WO2021073459A1 - 发光装置 - Google Patents

发光装置 Download PDF

Info

Publication number
WO2021073459A1
WO2021073459A1 PCT/CN2020/120232 CN2020120232W WO2021073459A1 WO 2021073459 A1 WO2021073459 A1 WO 2021073459A1 CN 2020120232 W CN2020120232 W CN 2020120232W WO 2021073459 A1 WO2021073459 A1 WO 2021073459A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting unit
emitting
extraction structure
emitting device
Prior art date
Application number
PCT/CN2020/120232
Other languages
English (en)
French (fr)
Inventor
任华进
顾辛艳
甄常刮
Original Assignee
纳晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳晶科技股份有限公司 filed Critical 纳晶科技股份有限公司
Priority to US17/769,342 priority Critical patent/US20240147764A1/en
Publication of WO2021073459A1 publication Critical patent/WO2021073459A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details

Definitions

  • This application relates to the field of optical technology, and specifically to a light emitting device.
  • Quantum dots Quantum dots are incorporated into traditional LCD backlight modules to introduce quantum dot TVs, thereby raising the color gamut of display devices to a higher level.
  • the burn-in phenomenon of the OLED in the prior art is serious, which essentially reflects the low lifespan of the OLED device, especially the blue sub-pixel has the fastest attenuation rate.
  • the area of the blue sub-pixel is generally designed to be 1.5 to 2 times the area of the red and green sub-pixels, etc.
  • the service life of the device is not significantly extended because the RGB sub-pixels
  • the luminous efficiency is not high enough, and is limited by the requirements of pixel density and algorithm rendering.
  • the area and arrangement of sub-pixels are not very variable, so the improvement space is very limited;
  • the main purpose of this application is to provide a light-emitting device to solve the problem of short life of the light-emitting device in the prior art.
  • a light emitting device which includes a substrate layer and a pixel isolation structure provided on a first surface of the substrate layer, and a plurality of mutually isolated sub-structures are formed between the pixel isolation structures.
  • the light-emitting device further includes: a plurality of light-emitting units arranged in the sub-pixel area one by one for emitting light of different wavelengths, the light-emitting units are electroluminescent devices, and the original external quantum efficiency of each light-emitting unit is different;
  • the light extraction structures are arranged one by one in at least part of the sub-pixel area, and are used to improve the external quantum efficiency of the corresponding light-emitting unit, so that the actual external quantum efficiency difference of each light-emitting unit is reduced.
  • each light-emitting unit is within ⁇ 15%.
  • the light-emitting unit with the highest original external quantum efficiency is defined as the first light-emitting unit
  • the light-emitting unit with the lowest original external quantum efficiency is the third light-emitting unit
  • the original external quantum efficiency is between the first light-emitting unit and the third light-emitting unit.
  • the light-emitting unit is the second light-emitting unit;
  • the multiple light-emitting units correspond to the multiple light-extracting structures one-to-one, and the external quantum efficiency improvement ratio of the light-extracting structure to the first light-emitting unit is X 1 , and the light-extracting structure is external to the second light-emitting unit.
  • the quantum efficiency improvement ratio is X 2
  • the external quantum efficiency improvement ratio of the light extraction structure to the third light-emitting unit is X 3 , X 1 , X 2 and X 3 are not equal
  • n is selected from any natural number from 1 to 3
  • Q 1 is the original external quantum efficiency of the corresponding light-emitting unit
  • Q 2 is the actual external quantum efficiency of the corresponding light-emitting unit.
  • the light extraction structure is a light scattering layer with scattering particles, and the light scattering layers corresponding to the first light emitting unit, the second light emitting unit, and the third light emitting unit are different.
  • the D50 of the scattering particles in the light scattering layer is different.
  • the D90 of the scattering particles in the light scattering layer is different.
  • the volume percentage of the scattering particles, the particle size of the scattering particles, and the refractive index of the scattering particles in each light extraction structure are the same, and the thickness of the light extraction structure corresponding to the first light-emitting unit is defined as H 1 , which is similar to that of the second light-emitting unit.
  • the thickness of the corresponding light extraction structure is H 2
  • the thickness of the light extraction structure corresponding to the third light-emitting unit is H 3
  • H 1 , H 2 and H 3 are not equal.
  • H 1, H 2 and H 3 in ascending order H 1 ⁇ 300nm, H 2 ⁇ 500nm , H 3 ⁇ 1000nm; or H 1, H 2 and H 3 in descending order, H 1 ⁇ 1500nm, H 2 ⁇ 1200nm , H 3 ⁇ 1000nm.
  • the light emitting device further includes a first intermediate layer, the first intermediate layer is disposed in the at least one sub-pixel area, and the first intermediate layer is located between the light emitting unit and the light extraction structure.
  • the thickness of the first intermediate layer is 100 nm to 1 ⁇ m.
  • the refractive index of the first intermediate layer is 1.65-2.
  • the light-emitting device further includes a packaging unit for packaging the light-emitting unit, the light-emitting device further includes a second intermediate layer, the second intermediate layer is disposed in at least one sub-pixel area, and the second intermediate layer is located in the light extraction structure and Between packaging units.
  • the thickness of the second intermediate layer is 20 nm to 150 nm.
  • the refractive index of the second intermediate layer is 1.5 to 1.8.
  • each light extraction structure the particle size of the scattering particles in each light extraction structure, and the refractive index of the scattering particles are all the same, and the volume percentage of the scattering particles in the light extraction structure corresponding to the first light-emitting unit is defined as V 1 .
  • the volume percentage of the scattering particles in the light extraction structure corresponding to the second light-emitting unit is V 2
  • the volume percentage of the scattering particles in the light extraction structure corresponding to the third light-emitting unit is V 1 , V 2 and V 3 are not equal ,
  • the thickness of the light extraction structure is any value from 300 to 800 nm, and the volume percentage of the scattering particles is 50 to 95%; or the thickness of the light extraction structure is any value from 800 to 1200 nm, and the volume percentage of the scattering particles is 35 ⁇ 50%; or the thickness of the light extraction structure is any value from 1200 to 1800 nm, and the volume percentage of the scattering particles is 10 to 35%.
  • each light extraction structure the thickness of each light extraction structure, the volume percentage of the scattering particles in each light extraction structure, and the particle size of the scattering particles are all the same, and the refractive index of the scattering particles in the light extraction structure corresponding to the first light-emitting unit is defined as K 1 .
  • the refractive index of the scattering particles in the light extraction structure corresponding to the second light-emitting unit is K 2
  • the refractive index of the scattering particles in the light extraction structure corresponding to the third light-emitting unit is K 3
  • K 1 , K 2 and K 3 are not equal ,
  • the refractive index of the scattering particles in each light extraction structure is 2 to 2.6.
  • H 1 , H 2 and H 3 increase sequentially, and H 3 ⁇ 1000 nm.
  • the actual external quantum efficiency of each corresponding light-emitting unit increases; or H 1 , H 2 and H 3 Decreasing in sequence, H 3 ⁇ 1000 nm, as the thickness of each light extraction structure decreases, the actual external quantum efficiency of each corresponding light-emitting unit increases.
  • the light-emitting device further includes a packaging unit for packaging the light-emitting unit, the light-emitting device further includes a third intermediate layer, the third intermediate layer is disposed above the at least one sub-pixel area, and the third intermediate layer is located in the light extraction structure and Between the packaging units, or the third intermediate layer is arranged between the at least one pixel isolation structure and the packaging unit, or the third intermediate layer is arranged above the at least one sub-pixel area and the at least one pixel isolation structure, and the third intermediate layer is located The packaging unit is close to the side of the first surface.
  • the at least one light extraction structure includes quantum dot particles, and the corresponding light-emitting unit is a blue electroluminescent device.
  • a light-emitting device including a light-emitting unit and a light extraction structure.
  • the light extraction structure corresponding to different light-emitting units can be differentiated, and the external quantum efficiency of different light-emitting units can be optimized, so that the final external quantum efficiency of different light-emitting units is close, realizing synchronous aging, and prolonging the use of the device. life.
  • the term D50 refers to the particle size when the cumulative particle size distribution percentage of the sample reaches 50% (that is, 50% of the particles in the sample are smaller than the particle size value).
  • D90 refers to the particle size when the cumulative particle size distribution percentage of the sample reaches 90% (that is, 90% of the particles in the sample are smaller than the particle size value).
  • the burn-in phenomenon of light-emitting devices such as OLEDs in the prior art is serious, which essentially reflects the current situation of low device life, especially the faster decay rate of the blue sub-pixels.
  • the inventor of the present application has studied the above problems and proposed a light-emitting device, including a substrate layer and a pixel isolation structure provided on the first surface of the substrate layer, and a plurality of mutually isolated sub-pixels are formed between the pixel isolation structures.
  • the light emitting device further includes a plurality of light emitting units and a plurality of light extraction structures.
  • the light emitting units are arranged one by one in the sub-pixel area for emitting light of different wavelengths; the light extraction structures are arranged one by one in at least part of the sub-pixel area. In the pixel area, it is used to improve the external quantum efficiency of the corresponding light-emitting unit, so that the actual external quantum efficiency difference of each light-emitting unit is reduced, so that the final external quantum efficiency of different light-emitting units is close.
  • the above-mentioned “at least partly” means that the light extraction structure may not be provided in 100% of all sub-pixel regions, and of course it also includes the case of 100%.
  • the light-emitting unit may be a single quantum dot electroluminescence device QLED, or a single organic electroluminescence device OLED, or a single other type of electroluminescence device, or a single electro-photoluminescence light-emitting device.
  • light-emitting units with the same light-emitting wavelength appear repeatedly in the light-emitting device, such as forming multiple identical red sub-pixels, multiple identical green sub-pixels, and multiple identical blue sub-pixels.
  • the at least one light extraction structure includes quantum dot particles, and the corresponding light-emitting unit is a blue electroluminescent device.
  • the efficiency loss caused by the conversion causes the final external quantum efficiency of the light-emitting unit to be appropriately reduced, so that the final external quantum efficiency of different light-emitting units is close.
  • the light extraction structure corresponding to different light-emitting units can be differentiated to optimize the external quantum efficiency of different light-emitting units, so that the final external quantum efficiency of different light-emitting units is close to , Realize synchronous aging and prolong the service life of the device.
  • the light extraction structure in the above-mentioned light-emitting device is arranged in at least part of the sub-pixel region.
  • the above-mentioned light-emitting unit may include a cathode layer, an electron injection layer, an electron transport layer, a light-emitting layer, and an air-emitting layer which are sequentially formed in the sub-pixel region from bottom to top.
  • the light extraction structure can be arranged on the light-emitting side of the light-emitting layer in the sub-pixel area, or on the non-light-emitting side, such as a side close to the cathode layer (ie, reflective electrode).
  • it is used to improve the roughness of the emitter electrode, such as causing some wave-shaped undulations, which can also play a role in improving the external quantum efficiency of the device.
  • the actual external quantum efficiency difference of each light-emitting unit is within ⁇ 15%.
  • the actual external quantum efficiency difference of each light-emitting unit (the actual external quantum efficiency of each light-emitting unit ⁇ the average value of the actual external quantum efficiencies of all light-emitting units) ⁇ the average value of the actual external quantum efficiencies of all light-emitting units.
  • the actual external quantum efficiency difference of each light-emitting unit is within ⁇ 30%.
  • the actual external quantum efficiency difference of each light-emitting unit is within ⁇ 10%.
  • the actual external quantum efficiency difference of each light-emitting unit is within ⁇ 5%.
  • the above-mentioned light-emitting device includes light-emitting units with three or more peak emission wavelengths.
  • the original when no light extraction structure is provided
  • the light-emitting unit with the highest external quantum efficiency is defined as the first light-emitting unit
  • the light-emitting unit with the lowest original external quantum efficiency is the third light-emitting unit.
  • the light-emitting unit whose quantum efficiency is between the first light-emitting unit and the third light-emitting unit is the second light-emitting unit; multiple light-emitting units correspond to multiple light extraction structures one to one, and the external quantum efficiency of the light extraction structure to the first light-emitting unit
  • the improvement ratio is X 1
  • the external quantum efficiency improvement ratio of the light extraction structure to the second light-emitting unit is X 2
  • the external quantum efficiency improvement ratio of the light extraction structure to the third light-emitting unit is X 3 , X 1 , X 2 , X 3 Not equal
  • n is selected from any natural number from 1 to 3 (ie X 1 , X 2 , X 3 )
  • Q 1 is the original external quantum efficiency of the corresponding light-emitting unit
  • Q 2 is the actual external quantum efficiency of the corresponding light-emitting unit.
  • the lift-up ratio means that the light-emitting device keeps other conditions unchanged, and only increases the external quantum
  • X 1 0, X 2 >0, and X 3 >0.
  • X 3 ⁇ 3.
  • the light extraction structure corresponding to three different wavelengths of light can be differentiated, so that the external quantum efficiency of the light-emitting unit with the lowest original external quantum efficiency can be optimized, and at the same time, the external quantum efficiency of the light-emitting unit with the original external quantum efficiency can be adjusted slightly higher.
  • the increase ratio of the external quantum efficiency of the other two groups of light-emitting units brings the final external quantum efficiencies of the three light-emitting units close to achieve synchronous aging and prolong the service life of the light-emitting device.
  • the light extraction structure improves the external quantum efficiency of the third light-emitting unit by the highest ratio X 3 , and X 3 is preferably 1.5 to 3, but is not limited to this; the light extraction structure improves the external quantum efficiency of the first light-emitting unit
  • the ratio X 1 and the external quantum efficiency improvement ratio X 2 for the second light-emitting unit are both lower than X 3 .
  • the external quantum efficiency improvement ratio X 1 of the first light-emitting unit is less than or equal to 2
  • the external quantum efficiency improvement ratio X 2 of the second light-emitting unit is 1 to 2.5 (X 2 being 1 means the actual external quantum efficiency The efficiency is 200% of the original external quantum efficiency).
  • the first light-emitting unit such as emitting red light
  • the second light-emitting unit such as emitting green light
  • the third light-emitting unit such as emitting blue light
  • the first light-emitting unit may be a light-emitting unit that emits red light in the light-emitting device
  • the second light-emitting unit may be a light-emitting unit that emits green light in the light-emitting device
  • the third light-emitting unit may be a light-emitting device that emits blue light.
  • the light-emitting unit in general, the original external quantum efficiency of the first light-emitting unit that emits red light, the second light-emitting unit that emits green light, and the third light-emitting unit that emits blue light in the light-emitting device decreases sequentially, but in special cases, they are mutually exclusive. The inter-efficiency may be closer or surpass.
  • the above-mentioned light-emitting device can be an RGB (red, green, blue) light-emitting device or an RGBW (red, green, blue, and white) light-emitting device.
  • RGB red, green, blue
  • RGBW red, green, blue, and white
  • the promotion ratio needs to be increased sequentially; but in some atypical cases, the red light-emitting unit (which can be the first in this application)
  • the original external quantum efficiency of a light-emitting unit is not so high, so the light extraction structure to its external quantum efficiency improvement ratio may be increased, and even needs to exceed the light extraction structure to the green light-emitting unit (which can be the third in this application).
  • the external quantum efficiency of the light-emitting unit Since the original external quantum efficiencies of the three light-emitting units corresponding to RGB in the RGB light-emitting device are sequentially reduced, the promotion ratio needs to be increased sequentially; but in some atypical cases, the red light-emitting unit (which can be the first in this application)
  • the original external quantum efficiency of a light-emitting unit) is not so high, so the light extraction structure to its external quantum efficiency improvement ratio may be increased, and even needs to exceed the light extraction structure to the green light-emitting unit (which can be the third in this application).
  • the light extraction structure in order to use the light extraction structure to adjust the external quantum efficiency improvement ratio of the light emitting unit, the light extraction structure may be a light scattering layer with scattering particles, and the first light emitting unit, the second light emitting unit, and the third light emitting unit The light scattering layer corresponding to the unit is different.
  • the D50 of the scattering particles in the light scattering layer is in the range of 150 to 350 nm, preferably in the range of 220 to 245 nm; in some embodiments, the D90 of the scattering particles in the light scattering layer is in the range of 150 to 350 nm. Within the range of 350nm, preferably within the range of 220-245nm.
  • the scattering particles in the light extraction structure include, but are not limited to, one or more of zinc oxide, aluminum oxide, zirconium oxide, and titanium oxide.
  • Other raw materials for forming the light extraction structure may also include various auxiliary materials. One or more of agents, polymers and curable glues, etc.
  • the refractive index of the above-mentioned other raw materials is different from the refractive index of the scattering particles, and it is preferable that the refractive index of the other raw materials and the scattering particles have a larger difference in refractive index. value.
  • the aforementioned raw materials can be used to form the aforementioned light extraction structure through processes such as inkjet printing, screen printing, spray coating, or slit coating.
  • the inkjet printing process can adjust the thickness of the light extraction structure by adjusting the amount of printing material; the screen printing process can achieve the difference in the amount of printing material by adjusting the proportion of screen openings, and then obtain light extraction structures with different thicknesses.
  • the thickness of the light extraction structure with scattering particles is adjusted to achieve the adjustment of the external quantum efficiency improvement ratio of the light-emitting unit.
  • the volume percentage of the scattering particles in each light extraction structure is kept the same.
  • the thickness of the light extraction structure corresponding to the first light-emitting unit is defined as H 1
  • the thickness of the light extraction structure corresponding to the second light-emitting unit is H 2 , which is the same as that of the third light-emitting unit
  • the thickness of the corresponding light extraction structure is H 3 , and H 1 , H 2 and H 3 are not equal.
  • volume percentage mentioned in this application is not absolutely the same. It can be understood that the volume percentage of the scattering particles in each light extraction structure may have an allowable error within the range of ⁇ 10%; for the same reason, the volume percentage mentioned in this application
  • the same particle size and the same refractive index mentioned are not absolutely the same.
  • the particle size of each scattering particle may have an allowable error within ⁇ 10%, and the refractive index of each scattering particle may have an allowable error within ⁇ 10%.
  • the volume percentage mentioned in this application is obtained by measuring the light extraction structure after drying or curing.
  • the scattering particles in each light extraction structure need to have the same size distribution.
  • the ink forming each light extraction structure includes A, B, and C.
  • 6 and the solid content of the ink is 12wt% to prepare a light extraction structure with a thickness of 500nm.
  • H 1 , H 2 and H 3 are sequentially increased.
  • H 1 ⁇ 300 nm, H 2 ⁇ 500 nm, H 3 ⁇ 1000 nm; or, H 1 , H 2 and H 3 decrease sequentially, preferably, H 1 ⁇ 1500 nm, H 2 ⁇ 1200 nm, and H 3 ⁇ 1000 nm.
  • H 1 , H 2, and H 3 increase sequentially, and H 3 ⁇ 1000 nm.
  • the actual external quantum efficiency of each corresponding light-emitting unit increases; or, H 1 , H 2 and H 3 decrease successively, and H 3 ⁇ 1000 nm.
  • the actual external quantum efficiency of each corresponding light-emitting unit increases. That is, within the particle size range of the aforementioned scattering particles in the present application, the closer the thickness of each light extraction structure is to 1000 nm, the higher the actual external quantum efficiency of each corresponding light-emitting unit.
  • the light-emitting device of the present application may further include a first intermediate layer, the first intermediate layer is disposed in at least one sub-pixel area, and the first intermediate layer is located between the light-emitting unit and the light extraction structure.
  • the thickness of the first intermediate layer is 100 nm ⁇ 1 ⁇ m, and the refractive index is preferably 1.65 ⁇ 2.
  • the first intermediate layer can isolate the top electrode layer so that it does not contact the light extraction structure, thereby protecting the top electrode from corrosion and other influences.
  • the first intermediate layer in the present application is located between the light-emitting unit and the light extraction structure, and only a part of the first intermediate layer can be located between the light-emitting unit and the light extraction structure, and another part of the first intermediate layer can be located in the pixel isolation. Above the structure.
  • the introduction of the first intermediate layer can also make the top of each light-emitting unit have a suitable height, which can be compatible with different light extraction structure thickness settings, which is convenient to simplify the construction process; for example, when spraying or slit coating technology is used
  • the first intermediate layer can be used to raise the light-emitting surface of the light-emitting unit to varying degrees, and the light extraction structure is reserved. Height, when the light extraction structure is made on the whole surface, under the action of gravity, each sub-pixel area is filled up.
  • the thickness of the light extraction structure corresponding to the first light-emitting unit, the second light-emitting unit, and the third light-emitting unit are respectively 300 nm, 500 nm, and 1000 nm.
  • the thickness of each light-emitting unit is 200nm, so the first intermediate layer with thickness of 1000nm, 800nm and 300nm can be introduced on the first light-emitting unit, the second light-emitting unit and the third light-emitting unit respectively, and then the whole surface coating process is adopted.
  • the pixel isolation structure have a shape similar to a spire, or make the pixel isolation structure have a lower surface energy, so that the raw material forming the light extraction structure can slowly settle into the sub-pixel area without adhering to the pixel. Isolate the structure.
  • the light-emitting device of the present application may further include an encapsulation unit, and the packaging unit is used to package the light-emitting unit.
  • the light-emitting device of the present application may include a second intermediate layer, and the second intermediate layer is disposed in at least one sub-pixel area. , And the second intermediate layer is located between the light extraction structure and the packaging unit.
  • the thickness of the second intermediate layer is 20 nm to 150 nm, and the refractive index is preferably 1.5 to 1.8. Since the light extraction structure is generally a particle-based structure, the particles may partially "float" on the top surface of the light extraction structure.
  • the uneven interface is not conducive to the tight combination of the packaging unit and the light extraction structure.
  • the intermediate layer is arranged on the side of the light extraction structure away from the light emitting layer, it can play a role of a flat light extraction structure, improve the tightness of the packaging unit on the surface of the device, and improve the packaging effect.
  • the light-emitting device of the present application further includes an encapsulation unit for encapsulating the light-emitting unit, the light-emitting device further includes a third intermediate layer, the third intermediate layer is disposed above at least one sub-pixel area, and the third intermediate layer The layer is located between the light extraction structure and the packaging unit, or the third intermediate layer is located between the at least one pixel isolation structure and the packaging unit, or the third intermediate layer is located above the at least one sub-pixel area and the at least one pixel isolation structure, And the third intermediate layer is located on the side of the packaging unit close to the first surface.
  • the thickness of the third intermediate layer is 20 nm to 150 nm, and the refractive index is preferably 1.5 to 1.8.
  • the particles may partially "float" on the top surface of the light extraction structure.
  • the uneven interface is not conducive to the tight combination of the packaging unit and the light extraction structure.
  • the intermediate layer is arranged on the side of the light extraction structure away from the light emitting layer, it can play a role of a flat light extraction structure, improve the tightness of the packaging unit on the surface of the device, and improve the packaging effect.
  • the first intermediate layer and the second intermediate layer can be independently selected from various metal oxides.
  • the transmittance of the above-mentioned material in the visible light region is greater than 80%, more preferably not less than 90%.
  • the materials of the first intermediate layer, the second intermediate layer and the third intermediate layer can be independently selected from zinc oxide or zinc oxide doped with various metals, and the doping metal can be one or more of Mg, Al, etc.
  • the material of the first intermediate layer, the second intermediate layer and the third intermediate layer can also be ITO or molybdenum oxide, etc., and UV monomers and their mixtures can also be used to realize the first intermediate layer and the second intermediate layer by curing And the production of the third intermediate layer.
  • the volume percentage of the scattering particles in the light extraction structure is used to adjust the external quantum efficiency improvement ratio of the light-emitting unit.
  • the thickness of each light extraction structure and the thickness of the scattering particles in each light extraction structure are maintained.
  • the particle size and the refractive index of the scattering particles are the same, and the volume percentage of the scattering particles in the light extraction structure corresponding to the first light-emitting unit is defined as V 1 , and the volume percentage of the scattering particles in the light extraction structure corresponding to the second light-emitting unit is V 2 ,
  • the volume percentage of the scattering particles in the light extraction structure corresponding to the third light-emitting unit is V 3 , and V 1 , V 2 and V 3 are not equal.
  • the same thickness mentioned in this application is not absolutely the same, and it can be understood that the thickness of each light extraction structure may have an allowable error within a range of ⁇ 10%.
  • the thickness of the light extraction structure is inversely proportional to the volume percentage of the scattering particles therein.
  • the thickness of the light extraction structure is 300
  • the specific value in ⁇ 800nm the volume percentage of the scattering particles is 50-95%
  • the thickness of the light extraction structure is a specific value in 800 ⁇ 1200nm
  • the volume percentage of the scattering particles is 35-50%
  • the thickness of is a specific value in the range of 1200 to 1800 nm
  • the volume percentage of the scattering particles is 10 to 35%.
  • the refractive index of the scattering particles in the light extraction structure is adjusted to adjust the external quantum efficiency improvement ratio of the light-emitting unit.
  • the thickness of each light extraction structure is maintained, and the scattering particles in each light extraction structure are maintained.
  • the volume percentage and the particle size of the scattering particles are the same.
  • the refractive index of the scattering particles in the light extraction structure corresponding to the first light-emitting unit is defined as K 1
  • the refractive index of the scattering particles in the light extraction structure corresponding to the second light-emitting unit is K 2.
  • the refractive index of the scattering particles in the light extraction structure corresponding to the third light-emitting unit is K 3 , and K 1 , K 2 and K 3 are not equal.
  • K 3 > K 2 > K 1 ; in some embodiments, the refractive index of the scattering particles is 2 to 2.6.
  • each light-emitting unit may include a bottom electrode layer, an electroluminescent layer group, and a top electrode layer arranged in order from bottom to top.
  • the electroluminescent layer group has a light-emitting layer, and the light extraction structure is arranged on the top of the sub-pixel area.
  • the side of the electrode layer away from the electroluminescent layer group or the side of the bottom electrode layer away from the electroluminescent layer group is arranged.
  • the above-mentioned electroluminescent layer group may include a bottom electrode layer and a first injection layer, a first transmission layer, a light emitting layer, a second injection layer, a second transmission layer, and a top electrode layer sequentially disposed on the bottom electrode layer.
  • the above-mentioned light-emitting device may be a top-emission OLED or a top-emission QLED device.
  • the above-mentioned light-emitting device is a display device.
  • the first injection layer is a hole injection layer
  • the first transport layer is a hole transport layer
  • the second injection layer is an electron injection layer
  • the second transport layer is an electron transport layer.
  • the light-emitting device provided in the present application will be further described below in conjunction with examples and comparative examples.
  • the light-emitting device includes a substrate layer and a pixel isolation structure arranged on the first surface of the substrate layer.
  • the pixel isolation structures have 96 ⁇ 3 ⁇ 64 mutually isolated sub-pixel regions with a pixel density of 100 ppi.
  • the driving mode is active driving AM (independent control, the device can independently light up the red, blue, and green sub-pixels).
  • the above-mentioned light-emitting device further includes a plurality of light-emitting units and a plurality of light extraction structures.
  • the light-emitting units are arranged in the sub-pixel area in a one-to-one correspondence. Among them, the first light-emitting unit that emits red light, the second light-emitting unit that emits green light, and the emission The number of third light emitting units of blue light is the same.
  • the above-mentioned light-emitting unit includes a cathode layer, an electron injection layer, an electron transport layer, a light-emitting layer, a hole transport layer, a hole injection layer, and an anode layer which are sequentially formed in the sub-pixel area from bottom to top.
  • the material of the cathode electrode layer is Ag
  • the material forming the electron injection/transport layer is zinc oxide
  • the material forming the hole injection layer is polyethylene dioxythiophene: polystyrene sulfonate
  • the material forming the hole transport layer is polyvinyl carbazole
  • the anode electrode The layer is an ITO anode.
  • the light-emitting layer in the first light-emitting unit is formed by drying quantum dot ink including red quantum dots and solvent.
  • the red quantum dots are CdSe/ZnS
  • the light-emitting layer in the third light-emitting unit is composed of blue quantum dots.
  • the quantum dot ink of dots and solvent is formed after drying, wherein the blue quantum dot is CdZnS/ZnS
  • the light-emitting layer in the second light-emitting unit is formed by drying the quantum dot ink including green quantum dots and solvent, among which, the green quantum dot It is CdSe/CdS.
  • the above-mentioned multiple light extraction structures correspond to the light-emitting layer one-to-one, and are located on the upper surface of the light-emitting unit, consisting of 5wt% of 6108 polymer UV glue, 1wt% of solsperse 32000 dispersant and 50.4 by weight
  • the weight percent of the scattering particles and the remaining solvent are blended and cured.
  • the volume percentage of the scattering particles in each light extraction structure is 60%.
  • the scattering particles in each light extraction structure are all zinc oxide, and the refractive index is 2.0 and each light extraction
  • the particle size of the scattering particles in the structure is the same, and the D50 is 150nm
  • the thickness of the light extraction structure corresponding to the first light-emitting unit is H 1
  • the thickness of the light extraction structure corresponding to the second light-emitting unit is H 2 , which is the same as that of the third light-emitting unit.
  • the thickness of the light extraction structure corresponding to the unit is H 3
  • the D50 of the scattering particles is 245 nm.
  • the D90 of the scattering particles is 150 nm.
  • the D90 of the scattering particles is 245 nm.
  • each light extraction structure is 600nm
  • the scattering particles in each light extraction structure are zinc oxide
  • the refractive index is 2.0
  • the particle size of the scattering particles in each light extraction structure is the same
  • the D50 is 150nm, which is the same as that of the first light-emitting unit
  • the volume percentage of the scattering particles in the corresponding light extraction structure is V 1
  • the volume percentage of the scattering particles in the light extraction structure corresponding to the second light-emitting unit is V 2
  • each light extraction structure is 600nm, the volume percentage of scattering particles in each light extraction structure is 60%, and the size of the scattering particles in each light extraction structure is the same, and the D50 is 150nm, which corresponds to the first light-emitting unit
  • the refractive index of the scattering particles in the light extraction structure is K 1
  • the refractive index of the scattering particles in the light extraction structure corresponding to the second light-emitting unit is K 2
  • the light-emitting device does not have a light extraction structure.
  • Each light extraction structure is formed by blending and curing of 5wt% of 6108 type UV glue, 1wt% of solsperse32000 type dispersant and 50.4wt% of scattering particles.
  • the thickness is 600nm.
  • Each light extracts The volume percentage of the scattering particles in the structure is 60%, the scattering particles in each light extraction structure are all zinc oxide, the refractive index is 2.0, and the particle size of the scattering particles in each light extraction structure is the same, and the D50 is 150 nm.
  • Keithley 2400 was used to measure the current density-voltage curve of the light-emitting device, and the integrating sphere (FOIS-1) combined with the Ocean Optics spectrometer (QE-pro) was used to measure the brightness of the light-emitting device. Calculate the external quantum efficiency of the light-emitting device based on the measured current density and brightness.
  • the light-emitting devices in the above-mentioned Examples 1-12 and Comparative Examples 1-2 were individually lit RGB sub-pixels to test their external quantum efficiency, and the external quantum efficiency was tested under a white field of 1000nit (the white field of 1000nit was composed of 300nit red light and 600nit respectively).
  • the green light and 100nit blue light) are aged for 5000h, and then the RGB sub-pixels are individually lit to test the efficiency values after aging.
  • the test results are shown in the following table.
  • the attenuation ratio of the external quantum efficiency of the RGB sub-pixels in Comparative Example 2 is lower than that of Comparative Example 1), but because The efficiency improvement ratio of almost the same magnification increases the absolute value difference of the external quantum efficiency between the RGB sub-pixels, and the difference in the attenuation degree also further increases.
  • Examples 1-12 a differentiated light extraction structure was added to the device.
  • the external quantum efficiency of red light was increased by about 0.5 times
  • the external quantum efficiency of green light was increased by about 1 time
  • the external quantum efficiency of blue light was increased by about 2 times.
  • the external quantum efficiency of the final light-emitting device is relatively close. After 5000h of aging, the attenuation ratio of the external quantum efficiency of the light-emitting device is also relatively close, and the effect of synchronous aging is basically realized.
  • the external quantum efficiency attenuation is 70% as the product qualification limit
  • the external quantum efficiency of the RGB sub-pixels in Comparative Example 2 is relatively high (especially the red sub-pixel)
  • the increase in the external quantum efficiency of the blue sub-pixel is not enough, and the attenuation ratio
  • the threshold of 70% is exceeded; and, although the external quantum efficiency of the red sub-pixel has only attenuated by 10%, it is already a substandard product for the entire display screen; and for Examples 1-12, the RGB sub-pixel
  • the respective attenuation ratios of the external quantum efficiency are approximately 80%, which is quite a long distance from the 70% threshold, and the service life of the light-emitting device is greatly extended.
  • the light extraction structure corresponding to different light-emitting units can be differentiated to optimize the external quantum efficiency of different light-emitting units, so that the final external quantum efficiencies of different light-emitting units are close, realize synchronous aging, and extend the use of the device. life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供了一种发光装置。该发光装置包括基材层以及设置于基材层的第一表面的像素隔离结构,像素隔离结构之间形成多个相互隔离的子像素区域,发光装置还包括:多个发光单元,一一设置于子像素区域中,用于发出不同波长的光,发光单元为电致发光器件,各发光单元的原始外量子效率具有差异;多个光提取结构,一一设置于至少部分子像素区域中,用于提高对应的发光单元的外量子效率,使得各发光单元的实际外量子效率差异减少。上述发光装置中通过将对应于不同发光单元的光提取结构差异化设置,能够对不同发光单元的外量子效率进行优化,使不同发光单元最终的外量子效率接近,实现同步老化,延长装置的使用寿命。

Description

发光装置
本申请要求于2019年10月16日提交中国专利局、申请号为201910984674.2、申请名称“发光装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学技术领域,具体而言,涉及一种发光装置。
背景技术
随着科学技术的发展,轻薄、响应速度快、色彩鲜艳的OLED(有机发光二极管)显示设备逐渐受到人们的关注,导致传统的LCD(液晶显示器)的市场受到威胁,因此各大制造商纷纷引入量子点(quantum dots)至传统的LCD的背光模组中以推出量子点电视,从而将显示设备的色域提升至更高水准。
现有技术中OLED烧屏现象严重,本质上体现了OLED装置寿命低的现状,尤其是蓝色子像素的衰减速率最快。
为了解决上述“蓝色子像素发光效率低且衰减速率快的现状”的技术问题,现有技术中普遍采用以下手段,但发明人认为仍然存在问题。
1、增大蓝色子像素面积:例如,一般将蓝色子像素面积设计成红、绿子像素面积的1.5~2倍等,但装置的使用寿命延长不太显著,原因在于RGB子像素的发光效率不够高,且受限于像素密度和算法渲染等要求,子像素的面积与排布的可变动性不大,因此改善空间非常有限;
2、施加相同光提取结构提升发光装置发光效率,蓝色子像素的衰减相对更快,发光装置色彩呈现会受到很大影响。
发明内容
本申请的主要目的在于提供一种发光装置,以解决现有技术中发光装置寿命较短的问题。
为了实现上述目的,根据本申请的一个方面,提供了一种发光装置,包括基材层以及设置于基材层的第一表面的像素隔离结构,像素隔离结构之间形成多个相互隔离的子像素区域,发光装置还包括:多个发光单元,一一设置于子像素区域中,用于发出不同波长的光,发光单元为电致发光器件,各发光单元的原始外量子效率具有差异;多个光提取结构,一一设置于至少部分子像素区域中,用于提高对应的发光单元的外量子效率,使得各发光单元的实际外量子效率差异减少。
进一步地,各发光单元的实际外量子效率差异在±15%以内。
进一步地,定义原始外量子效率最高的发光单元为第一发光单元,原始外量子效率最低的发光单元为第三发光单元,原始外量子效率介于第一发光单元和第三发光单元之间的发光单元为第二发光单元;多个发光单元和多个光提取结构一一对应,光提取结构对第一发光单元的外量子效率提升比为X 1,光提取结构对第二发光单元的外量子效率提升比为X 2,光提取结构对第三发光单元的外量子效率提升比为X 3,X 1、X 2和X 3不相等,定义
Figure PCTCN2020120232-appb-000001
其中,n选自1~3中的任一个自然数,Q 1为对应发光单元的原始外量子效率,Q 2为对应发光单元的实际外量子效率。
进一步地,X 3>X 2>X 1,优选地,X 3≤3。
进一步地,光提取结构为具有散射粒子的光散射层,第一发光单元、第二发光单元和第三发光单元对应的光散射层不同。
进一步地,光散射层中散射粒子的D50不同。
进一步地,在150~350nm范围之内,优选在220~245nm范围之内。
进一步地,光散射层中散射粒子的D90不同。
进一步地,在150~350nm范围之内,优选在220~245nm范围之内。
进一步地,各光提取结构中散射粒子的体积百分比、散射粒子的粒径以及散射粒子的折光指数均相同,定义与第一发光单元对应的光提取结构的厚度为H 1,与第二发光单元对应的光提取结构的厚度为H 2,与第三发光单元对应的光提取结构的厚度为H 3,H 1、H 2和H 3不相等。
进一步地,H 1、H 2和H 3依次递增,H 1≤300nm,H 2≤500nm,H 3≤1000nm;或H 1、H 2和H 3依次递减,H 1≥1500nm,H 2≥1200nm,H 3≥1000nm。
进一步地,发光装置还包括第一中间层,第一中间层设置于至少一个子像素区域中,且第一中间层位于发光单元和光提取结构的之间。
进一步地,第一中间层的厚度为100nm~1μm。
进一步地,第一中间层的折光指数为1.65~2。
进一步地,发光装置还包括封装单元,封装单元用于封装发光单元,发光装置还包括第二中间层,第二中间层设置于至少一个子像素区域中,且第二中间层位于光提取结构和封装单元的之间。
进一步地,第二中间层的厚度为20nm~150nm。
进一步地,第二中间层的折光指数为1.5~1.8。
进一步地,各光提取结构的厚度、各光提取结构中散射粒子的粒径以及散射粒子的折光指数均相同,定义与第一发光单元对应的光提取结构中散射粒子的体积百分比为V 1,与第二发光单元对应的光提取结构中散射粒子的体积百分比为V 2,与第三发光单元对应的光提取结构中散射粒子的体积百分比为V 3,V 1、V 2和V 3不相等,优选V 3>V 2>V 1
进一步地,光提取结构的厚度为300~800nm中的任意值,散射粒子的体积百分比为50~95%;或光提取结构的厚度为800~1200nm中的任意值,散射粒子的体积百分比为35~50%;或光提取结构的厚度为1200~1800nm中的任意值,散射粒子的体积百分比为10~35%。
进一步地,各光提取结构的厚度、各光提取结构中散射粒子的体积百分比以及散射粒子的粒径均相同,定义与第一发光单元对应的光提取结构中散射粒子的折光指数为K 1,与第二发光单元对应的光提取结构中散射粒子的折光指数为K 2,与第三发光单元对应的光提取结构中散射粒子的折光指数为K 3,K 1、K 2和K 3不相等,优选K 3>K 2>K 1
进一步地,各光提取结构中散射粒子的折光指数为2~2.6。
进一步地,H 1、H 2和H 3依次递增,H 3≤1000nm,随着各光提取结构的厚度增加,对应的各发光单元的实际外量子效率增加;或H 1、H 2和H 3依次递减,H 3≥1000nm,随着各光提取结构的厚度减小,对应的各发光单元的实际外量子效率增加。
进一步地,发光装置还包括封装单元,封装单元用于封装发光单元,发光装置还包括第三中间层,第三中间层设置于至少一个子像素区域上方,且第三中间层位于光提取结构和封装单元之间,或第三中间层设置于至少一个像素隔离结构与封装单元之间,或第三中间层设置于至少一个子像素区域上方以及至少一个像素隔离结构上方,且第三中间层位于封装单元靠近第一表面的一侧。
进一步地,至少一个光提取结构包括量子点颗粒,对应的发光单元为蓝色电致发光器件。
应用本申请的技术方案,即提供了一种包括发光单元和光提取结构的发光装置,发光单元为多个,用于发出不同颜色的光,光提取结构为多个,一一设置于至少部分子像素区域中,用于提高对应的发光单元的外量子效率,使得各个发光单元实际的外量子效率差异减少。上述发光装置中通过将对应于不同发光单元的光提取结构差异化设置,能够对不同发光单元的外量子效率进行优化,使不同发光单元最终的外量子效率接近,实现同步老化,延长装置的使用寿命。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本申请。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的 实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请中,术语D50是指样品的累计粒度分布百分数达到50%时所对应的粒径(即样品中50%的粒子小于该粒径值)。术语D90是指样品的累计粒度分布百分数达到90%时所对应的粒径(即样品中90%的粒子小于该粒径值)。
正如背景技术中所介绍的,现有技术中OLED等发光装置烧屏现象严重,本质上体现了装置寿命低的现状,尤其是蓝色子像素的衰减速率更快。本申请的发明人针对上述问题进行研究,提出了一种发光装置,包括基材层以及设置于基材层的第一表面的像素隔离结构,像素隔离结构之间形成多个相互隔离的子像素区域,该发光装置还包括多个发光单元以及多个光提取结构,上述发光单元一一设置于子像素区域中,用于发出不同波长的光;上述各光提取结构一一设置于至少部分子像素区域中,用于提高对应的发光单元的外量子效率,使得各个发光单元实际的外量子效率差异减少,以致不同发光单元最终的外量子效率接近。上述“至少部分”的意思是所有子像素区域中可以并非100%均设置光提取结构,当然也包括100%的情形。
在一些实施例中,发光单元可以为单个量子点电致发光器件QLED,或者单个有机电致发光器件OLED,或者单个其他类的电致发光器件,或者单个电致-光致结合的发光器件。
在一些实施例中,相同发光波长的发光单元在发光装置中重复出现,如构成多个相同的红色子像素、多个相同的绿色子像素、多个相同的蓝色子像素。
在一些实施例中,至少一个光提取结构包括量子点颗粒,对应的发光单元为蓝色电致发光器件,通过含量子点颗粒的光提取结构与上述蓝色电致发光器件的结合,利用光致转化导致的效率折损,使得上述发光单元的最终外量子效率适当降低,以致不同发光单元最终的外量子效率接近。
在一些实施例中,本申请的上述发光装置中通过将对应于不同发光单元的光提取结构差异化设置,能够对不同发光单元的外量子效率进行优化,使不同发光单元最终的外量子效率接近,实现同步老化,延长装置的使用寿命。
上述发光装置中的光提取结构设置于至少部分子像素区域中,例如,上述发光单元可以包括由下至上顺序形成于子像素区域中的阴极层、电子注入层、电子传输层、发光层、空穴传输层、空穴注入层和阳极层,此时上述光提取结构可以设置于子像素区域中发光层的出光 侧,也可以设置于非出光侧,如靠近阴极层(即反射电极)的一侧,用于提高发射电极的粗糙度,如造成一些波浪形的起伏,也能够起到提升器件的外量子效率的作用。
在一些实施例中,本申请的发光装置中,各个发光单元的实际外量子效率差异在±15%以内。具体地,各个发光单元的实际外量子效率差异=(各个发光单元的实际外量子效率–全部发光单元的实际外量子效率的平均值)÷全部发光单元的实际外量子效率的平均值。
在一些实施例中,本申请的发光装置中,各个发光单元的实际外量子效率差异在±30%以内。
在一些实施例中,各个发光单元的实际外量子效率差异在±10%以内。
在一些实施例中,各个发光单元的实际外量子效率差异在±5%以内。
在一些实施例中,上述发光装置包括三种或者三种以上发光峰值波长的发光单元。
在一些实施例中,为了实现上述效果,定义原始(未设置光提取结构时)外量子效率最高的发光单元为第一发光单元,原始外量子效率最低的发光单元为第三发光单元,原始外量子效率介于第一发光单元和第三发光单元之间的发光单元为第二发光单元;多个发光单元和多个光提取结构一一对应,光提取结构对第一发光单元的外量子效率提升比为X 1,光提取结构对第二发光单元的外量子效率提升比为X 2,光提取结构对第三发光单元的外量子效率提升比为X 3,X 1、X 2、X 3不相等,定义
Figure PCTCN2020120232-appb-000002
其中,n选自1~3中的任一个自然数(即X 1、X 2、X 3),Q 1为对应发光单元的原始外量子效率,Q 2为对应发光单元的实际外量子效率。提升比指的是发光装置保持其他条件不变,仅增加设置光提取结构带来的外量子效率变化。
在一些实施例中,X 2=X 1=0,X 3>0。
在一些实施例中,X 1=0,X 2>0,X 3>0。
在一些实施例中,X 3>X 2>X 1
在一些实施例中,X 3≤3。
本申请的发光装置中通过将对应于三种不同波长光的光提取结构差异化设置,能够对原始外量子效率最低的发光单元的外量子效率进行优化,同时调节对原始外量子效率稍高的另两组发光单元的外量子效率的提升比例,使三种发光单元最终的外量子效率接近,实现同步老化,延长发光装置的使用寿命。
在一些实施例中,光提取结构对第三发光单元的外量子效率提升比X 3最高,X 3优选为1.5~3,但不限于此;光提取结构对第一发光单元的外量子效率提升比X 1以及对第二发光单元的外量子效率提升比X 2均低于X 3。在一些实施例中,对第一发光单元的外量子效率提升比X 1小于等于2,对第二发光单元的外量子效率提升比X 2为1~2.5(X 2为1是指实际外量子效率为200%的原始外量子效率)。通过将外量子效率提升比优化到上述范围内,能够通过光提 取结构使第一发光单元(如发射红光)、第二发光单元(如发射绿光)和第三发光单元(如发射蓝光)具有接近或相同的实际外量子效率。
在一些实施例中,第一发光单元可以为发光装置中发射红光的发光单元,第二发光单元可以为发光装置中发射绿光的发光单元,第三发光单元可以为发光装置中发射蓝光的发光单元,通常情况下,发光装置中发射红光的第一发光单元、发射绿光的第二发光单元和发射蓝光的第三发光单元的原始外量子效率依次递减,但特殊情况下,彼此之间效率可能会比较接近或者反超。上述发光装置可以为RGB(红绿蓝)发光装置,也可以为RGBW(红绿蓝白)发光装置,针对不同发光颜色的发光单元,设置有不同效率提取比例的光提取结构,使不同发光颜色的发光单元最终的外量子效率接近。
由于RGB发光装置中分别对应RGB的三种发光单元的原始外量子效率是依次降低,所以提升比例需要依次升高;但在某些非典型情况下,红色发光单元(可以为本申请中的第一发光单元)的原始外量子效率不那么高,那么光提取结构对于它的外量子效率提升比可能就要增加,甚至需要超过光提取结构对绿光发光单元(可以为本申请中的第三发光单元)的外量子效率提升比。
在一些实施例中,为了利用光提取结构实现对发光单元外量子效率提升比的调节,光提取结构可以为具有散射粒子的光散射层,且第一发光单元、第二发光单元和第三发光单元对应的光散射层不同。在一些实施例中,上述光散射层中散射粒子的D50在150~350nm范围之内,优选在220~245nm范围之内;在一些实施例中,上述光散射层中散射粒子的D90在150~350nm范围之内,优选在220~245nm范围之内。
在一些实施例中,光提取结构中的散射粒子包括但不限于氧化锌、氧化铝、氧化锆和氧化钛等中的一种或多种,形成光提取结构的其他原料还可以包括各类助剂、聚合物和可固化的胶等中的一种或多种,上述其他原料的折光指数不同于散射粒子的折光指数,优选其他原料和散射粒子的折光指数之间具有较大的折光指数差值。可以采用上述原料通过喷墨打印、丝网印刷、喷涂或狭缝涂布等工艺形成上述光提取结构。喷墨打印工艺可以通过调节打印材料的量来调节光提取结构的厚度;丝网印刷工艺可以通过调节丝网开口的占比来实现印刷材料量的差异,进而得到厚度不同的光提取结构。
在一些实施例中,通过调节具有散射粒子的上述光提取结构的厚度,以实现对发光单元外量子效率提升比的调节,此时,保持各光提取结构中散射粒子的体积百分比相同、散射粒子的粒径相同以及散射粒子的折光指数相同,定义与第一发光单元对应的光提取结构的厚度为H 1,与第二发光单元对应的光提取结构的厚度为H 2,与第三发光单元对应的光提取结构的厚度为H 3,H 1、H 2和H 3不相等。
需要注意的是,本申请中所提到的体积百分比相同并非绝对相同,可以理解为各光提取结构中散射粒子的体积百分比可以存在±10%范围以内的允许误差;同理,本申请中所提到的粒径相同和折光指数相同也并非绝对相同,各散射粒子的粒径可以存在±10%范围以内的允许 误差,各散射粒子的折光指数可以存在±10%范围以内的允许误差。另外,本申请中所提到的体积百分比是通过测量干燥后或固化后的光提取结构得到。
在一些实施例中,为了保证各光提取结构中散射粒子的体积百分比相同,需要使各光提取结构内的散射粒子具有一样的尺寸分布,此时,在上述光提取结构的制备工艺中,优选形成各光提取结构的墨水中各原料具有相同的质量比,但需要注意的是,形成各光提取结构的墨水可以具有不同的固含量,例如形成各光提取结构的墨水包括A、B、C三种原料,可以采用质量比A:B:C=1:2:3且固含量为6wt%的墨水制备厚度为500nm的光提取结构,也可以采用质量比A:B:C=2:4:6且固含量为12wt%的墨水制备具有500nm厚度的光提取结构。
在一些实施例中,为了通过光提取结构使第一发光单元、第二发光单元和第三发光单元具有接近或相同的外量子效率,H 1、H 2和H 3依次递增,优选地,H 1≤300nm,H 2≤500nm,H 3≤1000nm;或者,H 1、H 2和H 3依次递减,优选地,H 1≥1500nm,H 2≥1200nm,H 3≥1000nm。
在一些实施例中,H 1、H 2和H 3依次递增,H 3≤1000nm,随着各光提取结构的厚度增加,对应的各发光单元的实际外量子效率增加;或者,H 1、H 2和H 3依次递减,H 3≥1000nm,随着各光提取结构的厚度减小,对应的各发光单元的实际外量子效率增加。即,在本申请的上述散射粒子的粒径范围内,各光提取结构的厚度越接近1000nm,对应的各发光单元的实际外量子效率越高。
在一些实施例中,本申请的发光装置还可以包括第一中间层,第一中间层设置于至少一个子像素区域中,且第一中间层位于发光单元和光提取结构之间。在一些实施例中,第一中间层的厚度为100nm~1μm,折光指数优选为1.65~2。该第一中间层能够隔绝顶电极层,使其不与光提取结构接触,从而使顶电极免受腐蚀等影响。需要说明的是,本申请中第一中间层位于发光单元和光提取结构之间,可以仅是第一中间层的一部分位于发光单元和光提取结构之间,第一中间层的另一部分可以位于像素隔离结构上方。
另一方面,第一中间层的引入还可以使各发光单元的顶部具有合适的高度,从而能够兼容不同的光提取结构厚度设置,便于简化施工工艺;例如,当采用喷涂或者狭缝涂布工艺形成上述光提取结构时,由于上述工艺采用整面制作的方式,在制作光提取结构之前,可以先利用第一中间层把发光单元的出光面不同程度地垫高,预留下光提取结构的高度,整面制作光提取结构时,在重力作用下,把各个子像素区域填平。
在一些实施例中,假设像素隔离结构的高度为1.5μm,对应第一发光单元、第二发光单元和第三发光单元设置的光提取结构的厚度分别为300nm、500nm和1000nm,此时若三个发光单元的厚度均为200nm,那么可以先在第一发光单元、第二发光单元和第三发光单元上分别引入厚度为1000nm、800nm和300nm的第一中间层,然后采用整面涂布工艺(如喷涂工艺)形成上述光提取结构,由于在引入第一中间层后不同子像素区域中剩余的“容积”不同,液面会自动流平,干燥后即得到所需厚度的光提取结构;进一步地,还可以通过使像素隔离结构具 有类似尖顶的形状,或使像素隔离结构具有较低的表面能,使形成光提取结构的原料能够慢慢沉降到子像素区域内,不粘附在像素隔离结构上。
在一些实施例中,本申请的发光装置还可以包括封装单元,封装单元用于封装发光单元,此时本申请的发光装置可以包括第二中间层,第二中间层设置于至少一个子像素区域中,且第二中间层位于光提取结构和封装单元之间。在一些实施例中,第二中间层的厚度为20nm~150nm,折光指数优选为1.5~1.8。由于光提取结构一般是以粒子为主的结构,粒子可能部分“浮于”光提取结构顶端表面,封装单元施加上去后,凹凸不平的界面不利于封装单元与光提取结构紧密结合,当第二中间层设置于光提取结构远离发光层的一侧时,能够起到平坦光提取结构的作用,提升封装单元在装置表面的贴合紧密性,提升封装效果。
在一些实施例中,本申请的发光装置还包括封装单元,封装单元用于封装发光单元,发光装置还包括第三中间层,第三中间层设置于至少一个子像素区域上方,且第三中间层位于光提取结构和封装单元之间,或第三中间层设置于至少一个像素隔离结构与封装单元之间,或第三中间层设置于至少一个子像素区域上方以及至少一个像素隔离结构上方,且第三中间层位于封装单元靠近第一表面的一侧。在一些实施例中,第三中间层的厚度为20nm~150nm,折光指数优选为1.5~1.8。由于光提取结构一般是以粒子为主的结构,粒子可能部分“浮于”光提取结构顶端表面,封装单元施加上去后,凹凸不平的界面不利于封装单元与光提取结构紧密结合,当第三中间层设置于光提取结构远离发光层的一侧时,能够起到平坦光提取结构的作用,提升封装单元在装置表面的贴合紧密性,提升封装效果。
在一些实施例中,为了满足第一中间层(1.65~2)、第二中间层(1.5~1.8)和第三中间层(1.5~1.8)的折光指数,第一中间层、第二中间层和第三中间层的材料可以独立地选自各种金属氧化物,优选地,上述材料在可见光区域内透过率大于80%,更优选不小于90%。例如,第一中间层、第二中间层和第三中间层的材料可以独立地选自氧化锌或者各种金属掺杂的氧化锌,掺杂金属可以是Mg、Al等中的一种或多种,第一中间层、第二中间层和第三中间层的材料也可以是ITO或氧化钼等,还可以用UV单体及其混合物,通过固化来实现第一中间层、第二中间层和第三中间层的制作。
在另一些实施例中,通过光提取结构中散射粒子的体积百分比,以实现对发光单元外量子效率提升比的调节,此时,保持各光提取结构的厚度、各光提取结构中散射粒子的粒径以及散射粒子的折光指数相同,定义与第一发光单元对应的光提取结构中散射粒子的体积百分比为V 1,与第二发光单元对应的光提取结构中散射粒子的体积百分比为V 2,与第三发光单元对应的光提取结构中散射粒子的体积百分比为V 3,V 1、V 2和V 3不相等。在一些实施例中,V 3>V 2>V 1。需要注意的是,本申请中所提到的厚度相同也并非绝对相同,可以理解为各光提取结构的厚度可以存在±10%范围以内的允许误差。
在一些实施例中,为了避免光在经过光提取结构时反射率较高而导致的出光效果被抑制,光提取结构的厚度与其中散射粒子的体积百分比成反比,当光提取结构的厚度为300~800nm中的特定值时,散射粒子的体积百分比为50~95%;当光提取结构的厚度为800~1200nm中的 特定值时,散射粒子的体积百分比为35~50%;当光提取结构的厚度为1200~1800nm中的特定值时,散射粒子的体积百分比为10~35%。
在另一些实施例中,通过调节光提取结构中散射粒子的折光指数,以实现对发光单元外量子效率提升比的调节,此时,保持各光提取结构的厚度、各光提取结构中散射粒子的体积百分比以及散射粒子的粒径相同,定义与第一发光单元对应的光提取结构中散射粒子的折光指数为K 1,与第二发光单元对应的光提取结构中散射粒子的折光指数为K 2,与第三发光单元对应的光提取结构中散射粒子的折光指数为K 3,且K 1、K 2和K 3不相等。在一些实施例中,K 3>K 2>K 1;在一些实施例中,散射粒子的折光指数为2~2.6。
在一些实施例中,各发光单元可以包括由下至上顺序设置的底电极层、电致发光层组和顶电极层,电致发光层组具有发光层,光提取结构设置于子像素区域中顶电极层的远离电致发光层组的一侧或者设置于底电极层的远离电致发光组的一侧。在一些实施例中,上述电致发光层组可以包括底电极层以及顺序设置于底电极层上的第一注入层、第一传输层、发光层、第二注入层、第二传输层和顶电极层。上述发光装置可以为顶发射OLED或顶发射QLED装置。在一些实施例中,上述发光装置为显示装置。
在一些实施例中,在上述电致发光层组中,当底电极层为阳极层,顶电极层为阴极层时,第一注入层为空穴注入层,第一传输层为空穴传输层,第二注入层为电子注入层,第二传输层为电子传输层。而当底电极层为阴极层,顶电极层为阳极层时,第一注入层为电子注入层,第一传输层为电子传输层,第二注入层为空穴注入层,第二传输层为空穴传输层。
下面将结合实施例和对比例进一步说明本申请提供的发光装置。
实施例1
本实施例提供的发光装置包括基材层以及设置于基材层的第一表面的像素隔离结构,像素隔离结构之间具有96×3×64个相互隔离的子像素区域,像素密度为100ppi,驱动方式为有源驱动AM(独立控制,装置可独立点亮红色、蓝色、绿色子像素)。上述发光装置还包括多个发光单元以及多个光提取结构,发光单元一一对应地设置于子像素区域中,其中,发射红光的第一发光单元、发射绿光的第二发光单元以及发射蓝光的第三发光单元数量相同。
上述发光单元包括由下至上顺序形成于子像素区域中的阴极层、电子注入层、电子传输层、发光层、空穴传输层、空穴注入层和阳极层,形成阴极电极层的材料为Ag,形成电子注入/传输层的材料为氧化锌,形成空穴注入层的材料为聚乙烯二氧噻吩:聚苯乙烯磺酸盐,形成空穴传输层的材料为聚乙烯咔唑,且阳极电极层为ITO阳极,第一发光单元中的发光层由包括红色量子点和溶剂的量子点墨水干燥后形成,其中红色量子点为CdSe/ZnS,第三发光单元中的发光层由包括蓝色量子点和溶剂的量子点墨水干燥后形成,其中,蓝色量子点为CdZnS/ZnS,第二发光单元中的发光层由包括绿色量子点和溶剂的量子点墨水干燥后形成,其中,绿色量子点为CdSe/CdS。
上述多个光提取结构与发光层一一对应,并位于发光单元上表面,由重量百分比为5wt%的6108型聚合物UV胶、重量百分比为1wt%的solsperse 32000型分散剂以及重量百分比为50.4wt%散射粒子以及剩余的溶剂共混并固化后形成,各光提取结构中散射粒子的体积百分比均为60%,各光提取结构中散射粒子均为氧化锌,折光指数为2.0且各光提取结构中散射粒子的粒径相同,且D50为150nm,与第一发光单元对应的光提取结构的厚度为H 1,与第二发光单元对应的光提取结构的厚度为H 2,与第三发光单元对应的光提取结构的厚度为H 3,采用Dektak-XT台阶仪测试膜厚,H 1=300nm,H 2=500nm,H 3=1000nm。
实施例2
本实施例提供的发光装置与实施例1的区别在于:
散射粒子的D50为245nm。
实施例3
本实施例提供的发光装置与实施例1的区别在于:
散射粒子的D90为150nm。
实施例4
本实施例提供的发光装置与实施例1的区别在于:
散射粒子的D90为245nm。
实施例5
本实施例提供的发光装置与实施例1的区别在于:
H 1、H 2和H 3依次递增,H 1=300nm,H 2=400nm,H 3=500nm。
实施例6
本实施例提供的发光装置与实施例1的区别在于:
H 1、H 2和H 3依次递减,H 1=1500nm,H 2=1200nm,H 3=1000nm。
实施例7
本实施例提供的发光装置与实施例1的区别在于:
各光提取结构的厚度均为600nm,各光提取结构中散射粒子均为氧化锌,折光指数为2.0,且各光提取结构中散射粒子的粒径相同,且D50为150nm,与第一发光单元对应的光提取结构中散射粒子的体积百分比为V 1,与第二发光单元对应的光提取结构中散射粒子的体积百分比为V 2,与第三发光单元对应的光提取结构中散射粒子的体积百分比为V 3,V 3=95%,V 1=V 2=50%。
实施例8
本实施例提供的发光装置与实施例7的区别在于:
各光提取结构的厚度均为600nm,V 1=50%,V 2=70%,V 3=95%。
实施例9
本实施例提供的发光装置与实施例7的区别在于:
各光提取结构的厚度均为1000nm,V 1=35%,V 2=40%,V 3=50%。
实施例10
本实施例提供的发光装置与实施例7的区别在于:
各光提取结构的厚度均为1500nm,V 1=10%,V 2=20%,V 3=35%。
实施例11
本实施例提供的发光装置与实施例1的区别在于:
各光提取结构的厚度均为600nm,各光提取结构中散射粒子的体积百分比均为60%,且各光提取结构中散射粒子的粒径相同,且D50为150nm,与第一发光单元对应的光提取结构中散射粒子的折光指数为K 1,与第二发光单元对应的光提取结构中散射粒子的折光指数为K 2,与第三发光单元对应的光提取结构中散射粒子的折光指数为K 3,K 3=2.6,K 1=K 2=2;K 3=2.6的散射粒子为金红石型二氧化钛,K 1=K 2=2的散射粒子为氧化锌。
实施例12
本实施例提供的发光装置与实施例11的区别在于:
K 1=2,K 2=2.2,K 3=2.6;K 3=2.6的散射粒子为金红石型二氧化钛,K 1=2的散射粒子为氧化锌,K 2=2.2的散射粒子为氧化锆。
对比例1
本对比例提供的发光装置与实施例1的区别在于:
发光装置中不具有光提取结构。
对比例2
本对比例提供的发光装置与实施例1的区别在于:
各光提取结构由重量百分比为5wt%的6108型UV胶、重量百分比为1wt%的solsperse32000型分散剂以及重量百分比为50.4wt%散射粒子共混并固化后形成,厚度均为600nm,各 光提取结构中散射粒子的体积百分比均为60%,各光提取结构中散射粒子均为氧化锌,折光指数为2.0,且各光提取结构中散射粒子的粒径相同,且D50为150nm。
EQE(外量子效率)测试方法:
采用Keithley2400测定发光装置的电流密度-电压曲线,采用积分球(FOIS-1)结合海洋光学的光谱仪(QE-pro)测定发光装置的亮度。根据测定得到的电流密度与亮度计算发光装置的外量子效率。
对上述实施例1~12和对比例1~2中的发光装置分别单独点亮RGB子像素测试其外量子效率,并在1000nit的白场下(1000nit的白场分别由300nit的红光、600nit的绿光和100nit蓝光组成)老化5000h,之后再分别单独点亮RGB子像素,测试其老化后的效率值,测试结果如下表所示。
Figure PCTCN2020120232-appb-000003
从上表的测试数据可以看出,无光提取结构的对比例1中RGB子像素的衰减比例大致为50%、45%和30%,施加相同的光提取结构的对比例2中,RGB子像素的外量子效率均有一 倍以上的提升,老化相同时间后,RGB子像素的外量子效率的衰减比例大致为90%、80%和60%,由此可见,装置效率越高,相同亮度下衰减地越慢(对比例2的初始外量子效率是对比例1的一倍多,经过相同时间老化后,对比例2中RGB子像素的外量子效率衰减比例低于对比例1),但由于几乎相同倍率的效率提升比例,使得RGB子像素之间外量子效率的绝对值差距增加,衰减程度差异也进一步增大。
而实施例1~12中,在装置添加了差异化的光提取结构,红光的外量子效率约提升0.5倍,绿光的外量子效率约提升1倍,蓝光的外量子效率约提升了2倍,使得最终发光装置的外量子效率相对接近,经过5000h的老化后,发光装置的外量子效率的衰减比例也比较接近,基本实现了同步老化的效果。
假设以外量子效率衰减70%作为产品合格的界限,虽然对比例2中RGB子像素的外量子效率都比较高(尤其红色子像素),但蓝色子像素外量子效率提升的幅度不够,衰减比例超过了70%的阈值;并且,虽然红色子像素外量子效率只衰减了10%,但对整个显示屏来说,它已经属于不合格产品;而对于实施例1~12而言,RGB子像素各自的外量子效率衰减比例都近似80%左右,离70%的阈值还有相当长的距离,发光装置使用寿命大大延长。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:
上述发光装置中通过将对应于不同发光单元的光提取结构差异化设置,能够对不同发光单元的外量子效率进行优化,使不同发光单元最终的外量子效率接近,实现同步老化,延长装置的使用寿命。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (24)

  1. 一种发光装置,包括基材层以及设置于所述基材层的第一表面的像素隔离结构,所述像素隔离结构之间形成多个相互隔离的子像素区域,其特征在于,所述发光装置还包括:
    多个发光单元,一一设置于各所述子像素区域中,用于发出不同波长的光,所述发光单元为电致发光器件,各所述发光单元的原始外量子效率具有差异;
    多个光提取结构,一一设置于至少部分所述子像素区域中,用于提高对应的所述发光单元的外量子效率,使得各所述发光单元的实际外量子效率差异减少。
  2. 根据权利要求1所述的发光装置,其特征在于,各所述发光单元的实际外量子效率差异在±15%以内。
  3. 根据权利要求1所述的发光装置,其特征在于,定义原始外量子效率最高的所述发光单元为第一发光单元,原始外量子效率最低的所述发光单元为第三发光单元,原始外量子效率介于所述第一发光单元和所述第三发光单元之间的所述发光单元为第二发光单元;
    多个所述发光单元和多个所述光提取结构一一对应,所述光提取结构对所述第一发光单元的外量子效率提升比为X 1,所述光提取结构对所述第二发光单元的外量子效率提升比为X 2,所述光提取结构对所述第三发光单元的外量子效率提升比为X 3,所述X 1、所述X 2和所述X 3不相等,定义
    Figure PCTCN2020120232-appb-100001
    其中,n选自1~3中的任一个自然数,Q 1为对应所述发光单元的原始外量子效率,Q 2为对应所述发光单元的实际外量子效率。
  4. 根据权利要求3所述的发光装置,其特征在于,X 3>X 2>X 1,优选地,X 3≤3。
  5. 根据权利要求3所述的发光装置,其特征在于,所述光提取结构为具有散射粒子的光散射层,所述第一发光单元、所述第二发光单元和所述第三发光单元对应的所述光散射层不同。
  6. 根据权利要求5所述的发光装置,其特征在于,所述光散射层中所述散射粒子的D50不同。
  7. 根据权利要求6所述的发光装置,其特征在于,所述光散射层中所述散射粒子的D50在150~350nm范围之内,优选在220~245nm范围之内。
  8. 根据权利要求6所述的发光装置,其特征在于,所述光散射层中所述散射粒子的D90不同。
  9. 根据权利要求8所述的发光装置,其特征在于,所述光散射层中所述散射粒子的D90在150~350nm范围之内,优选在220~245nm范围之内。
  10. 根据权利要求5所述的发光装置,其特征在于,各所述光提取结构中所述散射粒子的体积百分比、所述散射粒子的粒径以及所述散射粒子的折光指数均相同,定义与所述第一发光单元对应的所述光提取结构的厚度为H 1,与所述第二发光单元对应的所述光提取结 构的厚度为H 2,与所述第三发光单元对应的所述光提取结构的厚度为H 3,所述H 1、所述H 2和所述H 3不相等。
  11. 根据权利要求10所述的发光装置,其特征在于,
    所述H 1、所述H 2和所述H 3依次递增,H 1≤300nm,H 2≤500nm,H 3≤1000nm;或
    所述H 1、所述H 2和所述H 3依次递减,H 1≥1500nm,H 2≥1200nm,H 3≥1000nm。
  12. 根据权利要求1至11中任一项所述的发光装置,其特征在于,所述发光装置还包括第一中间层,所述第一中间层设置于至少一个所述子像素区域中,且所述第一中间层位于所述发光单元和所述光提取结构之间。
  13. 根据权利要求12所述的发光装置,其特征在于,所述第一中间层的厚度为100nm~1μm。
  14. 根据权利要求12所述的发光装置,其特征在于,所述第一中间层的折光指数为1.65~2。
  15. 根据权利要求1至11中任一项所述的发光装置,其特征在于,所述发光装置还包括封装单元,所述封装单元用于封装所述发光单元,所述发光装置还包括第二中间层,所述第二中间层设置于至少一个所述子像素区域中,且所述第二中间层位于所述光提取结构和所述封装单元之间。
  16. 根据权利要求15所述的发光装置,其特征在于,所述第二中间层的厚度为20nm~150nm。
  17. 根据权利要求15所述的发光装置,其特征在于,所述第二中间层的折光指数为1.5~1.8。
  18. 根据权利要求5所述的发光装置,其特征在于,各所述光提取结构的厚度、各所述光提取结构中所述散射粒子的粒径以及所述散射粒子的折光指数均相同,定义与所述第一发光单元对应的所述光提取结构中所述散射粒子的体积百分比为V 1,与所述第二发光单元对应的所述光提取结构中所述散射粒子的体积百分比为V 2,与所述第三发光单元对应的所述光提取结构中所述散射粒子的体积百分比为V 3,所述V 1、所述V 2和所述V 3不相等,优选V 3>V 2>V 1
  19. 根据权利要求18所述的发光装置,其特征在于,
    所述光提取结构的厚度为300~800nm中的任意值,所述散射粒子的体积百分比为50~95%;或
    所述光提取结构的厚度为800~1200nm中的任意值,所述散射粒子的体积百分比为35~50%;或
    所述光提取结构的厚度为1200~1800nm中的任意值,所述散射粒子的体积百分比为10~35%。
  20. 根据权利要求5所述的发光装置,其特征在于,各所述光提取结构的厚度、各所述光提取结构中所述散射粒子的体积百分比以及所述散射粒子的粒径均相同,定义与所述第一 发光单元对应的所述光提取结构中所述散射粒子的折光指数为K 1,与所述第二发光单元对应的所述光提取结构中所述散射粒子的折光指数为K 2,与所述第三发光单元对应的所述光提取结构中所述散射粒子的折光指数为K 3,所述K 1、所述K 2和所述K 3不相等,优选K 3>K 2>K 1
  21. 根据权利要求20所述的发光装置,其特征在于,所述散射粒子的折光指数为2~2.6。
  22. 根据权利要求10所述的发光装置,其特征在于,
    所述H 1、所述H 2和所述H 3依次递增,所述H 3≤1000nm,随着各所述光提取结构的厚度增加,对应的各所述发光单元的实际外量子效率增加;或
    所述H 1、所述H 2和所述H 3依次递减,所述H 3≥1000nm,随着各所述光提取结构的厚度减小,对应的各所述发光单元的实际外量子效率增加。
  23. 根据权利要求1至11中任一项所述的发光装置,其特征在于,所述发光装置还包括封装单元,所述封装单元用于封装所述发光单元,所述发光装置还包括第三中间层,
    所述第三中间层设置于至少一个所述子像素区域上方,且所述第三中间层位于所述光提取结构和所述封装单元之间,或
    所述第三中间层设置于至少一个所述像素隔离结构与所述所述封装单元之间,或
    所述第三中间层设置于至少一个所述子像素区域上方以及至少一个所述像素隔离结构上方,且所述第三中间层位于所述封装单元靠近所述第一表面的一侧。
  24. 根据权利要求1所述的发光装置,其特征在于,至少一个所述光提取结构包括量子点颗粒,对应的所述发光单元为蓝色电致发光器件。
PCT/CN2020/120232 2019-10-16 2020-10-10 发光装置 WO2021073459A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/769,342 US20240147764A1 (en) 2019-10-16 2020-10-10 Light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910984674.2 2019-10-16
CN201910984674.2A CN112670316A (zh) 2019-10-16 2019-10-16 发光装置

Publications (1)

Publication Number Publication Date
WO2021073459A1 true WO2021073459A1 (zh) 2021-04-22

Family

ID=75400527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120232 WO2021073459A1 (zh) 2019-10-16 2020-10-10 发光装置

Country Status (3)

Country Link
US (1) US20240147764A1 (zh)
CN (1) CN112670316A (zh)
WO (1) WO2021073459A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI777734B (zh) * 2021-08-19 2022-09-11 友達光電股份有限公司 顯示裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102044555A (zh) * 2009-10-09 2011-05-04 三星移动显示器株式会社 有机发光二极管显示器
CN104576703A (zh) * 2015-01-22 2015-04-29 京东方科技集团股份有限公司 阵列基板、显示面板和显示装置
CN106981502A (zh) * 2017-04-27 2017-07-25 武汉华星光电技术有限公司 一种oled显示面板及其制作方法
CN107634084A (zh) * 2017-09-13 2018-01-26 云谷(固安)科技有限公司 顶发射白光oled显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665800B (zh) * 2015-06-16 2019-07-11 友達光電股份有限公司 發光二極體顯示器及其製造方法
CN106067516A (zh) * 2016-07-01 2016-11-02 京东方科技集团股份有限公司 一种发光器件以及发光显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102044555A (zh) * 2009-10-09 2011-05-04 三星移动显示器株式会社 有机发光二极管显示器
CN104576703A (zh) * 2015-01-22 2015-04-29 京东方科技集团股份有限公司 阵列基板、显示面板和显示装置
CN106981502A (zh) * 2017-04-27 2017-07-25 武汉华星光电技术有限公司 一种oled显示面板及其制作方法
CN107634084A (zh) * 2017-09-13 2018-01-26 云谷(固安)科技有限公司 顶发射白光oled显示装置

Also Published As

Publication number Publication date
US20240147764A1 (en) 2024-05-02
CN112670316A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
KR101347896B1 (ko) 퀀텀 로드 발광 표시장치
US9240435B2 (en) Organic EL display
US11114506B2 (en) Organic light emitting display panel, display device and manufacturing method thereof
US9448339B2 (en) Substrate for an organic electronic element and a production method therefor
JP2020184544A (ja) 電子素子における半導体粒子
CN107845667A (zh) 一种有机发光显示面板、显示装置及其制作方法
WO2018041103A1 (zh) 发光器件
WO2007114256A1 (ja) 有機エレクトロルミネセンス多色ディスプレイパネル
WO2022152062A1 (zh) 显示面板
JP2013109907A (ja) 蛍光体基板および表示装置
US7495386B2 (en) Electroluminescent device with improved light output
US20170256595A1 (en) Organic light-emitting diode display panel and organic light-emitting diode display device
KR20220009216A (ko) 발광 소자, 발광 소자의 제조 방법, 및 발광 소자를 포함하는 디스플레이 장치
US11737306B2 (en) Display panel, method for preparing the same, and display device
WO2021073459A1 (zh) 发光装置
US20210343964A1 (en) Oled device and display device
JP2012509551A (ja) 有機エレクトロルミネセンス素子
WO2019085044A1 (zh) 一种oled显示装置及其制备方法
CN102290532A (zh) 具有高光取出率的有机电致发光元件及其最适化方法
EP3035405A1 (en) Substrate for organic light-emitting diode, method for manufacturing same, and organic light-emitting diode comprising same
CN107768526B (zh) 量子点电致发光器件
CN203883008U (zh) 一种显示装置
CN102956677B (zh) 一种oled显示装置及其制作方法
CN104409654A (zh) 发光器件及其制备方法
US20240222342A1 (en) Transparent ultrathin-led display and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877584

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17769342

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20877584

Country of ref document: EP

Kind code of ref document: A1