and has been shown to increase the activity of LRRK2 kinase.
  • the overexpression of the mutant LRRK2 protein R1441G in the transgenic mouse model is related to the reduction of dopamine release, showing that LRRK2 inhibitors can also actively regulate the release of dopamine and are related to treatment and the reduction of dopamine release, showing that LRRK2 inhibitors can also actively Regulates the release of dopamine and has potential utility in the treatment of diseases characterized by reduced dopamine levels.
  • LRRK2 kinase activity inhibitors can also be used to treat related neurodegenerative diseases.
  • the purpose of the present invention is to invent a compound that can highly inhibit LRRK2 kinase, so as to further invent drugs that can treat neurodegenerative diseases well.
  • Literature data (ACS Med.Chem.Lett.2015,6,584-589) discloses compound JH-II-127, which belongs to LRRK2 kinase inhibitor; literature data (J.Med.Chem.2012,55,9416-9433) also discloses The compound GNE-7915 is a LRRK2 kinase inhibitor.
  • the structural formula is as follows:
  • the present invention provides crystal form A of the compound of formula (I),
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 7.06 ⁇ 0.20°, 8.04 ⁇ 0.20°, 10.26 ⁇ 0.20°, 15.52 ⁇ 0.20°, 19.68 ⁇ 0.20°, 21.16 ⁇ 0.20°, 24.64 ⁇ 0.20°, 28.12 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 7.061, 8.043, 8.958, 9.320, 10.262, 12.259, 13.001, 13.979, 14.942, 15.523, 17.124 , 17.660, 18.339, 19.018, 19.681, 20.596, 21.160, 22.496, 23.020, 24.641, 25.058, 25.400, 26.276, 27.083, 27.721, 28.120, 30.162, 31.420, 32.303, 33.784, 34.700, 35.707, 36.745.
  • the XRPD pattern of the above-mentioned crystal form A is shown in FIG. 1.
  • the XRPD pattern analysis data of the above-mentioned crystal form A is shown in Table 1:
  • the differential scanning calorimetry curve of the above-mentioned crystal form A has an endothermic peak at 119.45 ⁇ 3°C.
  • the DSC spectrum of the above-mentioned crystal form A is shown in FIG. 2.
  • thermogravimetric analysis curve of the above-mentioned crystal form A has a weight loss of 0.740% at 300°C ⁇ 3°C.
  • the TGA spectrum of the above-mentioned crystal form A is shown in FIG. 3.
  • the present invention also provides a method for preparing the crystal form of compound A of formula (I), including:
  • the solvent is selected from a mixed solvent of ethanol and water, ethanol, acetone and acetonitrile.
  • the volume ratio of ethanol and water is 2:1.
  • the present invention also provides the application of the above crystal form A or the crystal form obtained according to the preparation method of the above crystal form A in the preparation of LRRK2 kinase activity inhibitor related drugs.
  • the invention has stable crystal form, is less affected by light, heat and humidity, has good solubility, and has broad prospects for preparing medicines.
  • the compound of the present invention has significant kinase inhibition, cell activity, membrane permeability and solubility to LRRK2, and at the same time has excellent pharmacokinetic and pharmacodynamic properties.
  • the compound of the present invention and its crystal form can provide more effective treatment for neurodegenerative diseases.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • CDCl 3 stands for deuterated chloroform
  • CD 3 OD stands for deuterated methanol
  • Xphos stands for 2-bicyclohexylphosphine-2'4'6'-triisopropylbiphenyl
  • Pd 2 (dba ) 3 represents dipalladium trisdibenzylideneacetone.
  • Test method Approximately 10-20mg sample is used for XRPD detection.
  • Light tube voltage 40kV
  • light tube current 30mA
  • the first cable slit 28mm
  • the second cable slit 28mm
  • Test method Take a sample ( ⁇ 2mg) and place it in a DSC aluminum pan for testing. Heat the sample from 30°C (room temperature) to 350°C at a heating rate of 10°C/min under 50mL/min N 2 conditions.
  • TGA Thermal Gravimetric Analyzer
  • Test method Take a sample (2-5mg) and place it in a TGA platinum pot for testing. Under the condition of 60mL/min N 2 and at a heating rate of 10°C/min, heat the sample from room temperature to 500°C or a weight loss of 20%.
  • Test conditions Take samples (10-15mg) and place them in the DVS sample pan for testing.
  • Hygroscopicity classification ⁇ W% deliquescence Absorb enough water to form a liquid Very hygroscopic ⁇ W% ⁇ 15% Hygroscopic 15%> ⁇ W% ⁇ 2% Slightly hygroscopic 2%> ⁇ W% ⁇ 0.2% No or almost no hygroscopicity ⁇ W% ⁇ 0.2%
  • ⁇ W% represents the moisture absorption and weight gain of the test product at 25 ⁇ 1°C and 80 ⁇ 2%RH.
  • Fig. 1 is an XRPD spectrum of Cu-K ⁇ radiation of the crystal form of compound A of formula (I).
  • Figure 2 is a DSC spectrum of the crystal form of compound A of formula (I).
  • Figure 3 is a TGA spectrum of the crystal form of compound A of formula (I).
  • Figure 4 is a DVS spectrum of the crystal form of compound A of formula (I).
  • Figure 5 shows the results of the rotation test of the crystal form of compound A of formula (I) on rats.
  • Figure 6 shows the gait adjustment results of compound A of formula (I) on rats.
  • the first step Dissolve compound 1-1 (1944.77g) in tetrahydrofuran (20L), under the protection of nitrogen, reduce the temperature to 0°C, and add dropwise methylmagnesium bromide ether solution (14.5L, 3M) to the reaction solution , Control the temperature at 0-20°C, after the addition, it will naturally rise to room temperature 25°C, and react for 15 hours.
  • the potassium carbonate aqueous solution (5920.00g/7.24L) was added dropwise to the reaction solution, and the temperature was controlled to be stirred below 30°C. A white solid precipitated out.
  • the reaction solution was filtered and the filtrate was collected. The filter cake was beaten with ethanol (20L). Filter, combine the filtrate, and concentrate the filtrate under reduced pressure to obtain the crude product compound 1-2.
  • Step 2 Dissolve compound 1-3 (1202.54g) in dioxane (15L) and water (1.5L), then add compound 1-2 (1061.45g), 4,5-bis(diphenylphosphorus) )-9,9-dimethylxanthene (159.01g) and potassium phosphate (1408.77g). Under the protection of nitrogen, palladium acetate (61.52g) was added, the nitrogen was replaced three times, the temperature was raised to 110°C, and the reaction was carried out for 15 hours. After the reaction was completed, the reaction solution was filtered, the filter cake was washed with ethyl acetate (2L), the filtrates were combined and concentrated under reduced pressure.
  • Step 3 Dissolve compound 1-4 (1213.05g, hydrochloride) in N,N-dimethylformamide (12L), add N,N-diisopropylethylamine (3.05L) and compound 1 -5 (1299.92g), then the temperature was raised to 80°C and reacted for 15 hours. After the reaction was completed, water (20L) was added, extracted with dichloromethane (10L ⁇ 3), the organic phase was washed once with saturated sodium chloride aqueous solution (10L), dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was slurried and purified with n-heptane (2L) to obtain compound 1.
  • Step 1 Dissolve compound 2 (501.40g), sodium tert-butoxide (458.81g) in tetrahydrofuran (5L). Methyl iodide (408.98 g) was added dropwise at 0 degrees Celsius, the mixture was replaced with nitrogen, and stirred at 25 degrees Celsius for 4 hours under the protection of nitrogen. After the reaction was completed, the reaction solution was added to water (5L), extracted with ethyl acetate (5L ⁇ 2), washed twice with saturated brine (15L ⁇ 1), the organic phase was dried with anhydrous sodium sulfate, filtered, and concentrated to obtain compound 3.
  • Step 2 Add ethanol (12L) to a 50L reactor, add compound 3 (1201.17g) under nitrogen protection and stirring, adjust the temperature of the reactor to 0-5°C, slowly add concentrated sulfuric acid (1005.48g) in batches, and heat up Bring to 25-30°C and stir for 15-18 hours. After the reaction is complete, adjust the temperature of the reactor to 0-5°C.
  • N,N-diisopropylethylamine (5.51L) in batches, heat up to 20-25°C, keep warm and stir for 20 -30 minutes (pH measured by pH test paper is 8-9), slowly add compound 4 (831.29g) in batches, replace with nitrogen for 5-10 minutes, then heat up to 70-80°C, keep warm and stir for 17-20 hours. Stop heating.
  • the temperature of the reaction liquid is naturally cooled to 20-25° C., the reaction liquid is slowly added dropwise to water (20 L) in batches, and a large amount of yellow solid is precipitated after the addition is completed. The reaction solution was stirred for 2-3 hours at 20-25°C and filtered.
  • the filter cake was washed 2-3 times with water (2L), and the filter cake was vacuum dried at -0.1MPa and 50°C for 15-16 hours.
  • the filter cake was dispersed in 14L n-heptane, stirred for 2-3 hours at 20-25°C, filtered, and the filter cake was washed 2-3 times with n-heptane (1L each time).
  • the filter cake was heated at -0.1MPa, 50°C. Vacuum drying at °C for 15-16 hours to obtain compound 5.
  • the third step Under a nitrogen atmosphere, add intermediate compound 5 (451.76g), 10% wet palladium-carbon (47.72g), and tetrahydrofuran (4.5L) into a 10L autoclave, replace with nitrogen 3-4 times, and replace with hydrogen 3- 4 times, adjust the pressure to 1MPa, and stir for 12-15 hours at 20-25°C and 1MPa.
  • the fourth step add tetrahydrofuran (9L) into a 50L reaction kettle, add compound 1 (870.74g), compound 6 (895.66g) and sodium tert-butoxide (530.95g) in batches at 20-25°C and stirring under nitrogen. Bubble for 5-10 minutes, then add X-Phos (39.36g) and Pa 2 (dba) 3 (76.94g), then bubbling with nitrogen for 5-10 minutes, heat up to 70-80°C, keep warm and stir for 13-16 hours . Stop heating. The temperature of the reaction liquid was lowered to 20-25°C.
  • the filter cake was rinsed twice with anhydrous tetrahydrofuran (0.4L), the filtrate was combined into a 10L reactor, activated carbon powder (93.11g) was added, nitrogen was bubbled for 5-10 minutes, and the temperature was raised to 70-80°C (reflux), Incubate and stir for 1-2 hours.
  • Reaction solution 10mM hydroxyethylpiperazine ethanesulfonic acid (PH7.5); 2mM magnesium chloride; 0.5mM ethylene glycol diethyl ether diamine tetraacetic acid; 0.002% polyoxyethylene fatty alcohol ether; 1mM dithiothreitol and 1% DMSO;
  • LRRK2 human recombinant protein use GST tag to express recombinant full-length human LRRK2 protein in insect Sf9 cells with baculovirus;
  • Substrate 0.4uM Fluorescein-ERM (LRRKtide) peptide; 57uM ATP.
  • HTRF Homogeneous time-resolved fluorescence technology
  • the compound of formula (I) has significant LRRK2 enzyme inhibitory activity.
  • the 293T cells were removed from the liquid nitrogen and placed in water at 37 degrees Celsius. After the ice is completely melted, the cells are transferred to 5 ml of warm culture medium, centrifuged, the supernatant is discarded, and the suspended cells are cultured in the medium as new cells.
  • the 293T cells are cultured in the culture medium for two to three days.
  • the culture plate is incubated in a humidified incubator containing 5% carbon dioxide at 37 degrees Celsius for 20-24 hours.
  • the culture plate is incubated in a humidified incubator containing 5% carbon dioxide at 37 degrees Celsius for 20-24 hours;
  • the compound of formula (I) has significant cell (pSer935) inhibitory activity.
  • mice Male, 8 weeks old, body weight 25g-30g
  • the pharmacokinetic characteristics of rodents after oral administration of the compounds were tested by a standard protocol.
  • the candidate compound was formulated as a 1 mg/mL suspension and was given to mice for a single oral administration.
  • the oral vehicle is 10% dimethyl sulfoxide/10% Tween 80/20% polyethylene glycol 400 aqueous solution.
  • This project uses male C57BL/6 mice, orally administered by gavage, at a dose of 5 mg/kg. At 0.5, 1, 2 and 4 hours after dosing, whole brains will be collected.
  • plasma samples were collected 0.5, 1, 2, and 4 hours after administration. The plasma samples were collected within half an hour, and the supernatant was separated by centrifugation at about 4°C, 3000 g, and 15 minutes to obtain plasma samples.
  • the plasma samples were stored in polypropylene tubes, quickly frozen on dry ice and kept at -80°C until LC/MS/MS analysis.
  • mice The pharmacokinetic parameters in mice are shown in Table 6 below.
  • the compound of formula (I) has good in vivo pharmacokinetic properties, including good brain tissue drug concentration and brain tissue and plasma drug concentration ratio (B/P).
  • This model uses a stereotaxic device for surgery, unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain tract (MFB), resulting in complete damage of dopaminergic neurons in Parkinson's disease (PD) Model.
  • 6-OHDA 6-hydroxydopamine
  • Solvent 4% dimethyl sulfoxide + 6% polyethylene glycol-15 hydroxystearate (Solutol) + 90% water
  • Rats are placed in a stereotactic frame. After craniotomy, 18 ⁇ g 6-OHDA is dissolved in 4 ⁇ L of normal saline and perfused unilaterally at a rate of 1 ⁇ L/min.
  • the vehicle and levodopa group were administered once a day for 28 consecutive days, and the compound A crystal form group of formula (I) was administered twice a day for 28 consecutive days.
  • Detection index Behaviour detection (rotation test and gait adjustment) at the end of the experiment.
  • Rotation test a rotation test induced by apomorphine (0.5 mg/kg, subcutaneous injection) is performed. Five minutes after the injection of apomorphine, the rotation behavior of rats in each group was recorded for 30 minutes, and the number of 360° contralateral rotations completed within 30 minutes after manual quantitative injection. The test results are shown in Figure 5 (Single factor analysis of variance is represented by Dunnett’s test.)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Neurosurgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种LRRK2抑制剂的晶型及其制备方法,还包括所述晶型在制备LRRK2激酶活性抑制剂相关药物中的应用。

Description

一种LRRK2抑制剂的晶型及其制备方法
优先权申请
本申请要求2019年10月18提交的中国发明专利申请CN201910995375.9的优先权,该优先权发明专利申请以引用方式全文并入。
技术领域
本发明涉及一种作为LRRK2激酶抑制剂的化合物的晶型及其制备方法,还包括所述晶型在制备LRRK2激酶活性抑制剂相关药物中的应用。
背景技术
LRRK2激酶的突变及过表达越来越多地被证明是诱发神经退行性疾病的根本因素,以黑质区中多巴胺能神经元的选择性变性和细胞死亡为主要特征。影响着1%的65岁以上的人群,其中遗传性患者占发病人群的5-10%。该疾病的早期,最明显的症状表现为摇动,活动缓慢和行走困难。后期还会出现认知和行为问题,晚期通常会出现痴呆。
越来越多的证据显示富含亮氨酸重复序列的激酶2(LRRK2)突变与神经退行性疾病有不可分割的联系,LRRK2是一种在催化磷酸化和GTP-GDP水解中涉及的2527氨基酸蛋白。人类LRRK2mRNA的NCBI参与序列是NM_198578.2。证据显示,LRRK2在丝氨酸-129处磷酸化a-突触核蛋白,并且这一磷酸化形式构成路易体的重要部分。另外,已经显示LRRK2的功能结构域中的单核苷酸多肽性引起常见 性且散发性神经退行性疾病。目前为止,研究人员已经在患有迟发型神经退行性疾病的家族中识别了超过20个LRRK2突变。例如G2019S突变与常染色体显性共分离,并且其在欧洲导致约6%的家庭性病例和3%散发性病例。G2019S突变发生在高度保守的激酶结构域,因此G2019S突变可能对激酶活性有影响。此外,在另一残基R1441上的氨基酸取代也与神经退行性疾病有关,并且显示提高了LRRK2激酶的活性。在转基因小鼠模型中的突变体LRRK2蛋白R1441G的过度表达与多巴胺释放减少有关,显示LRRK2抑制剂也能积极地调节多巴胺的释放并且在治疗以及多巴胺释放减少有关,显示LRRK2抑制剂也能积极地调节多巴胺的释放并且在治疗以降低的多巴胺水平为特征的疾病中具有潜在效用。相关的数据进一步显示了LRRK2激酶活性抑制剂也可用于治疗相关的神经变性疾病。
因此,开发有效的LRRK2激酶以及突变的LRRK2激酶的抑制剂成为目前治疗神经退行性疾病的一条重要的途径。本发明旨在发明一种可以高度对LRRK2激酶抑制的化合物,从而进一步发明可以很好的治疗神经退行性疾病的药物。
文献资料(ACS Med.Chem.Lett.2015,6,584-589)公开了化合物JH-II-127,属于LRRK2激酶抑制剂;文献资料(J.Med.Chem.2012,55,9416-9433)也公开了化合物GNE-7915,属于LRRK2激酶抑制剂。结构式如下所示:
Figure PCTCN2020121420-appb-000001
Figure PCTCN2020121420-appb-000002
发明内容
本发明提供式(I)化合物的A晶型,
Figure PCTCN2020121420-appb-000003
其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.06±0.20°、8.04±0.20°、21.16±0.20°。
在本发明的一些方案中,上述A晶型,其X射线粉末衍射图谱 在下列2θ角处具有特征衍射峰:7.06±0.20°、8.04±0.20°、10.26±0.20°、15.52±0.20°、19.68±0.20°、21.16±0.20°、24.64±0.20°、28.12±0.20°。
在本发明的一些方案中,上述A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.061、8.043、8.958、9.320、10.262、12.259、13.001、13.979、14.942、15.523、17.124、17.660、18.339、19.018、19.681、20.596、21.160、22.496、23.020、24.641、25.058、25.400、26.276、27.083、27.721、28.120、30.162、31.420、32.303、33.784、34.700、35.707、36.745。
在本发明的一些方案中,上述A晶型,其XRPD图谱如图1所示。
在本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表1所示:
表1式(I)化合物A晶型的XRPD图谱解析数据
Figure PCTCN2020121420-appb-000004
Figure PCTCN2020121420-appb-000005
在本发明的一些方案中,上述A晶型,其差示扫描量热曲线在119.45±3℃处具有吸热峰。
在本发明的一些方案中,上述A晶型,其DSC图谱如图2所示。
在本发明的一些方案中,上述A晶型,其热重分析曲线在300℃±3℃处失重达0.740%。
在本发明的一些方案中,上述A晶型,其TGA图谱如图3所示。
本发明还提供式(I)化合物A晶型的制备方法,包括:
(a)将式(I)化合物加入溶剂中使其成为悬浊液;
(b)将上述悬浊液在35-45℃下搅拌8-16小时;
(c)离心后干燥12-24小时;
其中,所述溶剂选自乙醇与水的混合溶剂、乙醇、丙酮和乙腈。
在本发明的一些方案中,上述混合溶剂中,乙醇和水的体积比为2:1。
本发明还提供上述A晶型或根据上述A晶型的制备方法得到的晶型在制备LRRK2激酶活性抑制剂相关药物中的应用。
技术效果
本发明晶型稳定、受光热湿度影响小、溶解性好,成药前景广阔。本发明化合物对LRRK2具有显著的激酶抑制和细胞活性以及透膜性和溶解性,同时具有优良的药代动力学和药效动力学性质。本发明化合物及其晶型对神经退行性疾病可提供更有效的治疗。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成 方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明采用下述缩略词:CDCl 3代表氘代氯仿;CD 3OD代表氘代甲醇;Xphos代表2-双环己基膦-2’4’6’-三异丙基联苯;Pd 2(dba) 3代表三二亚苄基丙酮二钯。
化合物经手工或者
Figure PCTCN2020121420-appb-000006
软件命名,市售化合物采用供应商目录名称。
本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:DX-2700BH型X射线粉末衍射仪
测试方法:大约10-20mg样品用于XRPD检测。
详细的XRPD参数如下:
射线源:Cu,k-Alphal
Figure PCTCN2020121420-appb-000007
光管电压:40kV,光管电流:30mA
发散狭缝:1mm
第一索拉狭缝:28mm,第二索拉狭缝:28mm
接收狭缝:0.3mm,防散射狭缝:1mm
测量时间:0.5s
扫描角度范围:3-40deg
步宽角度:0.02deg
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:Mettler Toledo DSC 1500型差示扫描量热仪
测试方法:取样品(~2mg)置于DSC铝锅内进行测试,在50mL/min N 2条件下,以10℃/min的升温速率,加热样品从30℃(室温)到350℃。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA Instruments TGA Q500型热重分析仪
测试方法:取样品(2-5mg)置于TGA铂金锅内进行测试,在60mL/min N 2条件下,以10℃/min的升温速率,加热样品从室温到500℃或失重20%。
本发明动态蒸汽吸附分析(Dynamic Vapor Sorption,DVS)方法
仪器型号:SMS DVS Advantage动态蒸汽吸附仪
测试条件:取样品(10-15mg)置于DVS样品盘内进行测试。
详细的DVS参数如下:
温度:25℃
平衡:dm/dt=0.01%/min(最短:10min,最长:180min)
干燥:0%RH下干燥120min
RH(%)测试梯级:10%
RH(%)测试梯级范围:0%-90%-0%
引湿性评价分类如表2:
表2
吸湿性分类 ΔW%
潮解 吸收足量水分形成液体
极具吸湿性 ΔW%≥15%
有吸湿性 15%>ΔW%≥2%
略有吸湿性 2%>ΔW%≥0.2%
无或几乎无吸湿性 ΔW%<0.2%
注:ΔW%表示受试品在25±1℃和80±2%RH下的吸湿增重。
附图说明
图1为式(I)化合物A晶型的Cu-Kα辐射的XRPD谱图。
图2为式(I)化合物A晶型的DSC谱图。
图3为式(I)化合物A晶型的TGA谱图。
图4为式(I)化合物A晶型的DVS谱图。
图5为式(I)化合物A晶型对大鼠的旋转测试结果。
图6为式(I)化合物A晶型对大鼠的步态调整结果。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
实施例一
式(I)化合物的制备
合成化合物1:
Figure PCTCN2020121420-appb-000008
第一步:将化合物1-1(1944.77g)溶于四氢呋喃(20L)中,氮气保护下,降温至0℃,向反应液中滴加甲基溴化镁的乙醚溶液(14.5L,3M),控制温度在0-20℃,滴加完毕后自然升至室温25℃,反应15小时。反应完毕,将碳酸钾水溶液(5920.00g/7.24L)滴加到反应液中,并控制温度在30℃以下搅拌,有白色固体析出,搅拌过夜,将反应液过滤,收集滤液。滤饼加入乙醇(20L)打浆。过滤,合并滤液,滤液减压浓缩得到粗产物化合物1-2。
1H NMR(400MHz,CDCl 3)δppm 6.58-7.78(m,1H),1.60(dd,J=3.8,13.6Hz,6H)。
第二步:将化合物1-3(1202.54g)溶于二氧六环(15L)和水(1.5L),然后加入化合物1-2(1061.45g),4,5-双(二苯基磷)-9,9-二甲基氧杂蒽(159.01g)和磷酸钾(1408.77g)。在氮气保护下,加入醋酸钯(61.52g),置换氮气三次,升温至110℃,反应15小时。反应完毕,将反应液过滤,滤饼用乙酸乙酯(2L)洗涤,合并滤液并减压浓缩。将浓缩后的粗品加入乙酸乙酯(800mL),在搅拌情况下,缓慢滴加盐酸/乙酸乙酯调节pH=3,过程中有固体析出,将搅拌液过滤,滤饼用丙酮(2L)洗涤,收集滤饼,滤饼加入丙酮(3L)搅拌,过滤,滤饼用丙酮(2L)洗涤,收集滤饼,减压干燥得到化合物1- 4(盐酸盐)。
1H NMR(400MHz,CD 3OD)δppm 7.72-7.84(m,2H),7.58-7.66(m,1H),7.49(dd,J=3.75,8.00Hz,1H),1.97(s,3H),1.93(s,3H)。MS-ESI计算值[M+H] +170,实测值170。
第三步:将化合物1-4(1213.05g,盐酸盐)溶于N,N-二甲基甲酰胺(12L),加入N,N-二异丙基乙胺(3.05L)和化合物1-5(1299.92g),然后升温至80℃,反应15小时。反应完毕,加入水(20L),用二氯甲烷(10L×3)萃取,有机相用饱和氯化钠水溶液(10L)洗涤一次,无水硫酸钠干燥,过滤,浓缩。粗产物用正庚烷(2L)打浆纯化得到化合物1。
1H NMR(400MHz,CDCl 3)δppm 11.54(br s,1H),8.65(dd,J=4.4,8.6Hz,1H),8.24-8.14(m,1H),7.63-7.52(m,1H),7.32-7.23(m,1H),7.20-7.11(m,1H),1.85(s,3H),1.82(s,3H)。MS-ESI计算值[M+H] +316,实测值316。
合成式(I)化合物:
Figure PCTCN2020121420-appb-000009
第一步:将化合物2(501.40g),叔丁醇钠(458.81g)溶于四氢呋喃(5L)中。在0摄氏度滴加碘甲烷(408.98g),混合物用氮气置换,并在氮气保护下25摄氏度搅拌4小时。反应完毕,将反应液加入水(5L),乙酸乙酯(5L×2)萃取,饱和食盐水(15L×1)洗两次,有机相用 无水硫酸钠干燥,过滤,浓缩得到化合物3。
1H NMR(400MHz,CDCl 3)δppm 3.84(br d,J=12.3Hz,4H),3.77-3.65(m,1H),3.20-3.13(m,3H),2.42(ddd,J=3.1,6.6,9.6Hz,2H),2.06-1.99(m,2H),1.40-1.37(m,9H)。
第二步:将乙醇(12L)加入50L反应釜,氮气保护和搅拌下,加入化合物3(1201.17g),反应釜调整温度至0-5℃,分批缓慢加入浓硫酸(1005.48g),升温至25-30℃,搅拌15-18小时。反应完毕,反应釜调整温度至0-5℃,在氮气保护和搅拌下,分批缓慢滴加N,N-二异丙基乙胺(5.51L),升温至20-25℃,保温搅拌20-30分钟(pH试纸检测pH为8-9),分批缓慢加入化合物4(831.29g),氮气置换5-10分钟,然后升温至70-80℃,保温搅拌17-20小时。停止加热。待反应液自然降温至20-25℃时,反应液分批缓慢滴加水(20L)中,滴加完毕有大量黄色固体析出。反应液在20-25℃下,搅拌2-3小时,过滤,滤饼用水(2L)洗涤2-3次,滤饼于-0.1MPa、50℃下,真空干燥15-16小时。滤饼分散在14L正庚烷中,在20-25℃下,搅拌2-3小时,过滤,滤饼用正庚烷(每次1L)洗涤2-3次,滤饼于-0.1MPa、50℃下,真空干燥15-16小时,得到化合物5。
1H NMR(400MHz,CDCl 3)δppm 8.22(d,J=8.9Hz,1H),5.75(d,J=9.0Hz,1H),4.13(br d,J=10.5Hz,4H),4.02(s,3H),3.89-3.78(m,1H),3.29-3.21(m,3H),2.65-2.52(m,2H),2.26-2.14(m,2H)。MS-ESI计算值[M+H] +280,实测值280。
第三步:氮气氛围下,将中间体化合物5(451.76g)、10%湿钯 炭(47.72g)、四氢呋喃(4.5L)加入10L高压釜中,氮气置换3-4次,氢气置换3-4次,调整压力至1MPa,在20-25℃和1MPa下,搅拌12-15小时。同法制备第二批。两批反应液合并,垫硅藻土过滤,滤饼用1L四氢呋喃洗涤2-3次,收集滤液。滤液减压浓缩得化合物6,粗品直接用于下一步投料。
第四步:将四氢呋喃(9L)加入50L反应釜中,在20-25℃和搅拌下分批加入化合物1(870.74g)、化合物6(895.66g)和叔丁醇钠(530.95g),氮气鼓泡5-10分钟,然后加入X-Phos(39.36g)和Pa 2(dba) 3(76.94g),再氮气鼓泡5-10分钟,升温至70-80℃,保温搅拌13-16小时。停止加热。反应液降温至20-25℃。反应液通过硅藻土过滤,滤饼用乙酸乙酯/四氢呋喃(v/v=3/1)(4L)淋洗2-3次,合并滤液加入50L反应釜中,加水(15L)搅拌,静置分层,水相加入乙酸乙酯(10L),萃取,分液,水相加入乙酸乙酯(10L)萃取,分液,合并有机相,用饱和食盐水(10L)洗涤,有机相用无水硫酸钠干燥,过滤,滤饼用乙酸乙酯(2L)淋洗2-3次,合并滤液减压浓缩,得到的固体加入丙酮(3L),搅拌2-3小时,过滤,滤饼用丙酮(1L)淋洗2次,滤饼于-0.1MPa、50℃下真空干燥15-16小时得到化合物7的粗品。将化合物7的粗品(930.74g)、无水四氢呋喃(8L)、加入硫脲树脂(935.58g)和乙醇(0.8L)加入10L反应釜中,氮气鼓泡5-10分钟,升温至70-80℃,保温搅拌3-4小时。过滤,滤饼用无水四氢呋喃(0.4L)淋洗2次,滤液重复上述除钯操作两次。过滤,滤饼用无水四氢呋喃(0.4L)淋洗2次,滤液合并加 入10L反应釜,加入活性炭粉(93.11g),氮气鼓泡5-10分钟,升温至70-80℃(回流),保温搅拌1-2小时。垫硅藻土(500g)过滤,滤饼用无水四氢呋喃(1L)洗涤2-3次,合并滤液减压浓缩至干,得到的固体加入丙酮(1.9L),在20-25℃下,搅拌2-3小时,过滤,滤饼用丙酮(0.4L)淋洗2-3次,滤饼于-0.1MPa、50℃下真空干燥15-16小时得式(I)化合物。
1H NMR(400MHz,CDCl 3)δppm 10.82(s,1H),8.57(dd,J=4.3,8.4Hz,1H),8.14(d,J=8.3Hz,1H),8.05(s,1H),7.46(br t,J=7.8Hz,1H),7.33-7.24(m,1H),7.17-7.04(m,1H),6.92(s,1H),5.81(d,J=8.3Hz,1H),4.00-3.88(m,7H),3.83(quin,J=6.9Hz,1H),3.24(s,3H),2.53(ddd,J=2.9,6.8,9.8Hz,2H),2.22-2.09(m,2H),1.84(s,3H),1.81(s,3H)。MS-ESI计算值[M+H] +529,实测值529。
实施例二
式(I)化合物A晶型的制备
将乙醇(6L)和式(I)化合物(594.90g)加入10L反应釜中,氮气鼓泡5-10分钟,在氮气氛围和搅拌下,升温至80-90℃(回流),保温搅拌1-2小时至溶清,热过滤(有大量固体析出),滤液和析出的固体继续在80-90℃和搅拌至溶清,停止加热,降温至20-25℃,搅拌10-30分钟,过滤,滤饼用乙醇(0.5L)洗涤2-3次,然后将滤饼和乙醇(5L)依次加入10L反应釜中,氮气鼓泡5-10分钟,在氮气氛围和搅拌下,升温至80-90℃(回流),保温搅拌1-2小时至溶清,热过滤(有大量固体析出),滤液和析出的固体继续在80-90℃ 和搅拌至溶清,搅拌下,反应液程序降温(每隔1小时降温10-20℃)至20-25℃,停止加热,在20-25下,继续搅拌12-15小时。过滤,滤饼用乙醇(0.5L)淋洗2-3次,收集滤饼于-0.1MPa、50-60℃真空干燥,得到式(I)化合物的A晶型。
1H NMR(400MHz,CDCl 3)δppm 10.82(s,1H),8.57(dd,J=4.4,8.4Hz,1H),8.14(d,J=8.3Hz,1H),8.05(s,1H),7.46(t,J=7.9Hz,1H),7.34-7.19(m,1H),7.17-7.04(m,1H),6.93(s,1H),5.81(d,J=8.4Hz,1H),4.00-3.89(m,7H),3.83(quin,J=6.9Hz,1H),3.24(s,3H),2.53(ddd,J=2.9,6.8,9.9Hz,2H),2.23-2.08(m,2H),1.84(s,3H),1.80(s,3H)。MS-ESI计算值[M+H] +529,实测值529。
实施例三
实验例1:式(I)化合物A晶型的吸湿性研究
实验材料:
SMS DVS Advantage动态蒸汽吸附仪
实验方法:
取式(I)化合物A晶型10~15mg置于DVS样品盘内进行测试。
实验结果:
式(I)化合物A晶型的DVS谱图如图4所示,△W=0.86%。
实验结论:
式(I)化合物A晶型在25℃和80%RH下的吸湿增重为0.86%,略有吸湿性。
实验例2:式(I)化合物A晶型的固体稳定性试验
依据《原料药与制剂稳定性试验指导原则》(中国药典2015版四部通则9001),考察式(I)化合物A晶型在高温(60℃,敞口),高湿(室温/相对湿度92.5%,敞口)及光照(总照度=1.2×10 6Lux·hr/近紫外=200w·hr/m 2,敞口)条件下的稳定性。
分别称取化合物式(I)化合物A晶型10mg,置于玻璃样品瓶的底部,摊成薄薄一层。高温(60℃)及高湿(相对湿度92.5%RH)条件下放置的样品用铝箔纸封瓶口,并在铝箔纸上扎些小孔,保证样品能与环境空气充分接触,放置于相应的恒温恒湿箱中;光照样品(敞口,不用铝箔纸覆盖)及光照对照品(整个样品瓶用铝箔纸覆盖)放置于光照箱中。每个时间点分别称量2份,作为正式供试样品。另外称取式(I)化合物A晶型大约50mg,用于XRPD测试,样品瓶用铝箔纸包好并扎小孔,同样至于对应的恒温恒湿箱中。样品于第5天,10天取样检测(XRPD),检测结果与0天的初始检测结果进行比较,试验结果见下表3所示:
表3式(I)化合物A晶型的固体稳定性试验结果
Figure PCTCN2020121420-appb-000010
结论:式(I)化合物A晶型在高温、高湿、强光照条件下具有良好的稳定性。
实验例3:体外评价LRRK2激酶抑制活性
实验目的:通过均相时间分辨荧光检测磷酸化Fluorescein-ERM(LRRKtide)peptide的磷酸基团与
Figure PCTCN2020121420-appb-000011
Tb-pERM(pLRRKtide)Antibody抗体结合后产生的能量信号转移(520nM/485nM荧光信号比值)。计算待测化合物的LRRK2激酶抑制IC 50值。
实验材料:
1.反应溶液:10mM羟乙基哌嗪乙磺酸(PH7.5);2mM氯化镁;0.5mM乙二醇二乙醚二胺四乙酸;0.002%聚氧乙烯脂肪醇醚;1mM二硫苏糖醇和1%DMSO;
2.检测溶液:TR-FRET Dilution Buffer;
3.LRRK2人源重组蛋白:使用GST标签用杆状病毒在昆虫Sf9细胞中表达重组全长人LRRK2蛋白;
4.底物:0.4uM Fluorescein-ERM(LRRKtide)peptide;57uM ATP。
检测方法:
均相时间分辨荧光技术(HTRF);
Fluorescein-ERM(LRRKtide)peptide多肽与
Figure PCTCN2020121420-appb-000012
Tb-pERM(pLRRKtide)Antibody抗体在485nM和520nM之间的能量共振转移。
实验操作:
1.通过Echo550非接触式纳升级声波移液系统加入待测化合物的DMSO溶液;
2.用新鲜制备的反应溶液配置酶和多肽混合溶液,加入到反应孔穴中,室温下预温育20分钟;
3.加入57uM ATP引发反应,室温反应90分钟;
4.加入检测系统(Fluorescein-ERM(LRRKtide)peptide多肽,
Figure PCTCN2020121420-appb-000013
Tb-pERM(pLRRKtide)Antibody抗体及10mM乙二胺四乙酸),室温反应60分钟,用Em/Ex 520/485检测荧光信号;
5.通过信号比值计算相对DMSO空白的相对酶活性抑制,利用软件XLfit5拟合曲线计算IC 50值。
实验结果:
表4 LRRK2激酶抑制活性测试结果
供试品 LRRK2激酶抑制活性(nM)
式(I)化合物 5.3
结论:式(I)化合物具有显著的LRRK2酶抑制活性。
实验例4:体外评价LRRK2细胞(pSer935)抑制活性
细胞准备:
1.细胞解冻
将293T细胞从液氮中取出,放入37摄氏度的水中。待冰完全融化后,将细胞转移至5毫升温暖培养液内,离心,弃去上清液,并把悬浮的细胞作新的细胞在培养基中培养。
2.细胞的培养和传代
将293T细胞在培养基里培养两至三天。
3.细胞冷冻
将培养好的细胞株放入新鲜的培养液中并稀释浓度至1*10^7, 然后与等量的培养液混合。等分成每份1mL,置于零下80度一天,转移至液氮中保存。
实验步骤:
1.(第一天)293T细胞播种
种植1.4×10^6/293T细胞于一块培养板上,两天的培养后,细胞数量可以成长为5×10^6,所以种子N+1块板子足够N个96孔板的实验。
2.(第二天)转染293T细胞
一、添加5微升0.5微克/微升pcmv-flag-lrrk2到145微升DMEM培养液中,用吸管调匀;
二、添加15微升转染试剂,吸管调匀;
三、室温平衡10分钟;
四、添加0.5毫升预热的细胞培养基,调匀;
五、滴加650微升混合物到6孔板中,搅拌彻底;
六、培养板在37摄氏度含5%二氧化碳的加湿孵化器中培养20–24小时。
3.(第三天)293T细胞种植到96孔板上
4.(第4天)抑制剂处理
一、将化合物用离心机处理;
二、添加55微升细胞培养基到抑制剂板中。把盘子放在37摄氏度预热;
三、转移50微升含抑制剂的细胞培养至细胞培养板;
四、培养板在37摄氏度含5%二氧化碳的加湿孵化器中培养20–24小时;
五、用滴管抽取300微升含有抑制剂的培养液,取其中200微升,向其中加入100微升的分解剂,密封板子后于4摄氏度摇30分钟;
六、板子于零下20摄氏度保存直至使用。
5.(第5天)MSD程序
一、添加2微/25微升/标记抗体到MSD板中,孵育2小时,(50微升3.9微克/微升Flag抗体+2.5毫升胎牛血清/每盘)。离心10秒(1000rpm);
二、丢弃标志抗体,用300微升/洗涤缓冲液低速多点洗涤两次;
三、添加50微升/块缓冲液、孵化2小;
四、丢弃缓冲液,以300微升/洗涤缓冲液手动洗2次;
五、转移12.5微升裂解缓冲液和细胞裂解液12.5微升至MSD板,室温孵育1小时;
六、丢弃裂解液,用300微升/洗涤缓冲液多点、低速度洗3次;
七、稀释ps935(1:200)抗,加入25微升/抗体,室温培育1小时;
八、弃第一抗体,用300微升/洗涤缓冲液多点、低速度洗3次;
九、稀释山羊抗兔抗体1:500,添加25微升/抗体至孵育板,室 温培养1小时;
十、弃第二抗体,用300微升/洗涤缓冲液多点、低速度洗3次。最后一次的洗涤缓冲液到MSD阅读器;
十一、采集两次数据;
十二、放弃最后一次的清洗液,添加150微升/2倍缓冲液至待读取孔板;
十三、孵化后约3分钟,于15分钟读取数据。
实验结果:
表5 pSer935细胞抑制活性测试结果
供试品 LRRK2细胞抑制活性(nM)
式(I)化合物 4.5
结论:式(I)化合物具有显著的细胞(pSer935)抑制活性。
实验例5:化合物药代动力学评价
实验目的:研究化合物在C57BL/6小鼠体内药代动力学---脑组织和血浆药物浓度比
实验材料:C57BL/6小鼠(雄性,8周龄,体重25g-30g)
实验操作:
以标准方案测试化合物口服给药后的啮齿类动物药代特征,实验中候选化合物配成1mg/mL混悬液,给予小鼠单次口服给药。口服溶媒为10%二甲亚砜/10%吐温80/20%聚乙二醇400水溶液。该项目使用雄性C57BL/6小鼠,口服灌胃给药,给药剂量为5mg/kg。在给药后0.5,1,2和4小时,将收集全脑。将组织样品用15mM胎牛血清[胎牛血清(pH=7.4)缓冲液:甲醇(体积比,2:1)]匀浆,均质比为 1:5(w:v),并将匀浆液分成2个等分样品,一个用于分析,另一个用于备份。另外,收集给药后0.5,1,2,4h的血浆,血浆样品在收集半小时内,通过在约4℃,3000g,15分钟离心处理分离上清得血浆样品。将血浆样品储存在聚丙烯管中,在干冰上快速冷冻并保持在-80℃直至LC/MS/MS分析。加入含内标的乙腈溶液沉淀蛋白,充分混匀离心取上清液进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如达峰浓度(C max),半衰期(T 1/2),达峰时间(T max),药时不同组织药物浓度(AUC 0-last),脑组织和血浆药物浓度比例(B/P)等。
小鼠体内的药代动力学相关参数如下表6所示。
表6体内药代动力学测试结果:
Figure PCTCN2020121420-appb-000014
结论:式(I)化合物具有良好的体内药代动力学性质,包括良好的脑组织药物浓度以及脑组织和血浆药物浓度比例(B/P)等。
实验例6:式(I)化合物A晶型对6-羟基多巴胺诱导大鼠的帕金森病模型的体内药效学研究
实验方法:该模型是利用立体定位仪进行手术,单侧注射6-羟基多巴胺(6-OHDA)至内侧前脑束(MFB),而造成多巴胺能神经元完全损伤的帕金森氏疾病(PD)的模型。
实验材料:
动物:SD大鼠(雄性,6-8周龄,220-250g)。
供应商:上海斯莱克实验动物有限公司
实验设计:表7
表7
测试药物 动物数 剂量(mg/kg) 给药途径 给药频率
1 空白(溶媒) 12 - 口服灌胃 一天一次
2 左旋多巴(L-DOPA) 12 20 腹腔注射 一天一次
3 式(I)化合物A晶型 12 10 口服灌胃 一天两次
溶媒:4%二甲基亚砜+6%聚乙二醇-15羟基硬脂酸酯(Solutol)+90%水
实验步骤:
适应:雄性SD大鼠到达后在设施内适应3天。
6-OHDA损伤手术造模:大鼠置于立体定向框内,开颅术后,18μg 6-OHDA溶于4μL生理盐水中,以1μL/min的速度下单侧灌注。
模型筛选:术后2周进行阿扑吗啡(0.5mg/kg,皮下注射)诱导的旋转试验。注射阿扑吗啡5min后,记录大鼠旋转行为30min,人工定量注射后30min内完成的360°对侧旋转次数,旋转>60r/30min的大鼠纳入以下试验。
给药:按照实验设计,溶媒,左旋多巴组连续28天每天给药一次,式(I)化合物A晶型组连续28天每天两次连续给药。
检测指标:实验终点时进行行为学检测(旋转测试和步态调整)。
A.旋转测试:进行阿扑吗啡(0.5mg/kg,皮下注射)诱导的旋 转试验。注射阿扑吗啡5min后,记录各组大鼠旋转行为30min,人工定量注射后30min内完成的360°对侧旋转次数。测试结果见图5(单因素方差分析用邓内特测试(Dunnett’s test)表示。)
结果:式(I)化合物A晶型对动物的旋转行为没有改善。
B.步态调整:给药后60分钟进行试验。实验者抓住老鼠的后肢和一个前爪,这样动物就必须用它的对侧的力量来承受它的重量,自由调整前爪以保持其平衡,然后缓慢地向侧面移动(12s/0.9m)。在向前和向后运动中,手动计算前爪的步数。测试结果见图6。(单因素方差分析用邓内特测试(Dunnett’s test)表示,***p<0.01,****p<0.001。左爪(Left Paw):与损伤脑同侧;右爪(Rignt Paw):与损伤脑对侧。)
结果:式(I)化合物A晶型对大鼠的步态调整行为有明显的改善作用,其效果和左旋多巴类似。
实验结论:式(I)化合物A晶型对在6-羟基多巴胺(6-OHDA)诱导大鼠的帕金森病(PD)模型中大鼠的行为学有一定改善作用。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (11)

  1. 式(I)化合物的A晶型,
    Figure PCTCN2020121420-appb-100001
    其特征在于,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.06±0.20°、8.04±0.20°、21.16±0.20°。
  2. 根据权利要求1所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.06±0.20°、8.04±0.20°、10.26±0.20°、15.52±0.20°、19.68±0.20°、21.16±0.20°、24.64±0.20°、28.12±0.20°。
  3. 根据权利要求2所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:7.061、8.043、8.958、9.320、10.262、12.259、13.001、13.979、14.942、15.523、17.124、17.660、18.339、19.018、19.681、20.596、21.160、22.496、23.020、24.641、25.058、25.400、26.276、27.083、27.721、28.120、30.162、31.420、32.303、33.784、34.700、35.707、36.745。
  4. 根据权利要求3所述的A晶型,其XRPD图谱如图1所示。
  5. 根据权利要求1~4任意一项所述的A晶型,其差示扫描量热曲线在119.45±3℃处具有吸热峰。
  6. 根据权利要求5所述的A晶型,其DSC图谱如图2所示。
  7. 根据权利要求1~4任意一项所述的A晶型,其热重分析曲线在300℃±3℃处失重达0.740%。
  8. 根据权利要求7所述的A晶型,其TGA图谱如图3所示。
  9. 式(I)化合物A晶型的制备方法,包括:
    (a)将式(I)化合物加入溶剂中使其成为悬浊液;
    (b)将上述悬浊液在35~45℃下搅拌8~16小时;
    (c)离心后干燥12~24小时;
    其中,所述溶剂选自乙醇与水的混合溶剂、乙醇、丙酮和乙腈。
  10. 根据权利要求9所述的A晶型的制备方法,其中,所述混合溶剂中,乙醇和水的体积比为2:1。
  11. 根据权利要求1~8任意一项所述A晶型或根据权利要求9或10所述的A晶型的制备方法得到的晶型在制备LRRK2激酶活性抑制剂相关药物中的应用。
PCT/CN2020/121420 2019-10-18 2020-10-16 一种lrrk2抑制剂的晶型及其制备方法 WO2021073600A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080072681.6A CN114746431A (zh) 2019-10-18 2020-10-16 一种lrrk2抑制剂的晶型及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910995375 2019-10-18
CN201910995375.9 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021073600A1 true WO2021073600A1 (zh) 2021-04-22

Family

ID=75537715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121420 WO2021073600A1 (zh) 2019-10-18 2020-10-16 一种lrrk2抑制剂的晶型及其制备方法

Country Status (2)

Country Link
CN (1) CN114746431A (zh)
WO (1) WO2021073600A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023078411A1 (zh) * 2021-11-05 2023-05-11 南京明德新药研发有限公司 氮杂螺环化合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369721A (zh) * 2017-12-21 2019-02-22 深圳市塔吉瑞生物医药有限公司 用于抑制激酶活性的芳基磷氧化物
WO2019201334A1 (zh) * 2018-04-20 2019-10-24 南京明德新药研发有限公司 二甲基氧膦类化合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019057121A1 (zh) * 2017-09-25 2019-03-28 南京明德新药研发股份有限公司 一种异喹啉磺酰衍生物的晶型及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369721A (zh) * 2017-12-21 2019-02-22 深圳市塔吉瑞生物医药有限公司 用于抑制激酶活性的芳基磷氧化物
WO2019201334A1 (zh) * 2018-04-20 2019-10-24 南京明德新药研发有限公司 二甲基氧膦类化合物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023078411A1 (zh) * 2021-11-05 2023-05-11 南京明德新药研发有限公司 氮杂螺环化合物

Also Published As

Publication number Publication date
CN114746431A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
CN101715450B (zh) 作为cftr调控剂的氮杂吲哚衍生物
EA018152B1 (ru) Кристаллическая форма дигидрохлорида метил ((1s)-1-(((2s)-2-(5-(4&#39;-(2-((2s)-1-((2s)-2-((метоксикарбонил)амино)-3-метилбутаноил)-2-пирролидинил)-1н-имидазол-5-ил)-4-бифенилил)-1н-имидазол-2-ил)-1-пирролидинил)карбонил)-2-метилпропил)карбамата
JP2006501180A (ja) Aldhの阻害に有効な化合物
EP2985283A1 (en) Anti-angiogenesis compound, intermediate and use thereof
JP2021524499A (ja) ラノステロールプロドラッグ化合物の結晶形及びその使用
WO2020015745A1 (zh) 一种lsd1抑制剂的盐及其晶型
WO2021073600A1 (zh) 一种lrrk2抑制剂的晶型及其制备方法
CN113773300A (zh) 磺酰胺类化合物、其制备方法及用途
US11046720B2 (en) Dimethylphosphine oxide compound
WO2018214639A1 (zh) 2-氮杂环-5-三氟甲基-8-硝基苯并(硫代)吡喃-4-酮类化合物及其制备方法和用途
ES2379242B1 (es) Derivados de cromeno.
US9963457B2 (en) Crystal of 5-((2-(6-amino)-9H-purin-9-yl)ethyl)amino)pentan-1-o1
CN110167554A (zh) 一种具有抗癌作用的化合物及其制备方法和应用
TWI830884B (zh) 磷酸二酯酶抑制劑的晶型、其製備方法及其用途
WO2020228729A1 (zh) 喹唑啉酮类化合物的晶型及其制备方法
WO2021164789A1 (zh) 一种吡唑并嘧啶类化合物的晶型及其应用
CN110167917A (zh) 一种具有抗癌作用的化合物及其制备方法和应用
CN108948018A (zh) 苯并二氮*衍生物及其盐和相关晶体形式、制备方法和用途
WO2023093861A1 (zh) Axl激酶抑制剂的单对甲苯磺酸盐及其晶型
CN113861185B (zh) 2-(取代的嘧啶基)噻唑甲酰胺化合物的盐及其组合物和用途
WO2024114663A1 (zh) 三嗪基甲基环烷基羧酸衍生物的晶型及其应用
DE102005027274A1 (de) Inhibitoren der löslichen Adenylatzyklase
TW200815347A (en) Inhibitors of soluble adenylate cyclase
CN113861182A (zh) 嘧啶噻唑甲酰胺化合物的磷酸盐及其晶型
CN116514796A (zh) 3CLpro蛋白酶抑制剂的盐、晶型及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876210

Country of ref document: EP

Kind code of ref document: A1