WO2021073139A1 - 一种旋转变压器接线自检测系统 - Google Patents

一种旋转变压器接线自检测系统 Download PDF

Info

Publication number
WO2021073139A1
WO2021073139A1 PCT/CN2020/097627 CN2020097627W WO2021073139A1 WO 2021073139 A1 WO2021073139 A1 WO 2021073139A1 CN 2020097627 W CN2020097627 W CN 2020097627W WO 2021073139 A1 WO2021073139 A1 WO 2021073139A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
resolver
line sequence
excitation
sine
Prior art date
Application number
PCT/CN2020/097627
Other languages
English (en)
French (fr)
Inventor
张瑞峰
丁志勇
路瑶
张吉斌
王彬
詹哲军
梁海刚
Original Assignee
中车永济电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车永济电机有限公司 filed Critical 中车永济电机有限公司
Publication of WO2021073139A1 publication Critical patent/WO2021073139A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines

Definitions

  • the invention relates to the technical field of permanent magnet synchronous motor control, in particular to a rotary transformer connection self-detection system.
  • the permanent magnet synchronous traction system has significant advantages such as low loss, high efficiency, good starting characteristics, strong acceleration performance, and low noise. It represents the future technological development trend of energy saving, emission reduction, and green environmental protection, and has become the development direction of the next generation of traction systems.
  • Direct transmission technology has the advantages of solving transmission loss, noise and maintenance problems, reducing the overall weight of the vehicle, improving transmission efficiency, and providing more free space for bogie design.
  • the high-power permanent magnet direct-drive electric locomotive that CRRC Yongji Electric Co., Ltd. cooperated with Datong Electric Locomotive Co., Ltd. has completed the installation of the vehicle, and the joint debugging test of the whole vehicle will be completed soon.
  • the resolver has six wirings: positive excitation, negative excitation, positive sine feedback, negative sine feedback, positive cosine feedback, and negative cosine feedback.
  • the cosine feedback signal causes the follow-up decoding part to fail to obtain the true position information of the rotor, causing the motor to fail to start and run normally.
  • the current method to solve this problem is to disassemble the converter cabinet and recheck the connection between the resolver under the car and the traction control unit on the car. This will undoubtedly waste a lot of time and manpower.
  • Prior art one (CN108761264A) provides a resolver wiring fault detection method.
  • the rotor position of the resolver to be detected is controlled to a preset angle.
  • the controller inputs a target current to the motor stator, and then obtains the current rotor angle corresponding to the target current and the theoretical rotor rotation angle, and compares whether the difference between the current rotor angle and the theoretical rotor rotation angle is less than a preset difference, If it is, it is determined that the resolver is wired correctly, otherwise, it is determined that the resolver has a wiring error fault.
  • the prior art can detect the wrong wiring fault of the resolver, but cannot start and run the permanent magnet synchronous motor normally under the wrong wiring fault condition.
  • the prior art 2 (CN106707892A) provides a self-detection method for resolver wiring. Firstly, all wiring sequence combinations are enumerated, and then the original input wiring sequence is switched to enumerated wiring by changing the address code of the signal switching module A new wiring combination in the combination; then this wiring combination is calculated by the axis angle calculation module, and the result of the calculation is returned to the main control module at the same time.
  • the motor matched by the resolver in the turntable drives the turntable to rotate at a constant speed after being turned on.
  • the shaft angle judgment module judges according to the shaft angle data input by the main control module, and then automatically detects the correct line sequence.
  • the prior art can automatically detect the wiring sequence of the resolver, but the hardware part requires an additional wiring sequence switching module, which increases the complexity of the system and has limitations in application scenarios.
  • the present invention proposes a resolver wiring self-detection system.
  • For the motor if it is detected that the motor is successfully started within a certain period of time, it means that the current line sequence is consistent with the actual line sequence.
  • the motor starts and runs according to the current line sequence and the compensated position deviation; if the motor does not start within a certain period of time, try Start with the next possible line sequence and compensation deviation angle until the motor starts normally.
  • the permanent magnet direct drive motor can be started and operated normally under the condition of the resolver wire sequence is wrongly connected, thereby improving the debugging efficiency of the locomotive.
  • the invention is not only suitable for high-power permanent magnet direct-drive electric locomotives, but also suitable for various permanent magnet synchronous motors using resolvers as position sensors.
  • a resolver wiring self-detection system including a DSP controller, an excitation signal amplifying and filtering circuit, a resolver, and a sine and cosine signal conditioning circuit.
  • the program part of the DSP controller includes all digital RDC decoding module, line sequence recognition module and motor control algorithm part.
  • the all-digital RDC decoding module generates a sine excitation reference signal, the sine excitation reference signal passes through the excitation signal amplification and filter circuit to obtain a sine excitation signal suitable for the excitation of the resolver, and sends it to the resolver; sine and cosine signal conditioning The circuit adjusts the sine and cosine feedback signal output by the resolver, converts it from a differential signal into a single-ended sine and cosine signal, and sends it to the all-digital RDC decoding module; the all-digital RDC decoding module parses the line sequence through the single-ended sine and cosine signal Rotation speed and rotor position, the rotor position is automatically corrected to the real rotor position through the line sequence recognition module; the true rotor position output by the line sequence recognition module and the rotation speed output by the full digital decoding module are sent to the motor control algorithm part for motor control.
  • the all-digital RDC decoding module includes an excitation PWM generation module, a resolver signal demodulation module, and a shaft angle digital conversion module.
  • the excitation PWM generation module generates a sinusoidal excitation reference signal through a look-up table method.
  • the resolver signal demodulation module samples the single-ended sine and cosine signals through AD at the peak moment of the excitation reference signal to obtain the sine and cosine envelope signals related to the rotor position of the motor.
  • the shaft angle digital conversion module extracts the motor speed and rotor position information from the sine-cosine envelope signal through the tracking shaft angle digital converter.
  • the excitation signal amplification and filtering circuit uses the chip TC1427 to amplify the sinusoidal excitation reference signal output by the excitation PWM generation module to obtain an SPWM signal suitable for the resolver excitation power, and then pass it through a low pass
  • the filter filters out the high frequency components in the SPWM signal to obtain a differential sinusoidal excitation signal.
  • the sine-cosine signal conditioning circuit adopts a high-precision and wide-voltage range instrument amplifier of model INA128U to amplify the sine-cosine feedback signal and convert it into a single-ended sine-cosine signal suitable for DSP sampling .
  • the line sequence identification module enumerates 16 possible wiring sequence through the look-up table method, and analyzes the relationship between the rotor position ⁇ 1 and the actual rotor position ⁇ 2 under each line sequence. The position correction ensures that the output of this module is the actual rotor position.
  • the specific work flow of the line sequence identification module is: start the permanent magnet direct drive motor, run for a period of time, and determine whether the speed is 0; if the speed is not 0, it means that the current line sequence is followed The parsed rotor position is correct. After that, the permanent magnet direct drive motor performs control calculations according to the rotor position parsed by this line sequence, and no longer runs the line sequence recognition program; if the speed is 0, it means that the line sequence is parsed according to the current line sequence. There is a deviation in the rotor position, that is, the line sequence between the resolver and the control part is wrongly connected. At this time, the line sequence identification module uses the next set of possible line sequence to resolve the rotor position, and tries to start again, runs for a period of time, and judges whether the speed Is 0, so until the motor is successfully started.
  • the motor control algorithm is partially controlled and modulated independently, and the phase angle regulator is used to ensure that the voltage command phase is consistent with the actual fundamental voltage phase.
  • the actual line sequence can be identified through the line sequence recognition module when the resolver line sequence is wrongly connected, and the current line sequence can be automatically compensated to distinguish the rotor position and actual The deviation of the rotor position, so as to start and run the permanent magnet synchronous motor normally, avoid the debugging personnel to spend a lot of time and energy on the spot to find the wiring error of the resolver, and improve the debugging efficiency on the spot.
  • the invention is also applicable to all permanent magnet synchronous motor applications using resolvers as position sensors.
  • Fig. 1 is a control block diagram of the rotary transformer connection self-detection system of the present invention.
  • Figure 2 is a schematic diagram of the stator winding of the resolver.
  • Figure 3 is a schematic diagram of the resolver's excitation and feedback signals.
  • Fig. 4 is the interrupt flow chart of excitation reference signal generation.
  • Figure 5 is a schematic diagram of the excitation signal amplifying and filtering circuit.
  • Figure 6 is a schematic diagram of a sinusoidal signal conditioning circuit.
  • Figure 7 is the demodulation interrupt flow chart.
  • Figure 8 is a block diagram of peak sampling.
  • Figure 9 is a schematic diagram of a sampled envelope signal.
  • Figure 10 is a block diagram of the principle of the tracking shaft angle digitizer.
  • FIG 11 is a simplified block diagram of the tracking shaft angle digitizer.
  • Figure 12 is a program flow chart of the line sequence identification module.
  • Figure 13 is a block diagram of a segmented vector control strategy suitable for locomotives in the full speed range.
  • the present invention corrects the angular deviation of the resolver caused by the wrong wiring of the resolver through the line sequence identification module, and can start and run the permanent magnet synchronous motor normally in the case of the resolver is connected to the wrong line.
  • the control process of the present invention is shown in Figure 1 .
  • Part 1 is a resolver. This part uses the amplified and filtered sine signal of part 3 for excitation, and transmits the feedback sine and cosine signal to part 4.
  • the feedback sine and cosine signal contains the position information of the permanent magnet direct drive motor.
  • Part 2 is the excitation PWM generation module, which can generate the excitation reference signal REF_PWM.
  • Excitation signal amplifying and filtering circuit amplifies and filters the excitation reference signal REF_PWM to obtain a sinusoidal signal V r suitable for resolver excitation and send it to the resolver.
  • Part 5 is the resolver signal demodulation module, which samples the sine-cosine feedback signal at the peak moment of the excitation signal to obtain the sine-cosine envelope signal.
  • Part 6 is the shaft angle digital conversion algorithm, which analyzes the rotor position and speed of the permanent magnet direct drive motor through the sine-cosine envelope signal.
  • the rotor position ⁇ 1 signal is sent to part 7 and the speed signal ⁇ r is sent directly to part 8.
  • Part 7 is the line sequence identification module.
  • the line sequence between the part 1 resolver and the control part is incorrectly connected, there will be a deviation between the analyzed rotor position ⁇ 1 and the actual rotor position, and the permanent magnet synchronous motor cannot be started.
  • the deviation is corrected, and then the corrected real rotor position ⁇ 2 is sent to part 5 for use in the motor control algorithm.
  • Part 8 is the control algorithm of the permanent magnet synchronous motor.
  • the rotation speed ⁇ r from part 6 and the real rotor position ⁇ 2 from part 7 are used in the control algorithm.
  • This part adopts a segmented vector control strategy suitable for the full speed range of locomotives.
  • the control algorithm and the modulation algorithm are designed independently, and the phase angle regulator is used to solve the problem of different calculation frequencies between the two.
  • the resolver is a special measuring motor.
  • the rotor and the permanent magnet synchronous motor rotor are connected by a mechanical structure.
  • the stator contains a primary winding for excitation and two secondary windings for feedback, as shown in Figure 2.
  • the R1-R2 windings input the sinusoidal excitation signals V r + and V r -for excitation from the external circuit.
  • the feedback windings S1-S3 and S2-S4 output sinusoidal feedback signals related to the motor position V a +, V a - cosine and feedback signal V b +, V b -, as shown in FIG.
  • the present invention aims to solve the problem of normal startup and operation through program correction in the case of the wrong connection of the change. Permanent magnet direct drive motor.
  • V r V p ⁇ sin( ⁇ t) (1)
  • V p is the amplitude of the excitation signal
  • sin( ⁇ t) is the frequency of the excitation signal
  • V q is the amplitude of the sine-cosine feedback signal
  • is the axis angle. Since the signal is induced from the primary winding to the secondary winding, there will be Certain attenuation, generally V q is less than V p .
  • the excitation signal of the resolver is essentially a sinusoidal function signal.
  • the excitation PWM generation module obtains the sinusoidal excitation reference signal REF_PWM through the look-up table method. Although this method requires a certain amount of storage space, the method is simple and easy to implement, and it is easy to obtain the excitation reference signal. Peak moment.
  • the frequency of the excitation signal is selected as 4KHz, and the SPWM with a frequency of 160KHz is output through the ePWM module of the DSP.
  • the calculated 40-point sine value is stored in the DSP program.
  • the excitation reference signal REF_PWM generated by the excitation PWM generation module has poor driving ability and needs to go through an excitation signal amplification and filtering circuit to achieve the excitation demand of the resolver.
  • the excitation signal amplification and filtering circuit is shown in Figure 5.
  • the chip TC1427 is used to amplify the excitation reference signal REF_PWM generated by the excitation PWM generation module to obtain an SPWM signal suitable for the resolver excitation power.
  • the low-pass filter filters out the high-frequency components in the SPWM signal to obtain differential sinusoidal excitation signals V r + and V r -, which are used for the excitation of the resolver.
  • Sine and Cosine resolver output feedback signal V a +, V a -, V b +, V b - contains the rotor position information is required to be calculated by rotor position and speed by digital controller RDC decoding module.
  • the sine and cosine signals output by the resolver are differential, and the controller can only sample the analog signal from 0 to 3.0V, a sine and cosine conditioning circuit is required to convert the sine and cosine feedback signal output by the resolver into a voltage range of 0 ⁇ 3.0V single-ended sine and cosine signal.
  • the conditioning circuit for sinusoidal signals is shown in Figure 6.
  • INA128U is a high-precision and wide-voltage range instrument amplifier. It can directly amplify and convert differential signals into single-ended signals, and adjust the peak-to-peak value of the signal by adjusting the scale factor of its amplifying circuit. It is 3V, and a DC bias voltage of 1.5V is added to the REF terminal to obtain a single-ended sinusoidal signal Ve of 0-3.0V that can be collected by the controller.
  • the cosine signal conditioning circuit is the same as the sine signal conditioning circuit, and a single-ended cosine signal V f is also obtained.
  • the sine-cosine feedback signal output by the resolver is the modulation wave of the sine-cosine function of the rotor position to the amplitude of the excitation signal. Since the excitation reference signal is obtained by looking up the sine table, it is easier to obtain the peak moment of the excitation reference signal.
  • the single-ended sine and cosine signals V e and V f are sampled at the peak moment of the signal to obtain the sine and cosine envelope signals V s and V c .
  • the program flowchart of the demodulation interrupt and the block diagram of the peak sampling are shown in Figure 7 and Figure 8, respectively, and the sampled envelope signal schematic diagram is shown in Figure 9.
  • the input sine-cosine envelope signal is respectively multiplied by the cosine and sine of the estimated angle ⁇ 1 , and then subtracted by the deviation amplifier to obtain the output deviation signal:
  • the tracking-type shaft angle digital conversion model shown in Fig. 10 can be simplified as Fig. 11, and then the closed-loop transfer function of the tracking-type shaft angle digital conversion and the error transfer function of the estimated angle can be obtained from Fig. 11 as
  • the shaft angle digital conversion system is a type 2 servo system. According to the principle of automatic control, there is no steady-state error for the step input and constant-speed input systems, but for the acceleration signal input, the steady-state output is present. Error, and the magnitude of the error is proportional to the magnitude of the acceleration.
  • the tracking-type shaft angle digital conversion algorithm is based on the principle of digital phase-locked loop, which has a good tracking effect, low sampling amplitude requirements, and has the advantages of real-time and fast speed.
  • the ⁇ 1 and ⁇ r output by part 6 are the exact rotor position and speed of the permanent magnet direct drive motor. But at the ground joint debugging test site or the loading site, there will be 6 resolver wires wrongly connected, resulting in a certain deviation between the analyzed rotor position and the real rotor position, and the motor cannot be started.
  • the enumeration method is used to enumerate the possible misconnection of the wiring, and through the corresponding rotor position deviation compensation, in the complex environment of the site, the deviation position ⁇ 1 can be corrected to the true position ⁇ 2 without changing the wiring. Start and run the permanent magnet direct drive motor normally.
  • the line sequence recognition module enumerates the possible line sequence misconnections, and calculates the corresponding correction angle in combination with the resolver decoding principle.
  • the actual position of the rotor is shown in Table 1, and ⁇ 1 is the analytical result of the current line sequence.
  • Rotor position, ⁇ 2 is the true position of the rotor, and the relationship between the two is shown in Table 1.
  • Table 1 Analyze the relationship between the rotor position and the real rotor position when the wire sequence is wrongly connected
  • the flow chart of the line sequence recognition module in the program is shown in Figure 12.
  • the permanent magnet direct drive motor is started according to the rotor position analyzed by the current line sequence, that is, the motor runs for a period of time under the rotor position angle analyzed by the current line sequence.
  • Time determine whether the motor speed is 0; if the speed is not 0, it means that the motor starts normally, the position resolved by the line sequence is correct, and the line sequence recognition program will no longer be executed after the motor runs. If the speed is 0, it means that there is a deviation in the position analyzed by the line sequence.
  • After updating the next set of corrected rotor positions try to start again, and judge the speed of the motor after running for a period of time.
  • the 16 correction angles for compensating the resolver deviation are stored in the program and updated to the rotor position in sequence until the motor is successfully started.
  • the invention can correct the rotor position angle and start the motor normally when the two wires in each group of excitation, sine feedback, and cosine feedback are misconnected, or the two sets of sine feedback and cosine are misconnected, but when the excitation signal receives the feedback signal When the two lines of the sine or cosine of the upper or feedback are not in a group, this method is invalid.
  • the motor control algorithm uses a segmented vector control strategy based on the locomotive's full speed range, and its overall control block diagram is shown in Figure 13.
  • the control strategy is generally divided into three parts: control algorithm, modulation algorithm and phase angle regulator.
  • the control algorithm and modulation algorithm are designed independently.
  • the calculation frequency of the control algorithm is higher than the carrier frequency, which can reduce the delay of PWM.
  • Control algorithm This part adopts fixed calculation frequency, completes AD sampling, command reception, vector control algorithm realization, and finally generates voltage command; when the motor is running in the non-field weakening area, the MTPA control strategy is adopted, and when operating at high-speed field weakening In the area, the weak field control strategy is adopted, and the two control strategies can realize the cut-in and cut-out without impact.
  • Modulation algorithm Limited by the low switching frequency of the high-power transmission system, the modulation part designs different modulation strategies in different speed regions to achieve a step-by-step transition from a high carrier ratio in the start-up phase to a single pulse mode under a square wave to meet The need to operate in the full speed range; and when transitioning between different modulation strategies, ensure that there will be no severe current impact during the switching process, that is, a smooth transition can be achieved.
  • Phase angle regulator The calculation frequency of the voltage angle is different due to the fixed calculation time of the control algorithm and the non-fixed carrier cycle of the modulation algorithm, which may cause the phase of the command voltage to be inconsistent with the phase of the fundamental voltage realized by the PWM, and even cause vector control If the algorithm fails, the phase angle regulator can ensure that the voltage command phase is consistent with the actual fundamental voltage phase.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种旋转变压器接线自检测系统,包括DSP控制器、励磁信号放大与滤波电路(3)、旋转变压器(1)、正余弦信号调理电路(4),其中DSP控制器的程序部分包括全数字RDC解码模块、线序识别模块(7)和电机控制算法部分(8)。通过该旋转变压器接线自检测方法,能够在旋转变压器线序错接的情况下,通过线序识别模块(7)辨识出实际线序,并且自动补偿当前线序辨析出转子位置与实际转子位置的偏差,从而正常启动和运行永磁同步电机,避免调试人员在现场花费大量时间和精力去查找旋转变压器的接线错误,提高现场的调试效率。该系统同样适用所有以旋转变压器为位置传感器的永磁同步电机应用场合。

Description

一种旋转变压器接线自检测系统 技术领域
本发明涉及永磁同步电机控制技术领域,具体是一种旋转变压器接线自检测系统。
背景技术
永磁同步牵引系统具有损耗低、效率高、启动特性好、加速性能强、噪声低等显著优点,代表了未来节能减排、绿色环保的技术发展趋势,成为下一代牵引系统的发展方向。直接传动技术,具备解决传递损耗、噪声和维修等问题,减轻车辆的总体重量,提高传动效率,给转向架的设计提供更多自由的空间等优点。目前中车永济电机有限公司与大同电力机车有限公司合作的大功率永磁直驱电力机车已完成装车,并且即将完成整车的联调试验。
在永磁直驱电机的矢量控制过程中,为了获得高动态响应、高精度调速和高效率等控制特性,需要实时获取电机的转速和转子位置信息。比较常用的位置传感器有编码器和旋转变压器,旋转变压器具有精度高、耐高温高湿、可靠性高、防水防尘和抗干扰能力强等优点,在轨道交通、电动汽车、航空及航天等多种领域得到广泛应用。
旋转变压器具有励磁正、励磁负、正弦反馈正、正弦反馈负、余弦反馈正及余弦反馈负六根接线,在机车的装配过程中,因旋转变压器接线错误会直接导致输出的电压信号不是正确的正余弦反馈信号,致使后续解码部分得不到转子真实的位置信息,造成电机不能正常启动和运行。解决这种问题的当前方法是调试人员拆开变流器柜,重新检查车底旋转变压器到车上牵引控制单元之间的连线,这无疑会浪费大量的时间和人力。
现有技术一(CN108761264A)提供了一种旋转变压器接线故障检测方法,通过预先设置电机定子的输入电流与旋转变压器转子理论旋转角度的对应关系,控制待检测旋转变压器的转子位置至预设角度,控制器向电机定子输入目标电流,然后获取目标电流对应的当前转子角度以及所述转子理论旋转角度,比对所述当前转子角度以及所述转子理论旋转角度的差值是否小于预设差值,如果是,则判定旋转变压器接线正确,否则,则判定旋转变压器出现接线错误故障。该现有技术能够检测出旋转变压器的接线错误故障,但不能在接线错误故障条件下正常启动和运行永磁同步电机。
现有技术二(CN106707892A)提供了一种旋转变压器接线自检测方法,首先枚举出所有的接线线序组合,然后将原始输入的线序通过改变信号切换模块的地址编码,切换为枚举接线组合中的一种新的接线组合;然后通过轴角解算模块对该种接线组合进行解算,同时将解算结果回传到主控模块中。开始自动检测时,转台中的旋转变压器所匹配的电机在开启后带动转台匀速转动,轴角判断模块根据主控模块输入的轴角数据进行判断,进而自动检测出正确的线序。该现有技术能够自动检测出旋转变压器的接线线序,但硬件部分需要额外的线序切换模块,增加了系统的复杂程度,并且应用场合具有局限性。
发明内容
为解决因旋转变压器线序错接而导致的永磁直驱电机无法启动问题,本发明提出一种旋 转变压器接线自检测系统。首先枚举出旋转变压器线序错接的可能情况,以及各线序错接情况下对应的解析出转子位置与实际转子位置的偏差;然后按照所枚举的可能线序逐次启动永磁直驱电机,在一定时间内,如果检测到电机成功启动,则说明当前线序与实际线序一致,此后电机按当前线序及补偿的位置偏差启动和运行;若一定时间内电机没有启动,则尝试采用下一组可能的线序及补偿偏差角度启动,直到电机正常启动为止。使用该方法能够在旋变线序错接的情况下正常启动和运行永磁直驱电机,从而提高机车的调试效率。本发明不仅适用于大功率永磁直驱电力机车,同样适用于以旋转变压器为位置传感器的各项永磁同步电机的应用场合。
本发明是通过以下技术方案实现的:一种旋转变压器接线自检测系统,包括DSP控制器、励磁信号放大与滤波电路、旋转变压器、正余弦信号调理电路,其中DSP控制器的程序部分包括全数字RDC解码模块、线序识别模块和电机控制算法部分。所述系统的工作原理如下:全数字RDC解码模块产生正弦励磁参考信号,正弦励磁参考信号经过励磁信号放大与滤波电路得到适合于旋转变压器励磁的正弦励磁信号,送至旋转变压器;正余弦信号调理电路对旋转变压器输出的正余弦反馈信号进行调理,将其由差分信号转换成单端正余弦信号,送至全数字RDC解码模块;全数字RDC解码模块通过单端正余弦信号解析出该线序下的转速和转子位置,转子位置经过线序识别模块,自动校正到真实的转子位置;将线序识别模块输出的真实转子位置和全数字解码模块输出的转速送至电机控制算法部分用于电机控制。
上述的一种旋转变压器接线自检测系统,全数字RDC解码模块包括励磁PWM产生模块、旋变信号解调模块和轴角数字转换模块。
上述的一种旋转变压器接线自检测系统,励磁PWM产生模块通过查表法产生正弦励磁参考信号。
上述的一种旋转变压器接线自检测系统,旋变信号解调模块在励磁参考信号的峰值时刻通过AD对单端正余弦信号进行采样,得到与电机转子位置相关的正余弦包络信号。
上述的一种旋转变压器接线自检测系统,轴角数字转换模块通过跟踪型轴角数字转换器在正余弦包络信号中提取出电机的转速和转子位置信息。,
上述的一种旋转变压器接线自检测系统,励磁信号放大与滤波电路采用芯片TC1427对励磁PWM产生模块输出的正弦励磁参考信号进行功率放大,得到适合于旋变励磁功率的SPWM信号,再经过低通滤波器滤除SPWM信号中的高频成分,得到差分的正弦励磁信号。
上述的一种旋转变压器接线自检测系统,正余弦信号调理电路采用型号为INA128U的高精度宽电压范围的仪用放大器,对正余弦反馈信号进行放大并转换为适合于DSP采样的单端正余弦信号。
上述的一种旋转变压器接线自检测系统,线序识别模块通过查表法枚举出16种可能的接线线序,以及各线序下解析出转子位置θ 1与实际转子位置θ 2的关系,通过位置校正保证 此模块输出的是实际转子位置。
上述的一种旋转变压器接线自检测方法,线序识别模块具体的工作流程为:启动永磁直驱电机,运行一段时间,判断转速是否为0;如果转速不为0,则说明按照当前线序解析出的转子位置是正确的,此后永磁直驱电机按此线序解析出的转子位置进行控制运算,不再运行线序识别程序;如果转速为0,则说明按照当前线序解析出的转子位置存在偏差,即旋转变压器与控制部分之间的线序存在错接,此时线序识别模块采用下一组可能线序解析出的转子位置,再次尝试启动,运行一段时间,判断转速是否为0,如此,直到成功启动电机。
上述的一种旋转变压器接线自检测方法,电机控制算法部分控制和调制独立设计,通过相角调节器保证电压指令相位和实际基波电压相位的一致。
本发明技术方案带来的有益效果:
1.采用全数字RDC解码模块代替传统的专用硬件解码芯片,降低了系统成本,并且避免了使用硬件解码时受硬件本身精度和温漂特性限制引起的误差。
2.通过本发明所提的旋转变压器接线自检测方法,能够在旋转变压器线序错接的情况下,通过线序识别模块辨识出实际线序,并且自动补偿当前线序辨析出转子位置与实际转子位置的偏差,从而正常启动和运行永磁同步电机,避免调试人员在现场花费大量时间和精力去查找旋转变压器的接线错误,提高现场的调试效率。该发明同样适用所有以旋转变压器为位置传感器的永磁同步电机应用场合。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所述旋转变压器接线自检测系统的控制框图。
图2为旋转变压器定子绕组示意图。
图3为旋转变压器励磁及反馈信号示意图。
图4为励磁参考信号产生的中断流程图。
图5为励磁信号放大与滤波电路示意图。
图6为正弦信号的调理电路示意图。
图7为解调中断流程图。
图8为峰值采样框图。
图9为采样包络信号示意图。
图10为跟踪性轴角数字转换器原理框图。
图11为跟踪性轴角数字转换器简化框图。
图12为线序辨识模块程序流程图。
图13为适用于机车的全速度范围内分段矢量控制策略框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
下面结合附图对本发明的技术方案进行详细的说明。
本发明通过线序识别模块对旋转变压器因接错线引起的角度偏差进行校正,在旋变接错线的情况下能够正常启动和运行永磁同步电机,本发明的控制过程如图1所示。
部分1为旋转变压器,此部分将部分3放大滤波后的正弦信号用于励磁,并将反馈的正余弦信号传至部分4,反馈的正余弦信号中含有永磁直驱电机的位置信息。
部分2为励磁PWM产生模块,可以产生励磁参考信号REF_PWM。
部分3励磁信号放大与滤波电路,将励磁参考信号REF_PWM进行放大和滤波,得到适合于旋变励磁的正弦信号V r,送至旋转变压器。
部分4为正余弦信号调理电路,将旋转变压器反馈输出的差分的正余弦信号进行调理,将其转换成0~3.0V的单端对地信号V a、V b,再送至部分5。
部分5为旋变信号解调模块,在励磁信号的峰值时刻对正余弦反馈信号进行采样,得到正余弦包络信号。
部分6为轴角数字转换算法,通过正余弦包络信号,解析出永磁直驱电机的转子位置和转速。转子位置θ 1信号送至部分7,而转速信号ω r直接送至部分8。
部分7为线序识别模块,当部分1旋转变压器与控制部分之间线序接错时,解析出的转子位置θ 1和实际转子位置会存在偏差,而无法启动永磁同步电机,通过此部分对该偏差进行校正,然后将校正后的转子真实位置θ 2送至部分5,用于电机控制算法。
部分8为永磁同步电机的控制算法,控制算法中需要用到来自部分6的转速ω r和来自部分7的转子真实位置θ 2。该部分采用一种适用于机车的全速度范围内的分段矢量控制策略,控制算法与调制算法独立设计,并通过相角调节器来解决两者之间计算频率不同问题。
具体的:
①部分1旋转变压器部分
旋转变压器是一种特殊的测量电机,转子和永磁同步电机转子通过机械结构相连,定子上含有一个用于励磁的初级绕组和两个用于反馈的次级绕组,如图2所示。工作时,R1-R2绕组从外部电路输入用于励磁的正弦励磁信号V r+和V r-,随着电机的旋转,反馈绕组S1-S3和S2-S4输出与电机位置相关的正弦反馈信号V a+、V a-及余弦反馈信号V b+、V b-, 如图3所示。在机车总转过程中,旋变与控制部分之间的6根接线比较容易接错,造成电机不能正常启动,本发明旨在解决在转变接错线的情况下通过程序校正来正常启动和运行永磁直驱电机。
正弦励磁信号V r表达式如式(1)所示,旋变正余弦反馈信号V a、V b表达式如式(2)所示。
V r=V p×sin(ωt)          (1)
Figure PCTCN2020097627-appb-000001
式中,V p为励磁信号的幅值,sin(ωt)为励磁信号的频率,V q为正余弦反馈信号的幅值,θ为轴角,由于信号从初级绕组感应到次级绕组会有一定衰减,一般情况下V q小于V p
②部分2励磁PWM产生部分
旋转变压器的励磁信号本质上是正弦函数信号,励磁PWM产生模块通过查表法来获得正弦励磁参考信号REF_PWM,该方法虽然需要占用一定存储空间,但方法简单易行,并且容易获得励磁参考信号的峰值时刻。选取励磁信号的频率为4KHz,通过DSP的ePWM模块输出频率为160KHz的SPWM,在DSP程序中储存计算好的40点的正弦值,当使用PWM中断定期更新占空比时,每个励磁周期PWM占空比更新40次,励磁参考信号REF_PWM生成的中断程序流程图如图4所示。
③部分3励磁信号放大与滤波部分
通过励磁PWM产生模块产生的励磁参考信号REF_PWM驱动能力较差,需要经过励磁信号放大与滤波电路才能达到旋变的励磁需求。励磁信号放大与滤波电路如图5所示,首先采用芯片TC1427对励磁PWM产生模块产生的励磁参考信号REF_PWM进行功率放大,得到适合于旋变励磁功率的SPWM信号,再经过由电阻和电容构成的低通滤波器,滤除SPWM信号中的高频成分,得到差分的正弦励磁信号V r+和V r-,用于旋转变压器励磁。
④部分4正余弦信号调理部分
旋转变压器输出的正余弦反馈信号V a+、V a-、V b+、V b-中包含有转子位置信息,需要通过控制器中全数字RDC解码模块来解算出转子位置和转速。但由于旋转变压器输出的正余弦信号是差分的,并且控制器只能对0~3.0V的模拟信号进行采样,所以需要正余弦调理电路将旋变输出的正余弦反馈信号转换成电压范围在0~3.0V的单端正余弦信号。
正弦信号的调理电路如图6所示,INA128U是高精度宽电压范围的仪用放大器,可直接将差分信号放大并转换为单端信号,通过调整其放大电路的比例系数,将信号峰峰值调整为3V,并在REF端加上1.5V的直流偏置电压,即可得到可供控制器采集的0~3.0V的单 端正弦信号V e。余弦信号调理电路与正弦信号调理电路相同,同样得到单端余弦信号V f
⑤部分5旋变信号解调部分
旋转变压器输出的正余弦反馈信号是转子位置的正余弦函数对励磁信号幅值的调制波,由于励磁参考信号是通过查找正弦表得到的,因此比较容易获得励磁参考信号的峰值时刻,在励磁参考信号的峰值时刻对单端正余弦信号V e、V f进行采样,便获得正余弦包络信号V s、V c。解调中断的程序流程图和峰值采样的框图分别如图7和图8所示,采样所得的包络信号示意图如图9所示。
⑥部分6轴角数字转换部分
现有方案一般采用反正切算法来解析出转子位置和转速,该算法比较简单,在软件中容易实现,但由于基于开环计算,不能对位置信号进行实时跟踪,满足不了高性能场合的控制需求。本发明通过跟踪型轴角数字转换器在正余弦包络信号中解析出当前永磁直驱电机的转子位置θ 1和转速ω r,跟踪型轴角数字转换器中含有PI调节器,其积分部分具有额外的滤波效果,可以有效抑制信号中的高频噪声,同时可以直接获得转子位置和转速,其原理框图如图10所示。
将输入的正余弦包络信号分别乘以估算角度θ 1的余弦和正弦,再通过偏差放大器相减后获得输出偏差信号:
Figure PCTCN2020097627-appb-000002
经过反馈闭环,误差e最终趋近于零,可近似认为
Figure PCTCN2020097627-appb-000003
趋近于零,通过积分和角度翻转,所得到0~2π间变化的信号即为解析出的转子位置θ 1,ω r为电机的转速。根据上述分析,可以将图10所示的跟踪型轴角数字转换模型简化为图11,进而由图11可以得到跟踪型轴角数字转换的闭环传递函数和估算角度的误差传递函数分别为
Figure PCTCN2020097627-appb-000004
Figure PCTCN2020097627-appb-000005
当给定输入为单位阶跃函数θ m=1时,跟踪型轴角数字转换的稳态误差为:
Figure PCTCN2020097627-appb-000006
当给定输入为斜坡函数θ m=t时,跟踪型轴角数字转换的稳态误差为:
Figure PCTCN2020097627-appb-000007
当给定出入为抛物线函数θ m=kt 2时,跟踪型轴角数字转换的稳态误差为:
Figure PCTCN2020097627-appb-000008
综上所述,该轴角数字转换系统是一个二型伺服系统,根据自动控制原理可知,对于阶跃输入和恒速度输入系统无稳态误差,但对于加速度信号输入,稳态时输出是存在误差的,且误差大小与加速度大小成正比。跟踪型轴角数字转换算法基于数字锁相环原理,具有很好的跟踪效果,对采样幅值要求低,具有实时、快速等优点。
⑦部分7线序识别部分
在旋转变压器与控制部分之间6根接线完全正确的情况下,部分6输出的θ 1和ω r即是永磁直驱电机准确的转子位置和转速。但在地面联调试验现场或者装车现场,会出现6根旋变线错接的情况,导致解析出的转子位置和真实转子位置存在一定偏差,而造成电机无法启动。此部分通过枚举法列举可能出现接错线的情况,并通过相应的转子位置偏差补偿,在现场复杂环境下,不需要更改接线即可将存在偏差位置θ 1更正到真实位置θ 2,从而正常启动和运行永磁直驱电机。
为方便描述,首先定义旋转变压器与控制部分之间信号接线名字,定义Ex+和EX-分别是正弦励磁信号的正负两信号线,定义sin+和sin-分别是正弦反馈信号的正负两信号线,定义cos+和cos-分别是余弦反馈信号的正负两信号线。
线序识别模块枚举出可能出现的线序错接情况,并结合旋转变压器解码原理计算出相应的校正角度,转子真实位置的情况如表1所示,θ 1为通过当前线序解析出的转子位置,θ 2为转子的真实位置,两者之间的关系如表1所示。
表1线序错接时解析出转子位置与真实转子位置的关系
Figure PCTCN2020097627-appb-000009
程序中线序识别模块的流程图如图12所示,初始启动时,按照当前线序解析出的转子位置启动永磁直驱电机,即让电机在当前线序解析出的转子位置角度下运行一段时间,判断电机转速是否为0;如果转速不为0,则说明电机正常启动,该线序解析出的位置正确,以后电机运行不再执行线序识别程序。如果转速为0时,说明该线序解析出的位置存在偏差,更新下一组校正的转子位置后再次尝试启动,运行一段时间后判断电机的转速。在程序中存储补偿旋变偏差的16个校正角度,依次更新到转子位置,直到成功启动电机。
本发明能够在励磁、正弦反馈、余弦反馈每组中两根线错接,或者正弦反馈和余弦两组错接的情况下,校正转子位置角并正常启动电机,但当励磁信号接到反馈信号上或者反馈的正弦或余弦两根线不在一组时,该方法失效。
⑧部分8电机控制算法部分
电机控制算法采用一种基于机车的全速度范围内的分段矢量控制策略,其总体控制框图如图13所示。该控制策略总体上分为控制算法、调制算法和相角调节器三部分,其中控制算法与调制算法独立设计,控制算法的计算频率高于载波频率,可以减小PWM的延时。
控制算法:此部分采用固定计算频率,完成AD采样,指令的接收,矢量控制算法的实现,最终生成电压指令;当电机运行于非弱磁区域时,采用MTPA控制策略,当运行于高速弱磁区域时,采用弱磁控制策略,两种控制策略能够实现无冲击的切入与切出。
调制算法:受大功率传动系统的低开关频率的限制,调制部分在不同的速度区域设计不同的调制策略,实现从启动阶段的高载波比到方波下单脉冲模式的逐级过渡,以满足全速度范围内运行的需要;并且在不同调制策略之间过渡时,确保切换过程不会出现严重电流冲击,即实现平滑过渡。
相角调节器:由于控制算法固定的计算时间和调制算法不固定的载波周期导致电压角度的计算频率不同,可能会导致指令电压的相位和PWM实际实现的基波电压相位不一致,甚至造成矢量控制算法的失败,通过相角调节器可以保证电压指令相位和实际基波电压相位的一致。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种旋转变压器接线自检测系统,其特征在于,包括DSP控制器、励磁信号放大与滤波电路、旋转变压器、正余弦信号调理电路,其中DSP控制器的程序部分包括全数字RDC解码模块、线序识别模块和电机控制算法部分;其中全数字RDC解码模块产生正弦励磁参考信号,正弦励磁参考信号经过励磁信号放大与滤波电路得到适合于旋转变压器励磁的正弦励磁信号,送至旋转变压器;正余弦信号调理电路对旋转变压器输出的正余弦反馈信号进行调理,将其由差分信号转换成单端正余弦信号,送至全数字RDC解码模块;全数字RDC解码模块通过单端正余弦信号解析出该线序下的转速和转子位置,转子位置经过线序识别模块,自动校正到真实的转子位置;将线序识别模块输出的真实转子位置和全数字解码模块输出的转速送至电机控制算法部分用于电机控制。
  2. 根据权利要求1所述的一种旋转变压器接线自检测系统,其特征在于,全数字RDC解码模块包括励磁PWM产生模块、旋变信号解调模块和轴角数字转换模块。
  3. 根据权利要求2所述的一种旋转变压器接线自检测系统,其特征在于,励磁PWM产生模块通过查表法产生正弦励磁参考信号。
  4. 根据权利要求2所述的一种旋转变压器接线自检测系统,其特征在于,旋变信号解调模块在励磁参考信号的峰值时刻通过AD对单端正余弦信号进行采样,得到与电机转子位置相关的正余弦包络信号。
  5. 根据权利要求2所述的一种旋转变压器接线自检测系统,其特征在于,轴角数字转换模块通过跟踪型轴角数字转换器在正余弦包络信号中提取出电机的转速和转子位置信息。,
  6. 根据权利要求1所述的一种旋转变压器接线自检测系统,其特征在于,励磁信号放大与滤波电路采用芯片TC1427对励磁PWM产生模块输出的正弦励磁参考信号进行功率放大,得到适合于旋变励磁功率的SPWM信号,再经过低通滤波器滤除SPWM信号中的高频成分,得到差分的正弦励磁信号。
  7. 根据权利要求1所述的一种旋转变压器接线自检测系统,其特征在于,正余弦信号调理电路采用型号为INA128U的高精度宽电压范围的仪用放大器,对正余弦反馈信号进行放大并转换为适合于DSP采样的单端正余弦信号。
  8. 根据权利要求1所述的一种旋转变压器接线自检测系统,其特征在于,线序识别模块通过查表法枚举出16种可能的接线线序,以及各线序下解析出转子位置θ 1与实际转子位置θ 2的关系,通过位置校正保证此模块输出的是实际转子位置。
  9. 根据权利要求1至8任一权利要求所述的一种旋转变压器接线自检测系统,其特征在于,线序识别模块具体的工作流程为:启动永磁直驱电机,运行一段时间,判断转速是否为0;如果转速不为0,则说明按照当前线序解析出的转子位置是正确的,此后永磁直驱电机按此线序解析出的位置进行控制运算,不再运行线序识别程序;如果转速为0,则说明按照当前线序解析出的转子位置存在偏差,即旋转变压器与控制部分之间的接线存在错接,此时 线序识别模块采用下一组可能线序解析出的转子位置,再次尝试启动,运行一段时间,判断转速是否为0,如此,直到成功启动电机。
  10. 根据权利要求1所述的一种旋转变压器接线自检测系统,其特征在于,电机控制算法部分控制和调制独立设计,通过相角调节器保证电压指令相位和实际基波电压相位的一致。
PCT/CN2020/097627 2019-10-14 2020-06-23 一种旋转变压器接线自检测系统 WO2021073139A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910971396.7 2019-10-14
CN201910971396.7A CN110794343B (zh) 2019-10-14 2019-10-14 一种旋转变压器接线自检测系统

Publications (1)

Publication Number Publication Date
WO2021073139A1 true WO2021073139A1 (zh) 2021-04-22

Family

ID=69439038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097627 WO2021073139A1 (zh) 2019-10-14 2020-06-23 一种旋转变压器接线自检测系统

Country Status (2)

Country Link
CN (1) CN110794343B (zh)
WO (1) WO2021073139A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113271043A (zh) * 2021-05-26 2021-08-17 永大电梯设备(中国)有限公司 旋转变压器转子同永磁同步电机转子角度偏差校正方法
CN113810071A (zh) * 2021-09-13 2021-12-17 上海星秒光电科技有限公司 一种自适应线序调整方法、装置、设备、系统及存储介质
CN113848343A (zh) * 2021-09-13 2021-12-28 中国人民解放军92601部队 一种火炮角度参数计量检测装置
CN114136195A (zh) * 2021-11-28 2022-03-04 中国民航大学 一种高精度转子位置测量系统及测量方法
CN114374395A (zh) * 2021-12-31 2022-04-19 广东逸动科技有限公司 解码冗余系统、解码方法及计算机可读存储介质
CN114553063A (zh) * 2022-01-27 2022-05-27 清华大学 永磁同步电机软硬件解码及无传感器估算的冗余电路
CN114629389A (zh) * 2022-04-12 2022-06-14 东南大学 一种电机正余弦编码器的位置速度信息解码方案
CN114779150A (zh) * 2022-06-21 2022-07-22 成都飞亚航空设备应用研究所有限公司 一种磁传感器模拟器
CN114978462A (zh) * 2022-05-24 2022-08-30 北京紫光芯能科技有限公司 一种旋转变压器解码方法及装置
CN115083041A (zh) * 2022-06-08 2022-09-20 福州昇宇门控智能科技有限公司 具有线序自动检测功能的电子锁控制系统
CN115189607A (zh) * 2022-04-29 2022-10-14 重庆虎溪电机工业有限责任公司 一种基于dsp的旋转变压器解码方法
CN115575862A (zh) * 2022-09-29 2023-01-06 北京航空航天大学 一种电动汽车旋转变压器系统的电磁敏感性测试装置及方法
CN115664272A (zh) * 2022-09-15 2023-01-31 中国北方车辆研究所 一种获取永磁同步电机位置信号的方法
CN115951270A (zh) * 2023-03-15 2023-04-11 东南大学 一种永磁同步电机外部线缆连接故障诊断方法
CN116959859A (zh) * 2023-06-19 2023-10-27 国网山东省电力公司青岛供电公司 一种干式变压器检测自动切换档位的系统和方法
CN117289684A (zh) * 2023-11-24 2023-12-26 苏州鼎煜汽车技术有限公司 一种旋变模拟器及旋变模拟检测方法
CN117792198A (zh) * 2024-02-23 2024-03-29 潍柴动力股份有限公司 一种电机位置角度的软解码方法、装置、设备和介质
CN118566599A (zh) * 2023-12-18 2024-08-30 南京南瑞继保电气有限公司 用于变压器接线错序的判别选相方法及装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110794343B (zh) * 2019-10-14 2021-10-26 中车永济电机有限公司 一种旋转变压器接线自检测系统
CN113359026A (zh) * 2020-03-06 2021-09-07 比亚迪股份有限公司 电机参数诊断装置及系统
CN111308248A (zh) * 2020-03-16 2020-06-19 湖南米艾西测控技术有限公司 一种旋转变压器参数测试分析仪
CN111355318A (zh) * 2020-04-13 2020-06-30 南京工程学院 一种大功率永磁同步电机
CN111521110B (zh) * 2020-04-26 2021-11-23 湖南工业大学 一种旋转变压器信号包络检测方法
EP3937366B1 (en) * 2020-05-28 2023-02-22 Huawei Digital Power Technologies Co., Ltd. Sampling triggering method, microprocessor, motor controller, and electric vehicle
CN112014776B (zh) * 2020-09-11 2023-06-27 广东美的暖通设备有限公司 接线检测方法、磁悬浮压缩机、空调机组和可读存储介质
JP7334366B2 (ja) * 2020-12-11 2023-08-28 マブチモーター株式会社 回転検出器の制御装置
CN112925234A (zh) * 2021-01-21 2021-06-08 东莞讯滔电子有限公司 线序检测设备及其方法
CN113587956B (zh) * 2021-07-13 2024-02-27 智新科技股份有限公司 一种旋转变压器接线顺序检测方法及系统
CN113970679B (zh) * 2021-10-21 2024-09-03 连云港杰瑞电子有限公司 一种轴角-数字转换器角精度自动调试台及调试方法
CN115451827A (zh) * 2022-08-19 2022-12-09 浙江永贵电器股份有限公司 一种非接触式连接器对齐监测装置及方法
CN115729148A (zh) * 2022-11-21 2023-03-03 中国南方电网有限责任公司超高压输电公司检修试验中心 伺服系统检测仪器及伺服系统检测系统
CN115912800B (zh) * 2022-12-09 2023-06-06 南京理工大学 电机旋变一体式转子位置检测方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719752A (zh) * 2009-11-26 2010-06-02 西北工业大学 一种检测无刷电机转子位置的方法及装置
JP2012018086A (ja) * 2010-07-08 2012-01-26 Aisan Ind Co Ltd 回転位置センサ
CN104796053A (zh) * 2015-05-11 2015-07-22 哈尔滨工业大学 基于旋转变压器的直流电机控制器及控制方法
CN104796063A (zh) * 2014-01-21 2015-07-22 通用汽车环球科技运作有限责任公司 具有增强摆动补偿的电动机控制器
CN104917428A (zh) * 2014-03-14 2015-09-16 丰田自动车株式会社 马达控制设备
CN105987710A (zh) * 2014-10-20 2016-10-05 现代自动车株式会社 用于补偿旋转变压器的位置信息误差的设备和方法
CN106707892A (zh) * 2017-02-22 2017-05-24 西安应用光学研究所 适用于光电转台的双速旋转变压器接线自动检测装置及方法
CN206292337U (zh) * 2016-12-12 2017-06-30 上海大郡动力控制技术有限公司 用于电机控制器旋转变压器信号线故障检测的电路
CN107769630A (zh) * 2017-11-13 2018-03-06 中国航空工业集团公司西安航空计算技术研究所 一种永磁同步电机位置解码监控系统
CN110426062A (zh) * 2019-07-31 2019-11-08 中车永济电机有限公司 一种具有误差抑制功能的全数字rdc解码系统
CN110794343A (zh) * 2019-10-14 2020-02-14 中车永济电机有限公司 一种旋转变压器接线自检测系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418298C (zh) * 2005-03-23 2008-09-10 比亚迪股份有限公司 一种永磁同步电机转子位置传感方法和位置传感装置
CN101197555A (zh) * 2006-12-05 2008-06-11 比亚迪股份有限公司 电动汽车电机控制方法及其转子位置检测容错处理方法
JP2009195087A (ja) * 2008-02-18 2009-08-27 Nsk Ltd 回転角度位置検出装置
FR2954020B1 (fr) * 2009-12-11 2012-02-24 Hispano Suiza Sa Dispositif de commande d'une msap
CN101924510A (zh) * 2010-07-06 2010-12-22 奇瑞汽车股份有限公司 一种永磁电机转子位置角度的补偿方法
CN103516166B (zh) * 2012-06-29 2016-01-06 上海博建电子科技有限公司 具有转子位置传感器的外转子型永磁电机、转子位置检测方法及伺服电机系统
CN103018656B (zh) * 2012-12-04 2016-03-02 联合汽车电子有限公司 旋转变压器角度检测电路功能测试系统
KR101583957B1 (ko) * 2014-07-28 2016-01-08 현대자동차주식회사 레졸버 오결선 검출 방법
CN107465369B (zh) * 2017-07-31 2020-02-18 北京新能源汽车股份有限公司 旋转变压器反馈信号自适应检测方法和装置
CN207832931U (zh) * 2018-02-08 2018-09-07 北京新能源汽车股份有限公司 一种电机控制器旋变解码电路及电动汽车
CN108761264B (zh) * 2018-05-30 2021-09-03 阳光电源股份有限公司 一种旋转变压器接线故障检测方法、装置及系统
CN208691047U (zh) * 2018-08-02 2019-04-02 联合汽车电子有限公司 一种旋转变压器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101719752A (zh) * 2009-11-26 2010-06-02 西北工业大学 一种检测无刷电机转子位置的方法及装置
JP2012018086A (ja) * 2010-07-08 2012-01-26 Aisan Ind Co Ltd 回転位置センサ
CN104796063A (zh) * 2014-01-21 2015-07-22 通用汽车环球科技运作有限责任公司 具有增强摆动补偿的电动机控制器
CN104917428A (zh) * 2014-03-14 2015-09-16 丰田自动车株式会社 马达控制设备
CN105987710A (zh) * 2014-10-20 2016-10-05 现代自动车株式会社 用于补偿旋转变压器的位置信息误差的设备和方法
CN104796053A (zh) * 2015-05-11 2015-07-22 哈尔滨工业大学 基于旋转变压器的直流电机控制器及控制方法
CN206292337U (zh) * 2016-12-12 2017-06-30 上海大郡动力控制技术有限公司 用于电机控制器旋转变压器信号线故障检测的电路
CN106707892A (zh) * 2017-02-22 2017-05-24 西安应用光学研究所 适用于光电转台的双速旋转变压器接线自动检测装置及方法
CN107769630A (zh) * 2017-11-13 2018-03-06 中国航空工业集团公司西安航空计算技术研究所 一种永磁同步电机位置解码监控系统
CN110426062A (zh) * 2019-07-31 2019-11-08 中车永济电机有限公司 一种具有误差抑制功能的全数字rdc解码系统
CN110794343A (zh) * 2019-10-14 2020-02-14 中车永济电机有限公司 一种旋转变压器接线自检测系统

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113271043A (zh) * 2021-05-26 2021-08-17 永大电梯设备(中国)有限公司 旋转变压器转子同永磁同步电机转子角度偏差校正方法
CN113810071A (zh) * 2021-09-13 2021-12-17 上海星秒光电科技有限公司 一种自适应线序调整方法、装置、设备、系统及存储介质
CN113848343A (zh) * 2021-09-13 2021-12-28 中国人民解放军92601部队 一种火炮角度参数计量检测装置
CN113810071B (zh) * 2021-09-13 2022-07-22 上海星秒光电科技有限公司 一种自适应线序调整方法、装置、设备、系统及存储介质
CN114136195A (zh) * 2021-11-28 2022-03-04 中国民航大学 一种高精度转子位置测量系统及测量方法
CN114374395A (zh) * 2021-12-31 2022-04-19 广东逸动科技有限公司 解码冗余系统、解码方法及计算机可读存储介质
CN114374395B (zh) * 2021-12-31 2023-10-10 广东逸动科技有限公司 解码冗余系统、解码方法及计算机可读存储介质
CN114553063A (zh) * 2022-01-27 2022-05-27 清华大学 永磁同步电机软硬件解码及无传感器估算的冗余电路
CN114629389A (zh) * 2022-04-12 2022-06-14 东南大学 一种电机正余弦编码器的位置速度信息解码方案
CN115189607A (zh) * 2022-04-29 2022-10-14 重庆虎溪电机工业有限责任公司 一种基于dsp的旋转变压器解码方法
CN114978462A (zh) * 2022-05-24 2022-08-30 北京紫光芯能科技有限公司 一种旋转变压器解码方法及装置
CN114978462B (zh) * 2022-05-24 2023-08-22 北京紫光芯能科技有限公司 一种旋转变压器解码方法及装置
CN115083041B (zh) * 2022-06-08 2024-05-14 福州昇宇门控智能科技有限公司 具有线序自动检测功能的电子锁控制系统
CN115083041A (zh) * 2022-06-08 2022-09-20 福州昇宇门控智能科技有限公司 具有线序自动检测功能的电子锁控制系统
CN114779150B (zh) * 2022-06-21 2022-09-20 成都飞亚航空设备应用研究所有限公司 一种磁传感器模拟器
CN114779150A (zh) * 2022-06-21 2022-07-22 成都飞亚航空设备应用研究所有限公司 一种磁传感器模拟器
CN115664272A (zh) * 2022-09-15 2023-01-31 中国北方车辆研究所 一种获取永磁同步电机位置信号的方法
CN115664272B (zh) * 2022-09-15 2025-01-03 中国北方车辆研究所 一种获取永磁同步电机位置信号的方法
CN115575862A (zh) * 2022-09-29 2023-01-06 北京航空航天大学 一种电动汽车旋转变压器系统的电磁敏感性测试装置及方法
CN115951270A (zh) * 2023-03-15 2023-04-11 东南大学 一种永磁同步电机外部线缆连接故障诊断方法
CN116959859A (zh) * 2023-06-19 2023-10-27 国网山东省电力公司青岛供电公司 一种干式变压器检测自动切换档位的系统和方法
CN117289684A (zh) * 2023-11-24 2023-12-26 苏州鼎煜汽车技术有限公司 一种旋变模拟器及旋变模拟检测方法
CN117289684B (zh) * 2023-11-24 2024-03-08 苏州鼎煜汽车技术有限公司 一种旋变模拟器及旋变模拟检测方法
CN118566599A (zh) * 2023-12-18 2024-08-30 南京南瑞继保电气有限公司 用于变压器接线错序的判别选相方法及装置
CN117792198A (zh) * 2024-02-23 2024-03-29 潍柴动力股份有限公司 一种电机位置角度的软解码方法、装置、设备和介质

Also Published As

Publication number Publication date
CN110794343B (zh) 2021-10-26
CN110794343A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2021073139A1 (zh) 一种旋转变压器接线自检测系统
CN100418298C (zh) 一种永磁同步电机转子位置传感方法和位置传感装置
CN110426062A (zh) 一种具有误差抑制功能的全数字rdc解码系统
CN102818952B (zh) 一种自动检测及补偿旋转变压器零位偏差的方法及装置
CN110441643B (zh) 永磁同步电机控制系统中逆变器功率管断路故障诊断方法
CN111830435B (zh) 一种六相永磁容错电机系统功率管开路故障诊断方法
US9503009B2 (en) Method and apparatus for controlling of 3-phase AC motor
JP4923730B2 (ja) レゾルバ角度検出における補償方法及びこれを用いた角度検出装置
EP3557755A1 (en) Method for testing initial position angle of electric motor rotor
CN108258967A (zh) 一种基于新型磁链观测器的永磁电机无位置直接转矩控制方法
CN110045609B (zh) 一种基于pid-滑模变结构算法的小型起竖装置控制系统
CN106533312B (zh) 异步电机转速跟踪再启动的方法
CN111649774B (zh) 一种旋转变压器测角误差硬件自校正系统和方法
CN111697891A (zh) 一种开关磁阻电机电流峰值位置的检测方法
CN110601633A (zh) 一种永磁同步电机初始相位检测系统
CN111817615A (zh) 高速永磁同步电机转子位置检测装置及方法
CN104796053A (zh) 基于旋转变压器的直流电机控制器及控制方法
CN108923711A (zh) 一种伺服系统零点校对的绝对值编码器调零方法
CN111830434B (zh) 基于Park矢量法的容错电机系统多功率管开路故障诊断方法
CN116345974A (zh) 五相感应电机无速度传感器矢量控制方法、系统及终端
US10816959B2 (en) Method and system for compensating offset of resolver
JP4210098B2 (ja) モータ駆動装置
CN111130411A (zh) 提高双轴直驱平台伺服系统同步控制精度的装置及方法
CN106655640A (zh) 混合式光电编码器的绝对位置信号校正值确定系统及方法
CN112953339A (zh) 一种旋转变压器的软解码系统、方法以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20877687

Country of ref document: EP

Kind code of ref document: A1