WO2021073094A1 - 以原花色素为壁材的鱼油微胶囊及制备方法 - Google Patents

以原花色素为壁材的鱼油微胶囊及制备方法 Download PDF

Info

Publication number
WO2021073094A1
WO2021073094A1 PCT/CN2020/091799 CN2020091799W WO2021073094A1 WO 2021073094 A1 WO2021073094 A1 WO 2021073094A1 CN 2020091799 W CN2020091799 W CN 2020091799W WO 2021073094 A1 WO2021073094 A1 WO 2021073094A1
Authority
WO
WIPO (PCT)
Prior art keywords
fish oil
proanthocyanidin
wall material
bayberry leaf
bayberry
Prior art date
Application number
PCT/CN2020/091799
Other languages
English (en)
French (fr)
Inventor
叶兴乾
潘海波
陈士国
沈学敏
陈健初
刘东红
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2021073094A1 publication Critical patent/WO2021073094A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/02Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
    • A23D9/04Working-up
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/30Encapsulation of particles, e.g. foodstuff additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/60Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with aryl radicals attached in position 2
    • C07D311/62Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with aryl radicals attached in position 2 with oxygen atoms directly attached in position 3, e.g. anthocyanidins

Definitions

  • the invention belongs to the field of food biotechnology/functional food technology, and specifically relates to a fish oil microcapsule with proanthocyanidin as a wall material and a preparation method.
  • Fish oil is rich in omega-3 polyunsaturated fatty acids, mainly docosahexaenoic acid and eicosapentaenoic acid. It also contains essential fatty acids such as arachidonic acid, linolenic acid and linoleic acid. Research data shows that fish oil has physiological effects such as promoting the development of the brain and retina, reducing or preventing cardiovascular and cerebrovascular diseases, and lowering blood lipids. Therefore, fish oil is often used as a dietary supplement.
  • the highly unsaturated chemical structure of fish oil makes it very unstable. It is more sensitive to temperature, air, light, metal ions and microorganisms, and is prone to oxidative deterioration, which affects its physiological functions and nutritional value, which has become an important issue in its application. Studies have found that all commercially available fish oils are oxidized to a certain extent, and the content of oxidation products exceeds international standards, which seriously affects the health of consumers. In addition, the strong fishy smell and liquid state also limit the application of fish oil in the food industry.
  • Microcapsule technology uses natural or synthetic polymer materials as the wall material to completely wrap the core material (liquid, solid or gas) to form a semi-permeable or airtight microcapsule technology.
  • Fish oil microencapsulation can effectively reduce the influence of the external environment on fish oil, delay oxidation; conceal the fishy smell of fish oil, improve sensory quality; change the physical properties of fish oil, and expand the application range of fish oil.
  • bactericides such as sodium azide are often added to fish oil capsules to eliminate the influence of microorganisms on the wall material; this makes the application of fish oil in the actual food industry rare.
  • wall materials such as proteins and sugars, it is of great significance to explore wall materials with independent anti-oxidation and antibacterial properties for the application of fish oil in the food industry.
  • the technical problem to be solved by the present invention is to provide a fish oil microcapsule with proanthocyanidin as a wall material and a preparation method.
  • the fish oil microcapsules prepared by the method have stable quality and good storage performance, and can be widely added to various foods.
  • the present invention provides a fish oil microcapsule with proanthocyanidin as the wall material, which is composed of the following components by weight: 5-10% wall material and 90-95% fish oil;
  • the wall material is bayberry leaf proanthocyanidin.
  • the fish oil is deep-sea fish oil.
  • the present invention also provides the above-mentioned preparation method of fish oil microcapsules with proanthocyanidin as the wall material, which includes the following steps:
  • the weight ratio of the fish oil and the bayberry leaf proanthocyanidin in the aqueous solution of bayberry leaf proanthocyanidin is 9.5:0.5 to 9.0:1.0;
  • the inlet air temperature is 180-200°C
  • the outlet air temperature is 70-80°C
  • the feed temperature is 50 ⁇ 60°C.
  • the weight ratio of the fish oil and the bayberry leaf proanthocyanidin in the bayberry leaf proanthocyanidin aqueous solution is 9.5: 0.5.
  • the inlet air temperature is 180°C
  • the outlet air temperature is 80°C
  • the emulsion feed temperature is 50°C. °C.
  • the present invention provides a method for preparing fish oil microcapsules with anti-oxidation and antibacterial properties.
  • the capsule has a clear outer shell when observed under a cryo-electron microscope, as shown in Figure 1D.
  • the present invention directly uses bayberry leaf proanthocyanidin (polymeric polyphenol) as the wall material.
  • the fish oil microcapsules prepared by the present invention have a high embedding efficiency, embeds grease in the wall material, and the wall material has a barrier protection function , Antioxidant and antibacterial properties, can effectively prevent the oxidation of fish oil caused by oxygen, light and microorganisms.
  • the fish oil microcapsules prepared by the present invention have strong antioxidant and antibacterial properties, and no additional antioxidants and preservatives are required; that is, the storage stability of the fish oil microcapsules prepared by the present invention is much better than that of commercially available fish oil capsules, making it possible It is well added to various foods and greatly expands the scope of application of fish oil.
  • Figure 1 is a corresponding observation diagram of fish oil microcapsule products
  • A is the appearance of the fish oil microcapsule product after reconstitution
  • B is the observation by ordinary optical microscope
  • C is the observation by fluorescence microscope (green fluorescence)
  • D is the observation by cryo-electron microscope
  • Figure 2 is a comparison diagram of peroxide value and malondialdehyde content of fish oil microcapsules (the present invention) and fish oil capsules (control);
  • Example 1 A method for preparing fish oil microcapsules with proanthocyanidin as the wall material, followed by the following steps:
  • the obtained leachate is suction filtered, and the obtained filtrate is rotary evaporated (pressure of -0.09MPa, temperature of 40°C) to recover acetone to obtain a crude extract;
  • the addition volume of the crude extract is 200 mL, and the addition speed is 10 ml/min; first, distilled water is used as the eluent, and the flow rate is 20 mL/min. Min, elution for 1h; then use pure ethanol as the eluent, flow rate 20mL/min, elution for 1h, collect the ethanol eluate in the whole process, and rotate the eluate at 50°C to constant weight to obtain the proanthocyanidin of bayberry leaf Crude extract.
  • the purity of bayberry leaf proanthocyanidins is about 50% (mass%).
  • the crude red bayberry leaf proanthocyanidins were separated and purified by preparative liquid phase, using acetonitrile and 97% methanol aqueous solution as eluents, rotary evaporated and freeze-dried to obtain bayberry leaf original with a purity of >95% (mass%) Anthocyanin.
  • HILIC chromatographic column with Polar-Diol built-in the loading amount of crude extract is 30mg; acetonitrile (A) and 97% methanol aqueous solution (B) are used as eluents, the flow rate is 5mL/min, and the detection wavelength is 280nm, elution for 1h, the elution gradient is 0 min, 0% B; 5 min 30% B; 10 min, 30% B; 30 min, 50% B; 50 min, 100% B; 60 min, 100% B. Collect the eluent for 30-60 minutes, and freeze-dry the eluent by rotary evaporation at 50° C. to obtain bayberry leaf proanthocyanidin with a purity of >95% (mass%).
  • Example 2 The "5g bayberry leaf proanthocyanidin, 95g fish oil” in Example 1 was changed to "8g bayberry leaf proanthocyanidin, 92g fish oil", and the rest were the same as in Example 1.
  • Example 3 The "5g bayberry leaf proanthocyanidin, 95g fish oil” in Example 1 was changed to "10g bayberry leaf proanthocyanidin, 90g fish oil", and the rest were the same as in Example 1.
  • Example 4 In Example 1, "5g bayberry leaf proanthocyanidin, 95g fish oil” was changed to “6g bayberry leaf proanthocyanidin, 94g fish oil", and the rest were the same as in Example 1.
  • Example 5 The "5g bayberry leaf proanthocyanidin, 95g fish oil” in Example 1 was changed to "7g bayberry leaf proanthocyanidin, 93g fish oil", and the rest were the same as in Example 1.
  • Product oil content product oil weight/sample weight ⁇ 100%.
  • Product embedding rate (surface oil content/product oil content) ⁇ 100%.
  • the product embedding rate of the fish oil microcapsules prepared in Example 1 is 93.79%.
  • the microcapsules are reconstituted to form a uniform emulsion, as shown in Figure 1-A; and dispersed in water evenly, as shown in Figure 1-B and C.
  • the product embedding rate of the fish oil microcapsules prepared in Example 2 is 92.43%.
  • the product embedding rate of the fish oil microcapsules prepared in Example 3 is 94.85%.
  • the product embedding rate of the fish oil microcapsules prepared in Example 4 was 96.81%.
  • the product embedding rate of the fish oil microcapsules prepared in Example 5 is 95.76%.
  • the preparation method of fish oil microcapsule I is, compared with step 3) of Example 1, the following changes are made: Weigh 95g fish oil and 10mg coumarin 6, dissolve the coumarin in the fish oil, and dissolve the coumarin 6 The fish oil is slowly introduced into the aqueous solution to obtain a mixed solution. The rest is equivalent to Example 1.
  • step 1 In the solution obtained in step 1 above, add 50 mL of petroleum ether in three portions, shake for 2 minutes each time and then stand to separate the layers, transfer the upper layer to a weighed beaker, repeat the extraction three times, and combine the extracts.
  • the extract was heated in a 65°C water bath to evaporate and remove petroleum ether, dried in an oven at 110°C to a constant weight, and weighed to obtain the oil content of the dissolved surface.
  • Product dissolution cracking rate (dissolved surface oil content-surface oil content)/product embedding rate ⁇ 100%.
  • the dissolution rate of the fish oil microcapsule product obtained in Example 1 was 5.62%.
  • the dissolution rate of the fish oil microcapsule product prepared in Example 2 was 5.17%.
  • the dissolution cracking rate of the fish oil microcapsule product prepared in Example 3 was 5.88%.
  • the dissolution rate of the fish oil microcapsule product prepared in Example 4 was 5.28%.
  • the dissolution cracking rate of the fish oil microcapsule product prepared in Example 5 was 5.49%.
  • microcapsule product or fish oil capsule add 100mL petroleum ether, ultrasonically break the microcapsules (20kHz, power 300W) for 10 minutes, then stand for stratification, transfer the upper liquid into a test tube, and blow off the petroleum ether with nitrogen; accurately weigh from
  • the microcapsule product or the fish oil extracted from the fish oil capsule is 2.0g, 50mL of chloroform/glacial acetic acid mixture (4:6, v/v) is added, and the sample is completely dissolved by ultrasonic treatment in an ice bath for 10 minutes.
  • Add 1 mL of saturated potassium iodide solution mix well and react in a dark room for 3 minutes. After the reaction, 100 mL of distilled water was added and mixed uniformly.
  • the peroxide value is expressed by the number of millimoles of active oxygen in 1kg sample:
  • X Peroxide value, the unit is millimoles per kilogram (mmol/kg);
  • V The volume of sodium thiosulfate standard solution consumed by the sample, in milliliters (mL);
  • V 0 The volume of sodium thiosulfate standard solution consumed in the blank test, in milliliters (mL);
  • the content of malondialdehyde was determined by the thiobarbituric acid reactant (TBARS) method.
  • TBARS thiobarbituric acid reactant
  • X content of malondialdehyde, in milligrams per kilogram (mg/kg);
  • c 0 blank test malondialdehyde concentration calculated with reference to the standard curve, the unit is micrograms per milliliter ( ⁇ g/mL);
  • the wall material used in the present invention is changed from bayberry leaf proanthocyanidin to conventional protein and polysaccharide; the rest are the same as in Example 1.
  • the fish oil product obtained by spray drying of the emulsion was tested according to the above experiment three, and the antibacterial performance obtained was basically the same as that of the fish oil capsule as the control.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mycology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Fodder In General (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Feed For Specific Animals (AREA)
  • Fats And Perfumes (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种以原花色素为壁材的鱼油微胶囊,由以下重量含量的成分组成:5-10%的壁材和90-95%鱼油;所述壁材为杨梅叶原花色素,杨梅叶原花色素由杨梅叶制备而得。本发明还同时公开了上述鱼油做胶囊的制备方法。采用本发明方法制备的鱼油微胶囊质量稳定、存储性能好,能广泛地添加到各种食品中。

Description

以原花色素为壁材的鱼油微胶囊及制备方法 技术领域
本发明属于食品生物技术领域/功能性食品技术领域,具体涉及一种以原花色素为壁材的鱼油微胶囊及制备方法。
背景技术
鱼油富含ω-3系的多不饱和脂肪酸,主要为二十二碳六烯酸和二十碳五烯酸,还含有花生四烯酸、亚麻酸和亚油酸等人体必需脂肪酸。研究资料显示,鱼油具有促进大脑和视网膜发育,减轻或预防心脑血管疾病,降血脂等生理功效。因此,鱼油常被用作膳食补充剂。
鱼油高度不饱和的化学结构使其非常不稳定,对温度、空气、光、金属离子和微生物比较敏感,容易氧化变质,影响其生理功能和营养价值,成为其应用的一个重要问题。研究发现,市售的鱼油在一定程度上均发生氧化,氧化产物含量超过国际标准,严重影响消费者的健康。此外,强烈的腥味和液体状态也限制了鱼油在食品行业的应用。
微胶囊技术是以天然的或合成的高分子材料为壁材,将芯材(液体、固体或气体)完全包裹起来形成一种具有半透性或密封性的微型胶囊的技术。鱼油微胶囊化可以有效地减少外界环境对鱼油的影响,延缓氧化;掩饰鱼油的腥味,提高感官品质;改变鱼油的物理性质,扩大鱼油的应用范围。
常用的蛋白质、多糖等天然生物高分子微胶囊壁材能在一定程度上减缓鱼油氧化,但环境中的微生物对壁材会有很大影响,进而影响鱼油胶囊的稳定性。现有报道都是以简单多酚为稳定剂,辅助蛋白多糖类壁材包埋鱼油,提高抗氧化能力;由于蛋白多糖的存在,发霉变质的问题仍得以防腐剂解决。改性淀粉、阿拉伯胶、明胶、大豆蛋白等常用壁材易吸潮,发生霉变,缩短鱼油胶囊保质期。因此,在众多研究中叠氮化钠等杀菌剂常被添加到鱼油胶囊里,以排除微生物对壁材的影响;这使得鱼油在实际食品行业中的应用很少见。为了克服蛋白质和糖类等壁材抗氧化性和抗菌性不足的缺点,探索具有自主抗氧化性和抗菌性的壁材对于鱼油在食品行业中的应用很有意义。
发明内容
本发明要解决的技术问题是提供一种以原花色素为壁材的鱼油微胶囊以及制备方法。由该方法制备的鱼油微胶囊质量稳定、存储性能好,能广泛地添加到各种食品中。
为了解决上述技术问题,本发明提供一种以原花色素为壁材的鱼油微胶囊,其由以下重量含量的成分组成:5-10%的壁材和90-95%鱼油;
所述壁材为杨梅叶原花色素。
作为本发明的以原花色素为壁材的鱼油微胶囊的改进:所述鱼油为深海鱼油。
本发明还同时提供了上述的以原花色素为壁材的鱼油微胶囊的制备方法,包括以下步骤:
1)、杨梅叶原花色素壁材的制备:
①、将杨梅叶研磨,得杨梅叶粉末;
②、按照1g/7~9ml的料液比,在杨梅叶粉末中加入体积浓度为(70±5)%的丙酮溶液;于室温下浸提(8±1)小时;
③、所得浸提液抽滤,所得滤液旋转蒸发回收丙酮后获得粗提液;
④、将粗提液采用大孔树脂层析分离,分别以水和乙醇为洗脱液,对粗提液进行分离纯化,旋转蒸发获得杨梅叶原花色素粗提物;
⑤、将上述杨梅叶原花色素粗提物经制备液相分离纯化,以乙腈和97%甲醇水溶液为洗脱液,旋转蒸发后冷冻干燥,获得纯度>95%(质量%)的的杨梅叶原花色素;
2)、将杨梅叶原花色素溶于水中,得质量浓度为0.5-1.0%的杨梅叶原花色素水溶液,作为壁材水溶液;
3)、在杨梅叶原花色素水溶液中加入鱼油后超声乳化,得乳液;
所述鱼油和杨梅叶原花色素水溶液中的杨梅叶原花色素的重量比为9.5:0.5~9.0:1.0;
4)、乳液喷雾干燥,得到鱼油微胶囊。
作为本发明的以原花色素为壁材的鱼油微胶囊的制备方法的改进,所述步骤4)的喷雾干燥时,进风温度为180~200℃,出风温度为70~80℃,乳液的进料温度为50~60℃。
作为本发明的以原花色素为壁材的鱼油微胶囊的制备方法的进一步改进,所述步骤3)中:鱼油和杨梅叶原花色素水溶液中的杨梅叶原花色素的重量比为9.5:0.5。
作为本发明的以原花色素为壁材的鱼油微胶囊的制备方法的进一步改进,所述步骤4)中:进风温度为180℃,出风温度为80℃,乳液的进料温度为50℃。
本发明针对鱼油易氧化、腥味强烈以及天然生物高分子微胶囊壁材易吸潮霉变的缺点,提供一种具有抗氧化和抗菌性的鱼油微胶囊制备方法,本发明制备所得的鱼油微胶囊在冷冻电镜下观察有明显的外壳,如图1D所示。
本发明直接利用杨梅叶原花色素(聚合型多酚)为壁材,本发明制备的鱼油微胶囊,具有很高的包埋效率,将油脂包埋在壁材中,壁材的屏障保护功能、抗氧化性和抗菌性,能够有效防止由氧气、光和微生物引起的鱼油氧化。本发明制备的鱼油微胶囊抗氧化和抗菌性均 很强,不需额外添加抗氧化剂和防腐剂;即,本发明制备的鱼油微胶囊的贮藏稳定性远优于市售鱼油胶囊,使其可以很好地添加到各种食品中,极大地扩大鱼油的适用范围。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细说明。
图1是鱼油微胶囊产品的相应观察图;
A为鱼油微胶囊产品复溶后外观图,B为普通光学显微镜观察图,C为荧光显微镜观察图(绿色荧光),D为冷冻电镜观察图;
图2为鱼油微胶囊(本发明)和鱼油胶囊(对照)的过氧化值和丙二醛含量的对比图;
鱼油微胶囊(本发明)和鱼油胶囊(对照)在无菌环境中存储15天过氧化值(A)和丙二醛含量(B)的变化情况;在开放环境中存储15天过氧化值(C)和丙二醛含量(D)的变化情况。
具体实施方式
为使本发明的目的、技术方案更加清楚,下面对本发明的具体实施方式做进一步详细说明。
实施例1、一种以原花色素为壁材的鱼油微胶囊的制备方法,依次进行以下步骤:
1)、杨梅叶原花色素壁材的制备
①、将含水率≤10%(质量%)的杨梅叶研磨至过40目的筛,得杨梅叶粉末;
②、按照1g/8ml的料液比,在杨梅叶粉末中加入体积浓度为70%的丙酮溶液;于室温下浸提8小时;
③、所得浸提液抽滤,所得滤液旋转蒸发(-0.09MPa的压力、40℃的温度)回收丙酮后,获得粗提液;
④、将粗提液采用大孔树脂层析分离,以水和乙醇为洗脱液,对粗提液进行分离纯化,旋转蒸发获得杨梅叶原花色素粗提物;
具体为:采用内装HPD-500大孔树脂(约200g)的层析柱,粗提液的加液量为200mL,加液速度为10ml/min;先以蒸馏水为洗脱液,流速为20mL/min,洗脱1h;再以纯乙醇为洗脱液,流速为20mL/min,洗脱1h,全程收集乙醇洗脱液,将洗脱液于50℃旋转蒸发至恒重,得杨梅叶原花色素粗提物。该粗提物中,杨梅叶原花色素的纯度约为50%(质量%)。
⑤、将上述杨梅叶原花色素粗提物经制备液相分离纯化,以乙腈和97%甲醇水溶液为洗脱液,旋转蒸发后冷冻干燥,获得纯度>95%(质量%)的杨梅叶原花色素。
具体为:采用内装Polar-Diol的HILIC色谱柱,粗提物的上样量为30mg;以乙腈(A)和97%甲醇水溶液(B)为洗脱液,流速为5mL/min,检测波长为280nm,洗脱1h,洗脱梯度为0 min,0%B;5min 30%B;10min,30%B;30min,50%B;50min,100%B;60min,100%B。收集30~60min的洗脱液,将洗脱液于50℃旋转蒸发后冷冻干燥,得纯度>95%(质量%)的杨梅叶原花色素。
50g杨梅叶能获得5.24g的杨梅叶原花色素,即,收率为10.48%。
2)、称取5g杨梅叶原花色素置于2000mL的容器中,加入1000mL的纯净水,搅拌均匀,升温至40℃,继续搅拌至溶解,制成水相溶液作为壁材水溶液。
3)、称取95g鱼油,将鱼油缓慢导入水相溶液中得到混合液,于300rpm搅拌混合液的同时进行超声波处理,脉冲宽度2-6s、脉冲间隔2-6s、超声功率1000w、超声频率20kHz、超声时长2min,获得均一乳液。
4)、通过离心式喷雾干燥机进行喷雾干燥,乳液进料温度为50℃,喷雾干燥进风180℃,出风温度80℃,得鱼油微胶囊。
实施例2、将实施例1中的“5g杨梅叶原花色素、95g鱼油”改成“8g杨梅叶原花色素、92g鱼油”,其余等同于实施例1。
实施例3、将实施例1中的“5g杨梅叶原花色素、95g鱼油”改成“10g杨梅叶原花色素、90g鱼油”,其余等同于实施例1。
实施例4、将实施例1中的“5g杨梅叶原花色素、95g鱼油”改成“6g杨梅叶原花色素、94g鱼油”,其余等同于实施例1。
实施例5、将实施例1中的“5g杨梅叶原花色素、95g鱼油”改成“7g杨梅叶原花色素、93g鱼油”,其余等同于实施例1。
实验一、测定产品包埋率方法:
1、表面含油率的测定
准确称取微胶囊样品0.5g,将50mL石油醚分三次加入,每次震荡2min,过滤,合并滤液。将滤液用65℃水浴加热蒸发去除石油醚,再于110℃烘箱中烘干至恒重,称重,获得表面油重。
表面含油率=表面油重/样品重×100%。
2、产品含油率测定
准确称取微胶囊产品0.5g,加入10mL蒸馏水,使样品充分溶解,再加入100mL石油醚,超声破碎(超声破碎的工艺参数为20kHz,功率300W)微胶囊10min后静置分层,将上层液转入已称重烧杯;
重复上述萃取三次(即,以静置分层所得的沉淀物替代微胶囊产品,重复上述加蒸馏水、加石油醚、超声破碎、静置分层;重复次数为2次),合并萃取液。将萃取液用65℃水浴加 热蒸发去除石油醚,再于110℃烘箱中烘干至恒重,称重,获得产品油重。
产品含油率=产品油重/样品重×100%。
3、产品包埋率测定
产品包埋率=(表面含油率/产品含油率)×100%。
实施例1制备所得的鱼油微胶囊的产品包埋率为93.79%。微胶囊复溶形成均一的乳液,如图1-A;且水中分散均匀,如图1-B、C。
实施例2制备所得的鱼油微胶囊的产品包埋率为92.43%。
实施例3制备所得的鱼油微胶囊的产品包埋率为94.85%。
实施例4制备所得的鱼油微胶囊的产品包埋率为96.81%。
实施例5制备所得的鱼油微胶囊的产品包埋率为95.76%。
实验二、微胶囊复溶性测定
1、以香豆素6为荧光指示剂,制备鱼油微胶囊Ⅰ。
鱼油微胶囊Ⅰ的制备方法为,相对于实施例1的步骤3)作了如下的更改:称取95g鱼油和10mg香豆素6,将香豆素溶于鱼油,将溶有香豆素6的鱼油缓慢导入水相溶液中得到混合液。其余等同于实施例1。
准确称取微胶囊Ⅰ1.0g,加入10mL蒸馏水,使样品充分溶解,利用普通光学显微镜和荧光显微镜观察微胶囊的溶解状态。
2、测定微胶囊产品溶解破解率。
在上述步骤1所得的溶解液中,将50mL石油醚分三次加入,每次震荡2min后静置分层,将上层液转入已称重烧杯,重复萃取三次,合并萃取液。将萃取液用65℃水浴加热蒸发去除石油醚,在于110℃烘箱中烘干至恒重,称重获得溶解表面含油率。
产品溶解破解率=(溶解表面含油率-表面含油率)/产品包埋率×100%。
实施例1所得的鱼油微胶囊产品溶解破解率为5.62%。
实施例2制备所得的鱼油微胶囊产品溶解破解率为5.17%。
实施例3制备所得的鱼油微胶囊产品溶解破解率为5.88%。
实施例4制备所得的鱼油微胶囊产品溶解破解率为5.28%。
实施例5制备所得的鱼油微胶囊产品溶解破解率为5.49%。
实验三、本发明抗氧化性和抗菌性对微胶囊产品稳定性的作用。
以鱼油胶囊(1号明胶空心胶囊壳注入0.5mL鱼油制得)为对照,研究本发明抗氧化性和抗菌性对微胶囊产品稳定性的作用。
(1)抗氧化性对微胶囊产品稳定性的作用:将微胶囊产品(实施例1制备而得,作为实 验组)和鱼油胶囊(作为对照组)放置于无菌培养皿中,将含有样品的培养皿放置于密闭培养箱中15天,贮藏条件为温度37℃;每3天取样,测定过氧化值和丙二醛含量。
过氧化值测定:
称取微胶囊产品或鱼油胶囊5.0g,加入100mL石油醚,超声破碎(20kHz,功率300W)微胶囊10min后静置分层,将上层液转入试管,氮吹去除石油醚;准确称取从微胶囊产品或鱼油胶囊提取的鱼油2.0g,加入50mL三氯甲烷/冰醋酸混合液(4:6,v/v),冰浴超声处理10min使样品完全溶解。加入1mL饱和碘化钾溶液,混合均匀后于暗室反应3min。反应后加入100mL蒸馏水混合均匀后用硫代硫酸钠标准液(0.002M)滴定至淡黄色后,加入1mL淀粉指示剂,继续滴定至蓝色消失为终点。同时以水为对照进行空白试验。
用1kg样品中活性氧的毫摩尔数表示过氧化值:
Figure PCTCN2020091799-appb-000001
X:过氧化值,单位为毫摩尔每千克(mmol/kg);
V:试样消耗的硫代硫酸钠标准溶液的体积,单位为毫升(mL);
V 0:空白试验消耗的硫代硫酸钠标准溶液的体积,单位为毫升(mL);
c:硫代硫酸钠标准溶液的浓度,单位为摩尔每升(mol/L);
m:试样质量,单位为克(g);
1000:换算系数。
(2)抗菌性对微胶囊产品稳定性的作用:将微胶囊产品和鱼油胶囊放置于无盖培养皿中,将含有样品的培养皿放置于开放培养箱中15天,贮藏条件为温度37℃;每3天后取样,测定过氧化值和丙二醛含量。
丙二醛含量测定
采用硫代巴比妥酸反应物(TBARS)法测定丙二醛含量。称取微胶囊产品或鱼油胶囊5.0g,加入100mL石油醚,超声破碎(20kHz,功率300W)微胶囊10min后静置分层,将上层液转入试管,氮吹去除石油醚;准确称取从微胶囊产品或鱼油胶囊提取的鱼油2.0g,加入30mL 10%三氯乙酸,在70℃水浴上震荡摇晃1小时,10000pm离心分层,将下层液转入烧杯,重复萃取三次,合并萃取液。准确量取5.00mL萃取液,加入5.00mL硫代巴比妥酸溶液(0.02M),混合均匀后置于90℃水浴内反应40分钟,取出后室温下冷却1h,于532nm波长比色,同时做空白试验。以1,1,3,3-四乙氧基丙烷制备标准溶液,制定标准曲线,计算萃取液中丙二醛浓度。
用1kg样品中丙二醛的毫克数表示丙二醛含量:
Figure PCTCN2020091799-appb-000002
X:丙二醛含量,单位为毫克每千克(mg/kg);
c:参照标准曲线计算的试样萃取液中丙二醛浓度,单位为微克每毫升(μg/mL);
c 0:参照标准曲线计算的空白试验丙二醛浓度,单位为微克每毫升(μg/mL);
m:试样质量,单位为克(g);
90:萃取液体积,单位为毫升(mL)。
实验结果如下:
图2结果显示,在无菌环境中存储15天后,鱼油微胶囊的过氧化值和丙二醛含量远远低于鱼油胶囊;在开放环境中存储15天后,鱼油微胶囊的过氧化值和丙二醛含量远远低于鱼油胶囊。对比在无菌和开放环境中存储15天后的过氧化值和丙二醛含量发现,鱼油胶囊在开放环境中的过氧化值和丙二醛含量远高于无菌环境;鱼油微胶囊在无菌和开放环境中的过氧化值和丙二醛含量无明显差异。
由图2结果的可见,本发明的抗氧化性和抗菌性能够明显提高鱼油的存储稳定性。
说明:将本发明所使用的壁材由杨梅叶原花色素改成常规的蛋白质、多糖;其余等同于实施例1。乳液喷雾干燥所得的鱼油产物按照上述实验三进行检测,所得抗菌性能基本同作为对照的鱼油胶囊。
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (6)

  1. 以原花色素为壁材的鱼油微胶囊,其特征在于由以下重量含量的成分组成:5-10%的壁材和90-95%鱼油;
    所述壁材为杨梅叶原花色素。
  2. 根据权利要求1所述的以原花色素为壁材的鱼油微胶囊,其特征在于:所述鱼油为深海鱼油。
  3. 以原花色素为壁材的鱼油微胶囊的制备方法,其特征在于,包括以下步骤:
    1)、杨梅叶原花色素壁材的制备:
    ①、将杨梅叶研磨,得杨梅叶粉末;
    ②、按照1g/7~9ml的料液比,在杨梅叶粉末中加入体积浓度为(70±5)%的丙酮溶液;于室温下浸提(8±1)小时;
    ③、所得浸提液抽滤,所得滤液旋转蒸发回收丙酮后获得粗提液;
    ④、将粗提液采用大孔树脂层析分离,分别以水和乙醇为洗脱液,对粗提液进行分离纯化,旋转蒸发获得杨梅叶原花色素粗提物;
    ⑤、将所述杨梅叶原花色素粗提物经制备液相分离纯化,以乙腈和97%甲醇水溶液为洗脱液,旋转蒸发后冷冻干燥,获得杨梅叶原花色素;
    2)、将杨梅叶原花色素溶于水中,得质量浓度为0.5-1.0%的杨梅叶原花色素水溶液,作为壁材水溶液;
    3)、在杨梅叶原花色素水溶液中加入鱼油后超声乳化,得乳液;
    所述鱼油和杨梅叶原花色素水溶液中的杨梅叶原花色素的重量比为9.5:0.5~9.0:1.0;
    4)、乳液喷雾干燥,得到鱼油微胶囊。
  4. 根据权利要求3所述的以原花色素为壁材的鱼油微胶囊的制备方法,其特征在于,所述步骤4)的喷雾干燥时,进风温度为180~200℃,出风温度为70~80℃,乳液的进料温度为50~60℃。
  5. 根据权利要求3或4所述的以原花色素为壁材的鱼油微胶囊的制备方法,其特征在于,所述步骤3)中:鱼油和杨梅叶原花色素水溶液中的杨梅叶原花色素的重量比为9.5:0.5。
  6. 根据权利要求5所述的以原花色素为壁材的鱼油微胶囊的制备方法,其特征在于,所述步骤4)中:进风温度为180℃,出风温度为80℃,乳液的进料温度为50℃。
PCT/CN2020/091799 2019-10-13 2020-05-22 以原花色素为壁材的鱼油微胶囊及制备方法 WO2021073094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910970718.6 2019-10-13
CN201910970718.6A CN110742131B (zh) 2019-10-13 2019-10-13 以原花色素为壁材的鱼油微胶囊及制备方法

Publications (1)

Publication Number Publication Date
WO2021073094A1 true WO2021073094A1 (zh) 2021-04-22

Family

ID=69278142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091799 WO2021073094A1 (zh) 2019-10-13 2020-05-22 以原花色素为壁材的鱼油微胶囊及制备方法

Country Status (2)

Country Link
CN (1) CN110742131B (zh)
WO (1) WO2021073094A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110742131B (zh) * 2019-10-13 2021-04-06 浙江大学 以原花色素为壁材的鱼油微胶囊及制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103265519A (zh) * 2013-05-15 2013-08-28 浙江大学 一种分离制备杨梅叶原花色素的方法
CN104789354A (zh) * 2015-03-30 2015-07-22 浙江大学 杨梅叶原花色素在油脂抗氧化中的应用
CN105831547A (zh) * 2016-03-23 2016-08-10 浙江大学 一种杨梅叶原花色素低聚体微乳液抗氧化体系及用途
CN105831548A (zh) * 2016-03-23 2016-08-10 浙江大学 一种杨梅叶原花色素微乳液抗氧化体系及用途
WO2017074262A1 (en) * 2015-10-26 2017-05-04 Agency For Science, Technology And Research Core-shell composite material
CN106722406A (zh) * 2016-12-14 2017-05-31 江南大学 一种鱼油微胶囊的制备方法及其产品
CN106860489A (zh) * 2015-12-12 2017-06-20 重庆都好生物科技有限公司 一种杨梅叶多酚的提取方法
CN107484985A (zh) * 2016-06-12 2017-12-19 华中农业大学 一种自乳化鱼油微胶囊及其生产工艺
CN109198049A (zh) * 2018-11-16 2019-01-15 苏州大学 一种鱼油微胶囊及其制备方法与应用
CN109430864A (zh) * 2018-10-30 2019-03-08 合肥师范学院 一种蓝莓花青素微胶囊的制备方法
CN110742131A (zh) * 2019-10-13 2020-02-04 浙江大学 以原花色素为壁材的鱼油微胶囊及制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103265519A (zh) * 2013-05-15 2013-08-28 浙江大学 一种分离制备杨梅叶原花色素的方法
CN104789354A (zh) * 2015-03-30 2015-07-22 浙江大学 杨梅叶原花色素在油脂抗氧化中的应用
WO2017074262A1 (en) * 2015-10-26 2017-05-04 Agency For Science, Technology And Research Core-shell composite material
CN106860489A (zh) * 2015-12-12 2017-06-20 重庆都好生物科技有限公司 一种杨梅叶多酚的提取方法
CN105831547A (zh) * 2016-03-23 2016-08-10 浙江大学 一种杨梅叶原花色素低聚体微乳液抗氧化体系及用途
CN105831548A (zh) * 2016-03-23 2016-08-10 浙江大学 一种杨梅叶原花色素微乳液抗氧化体系及用途
CN107484985A (zh) * 2016-06-12 2017-12-19 华中农业大学 一种自乳化鱼油微胶囊及其生产工艺
CN106722406A (zh) * 2016-12-14 2017-05-31 江南大学 一种鱼油微胶囊的制备方法及其产品
CN109430864A (zh) * 2018-10-30 2019-03-08 合肥师范学院 一种蓝莓花青素微胶囊的制备方法
CN109198049A (zh) * 2018-11-16 2019-01-15 苏州大学 一种鱼油微胶囊及其制备方法与应用
CN110742131A (zh) * 2019-10-13 2020-02-04 浙江大学 以原花色素为壁材的鱼油微胶囊及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANTON V. SADOVOY, MARIA V. LOMOVA, MARIA N. ANTIPINA, NORBERT A. BRAUN, GLEB B. SUKHORUKOV, MAXIM V. KIRYUKHIN: "Layer-by-Layer Assembled Multilayer Shells for Encapsulation and Release of Fragrance", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 5, no. 18, 25 September 2013 (2013-09-25), US, pages 8948 - 8954, XP055596577, ISSN: 1944-8244, DOI: 10.1021/am401871u *

Also Published As

Publication number Publication date
CN110742131B (zh) 2021-04-06
CN110742131A (zh) 2020-02-04

Similar Documents

Publication Publication Date Title
Liu et al. Improving the color stability and antioxidation activity of blueberry anthocyanins by enzymatic acylation with p-coumaric acid and caffeic acid
Moreno et al. Storage stability and simulated gastrointestinal release of spray dried grape marc phenolics
Wang et al. Effects of steam explosion pretreatment on the bioactive components and characteristics of rapeseed and rapeseed products
CN105906672B (zh) 藏红花色素类化合物及其用途
WO2021073094A1 (zh) 以原花色素为壁材的鱼油微胶囊及制备方法
Chiang et al. Extracting antioxidant phenolic compounds from compressional-puffing pretreated Pinus morrisonicola: Effects of operational parameters, kinetics and characterization
WO2009115023A1 (zh) 花色苷磷脂复合物及其制备方法
CN112159442B (zh) 一种纳米樱桃花色苷制备方法
WO2022142423A1 (zh) 以亲水性多酚增溶疏水性多酚的方法
WO2022095660A1 (zh) 一种淀粉包埋香气物质微胶囊及其制备方法
CN102327238A (zh) 一种注射用左卡尼汀组合物及其制备方法
Tenuta et al. LC-ESI-QTOF-MS profiling, protective effects on oxidative damage, and inhibitory activity of enzymes linked to type 2 diabetes and nitric oxide production of Vaccinium corymbosum L.(Ericaceae) extracts
CN106723064B (zh) 一种维生素d3软胶囊及其制备方法
CN109627201B (zh) 一种提取藻蓝胆素的方法
CN112168806A (zh) 抗氧化能力强的银杏提取物微胶囊及其制备方法与应用
CN106579450B (zh) 一种绞股蓝种子脂肪酸微胶囊及其制备方法和应用
CN111685261B (zh) 一种补铁花色苷蓝色素及其制备方法和应用
CN112760165A (zh) 用于灵芝孢子油的去酸价的方法
LU501038B1 (en) Fish oil microcapsule with proanthocyanidin as wall material and preparation method
Yuan et al. Effect of wall-disruption on nutrient composition and in vitro digestion of camellia and lotus bee pollens
CN104592327A (zh) 啤酒花中芦丁、异槲皮苷的制备方法及其抗过敏、抗氧化活性检测
CN106798333A (zh) 一种桑椹多酚微胶囊、其制备方法和应用
Raj et al. Advances in Microencapsulation and Nanoemulsion Techniques of Plant Pigments: Improving Stability, Bioavailability, and Bioactivity for Application in Food Industry
CN105315706A (zh) 一种天然色素护色剂、制备方法及应用
US11535583B1 (en) Preparation method of eicosapentaenoic acid ethyl ester

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20877613

Country of ref document: EP

Kind code of ref document: A1