WO2021073075A1 - 一种通过灌注隔离磨损颗粒的挠性轴结构 - Google Patents

一种通过灌注隔离磨损颗粒的挠性轴结构 Download PDF

Info

Publication number
WO2021073075A1
WO2021073075A1 PCT/CN2020/089427 CN2020089427W WO2021073075A1 WO 2021073075 A1 WO2021073075 A1 WO 2021073075A1 CN 2020089427 W CN2020089427 W CN 2020089427W WO 2021073075 A1 WO2021073075 A1 WO 2021073075A1
Authority
WO
WIPO (PCT)
Prior art keywords
perfusion
layer
flexible
isolation
cavity
Prior art date
Application number
PCT/CN2020/089427
Other languages
English (en)
French (fr)
Inventor
郑淇文
唐智荣
Original Assignee
丰凯医疗器械(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丰凯医疗器械(上海)有限公司 filed Critical 丰凯医疗器械(上海)有限公司
Priority to GB2018969.2A priority Critical patent/GB2586933B/en
Priority to US17/078,841 priority patent/US11872383B2/en
Publication of WO2021073075A1 publication Critical patent/WO2021073075A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/135Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/857Implantable blood tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C1/00Flexible shafts; Mechanical means for transmitting movement in a flexible sheathing
    • F16C1/24Lubrication; Lubricating equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/12Blood circulatory system

Definitions

  • the invention relates to a torque transmission structure used for realizing an interventional blood pumping catheter device with a power source located outside the body, and in particular to a flexible shaft structure for isolating wear particles by perfusion.
  • Flexible shaft drive structures are widely used in different fields, but the main features provided in different fields are often very different.
  • the large flexible shaft structure in the field of machine tools and fans can realize operation at a lower speed but need to transmit higher torque;
  • the micro-flexible shaft structure known in the dental field needs to operate at a very high speed but only needs Transmit lower torque;
  • complex twisted structures are required but only lower rotational speed and torque need to be transmitted, such as intravascular ultrasound catheters.
  • Vibration and wear are common challenges in the use of flexible shafts, especially in high-speed applications. Enhancing restraint, adding lubricating fluid, and improving centering are common improvement measures in different structures.
  • the isolation of wear particles is a unique technical challenge in the field of clinical applications; in order to control wear, perfusion erosion is a common improvement direction.
  • Patent document CN102711860A discloses a flexible shaft structure.
  • a sleeve structure closely attached to the shaft and distributed at regular intervals is added to limit the sliding friction relationship points between the shaft and the sleeve, so as to reduce the sliding friction and restrain the shaft from vibration.
  • Patent document WO2011/139248A2 discloses a flexible shaft support structure, which ensures that the flexible shaft remains centered during operation by adding at least one bearing component to the shaft and the housing, thereby reducing the generation of wear particles.
  • Patent document CN105917118A discloses a perfusion flushing structure, which uses two perfusion pumps to control the flow state of the perfusion fluid in the catheter to flush the wear particles out of the product and prevent the wear particles from entering the patient's body.
  • the existing main technical solutions for improving vibration and noise can be divided into two categories.
  • One is to strengthen the restraint of the shaft to ensure that the shaft can still be kept in the center under different bending conditions, and the other is to use different restraint structures.
  • existing improvement solutions cannot be directly adopted.
  • minimum outer diameter not less than 10mm because mature technical solutions in the industrial field require a larger transmission structure outer diameter (minimum outer diameter not less than 10mm), it cannot be applied to the use scenarios of interventional medical devices.
  • the existing mature technical solutions focus more on satisfying the transmission torque first.
  • the minimum bend radius that can be supported is often large and the bendability is generally less than 90°, so it cannot meet the specification limits of aseptic packaging of medical devices and the complexity of interventional procedures. Use scenarios of curved channels.
  • the existing scour control scheme is based on the well-known scour to remove wear particles, adding more perfusion control channels and status monitoring schemes, making the perfusion flow more accurately and controllable, so as to adapt to the clinically accurate measurement of liquid perfusion volume.
  • Demand the existing scour control scheme requires the cooperation of two perfusion pumps and multiple sensors to achieve precise flow control.
  • the structure and control algorithm are relatively complicated, so the implementation difficulty and cost are both high.
  • this technical solution is still flushing and removing, and additional perfusion solution is needed. Unlike an industrial environment that only requires cooling water, hospital perfusion fluids have special composition and sterility requirements. Therefore, additional perfusion volume consumption also means additional consumable costs.
  • the technical problem to be solved by the present invention is to provide a flexible shaft structure that isolates wear particles by pouring, which can provide cooling/lubricating liquid to the flexible drive shaft and can effectively isolate the wear particles generated, avoiding them from entering the patient's body, and improving the product. Stability and consistency of the perfusion flow, and improve the vibration and noise problems of the flexible shaft under high-speed rotation.
  • the technical solution adopted by the present invention to solve the above technical problems is to provide a flexible shaft structure that isolates wear particles by infusion, including a flexible drive shaft, one end of the flexible drive shaft is provided with a proximal fixing frame, and the other end is provided with The distal end fixing frame, wherein a constraining isolation component and an outer sheath are arranged outside the flexible transmission shaft, and the constraining isolation component includes an inner constraining layer, an isolation layer and an outer constraining layer from the inside to the outside; the outer constraining layer and The perfusion inflow annular cavity is formed between the outer sheath and the isolation layer, and a static sealed inner cavity is formed between the inner constraining layer, the isolation layer and the flexible transmission shaft; the proximal fixing frame has a perfusion inlet pipe and a perfusion exhaust pipe The perfusion inlet pipeline is connected with the perfusion inflow annular cavity, and the perfusion exhaust pipeline is connected with the static sealed inner cavity; the distal fixing frame has a perfusion isolation cavity through which the flexible transmission shaft passes.
  • the present invention has the following beneficial effects: 1. Provide cooling fluid or lubricating fluid to the flexible transmission shaft; 2. Fully isolate the particles generated during the operation of the flexible transmission shaft; 3. Ensure the stability of the distal end perfusion, In turn, the reliability of the distal perfusion seal and the controllability of the actual perfusion flow are ensured; 4. The noise and vibration of the flexible drive shaft under high-speed rotation are reduced.
  • Figure 1 is a schematic diagram of a flexible shaft structure in an embodiment of the present invention
  • FIG. 2 is a schematic structural view of the flexible shaft along the axial cross-section of the flexible drive shaft in the embodiment of the present invention
  • FIG. 3 is a schematic diagram showing an enlarged structure of a flexible shaft along a radial cross-section of the flexible transmission shaft in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of the structure of the flexible shaft using a flexible metal tube as the isolation layer in the embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of a flexible shaft in an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of an axial cross-sectional structure of a flexible shaft along a flexible transmission shaft in an embodiment of the present invention
  • Fig. 3 is a schematic diagram of a flexible shaft along a flexible shaft in an embodiment of the present invention Schematic diagram of the enlarged structure of the radial section of the transmission shaft.
  • the flexible shaft structure provided by the present invention to isolate wear particles by infusion, including a flexible drive shaft 1, a restraining isolation component, an outer sheath 5, a distal fixing frame 9 and a proximal fixing ⁇ 8.
  • the distal end of the flexible transmission shaft 1 is connected with the rotating element of the intended blood pump, and the proximal end is connected with the intended driving power device.
  • the proximal fixing frame 8 is wrapped around the outer sheath 5 and the restraining and isolating part; the distal fixing frame 9 may also be covering the outer sheath 5 and the restraining and isolating part, or be closely arranged in the outer sheath 5.
  • the constrained isolation component is composed of an isolation layer 3, an inner constrained layer 2 and an outer constrained layer 4.
  • the inner constraining layer 2 is composed of at least one braided spring tube or flexible metal tube coaxial with the flexible transmission shaft 1
  • the outer constraining layer 4 is composed of at least one braided spring tube or flexible metal tube coaxial with the isolation layer 3.
  • the weight of the braided spring tube forming the inner and outer constraining layers gradually increases from the inside to the outside.
  • the isolation layer 3 is composed of a flexible metal tube coaxial with the inner confinement layer 2 or a multi-layer braided tube that can isolate liquids.
  • the outer sheath tube 5 is connected with the distal fixing frame 9 and the proximal fixing frame 8 to form a closed pipeline to accommodate the flexible transmission shaft 1, the restraining isolation component and the perfusion liquid.
  • the outer sheath 5, the outer constraining layer 4, the isolation layer 3, and the proximal fixing frame 8 constitute the perfusion inflow annular cavity 7 through which the perfusion fluid flows into the annular cavity 7 and finally enters the patient's body.
  • the isolation layer 3, the inner constraining layer 2 and the proximal fixing frame 8 constitute a static sealed inner cavity 6, which contains and isolates the perfusion fluid used for lubrication and the generated wear particles.
  • the proximal fixing frame 8 has two liquid channels, a perfusion inlet pipe 11 and a perfusion exhaust pipe 12, wherein the perfusion inlet pipe 11 is connected to the perfusion inflow annular cavity 7, and the perfusion exhaust pipe 12 is connected to the static sealed inner cavity 6. .
  • the distal end fixing frame 9 has a perfusion isolation cavity 10 inside, and the flexible transmission shaft 1 passes through the perfusion isolation cavity 10 and is connected to the rotating element of the blood pump.
  • the perfusion exhaust line 12 is opened, and the perfusion fluid is driven by the driving power device (such as a perfusion pump) into the perfusion and inflow annular cavity 7 from the perfusion inlet line 11 and then flows into the perfusion isolation cavity 10.
  • the driving power device such as a perfusion pump
  • the perfusion exhaust pipe 12 is in an open state, a part of the liquid in the perfusion isolation cavity 10 enters and fills the static sealed inner cavity 6, and is finally discharged from the perfusion exhaust pipe 12, and the other part of the liquid enters the blood through the flexible transmission shaft 1.
  • the driving power device such as a perfusion pump
  • the perfusion exhaust line 12 is closed, and the perfusion liquid in the perfusion isolation cavity 10 no longer enters the static sealed inner cavity 6 but all enters the blood pump.
  • the final perfusion volume entering the patient is equal to the pumping flow of the perfusion pump, and the total perfusion volume entering the patient can be understood by monitoring the pumping flow of a single perfusion pump.
  • the filling solution filled in the static sealed cavity 6 has a lubricating vibration buffer function for the high-speed rotating flexible shaft. Further, closing the perfusion exhaust pipe under the condition that the perfusion flow is constant will increase the hydraulic pressure in the perfusion isolation chamber 10, thereby preventing the solution in the stationary sealed cavity 6 from flowing out, thereby achieving the sealing of the generated wear particles in the stationary state. The purpose of sealing the cavity 6.
  • the perfusion fluid used in the embodiment of the present invention is a glucose solution containing heparin or physiological saline.
  • the vibration and noise of the flexible shaft in high-speed operation are realized by restraining the isolation component to buffer.
  • the outer sheath 5 completely wraps the restraining isolation component, but there is no rigid connection with the restraining isolation component.
  • the flexible drive shaft 1 rotates, the bending angle and sliding friction will cause the inner constrained layer 2 to vibrate synchronously. While ensuring that the flexible drive shaft 1 is always centered in the inner constrained layer 2, the vibration energy of the inner layer is in the constrained isolation component.
  • the isolation layer 3 in the constraining isolation component may be segmented, and the passage of the product in the blood vessel during clinical intervention can be improved by providing different support strengths at the distal and proximal sections.
  • the distal section provides lower support strength to facilitate the passage of vascular lesions under the guidance of the guide wire;
  • the proximal section provides stronger support strength to improve the push performance of the catheter and avoid the proximal catheter when passing through the aortic arch Insufficient supporting force causes the whole body to bend and accumulate in the blood vessel.
  • the isolation layer 3 when the isolation layer 3 is implemented with a flexible metal tube, it can be achieved by adding a thread cutting section 13 at the distal end to ensure the passability of the push, reducing the strength of the pipe and adding a polymer layer sealing layer 14 outside the thread cutting section 13 , As shown in Figure 4, the material of the polymer layer can be PE, PVC, PTFE, FEP and other materials.
  • the isolation layer 3 When the isolation layer 3 is realized by using a thin-walled braided tube, it can be realized by increasing the density of the braided layer at the proximal end to improve the support performance.
  • the flexible shaft of the present invention has a perfusion sealing structure, which can further improve the controllability, stability and consistency of the perfusion flow while realizing shaft lubrication and wear particle sealing.
  • the technical solution of the present invention can firstly realize the equivalent effect of the wear isolation of the flexible shaft lubricant particles. Secondly, due to the use of closed isolation, there is no need to continuously flush the flexible shaft during use, so less perfusion solution is required under continuous operation, and there is no need to frequently replace perfusion bottles/bags in clinical use. On the one hand, it reduces the cost of medical consumables. Use, on the other hand, reduces the operational burden of medical staff.
  • the flexible shaft of the present invention has only one perfusion inlet and one perfusion outlet under the continuous operation state, so that the final perfusion flow control into the patient can be realized by the closed-loop control of a single perfusion pump. Therefore, compared with the existing scour isolation technical solution that requires two perfusion pumps and multiple sensors to be precisely coordinated for flow control, the control logic of the present invention is easier to implement, and at the same time flow stability, consistency and control reliability It has more advantages. Furthermore, since higher precision perfusion flow control can be achieved, it is clinically more convenient for medical staff to perform patient fluid management.
  • the present invention can effectively isolate the vibration and noise of the flexible shaft under high-speed rotation through the multi-layer constrained isolation layer, so that the operating noise of the flexible shaft can be controlled at 50dB under the high speed of 50000 RPM.
  • the external vibration amplitude can be controlled within 0.1mm. On the one hand, it reduces the risk of injury, bleeding or hematoma caused by high-frequency vibration at the intervention site in clinical use, and on the other hand, it avoids continuous noise that causes discomfort to medical staff and patients.

Abstract

一种通过灌注隔离磨损颗粒的挠性轴结构,包括柔性传动轴(1),柔性传动轴(1)的一端设有近端固定架(8),另一端设有远端固定架(9),柔性传动轴(1)外设置有约束隔离部件和外部鞘管(5),约束隔离部件由内往外依次包括内约束层(2),隔离层(3)和外约束层(4);外约束层(4)和外部鞘管(5)、隔离层(3)之间形成灌注流入环腔(7),内约束层(2)和隔离层(3)、柔性传动轴(1)之间形成静止密封内腔(6);近端固定架(8)具有灌注入口管路(11)和灌注排气管路(12),灌注入口管路(11)与灌注流入环腔(7)相连通,灌注排气管路(12)与静止密封内腔(6)相连通;远端固定架(9)具有灌注隔离腔(10)。该结构可有效隔离产生的磨损颗粒,提高产品灌注流量的稳定性和一致性,并改善高速转动下挠性轴的震动和噪音问题。

Description

一种通过灌注隔离磨损颗粒的挠性轴结构 技术领域
本发明涉及一种用于实现动力源位于体外的介入式泵血导管装置中的扭矩传递结构,尤其涉及一种通过灌注隔离磨损颗粒的挠性轴结构。
背景技术
挠性轴驱动结构在不同领域中均有广泛应用,但在不同领域内提供的主要特征往往区别很大。例如在机床、风机领域存在的大型挠性轴结构可实现以较低的转速运行但需传递更高的扭矩;在牙科领域已知的微型挠性轴结构则需要以极高转速运行但仅需传递较低的扭矩;在介入器械领域需通过复杂的扭曲结构但仅需传递较低的转速和扭矩,例如血管内超声导管。振动、磨损是挠性轴在使用过程,尤其是高速应用中常见的挑战,增强约束、添加润滑液,改善居中是不同结构中常见的改进措施。此外,在介入器械应用中,对磨损颗粒物的隔离是临床应用领域中特有的技术挑战;为了控制磨损,灌注冲刷是常见的改进方向。
专利文献CN102711860A公开了一种挠性轴结构,通过添加与轴紧密贴近并以一定规律间隔分布的套筒结构来限定轴与套筒的滑动摩擦关系点,减少滑动摩擦的同时抑制轴发生振动。
专利文献WO2011/139248A2公开了一种挠性轴支撑结构,通过在轴和外壳添加至少一个轴承部件来保证挠性轴在运行过程中保持居中,进而减少磨损颗粒物的产生。
专利文献 CN105917118A公开了一种灌注冲刷结构,通过两台灌注泵控制导管内灌注液的流动状态来将磨损颗粒冲出产品外,避免磨损颗粒进入患者体内。
技术问题
由上可见,现有振动噪音改善方面主要技术方案可划分为两类,一类为加强对转轴的约束性来保证转轴在不同弯曲情况下依然可保持居中,另一类为通过不同的约束结构来降低转轴运行中的摩擦力。但在介入医疗器械领域中,无法直接采用已有的改善方案。一方面,因为工业领域成熟技术方案对应都需要较大的传动结构外径(最小外径不小于10mm),因此无法应用在介入医疗器械的使用场景中。另一方面,现有成熟技术方案更侧重于优先满足传动扭矩,可支持的最小弯曲半径往往较大同时可弯曲度数一般小于90°,因此无法满足医疗器械无菌包装的规格限制和介入手术复杂弯曲通道的使用情景。
此外,现有冲刷控制方案是在公知的冲刷去除磨损颗粒的基础上,增加了更多的灌注控制途径和状态监控方案,使得灌注流量更精准可控,以适应临床上液体灌注容量可以精准计量的需求。但该技术方案需要两台灌注泵和多个传感器配合才可实现流量的精准控制,结构和控制算法均比较复杂,因此实现难度和成本均很高。进一步的,该技术方案依然为冲刷去除,需消耗额外的灌注溶液。与工业环境仅需冷却用水不同,医院灌注液均有特殊的成分及无菌要求,因此额外的灌注量消耗也意味着额外的耗材成本支出。
技术解决方案
本发明所要解决的技术问题是提供一种通过灌注隔离磨损颗粒的挠性轴结构,能够向柔性传动轴提供冷却/润滑液体并可有效隔离产生的磨损颗粒,避免其进入患者体内,同时提高产品灌注流量的稳定性和一致性,并改善高速转动下挠性轴的震动和噪音问题。
本发明为解决上述技术问题而采用的技术方案是提供一种通过灌注隔离磨损颗粒的挠性轴结构,包括柔性传动轴,所述柔性传动轴的一端设有近端固定架,另一端设有远端固定架,其中,所述柔性传动轴外设置有约束隔离部件和外部鞘管,所述约束隔离部件由内往外依次包括内约束层,隔离层和外约束层;所述外约束层和外部鞘管、隔离层之间形成灌注流入环腔,所述内约束层和隔离层、柔性传动轴之间形成静止密封内腔;所述近端固定架具有灌注入口管路和灌注排气管路,所述灌注入口管路与灌注流入环腔相连通,所述灌注排气管路与静止密封内腔相连通;所述远端固定架具有供柔性传动轴贯穿通过的灌注隔离腔。
有益效果
本发明对比现有技术有如下的有益效果:1.向柔性传动轴提供泠却液或润滑液;2.充分隔离柔性传动轴运行过程中产生的颗粒物;3.保证远端灌注的稳定性,进而保证远端灌注密封的可靠性及实际灌注流量的可控性;4.减少柔性传动轴在高速转动状态下的噪音及震动。
附图说明
图1为本发明实施例中的挠性轴结构示意图;
图2为本发明实施例中挠性轴沿柔性传动轴的轴向剖面结构示意图;
图3为本发明实施例中挠性轴沿柔性传动轴的径向剖面放大结构示意图;
图4为本发明实施例中挠性轴采用柔性金属管作为隔离层的结构示意图。
 
图中:
1 柔性传动轴             2 内约束层            3 隔离层
4 外约束层               5 外部鞘管            6 静止密封内腔
7 灌注流入环腔           8 近端固定架          9 远端固定架
10 灌注隔离腔            11 灌注入口管路        12 灌注排气管路
13 螺纹切割段            14 高分子密封层
本发明的实施方式
下面结合附图和实施例对本发明作进一步的描述。
图1为本发明实施例中的挠性轴结构示意图;图2为本发明实施例中挠性轴沿柔性传动轴的轴向剖面结构示意图;图3为本发明实施例中挠性轴沿柔性传动轴的径向剖面放大结构示意图。
请参见图1、图2和图3,本发明提供的通过灌注隔离磨损颗粒的挠性轴结构,包括柔性传动轴1,约束隔离部件,外部鞘管5,远端固定架9和近端固定架8。
柔性传动轴1远端与预期使用的血泵的转动元件进行连接,近端与预期使用的驱动动力装置连接。近端固定架8包覆在外部鞘管5及约束隔离部件外;远端固定架9也可包覆在外部鞘管5及约束隔离部件外,或者紧贴设于外部鞘管5内。
约束隔离部件由隔离层3,内约束层2和外约束层4构成。内约束层2由与柔性传动轴1同轴的至少一根编织弹簧管或柔性金属管构成,外约束层4由至少一根与隔离层3同轴的编织弹簧管或柔性金属管构成。构成内、外约束层的编织弹簧管的重量是由内至外逐渐增加的。隔离层3由与内约束层2同轴的柔性金属管或可隔绝液体的多层编织管材构成。
外部鞘管5与远端固定架9和近端固定架8连接构成封闭管道容纳所述柔性传动轴1、约束隔离部件及灌注液。外部鞘管5、外约束层4、隔离层3和近端固定架8构成灌注流入环腔7,灌注液通过所述灌注流入环腔7最终进入患者体内。隔离层3、内约束层2和近端固定架8构成静止密封内腔6,容纳并隔离做润滑功能的灌注液和产生的磨损颗粒。
近端固定架8具有灌注入口管路11和灌注排气管路12两个液体通道,其中灌注入口管路11与灌注流入环腔7相连,灌注排气管路12与静止密封内腔6相连。远端固定架9内具有灌注隔离腔10,柔性传动轴1穿过灌注隔离腔10与血泵的转动元件相连。
术前准备时,打开灌注排气管路12,灌注液在驱动动力装置(比如灌注泵)的驱动下由灌注入口管路11进入灌注流入环腔7,然后流入灌注隔离腔10内。此时由于灌注排气管路12处于开放状态,灌注隔离腔10内液体一部分进入并填满静止密封内腔6,最终由灌注排气管路12排出,另一部分液体经由柔性传动轴1进入血泵中。
术中使用时,封闭灌注排气管路12,灌注隔离腔10内灌注液不再进入静止密封内腔6而全部进入血泵中。此时最终进入患者体内的灌注容量与灌注泵的泵出流量相等,监控单个灌注泵的泵出流量即可了解进入患者体内的总灌注液容量。同时,静止密封腔6内填满的灌注溶液对高速转动的柔性轴起到润滑的振动缓冲功能。进一步的,因灌注流量不变的情况下封闭灌注排气管路会使得灌注隔离腔10内液压升高,从而阻止静止密封腔6内溶液向外流出,进而实现将产生的磨损颗粒封闭在静止密封腔6内的目的。
本发明实施例中使用的灌注液为含肝素的葡萄糖溶液或生理盐水。
本发明实施例中柔性轴在高速运行中的振动和噪音是通过约束隔离部件缓冲实现的。外部鞘管5完全包裹约束隔离部件,但与约束隔离部件间无刚性连接。约束隔离部件存在间隙,各约束层在外部鞘管5保护下在径向可做轻微的振动移动,同时运行时灌注液填充结构中的全部间隙。当柔性传动轴1转动时,因弯曲角度及滑动摩擦会导致内约束层2同步振动,在保证柔性传动轴1在内约束层2内时刻居中的同时,内层的振动能量在约束隔离部件中逐层传递并带动各约束层、隔离层及间隙中的灌注液共同振动。此时,从内部振动传递出来的能量一方面转换为各约束层的振动动能,另一方面转换为灌注液内部的局部湍流动能,从而消耗减弱最终传递至外部鞘管的振动能量,最终实现对外部鞘管5振幅的控制。
进一步的,约束隔离部件中的隔离层3可以是分段式的,通过在远端段和近端段提供不同的支撑强度来改善临床介入过程中产品在血管中的通过性。其中,在远端段提供较低的支撑强度,以便于在导丝引导下通过血管病变;在近端段提供较强的支撑强度,以提高导管的推送性能,避免在通过主动脉弓时近端导管支撑力不足导致整体在血管内弯曲堆积。具体来说,在隔离层3采用柔性金属管实现时,可通过在远端增加螺纹切割段13保证推送的通过性,降低管材强度同时在螺纹切割段13外增加高分子层密封层14来实现,如图4所示,高分子层材料可采用PE、PVC、PTFE和FEP等材料。在隔离层3采用薄壁编织管实现时,则可通过在近端增加编织层密度提高支撑性能来实现。
本发明的挠性轴具有灌注密封结构,在实现轴润滑、磨损颗粒密封的同时,进一步提高灌注流量的可控性、稳定性和一致性。
与现有冲刷技术相比,本发明的技术方案首先可实现等效的柔性轴润滑剂颗粒物磨损隔离的效果。其次,由于采用了封闭式隔离使用过程中无需对柔性轴持续冲刷,因此持续运行状态下所需灌注溶液更少,在临床使用中无需频繁更换灌注瓶/灌注袋,一方面减少了医用耗材的使用,另一方面减少了医护人员的操作负担。
此外,本发明的挠性轴在持续运行状态下,仅存在一个灌注入口和一个灌注出口,使得最终进入患者体内的灌注流量控制通过单一灌注泵的闭环控制即可实现。因此,与现有冲刷隔离技术方案需要泵入、泵出两台灌注泵及多个传感器精密配合进行流量控制相比,本发明的控制逻辑更易实现,同时流量稳定性、一致性及控制可靠性更具有优势。进一步的,由于可实现更高精度的灌注流量控制,临床上更便于医护人员进行患者的液体管理。
另外,与现有挠性轴技术方案相比,本发明通过多层约束隔离层可有效隔离柔性轴在高速转动下的振动和噪音,使得柔性轴在50000 RPM高转速下运行噪音可控制在50dB(A)以内,外部振动振幅可控制在0.1mm以内。一方面降低临床使用中介入点由于高频振动导致损伤、出血或血肿的风险,另一方面避免持续噪音对医护人员和患者带来不适感。
虽然本发明已以较佳实施例揭示如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的修改和完善,因此本发明的保护范围当以权利要求书所界定的为准。

Claims (8)

  1. 一种通过灌注隔离磨损颗粒的挠性轴结构,包括柔性传动轴(1),所述柔性传动轴(1)的一端设有近端固定架(8),另一端设有远端固定架(9),其特征在于,所述柔性传动轴(1)外设置有约束隔离部件和外部鞘管(5),所述约束隔离部件由内往外依次包括内约束层(2),隔离层(3)和外约束层(4);
    所述外约束层(4)和外部鞘管(5)、隔离层(3)之间形成灌注流入环腔(7),所述内约束层(2)和隔离层(3)、柔性传动轴(1)之间形成静止密封内腔(6);
    所述近端固定架(8)具有灌注入口管路(11)和灌注排气管路(12),所述灌注入口管路(11)与灌注流入环腔(7)相连通,所述灌注排气管路(12)与静止密封内腔(6)相连通;
    所述远端固定架(9)具有供柔性传动轴(1)贯穿通过的灌注隔离腔(10)。
  2. 如权利要求1所述的通过灌注隔离磨损颗粒的挠性轴结构,其特征在于,所述内约束层(2)由至少一根与柔性传动轴(1)同轴的编织弹簧管或柔性金属管构成;所述隔离层(3)由与内约束层(2)同轴的柔性金属管或可隔绝液体的多层编织管构成,所述外约束层(4)由至少一根与隔离层(3)同轴的编织弹簧管或柔性金属管构成。
  3. 如权利要求2所述的通过灌注隔离磨损颗粒的挠性轴结构,其特征在于,构成所述内约束层(2)和外约束层(4)的编织弹簧管的重量由内往外逐渐增加。
  4. 如权利要求2所述的通过灌注隔离磨损颗粒的挠性轴结构,其特征在于,所述隔离层(3)为柔性金属管,所述隔离层(3)的柔性金属管的远端设置有螺纹切割段(13),所述螺纹切割段(13)外包覆有高分子密封层(14)。
  5. 如权利要求4所述的通过灌注隔离磨损颗粒的挠性轴结构,其特征在于,所述螺纹切割段(13)分段设置,且螺纹间距由近端往远端逐渐变小。
  6. 如权利要求2所述的通过灌注隔离磨损颗粒的挠性轴结构,其特征在于,所述隔离层(3)为多层编织管,所述多层编织管近端处的编织层密度大于远端处的编织层密度。
  7. 一种如权利要求1所述的通过灌注隔离磨损颗粒的挠性轴结构的控制方法,其特征在于,包括如下步骤:
    将柔性传动轴(1)近端的灌注入口管路(11)和灌注泵相连,将柔性传动轴(1)的远端贯穿通过灌注隔离腔(10)后和血泵相连;
    使用前,打开灌注排气管路(12),采用灌注泵将灌注液由灌注入口管路(11)注入灌注流入环腔(7),然后流入灌注隔离腔(10)内;使得灌注隔离腔(10)内液体一部分进入并填满静止密封内腔(6),最终由灌注排气管路(12)排出,另一部分液体经由柔性传动轴(1)进入血泵中;
    使用时,封闭灌注排气管路(12),灌注隔离腔(10)内灌注液不再进入静止密封内腔(6)而全部进入血泵中,监控单个灌注泵的泵出流量即为入患者体内的总灌注液容量;
    使用时保持灌注排气管路(12)处于封闭状态,使得灌注隔离腔(10)内液压升高,从而阻止静止密封腔(6)内溶液向外流出,进而将产生的磨损颗粒封闭在静止密封腔(6)内。
  8. 一种人工辅助血泵装置,其特征在于,具有如权利要求1所述的通过灌注隔离磨损颗粒的挠性轴结构,所述挠性轴结构和人工辅助血泵装置的转动元件连接。
PCT/CN2020/089427 2019-10-17 2020-05-09 一种通过灌注隔离磨损颗粒的挠性轴结构 WO2021073075A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2018969.2A GB2586933B (en) 2019-10-17 2020-05-09 Flexible shaft structure insulating wear particles by perfusion
US17/078,841 US11872383B2 (en) 2019-10-17 2020-10-23 Flexible shaft structure insulating wear particles by perfusion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910985742.7 2019-10-17
CN201910985742.7A CN110478547B (zh) 2019-10-17 2019-10-17 一种通过灌注隔离磨损颗粒的挠性轴结构

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/078,841 Continuation US11872383B2 (en) 2019-10-17 2020-10-23 Flexible shaft structure insulating wear particles by perfusion

Publications (1)

Publication Number Publication Date
WO2021073075A1 true WO2021073075A1 (zh) 2021-04-22

Family

ID=68544722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089427 WO2021073075A1 (zh) 2019-10-17 2020-05-09 一种通过灌注隔离磨损颗粒的挠性轴结构

Country Status (2)

Country Link
CN (1) CN110478547B (zh)
WO (1) WO2021073075A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110478547B (zh) * 2019-10-17 2020-01-14 丰凯医疗器械(上海)有限公司 一种通过灌注隔离磨损颗粒的挠性轴结构
GB2586933B (en) * 2019-10-17 2021-09-22 Forqaly Medical Shanghai Co Ltd Flexible shaft structure insulating wear particles by perfusion
CN110917420B (zh) * 2019-11-27 2022-06-21 丰凯利医疗器械(上海)有限公司 一种通过灌注隔离并排出磨损颗粒的挠性轴结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110313286A1 (en) * 2010-05-13 2011-12-22 Ncontact Surgical, Inc. Subxyphoid epicardial ablation
CN102711860A (zh) * 2009-10-23 2012-10-03 Ecp发展有限责任公司 挠性轴结构
CN106512117A (zh) * 2016-10-09 2017-03-22 丰凯医疗器械(上海)有限公司 柔性传动系统、经皮辅助泵血装置及血管内血栓抽吸系统
WO2018130978A1 (en) * 2017-01-13 2018-07-19 Marco Merlini Catheter comprising a bendable distal part
CN109432572A (zh) * 2018-10-16 2019-03-08 昕涌医疗器械(上海)有限公司 一种具备灌注功能的旋转传动介入导管
CN110478547A (zh) * 2019-10-17 2019-11-22 丰凯医疗器械(上海)有限公司 一种通过灌注隔离磨损颗粒的挠性轴结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314331B1 (de) * 2009-10-23 2013-12-11 ECP Entwicklungsgesellschaft mbH Katheterpumpenanordnung und flexible Wellenanordnung mit einer Seele
TR201003496A2 (tr) * 2010-05-03 2011-02-21 K���K Osman Doğrusal akım sağlayan bir pompalama düzeneği
CN109821140A (zh) * 2019-03-13 2019-05-31 昕涌医疗器械(上海)有限公司 一种用于柔性传动的分隔壁上开孔的多腔管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102711860A (zh) * 2009-10-23 2012-10-03 Ecp发展有限责任公司 挠性轴结构
US20110313286A1 (en) * 2010-05-13 2011-12-22 Ncontact Surgical, Inc. Subxyphoid epicardial ablation
CN106512117A (zh) * 2016-10-09 2017-03-22 丰凯医疗器械(上海)有限公司 柔性传动系统、经皮辅助泵血装置及血管内血栓抽吸系统
WO2018130978A1 (en) * 2017-01-13 2018-07-19 Marco Merlini Catheter comprising a bendable distal part
CN109432572A (zh) * 2018-10-16 2019-03-08 昕涌医疗器械(上海)有限公司 一种具备灌注功能的旋转传动介入导管
CN110478547A (zh) * 2019-10-17 2019-11-22 丰凯医疗器械(上海)有限公司 一种通过灌注隔离磨损颗粒的挠性轴结构

Also Published As

Publication number Publication date
CN110478547B (zh) 2020-01-14
CN110478547A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2021073075A1 (zh) 一种通过灌注隔离磨损颗粒的挠性轴结构
CN110917420B (zh) 一种通过灌注隔离并排出磨损颗粒的挠性轴结构
US20200338248A1 (en) Motor assembly with heat exchanger for catheter pump
US11759612B2 (en) Reduced rotational mass motor assembly for catheter pump
EP2424587B1 (en) Shaft arrangement having a shaft which extends within a fluid-filled casing
TWI544938B (zh) 心臟幫浦及用於心臟幫浦之導管總成
JP6110363B2 (ja) カテーテル
CN112891732B (zh) 一种灌注液输送装置及其控制方法
CN112107749B (zh) 一种导流装置和导管泵
CN109821140A (zh) 一种用于柔性传动的分隔壁上开孔的多腔管
US11872383B2 (en) Flexible shaft structure insulating wear particles by perfusion
CN211986481U (zh) 一种用于人工辅助血泵装置的挠性轴
CN209221277U (zh) 具备灌注功能的旋转传动介入导管
CN111075846A (zh) 一种可隔离轴承磨损颗粒的密封结构
CN109432572A (zh) 一种具备灌注功能的旋转传动介入导管
CN211693252U (zh) 一种可隔离轴承磨损颗粒的密封结构
CN116966415A (zh) 心室辅助装置
WO2014162492A1 (ja) 画像診断用カテーテル
US20230211146A1 (en) Impeller seal assembly for a percutaneous heart pump

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202018969

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200509

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876575

Country of ref document: EP

Kind code of ref document: A1