WO2018041103A1 - 发光器件 - Google Patents

发光器件 Download PDF

Info

Publication number
WO2018041103A1
WO2018041103A1 PCT/CN2017/099524 CN2017099524W WO2018041103A1 WO 2018041103 A1 WO2018041103 A1 WO 2018041103A1 CN 2017099524 W CN2017099524 W CN 2017099524W WO 2018041103 A1 WO2018041103 A1 WO 2018041103A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
quantum dot
layer
sub
light
Prior art date
Application number
PCT/CN2017/099524
Other languages
English (en)
French (fr)
Inventor
杜勇
Original Assignee
纳晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳晶科技股份有限公司 filed Critical 纳晶科技股份有限公司
Priority to EP17845405.4A priority Critical patent/EP3509119A4/en
Priority to US16/325,398 priority patent/US10790463B2/en
Publication of WO2018041103A1 publication Critical patent/WO2018041103A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8723Vertical spacers, e.g. arranged between the sealing arrangement and the OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3035Edge emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements

Definitions

  • the present invention relates to the field of optical technologies, and in particular to a light emitting device.
  • quantum dots in display devices mainly includes quantum dot photoluminescence backlight systems and quantum dot electroluminescent structures (QLEDs).
  • QLEDs quantum dot electroluminescent structures
  • the quantum dot efficiency of the quantum dot electroluminescent structure is still not up to market demand, people have begun to explore a light-emitting device combining photoluminescence and electroluminescence, in which an electroluminescence sub-pixel is used.
  • the first wavelength of light generated after the electroluminescence sub-pixel is energized passes through the photoluminescence quantum dot layer to generate light of a second wavelength.
  • the photoluminescent quantum dot layer array film when the photoluminescent quantum dot layer array film is disposed on the inner side of the electroluminescent structure top substrate, it is generally required in the prior art to provide a black matrix between the photoluminescent quantum dot layers to prevent electrolysis. Subpixels of the light emitting structure excite adjacent photoluminescent quantum dot layer illumination.
  • the black matrix has the disadvantage of absorbing light, thereby reducing the luminous efficiency in the light emitting device.
  • a main object of the present invention is to provide a light-emitting device to solve the problem that the light-emitting device of the prior art has low luminous efficiency due to having a black matrix.
  • a light emitting device including a first substrate, a pixel isolation structure, an electroluminescence structure, and a second substrate, the first substrate being disposed opposite to the second substrate, and the second The substrate is disposed on a side of the pixel isolation structure that is away from the first substrate, and the pixel isolation structure is disposed on a surface of the first substrate.
  • the pixel isolation structure forms a plurality of isolated sub-pixel regions on the surface of the first substrate.
  • An electroluminescent structure is disposed on a portion of the first substrate corresponding to the sub-pixel region, and the sub-pixel region further includes: a quantum dot layer disposed in the at least one sub-pixel region, wherein the quantum dot layer in each sub-pixel region is located in the electroluminescence A side of the structure remote from the first substrate or between the electroluminescent structure and the first substrate.
  • the width of the quantum dot layer in each sub-pixel region is greater than or equal to the width of the effective light-emitting region of the electroluminescent structure.
  • the light emitting device further includes a first padding portion, wherein the quantum dot layer in each sub-pixel region is located on a side of the electroluminescent structure away from the first substrate, and the first padding portion and the quantum dot layer are disposed in different sub-portions In the pixel region, between the first substrate and the electroluminescent structure, or the quantum dot layer in each sub-pixel region is located between the electroluminescent structure and the first substrate, and the first padding portion is disposed on the quantum dot layer In the sub-pixel region, and between the quantum dot layer and the first substrate.
  • the electroluminescent structure includes a light emitting layer, the first padding portion and the quantum dot layer are disposed in different sub-pixel regions, and the shortest distance between the surface of the quantum dot layer and the surface of the first substrate is a first distance, a shortest distance between a surface of the light emitting layer and the surface of the first substrate in the same sub-pixel region as the first padding portion is a second distance, the first distance is less than or equal to the second distance, or the first padding portion is disposed on In the sub-pixel region having the quantum dot layer, the shortest distance between the surface of the quantum dot layer and the surface of the first substrate is a first distance, and the surface of the light-emitting layer in the different sub-pixel region is different from the first pad portion The shortest distance between the surfaces of a substrate is a second distance, and the first distance is greater than or equal to the second distance.
  • the first padding portion is a transparent insulating layer, preferably a SiO 2 layer or a polyimide layer.
  • the light emitting device further includes a second pad portion, the quantum dot layer in each sub-pixel region is located on a side of the electroluminescent structure away from the first substrate, and the second pad portion is disposed on the second substrate and the quantum dot layer Between, or the quantum dot layer is located between the electroluminescent structure and the first substrate, and the second padding portion is disposed between the electroluminescent structure and the quantum dot layer.
  • the electroluminescent structure includes a light emitting layer, and a shortest distance between a surface of the quantum dot layer and a surface of the first substrate is a first distance, and a surface of the light emitting layer in which the second pad portion is located in a different sub-pixel region
  • the shortest distance between the surfaces of the first substrate is a third distance
  • the second padding portion is disposed between the second substrate and the quantum dot layer, the first distance is less than the third distance, or the second padding portion is disposed at the same
  • the first distance is greater than the third distance.
  • the second padding portion is a transparent insulating layer, preferably a SiO 2 layer or a polyimide layer.
  • the emitted light of the electroluminescent structure is blue light
  • the quantum dot layer has red quantum dots and/or green quantum dots.
  • the electroluminescent structure is a QLED or an OLED.
  • a light emitting device including a first substrate, a pixel isolation structure, and an electroluminescence structure.
  • the pixel isolation structure has a plurality of isolated sub-pixel regions, and each sub-pixel region corresponds to a portion
  • An electroluminescent structure is disposed on a substrate, wherein the light emitting device further includes a quantum dot layer disposed in the at least one sub-pixel region, and the quantum dot layer in each sub-pixel region is located away from the first substrate of the electroluminescent structure.
  • One side or between the electroluminescent structure and the first substrate thereby being able to isolate the quantum dot layers having quantum dots of different colors through the pixel isolation structure, thereby eliminating the need to provide a black matrix between adjacent quantum dot layers.
  • the sub-pixels of the electroluminescent structure can be effectively prevented from exciting adjacent photoluminescence quantum dot layer illumination, the absorption of light by the black matrix is avoided, and the luminous efficiency of the light-emitting device is improved.
  • FIG. 1 is a cross-sectional structural view showing a light emitting device in which a light emitting device according to an embodiment of the present invention is a top emitting device;
  • FIG. 2 is a cross-sectional structural view showing a light emitting device in which a light emitting device according to an embodiment of the present invention is a bottom emitting device;
  • FIG. 3 is a cross-sectional view showing a light emitting device in which a light emitting device according to an embodiment of the present invention is a top emitting device and includes a first pad portion;
  • FIG. 4 is a cross-sectional view showing a light emitting device in which a light emitting device according to an embodiment of the present invention is a bottom emitting device and includes a first pad portion;
  • FIG. 5 is a cross-sectional view showing a light emitting device in which a light emitting device according to an embodiment of the present invention is a top emitting device and includes a first pad portion and a second pad portion;
  • FIG. 6 is a cross-sectional view showing a light emitting device in which a light emitting device according to an embodiment of the present invention is a bottom emitting device and includes a first pad portion and a second pad portion;
  • Figure 7 is a view showing a blue spectrum of a light-emitting device in Embodiment 2 of the present invention.
  • Figure 8 is a view showing a blue spectrum of a light-emitting device in Embodiment 3 of the present invention.
  • Fig. 9 is a view showing a blue spectrum of a light-emitting device in Embodiment 4 of the present invention.
  • a first light emitting device as shown in FIGS. 1 to 6, a first substrate 10, a pixel isolation structure 20, an electroluminescent structure 30, and a second substrate 40, the first substrate 10 and the second substrate 40 are oppositely disposed, and The second substrate 40 is disposed on a side of the pixel isolation structure 20 away from the first substrate 10, the pixel isolation structure 20 is disposed on a surface of the first substrate 10, and the pixel isolation structure 20 is formed on the surface of the first substrate 10.
  • the sub-pixel regions are separated from each other, and the first substrate 10 corresponding to each sub-pixel region is provided with an electroluminescent structure 30.
  • the sub-pixel region further includes: a quantum dot layer 50 disposed in at least one sub-pixel region, and each sub-pixel region The quantum dot layer 50 in the pixel region is located on the side of the electroluminescent structure 30 remote from the first substrate 10 (as shown in FIGS. 1 and 3) or between the electroluminescent structure 30 and the first substrate 10 (FIG. 2). And 4)).
  • the light emitting device of the present invention includes a quantum dot layer disposed in at least one sub-pixel region, and the quantum dot layer in each sub-pixel region is located on a side of the electroluminescent structure away from the first substrate or in the electroluminescent structure Between the first substrate and the first substrate, the quantum dot layer having quantum dots of different colors can be isolated by the pixel isolation structure, thereby eliminating the need to provide a black matrix between adjacent quantum dot layers, thereby effectively preventing the electroluminescent structure.
  • the sub-pixels excite the adjacent photoluminescence quantum dot layer to emit light, avoiding the absorption of light by the black matrix, and improving the luminous efficiency of the light-emitting device.
  • the sizes of the first substrate 10 and the second substrate 40 in the above embodiments may be the same or different, and the relative arrangement of the first substrate 10 and the second substrate 40 is not limited to the arrangement in which the first substrate 10 and the second substrate 40 are aligned. It may be an arrangement in which portions of the first substrate 10 and the second substrate 40 having different sizes are overlapped and overlapped.
  • the quantum dot layer 50 may be directly disposed on the surface of the second substrate 40 near the side of the electroluminescent structure 30.
  • the quantum dot layer 50 can also be disposed directly on the surface of the electroluminescent structure 30.
  • the second substrate 40 serves as a cover plate to protect the pixel isolation structure 20, the electroluminescent structure 30, and the quantum dot layer 50 disposed on the first substrate 10;
  • the pixel isolation structure 20 may be disposed on the first substrate 10
  • the electroluminescent structure 30 may be disposed in the sub-pixel region while the quantum dot layer 50 is disposed on the second substrate 40, and then passed through The side of the first substrate 10 on which the pixel isolation structure 20 is disposed is bonded to the side of the second substrate 40 on which the quantum dot layer 50 is disposed to obtain a top-emitting light-emitting device, thereby simplifying the light-emitting device.
  • Preparation Process is
  • the first substrate 10 is a TFT substrate, and the TFT substrate controls the switching of each sub-pixel by providing a thin film transistor on the glass or the polymer substrate; the electroluminescent structure 30 is included in the first substrate 10
  • the first electrode layer, the light emitting layer and the second electrode layer which are sequentially stacked in the upper layer may further include a functional layer disposed between the light emitting layer and the first electrode layer and/or between the light emitting layer and the second electrode layer, the functional layer Any one or more selected from the group consisting of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer, a person skilled in the art can select the kind of the functional layer in the electroluminescent structure 30 according to actual needs.
  • the electroluminescent structure 30 in the above-mentioned light emitting device provided by the present invention is divided into a top emitting light emitting device and a bottom emitting light emitting device according to different light emitting directions, and the first electrode layer of the electroluminescent structure 30 is a reflective electrode.
  • the electroluminescent structure 30 is a top emission light emitting device, as shown in FIG. 1; when the first electrode layer of the electroluminescent structure 30 is a transmissive electrode, and the second electrode layer is a reflective electrode
  • the electroluminescent structure 30 is a bottom-emitting light-emitting device, as shown in FIG.
  • the emitted light of the electroluminescent structure 30 is blue light
  • the quantum dot layer 50 has red quantum dots and/or green quantum dots.
  • the blue light is emitted through the electroluminescent structure 30, and the red quantum dots and/or the green quantum dots in the quantum dot layer 50 are excited to emit red light and/or green light, thereby obtaining light of different colors or mixed colors thereof.
  • the above electroluminescent structure 30 may be a QLED or an OLED (Organic Electroluminescent Diode). Those skilled in the art can select the type of electroluminescent structure 30 according to actual needs.
  • the width of the quantum dot layer 50 in each sub-pixel region is greater than or equal to the width of the effective light-emitting region of the electroluminescent structure 30.
  • the effective light-emitting region refers to a contact region of the electroluminescent structure 30 and the first substrate 10.
  • the layer 50 is layered, thereby effectively avoiding the deviation between the actual emitted light color of the light-emitting device and the simulated outgoing light color caused by leakage of the outgoing light of the electroluminescent structure 30 from both sides of the quantum dot layer 50.
  • the light emitting device when the light emitted from the electroluminescent structure 30 is blue light, in order to prevent leakage of blue light in the light emitting device, the light emitting device further includes a first padding portion 60, and quantum dots in each sub-pixel region.
  • the layer 50 is located on a side of the electroluminescent structure 30 away from the first substrate 10 . As shown in FIG. 3 , the first pad portion 60 and the quantum dot layer 50 are disposed in different sub-pixel regions, and are located on the first substrate 10 . Between the electroluminescent structure 30 and the electroluminescent structure 30; or as shown in FIG.
  • the quantum dot layer 50 in each sub-pixel region is located between the electroluminescent structure 30 and the first substrate 10, and the first padding portion 60 is disposed with quantum The sub-pixel region of the dot layer 50 is located between the quantum dot layer 50 and the first substrate 10.
  • the electroluminescent structure 30 includes a light emitting layer, and more preferably, the first padding portion 60 and the quantum dot layer 50 are disposed in different sub-pixel regions, and the surface of the quantum dot layer 50 is
  • the shortest distance between the surfaces of a substrate 10 is a first distance
  • the shortest distance between the surface of the light-emitting layer and the surface of the first substrate 10 in the same sub-pixel region as the first pad portion 60 is a second distance
  • the first distance is less than or equal to the second distance
  • the top emitting device shown in FIG. 3 is formed, or the first padding portion 60 is disposed in the sub-pixel region having the quantum dot layer 50.
  • the shortest distance between the surface of the quantum dot layer 50 and the surface of the first substrate 10 is a first distance
  • the surface of the light-emitting layer in the different sub-pixel regions and the surface of the first substrate 10 with the first pad portion 60 is The shortest distance between the two is a second distance
  • the first distance is greater than or equal to the second distance
  • the bottom emitting device shown in FIG. 4 is formed.
  • the light exiting surface of the layer is closer to the actual light exiting surface (such as the second substrate of the top emitting device and the first substrate of the bottom emitting device) than the light emitting surface of the quantum dot layer 50 is closer to the actual light emitting surface, thereby further reducing the blue light.
  • the leakage prevents the red or/and green quantum layers in adjacent sub-pixel regions from being excited, resulting in deviation of RGB color mixture, avoiding the influence of color mixing on the light-emitting quality of the device, and improving the color mixing accuracy of the light-emitting device.
  • the first padding portion 60 is a transparent insulating layer, and the transparent portion means that the transparent insulating layer is transparent to at least visible light.
  • the transmittance of the insulating layer may be 30% or more, so that when the first padding portion 60 is disposed on the light emitting surface of the electroluminescent structure 30, the emitted light of the luminescent layer in the electroluminescent structure 30 can be transmitted more.
  • the first padding portion 60 is not reflected back into the electroluminescent structure 30. More preferably, the first padding portion 60 is an SiO 2 layer or a polyimide layer. The above preferred kind can further reduce the influence of the first padding portion 60 on the luminous efficiency of the light emitting device.
  • the light-emitting device further includes a second padding portion 70, each of which The quantum dot layer 50 in the sub-pixel region is located on a side of the electroluminescent structure 30 away from the first substrate 10, and the second padding portion 70 is disposed between the second substrate 40 and the quantum dot layer 50, as shown in FIG.
  • the quantum dot layer 50 is located between the electroluminescent structure 30 and the first substrate 10
  • the second padding portion 70 is disposed between the electroluminescent structure 30 and the quantum dot layer 50 located in the same sub-pixel region, as shown in the figure. 6 is shown.
  • the electroluminescent structure 30 includes a light emitting layer, and more preferably, the shortest distance between the surface of the quantum dot layer 50 and the surface of the first substrate 10 is a first distance, and the second pad is high.
  • the shortest distance between the surface of the light-emitting layer in the electroluminescent structure 30 in the different sub-pixel regions and the surface of the first substrate 10 is a third distance, and the second padding portion 70 is disposed on the second substrate 40 and Between the quantum dot layers 50, the first distance is smaller than the third distance, forming a top emitting device as shown in FIG. 5, or the second padding portion 70 is disposed on the electroluminescent structure 30 and the quantum dots located in the same sub-pixel region.
  • the first distance is greater than the third distance, forming a bottom emitting device as shown in FIG.
  • the light emitting surface of the quantum dot layer 50 is made lower than the light emitting surface of the light emitting layer in the electroluminescent structure 30 located in the different subpixel region, thereby The leakage of blue light is effectively reduced, and the brightness and brightness uniformity of the light emitting device are further improved.
  • the second padding portion 70 is a transparent insulating layer, and the above transparent means that the transparent insulating layer is at least transparent to visible light.
  • the transparent insulating layer may have a transmittance of more than 30%, and the material may be selected from the group consisting of SiO 2 , polyether sulfone (PES), polyacrylic acid (PAA), polyarylate (PAR), and polyetherimide (PEI).
  • the second padding portion 70 is disposed on the light-emitting surface of the quantum dot layer 50, the quantum dot layer 50 can be discharged
  • the illuminating light passes through the second padding portion 70 more and is not reflected back into the quantum dot layer 50.
  • the second padding portion 70 is an SiO 2 layer or a polyimide layer. The above preferred kind can further reduce the influence of the first padding portion 60 on the luminous efficiency of the light emitting device.
  • the quantum electroluminescent structure is not disposed above the partial electroluminescent structure in the drawing of the present application, that is, the light directly utilizing the electroluminescent structure without undergoing light conversion; in fact, the electricity for direct transmission
  • An optically transparent resin (OCR) layer may also be disposed above the electroluminescent structure, and the OCR layer may be cured by ultraviolet light.
  • a display device comprising the above-described light emitting device.
  • the light emitting device in the above display device further includes a quantum dot layer disposed in at least one sub-pixel region, and the quantum dot layer in each sub-pixel region is located on a side of the electroluminescent structure away from the first substrate or is electrically Between the light-emitting structure and the first substrate, the quantum dot layer having quantum dots of different colors can be isolated by the pixel isolation structure, thereby eliminating the need to provide a black matrix between adjacent quantum dot layers, thereby effectively preventing electrolysis
  • the sub-pixels of the light-emitting structure excite the adjacent photoluminescence quantum dot layer to emit light, effectively solving the chromatic aberration problem generated by the display device.
  • the light-emitting device provided by the present invention will be further described below in conjunction with the embodiments.
  • the light emitting device provided in this embodiment is a top emitting device, comprising a first substrate, a pixel isolation structure, an electroluminescent structure, a quantum dot layer and a second substrate, wherein the second substrate is disposed opposite to the first substrate, and the pixel isolation structure is disposed on the first a surface on one side of the substrate, and the second substrate is disposed on a side of the pixel isolation structure away from the first substrate.
  • the pixel isolation structure isolates pixels on the first substrate to form six sub-pixel regions, and the sub-pixel region includes R, G, and B three sub-pixel regions, wherein a part of the first substrate corresponding to the B (blue) sub-pixel region is provided with only an electroluminescence structure, an R (red) sub-pixel region adjacent to the B sub-pixel region, and G (green) a quantum dot layer is further disposed in the sub-pixel region, and the electroluminescent structure in each sub-pixel region is located between the quantum dot layer and the first substrate, and the width of the quantum dot layer in each sub-pixel region is smaller than that of the electroluminescent structure The width of the effective illuminating area.
  • the first substrate is a TFT (Thin Film Transistor) substrate
  • the second substrate is glass.
  • the electroluminescent structure includes a first electrode layer, a first functional layer, a light emitting layer, a second functional layer, and a third functional layer which are sequentially stacked.
  • the second electrode layer, the material forming the first electrode layer (cathode) is Ag
  • the material of the first functional layer is ZnO nano particles
  • the material of the second functional layer is polyvinyl carbazole (PVK)
  • the third functional layer The material is poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT:PSS)
  • the second electrode layer is indium tin oxide (ITO) as an anode
  • the material of the light-emitting layer in the electroluminescent structure is blue.
  • a color quantum dot comprising a red quantum dot layer having a red quantum dot and a polyurethane resin as a matrix, a green quantum dot layer having a green quantum dot and a polyurethane resin as a matrix; blue, red, green quantum dots being a size Different CdSe/ZnS core-shell quantum dots.
  • Embodiment 1 The difference between the light emitting device provided in this embodiment and Embodiment 1 is as follows:
  • the width of the quantum dot layer in each sub-pixel region is greater than the width of the effective light-emitting region of the electroluminescent structure.
  • the light emitting device further includes a first padding portion, wherein the quantum dot layer in each sub-pixel region is located on a side of the electroluminescent structure away from the first substrate, and the first padding portion and the quantum dot layer are disposed in different sub-pixel regions And located between the first substrate and the electroluminescent structure, the shortest distance between the surface of the quantum dot layer and the surface of the first substrate is a first distance, and the light emitting layer is located in the same sub-pixel region as the first padding portion
  • the shortest distance between the surface and the surface of the first substrate is a second distance
  • the first distance is equal to the second distance
  • the first padding portion is a SiO 2 layer.
  • the light emitting device further includes a second padding portion disposed between the second substrate and the quantum dot layer, and the surface of the light emitting layer and the surface of the first substrate in the different sub-pixel regions with the second padding portion
  • the shortest distance between them is a third distance
  • the second padding portion is disposed between the second substrate and the quantum dot layer, the first distance is smaller than the third distance, and the second padding portion is SiO 2 layer.
  • the light emitting device provided in this embodiment is a bottom emitting device, comprising a first substrate, a pixel isolation structure, an electroluminescent structure, a quantum dot layer and a second substrate, wherein the second substrate is disposed opposite to the first substrate, and the pixel isolation structure is disposed on the first One side of a substrate On the surface, and the second substrate is disposed on a side of the pixel isolation structure away from the first substrate, the pixel isolation structure isolates pixels on the first substrate to form six sub-pixel regions, and the sub-pixel region includes three sub-pixel regions of R, G, and B.
  • the portion corresponding to the B (blue) sub-pixel region is provided with only an electroluminescent structure on the first substrate, and the R (red) sub-pixel region and the G (green) sub-pixel region adjacent to the B sub-pixel region
  • a quantum dot layer is further disposed, and the quantum dot layer in each sub-pixel region is located between the electroluminescent structure and the first substrate, and the width of the quantum dot layer in each sub-pixel region is smaller than the width of the effective light-emitting region of the electroluminescent structure.
  • the first substrate is a TFT substrate
  • the second substrate is glass
  • the electroluminescent structure comprises a first electrode layer, a first functional layer, a second functional layer, a light emitting layer, a third functional layer and a second electrode which are sequentially stacked.
  • the first electrode layer is ITO (anode)
  • the material of the first functional layer is PEDOT:PSS
  • the material of the second functional layer is PVK
  • the material of the third functional layer is ZnO nano particles
  • the material forming the second electrode layer As Ag (reflective cathode)
  • the material of the light-emitting layer in the electroluminescent structure includes a blue quantum dot, a red quantum dot layer having a red quantum dot in the quantum dot layer and a polyurethane resin as a matrix, having a green quantum dot and as a matrix
  • the green quantum dot layer of the polyurethane resin; the blue, red, and green quantum dots are CdSe/ZnS core-shell quantum dots of different sizes.
  • the width of the quantum dot layer in each sub-pixel region is greater than the width of the effective light-emitting region of the electroluminescent structure.
  • the light emitting device further includes a first padding portion, the quantum dot layer in each sub-pixel region is located between the electroluminescent structure and the first substrate, and the first padding portion is disposed in the sub-pixel region having the quantum dot layer, and is located Between the quantum dot layer and the first substrate, the shortest distance between the surface of the quantum dot layer and the surface of the first substrate is a first distance, and the surface of the light-emitting layer in the different sub-pixel region is different from the first pad portion
  • the shortest distance between the surfaces of a substrate is a second distance, the first distance being equal to the second distance, and the first elevated portion is a polyimide layer.
  • the light emitting device further includes a second padding portion, the quantum dot layer is located between the electroluminescent structure and the first substrate, and the second padding portion is disposed between the electroluminescent structure and the quantum dot layer, and is located at the second padding portion
  • the shortest distance between the surface of the light emitting layer in the different sub-pixel regions and the surface of the first substrate is a third distance
  • the second padding portion is disposed between the first substrate and the quantum dot layer, the first distance being greater than the third distance
  • the second padding portion is a SiO 2 layer.
  • the light emitting device provided in the present comparative example is a top emitting device, comprising a first substrate, a pixel isolation structure, an electroluminescent structure, a quantum dot layer, a black matrix and a second substrate, and the pixel isolation structure is disposed on a surface of one side of the first substrate
  • the pixel isolation structure has the same number of mutually isolated sub-pixel regions as in Embodiment 1, and each sub-pixel region corresponds to a portion of the first substrate.
  • An electroluminescent structure is disposed, the black matrix is disposed on a surface of the second substrate, and the black matrix is disposed to form mutually separated quantum dot regions corresponding to the pixel isolation structures, and corresponding portions of the quantum dot regions
  • a quantum dot layer is disposed on the second substrate to form a three-color RGB light-emitting device.
  • the first substrate is a TFT substrate
  • the electroluminescent structure comprises a first electrode layer, a first functional layer, a second functional layer, a light emitting layer, a third functional layer and a second electrode layer which are sequentially stacked, forming a first electrode.
  • the material of the layer (cathode) is Ag
  • the material of the first functional layer is ZnO nanoparticles
  • the material of the second functional layer is polyvinyl carbazole (PVK)
  • the material of the third functional layer is poly (3,4-ethylene II).
  • the second electrode layer is indium tin oxide (ITO) as an anode
  • the material forming the light-emitting layer is a blue quantum dot
  • the quantum dot layer has a red quantum dot
  • the red quantum dot layer of the matrix polyurethane resin has green quantum dots and a green quantum dot layer of a polyurethane resin as a matrix; the blue, red, and green quantum dots are CdSe/ZnS core-shell quantum dots of different sizes.
  • the light emitting device provided in the present comparative example is a bottom emitting device, comprising a first substrate, a pixel isolation structure, an electroluminescent structure, a quantum dot layer, a black matrix and a second substrate, the second substrate is disposed opposite to the first substrate, and the pixel isolation structure
  • the second substrate is disposed on a surface of the pixel isolation structure away from the first substrate, and the pixel isolation structure has the same number of mutually isolated sub-pixel regions as the embodiment 5, and each sub-pixel
  • An electroluminescence structure is disposed on a portion of the first substrate corresponding to the region, a black matrix is disposed on a surface of the second substrate, and the black matrix is disposed to form mutually isolated quantum dot regions having a one-to-one correspondence with the pixel isolation structure.
  • a quantum dot layer is disposed on a portion of the second substrate corresponding to each quantum dot region to form a three-color RGB light-emitting device.
  • the first substrate is a TFT substrate
  • the second substrate is glass
  • the electroluminescent structure comprises a first electrode layer, a first functional layer, a second functional layer, a light emitting layer, a third functional layer and a second electrode which are sequentially stacked.
  • the first electrode layer is formed of ITO (anode)
  • the material of the first functional layer is poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid PEDOT:PSS
  • the material of the second functional layer is polyethylene
  • the material of the third functional layer is ZnO nanoparticle
  • the material forming the second electrode layer is Ag (reflective cathode)
  • the material forming the luminescent layer comprises blue quantum dots
  • the quantum dot layer has red quantum The red quantum dot layer of the point and the polyurethane resin as the matrix, the green quantum dot layer of the green quantum dot and the polyurethane resin as the matrix; the blue, red, and green quantum dots are CdSe/ZnS core-shell quantum dots of different sizes.
  • the blue light of the electroluminescent structures in Examples 1 to 8 was subjected to spectral measurement using a PR670 spectral luminosity/chroma/radiometer manufactured by PHOTO RESEARCH, and the current density was 20 mA/cm 2 .
  • Quantum efficiency; the blue backlight spectrum and the spectrum of the quantum dot layer were separately measured by integrating spheres, and the quantum dot photoluminescence efficiency (red quantum dot luminous efficiency and green quantum dot luminous efficiency) was calculated by using the integrated area of the spectrum.
  • quantum dot photoluminescence efficiency (red quantum dot absorption peak area or green quantum dot absorption peak area) / (blue backlight peak area - blue peak area that is not absorbed through the quantum dot layer) * 100%.
  • Example 2 Spectral tests were performed on the blue light of the light-emitting devices of Example 2, Example 3, and Example 4 using a PR670 spectral luminosity/chroma/radiometer manufactured by PHOTO RESEARCH, at a current density of 20 mA/cm 2 . To check if the blue pixel emits a spectrum with only blue spectral peaks to prove whether there is blue light leakage.
  • the blue spectrum spectrum measured in Example 2 is as shown in FIG. 7.
  • the quantum dot layer red or green
  • the emitted spectrum includes two peaks. Its peak range is 430nm to 496nm and 510nm to 540nm;
  • the blue spectrum spectrum measured in Example 3 is as shown in FIG. 8.
  • the quantum dot layer red or green
  • the peak range of the emitted spectrum is mainly Between 430 nm and 496 nm, a very low intensity peak of 510 nm to 540 nm appears at the edge;
  • the blue spectrum spectrum measured in Example 4 is as shown in FIG. 9.
  • the quantum dot layer red or green
  • the peak of the emitted spectrum ranges from 430 nm to Between 496nm.
  • the equivalent sub-dot layer including red quantum dots and/or green quantum dots
  • the first padding portion and/or the first portion are not provided.
  • some of the blue light emitted from the electroluminescent structure leaks to the quantum dot layer of the partition wall, and the quantum dot layer of the partition wall is excited to emit red or green, thereby causing color mixing. appear.
  • the above-mentioned light-emitting device of the present invention isolates quantum dot layers having quantum dots of different colors by a pixel isolation structure, thereby effectively preventing sub-pixels of the electroluminescent structure from exciting adjacent photoluminescence quantum dot layer light-emitting;
  • the above-mentioned light-emitting device of the present invention does not need to provide a black matrix between adjacent quantum dot layers, thereby avoiding absorption of light by the black matrix, and improving luminous efficiency and brightness uniformity of the light-emitting device;
  • the above-mentioned light-emitting device of the present invention effectively reduces the leakage of blue light by setting the first padding portion, thereby reducing the influence of the light mixing phenomenon;
  • the above-mentioned light-emitting device of the present invention further reduces the leakage of blue light by further providing the second pad portion after the first pad portion is disposed, thereby further reducing the influence of the light mixing phenomenon.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种发光器件。该发光器件包括第一基板(10)、像素隔离结构(20)、电致发光结构(30)和第二基板(40),第一基板与第二基板相对设置,且第二基板设置于像素隔离结构的远离第一基板的一侧,像素隔离结构设置于第一基板一侧的表面上,像素隔离结构形成多个相互隔离的子像素区域,各子像素区域对应的部分第一基板上设置有电致发光结构,子像素区域还包括:量子点层(50),设置于至少一个子像素区域中,且各子像素区域中的量子点层位于电致发光结构的远离第一基板的一侧或位于电致发光结构与第一基板之间。该发光器件有效地防止电致发光结构的子像素激发相邻的光致发光量子点层发光,避免了黑色矩阵对光线的吸收,提高了发光器件的发光效率。

Description

发光器件 技术领域
本发明涉及光学技术领域,具体而言,涉及一种发光器件。
背景技术
量子点在显示设备的应用主要有量子点光致发光背光系统和量子点电致发光结构(QLED)。目前,由于量子点电致发光结构的量子点效率还达不到市场化要求,所以人们开始探索将光致发光和电致发光的相结合的发光器件,在上述器件中一个电致发光子像素对应一个光致发光量子点层,电致发光子像素通电后产生的第一波长的光通过光致发光量子点层后产生第二波长的光。
对于上述发光器件,在将光致发光量子点层阵列膜设置在电致发光结构顶层基板的内侧时,现有技术中通常需要在光致发光量子点层之间设置黑色矩阵,以防止电致发光结构的子像素激发相邻的光致发光量子点层发光。然而,黑色矩阵具有吸光的缺点,从而降低了发光器件中发光效率。
发明内容
本发明的主要目的在于提供一种发光器件,以解决现有技术中发光器件由于具有黑色矩阵而导致发光效率低的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种发光器件,包括第一基板、像素隔离结构、电致发光结构和第二基板,第一基板与第二基板相对设置,且第二基板设置于像素隔离结构的远离第一基板的一侧,像素隔离结构设置于第一基板一侧的表面上,像素隔离结构在第一基板的表面上形成多个相互隔离的子像素区域,各子像素区域对应的部分第一基板上设置有电致发光结构,子像素区域还包括:量子点层,设置于至少一个子像素区域中,且各子像素区域中的量子点层位于电致发光结构的远离第一基板的一侧或位于电致发光结构与第一基板之间。
进一步地,各子像素区域中量子点层的宽度大于等于电致发光结构的有效发光区域的宽度。
进一步地,发光器件还包括第一垫高部,各子像素区域中的量子点层位于电致发光结构的远离第一基板的一侧,第一垫高部与量子点层设置于不同的子像素区域中,且位于第一基板与电致发光结构之间,或各子像素区域中的量子点层位于电致发光结构与第一基板之间,第一垫高部设置于具有量子点层的子像素区域中,且位于量子点层与第一基板之间。
进一步地,电致发光结构包括发光层,第一垫高部与量子点层设置于不同的子像素区域中,量子点层的表面与第一基板的表面之间的最短距离为第一距离,与第一垫高部位于同一个子像素区域中的发光层的表面与第一基板的表面之间的最短距离为第二距离,第一距离小于等于第二距离,或第一垫高部设置于具有量子点层的子像素区域中,量子点层的表面与第一基板的表面之间的最短距离为第一距离,与第一垫高部位于不同子像素区域中的发光层的表面与第一基板的表面之间的最短距离为第二距离,第一距离大于等于第二距离。
进一步地,第一垫高部为透明绝缘层,优选为SiO2层或聚酰亚胺层。
进一步地,发光器件还包括第二垫高部,各子像素区域中的量子点层位于电致发光结构的远离第一基板的一侧,第二垫高部设置于第二基板与量子点层之间,或量子点层位于电致发光结构与第一基板之间,第二垫高部设置于电致发光结构与量子点层之间。
进一步地,电致发光结构包括发光层,量子点层的表面与第一基板的表面之间的最短距离为第一距离,与第二垫高部位于不同子像素区域中的发光层的表面与第一基板的表面之间的最短距离为第三距离,第二垫高部设置于第二基板与量子点层之间,第一距离小于第三距离,或第二垫高部设置于位于同一子像素区域中的电致发光结构与量子点层之间,第一距离大于第三距离。
进一步地,第二垫高部为透明绝缘层,优选为SiO2层或聚酰亚胺层。
进一步地,电致发光结构的出射光为蓝光,量子点层中具有红色量子点和/或绿色量子点。
进一步地,电致发光结构为QLED或OLED。
应用本发明的技术方案,提供了一种包括第一基板、像素隔离结构和电致发光结构的发光器件,像素隔离结构具有多个相互隔离的子像素区域,且各子像素区域对应的部分第一基板上设置有电致发光结构,由于该发光器件还包括设置于至少一个子像素区域中的量子点层,且各子像素区域中的量子点层位于电致发光结构的远离第一基板的一侧或位于电致发光结构与第一基板之间,从而能够通过像素隔离结构将具有不同颜色量子点的量子点层隔离,进而不需要在相邻的量子点层之间设置黑色矩阵,就能够有效地防止电致发光结构的子像素激发相邻的光致发光量子点层发光,避免了黑色矩阵对光线的吸收,提高了发光器件的发光效率。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明实施方式所提供的发光器件为顶发射器件的发光器件的剖面结构示意图;
图2示出了本发明实施方式所提供的发光器件为底发射器件的发光器件的剖面结构示意图;
图3示出了本发明实施方式所提供的发光器件为顶发射器件且包括第一垫高部的发光器件的剖面示意图;
图4示出了本发明实施方式所提供的发光器件为底发射器件且包括第一垫高部的发光器件的剖面示意图;
图5示出了本发明实施方式所提供的发光器件为顶发射器件且包括第一垫高部和第二垫高部的发光器件的剖面示意图;
图6示出了本发明实施方式所提供的发光器件为底发射器件且包括第一垫高部和第二垫高部的发光器件的剖面示意图;
图7示出了本发明实施例2中发光器件的蓝光光谱图;
图8示出了本发明实施例3中发光器件的蓝光光谱图;以及
图9示出了本发明实施例4中发光器件的蓝光光谱图。
其中,上述附图包括以下附图标记:
10、第一基板;20、像素隔离结构;30、电致发光结构;40、第二基板;50、量子点层;60、第一垫高部;70、第二垫高部。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
正如背景技术中所介绍的,现有技术中设置在光致发光量子点层之间的黑色矩阵具有吸光的缺点,从而降低了发光器件中的发光效率。本申请的发明人针对上述问题进行研究,提 出了一种发光器件,如图1至6所示,第一基板10、像素隔离结构20、电致发光结构30和第二基板40,第一基板10与第二基板40相对设置,且第二基板40设置于像素隔离结构20的远离第一基板10的一侧,像素隔离结构20设置于第一基板10一侧的表面上,像素隔离结构20在第一基板10的表面上形成多个相互隔离的子像素区域,各子像素区域对应的部分第一基板10上设置有电致发光结构30,子像素区域还包括:量子点层50,设置于至少一个子像素区域中,且各子像素区域中的量子点层50位于电致发光结构30的远离第一基板10的一侧(如图1和3所示)或位于电致发光结构30与第一基板10之间(如图2和4所示)。
本发明的发光器件中由于包括设置于至少一个子像素区域中的量子点层,且各子像素区域中的量子点层位于电致发光结构的远离第一基板的一侧或位于电致发光结构与第一基板之间,从而能够通过像素隔离结构将具有不同颜色量子点的量子点层隔离,进而不需要在相邻的量子点层之间设置黑色矩阵,就能够有效地防止电致发光结构的子像素激发相邻的光致发光量子点层发光,避免了黑色矩阵对光线的吸收,提高了发光器件的发光效率。
上述实施例中的第一基板10与第二基板40的大小可以相同也可以不同,第一基板10与第二基板40的相对设置不限于第一基板10与第二基板40对齐的设置,也可以是具有不同大小的第一基板10和第二基板40的部分重叠地错开的设置。为了便于制作,当量子点层50设置于电致发光结构30的远离第一基板的一侧时,可以将量子点层50直接设置在第二基板40的靠近电致发光结构30一侧的表面上,也可以将量子点层50直接设置在电致发光结构30的表面上。
在本发明提供的上述发光器件中,上述第二基板40作为盖板能够对设置于第一基板10上的像素隔离结构20、电致发光结构30和量子点层50起到保护作用;并且,在上述发光器件的制备工艺中,可以在第一基板10上设置像素隔离结构20,并在子像素区域中设置电致发光结构30,同时在第二基板40上设置量子点层50,然后通过将上述第一基板10的设置有像素隔离结构20的一侧与上述第二基板40的设置有量子点层50的一侧贴合,以得到顶发射的发光器件,从而简化了的发光器件的制备工艺。
在本发明提供的上述发光器件中,第一基板10为TFT基板,TFT基板通过在玻璃或者聚合物基板上设置薄膜晶体管来控制每个子像素的开关;电致发光结构30包括在第一基板10上顺序层叠设置的第一电极层、发光层和第二电极层,还可以包括设置于发光层与第一电极层之间和/或发光层与第二电极层之间的功能层,功能层选自空穴注入层、空穴传输层、电子传输层和电子注入层中的任一种或多种,本领域技术人员可以根据实际需求对电致发光结构30中功能层的种类进行选择。
并且,根据出光方向的不同,本发明提供的上述发光器件中的电致发光结构30分为顶发射发光器件和底发射发光器件两种,当电致发光结构30的第一电极层为反射电极,第二电极层为透射电极时,上述电致发光结构30为顶发射发光器件,如图1所示;当电致发光结构30的第一电极层为透射电极,第二电极层为反射电极时,上述电致发光结构30为底发射发光器件,如图2所示。
在本发明提供的上述发光器件中,优选地,电致发光结构30的出射光为蓝光,量子点层50中具有红色量子点和/或绿色量子点。通过电致发光结构30发出蓝光,并激发量子点层50中的红色量子点和/或绿色量子点发出红光和/或绿光,从而得到不同颜色出光或其混合颜色的光。并且,上述电致发光结构30可以为QLED或OLED(有机电致发光二极管)。本领域技术人员可以根据实际需求对电致发光结构30的种类进行选取。
在本发明提供的上述发光器件中,优选地,各子像素区域中量子点层50的宽度大于等于电致发光结构30的有效发光区域的宽度。上述有效发光区域是指电致发光结构30与第一基板10的接触区域,通过使量子点层50具有大于上述有效发光区域的宽度,使电致发光结构30的出射光能够全部用来激发量子点层50,从而有效地避免了电致发光结构30的出射光从量子点层50的两侧漏出所导致的发光器件的实际出射光颜色与模拟出射光颜色之间的偏差。
当电致发光结构30的出射光为蓝光时,为了防止发光器件中蓝光的泄露,在一种优选的实施方式中,发光器件还包括第一垫高部60,各子像素区域中的量子点层50位于电致发光结构30的远离第一基板10的一侧,如图3所示,第一垫高部60与量子点层50设置于不同的子像素区域中,且位于第一基板10与电致发光结构30之间;或如图4所示,各子像素区域中的量子点层50位于电致发光结构30与第一基板10之间,第一垫高部60设置于具有量子点层50的子像素区域中,且位于量子点层50与第一基板10之间。
在上述优选的实施方式中,电致发光结构30包括发光层,更为优选地,第一垫高部60与量子点层50设置于不同的子像素区域中,量子点层50的表面与第一基板10的表面之间的最短距离为第一距离,与第一垫高部60位于同一个子像素区域中的发光层的表面与第一基板10的表面之间的最短距离为第二距离,第一距离小于等于第二距离,当该第一距离等于第二距离时,构成如图3所示的顶发射器件,或第一垫高部60设置于具有量子点层50的子像素区域中,量子点层50的表面与第一基板10的表面之间的最短距离为第一距离,与第一垫高部60位于不同子像素区域中的发光层的表面与第一基板10的表面之间的最短距离为第二距离,第一距离大于等于第二距离,当该第一距离大于第二距离时,构成如图4所示的底发射器件。通过设置第一垫高部60,使位于不同子像素区域中的量子点层50的出光面和电致发光结构30中发光层的出光面位于同一水平面上,或者,电致发光结构30中发光层的出光面离实际出光面(如顶发射器件的第二基板、底发射器件的第一基板)的距离比量子点层50的出光面离实际出光面的距离更近,从而进一步减少了蓝光的泄露,避免相邻子像素区域中的红或/和绿色量子层被激发导致RGB混色出现偏差,避免了混色对器件发光质量的影响,提高了发光器件的混色精准性。
为了降低第一垫高部60对发光器件的发光效率的影响,优选地,上述第一垫高部60为透明绝缘层,上述的透明是指该透明绝缘层至少对可见光是透明的,该透明绝缘层的透过率可以在30%以上,从而当第一垫高部60设置于电致发光结构30的出光面时,能够使电致发光结构30中发光层的出射光更多地透过第一垫高部60,而不会被反射回电致发光结构30中。更为优选地,上述第一垫高部60为SiO2层或聚酰亚胺层。上述优选的种类能够进一步降低第一垫高部60对发光器件的发光效率的影响。
当本发明提供的上述发光器件中包括上述第一垫高部60时,为了进一步防止发光器件中蓝光的泄露,在一种优选的实施方式中,发光器件还包括第二垫高部70,各子像素区域中的量子点层50位于电致发光结构30的远离第一基板10的一侧,第二垫高部70设置于第二基板40与量子点层50之间,如图5所示;或量子点层50位于电致发光结构30与第一基板10之间,第二垫高部70设置于位于同一子像素区域中的电致发光结构30与量子点层50之间,如图6所示。
在上述优选的实施方式中,电致发光结构30包括发光层,更为优选地,量子点层50的表面与第一基板10的表面之间的最短距离为第一距离,与第二垫高部70位于不同子像素区域中的电致发光结构30中的发光层的表面与第一基板10的表面之间的最短距离为第三距离,第二垫高部70设置于第二基板40与量子点层50之间,第一距离小于第三距离,构成如图5所示的顶发射器件,或第二垫高部70设置于位于同一子像素区域中的电致发光结构30与量子点层50之间,第一距离大于第三距离,构成如图6所示的底发射器件。通过同时设置第一垫高部60和第二垫高部70,使量子点层50的出光面低于与其位于不同子像素区域中的电致发光结构30中发光层的出光面,从而更为有效地减少了蓝光的泄露,进一步提高了发光器件的亮度和亮度均匀度。
同样地,为了降低第二垫高部70对发光器件的发光效率的影响,优选地,上述第二垫高部70为透明绝缘层,上述的透明是指该透明绝缘层至少对可见光是透明的,该透明绝缘层的透过率可以在30%以上,材料可以选自SiO2、聚醚砜(PES)、聚丙烯酸(PAA)、聚芳酯(PAR)、聚醚酰亚胺(PEI)、聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二酯(PET)、聚苯硫醚(PPS)、聚酰亚胺(PI)、聚碳酸酯(PC)、醋酸纤维素(CA)与醋酸丙酸纤维素(CAP)中的一种或者多种的混合物,从而当第二垫高部70设置于量子点层50的出光面时,能够使量子点层50的出射光更多地透过第二垫高部70,而不会被反射回量子点层50中。更为优选地,上述第二垫高部70为SiO2层或聚酰亚胺层。上述优选的种类能够进一步降低第一垫高部60对发光器件的发光效率的影响。
另外,需要说明的一点是,本申请中附图中部分电致发光结构上方没有设置量子点层,即不经过光转换而直接利用电致发光结构的光;实际上,用于直接透射的电致发光结构上方也可以设置光学透明树脂(OCR,Optical Clear Resin)层,OCR层可以用紫外固化。
根据本发明的另一个方面,还提供了一种显示设备,包括上述的发光器件。由于上述显示设备中的发光器件还包括设置于至少一个子像素区域中的量子点层,且各子像素区域中的量子点层位于电致发光结构的远离第一基板的一侧或位于电致发光结构与第一基板之间,从而能够通过像素隔离结构将具有不同颜色量子点的量子点层隔离,进而不需要在相邻的量子点层之间设置黑色矩阵,就能够有效地防止电致发光结构的子像素激发相邻的光致发光量子点层发光,有效地解决了显示设备产生的色差问题。
下面将结合实施例进一步说明本发明提供的发光器件。
实施例1
本实施例提供的发光器件为顶发射器件,包括第一基板、像素隔离结构、电致发光结构、量子点层和第二基板,第二基板与第一基板相对设置,像素隔离结构设置于第一基板一侧的表面上,且第二基板设置于像素隔离结构的远离第一基板的一侧,像素隔离结构隔离第一基板上的像素形成六个子像素区域,子像素区域包括R、G和B三种子像素区域,其中,B(蓝色)子像素区域对应的部分第一基板上仅设置有电致发光结构,与B子像素区域相邻的R(红色)子像素区域和G(绿色)子像素区域中还设置有量子点层,且各子像素区域中的电致发光结构位于量子点层与第一基板之间,各子像素区域中量子点层的宽度小于电致发光结构的有效发光区域的宽度。
其中,第一基板为TFT(薄膜晶体管)基板,第二基板为玻璃,电致发光结构包括顺序层叠设置的第一电极层、第一功能层、发光层、第二功能层、第三功能层和第二电极层,形成第一电极层(阴极)的材料为Ag,第一功能层的材料为ZnO纳米粒子,第二功能层的材料为聚乙烯咔唑(PVK),第三功能层的材料为聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS),第二电极层为氧化铟锡(ITO)作为阳极,电致发光结构中发光层的材料为蓝色量子点,量子点层包括具有红色量子点和作为基质的聚氨酯树脂的红色量子点层,具有绿色量子点和作为基质的聚氨酯树脂的绿色量子点层;蓝色、红色、绿色量子点为尺寸不同的CdSe/ZnS核壳量子点。
实施例2
本实施例提供的发光器件与实施例1的区别在于:
各子像素区域中量子点层的宽度大于电致发光结构的有效发光区域的宽度。
实施例3
本实施例提供的发光器件与实施例2的区别在于:
发光器件还包括第一垫高部,各子像素区域中的量子点层位于电致发光结构的远离第一基板的一侧,第一垫高部与量子点层设置于不同的子像素区域中,且位于第一基板与电致发光结构之间,量子点层的表面与第一基板的表面之间的最短距离为第一距离,与第一垫高部位于同一个子像素区域中的发光层的表面与第一基板的表面之间的最短距离为第二距离,第一距离等于第二距离,第一垫高部为SiO2层。
实施例4
本实施例提供的发光器件与实施例3的区别在于:
发光器件还包括第二垫高部,第二垫高部设置于第二基板与量子点层之间,与第二垫高部位于不同子像素区域中的发光层的表面与第一基板的表面之间的最短距离为第三距离,第二垫高部设置于第二基板与量子点层之间,第一距离小于第三距离,第二垫高部为SiO2层。
实施例5
本实施例提供的发光器件为底发射器件,包括第一基板、像素隔离结构、电致发光结构、量子点层和第二基板,第二基板与第一基板相对设置,像素隔离结构设置于第一基板一侧的 表面上,且第二基板设置于像素隔离结构的远离第一基板的一侧,像素隔离结构隔离第一基板上的像素形成六个子像素区域,子像素区域包括R、G和B三种子像素区域,其中,B(蓝色)子像素区域对应的部分第一基板上仅设置有电致发光结构,与B子像素区域相邻的R(红色)子像素区域和G(绿色)子像素区域中还设置有量子点层,且各子像素区域中的量子点层位于电致发光结构与第一基板之间,各子像素区域中量子点层的宽度小于电致发光结构的有效发光区域的宽度。
其中,第一基板为TFT基板,第二基板为玻璃,电致发光结构包括顺序层叠设置的第一电极层、第一功能层、第二功能层、发光层、第三功能层和第二电极层,第一电极层为ITO(阳极),第一功能层的材料为PEDOT:PSS,第二功能层的材料为PVK,第三功能层的材料为ZnO纳米粒子,形成第二电极层的材料为Ag(反射性阴极),电致发光结构中发光层的材料包括蓝色量子点,量子点层中具有红色量子点和作为基质的聚氨酯树脂的红色量子点层,具有绿色量子点和作为基质的聚氨酯树脂的绿色量子点层;蓝色、红色、绿色量子点为尺寸不同的CdSe/ZnS核壳量子点。
实施例6
本实施例提供的发光器件与实施例5的区别在于:
各子像素区域中量子点层的宽度大于电致发光结构的有效发光区域的宽度。
实施例7
本实施例提供的发光器件与实施例6的区别在于:
发光器件还包括第一垫高部,各子像素区域中的量子点层位于电致发光结构与第一基板之间,第一垫高部设置于具有量子点层的子像素区域中,且位于量子点层与第一基板之间,量子点层的表面与第一基板的表面之间的最短距离为第一距离,与第一垫高部位于不同子像素区域中的发光层的表面与第一基板的表面之间的最短距离为第二距离,第一距离等于第二距离,第一垫高部为聚酰亚胺层。
实施例8
本实施例提供的发光器件与实施例7的区别在于:
发光器件还包括第二垫高部,量子点层位于电致发光结构与第一基板之间,第二垫高部设置于电致发光结构与量子点层之间,与第二垫高部位于不同子像素区域中的发光层的表面与第一基板的表面之间的最短距离为第三距离,第二垫高部设置于第一基板与量子点层之间,第一距离大于第三距离,第二垫高部为SiO2层。
对比例1
本对比例提供的发光器件为顶发射器件,包括第一基板、像素隔离结构、电致发光结构、量子点层、黑色矩阵和第二基板,像素隔离结构设置于第一基板一侧的表面上,像素隔离结构具有与实施例1相同数量的相互隔离的子像素区域,各子像素区域对应的部分第一基板上 设置有电致发光结构,黑色矩阵设置于第二基板一侧的表面上,且黑色矩阵的设置而形成具与像素隔离结构一一对应的相互隔离的量子点区域,各量子点区域对应的部分第二基板上设置有量子点层,形成RGB三色的发光器件。
其中,第一基板为TFT基板,电致发光结构包括顺序层叠设置的第一电极层、第一功能层、第二功能层、发光层、第三功能层和第二电极层,形成第一电极层(阴极)的材料为Ag,第一功能层的材料为ZnO纳米粒子,第二功能层的材料为聚乙烯咔唑(PVK),第三功能层的材料为聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS),第二电极层为氧化铟锡(ITO)作为阳极,形成发光层的材料为蓝色量子点,量子点层中具有红色量子点和作为基质的聚氨酯树脂的红色量子点层,具有绿色量子点和作为基质的聚氨酯树脂的绿色量子点层;蓝色、红色、绿色量子点为尺寸不同的CdSe/ZnS核壳量子点。
对比例2
本对比例提供的发光器件为底发射器件,包括第一基板、像素隔离结构、电致发光结构、量子点层、黑色矩阵和第二基板,第二基板与第一基板相对设置,像素隔离结构设置于第一基板一侧的表面上,且第二基板设置于像素隔离结构的远离第一基板的一侧,像素隔离结构具有与实施例5相同数量的相互隔离的子像素区域,各子像素区域对应的部分第一基板上设置有电致发光结构,黑色矩阵设置于第二基板一侧的表面上,且黑色矩阵的设置而形成具与像素隔离结构一一对应的相互隔离的量子点区域,各量子点区域对应的部分第二基板上设置有量子点层,形成RGB三色的发光器件。
其中,第一基板为TFT基板,第二基板为玻璃,电致发光结构包括顺序层叠设置的第一电极层、第一功能层、第二功能层、发光层、第三功能层和第二电极层,形成第一电极层为ITO(阳极),第一功能层的材料为聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸PEDOT:PSS,第二功能层的材料为聚乙烯咔唑(PVK),第三功能层的材料为ZnO纳米粒子,形成第二电极层的材料为Ag(反射性阴极),形成发光层的材料包括蓝色量子点,量子点层中具有红色量子点和作为基质的聚氨酯树脂的红色量子点层,具有绿色量子点和作为基质的聚氨酯树脂的绿色量子点层;蓝色、红色、绿色量子点为尺寸不同的CdSe/ZnS核壳量子点。
采用PHOTO RESEARCH公司生产的PR670光谱光度/色度/辐射度计,在电流密度为20mA/cm2的条件下,对实施例1~8中电致发光结构的蓝光进行光谱测试,测得蓝光外量子效率;利用积分球分别测试蓝色背光光谱和透过量子点层的光谱,利用谱图的积分面积计算量子点光致发光效率(红色量子点发光效率和绿色量子点发光效率)。
其中,量子点光致发光效率=(红色量子点吸收峰面积或绿色量子点吸收峰面积)/(蓝色背光峰面积-透过量子点层未被吸收的蓝色峰面积)*100%。
对上述实施例1~8及对比例1~2提供的发光器件的亮度均匀性进行测试,通过9点亮度测试的方法,分别测出9个点的亮度,然后求出9点的最大值Max和最小值Min,通过公式(Max-Min)/(Max+Min)最终得到亮度均匀性。
测试结果如下表:
Figure PCTCN2017099524-appb-000001
从上述测试结果可以看出,本申请实施例1至8中的发光器件相比于对比例1,具有更高的发光效率和亮度均匀性。
采用PHOTO RESEARCH公司生产的PR670光谱光度/色度/辐射度计,在电流密度为20mA/cm2的条件下,对实施例2、实施例3、实施例4中发光器件的蓝光进行光谱测试,以检验是否蓝色像素发出的光谱只有蓝色光谱峰,以证明是否有蓝光泄漏现象。
将实施例2、实施例3与实施例4进行对比:
实施例2中测得的蓝光光谱图如图7所示,当无需量子点层(红或绿)发光时,即通过TFT仅开启蓝色电致发光结构时,发射的光谱包括两个峰值,其峰值范围为430nm至496nm和510nm至540nm;
实施例3中测得的蓝光光谱图如图8所示,当无需量子点层(红或绿)发光时,即通过TFT仅开启蓝色电致发光结构时,发射的光谱的峰值范围主要为430nm至496nm之间,边缘出现510nm至540nm的强度很低的杂峰;
实施例4中测得的蓝光光谱图如图9所示,当无需量子点层(红或绿)发光时,即通过TFT仅开启蓝色电致发光结构时,发射的光谱的峰值范围430nm至496nm之间。
通过对上述各蓝光光谱图中的波长范围进行对比可以看出,当量子点层(含红色量子点和/或绿色量子点)不需发光时,未设置有第一垫高部和/或第二垫高部的实施例2中会有些电致发光结构出射的蓝光泄露到隔壁量子点层,激发隔壁的量子点层发光,从而使蓝色光中会混有红或绿,进而导致混色现象的出现。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
1、本发明的上述发光器件通过像素隔离结构将具有不同颜色量子点的量子点层隔离,从而有效地防止电致发光结构的子像素激发相邻的光致发光量子点层发光;
2、本发明的上述发光器件中不需要在相邻的量子点层之间设置黑色矩阵,避免了黑色矩阵对光线的吸收,提高了发光器件的发光效率和亮度均匀度;
3、本发明的上述发光器件通过设置第一垫高部,有效地减少了蓝光的泄露,降低了混光现象的影响;
4、本发明的上述发光器件通过在设置第一垫高部后进一步设置第二垫高部,更为有效地减少了蓝光的泄露,进一步降低了混光现象的影响。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种发光器件,包括第一基板(10)、像素隔离结构(20)、电致发光结构(30)和第二基板(40),所述第一基板(10)与所述第二基板(40)相对设置,且所述第二基板(40)设置于所述像素隔离结构(20)的远离所述第一基板(10)的一侧,所述像素隔离结构(20)设置于所述第一基板(10)一侧的表面上,所述像素隔离结构(20)在所述第一基板(10)的表面上形成多个相互隔离的子像素区域,各所述子像素区域对应的部分所述第一基板(10)上设置有所述电致发光结构(30),其特征在于,所述子像素区域还包括:
    量子点层(50),设置于至少一个所述子像素区域中,且各所述子像素区域中的所述量子点层(50)位于所述电致发光结构(30)的远离所述第一基板(10)的一侧或位于所述电致发光结构与所述第一基板(10)之间。
  2. 根据权利要求1所述的发光器件,其特征在于,各所述子像素区域中所述量子点层(50)的宽度大于等于所述电致发光结构(30)的有效发光区域的宽度。
  3. 根据权利要求1所述的发光器件,其特征在于,所述发光器件还包括第一垫高部(60),
    各所述子像素区域中的所述量子点层(50)位于所述电致发光结构(30)的远离所述第一基板(10)的一侧,所述第一垫高部(60)与所述量子点层(50)设置于不同的子像素区域中,且位于所述第一基板(10)与所述电致发光结构(30)之间,或
    各所述子像素区域中的所述量子点层(50)位于所述电致发光结构(30)与所述第一基板(10)之间,所述第一垫高部(60)设置于具有所述量子点层(50)的子像素区域中,且位于所述量子点层(50)与所述第一基板(10)之间。
  4. 根据权利要求3所述的发光器件,其特征在于,所述电致发光结构(30)包括发光层,
    所述第一垫高部(60)与所述量子点层(50)设置于不同的子像素区域中,所述量子点层(50)的表面与所述第一基板(10)的表面之间的最短距离为第一距离,与所述第一垫高部(60)位于同一个子像素区域中的所述发光层的表面与所述第一基板(10)的表面之间的最短距离为第二距离,所述第一距离小于等于所述第二距离,或
    所述第一垫高部(60)设置于具有所述量子点层(50)的子像素区域中,所述量子点层(50)的表面与所述第一基板(10)的表面之间的最短距离为第一距离,与所述第一垫高部(60)位于不同子像素区域中的所述发光层的表面与所述第一基板(10)的表面之间的最短距离为第二距离,所述第一距离大于等于所述第二距离。
  5. 根据权利要求3所述的发光器件,其特征在于,所述第一垫高部(60)为透明绝缘层,优选为SiO2层或聚酰亚胺层。
  6. 根据权利要求3或4所述的发光器件,其特征在于,所述发光器件还包括第二垫高部(70),
    各所述子像素区域中的所述量子点层(50)位于所述电致发光结构(30)的远离所述第一基板(10)的一侧,所述第二垫高部(70)设置于所述第二基板(40)与所述量 子点层(50)之间,或
    所述量子点层(50)位于所述电致发光结构(30)与所述第一基板(10)之间,所述第二垫高部(70)设置于所述电致发光结构(30)与所述量子点层(50)之间。
  7. 根据权利要求6所述的发光器件,其特征在于,所述电致发光结构(30)包括发光层,所述量子点层(50)的表面与所述第一基板(10)的表面之间的最短距离为第一距离,与所述第二垫高部(70)位于不同子像素区域中的所述发光层的表面与所述第一基板(10)的表面之间的最短距离为第三距离,
    所述第二垫高部(70)设置于所述第二基板(40)与所述量子点层(50)之间,所述第一距离小于所述第三距离,或
    所述第二垫高部(70)设置于位于同一子像素区域中的所述电致发光结构(30)与所述量子点层(50)之间,所述第一距离大于所述第三距离。
  8. 根据权利要求6所述的发光器件,其特征在于,所述第二垫高部(70)为透明绝缘层,优选为SiO2层或聚酰亚胺层。
  9. 根据权利要求1所述的发光器件,其特征在于,所述电致发光结构(30)的出射光为蓝光,所述量子点层(50)中具有红色量子点和/或绿色量子点。
  10. 根据权利要求1所述的发光器件,其特征在于,所述电致发光结构(30)为QLED或OLED。
PCT/CN2017/099524 2016-08-31 2017-08-29 发光器件 WO2018041103A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17845405.4A EP3509119A4 (en) 2016-08-31 2017-08-29 LIGHT EMITTING DEVICE
US16/325,398 US10790463B2 (en) 2016-08-31 2017-08-29 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610797825.X 2016-08-31
CN201610797825.XA CN106340597B (zh) 2016-08-31 2016-08-31 发光器件

Publications (1)

Publication Number Publication Date
WO2018041103A1 true WO2018041103A1 (zh) 2018-03-08

Family

ID=57822636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099524 WO2018041103A1 (zh) 2016-08-31 2017-08-29 发光器件

Country Status (4)

Country Link
US (1) US10790463B2 (zh)
EP (1) EP3509119A4 (zh)
CN (1) CN106340597B (zh)
WO (1) WO2018041103A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340597B (zh) * 2016-08-31 2019-01-18 纳晶科技股份有限公司 发光器件
GB201806530D0 (en) * 2018-04-21 2018-06-06 Savvy Science Ltd Pixel arrangement comprising a perovskite light emitting diode
CN113169289A (zh) 2018-09-17 2021-07-23 佩罗莱德有限公司 通过喷墨印刷制造钙钛矿发光器件的方法
US20200135988A1 (en) * 2018-10-26 2020-04-30 Tectus Corporation Methods of modifying the composition of material layers
CN111697153B (zh) * 2019-03-15 2023-03-03 纳晶科技股份有限公司 发光器件
CN109860272B (zh) * 2019-04-17 2021-01-29 京东方科技集团股份有限公司 显示基板、显示装置
CN110660833B (zh) * 2019-07-17 2022-06-17 纳晶科技股份有限公司 电致发光显示器件及其制备方法
CN110752242B (zh) * 2019-10-31 2021-09-21 武汉天马微电子有限公司 一种显示面板及显示装置
CN113707039A (zh) * 2020-05-22 2021-11-26 北京芯海视界三维科技有限公司 发光模组、显示模组、显示屏及显示器
CN111584525A (zh) * 2020-05-27 2020-08-25 京东方科技集团股份有限公司 显示面板、显示装置及显示面板的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101821851A (zh) * 2007-09-17 2010-09-01 全球Oled科技有限责任公司 具有改善的光输出的led设备
WO2016098954A1 (ko) * 2014-12-18 2016-06-23 엘지전자 주식회사 유기전계발광표시장치
CN106340597A (zh) * 2016-08-31 2017-01-18 纳晶科技股份有限公司 发光器件

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060138941A1 (en) 2004-12-27 2006-06-29 Osram Opto Semiconductors Gmbh Electrolumenscent organic light emitting device and production method thereof
JP5117326B2 (ja) * 2008-08-29 2013-01-16 富士フイルム株式会社 カラー表示装置及びその製造方法
CN103227189B (zh) * 2013-04-09 2015-12-02 北京京东方光电科技有限公司 一种量子点发光二极管显示器件及显示装置
CN203250739U (zh) * 2013-04-23 2013-10-23 京东方科技集团股份有限公司 一种有机电致发光二极管显示装置
CN103472513A (zh) * 2013-08-21 2013-12-25 京东方科技集团股份有限公司 一种彩色滤光层、彩膜基板、显示装置
KR102093628B1 (ko) * 2013-10-10 2020-03-26 엘지디스플레이 주식회사 유기전계 발광소자 및 이의 제조 방법
TWI580031B (zh) * 2013-12-26 2017-04-21 鴻海精密工業股份有限公司 顏色轉換層、有機電致發光顯示面板及液晶顯示面板
CN203658706U (zh) * 2014-01-27 2014-06-18 京东方科技集团股份有限公司 彩色滤光片及显示装置
CN104143564A (zh) * 2014-07-22 2014-11-12 京东方科技集团股份有限公司 一种oled面板及显示装置
CN105590945A (zh) * 2014-11-17 2016-05-18 北京维信诺科技有限公司 一种含有量子点的有机发光显示器件、显示方法及其应用
KR102370715B1 (ko) * 2014-12-29 2022-03-07 엘지디스플레이 주식회사 양자점을 포함하는 유기발광 다이오드 표시장치
US9484492B2 (en) * 2015-01-06 2016-11-01 Apple Inc. LED structures for reduced non-radiative sidewall recombination
US10297581B2 (en) * 2015-07-07 2019-05-21 Apple Inc. Quantum dot integration schemes
CN105609656B (zh) * 2016-01-06 2017-05-17 京东方科技集团股份有限公司 一种有机电致发光器件及显示装置
CN105428546A (zh) * 2016-01-20 2016-03-23 京东方科技集团股份有限公司 一种qled及其制备方法、显示装置及其制备方法
CN105576004A (zh) * 2016-02-29 2016-05-11 Tcl集团股份有限公司 一种量子点彩色光转换膜、oled面板及显示装置
CN105932039B (zh) * 2016-06-01 2019-02-19 深圳市华星光电技术有限公司 Oled显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101821851A (zh) * 2007-09-17 2010-09-01 全球Oled科技有限责任公司 具有改善的光输出的led设备
WO2016098954A1 (ko) * 2014-12-18 2016-06-23 엘지전자 주식회사 유기전계발광표시장치
CN106340597A (zh) * 2016-08-31 2017-01-18 纳晶科技股份有限公司 发光器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3509119A4 *

Also Published As

Publication number Publication date
EP3509119A4 (en) 2020-04-01
CN106340597B (zh) 2019-01-18
EP3509119A1 (en) 2019-07-10
US20190198787A1 (en) 2019-06-27
CN106340597A (zh) 2017-01-18
US10790463B2 (en) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2018041103A1 (zh) 发光器件
US9318726B2 (en) Organic light-emitting diode (OLED) display
US10453902B2 (en) Organic light emitting diode display device and method for manufacturing the same
CN109427859B (zh) 有机发光显示装置
WO2013154133A1 (ja) 光散乱体、光散乱体膜、光散乱体基板、光散乱体デバイス、発光デバイス、表示装置、および照明装置
WO2015161624A1 (zh) 彩膜基板及制备方法、有机电致发光显示面板、显示装置
WO2013111696A1 (ja) 蛍光体基板、表示装置および電子機器
WO2013039072A1 (ja) 発光デバイス、表示装置、照明装置および発電装置
WO2020030042A1 (zh) Oled显示基板及其制作方法、显示装置
US8823019B2 (en) White organic light emitting device and display device using the same
TW201711183A (zh) 顯示裝置
JP7190474B2 (ja) 発光表示装置
JP2014052606A (ja) 蛍光体基板、発光デバイス、表示装置、及び照明装置
US9000425B2 (en) Organic light emitting diode, and panel and display using the same
US20140009905A1 (en) Fluorescent substrate, display apparatus, and lighting apparatus
JP2007311046A (ja) 発光装置、発光装置の製造方法、及び電子機器
CN108029178B (zh) 有机电致发光装置、有机电致发光装置的制造方法、照明装置和显示装置
WO2013038971A1 (ja) 発光デバイス、表示装置、及び照明装置
US20180083215A1 (en) Electroluminescence and photoluminescence mixed display element and manufacture method thereof
JP2013109907A (ja) 蛍光体基板および表示装置
WO2012081536A1 (ja) 発光デバイス、表示装置、電子機器及び照明装置
WO2019001362A1 (zh) 显示基板及其制造方法、显示面板及显示装置
JP2007095444A (ja) 有機エレクトロルミネッセンス表示装置
CN101425529B (zh) 有机电激发光显示装置
WO2019006793A1 (zh) 一种白光oled器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017845405

Country of ref document: EP

Effective date: 20190401