WO2021070805A1 - Plate-shaped composite material - Google Patents

Plate-shaped composite material Download PDF

Info

Publication number
WO2021070805A1
WO2021070805A1 PCT/JP2020/037835 JP2020037835W WO2021070805A1 WO 2021070805 A1 WO2021070805 A1 WO 2021070805A1 JP 2020037835 W JP2020037835 W JP 2020037835W WO 2021070805 A1 WO2021070805 A1 WO 2021070805A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic fine
less
composite material
porous inorganic
fine particles
Prior art date
Application number
PCT/JP2020/037835
Other languages
French (fr)
Japanese (ja)
Inventor
晋平 八鍬
駿二 今村
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2021551656A priority Critical patent/JPWO2021070805A1/ja
Priority to KR1020227000974A priority patent/KR20220080069A/en
Publication of WO2021070805A1 publication Critical patent/WO2021070805A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/04Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene

Definitions

  • the present invention relates to a plate-shaped composite material suitable for a substrate or the like of a microstrip patch antenna used as a millimeter-wave radar or the like.
  • ADAS advanced driver assistance systems
  • autonomous driving have been actively carried out, and the importance of millimeter-wave radar as a sensing technology to support this is increasing.
  • a millimeter-wave radar for automobiles the use of a "microstrip patch antenna", which is a flat antenna with antenna elements (patches) printed and wired on a resin substrate, from the viewpoint of small size, high performance, and low price. Is influential, and studies on antenna pattern design and substrate materials are underway for higher performance.
  • Polytetrafluoroethylene which has a small dielectric loss tangent, is one of the most promising substrate materials used for these antennas, and in order to further improve mechanical properties, thermal properties, and electrical properties, It has been proposed to blend granular fillers such as boron nitride, silicon dioxide (silica) and titanium oxide (Titania), and fillers such as glass fiber and carbon fiber (see Patent Documents 1 and 2).
  • the present invention provides an excellent plate-shaped composite material that is harmonious with respect to various properties such as relative permittivity and dielectric loss tangent.
  • the present inventors have made a ratio by including a specific porous inorganic fine particle aggregate and a specific non-porous inorganic fine particle in a specific range in a fluororesin.
  • it is an excellent composite material that is harmonious in terms of various properties such as permittivity and dielectric loss tangent. That is, the present invention is as follows. ⁇ 1> A plate-shaped composite material containing a fluororesin and a filler, wherein the filler is a porous inorganic fine particle agglomerate formed by aggregating inorganic fine particles having an average primary particle diameter of 5 to 200 nm.
  • Mass ratio of the content of the non-porous inorganic fine particles to the total content of the porous inorganic fine particle aggregates and the non-porous inorganic fine particles is 0.15 to 0.90, which is a plate-shaped composite material.
  • the plate-shaped composite material according to ⁇ 1> which has a porosity of 15% by volume or more.
  • the plate-shaped composite material (hereinafter, may be abbreviated as “composite material”) which is one aspect of the present invention is a plate-shaped composite material containing a fluororesin and a filler, and the filler is “average”.
  • Porous inorganic fine particle agglomerates formed by aggregating inorganic fine particles having a primary particle diameter of 5 to 200 nm (hereinafter, may be abbreviated as “inorganic fine particle agglomerates”) ”and“ average primary particle diameter 0.2 to 50 ⁇ m of non-porous inorganic fine particles (hereinafter, may be abbreviated as “non-porous inorganic fine particles”) ”, and the total content of the inorganic fine particle aggregates and the non-porous inorganic fine particles is 20 to 90 of the composite material.
  • the content of non-porous inorganic fine particles)) is 0.15 to 0.90.
  • the type of the fluororesin is not particularly limited, and the fluororesin used for the substrate or the like can be appropriately adopted.
  • the fluororesin usually polytetrafluoroethylene (PTFE), perfluoroalkoxy alkane (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), polychlorotrifluoroethylene (PCTEF), tetrafluoroethylene.
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy alkane
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • PCTEF polychlorotrifluoroethylene
  • -Ethylene copolymer ETFE
  • chlorotrifluoethylene-ethylene copolymer ECTFE
  • PVDF polyvinylidene fluoride
  • Fluorine-based resin is preferably "fibrillated (fibrous structure)". It is more preferable that the fibers in fibrillation are oriented not only in one direction but also in multiple directions, and the fibril and the inorganic fine particle agglomerates described later are connected to form a "three-dimensional fine network structure". Is particularly preferred.
  • the fluororesin is fibrillated, particularly when it forms a three-dimensional fine network structure, excellent mechanical strength and dimensional stability can be ensured as a composite material. The fibrillation of the fluororesin can be confirmed by observing the surface with an SEM or the like.
  • the fibrillation of the fluororesin can be promoted by, for example, applying a shearing force, and more specifically, it can be performed by multi-step rolling described later, and the three-dimensional fine network structure will be described later. It can be done by multi-step rolling in different directions.
  • the composite material will contain inorganic fine particle agglomerates and non-porous inorganic fine particles as fillers, and the inorganic fine particle agglomerates are specifically as shown in the SEM photographed image of FIG. It means that a plurality of inorganic fine particles are fused to form an agglomerate and have voids between the inorganic fine particles to be porous.
  • the inorganic fine particles in the aggregate may be fused at the time of formulation, and the fusion may be released by subsequent mixing with a fluororesin or the like.
  • the “non-porous” of the non-porous inorganic fine particles is an expression for "porous” that is characteristic of the inorganic fine particles, and the non-porous inorganic fine particles may be any inorganic fine particles that are not "porous”. To do. That is, the non-porous inorganic fine particles do not have to have no pores, and may have pores as long as they are not recognized as “porous”.
  • the "inorganic fine particle aggregate" and the "non-porous inorganic fine particle” will be described in detail.
  • the material of the inorganic fine particles in the inorganic fine particle aggregate is usually an oxide of a typical element such as silicon oxide (silicon monoxide, silicon dioxide (silica), etc.), aluminum oxide (alumina) (including a composite oxide); oxidation. Transition metal oxides (including composite oxides) such as titanium (titanium dioxide (titania), etc.), iron oxide, zirconium oxide (zirconia dioxide (zirconia)); nitrides of typical elements such as boron nitride and silicon nitride, etc. However, oxides of main group elements are preferable, and silicon dioxide (silica) is particularly preferable.
  • silicon oxide silicon dioxide (silica) is particularly preferable.
  • the relative permittivity of the composite material can be suppressed to an extremely low level, and the composite material can be produced at a lower cost.
  • the crystallinity of the inorganic fine particles is not particularly limited, but in the case of silicon dioxide, it is usually amorphous.
  • the average primary particle size of the inorganic fine particles in the inorganic fine particle aggregate is 5 to 200 nm, preferably 10 nm or more, more preferably 15 nm or more, still more preferably 20 nm or more, preferably 150 nm or less, more preferably 120 nm or less. It is more preferably 100 nm or less, particularly preferably 80 nm or less, and most preferably 70 nm or less.
  • the inorganic fine particle agglomerates are not easily broken even if the treatments such as mixing, molding, and rolling are performed, good voids can be secured between the inorganic fine particles, and the plate-like composite material is smooth. It becomes easier to secure the surface.
  • the average primary particle size of the inorganic fine particles in the inorganic fine particle aggregate is a value obtained by measuring the particle size by observation with SEM and averaging the measured values. Specifically, it is a procedure in which inorganic fine particle aggregates (100 particles) are randomly selected, the particle diameters (major diameters of the particles) are measured, and the obtained particle diameters are averaged to obtain a numerical value.
  • the average particle size of the primary agglomerates of the inorganic fine particles in the inorganic fine particle agglomerates is usually 100 nm or more, preferably 120 nm or more, more preferably 150 nm or more, and usually 400 nm or less, preferably 380 nm or less, more preferably 350 nm or less. ..
  • the average particle size of the secondary agglomerates of the inorganic fine particles (aggregates of the primary agglomerates) in the inorganic fine particle agglomerates is usually 0.1 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and usually 100 ⁇ m or less, preferably 100 ⁇ m or less.
  • the inorganic fine particle agglomerates in the composite material are preferably in the state of secondary agglomerates. In the state of secondary agglomerates, the above-mentioned three-dimensional fine network structure is easily formed. Further, the average particle size of the primary agglomerates and the average particle size of the secondary agglomerates can be calculated by the same method as the average primary particle size of the inorganic fine particles in the above-mentioned inorganic fine particle agglomerates.
  • BET specific surface area of the inorganic particulate aggregate is usually 10 m 2 / g or more, preferably 20 m 2 / g or more, more preferably 30 m 2 / g or more, still more preferably 40 m 2 / g or more and usually 250 meters 2 / g below, it is preferably 240 m 2 / g or less, more preferably 210 m 2 / g or less, still more preferably 150 m 2 / g or less, and particularly preferably 80 m 2 / g or less.
  • a high porosity can be ensured as a composite material, and an increase in dielectric loss tangent can be suppressed.
  • the BET specific surface area of the inorganic fine particle agglomerates is a numerical value calculated by substituting the gas adsorption amount measured by the gas adsorption method (particularly the nitrogen adsorption isotherm) into the BET formula, and is used before being used in the production of composite materials. It shall be expressed numerically.
  • the apparent specific gravity of the inorganic fine particle aggregate is usually 10 g / L or more, preferably 20 g / L or more, more preferably 30 g / L or more, still more preferably 40 g / L or more, and usually 100 g / L or less, preferably 90 g / L or more. It is L or less, more preferably 80 g / L or less, still more preferably 70 g / L or less, and particularly preferably 60 g / L or less. Within the above range, a high porosity can be ensured as a composite material, and inorganic fine particle aggregates are less likely to be destroyed.
  • inorganic fine particle aggregates commercially available products such as Mizukasil series (manufactured by Mizusawa Industrial Chemical Ltd.), Cyricia series (manufactured by Fuji Silysia Chemical Ltd.), AEROSIL series (manufactured by Nippon Aerosil), Nipseal series (manufactured by Toso Silica) Can be preferably used, and among them, fumed silica of the AEROSIL series (manufactured by Aerosil Japan Co., Ltd.) is particularly preferable.
  • Non-porous inorganic fine particles The material of the non-porous inorganic fine particles is usually an oxide of a typical element such as silicon oxide (silicon monoxide, silicon dioxide (silica), etc.), aluminum oxide (alumina) (including a composite oxide); titanium oxide (including composite oxide). Titanium dioxide (titania), etc.), iron oxide, transition metal oxides such as zirconium oxide (zirconia dioxide (zirconia)) (including composite oxides); nitrides of typical elements such as boron nitride and silicon nitride. Of these, silicon oxide is preferable. Examples of the composite oxide include codylite, talc, wallastnite, mullite, steatite, and forsterite.
  • the material of the non-porous inorganic fine particles is not limited to one type, and two or more types may be combined.
  • the average primary particle size of the non-porous inorganic fine particles is 0.2 to 50 ⁇ m, preferably 0.3 ⁇ m or more, more preferably 0.4 ⁇ m or more, still more preferably 0.5 ⁇ m or more, and preferably 40 ⁇ m or less. , More preferably 30 ⁇ m or less, still more preferably 20 ⁇ m or less, particularly preferably 10 ⁇ m or less, and most preferably 5 ⁇ m or less.
  • an appropriate specific surface area can be obtained to ensure a good dielectric loss tangent, and the surface of the composite material can be easily made smooth, which makes the material more suitable for a high-frequency substrate.
  • the average primary particle size of the non-porous inorganic fine particles is a value obtained by measuring the particle size by observation with SEM and averaging the measured values. Specifically, it is a procedure in which inorganic fine particle aggregates (100 particles) are randomly selected, the particle diameters (major diameters of the particles) are measured, and the obtained particle diameters are averaged to obtain a numerical value.
  • the BET specific surface area of the non-porous inorganic fine particles is usually 0.1 m 2 / g or more, preferably 0.5 m 2 / g or more, more preferably 1 m 2 / g or more, still more preferably 2 m 2 / g or more. It is usually 30 m 2 / g or less, preferably 25 m 2 / g or less, more preferably 20 m 2 / g or less, still more preferably 15 m 2 / g or less, and particularly preferably 10 m 2 / g or less.
  • the BET specific surface area of the non-porous inorganic fine particles is a numerical value calculated by substituting the gas adsorption amount measured by the gas adsorption method (particularly the nitrogen adsorption isotherm) into the BET formula, and is used before the production of the composite material. It shall be represented by the numerical value of.
  • the relative permittivity of the non-porous inorganic fine particles is usually 10 or less, preferably 8 or less, more preferably 7 or less, still more preferably 6 or less, particularly preferably 5 or less, and usually 3 or more.
  • the relative permittivity of the non-porous inorganic fine particles is a numerical value determined by a method conforming to the Japanese Industrial Standards JIS C2565.
  • non-porous inorganic fine particles include fused silica such as SFP-130MC, SFP-30M, and FB-3SDC manufactured by Denka, talc light powder FINE type manufactured by AGC Ceramics, and Koji such as ELP-150N and ELP-325N. Examples thereof include light, boron nitride such as FS-1, HP-P1 and HP40J series manufactured by Mizushima Ferroalloy Co., Ltd., and talc such as Nano Ace D-600, D-800, D-1000 and FG-15 manufactured by Nippon Tarku Co., Ltd.
  • the composite material may contain an inorganic fine particle agglomerate and a filler that does not correspond to the non-porous inorganic fine particle (hereinafter, may be abbreviated as “other filler”), and the inorganic fine particle agglomerate and the filler may be used as the filler. It is also preferable that it consists of only non-porous inorganic fine particles.
  • other fillers include granular fillers and fibrous fillers, and examples of the granular fillers include solid carbons such as carbon black and graphite; hollow inorganic particles such as silica balloons and glass balloons, and the like.
  • the fibrous filler include glass fiber and carbon fiber.
  • the other fillers are not limited to one type, and two or more types may be combined.
  • the surface of the filler (including inorganic fine particle aggregates and non-porous inorganic fine particles) is modified with a surface modifier having a hydrophobic group (hereinafter, may be abbreviated as “surface modifier”). Is preferable. Hereinafter, modification by the “surface modifier” will be described in detail.
  • a fluorogroup that exhibits liquid repellency is particularly preferable.
  • the surface modifier may be one that chemically adsorbs (reacts) to the surface of the filler, one that physically adsorbs to the surface of the filler, or a low molecular weight compound. , It may be a polymer compound.
  • a surface modifier that chemically adsorbs (reacts) to the surface of the filler usually has a reactive functional group that reacts with the surface functional group (hydroxyl group (-OH), etc.) of the filler.
  • the reactive functional group include an alkoxysilyl group (-SiOR (R has 1 to 6 carbon atoms)), a chlorosilyl group (-SiCl), a bromosilyl group (-SiBr), a hydrosilyl group (-SiH) and the like.
  • a method for modifying the surface of the filler with a surface modifier a known method can be appropriately adopted, and examples thereof include contacting the filler with the surface modifier.
  • the surface modifier can be used alone or in combination of two or more.
  • a surface modifier of a low molecular weight compound having a reactive functional group is reacted with the surface of the filler, and then hydrophobic.
  • the surface modifier of the polymer compound having a group may be physically adsorbed. If the material of the filler is silicon dioxide (silica) or the like, it may be dissolved (decomposed) when exposed to a basic aqueous solution, but such modification enhances the resistance to the basic aqueous solution. Can be done.
  • the thermal decomposition temperature of the surface modifier is usually 250 ° C. or higher, preferably 300 ° C. or higher, more preferably 350 ° C. or higher, further preferably 360 ° C. or higher, and particularly preferably 370 ° C. or higher. Within the above range, decomposition can be suppressed even if a treatment such as high temperature heating is performed.
  • the thermal decomposition temperature of the surface modifier is set to a temperature at which the weight is reduced by 5% when the temperature is raised at 20 ° C./min by the thermogravimetric analysis method (TG-DTA).
  • Examples of the surface modifier of the low molecular weight compound having a fluoro group and a reactive functional group include those represented by the following formulas.
  • the compound represented by the following formula is commercially available, and can be appropriately obtained and used as a surface modifier.
  • Examples of the surface modifier of the polymer compound having a fluoro group include those represented by the following formulas.
  • a commercially available solution may be used as the surface modifier, and preferred ones include T1770 manufactured by Tokyo Chemical Industry Co., Ltd. and Novec® 2202 manufactured by 3M Co., Ltd. It has been published that Novec® 2202 contains a polymer compound having a fluoro group and contains a "fluoroalkylsilane polymer". When Novec (registered trademark) 2202 is used as a surface modifier, it has a feature that the critical liquid repellent tension of the composite material can be easily suppressed to a low level by a relatively simple operation.
  • the content of the surface modifier (content of organic matter) in the filler is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 2% by mass or more, still more preferably 3% by mass or more, particularly preferably. Is 4% by mass or more, usually 50% by mass or less, preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 25% by mass or less, and particularly preferably 20% by mass or less.
  • the composite material has a total content of inorganic fine particle agglomerates and non-porous inorganic fine particles of 20 to 90% by mass, and the "total content” is an inorganic fine particle agglomerate when the composite material is 100% by mass.
  • the total content of the inorganic fine particle aggregates and the non-porous inorganic fine particles is preferably 30% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, preferably 80% by mass or less, more preferably. Is 75% by mass or less, more preferably 70% by mass or less. Further, when the total of the fluororesin, the inorganic fine particle agglomerates and the non-porous inorganic fine particles is 100 parts by mass, the total content of the inorganic fine particle agglomerates and the non-porous inorganic fine particles is usually 20 to 90 parts by mass.
  • the mass ratio of the content of the non-porous inorganic fine particles to the total content of the inorganic fine particle aggregates and the non-porous inorganic fine particles is 0.15 to 0.90, but is preferably 0.2 or more, more preferably 0.3 or more, still more preferably 0.4 or more, most. It is preferably 0.5 or more, preferably 0.8 or less, more preferably 0.75 or less, still more preferably 0.7 or less, and most preferably 0.65 or less.
  • the total content of the filler in the composite material is usually 20 to 90% by mass, preferably 30% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, and preferably 80% by mass or less. It is more preferably 75% by mass or less, still more preferably 70% by mass or less.
  • the total content of the filler is usually 20 to 90 parts by mass, preferably 30 parts by mass or more, and more preferably 40 parts by mass or more. It is more preferably 50 parts by mass or more, preferably 80 parts by mass or less, more preferably 75 parts by mass or less, still more preferably 70 parts by mass or less. Within the above range, it becomes easy to harmonize various characteristics such as relative permittivity and dielectric loss tangent.
  • the composite material may contain materials other than the above-mentioned fluorine-based resin and filler (including inorganic fine particle aggregates and non-porous inorganic fine particles), but the total content of the fluorine-based resin and filler in the composite material is , Usually 60% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 100% by mass.
  • the shape of the composite material is plate-like, but the thickness thereof is usually 2.0 to 3000 ⁇ m, preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, still more preferably 80 ⁇ m or more, most preferably 100 ⁇ m or more, preferably 100 ⁇ m or more. It is 2000 ⁇ m or less, more preferably 1000 ⁇ m or less, still more preferably 800 ⁇ m or less, particularly preferably 600 ⁇ m or less, and most preferably 400 ⁇ m or less. Within the above range, a good relative permittivity or the like can be secured as a composite material.
  • the dimensions (maximum diameter, length or width) of the composite material are usually 20 to 1500 mm, but are preferably 30 mm or more, more preferably 40 mm or more, still more preferably 50 mm or more, and most preferably 60 mm or more. It is preferably 1400 mm or less, more preferably 1300 mm or less.
  • the porosity of the composite material is usually 10 to 90% by volume, but is preferably 15% by volume or more, more preferably 20% by volume or more, still more preferably 30% by volume or more, and particularly preferably 40% by volume or more. It is preferably 80% by volume or less, more preferably 70% by volume or less, and further preferably 60% by volume or less. Within the above range, characteristics such as a good relative permittivity and a coefficient of thermal expansion can be ensured as a composite material.
  • the porosity of the composite material is calculated by measuring the volume of the composite material, the specific gravity and mass of the fluororesin (blending mass), and the specific gravity and mass of the filler (blending mass), and substituting them into the following formula. Let it be a numerical value.
  • the relative permittivity (frequency: 10 GHz) of the composite material is usually 3.0 or less, preferably 2.60 or less, more preferably 2.40 or less, still more preferably 2.00 or less, and particularly preferably 1.80 or less. Yes, usually 1.55 or more.
  • the relative permittivity of the composite material is a value of the real part ( ⁇ r') calculated by measuring the complex permittivity by the cavity resonator permittivity method (measurement frequency: 10 GHz).
  • the dielectric loss tangent (frequency: 10 GHz) of the composite material is usually 0.01 or less, preferably 0.008 or less, more preferably 0.006 or less, still more preferably 0.004 or less, and particularly preferably 0.002 or less. , Usually 0.0005 or more.
  • the relative permittivity of the composite material is the ratio ( ⁇ r "/ of the imaginary part ( ⁇ r") to the real part ( ⁇ r') calculated by measuring the complex permittivity by the cavity resonator perturbation method (measurement frequency: 10 GHz). ⁇ r').
  • the coefficient of thermal expansion (Z-axis direction) of the composite material is usually 100 ppm / K or less, preferably 90 ppm / K or less, more preferably 80 ppm / K or less, still more preferably 70 ppm / K or less, and particularly preferably 60 ppm / K or less. Most preferably, it is 50 ppm / K or less, and usually 5 ppm / K or more.
  • the coefficient of thermal expansion (Z-axis direction) of the composite material is determined by the laser interferometry (laser thermal expansion meter, measurement temperature range: -50 to 200 ° C., heating rate: 2 ° C./min, atmosphere: He, load load: 17g) is used, and the value is calculated from a formula based on the Japanese Industrial Standards JIS R3251-1990.
  • the tensile strength of the composite material is usually 1 to 50 MPa, preferably 5 MPa or more, more preferably 7 MPa or more, still more preferably 10 MPa or more, preferably 45 MPa or less, more preferably 40 MPa or less, still more preferably 35 MPa or less.
  • the tensile strength shall be a value measured in accordance with the method specified in Japanese Industrial Standards JIS K7161 (see below for detailed conditions).
  • the tensile elastic modulus of the composite material is usually 0.05 to 1 GPa, preferably 0.08 GPa or more, more preferably 0.1 GPa or more, still more preferably 0.15 GPa or more, preferably 0.8 GPa or less, more preferably 0.8 GPa or less. It is 0.6 GPa or less, more preferably 0.4 GPa or less.
  • the tensile elastic modulus is a numerical value measured in accordance with the method specified in Japanese Industrial Standards JIS K7161 (see below for detailed conditions).
  • the use of the composite material is not particularly limited, but preferably an electronic circuit board, more preferably a circuit board for a mobile phone, a computer, etc., a substrate for a microstrip patch antenna for a millimeter-wave radar, and the like. That is, a substrate containing the above-mentioned composite material (hereinafter, may be abbreviated as "substrate”) is also mentioned as one aspect of the present invention.
  • the substrate contains a composite material, but has a layer (hereinafter, may be abbreviated as "resin layer”) containing a thermoplastic resin attached to one side or both sides of the composite material.
  • a fluororesin is particularly preferable as the thermoplastic resin.
  • the fluororesin include polytetrafluoroethylene (PTFE, melting point: 327 ° C.), perfluoroalkoxy alkane (PFA, melting point: 310 ° C.), tetrafluoroethylene / hexafluoropropylene copolymer (FEP, melting point: 260 ° C.).
  • PCTEF Polychlorotrifluoroethylene
  • EFE tetrafluoroethylene / ethylene copolymer
  • ECTFE chlorotrifluoethylene / ethylene copolymer
  • PVDF poly Vinylidene fluoride
  • the thickness of the resin layer is usually 0.050 to 30 ⁇ m, but is preferably 0.100 ⁇ m or more, more preferably 0.40 ⁇ m or more, still more preferably 1.0 ⁇ m or more, and most preferably 1.5 ⁇ m or more. Is 20 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 8.0 ⁇ m or less, particularly preferably 6.0 ⁇ m or less, and most preferably 5.0 ⁇ m or less.
  • the substrate will be exposed to various chemicals used in the manufacturing process of antennas and the like. For example, when exposed to a highly permeable treatment liquid, the treatment liquid may permeate inside and cause poor appearance or change in characteristics of the substrate.
  • the thickness of the resin layer means a value obtained by measuring the distance from the end in the thickness direction of the resin layer to the interface between the composite material and the resin layer at about 5 to 10 points and averaging them.
  • the resin layer is not only laminated (attached) on only one side of the composite material, but may be laminated on both sides of the composite material.
  • the peeling strength of the composite material and the resin layer is usually 0.2 to 2.5 N / mm, preferably 0.3 N / mm or more, more preferably 0.4 N / mm or more, still more preferably 0.5 N / mm.
  • the above is preferably 2.4 N / mm or less, more preferably 2.2 N / mm or less, and further preferably 2 N / mm or less.
  • the peeling strength is a numerical value measured in accordance with the method specified in Japanese Industrial Standard JIS C6481: 1996 (see below for detailed conditions).
  • the substrate is usually provided with a conductor layer, which is usually a metal layer.
  • a conductor layer which is usually a metal layer.
  • the conductor layer is laminated on the resin layer.
  • the metal type of the metal layer include gold (Au), silver (Ag), platinum (Pt), copper (Cu), aluminum (Al), and alloys containing these metal types.
  • the thickness of the metal layer is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and usually 50 ⁇ m or less, preferably 45 ⁇ m or less, more preferably 40 ⁇ m or less.
  • the maximum height Rz of the contact surface of the conductor layer with respect to the composite material or resin layer is usually 0.020 ⁇ m or more, preferably 0.050 ⁇ m or more, more preferably 0.10 ⁇ m or more, still more preferably 0.20 ⁇ m or more, particularly preferably. Is 0.30 ⁇ m or more, usually 10 ⁇ m or less, preferably 8.0 ⁇ m or less, more preferably 6.0 ⁇ m or less, still more preferably 4.0 ⁇ m or less, and particularly preferably 2.0 ⁇ m or less.
  • the "maximum height Rz” is a numerical value determined by a method based on the Japanese Industrial Standards JIS B0601: 2013 (Japanese Industrial Standards created for the International Organization for Standardization standard ISO4287 without changing the technical contents). It shall mean. Further, the "maximum height Rz of the contact surface of the conductor layer with respect to the composite material or the resin layer" may be directly measured or may be considered by using the maximum height Rz of the material used for the conductor layer as it
  • the thickness obtained by subtracting the maximum height Rz of the conductor layer from the thickness of the resin layer is usually 0.005 ⁇ m or more, preferably 0.010 ⁇ m or more. It is preferably 0.050 ⁇ m or more, more preferably 0.10 ⁇ m or more, particularly preferably 0.50 ⁇ m or more, and usually 29.98 ⁇ m or less, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, still more preferably 10 ⁇ m or less, particularly preferably. Is 5.0 ⁇ m or less. Within the above range, the thickness of the resin layer is sufficiently secured, so that the appearance is poor and the characteristics are changed even when exposed to a highly permeable treatment liquid used for manufacturing electronic circuit boards. Is less likely to occur.
  • the composite material shall be manufactured by a manufacturing method including the following resin preparation step, filler preparation step, mixing step, molding step, and rolling step (hereinafter, may be abbreviated as "composite material manufacturing method”). Is preferable.
  • -Resin preparation process for preparing a fluororesin hereinafter, may be abbreviated as “resin preparation process”
  • -Filler preparation process for preparing a filler hereinafter, may be abbreviated as “filler preparation process”
  • -A mixing step of mixing the fluororesin, the filler, and the volatile additive to obtain a precursor composition hereinafter, may be abbreviated as “mixing step”).
  • a molding step of molding the precursor composition to obtain a rollable object (hereinafter, may be abbreviated as “molding step”).
  • -A rolling step of rolling the object to be rolled to obtain a composite material (hereinafter, may be abbreviated as “rolling step”).
  • the resin preparation process is a process of preparing a fluorine-based resin, but the fluorine-based resin may be obtained or manufactured by itself.
  • the average particle size (median diameter d50) of the fluororesin granules (particles after the secondary particles) to be prepared is usually 0.5 ⁇ m or more, preferably 1.0 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably. It is 30 ⁇ m or more, usually 700 ⁇ m or less, preferably 300 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less. Within the above range, the fluororesin and the filler can be easily dispersed uniformly.
  • the granulated product of the fluororesin can be determined by a method conforming to Japanese Industrial Standards JIS Z8825: 2001.
  • the filler preparation step is a step of preparing a filler, and the filler (including inorganic fine particle aggregates and non-porous inorganic fine particles) may be obtained or manufactured by itself.
  • the average particle size (median diameter d50) of the filler to be prepared, particularly the granulated product of the aggregate of inorganic fine particles (particles after the secondary particles), is usually 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m. As described above, it is more preferably 3 ⁇ m or more, usually 500 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the average particle size (median diameter d50) of the granulated product of non-porous inorganic fine particles (particles after the secondary particles) is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more. , Usually 2000 ⁇ m or less, preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, still more preferably 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less. Within the above range, the fluororesin and the filler can be easily dispersed uniformly.
  • the granulated product of the filler can be determined by a method conforming to Japanese Industrial Standards JIS Z8825: 2001. Further, it is preferable that the surface of the filler is modified with the above-mentioned surface modifier.
  • Particle size ratio of the average particle size of the granulated product of the fluororesin to be prepared and the granulated product of the inorganic fine particle agglomerates is usually 150 or less, preferably 100 or less, more preferably 60 or less, still more preferably 40 or less, particularly preferably 30 or less, most preferably 10 or less, and usually 1 or more.
  • Particle size ratio of the average particle size of the granulated product of the fluororesin to be prepared and the granulated product of the non-porous inorganic fine particles is usually 500 or less, preferably 300 or less, more preferably 200 or less, still more preferably 100 or less, particularly preferably 50 or less, most preferably 30 or less, and usually 0.01 or more. Is. Within the above range, the fluororesin and the filler can be easily dispersed uniformly.
  • the mixing step is a step of mixing a fluororesin, a filler, and a volatile additive to obtain a precursor composition, but for mixing, a known method such as a dry type or a wet type, a mixer, or the like is appropriately adopted. Can be done.
  • the rotation speed (peripheral speed) of the stirrer or the like is usually 0.5 m / sec or more, preferably 1 m / sec or more, more preferably 5 m / sec or more, still more preferably 10 m / sec or more, particularly preferably.
  • the mixing time is usually 10 seconds or longer, preferably 20 seconds or longer, more preferably 30 seconds or longer, further preferably 40 seconds or longer, particularly preferably 1 minute or longer, most preferably 5 minutes or longer, and usually. It is 60 minutes or less, preferably 50 minutes or less, more preferably 40 minutes or less, still more preferably 30 minutes or less, particularly preferably 20 minutes or less, and most preferably 15 minutes or less. Within the above range, the fluororesin and the filler can be easily dispersed uniformly.
  • the rotation speed (peripheral speed) of the stirrer or the like in the wet case is usually 1 m / sec or more, preferably 5 m / sec or more, more preferably 10 m / sec or more, still more preferably 15 m / sec or more, and particularly preferably 20 m / sec or more.
  • sec or more most preferably 25 m / sec or more, usually 160 m / sec or less, preferably 130 m / sec or less, more preferably 100 m / sec or less, still more preferably 80 m / sec or less, particularly preferably 60 m / sec or less, Most preferably, it is 40 m / sec or less.
  • the fluororesin and the filler can be easily dispersed uniformly.
  • the mixing time is usually 5 seconds or longer, preferably 10 seconds or longer, more preferably 20 seconds or longer, still more preferably 30 seconds or longer, particularly preferably 40 seconds or longer, most preferably 50 seconds or longer, and usually. It is 60 minutes or less, preferably 50 minutes or less, more preferably 40 minutes or less, still more preferably 20 minutes or less, particularly preferably 10 minutes or less, and most preferably 5 minutes or less. Within the above range, the fluororesin and the filler can be easily dispersed uniformly.
  • the volatile additive has the function of sufficiently containing pores in the composite material by finally volatilizing and removing it.
  • the volatile additive means a compound having a boiling point of 30 to 300 ° C. and is liquid at room temperature (25 ° C.).
  • the boiling point of the volatile additive is preferably 50 ° C. or higher, more preferably 100 ° C. or higher. It is more preferably 200 ° C. or higher, preferably 280 ° C. or lower, more preferably 260 ° C. or lower, still more preferably 240 ° C. or lower.
  • Examples of the type of volatile additive include hydrocarbons having low reactivity, ethers, esters, alcohols and the like, but aliphatic saturated hydrocarbons are preferable. Specifically, hexane (boiling point: 69 ° C), heptane (boiling point: 98 ° C), octane (boiling point: 126 ° C), nonan (boiling point: 151 ° C), decan (boiling point: 174 ° C), undecane (boiling point: 196 ° C).
  • Dodecane (boiling point: 215 ° C.), tridecane (boiling point: 234 ° C.), tetradecane (boiling point: 254 ° C.), and the like. These can be used alone or in combination of two or more.
  • the amount of the volatile additive added is usually 1 part by mass or more, preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 10 parts by mass or more, when the total of the fluororesin and the filler is 100 parts by mass. 20 parts by mass or more, particularly preferably 30 parts by mass or more, usually 200 parts by mass or less, preferably 150 parts by mass or less, more preferably 130 parts by mass or less, still more preferably 110 parts by mass or less, particularly preferably 100 parts by mass. It is as follows. Within the above range, a good porosity can be ensured as a composite material.
  • a solvent in addition to the fluororesin, the filler, and the volatile additive to mix.
  • the solvent has the function of making the precursor composition into a paste and uniformly dispersing it.
  • the solvent include water, lower alcohols such as methanol, ethanol, isopropanol and butanol, and the like. These can be used alone or in combination of two or more.
  • the molding step is a step of molding the precursor composition to obtain a rollable object to be rolled.
  • the molding machine used in the molding step includes an FT die (fishtail extrusion die), a press machine, and an extrusion molding machine. , Calendar roll, etc. FT dice are particularly preferable.
  • the rolling process is a process of rolling an object to be rolled to obtain a composite material, but it may be a "multi-step rolling" in which the work of laminating the obtained rolled objects and rolling them as an object to be rolled is repeated a plurality of times. It is particularly preferable that the "multi-step rolling in different directions" is performed in which the object to be rolled is rolled in a direction different from the previous rolling direction.
  • the rolled products are laminated so as to face the same rolling direction to obtain a rolled product, and the rolling direction of the rolled product is rotated by 90 ° from the previous rolling direction to perform rolling. It can be repeated.
  • the number of layers of rolled products in multi-step rolling is usually 2 or more, preferably 3 or more, more preferably 4 or more, still more preferably 10 or more, particularly preferably 30 or more, and usually 2000 or less, preferably 1000 or less. It is preferably 700 or less, more preferably 500 or less, and particularly preferably 300 or less.
  • the rolling ratio of the rolling step is usually 10 or more, preferably 20 or more, more preferably 40 or more, further preferably 50 or more, particularly preferably 100 or more, and usually 20000 or less, preferably 15000 or less, more preferably 10000 or less. , More preferably 5000 or less, and particularly preferably 3000 or less.
  • Examples of the apparatus used in the rolling process include a press machine, an extrusion molding machine, a rolling roll (for example, a calender roll) and the like.
  • the method for producing the composite material or the method for producing the substrate may include other steps, and specific examples thereof include the following steps.
  • -An additive removing step of removing the volatile additive from the rolled product (hereinafter, may be abbreviated as “additive removing step”).
  • -A heat compression step of heating and compressing the rolled product (hereinafter, may be abbreviated as “heat compression step”).
  • -A resin layer forming step of forming a resin layer containing a fluororesin on one side or both sides of the composite material hereinafter, may be abbreviated as "resin layer forming step”).
  • -Another layer forming step of forming a conductor layer on one side or both sides of the composite material (hereinafter, may be abbreviated as “conductor layer forming step”).
  • -A patterning step of patterning the conductor layer (hereinafter, may be abbreviated as “patterning step”).
  • the “additive removal step”, the “heat compression step”, the “resin layer forming step”, the “conductor layer forming step”, the “patterning step” and the like will be described in detail.
  • the additive removing step is a step of removing the volatile additive from the rolled product, and usually, a method of heating the rolled product in a heating furnace that can be used for drying can be mentioned.
  • the heating conditions can be appropriately selected according to the boiling point of the volatile additive and the like.
  • the heat compression step is a step of heating and compressing a rolled product, but usually, a method of heating and compressing using a press or the like can be mentioned.
  • the heating and compression conditions can be appropriately selected, but it is preferable to uniformly apply pressure to the rolled product in-plane.
  • the resin layer forming step is a step of forming a resin containing a fluororesin on one side or both sides of a composite material, but the resin layer is formed by using a press machine or the like to form a resin film containing a fluororesin.
  • Examples thereof include a method of applying heat and pressure to a composite material. By heating and pressurizing the resin film containing the fluorine-based resin, the fluorine-based resin permeates the composite material, effectively suppressing the peeling of the conductor layer, etc., and ensuring a good relative permittivity as the composite material. it can.
  • the thickness of the resin film containing the fluororesin is usually 0.050 ⁇ m or more, preferably 0.10 ⁇ m or more, more preferably 0.40 ⁇ m or more, still more preferably 1.0 ⁇ m or more, and particularly preferably 1.5 ⁇ m or more. It is usually 30 ⁇ m or less, preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 8.0 ⁇ m or less, particularly preferably 6.0 ⁇ m or less, and most preferably 5.0 ⁇ m or less.
  • the pressure in the resin layer forming step is usually 0.01 MPa or more, preferably 0.10 MPa or more, more preferably 0.50 MPa or more, still more preferably 0.80 MPa or more, particularly preferably 1.00 MPa or more, and usually 50 MPa or less. It is preferably 40 MPa or less, more preferably 30 MPa or less, still more preferably 20 MPa or less, and particularly preferably 10 MPa or less. Within the above range, peeling of the conductor layer or the like can be effectively suppressed, and a good relative permittivity or the like can be secured as a composite material.
  • the temperature in the resin layer forming step is usually 250 ° C. or higher, preferably 280 ° C. or higher, more preferably 300 ° C. or higher, further preferably 320 ° C. or higher, particularly preferably 340 ° C. or higher, and usually 500 ° C. or lower, preferably 480 ° C. or higher. °C or less, more preferably 460 ° C or less, still more preferably 440 ° C or less, and particularly preferably 420 ° C or less.
  • peeling of the conductor layer or the like can be effectively suppressed, and a good relative permittivity or the like can be secured as a composite material.
  • the heating and pressurizing time in the resin layer forming step is usually 1 second or longer, preferably 30 seconds or longer, more preferably 1 minute or longer, further preferably 2 minutes or longer, particularly preferably 3 minutes or longer, and usually 180 minutes or shorter. It is preferably 120 minutes or less, more preferably 60 minutes or less, still more preferably 30 minutes or less, and particularly preferably 20 minutes or less. Within the above range, peeling of the conductor layer or the like can be effectively suppressed, and a good relative permittivity or the like can be secured as a composite material.
  • Examples of the device used in the resin layer forming process include a press machine, a thermal roll laminating machine, and a belt press machine.
  • the conductor layer forming step is a step of forming a conductor layer on one side or both sides of the composite material, and examples of the conductor layer forming method include sputtering, plating, pressure bonding of metal foil, and laminating method. ..
  • the patterning step is a step of patterning a metal layer, and examples of the patterning process include an additive method using a photoresist and the like, a subtractive method by etching, and the like.
  • Example 1 As an inorganic fine particle aggregate, hydrophilic fumed silica (manufactured by Nippon Aerosil Co., Ltd., product number "AEROSIL50", BET specific surface area 50 ⁇ 15 m 2 / g, average primary particle size 40 nm, average particle size 0.2 ⁇ m of secondary aggregate) is used. As a surface modifier, triethoxy-1H, 1H, 2H, 2H-tridecafluoro-n-octylsilane (manufactured by Tokyo Chemical Industry Co., Ltd., product number "T1770”) was used for modification.
  • fused silica manufactured by Denka Co., Ltd., product number "SFP-130MC", BET specific surface area 6.2 m 2 / g, average primary particle diameter 0.6 ⁇ m
  • SFP-130MC BET specific surface area 6.2 m 2 / g, average primary particle diameter 0.6 ⁇ m
  • triethoxy- was also used as a surface modifier. It was modified with 1H, 1H, 2H, 2H-tridecafluoro-n-octylsilane (manufactured by Tokyo Chemical Industry Co., Ltd., product number "T1770").
  • polytetrafluoroethylene hereinafter, may be abbreviated as "PTFE"
  • inorganic fine particle aggregates non-porous inorganic fine particles
  • volatile additives volatile additives
  • the aggregate and the non-porous inorganic fine particles are added so as to have a mass ratio of 44:46:10, and after stirring and mixing at a rotation speed of 14 m / sec and a temperature of 24 ° C. for 1 minute, hydrocarbon oil (Exxon Mobile) is used as a volatile additive. (Manufactured by the company, product number "Isoper M”) is added so that the total of polytetrafluoroethylene, inorganic fine particle aggregates and non-porous inorganic fine particles is 65 parts by mass, and the rotation speed is 3 m / sec. , The mixture was mixed at a temperature of 24 ° C. for 5 minutes to obtain a paste.
  • the paste was passed through a pair of rolling rolls to form an elliptical mother sheet (sheet-shaped molded product) having a thickness of 3 mm, a width of 10 to 50 mm, and a length of 150 mm, and a plurality of the mother sheets were prepared.
  • two sheets of the mother sheet were laminated in the same rolling direction, and the laminate was passed between the rolling rolls in the same rolling direction and rolled to prepare a plurality of first rolled laminated sheets.
  • the four first rolled laminated sheets were laminated in the same rolling direction, and rolled in the same direction to prepare a second rolled laminated sheet.
  • the step of laminating and rolling the sheets was repeated a total of 5 times counting from the laminating and rolling of the mother sheet to produce a third rolled laminated sheet (the number of constituent layers 512).
  • a third rolled laminated sheet (the number of constituent layers 512).
  • four third rolled laminated sheets are laminated, and the laminated sheets are rotated 90 degrees from the previous rolling direction while keeping the sheet surfaces parallel, and the laminated sheets are passed between the rolling rolls to be rolled, and a gap between the rolling rolls is formed.
  • the sheet was narrowed by 0.5 mm and rolled a plurality of times to obtain a sheet having a thickness of about 0.18 mm.
  • the obtained rolled laminated sheet was heated at 150 ° C. for 20 minutes to remove volatile additives, and a sheet-like composite material was prepared.
  • Fluon (registered trademark) PTFE dispersion AD939E manufactured by AGC, solid content 60% by mass was dip-coated on one side of the polyimide carrier so that the WET thickness was 4 ⁇ m, and 380 for 5 minutes at 150 ° C.
  • a resin film to be a resin layer was prepared by heating at ° C. for 5 minutes.
  • a Cu foil JX Nippon Mining & Metals Co., Ltd., product number "BHFX-HS-92F"
  • laminating a resin film and a Cu foil laminating a resin film and a Cu foil, and pressurizing with a press machine at a pressure of 6 MPa and a temperature of 360 ° C. for 10 minutes.
  • a resin conductor sheet was produced.
  • This resin conductor sheet and the above-mentioned sheet-shaped composite material were laminated and pressure-molded at 360 ° C. for 5 minutes at 4 MPa to prepare a laminated sheet with the conductor layer.
  • the peeling strength of the plate-shaped composite material and the resin conductor sheet which will be described later, was measured.
  • the obtained laminated sheet was immersed in a 38% by mass second aqueous solution of iron chloride (manufactured by Sanhayato Co., Ltd., etching solution H-200A) for 30 minutes to remove the conductor layer, washed with pure water, and dried. A plate-shaped composite material was obtained.
  • Example 2 Same as in Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 44:28:28 during mixing with a high-speed flow mixer. A composite material was obtained by the method.
  • Example 3 The same method as in Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates, and non-porous inorganic fine particles were added so as to have a mass ratio of 44:15:41 during mixing with a V-type mixer. Obtained a composite material.
  • Example 4 As the non-porous inorganic fine particles, Kojilite powder (FINE type manufactured by AGC Ceramics Co., Ltd.) and an average particle diameter of 25 ⁇ m are used, and when mixed with a high-speed flow type mixer, polytetrafluoroethylene and surface-modified inorganic fine particle aggregates and no pores are formed.
  • the mass ratio of the quality inorganic fine particles is 44:30:26, and the volatile additive is 50 mass when the total of polytetrafluoroethylene, inorganic fine particle aggregates and non-porous inorganic fine particles is 100 parts by mass.
  • a composite material was obtained by the same method as in Example 1 except that the particles were added in portions.
  • Example 5 Same as in Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 38:28:34 during mixing with a high-speed flow mixer. A composite material was obtained by the method.
  • Example 6 Similar to Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 34:28:38 when mixed with a high-speed flow mixer. A composite material was obtained by the method.
  • Example 7 Similar to Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 30:28:42 when mixed with a high-speed flow mixer. A composite material was obtained by the method.
  • Example 8> Similar to Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 26:28:46 when mixed with a high-speed flow mixer. A composite material was obtained by the method.
  • ⁇ Comparative example 1> Similar to Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 60:40: 0 when mixing with a high-speed flow mixer. A composite material was obtained by the method.
  • ⁇ Comparative example 2> When mixed with a high-speed flow mixer, polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 40:60: 0, and a volatile additive was added as polytetrafluoro.
  • a composite material was obtained by the same method as in Example 1 except that ethylene, inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to be 100 parts by mass when the total was 100 parts by mass.
  • ⁇ Comparative example 3> When mixed with a high-speed flow mixer, polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 20:80: 0, and a volatile additive was added as polytetrafluoro.
  • a composite material was obtained by the same method as in Example 1 except that ethylene, inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to be 150 parts by mass when the total was 100 parts by mass.
  • ⁇ Comparative example 4> When mixed with a high-speed flow mixer, polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 60: 0: 40, and a volatile additive was added as polytetrafluoro.
  • a composite material was obtained by the same method as in Example 1 except that ethylene, inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to be 45 parts by mass when the total was 100 parts by mass.
  • Comparative Example 6 Similar to Comparative Example 4 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 20: 0: 80 during mixing with a high-speed flow mixer. A composite material was obtained by the method.
  • Example 7 Same as in Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 44:50: 6 during mixing with a high-speed flow mixer. A composite material was obtained by the method.
  • Kojilite powder FINE type manufactured by AGC Ceramics Co., Ltd.
  • an average particle diameter of 25 ⁇ m are used, and when mixed with a high-speed flow type mixer, polytetrafluoroethylene and surface-modified inorganic fine particle aggregates and no pores are formed.
  • the mass ratio of the quality inorganic fine particles is 44: 0: 56, and the volatile additive is 30 mass when the total of polytetrafluoroethylene, inorganic fine particle aggregates and non-porous inorganic fine particles is 100 parts by mass.
  • a composite material was obtained by the same method as in Example 1 except that the particles were added in portions.
  • Example 9 When mixed with a high-speed flow mixer, polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 70:30: 0, and a volatile additive was added as polytetrafluoro.
  • a composite material was obtained by the same method as in Example 1 except that ethylene, inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to be 54 parts by mass when the total was 100 parts by mass.
  • Example 10 When mixed with a high-speed flow mixer, polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 50:50: 0, and a volatile additive was added as polytetrafluoro.
  • a composite material was obtained by the same method as in Example 1 except that ethylene, inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to be 82 parts by mass when the total was 100 parts by mass.
  • Example 11 When mixed with a high-speed flow mixer, polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 30:70: 0, and a volatile additive was added as polytetrafluoro.
  • a composite material was obtained by the same method as in Example 1 except that ethylene, inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to be 122 parts by mass when the total was 100 parts by mass.
  • PTFE polytetrafluoroethylene
  • [Pore ratio (%)] ([Volume of composite material]-[Mass of PTFE / Specific gravity of PTFE]-[Mass of inorganic fine particle aggregates / Specific gravity of inorganic fine particle aggregates]-[Mass of non-porous inorganic fine particles] / Specific gravity of non-porous inorganic fine particles]-[Mass of other fillers / Specific gravity of other fillers]) / [Volume of composite material] x 100
  • ⁇ Relative permittivity / dielectric loss tangent> The measurement frequency was set to 10 GHz, the complex permittivity was measured by the cavity resonator perturbation method, and the real part ( ⁇ r') of the complex permittivity was taken as the relative permittivity. Further, the dielectric loss tangent was obtained from the ratio ( ⁇ r ′′ / ⁇ r') of the real part and the imaginary part ( ⁇ r ′′).
  • a relative permittivity measuring device (“Network Analyzer N5230C” manufactured by Agilent Technologies and “Cavity Resonator 10 GHz” manufactured by Kanto Electronics Applied Development Co., Ltd.), a strip-shaped sample (sample size width 2 mm ⁇ length 70 mm) was used from each sheet. ) was cut out and measured.
  • tensile strength / modulus of elasticity The tensile strength (tensile breaking strength) and tensile elastic modulus of the plate-shaped composite material were measured according to the method specified in Japanese Industrial Standard JIS K7161. More specifically, a desktop precision universal testing machine Autograph AGS-X (manufactured by Shimadzu Corporation) is used as a tensile testing machine to measure a measurement temperature of 25 ° C., a tensile speed of 100 mm / min, and an initial distance between gripping tools of 10 mm. Under the conditions, a tensile test was carried out in the longitudinal direction (MD direction) of the dumbbell-shaped No. 1 type or dumbbell-shaped No. 2 type (width of the parallel portion 10 mm).
  • MD direction longitudinal direction
  • the maximum tensile force recorded before the test piece is cut is obtained, and the value obtained by dividing this by the cross-sectional area of the test piece is defined as the tensile strength (unit: MPa), which is 0.05% at the time of the tensile test.
  • the tensile elastic modulus (unit: GPa) was defined as the slope of the stress / strain curve corresponding between the two points of 0.25% strain.
  • FIG. 3 shows a graph showing the relationship between the total filler content of the composite materials 9 to 11 and the coefficient of thermal expansion.
  • the filler is a porous inorganic fine particle aggregate alone such as fumed silica
  • the dielectric loss tangent increases as the content of the filler increases, and the filler is like molten silica. It is clear that it can be remarkably suppressed by blending non-porous inorganic fine particles. Further, from the graph of FIG.
  • the increase in the coefficient of thermal expansion accompanying the decrease in the content of the porous inorganic fine particle aggregates can be suppressed by an appropriate blending of the non-porous inorganic fine particles. That is, it can be said that the plate-shaped composite material in which the porous inorganic fine particle agglomerates and the non-porous inorganic fine particles are appropriately mixed is an excellent material that is harmonious in terms of various properties.
  • the composite material according to one aspect of the present invention can be used as a circuit board for mobile phones, computers, etc., a substrate for a microstrip patch antenna for millimeter-wave radar, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is an excellent plate-shaped composite material that is well balanced with respect to various characteristics such as relative permittivity and dielectric tangent. This excellent plate-shaped composite material is well balanced in a variety of characteristics such as relative permittivity and dielectric tangent, includes a fluorinated resin and a filler, and is characterized in that: the filler comprises non-porous inorganic fine particles having an average primary particle diameter of 2-50 μm and a porous inorganic fine particle aggregate formed as a result of aggregation of inorganic fine particles having an average primary particle diameter of 5-200 nm; the total content of the porous inorganic fine particle aggregate and the non-porous inorganic fine particles is 20-90 mass% of the composite material; and the mass ratio of the content of the non-porous inorganic fine particles to the total content of the porous inorganic fine particle aggregate and the non-porous inorganic fine particles (content of non-porous inorganic fine particles/(content of porous inorganic fine particle aggregate + content of non-porous inorganic fine particles)) is 0.15-0.90.

Description

板状の複合材料Plate-shaped composite material
 本発明は、ミリ波レーダー等として利用されるマイクロストリップパッチアンテナの基板等に好適な板状の複合材料に関する。 The present invention relates to a plate-shaped composite material suitable for a substrate or the like of a microstrip patch antenna used as a millimeter-wave radar or the like.
 近年、自動車産業では、ADAS(先進運転支援システム)や自動運転についての研究開発が盛んに行われており、これを支えるセンシング技術としてミリ波レーダーの重要性も高まっている。自動車用のミリ波レーダーとしては、小型、高性能、低価格の観点から、樹脂基板にアンテナ素子(パッチ)等を印刷配線した平面アンテナである「マイクロストリップパッチアンテナ(Microstrip patch Antenna)」の利用が有力であり、高性能化に向けてアンテナパターンの設計や基板材料についての検討が進んでいる。 In recent years, in the automobile industry, research and development on ADAS (advanced driver assistance systems) and autonomous driving have been actively carried out, and the importance of millimeter-wave radar as a sensing technology to support this is increasing. As a millimeter-wave radar for automobiles, the use of a "microstrip patch antenna", which is a flat antenna with antenna elements (patches) printed and wired on a resin substrate, from the viewpoint of small size, high performance, and low price. Is influential, and studies on antenna pattern design and substrate materials are underway for higher performance.
 これらのアンテナに利用される基板材料としては、誘電正接の小さいポリテトラフルオロエチレン(PTFE)が有力なものの1つであり、さらに機械的特性、熱的特性、電気的特性を改善するために、窒化ホウ素、二酸化ケイ素(シリカ)、酸化チタン(チタニア)等の粒状の充填剤や、ガラスファイバー、炭素繊維等の充填剤を配合することが提案されている(特許文献1及び2参照。)。 Polytetrafluoroethylene (PTFE), which has a small dielectric loss tangent, is one of the most promising substrate materials used for these antennas, and in order to further improve mechanical properties, thermal properties, and electrical properties, It has been proposed to blend granular fillers such as boron nitride, silicon dioxide (silica) and titanium oxide (Titania), and fillers such as glass fiber and carbon fiber (see Patent Documents 1 and 2).
特開平03-212987号公報Japanese Unexamined Patent Publication No. 03-212987 特開平06-119810号公報Japanese Unexamined Patent Publication No. 06-119810
 本発明は、比誘電率、誘電正接等の種々の特性に関して調和のとれた優れた板状の複合材料を提供する。 The present invention provides an excellent plate-shaped composite material that is harmonious with respect to various properties such as relative permittivity and dielectric loss tangent.
 本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、フッ素系樹脂に特定の多孔性無機微粒子凝集体と特定の無孔質無機微粒子を特定の範囲で含ませることにより、比誘電率、誘電正接等の種々の特性に関して調和のとれた優れた複合材料となることを見出した。
 即ち、本発明は以下の通りである。
<1>フッ素系樹脂及び充填剤を含む板状の複合材料であって、前記充填剤が、平均一次粒子径5~200nmの無機微粒子が凝集して形成された多孔性無機微粒子凝集体、及び平均一次粒子径0.2~50μmの無孔質無機微粒子を含み、前記多孔性無機微粒子凝集体と前記無孔質無機微粒子の総含有量が、前記複合材料の20~90質量%であり、前記多孔性無機微粒子凝集体と前記無孔質無機微粒子の総含有量に対する前記無孔質無機微粒子の含有量の質量比(前記無孔質無機微粒子の含有量/(前記多孔性無機微粒子凝集体の含有量+前記無孔質無機微粒子の含有量))が、0.15~0.90であることを特徴とする、板状の複合材料。
<2>気孔率が15体積%以上である、<1>に記載の板状の複合材料。
As a result of diligent studies to solve the above problems, the present inventors have made a ratio by including a specific porous inorganic fine particle aggregate and a specific non-porous inorganic fine particle in a specific range in a fluororesin. We have found that it is an excellent composite material that is harmonious in terms of various properties such as permittivity and dielectric loss tangent.
That is, the present invention is as follows.
<1> A plate-shaped composite material containing a fluororesin and a filler, wherein the filler is a porous inorganic fine particle agglomerate formed by aggregating inorganic fine particles having an average primary particle diameter of 5 to 200 nm. It contains non-porous inorganic fine particles having an average primary particle diameter of 0.2 to 50 μm, and the total content of the porous inorganic fine particle aggregates and the non-porous inorganic fine particles is 20 to 90% by mass of the composite material. Mass ratio of the content of the non-porous inorganic fine particles to the total content of the porous inorganic fine particle aggregates and the non-porous inorganic fine particles (content of the non-porous inorganic fine particles / (the porous inorganic fine particle aggregates) + Content of the non-porous inorganic fine particles)) is 0.15 to 0.90, which is a plate-shaped composite material.
<2> The plate-shaped composite material according to <1>, which has a porosity of 15% by volume or more.
 本発明によれば、比誘電率、誘電正接等の種々の特性に関して調和のとれた優れた板状の複合材料を提供することができる。 According to the present invention, it is possible to provide an excellent plate-shaped composite material that is harmonious with respect to various properties such as relative permittivity and dielectric loss tangent.
平均一次粒子径5~200nmの無機微粒子が凝集して形成された多孔性無機微粒子凝集体のSEM撮影画像である(図面代用写真)。It is an SEM photographed image of a porous inorganic fine particle agglomerate formed by aggregating inorganic fine particles having an average primary particle diameter of 5 to 200 nm (drawing substitute photograph). 実施例・比較例に係る板状の複合材料の充填剤含有量と誘電正接の関係を表したグラフである。It is a graph which showed the relationship between the filler content and the dielectric loss tangent of a plate-shaped composite material which concerns on Example-Comparative Examples. 実施例・比較例に係る板状の複合材料の充填剤含有量と熱膨張係数の関係を表したグラフである。It is a graph which showed the relationship between the filler content and the coefficient of thermal expansion of the plate-shaped composite material which concerns on Example-Comparative Example.
 本発明を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。 In explaining the present invention, specific examples will be given, but the contents are not limited to the following as long as the gist of the present invention is not deviated, and the present invention can be modified as appropriate.
≪板状の複合材料≫
 本発明の一態様である板状の複合材料(以下、「複合材料」と略す場合がある。)は、フッ素系樹脂及び充填剤を含む板状の複合材料であり、充填剤が、「平均一次粒子径5~200nmの無機微粒子が凝集して形成された多孔性無機微粒子凝集体(以下、「無機微粒子凝集体」と略す場合がある。)」、及び「平均一次粒子径0.2~50μmの無孔質無機微粒子(以下、「無孔質無機微粒子」と略す場合がある。)」を含み、無機微粒子凝集体と無孔質無機微粒子の総含有量が、複合材料の20~90質量%であり、無機微粒子凝集体と無孔質無機微粒子の総含有量に対する無孔質無機微粒子の含有量の質量比(無孔質無機微粒子の含有量/(無機微粒子凝集体の含有量+無孔質無機微粒子の含有量))が、0.15~0.90であることを特徴とする。
 本発明者らは、マイクロストリップパッチアンテナ等の基板として利用することができる板状の複合材料について鋭意検討を重ねた結果、無機微粒子凝集体と無孔質無機微粒子を前述の範囲で含むことにより、それぞれの充填剤の利点が適度に発現され、比誘電率、誘電正接等の種々の特性に関して調和のとれた優れた複合材料となることを見出したのである。
 以下、「フッ素系樹脂」、並びに「無機微粒子凝集体」及び「無孔質無機微粒子」等の「充填剤」等について詳細に説明する。
≪Plate-shaped composite material≫
The plate-shaped composite material (hereinafter, may be abbreviated as “composite material”) which is one aspect of the present invention is a plate-shaped composite material containing a fluororesin and a filler, and the filler is “average”. Porous inorganic fine particle agglomerates formed by aggregating inorganic fine particles having a primary particle diameter of 5 to 200 nm (hereinafter, may be abbreviated as “inorganic fine particle agglomerates”) ”and“ average primary particle diameter 0.2 to 50 μm of non-porous inorganic fine particles (hereinafter, may be abbreviated as “non-porous inorganic fine particles”) ”, and the total content of the inorganic fine particle aggregates and the non-porous inorganic fine particles is 20 to 90 of the composite material. It is mass%, and is the mass ratio of the content of the non-porous inorganic fine particles to the total content of the inorganic fine particle aggregates and the non-porous inorganic fine particles (content of the non-porous inorganic fine particles / (content of the inorganic fine particle aggregate +). The content of non-porous inorganic fine particles)) is 0.15 to 0.90.
As a result of diligent studies on a plate-shaped composite material that can be used as a substrate for a microstrip patch antenna or the like, the present inventors have made it possible to include inorganic fine particle aggregates and non-porous inorganic fine particles in the above-mentioned range. They have found that the advantages of each filler are appropriately expressed, and that the composite material is excellent in harmony with respect to various properties such as relative permittivity and dielectric loss tangent.
Hereinafter, the "fluorine-based resin" and the "filler" such as "inorganic fine particle aggregate" and "non-porous inorganic fine particle" will be described in detail.
<フッ素系樹脂>
 フッ素系樹脂の種類は、特に限定されず、基板等に利用されるフッ素系樹脂を適宜採用することができる。
 フッ素系樹脂としては、通常、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTEF)、テトラフルオロエチレン・エチレン共重合体(ETFE)、クロロトリフルオエチレン・エチレン共重合体(ECTFE)、ポリビニリデンフルオライド(PVDF)が挙げられるが、PTFEが特に好ましい。これらは単独でもしくは2種以上併せて用いることができる。
<Fluorine resin>
The type of the fluororesin is not particularly limited, and the fluororesin used for the substrate or the like can be appropriately adopted.
As the fluororesin, usually polytetrafluoroethylene (PTFE), perfluoroalkoxy alkane (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), polychlorotrifluoroethylene (PCTEF), tetrafluoroethylene. -Ethylene copolymer (ETFE), chlorotrifluoethylene-ethylene copolymer (ECTFE), polyvinylidene fluoride (PVDF) can be mentioned, but PTFE is particularly preferable. These can be used alone or in combination of two or more.
 フッ素系樹脂は、「フィブリル化(繊維状構造化)」していることが好ましい。フィブリル化における繊維は、一方向にのみならず、多方向に配向していることがより好ましく、フィブリルと後述する無機微粒子凝集体とが連結して「三次元の微細網目構造」を形成していることが特に好ましい。フッ素系樹脂がフィブリル化している、特に三次元の微細網目構造を形成していると、複合材料として優れた機械的強度、寸法安定性を確保することができる。なお、フッ素系樹脂のフィブリル化等については、SEM等による表面観察で確認することができる。また、フッ素系樹脂のフィブリル化は、例えば剪断力を加えることによって進めることができるが、より具体的には後述する多段階圧延によって行うことが挙げられ、さらに三次元の微細網目構造は、後述する異方向多段階圧延によって行うことが挙げられる。 Fluorine-based resin is preferably "fibrillated (fibrous structure)". It is more preferable that the fibers in fibrillation are oriented not only in one direction but also in multiple directions, and the fibril and the inorganic fine particle agglomerates described later are connected to form a "three-dimensional fine network structure". Is particularly preferred. When the fluororesin is fibrillated, particularly when it forms a three-dimensional fine network structure, excellent mechanical strength and dimensional stability can be ensured as a composite material. The fibrillation of the fluororesin can be confirmed by observing the surface with an SEM or the like. Further, the fibrillation of the fluororesin can be promoted by, for example, applying a shearing force, and more specifically, it can be performed by multi-step rolling described later, and the three-dimensional fine network structure will be described later. It can be done by multi-step rolling in different directions.
<充填剤>
 複合材料には、充填剤として無機微粒子凝集体と無孔質無機微粒子が含まれることになるが、無機微粒子凝集体は、具体的には図1のSEM撮影画像で表されているようなものであり、複数の無機微粒子が融着して凝集体を形成し、無機微粒子の間に空隙を有して多孔質となっているものを意味する。なお、凝集体における無機微粒子は、処方時において融着していればよく、その後のフッ素系樹脂との混合等によって融着が解かれていてもよい。
 一方、無孔質無機微粒子の「無孔質」とは、無機微粒子にとって特徴的な「多孔質」に対する表現であり、無孔質無機微粒子は「多孔質」でない無機微粒子であればいいものとする。即ち、無孔質無機微粒子は、細孔が皆無である必要はなく、「多孔質」と認識されない程度であれば、細孔を有していてもよい。
 以下、「無機微粒子凝集体」及び「無孔質無機微粒子」について詳細に説明する。
<Filler>
The composite material will contain inorganic fine particle agglomerates and non-porous inorganic fine particles as fillers, and the inorganic fine particle agglomerates are specifically as shown in the SEM photographed image of FIG. It means that a plurality of inorganic fine particles are fused to form an agglomerate and have voids between the inorganic fine particles to be porous. The inorganic fine particles in the aggregate may be fused at the time of formulation, and the fusion may be released by subsequent mixing with a fluororesin or the like.
On the other hand, the "non-porous" of the non-porous inorganic fine particles is an expression for "porous" that is characteristic of the inorganic fine particles, and the non-porous inorganic fine particles may be any inorganic fine particles that are not "porous". To do. That is, the non-porous inorganic fine particles do not have to have no pores, and may have pores as long as they are not recognized as “porous”.
Hereinafter, the "inorganic fine particle aggregate" and the "non-porous inorganic fine particle" will be described in detail.
(無機微粒子凝集体)
 無機微粒子凝集体における無機微粒子の材質は、通常、酸化ケイ素(一酸化ケイ素、二酸化ケイ素(シリカ)等)、酸化アルミニウム(アルミナ)等の典型元素の酸化物(複合酸化物も含む。);酸化チタン(二酸化チタン(チタニア)等)、酸化鉄、酸化ジルコニウム(二酸化ジルコニウム(ジルコニア))等の遷移金属酸化物(複合酸化物も含む。);窒化ホウ素、窒化ケイ素等の典型元素の窒化物等が挙げられるが、典型元素の酸化物が好ましく、二酸化ケイ素(シリカ)が特に好ましい。典型元素の酸化物であると、複合材料の比誘電率を極めて低く抑えることができるとともに、より低コストで複合材料を製造することができる。なお、無機微粒子の結晶性は、特に限定されないが、二酸化ケイ素の場合は通常非晶質である。
(Inorganic fine particle agglomerates)
The material of the inorganic fine particles in the inorganic fine particle aggregate is usually an oxide of a typical element such as silicon oxide (silicon monoxide, silicon dioxide (silica), etc.), aluminum oxide (alumina) (including a composite oxide); oxidation. Transition metal oxides (including composite oxides) such as titanium (titanium dioxide (titania), etc.), iron oxide, zirconium oxide (zirconia dioxide (zirconia)); nitrides of typical elements such as boron nitride and silicon nitride, etc. However, oxides of main group elements are preferable, and silicon dioxide (silica) is particularly preferable. When it is an oxide of a main group element, the relative permittivity of the composite material can be suppressed to an extremely low level, and the composite material can be produced at a lower cost. The crystallinity of the inorganic fine particles is not particularly limited, but in the case of silicon dioxide, it is usually amorphous.
 無機微粒子凝集体における無機微粒子の平均一次粒子径は、5~200nmであるが、好ましくは10nm以上、より好ましくは15nm以上、さらに好ましくは20nm以上であり、好ましくは150nm以下、より好ましくは120nm以下、さらに好ましくは100nm以下、特に好ましくは80nm以下、最も好ましくは70nm以下である。前記の範囲内であると、混合、成形、圧延等の処理を行っても無機微粒子凝集体が破壊されにくく、無機微粒子の間に良好な空隙を確保できるとともに、板状の複合材料として平滑な面を確保しやすくなる。なお、無機微粒子凝集体における無機微粒子の平均一次粒子径は、SEMによる観察で粒子径を測定し、測定値を平均化して得た数値とする。具体的には、ランダムに無機微粒子凝集体(100個)を選択して、それぞれの粒子径(粒子の長径)を測定し、得られた粒子径を平均して数値を得る手順である。 The average primary particle size of the inorganic fine particles in the inorganic fine particle aggregate is 5 to 200 nm, preferably 10 nm or more, more preferably 15 nm or more, still more preferably 20 nm or more, preferably 150 nm or less, more preferably 120 nm or less. It is more preferably 100 nm or less, particularly preferably 80 nm or less, and most preferably 70 nm or less. Within the above range, the inorganic fine particle agglomerates are not easily broken even if the treatments such as mixing, molding, and rolling are performed, good voids can be secured between the inorganic fine particles, and the plate-like composite material is smooth. It becomes easier to secure the surface. The average primary particle size of the inorganic fine particles in the inorganic fine particle aggregate is a value obtained by measuring the particle size by observation with SEM and averaging the measured values. Specifically, it is a procedure in which inorganic fine particle aggregates (100 particles) are randomly selected, the particle diameters (major diameters of the particles) are measured, and the obtained particle diameters are averaged to obtain a numerical value.
 無機微粒子凝集体における無機微粒子の一次凝集物の平均粒子径は、通常100nm以上、好ましくは120nm以上、より好ましくは150nm以上であり、通常400nm以下、好ましくは380nm以下、より好ましくは350nm以下である。無機微粒子凝集体における無機微粒子の二次凝集物(一次凝集物の凝集物)の平均粒子径は、通常0.1μm以上、好ましくは1μm以上、より好ましくは2μm以上であり、通常100μm以下、好ましくは90μm以下、より好ましくは80μm以下である。なお、複合材料における無機微粒子凝集体は、二次凝集物の状態であることが好ましい。二次凝集物の状態であると、前述の三次元の微細網目構造を形成しやすくなる。また、一次凝集物の平均粒子径と二次凝集物の平均粒子径は、前述した無機微粒子凝集体における無機微粒子の平均一次粒子径と同様の方法により算出することができる。 The average particle size of the primary agglomerates of the inorganic fine particles in the inorganic fine particle agglomerates is usually 100 nm or more, preferably 120 nm or more, more preferably 150 nm or more, and usually 400 nm or less, preferably 380 nm or less, more preferably 350 nm or less. .. The average particle size of the secondary agglomerates of the inorganic fine particles (aggregates of the primary agglomerates) in the inorganic fine particle agglomerates is usually 0.1 μm or more, preferably 1 μm or more, more preferably 2 μm or more, and usually 100 μm or less, preferably 100 μm or less. Is 90 μm or less, more preferably 80 μm or less. The inorganic fine particle agglomerates in the composite material are preferably in the state of secondary agglomerates. In the state of secondary agglomerates, the above-mentioned three-dimensional fine network structure is easily formed. Further, the average particle size of the primary agglomerates and the average particle size of the secondary agglomerates can be calculated by the same method as the average primary particle size of the inorganic fine particles in the above-mentioned inorganic fine particle agglomerates.
 無機微粒子凝集体のBET比表面積は、通常10m2/g以上、好ましくは20m2/g以上、より好ましくは30m2/g以上、さらに好ましくは40m2/g以上であり、通常250m2/g以下、好ましくは240m2/g以下、より好ましくは210m2/g以下、さらに好ましくは150m2/g以下、特に好ましくは80m2/g以下である。前記範囲内であると、複合材料として高い気孔率を確保することができるとともに、誘電正接の上昇を抑制することができる。特にBET比表面積が高すぎると、複合材料の誘電正接が高くなる傾向にある。なお、無機微粒子凝集体のBET比表面積は、ガス吸着法(特に窒素吸着等温線)により測定したガス吸着量等をBET式に代入して算出した数値とし、複合材料の製造に使用する前の数値で表すものとする。 BET specific surface area of the inorganic particulate aggregate is usually 10 m 2 / g or more, preferably 20 m 2 / g or more, more preferably 30 m 2 / g or more, still more preferably 40 m 2 / g or more and usually 250 meters 2 / g Below, it is preferably 240 m 2 / g or less, more preferably 210 m 2 / g or less, still more preferably 150 m 2 / g or less, and particularly preferably 80 m 2 / g or less. Within the above range, a high porosity can be ensured as a composite material, and an increase in dielectric loss tangent can be suppressed. In particular, if the BET specific surface area is too high, the dielectric loss tangent of the composite material tends to be high. The BET specific surface area of the inorganic fine particle agglomerates is a numerical value calculated by substituting the gas adsorption amount measured by the gas adsorption method (particularly the nitrogen adsorption isotherm) into the BET formula, and is used before being used in the production of composite materials. It shall be expressed numerically.
 無機微粒子凝集体の見かけ比重は、通常10g/L以上、好ましくは20g/L以上、より好ましくは30g/L以上、さらに好ましくは40g/L以上であり、通常100g/L以下、好ましくは90g/L以下、より好ましくは80g/L以下、さらに好ましくは70g/L以下、特に好ましくは60g/L以下である。前記範囲内であると、複合材料として高い気孔率を確保することができるとともに、無機微粒子凝集体が破壊されにくくなる。なお、無機微粒子凝集体の見かけ比重は、無機微粒子凝集体を250mLメスシリンダー等の容積を測定できる容器に充填し、無機微粒子凝集体の充填質量(Xg)と充填容積(YmL)を測定して、充填質量を充填容積で除算([見かけ比重(g/L)]=X/Y×1000)した数値とする。 The apparent specific gravity of the inorganic fine particle aggregate is usually 10 g / L or more, preferably 20 g / L or more, more preferably 30 g / L or more, still more preferably 40 g / L or more, and usually 100 g / L or less, preferably 90 g / L or more. It is L or less, more preferably 80 g / L or less, still more preferably 70 g / L or less, and particularly preferably 60 g / L or less. Within the above range, a high porosity can be ensured as a composite material, and inorganic fine particle aggregates are less likely to be destroyed. The apparent specific gravity of the inorganic fine particle agglomerates is determined by filling the inorganic fine particle agglomerates in a container such as a 250 mL graduated cylinder that can measure the volume, and measuring the filling mass (Xg) and the filling volume (YmL) of the inorganic fine particle agglomerates. , The filling mass is divided by the filling volume ([apparent specific gravity (g / L)] = X / Y × 1000).
 無機微粒子凝集体としては、ミズカシルシリーズ(水澤化学工業社製)、サイリシアシリーズ(富士シリシア社製)、AEROSILシリーズ(日本アエロジル社製)、ニプシールシリーズ(東ソーシリカ社製)等の市販品を好適に用いることができ、なかでもAEROSILシリーズ(日本アエロジル社製)のフュームドシリカが特に好ましい。 As inorganic fine particle aggregates, commercially available products such as Mizukasil series (manufactured by Mizusawa Industrial Chemical Ltd.), Cyricia series (manufactured by Fuji Silysia Chemical Ltd.), AEROSIL series (manufactured by Nippon Aerosil), Nipseal series (manufactured by Toso Silica) Can be preferably used, and among them, fumed silica of the AEROSIL series (manufactured by Aerosil Japan Co., Ltd.) is particularly preferable.
(無孔質無機微粒子)
 無孔質無機微粒子の材質は、通常、酸化ケイ素(一酸化ケイ素、二酸化ケイ素(シリカ)等)、酸化アルミニウム(アルミナ)等の典型元素の酸化物(複合酸化物も含む。);酸化チタン(二酸化チタン(チタニア)等)、酸化鉄、酸化ジルコニウム(二酸化ジルコニウム(ジルコニア))等の遷移金属酸化物(複合酸化物も含む。);窒化ホウ素、窒化ケイ素等の典型元素の窒化物等が挙げられ、なかでも酸化ケイ素が好ましい。なお、複合酸化物としては、コージライト、タルク、ワラストナイト、ムライト、ステアタイト、フォルステライト等が挙げられる。無孔質無機微粒子の材質は、1種類に限られず、2種類以上を組み合わせてもよい。
(Non-porous inorganic fine particles)
The material of the non-porous inorganic fine particles is usually an oxide of a typical element such as silicon oxide (silicon monoxide, silicon dioxide (silica), etc.), aluminum oxide (alumina) (including a composite oxide); titanium oxide (including composite oxide). Titanium dioxide (titania), etc.), iron oxide, transition metal oxides such as zirconium oxide (zirconia dioxide (zirconia)) (including composite oxides); nitrides of typical elements such as boron nitride and silicon nitride. Of these, silicon oxide is preferable. Examples of the composite oxide include codylite, talc, wallastnite, mullite, steatite, and forsterite. The material of the non-porous inorganic fine particles is not limited to one type, and two or more types may be combined.
 無孔質無機微粒子の平均一次粒子径は、0.2~50μmであるが、好ましくは0.3μm以上、より好ましくは0.4μm以上、さらに好ましくは0.5μm以上であり、好ましくは40μm以下、より好ましくは30μm以下、さらに好ましくは20μm以下、特に好ましくは10μm以下、最も好ましくは5μm以下である。前記の範囲内であると、適度な比表面積となって良好な誘電正接を確保することができるとともに、複合材料の表面を平滑な面にしやすくなり、高周波用の基板により適した材料となる。なお、無孔質無機微粒子の平均一次粒子径は、SEMによる観察で粒子径を測定し、測定値を平均化して得た数値とする。具体的には、ランダムに無機微粒子凝集体(100個)を選択して、それぞれの粒子径(粒子の長径)を測定し、得られた粒子径を平均して数値を得る手順である。 The average primary particle size of the non-porous inorganic fine particles is 0.2 to 50 μm, preferably 0.3 μm or more, more preferably 0.4 μm or more, still more preferably 0.5 μm or more, and preferably 40 μm or less. , More preferably 30 μm or less, still more preferably 20 μm or less, particularly preferably 10 μm or less, and most preferably 5 μm or less. Within the above range, an appropriate specific surface area can be obtained to ensure a good dielectric loss tangent, and the surface of the composite material can be easily made smooth, which makes the material more suitable for a high-frequency substrate. The average primary particle size of the non-porous inorganic fine particles is a value obtained by measuring the particle size by observation with SEM and averaging the measured values. Specifically, it is a procedure in which inorganic fine particle aggregates (100 particles) are randomly selected, the particle diameters (major diameters of the particles) are measured, and the obtained particle diameters are averaged to obtain a numerical value.
 無孔質無機微粒子のBET比表面積は、通常0.1m2/g以上、好ましくは0.5m2/g以上、より好ましくは1m2/g以上、さらに好ましくは2m2/g以上であり、通常30m2/g以下、好ましくは25m2/g以下、より好ましくは20m2/g以下、さらに好ましくは15m2/g以下、特に好ましくは10m2/g以下である。前記範囲内であると、良好な誘電正接を確保することができるとともに、複合材料の表面を平滑な面としやすくなり、高周波用の基板により適した材料となる。なお、無孔質無機微粒子のBET比表面積は、ガス吸着法(特に窒素吸着等温線)により測定したガス吸着量等をBET式に代入して算出した数値とし、複合材料の製造に使用する前の数値で表すものとする。 The BET specific surface area of the non-porous inorganic fine particles is usually 0.1 m 2 / g or more, preferably 0.5 m 2 / g or more, more preferably 1 m 2 / g or more, still more preferably 2 m 2 / g or more. It is usually 30 m 2 / g or less, preferably 25 m 2 / g or less, more preferably 20 m 2 / g or less, still more preferably 15 m 2 / g or less, and particularly preferably 10 m 2 / g or less. Within the above range, good dielectric loss tangent can be ensured, and the surface of the composite material can be easily made a smooth surface, which makes the material more suitable for a high-frequency substrate. The BET specific surface area of the non-porous inorganic fine particles is a numerical value calculated by substituting the gas adsorption amount measured by the gas adsorption method (particularly the nitrogen adsorption isotherm) into the BET formula, and is used before the production of the composite material. It shall be represented by the numerical value of.
 無孔質無機微粒子の比誘電率は、通常10以下、好ましくは8以下、より好ましくは7以下、さらに好ましくは6以下、特に好ましくは5以下であり、通常3以上である。なお、無孔質無機微粒子の比誘電率は、日本工業規格JIS C2565に準拠した方法により決定される数値とする。 The relative permittivity of the non-porous inorganic fine particles is usually 10 or less, preferably 8 or less, more preferably 7 or less, still more preferably 6 or less, particularly preferably 5 or less, and usually 3 or more. The relative permittivity of the non-porous inorganic fine particles is a numerical value determined by a method conforming to the Japanese Industrial Standards JIS C2565.
 無孔質無機微粒子の市販品としては、デンカ社製SFP-130MC、SFP-30M、FB-3SDC等の溶融シリカ、AGCセラミックス社製コージライト粉末FINEタイプ、ELP-150N、ELP-325N等のコージライト、水島合金鉄社製FS-1、HP-P1、HP40Jシリーズ等の窒化ホウ素、日本タルク社製ナノエース D-600、D-800、D-1000、FG-15等のタルク等が挙げられる。 Commercially available non-porous inorganic fine particles include fused silica such as SFP-130MC, SFP-30M, and FB-3SDC manufactured by Denka, talc light powder FINE type manufactured by AGC Ceramics, and Koji such as ELP-150N and ELP-325N. Examples thereof include light, boron nitride such as FS-1, HP-P1 and HP40J series manufactured by Mizushima Ferroalloy Co., Ltd., and talc such as Nano Ace D-600, D-800, D-1000 and FG-15 manufactured by Nippon Tarku Co., Ltd.
(その他の充填剤)
 複合材料は、無機微粒子凝集体と無孔質無機微粒子に該当しない充填剤(以下、「その他の充填剤」と略す場合がある。)を含んでいてもよく、充填剤として無機微粒子凝集体と無孔質無機微粒子のみからなることも好ましい。その他の充填剤としては、粒状の充填剤と繊維状の充填剤が挙げられ、粒状の充填剤としては、例えば、カーボンブラック、黒鉛等の固体炭素;シリカバルーン、ガラスバルーン等の中空無機粒子等が挙げられ、繊維状の充填剤としては、例えば、ガラスファイバー、炭素繊維等が挙げられる。その他の充填剤は、1種類に限られず、2種類以上を組み合わせてもよい。
(Other fillers)
The composite material may contain an inorganic fine particle agglomerate and a filler that does not correspond to the non-porous inorganic fine particle (hereinafter, may be abbreviated as “other filler”), and the inorganic fine particle agglomerate and the filler may be used as the filler. It is also preferable that it consists of only non-porous inorganic fine particles. Examples of other fillers include granular fillers and fibrous fillers, and examples of the granular fillers include solid carbons such as carbon black and graphite; hollow inorganic particles such as silica balloons and glass balloons, and the like. Examples of the fibrous filler include glass fiber and carbon fiber. The other fillers are not limited to one type, and two or more types may be combined.
 充填剤(無機微粒子凝集体と無孔質無機微粒子を含む。)は、疎水性基を有する表面修飾剤(以下、「表面修飾剤」と略す場合がある。)で表面が修飾されていることが好ましい。
 以下、「表面修飾剤」による修飾について詳細に説明する。
The surface of the filler (including inorganic fine particle aggregates and non-porous inorganic fine particles) is modified with a surface modifier having a hydrophobic group (hereinafter, may be abbreviated as "surface modifier"). Is preferable.
Hereinafter, modification by the "surface modifier" will be described in detail.
 表面修飾剤の疎水性基としては、フルオロ基(-F)、炭化水素基(-Cn2n+1(n=1~30))等が挙げられるが、水のみならず、油剤に対しても撥液性を発するフルオロ基が特に好ましい。
 表面修飾剤は、充填剤の表面に対して化学的に吸着(反応)するものであっても、充填剤の表面に物理的に吸着するものであってもよく、低分子化合物であっても、高分子化合物であってもよい。充填剤の表面に対して化学的に吸着(反応)する表面修飾剤は、通常、充填剤の表面官能基(ヒドロキシル基(-OH)等)と反応する反応性官能基を有しており、反応性官能基としてはアルコキシシリル基(-SiOR(Rの炭素原子数は1~6))、クロロシリル基(-SiCl)、ブロモシリル基(-SiBr)、ヒドロシリル基(-SiH)等が挙げられる。なお、充填剤の表面を表面修飾剤で修飾する方法は、公知の方法を適宜採用することができるが、充填剤と表面修飾剤を接触させることが挙げられる。
Examples of the hydrophobic group of the surface modifier include a fluoro group (-F) and a hydrocarbon group (-C n H 2n + 1 (n = 1 to 30)), but not only for water but also for oil agents. However, a fluorogroup that exhibits liquid repellency is particularly preferable.
The surface modifier may be one that chemically adsorbs (reacts) to the surface of the filler, one that physically adsorbs to the surface of the filler, or a low molecular weight compound. , It may be a polymer compound. A surface modifier that chemically adsorbs (reacts) to the surface of the filler usually has a reactive functional group that reacts with the surface functional group (hydroxyl group (-OH), etc.) of the filler. Examples of the reactive functional group include an alkoxysilyl group (-SiOR (R has 1 to 6 carbon atoms)), a chlorosilyl group (-SiCl), a bromosilyl group (-SiBr), a hydrosilyl group (-SiH) and the like. As a method for modifying the surface of the filler with a surface modifier, a known method can be appropriately adopted, and examples thereof include contacting the filler with the surface modifier.
 表面修飾剤は、単独でもしくは2種以上併せて用いることができ、例えば充填剤の表面に対して反応性官能基を有する低分子化合物の表面修飾剤を反応させた後、その上に疎水性基を有する高分子化合物の表面修飾剤を物理的に吸着させてもよい。充填剤の材質が二酸化ケイ素(シリカ)等であると、塩基性水溶液にさらされた場合に溶解(分解)してしまうことがあるが、このように修飾すると、塩基性水溶液に対する耐性を高めることができる。 The surface modifier can be used alone or in combination of two or more. For example, a surface modifier of a low molecular weight compound having a reactive functional group is reacted with the surface of the filler, and then hydrophobic. The surface modifier of the polymer compound having a group may be physically adsorbed. If the material of the filler is silicon dioxide (silica) or the like, it may be dissolved (decomposed) when exposed to a basic aqueous solution, but such modification enhances the resistance to the basic aqueous solution. Can be done.
 表面修飾剤の熱分解温度は、通常250℃以上、好ましくは300℃以上、より好ましくは350℃以上、さらに好ましくは360℃以上、特に好ましくは370℃以上である。前記の範囲内であると、高温加熱等の処理を行っても分解を抑制することができる。表面修飾剤の熱分解温度は、熱重量減少分析法(TG-DTA)により、20℃/分で昇温させたときに5%重量減少する温度とする。 The thermal decomposition temperature of the surface modifier is usually 250 ° C. or higher, preferably 300 ° C. or higher, more preferably 350 ° C. or higher, further preferably 360 ° C. or higher, and particularly preferably 370 ° C. or higher. Within the above range, decomposition can be suppressed even if a treatment such as high temperature heating is performed. The thermal decomposition temperature of the surface modifier is set to a temperature at which the weight is reduced by 5% when the temperature is raised at 20 ° C./min by the thermogravimetric analysis method (TG-DTA).
 フルオロ基と反応性官能基とを有する低分子化合物の表面修飾剤としては、下記式で表されるものが挙げられる。なお、下記式で表される化合物は市販されており、適宜入手して表面修飾剤として利用することができる。
Figure JPOXMLDOC01-appb-C000001
Examples of the surface modifier of the low molecular weight compound having a fluoro group and a reactive functional group include those represented by the following formulas. The compound represented by the following formula is commercially available, and can be appropriately obtained and used as a surface modifier.
Figure JPOXMLDOC01-appb-C000001
 フルオロ基を有する高分子化合物の表面修飾剤としては、下記式で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000002
Examples of the surface modifier of the polymer compound having a fluoro group include those represented by the following formulas.
Figure JPOXMLDOC01-appb-C000002
 表面修飾剤として市販されている溶液を利用してもよく、好適なものとして、東京化成工業社製T1770、3M社製Novec(登録商標)2202が挙げられる。Novec(登録商標)2202は、フルオロ基を有する高分子化合物を含有しており、「フルオロアルキルシランポリマー」が配合されていることが公表されている。Novec(登録商標)2202を表面修飾剤として使用すると、比較的簡易的な操作で複合材料の臨界撥液張力を低く抑えやすくなる特長を有する。 A commercially available solution may be used as the surface modifier, and preferred ones include T1770 manufactured by Tokyo Chemical Industry Co., Ltd. and Novec® 2202 manufactured by 3M Co., Ltd. It has been published that Novec® 2202 contains a polymer compound having a fluoro group and contains a "fluoroalkylsilane polymer". When Novec (registered trademark) 2202 is used as a surface modifier, it has a feature that the critical liquid repellent tension of the composite material can be easily suppressed to a low level by a relatively simple operation.
 充填剤における表面修飾剤の含有量(有機物の含有量)は、通常0.1質量%以上、好ましくは1質量%以上、より好ましくは2質量%以上、さらに好ましくは3質量%以上、特に好ましくは4質量%以上であり、通常50質量%以下、好ましくは40質量%以下、より好ましくは30質量%以下、さらに好ましくは25質量%以下、特に好ましくは20質量%以下である。 The content of the surface modifier (content of organic matter) in the filler is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 2% by mass or more, still more preferably 3% by mass or more, particularly preferably. Is 4% by mass or more, usually 50% by mass or less, preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 25% by mass or less, and particularly preferably 20% by mass or less.
(複合材料)
 複合材料は、無機微粒子凝集体と無孔質無機微粒子の総含有量が20~90質量%であるが、「総含有量」とは、複合材料を100質量%としたときの無機微粒子凝集体の含有量と無孔質無機微粒子の含有量の合計含有量を意味し、無機微粒子凝集体及び/又は無孔質無機微粒子が2種類以上のものを含む場合は、それら全ての合計含有量を意味するものとする。無機微粒子凝集体と無孔質無機微粒子の総含有量は、好ましくは30質量%以上、より好ましくは40質量%以上、さらに好ましくは50質量%以上であり、好ましくは80質量%以下、より好ましくは75質量%以下、さらに好ましくは70質量%以下である。また、フッ素系樹脂、並びに無機微粒子凝集体及び無孔質無機微粒子の合計を100質量部としたときに、無機微粒子凝集体と無孔質無機微粒子の総含有量が通常20~90質量部であり、好ましくは30質量部以上、より好ましくは40質量部以上、さらに好ましくは50質量部以上であり、好ましくは80質量部以下、より好ましくは75質量部以下、さらに好ましくは70質量部以下である。前記範囲内であると、比誘電率、誘電正接等の種々の特性に関して調和をとりやすくなる。
(Composite material)
The composite material has a total content of inorganic fine particle agglomerates and non-porous inorganic fine particles of 20 to 90% by mass, and the "total content" is an inorganic fine particle agglomerate when the composite material is 100% by mass. Means the total content of the content of the non-porous inorganic fine particles, and when the inorganic fine particle aggregates and / or the non-porous inorganic fine particles contain two or more types, the total content of all of them is used. It shall mean. The total content of the inorganic fine particle aggregates and the non-porous inorganic fine particles is preferably 30% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, preferably 80% by mass or less, more preferably. Is 75% by mass or less, more preferably 70% by mass or less. Further, when the total of the fluororesin, the inorganic fine particle agglomerates and the non-porous inorganic fine particles is 100 parts by mass, the total content of the inorganic fine particle agglomerates and the non-porous inorganic fine particles is usually 20 to 90 parts by mass. Yes, preferably 30 parts by mass or more, more preferably 40 parts by mass or more, further preferably 50 parts by mass or more, preferably 80 parts by mass or less, more preferably 75 parts by mass or less, still more preferably 70 parts by mass or less. is there. Within the above range, it becomes easy to harmonize various characteristics such as relative permittivity and dielectric loss tangent.
 複合材料は、無機微粒子凝集体と前記無孔質無機微粒子の総含有量に対する前記無孔質無機微粒子の含有量の質量比(前記無孔質無機微粒子の含有量/(前記無機微粒子凝集体の含有量+前記無孔質無機微粒子の含有量))が0.15~0.90であるが、好ましくは0.2以上、より好ましくは0.3以上、さらに好ましくは0.4以上、最も好ましくは0.5以上であり、好ましくは0.8以下、より好ましくは0.75以下、さらに好ましくは0.7以下、最も好ましくは0.65以下である。 In the composite material, the mass ratio of the content of the non-porous inorganic fine particles to the total content of the inorganic fine particle aggregates and the non-porous inorganic fine particles (content of the non-porous inorganic fine particles / (of the inorganic fine particle aggregates)). Content + content of the non-porous inorganic fine particles)) is 0.15 to 0.90, but is preferably 0.2 or more, more preferably 0.3 or more, still more preferably 0.4 or more, most. It is preferably 0.5 or more, preferably 0.8 or less, more preferably 0.75 or less, still more preferably 0.7 or less, and most preferably 0.65 or less.
 複合材料における充填剤の総含有量は、通常20~90質量%、好ましくは30質量%以上、より好ましくは40質量%以上、さらに好ましくは50質量%以上であり、好ましくは80質量%以下、より好ましくは75質量%以下、さらに好ましくは70質量%以下である。また、フッ素系樹脂と充填剤の合計を100質量部としたときに、充填剤の総含有量は、通常20~90質量部であり、好ましくは30質量部以上、より好ましくは40質量部以上、さらに好ましくは50質量部以上であり、好ましくは80質量部以下、より好ましくは75質量部以下、さらに好ましくは70質量部以下である。前記範囲内であると、比誘電率、誘電正接等の種々の特性に関して調和をとりやすくなる。 The total content of the filler in the composite material is usually 20 to 90% by mass, preferably 30% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, and preferably 80% by mass or less. It is more preferably 75% by mass or less, still more preferably 70% by mass or less. When the total of the fluororesin and the filler is 100 parts by mass, the total content of the filler is usually 20 to 90 parts by mass, preferably 30 parts by mass or more, and more preferably 40 parts by mass or more. It is more preferably 50 parts by mass or more, preferably 80 parts by mass or less, more preferably 75 parts by mass or less, still more preferably 70 parts by mass or less. Within the above range, it becomes easy to harmonize various characteristics such as relative permittivity and dielectric loss tangent.
 複合材料は、前述のフッ素系樹脂及び充填剤(無機微粒子凝集体と無孔質無機微粒子を含む。)以外のものを含んでもよいが、複合材料におけるフッ素系樹脂及び充填剤の合計含有量は、通常60質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは100質量%である。 The composite material may contain materials other than the above-mentioned fluorine-based resin and filler (including inorganic fine particle aggregates and non-porous inorganic fine particles), but the total content of the fluorine-based resin and filler in the composite material is , Usually 60% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 100% by mass.
 複合材料の形状は、板状であるが、その厚みは通常2.0~3000μmで、好ましくは10μm以上、より好ましくは50μm以上、さらに好ましくは80μm以上、最も好ましくは100μm以上であり、好ましくは2000μm以下、より好ましくは1000μm以下、さらに好ましくは800μm以下、特に好ましくは600μm以下、最も好ましくは400μm以下である。前記の範囲内であると、複合材料として良好な比誘電率等を確保できる。 The shape of the composite material is plate-like, but the thickness thereof is usually 2.0 to 3000 μm, preferably 10 μm or more, more preferably 50 μm or more, still more preferably 80 μm or more, most preferably 100 μm or more, preferably 100 μm or more. It is 2000 μm or less, more preferably 1000 μm or less, still more preferably 800 μm or less, particularly preferably 600 μm or less, and most preferably 400 μm or less. Within the above range, a good relative permittivity or the like can be secured as a composite material.
 複合材料の寸法(最大径、縦又は横の長さ)は、通常20~1500mmであるが、好ましくは30mm以上、より好ましくは40mm以上、さらに好ましくは50mm以上、最も好ましくは60mm以上であり、好ましくは1400mm以下、より好ましくは1300mm以下である。 The dimensions (maximum diameter, length or width) of the composite material are usually 20 to 1500 mm, but are preferably 30 mm or more, more preferably 40 mm or more, still more preferably 50 mm or more, and most preferably 60 mm or more. It is preferably 1400 mm or less, more preferably 1300 mm or less.
 複合材料の気孔率は、通常10~90体積%であるが、好ましくは15体積%以上、より好ましくは20体積%以上、さらに好ましくは30体積%以上、特に好ましくは40体積%以上であり、好ましくは80体積%以下、より好ましくは70体積%以下、さらに好ましくは60体積%以下である。前記範囲内であると、複合材料として良好な比誘電率、熱膨張係数等の特性を確保することができる。なお、複合材料の気孔率は、複合材料の体積、フッ素系樹脂の比重と質量(配合質量)、充填剤の比重と質量(配合質量)を測定し、下記式に代入することによって算出される数値とする。
 [気孔率(体積%)]=([複合材料の体積]-[フッ素系樹脂の質量/フッ素系樹脂の比重]-[充填剤の質量/充填剤の比重])/[複合材料の体積]×100
The porosity of the composite material is usually 10 to 90% by volume, but is preferably 15% by volume or more, more preferably 20% by volume or more, still more preferably 30% by volume or more, and particularly preferably 40% by volume or more. It is preferably 80% by volume or less, more preferably 70% by volume or less, and further preferably 60% by volume or less. Within the above range, characteristics such as a good relative permittivity and a coefficient of thermal expansion can be ensured as a composite material. The porosity of the composite material is calculated by measuring the volume of the composite material, the specific gravity and mass of the fluororesin (blending mass), and the specific gravity and mass of the filler (blending mass), and substituting them into the following formula. Let it be a numerical value.
[Porosity (volume%)] = ([Volume of composite material]-[Mass of fluororesin / specific gravity of fluororesin]-[Mass of filler / specific gravity of filler]) / [Volume of composite material] × 100
 複合材料の比誘電率(周波数:10GHz)は、通常3.0以下、好ましくは2.60以下、より好ましくは2.40以下、さらに好ましくは2.00以下、特に好ましくは1.80以下であり、通常1.55以上である。なお、複合材料の比誘電率は、空洞共振器摂動法(測定周波数:10GHz)により複素誘電率を測定して算出した実数部(εr’)の数値とする。 The relative permittivity (frequency: 10 GHz) of the composite material is usually 3.0 or less, preferably 2.60 or less, more preferably 2.40 or less, still more preferably 2.00 or less, and particularly preferably 1.80 or less. Yes, usually 1.55 or more. The relative permittivity of the composite material is a value of the real part (εr') calculated by measuring the complex permittivity by the cavity resonator permittivity method (measurement frequency: 10 GHz).
 複合材料の誘電正接(周波数:10GHz)は、通常0.01以下、好ましくは0.008以下、より好ましくは0.006以下、さらに好ましくは0.004以下、特に好ましくは0.002以下であり、通常0.0005以上である。なお、複合材料の比誘電率は、空洞共振器摂動法(測定周波数:10GHz)により複素誘電率を測定して算出した実数部(εr')に対する虚数部(εr")の比率(εr"/εr')とする。 The dielectric loss tangent (frequency: 10 GHz) of the composite material is usually 0.01 or less, preferably 0.008 or less, more preferably 0.006 or less, still more preferably 0.004 or less, and particularly preferably 0.002 or less. , Usually 0.0005 or more. The relative permittivity of the composite material is the ratio (εr "/ of the imaginary part (εr") to the real part (εr') calculated by measuring the complex permittivity by the cavity resonator perturbation method (measurement frequency: 10 GHz). εr').
 複合材料の熱膨張係数(Z軸方向)は、通常100ppm/K以下、好ましくは90ppm/K以下、より好ましくは80ppm/K以下、さらに好ましくは70ppm/K以下、特に好ましくは60ppm/K以下、最も好ましくは50ppm/K以下であり、通常5ppm/K以上である。なお、複合材料の熱膨張係数(Z軸方向)は、レーザー干渉法(レーザー熱膨張計、測定温度域:-50~200℃、昇温速度:2℃/分、雰囲気:He、負荷荷重:17g)を利用し、日本工業規格JIS R3251-1990に準拠した式から算出される数値とする。 The coefficient of thermal expansion (Z-axis direction) of the composite material is usually 100 ppm / K or less, preferably 90 ppm / K or less, more preferably 80 ppm / K or less, still more preferably 70 ppm / K or less, and particularly preferably 60 ppm / K or less. Most preferably, it is 50 ppm / K or less, and usually 5 ppm / K or more. The coefficient of thermal expansion (Z-axis direction) of the composite material is determined by the laser interferometry (laser thermal expansion meter, measurement temperature range: -50 to 200 ° C., heating rate: 2 ° C./min, atmosphere: He, load load: 17g) is used, and the value is calculated from a formula based on the Japanese Industrial Standards JIS R3251-1990.
 複合材料の引張強度は、通常1~50MPa、好ましくは5MPa以上、より好ましくは7MPa以上、さらに好ましくは10MPa以上であり、好ましくは45MPa以下、より好ましくは40MPa以下、さらに好ましくは35MPa以下である。引張強度は、日本工業規格JIS K7161に定められた方法に準拠して測定した数値とする(詳細な条件は後述のものを参照。)。 The tensile strength of the composite material is usually 1 to 50 MPa, preferably 5 MPa or more, more preferably 7 MPa or more, still more preferably 10 MPa or more, preferably 45 MPa or less, more preferably 40 MPa or less, still more preferably 35 MPa or less. The tensile strength shall be a value measured in accordance with the method specified in Japanese Industrial Standards JIS K7161 (see below for detailed conditions).
 複合材料の引張弾性率は、通常0.05~1GPa、好ましくは0.08GPa以上、より好ましくは0.1GPa以上、さらに好ましくは0.15GPa以上であり、好ましくは0.8GPa以下、より好ましくは0.6GPa以下、さらに好ましくは0.4GPa以下である。引張弾性率は、日本工業規格JIS K7161に定められた方法に準拠して測定した数値とする(詳細な条件は後述のものを参照。)。 The tensile elastic modulus of the composite material is usually 0.05 to 1 GPa, preferably 0.08 GPa or more, more preferably 0.1 GPa or more, still more preferably 0.15 GPa or more, preferably 0.8 GPa or less, more preferably 0.8 GPa or less. It is 0.6 GPa or less, more preferably 0.4 GPa or less. The tensile elastic modulus is a numerical value measured in accordance with the method specified in Japanese Industrial Standards JIS K7161 (see below for detailed conditions).
<複合材料の用途>
 複合材料の用途は、特に限定されないが、好ましくは電子回路基板、より好ましくは携帯電話、コンピュータ等の回路基板、ミリ波レーダー用のマイクロストリップパッチアンテナの基板等が挙げられる。即ち、前述の複合材料を含んでなる基板(以下、「基板」と略す場合がある。)も本発明の一態様として挙げられる。
<Use of composite materials>
The use of the composite material is not particularly limited, but preferably an electronic circuit board, more preferably a circuit board for a mobile phone, a computer, etc., a substrate for a microstrip patch antenna for a millimeter-wave radar, and the like. That is, a substrate containing the above-mentioned composite material (hereinafter, may be abbreviated as "substrate") is also mentioned as one aspect of the present invention.
 基板は、複合材料を含んでなるものであるが、複合材料の片面又は両面に貼着された熱可塑性樹脂を含んでなる層(以下、「樹脂層」と略す場合がある。)を有することが好ましく、熱可塑性樹脂としてはフッ素系樹脂が特に好ましい。
 フッ素系樹脂としては、ポリテトラフルオロエチレン(PTFE、融点:327℃)、パーフルオロアルコキシアルカン(PFA、融点:310℃)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP、融点:260℃)、ポリクロロトリフルオロエチレン(PCTEF、融点:220℃)、テトラフルオロエチレン・エチレン共重合体(ETFE、融点:270℃)、クロロトリフルオエチレン・エチレン共重合体(ECTFE、融点:270℃)、ポリビニリデンフルオライド(PVDF、融点:151~178℃)が挙げられ、PTFE、PFAが特に好ましい。これらは単独でもしくは2種以上併せて用いることができる。
The substrate contains a composite material, but has a layer (hereinafter, may be abbreviated as "resin layer") containing a thermoplastic resin attached to one side or both sides of the composite material. Is preferable, and a fluororesin is particularly preferable as the thermoplastic resin.
Examples of the fluororesin include polytetrafluoroethylene (PTFE, melting point: 327 ° C.), perfluoroalkoxy alkane (PFA, melting point: 310 ° C.), tetrafluoroethylene / hexafluoropropylene copolymer (FEP, melting point: 260 ° C.). , Polychlorotrifluoroethylene (PCTEF, melting point: 220 ° C.), tetrafluoroethylene / ethylene copolymer (ETFE, melting point: 270 ° C.), chlorotrifluoethylene / ethylene copolymer (ECTFE, melting point: 270 ° C.), poly Vinylidene fluoride (PVDF, melting point: 151 to 178 ° C.) can be mentioned, and PTFE and PFA are particularly preferable. These can be used alone or in combination of two or more.
 樹脂層の厚みは、通常0.050~30μmであるが、好ましくは0.100μm以上、より好ましくは0.40μm以上、さらに好ましくは1.0μm以上、最も好ましくは1.5μm以上であり、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは8.0μm以下、特に好ましくは6.0μm以下、最も好ましくは5.0μm以下である。基板はアンテナ等の製造過程等に使用する様々な薬品にさらされることになる。例えば浸透性の高い処理液にさらした場合に、処理液が内部に浸透して基板に外観不良や特性変化が生じることがある。樹脂層は、処理液の浸透を抑制する働きもあるため、前記範囲内であると、導体層等の剥がれを効果的に抑制することができるとともに、電子回路基板の製造に使用される浸透性の高い処理液等にさらされた場合であっても外観不良や特性変化が生じにくくなる。なお、樹脂層の厚みは、樹脂層の厚み方向末端から複合材料と樹脂層との界面までの距離について、5~10点程度測定して、それらを平均した数値を意味するものとする。 The thickness of the resin layer is usually 0.050 to 30 μm, but is preferably 0.100 μm or more, more preferably 0.40 μm or more, still more preferably 1.0 μm or more, and most preferably 1.5 μm or more. Is 20 μm or less, more preferably 10 μm or less, still more preferably 8.0 μm or less, particularly preferably 6.0 μm or less, and most preferably 5.0 μm or less. The substrate will be exposed to various chemicals used in the manufacturing process of antennas and the like. For example, when exposed to a highly permeable treatment liquid, the treatment liquid may permeate inside and cause poor appearance or change in characteristics of the substrate. Since the resin layer also has a function of suppressing the permeation of the treatment liquid, if it is within the above range, the peeling of the conductor layer and the like can be effectively suppressed, and the permeability used for manufacturing the electronic circuit board is produced. Even when exposed to a high-grade treatment liquid or the like, poor appearance and changes in characteristics are less likely to occur. The thickness of the resin layer means a value obtained by measuring the distance from the end in the thickness direction of the resin layer to the interface between the composite material and the resin layer at about 5 to 10 points and averaging them.
 樹脂層は、複合材料の片面のみに積層(貼着)されるだけでなく、複合材料の両面に積層されていてもよい。 The resin layer is not only laminated (attached) on only one side of the composite material, but may be laminated on both sides of the composite material.
 複合材料と樹脂層の引き剥がし強さは、通常0.2~2.5N/mm、好ましくは0.3N/mm以上、より好ましくは0.4N/mm以上、さらに好ましくは0.5N/mm以上であり、好ましくは2.4N/mm以下、より好ましくは2.2N/mm以下、さらに好ましくは2N/mm以下である。引き剥がし強さは、日本工業規格JIS C6481:1996に定められた方法に準拠して測定した数値とする(詳細な条件は後述のものを参照。)。 The peeling strength of the composite material and the resin layer is usually 0.2 to 2.5 N / mm, preferably 0.3 N / mm or more, more preferably 0.4 N / mm or more, still more preferably 0.5 N / mm. The above is preferably 2.4 N / mm or less, more preferably 2.2 N / mm or less, and further preferably 2 N / mm or less. The peeling strength is a numerical value measured in accordance with the method specified in Japanese Industrial Standard JIS C6481: 1996 (see below for detailed conditions).
 基板には、通常導体層が設けられ、導体層は通常金属層である。なお、樹脂層を有する場合には、導体層は樹脂層に積層される。
 金属層の金属種は、通常金(Au)、銀(Ag)、白金(Pt)、銅(Cu)、アルミニウム(Al)、これらの金属種を含む合金等が挙げられる。
 金属層の厚みは、通常5μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、通常50μm以下、好ましくは45μm以下、より好ましくは40μm以下である。
The substrate is usually provided with a conductor layer, which is usually a metal layer. When the resin layer is provided, the conductor layer is laminated on the resin layer.
Examples of the metal type of the metal layer include gold (Au), silver (Ag), platinum (Pt), copper (Cu), aluminum (Al), and alloys containing these metal types.
The thickness of the metal layer is usually 5 μm or more, preferably 10 μm or more, more preferably 15 μm or more, and usually 50 μm or less, preferably 45 μm or less, more preferably 40 μm or less.
 導体層の、複合材料又は樹脂層に対する接触面の最大高さRzは、通常0.020μm以上、好ましくは0.050μm以上、より好ましくは0.10μm以上、さらに好ましくは0.20μm以上、特に好ましくは0.30μm以上であり、通常10μm以下、好ましくは8.0μm以下、より好ましくは6.0μm以下、さらに好ましくは4.0μm以下、特に好ましくは2.0μm以下である。なお、「最大高さRz」は、日本工業規格JIS B0601:2013(国際標準化機構規格ISO4287について技術的内容を変更することなく作成した日本工業規格である。)に準拠した方法により決定される数値を意味するものとする。また、「導体層の、複合材料又は樹脂層に対する接触面の最大高さRz」は、直接測定するほか、導体層に使用する材料の最大高さRzをそのまま使用して考えてもよい。 The maximum height Rz of the contact surface of the conductor layer with respect to the composite material or resin layer is usually 0.020 μm or more, preferably 0.050 μm or more, more preferably 0.10 μm or more, still more preferably 0.20 μm or more, particularly preferably. Is 0.30 μm or more, usually 10 μm or less, preferably 8.0 μm or less, more preferably 6.0 μm or less, still more preferably 4.0 μm or less, and particularly preferably 2.0 μm or less. The "maximum height Rz" is a numerical value determined by a method based on the Japanese Industrial Standards JIS B0601: 2013 (Japanese Industrial Standards created for the International Organization for Standardization standard ISO4287 without changing the technical contents). It shall mean. Further, the "maximum height Rz of the contact surface of the conductor layer with respect to the composite material or the resin layer" may be directly measured or may be considered by using the maximum height Rz of the material used for the conductor layer as it is.
 樹脂層の厚みから導体層の最大高さRzを差し引いた厚み((樹脂層の厚み)-(導体層の最大高さRz))は、通常0.005μm以上、好ましくは0.010μm以上、より好ましくは0.050μm以上、さらに好ましくは0.10μm以上、特に好ましくは0.50μm以上であり、通常29.98μm以下、好ましくは20μm以下、より好ましくは15μm以下、さらに好ましくは10μm以下、特に好ましくは5.0μm以下である。前記の範囲内であると、樹脂層の厚みが充分に確保されるため、電子回路基板の製造に使用される浸透性の高い処理液等にさらされた場合であっても外観不良や特性変化が生じにくくなる。 The thickness obtained by subtracting the maximum height Rz of the conductor layer from the thickness of the resin layer ((thickness of the resin layer)-(maximum height Rz of the conductor layer)) is usually 0.005 μm or more, preferably 0.010 μm or more. It is preferably 0.050 μm or more, more preferably 0.10 μm or more, particularly preferably 0.50 μm or more, and usually 29.98 μm or less, preferably 20 μm or less, more preferably 15 μm or less, still more preferably 10 μm or less, particularly preferably. Is 5.0 μm or less. Within the above range, the thickness of the resin layer is sufficiently secured, so that the appearance is poor and the characteristics are changed even when exposed to a highly permeable treatment liquid used for manufacturing electronic circuit boards. Is less likely to occur.
<複合材料の製造方法>
 複合材料は、下記の樹脂準備工程、充填剤準備工程、混合工程、成形工程、及び圧延工程を含む製造方法(以下、「複合材料の製造方法」と略す場合がある。)によって製造されることが好ましい。
 ・フッ素系樹脂を準備する樹脂準備工程(以下、「樹脂準備工程」と略す場合がある。)。
 ・充填剤を準備する充填剤準備工程(以下、「充填剤準備工程」と略す場合がある。)。
 ・前記フッ素系樹脂、前記充填剤、及び揮発性添加剤を混合して前駆体組成物を得る混合工程(以下、「混合工程」と略す場合がある。)。
 ・前記前駆体組成物を成形して圧延可能な被圧延物を得る成形工程(以下、「成形工程」と略す場合がある。)。
 ・前記被圧延物を圧延して複合材料を得る圧延工程(以下、「圧延工程」と略す場合がある。)。
 以下、「樹脂準備工程」、「充填剤準備工程」、「混合工程」、「成形工程」、「圧延工程」等について詳細に説明する。
<Manufacturing method of composite material>
The composite material shall be manufactured by a manufacturing method including the following resin preparation step, filler preparation step, mixing step, molding step, and rolling step (hereinafter, may be abbreviated as "composite material manufacturing method"). Is preferable.
-Resin preparation process for preparing a fluororesin (hereinafter, may be abbreviated as "resin preparation process").
-Filler preparation process for preparing a filler (hereinafter, may be abbreviated as "filler preparation process").
-A mixing step of mixing the fluororesin, the filler, and the volatile additive to obtain a precursor composition (hereinafter, may be abbreviated as "mixing step").
A molding step of molding the precursor composition to obtain a rollable object (hereinafter, may be abbreviated as "molding step").
-A rolling step of rolling the object to be rolled to obtain a composite material (hereinafter, may be abbreviated as "rolling step").
Hereinafter, the "resin preparation process", the "filler preparation process", the "mixing process", the "molding process", the "rolling process" and the like will be described in detail.
 樹脂準備工程は、フッ素系樹脂を準備する工程であるが、フッ素系樹脂は入手しても、自ら製造してもよい。準備するフッ素系樹脂の造粒物(二次粒子以降の粒子)の平均粒子径(メジアン径d50)は、通常0.5μm以上、好ましくは1.0μm以上、より好ましくは10μm以上、さらに好ましくは30μm以上であり、通常700μm以下、好ましくは300μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下、特に好ましくは50μm以下である。前記の範囲内であると、フッ素系樹脂と充填剤を均一に分散させやすくなる。なお、フッ素系樹脂の造粒物は、日本工業規格JIS Z8825:2001に準拠した方法により決定することができる。 The resin preparation process is a process of preparing a fluorine-based resin, but the fluorine-based resin may be obtained or manufactured by itself. The average particle size (median diameter d50) of the fluororesin granules (particles after the secondary particles) to be prepared is usually 0.5 μm or more, preferably 1.0 μm or more, more preferably 10 μm or more, still more preferably. It is 30 μm or more, usually 700 μm or less, preferably 300 μm or less, more preferably 150 μm or less, still more preferably 100 μm or less, and particularly preferably 50 μm or less. Within the above range, the fluororesin and the filler can be easily dispersed uniformly. The granulated product of the fluororesin can be determined by a method conforming to Japanese Industrial Standards JIS Z8825: 2001.
 充填剤準備工程は、充填剤を準備する工程であるが、充填剤(無機微粒子凝集体と無孔質無機微粒子を含む。)は入手しても、自ら製造してもよい。準備する充填剤、特に無機微粒子凝集体の造粒物(二次粒子以降の粒子)の平均粒子径(メジアン径d50)は、通常0.1μm以上、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは3μm以上であり、通常500μm以下、好ましくは200μm以下、より好ましくは100μm以下、さらに好ましくは50μm以下、特に好ましくは20μm以下である。無孔質無機微粒子の造粒物(二次粒子以降の粒子)の平均粒子径(メジアン径d50)は、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは10μm以上であり、通常2000μm以下、好ましくは1000μm以下、より好ましくは500μm以下、さらに好ましくは100μm以下、特に好ましくは50μm以下である。前記の範囲内であると、フッ素系樹脂と充填剤を均一に分散させやすくなる。なお、充填剤の造粒物は、日本工業規格JIS Z8825:2001に準拠した方法により決定することができる。
 また、充填剤は、前述の表面修飾剤で表面が修飾されることが好ましい。
The filler preparation step is a step of preparing a filler, and the filler (including inorganic fine particle aggregates and non-porous inorganic fine particles) may be obtained or manufactured by itself. The average particle size (median diameter d50) of the filler to be prepared, particularly the granulated product of the aggregate of inorganic fine particles (particles after the secondary particles), is usually 0.1 μm or more, preferably 0.5 μm or more, more preferably 1 μm. As described above, it is more preferably 3 μm or more, usually 500 μm or less, preferably 200 μm or less, more preferably 100 μm or less, still more preferably 50 μm or less, and particularly preferably 20 μm or less. The average particle size (median diameter d50) of the granulated product of non-porous inorganic fine particles (particles after the secondary particles) is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, still more preferably 10 μm or more. , Usually 2000 μm or less, preferably 1000 μm or less, more preferably 500 μm or less, still more preferably 100 μm or less, and particularly preferably 50 μm or less. Within the above range, the fluororesin and the filler can be easily dispersed uniformly. The granulated product of the filler can be determined by a method conforming to Japanese Industrial Standards JIS Z8825: 2001.
Further, it is preferable that the surface of the filler is modified with the above-mentioned surface modifier.
 準備するフッ素系樹脂の造粒物と無機微粒子凝集体の造粒物の平均粒子径の粒径比(フッ素系樹脂の平均粒子径(メジアン径d50)/無機微粒子凝集体の平均粒子径(メジアン径d50))は、通常150以下、好ましくは100以下、より好ましくは60以下、さらに好ましくは40以下であり、特に好ましくは30以下、最も好ましくは10以下であり、通常1以上である。準備するフッ素系樹脂の造粒物と無孔質無機微粒子の造粒物の平均粒子径の粒径比(フッ素系樹脂の平均粒子径(メジアン径d50)/無孔質無機微粒子の平均粒子径(メジアン径d50))は、通常500以下、好ましくは300以下、より好ましくは200以下、さらに好ましくは100以下であり、特に好ましくは50以下、最も好ましくは30以下であり、通常0.01以上である。前記の範囲内であると、フッ素系樹脂と充填剤を均一に分散させやすくなる。 Particle size ratio of the average particle size of the granulated product of the fluororesin to be prepared and the granulated product of the inorganic fine particle agglomerates (average particle size of the fluororesin (median diameter d50) / average particle size of the inorganic fine particle agglomerates (median) The diameter d50)) is usually 150 or less, preferably 100 or less, more preferably 60 or less, still more preferably 40 or less, particularly preferably 30 or less, most preferably 10 or less, and usually 1 or more. Particle size ratio of the average particle size of the granulated product of the fluororesin to be prepared and the granulated product of the non-porous inorganic fine particles (average particle size of the fluorine-based resin (median diameter d50) / average particle size of the non-porous inorganic fine particles) (Median diameter d50)) is usually 500 or less, preferably 300 or less, more preferably 200 or less, still more preferably 100 or less, particularly preferably 50 or less, most preferably 30 or less, and usually 0.01 or more. Is. Within the above range, the fluororesin and the filler can be easily dispersed uniformly.
 混合工程は、フッ素系樹脂、充填剤、及び揮発性添加剤を混合して前駆体組成物を得る工程であるが、混合は、乾式、湿式等の公知の方法や混合機等を適宜採用して行うことができる。
 乾式の場合の撹拌器等の回転速度(周速)は、通常0.5m/sec以上、好ましくは1m/sec以上、より好ましくは5m/sec以上、さらに好ましくは10m/sec以上、特に好ましくは15m/sec以上であり、通常200m/sec以下、好ましくは180m/sec以下、より好ましくは140m/sec以下、さらに好ましくは100m/sec以下、特に好ましくは50m/sec以下、最も好ましくは20m/sec以下である。前記の範囲内であると、フッ素系樹脂と充填剤を均一に分散させやすくなる。
The mixing step is a step of mixing a fluororesin, a filler, and a volatile additive to obtain a precursor composition, but for mixing, a known method such as a dry type or a wet type, a mixer, or the like is appropriately adopted. Can be done.
In the case of the dry type, the rotation speed (peripheral speed) of the stirrer or the like is usually 0.5 m / sec or more, preferably 1 m / sec or more, more preferably 5 m / sec or more, still more preferably 10 m / sec or more, particularly preferably. 15 m / sec or more, usually 200 m / sec or less, preferably 180 m / sec or less, more preferably 140 m / sec or less, still more preferably 100 m / sec or less, particularly preferably 50 m / sec or less, most preferably 20 m / sec. It is as follows. Within the above range, the fluororesin and the filler can be easily dispersed uniformly.
 乾式の場合の混合時間は、通常10秒間以上、好ましくは20秒間以上、より好ましくは30秒間以上、さらに好ましくは40秒間以上、特に好ましくは1分間以上、最も好ましくは5分間以上であり、通常60分間以下、好ましくは50分間以下、より好ましくは40分間以下、さらに好ましくは30分間以下、特に好ましくは20分間以下、最も好ましくは15分間以下である。前記の範囲内であると、フッ素系樹脂と充填剤を均一に分散させやすくなる。 In the case of the dry type, the mixing time is usually 10 seconds or longer, preferably 20 seconds or longer, more preferably 30 seconds or longer, further preferably 40 seconds or longer, particularly preferably 1 minute or longer, most preferably 5 minutes or longer, and usually. It is 60 minutes or less, preferably 50 minutes or less, more preferably 40 minutes or less, still more preferably 30 minutes or less, particularly preferably 20 minutes or less, and most preferably 15 minutes or less. Within the above range, the fluororesin and the filler can be easily dispersed uniformly.
 湿式の場合の撹拌器等の回転速度(周速)は、通常1m/sec以上、好ましくは5m/sec以上、より好ましくは10m/sec以上、さらに好ましくは15m/sec以上、特に好ましくは20m/sec以上、最も好ましくは25m/sec以上であり、通常160m/sec以下、好ましくは130m/sec以下、より好ましくは100m/sec以下、さらに好ましくは80m/sec以下、特に好ましくは60m/sec以下、最も好ましくは40m/sec以下である。前記の範囲内であると、フッ素系樹脂と充填剤を均一に分散させやすくなる。 The rotation speed (peripheral speed) of the stirrer or the like in the wet case is usually 1 m / sec or more, preferably 5 m / sec or more, more preferably 10 m / sec or more, still more preferably 15 m / sec or more, and particularly preferably 20 m / sec or more. sec or more, most preferably 25 m / sec or more, usually 160 m / sec or less, preferably 130 m / sec or less, more preferably 100 m / sec or less, still more preferably 80 m / sec or less, particularly preferably 60 m / sec or less, Most preferably, it is 40 m / sec or less. Within the above range, the fluororesin and the filler can be easily dispersed uniformly.
 湿式の場合の混合時間は、通常5秒間以上、好ましくは10秒間以上、より好ましくは20秒間以上、さらに好ましくは30秒間以上、特に好ましくは40秒間以上、最も好ましくは50秒間以上であり、通常60分間以下、好ましくは50分間以下、より好ましくは40分間以下、さらに好ましくは20分間以下、特に好ましくは10分間以下、最も好ましくは5分間以下である。前記の範囲内であると、フッ素系樹脂と充填剤を均一に分散させやすくなる。 In the wet case, the mixing time is usually 5 seconds or longer, preferably 10 seconds or longer, more preferably 20 seconds or longer, still more preferably 30 seconds or longer, particularly preferably 40 seconds or longer, most preferably 50 seconds or longer, and usually. It is 60 minutes or less, preferably 50 minutes or less, more preferably 40 minutes or less, still more preferably 20 minutes or less, particularly preferably 10 minutes or less, and most preferably 5 minutes or less. Within the above range, the fluororesin and the filler can be easily dispersed uniformly.
 揮発性添加剤は、最終的に揮発させて取り除くことによって、複合材料に空孔を充分に内包させる働きがある。揮発性添加剤とは、沸点が30~300℃の、室温(25℃)で液体の化合物を意味するが、揮発性添加剤の沸点は、好ましくは50℃以上、より好ましくは100℃以上、さらに好ましくは200℃以上であり、好ましくは280℃以下、より好ましくは260℃以下、さらに好ましくは240℃以下である。 The volatile additive has the function of sufficiently containing pores in the composite material by finally volatilizing and removing it. The volatile additive means a compound having a boiling point of 30 to 300 ° C. and is liquid at room temperature (25 ° C.). The boiling point of the volatile additive is preferably 50 ° C. or higher, more preferably 100 ° C. or higher. It is more preferably 200 ° C. or higher, preferably 280 ° C. or lower, more preferably 260 ° C. or lower, still more preferably 240 ° C. or lower.
 揮発性添加剤の種類としては、反応性が低い炭化水素、エーテル、エステル、アルコール等が挙げられるが、脂肪族飽和炭化水素が好ましい。具体的にはヘキサン(沸点:69℃)、ヘプタン(沸点:98℃)、オクタン(沸点:126℃)、ノナン(沸点:151℃)、デカン(沸点:174℃)、ウンデカン(沸点:196℃)、ドデカン(沸点:215℃)、トリデカン(沸点:234℃)、テトラデカン(沸点:254℃)等が挙げられる。これらは単独でもしくは2種以上併せて用いることができる。 Examples of the type of volatile additive include hydrocarbons having low reactivity, ethers, esters, alcohols and the like, but aliphatic saturated hydrocarbons are preferable. Specifically, hexane (boiling point: 69 ° C), heptane (boiling point: 98 ° C), octane (boiling point: 126 ° C), nonan (boiling point: 151 ° C), decan (boiling point: 174 ° C), undecane (boiling point: 196 ° C). ), Dodecane (boiling point: 215 ° C.), tridecane (boiling point: 234 ° C.), tetradecane (boiling point: 254 ° C.), and the like. These can be used alone or in combination of two or more.
 揮発性添加剤の添加量は、フッ素系樹脂及び充填剤の合計を100質量部としたときに、通常1質量部以上、好ましくは5質量部以上、より好ましくは10質量部以上、さらに好ましくは20質量部以上、特に好ましくは30質量部以上であり、通常200質量部以下、好ましくは150質量部以下、より好ましくは130質量部以下、さらに好ましくは110質量部以下、特に好ましくは100質量部以下である。前記範囲内であると、複合材料として良好な気孔率を確保することができる。 The amount of the volatile additive added is usually 1 part by mass or more, preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 10 parts by mass or more, when the total of the fluororesin and the filler is 100 parts by mass. 20 parts by mass or more, particularly preferably 30 parts by mass or more, usually 200 parts by mass or less, preferably 150 parts by mass or less, more preferably 130 parts by mass or less, still more preferably 110 parts by mass or less, particularly preferably 100 parts by mass. It is as follows. Within the above range, a good porosity can be ensured as a composite material.
 混合工程は、フッ素系樹脂、充填剤、及び揮発性添加剤に加えて、溶媒を添加して混合することが好ましい。溶媒は前駆体組成物をペースト状にして均一に分散させることを可能とする働きがある。溶媒としては、水、メタノール、エタノール、イソプロパノール、ブタノール等の低級アルコール等が挙げられる。これらは単独でもしくは2種以上併せて用いることができる。 In the mixing step, it is preferable to add a solvent in addition to the fluororesin, the filler, and the volatile additive to mix. The solvent has the function of making the precursor composition into a paste and uniformly dispersing it. Examples of the solvent include water, lower alcohols such as methanol, ethanol, isopropanol and butanol, and the like. These can be used alone or in combination of two or more.
 成形工程は、前駆体組成物を成形して圧延可能な被圧延物を得る工程であるが、成形工程に使用する成形機としては、FTダイス(フィッシュテール押出しダイス)、プレス機、押出成形機、カレンダーロール等が挙げられる。特にFTダイスが好ましい。 The molding step is a step of molding the precursor composition to obtain a rollable object to be rolled. The molding machine used in the molding step includes an FT die (fishtail extrusion die), a press machine, and an extrusion molding machine. , Calendar roll, etc. FT dice are particularly preferable.
 圧延工程は、被圧延物を圧延して複合材料を得る工程であるが、得られた圧延物を積層して被圧延物として圧延を行う作業を複数回繰り返す「多段階圧延」であることが好ましく、前回の圧延方向とは異なる方向に被圧延物を圧延する「異方向多段階圧延」であることが特に好ましい。異方向多段階圧延としては、例えば圧延物を同一の圧延方向に向くように積層して被圧延物とし、被圧延物の圧延方向を前回の圧延方向から90°回転させて圧延を行う作業を繰り返すことが挙げられる。 The rolling process is a process of rolling an object to be rolled to obtain a composite material, but it may be a "multi-step rolling" in which the work of laminating the obtained rolled objects and rolling them as an object to be rolled is repeated a plurality of times. It is particularly preferable that the "multi-step rolling in different directions" is performed in which the object to be rolled is rolled in a direction different from the previous rolling direction. In the different direction multi-step rolling, for example, the rolled products are laminated so as to face the same rolling direction to obtain a rolled product, and the rolling direction of the rolled product is rotated by 90 ° from the previous rolling direction to perform rolling. It can be repeated.
 多段階圧延における圧延物の積層数は、通常2以上、好ましくは3以上、より好ましくは4以上、さらに好ましくは10以上、特に好ましくは30以上であり、通常2000以下、好ましくは1000以下、より好ましくは700以下、さらに好ましくは500以下、特に好ましくは300以下である。 The number of layers of rolled products in multi-step rolling is usually 2 or more, preferably 3 or more, more preferably 4 or more, still more preferably 10 or more, particularly preferably 30 or more, and usually 2000 or less, preferably 1000 or less. It is preferably 700 or less, more preferably 500 or less, and particularly preferably 300 or less.
 圧延工程の圧延倍率は、通常10以上、好ましくは20以上、より好ましくは40以上、さらに好ましくは50以上、特に好ましくは100以上であり、通常20000以下、好ましくは15000以下、より好ましくは10000以下、さらに好ましくは5000以下、特に好ましくは3000以下である。 The rolling ratio of the rolling step is usually 10 or more, preferably 20 or more, more preferably 40 or more, further preferably 50 or more, particularly preferably 100 or more, and usually 20000 or less, preferably 15000 or less, more preferably 10000 or less. , More preferably 5000 or less, and particularly preferably 3000 or less.
 圧延工程に使用する装置としては、プレス機、押出成形機、圧延ロール(例えば、カレンダーロール)等が挙げられる。 Examples of the apparatus used in the rolling process include a press machine, an extrusion molding machine, a rolling roll (for example, a calender roll) and the like.
 複合材料の製造方法又は基板の製造方法は、その他の工程を含んでいてもよく、具体的には下記の工程が挙げられる。
 ・前記圧延物から前記揮発性添加剤を除去する添加剤除去工程(以下、「添加剤除去工程」と略す場合がある。)。
 ・前記圧延物を加熱圧縮する加熱圧縮工程(以下、「加熱圧縮工程」と略す場合がある。)。
 ・前記複合材料の片面又は両面に、フッ素系樹脂を含んでなる樹脂層を形成する樹脂層形成工程(以下、「樹脂層形成工程」と略す場合がある。)。
 ・前記複合材料の片面又は両面に、導体層を形成する他層形成工程(以下、「導体層形成工程」と略す場合がある。)。
 ・前記導体層をパターニング処理するパターニング工程(以下、「パターニング工程」と略す場合がある。)。
 以下、「添加剤除去工程」、「加熱圧縮工程」、「樹脂層形成工程」、「導体層形成工程」、「パターニング工程」等について詳細に説明する。
The method for producing the composite material or the method for producing the substrate may include other steps, and specific examples thereof include the following steps.
-An additive removing step of removing the volatile additive from the rolled product (hereinafter, may be abbreviated as "additive removing step").
-A heat compression step of heating and compressing the rolled product (hereinafter, may be abbreviated as "heat compression step").
-A resin layer forming step of forming a resin layer containing a fluororesin on one side or both sides of the composite material (hereinafter, may be abbreviated as "resin layer forming step").
-Another layer forming step of forming a conductor layer on one side or both sides of the composite material (hereinafter, may be abbreviated as "conductor layer forming step").
-A patterning step of patterning the conductor layer (hereinafter, may be abbreviated as "patterning step").
Hereinafter, the "additive removal step", the "heat compression step", the "resin layer forming step", the "conductor layer forming step", the "patterning step" and the like will be described in detail.
 添加剤除去工程は、圧延物から前記揮発性添加剤を除去する工程であるが、通常、乾燥に使用可能な加熱炉内において圧延物を加熱する方法が挙げられる。加熱条件は、揮発性添加剤の沸点等に応じて適宜選択することができる。 The additive removing step is a step of removing the volatile additive from the rolled product, and usually, a method of heating the rolled product in a heating furnace that can be used for drying can be mentioned. The heating conditions can be appropriately selected according to the boiling point of the volatile additive and the like.
 加熱圧縮工程は、圧延物を加熱圧縮する工程であるが、通常、プレス機等を利用して加熱圧縮する方法が挙げられる。加熱圧縮条件は、適宜選択することができるが、圧延物に対して面内均一に圧力をかけることが好ましい。 The heat compression step is a step of heating and compressing a rolled product, but usually, a method of heating and compressing using a press or the like can be mentioned. The heating and compression conditions can be appropriately selected, but it is preferable to uniformly apply pressure to the rolled product in-plane.
 樹脂層形成工程は、複合材料の片面又は両面に、フッ素系樹脂を含んでなる樹脂を形成する工程であるが、樹脂層の形成は、プレス機等でフッ素系樹脂を含んである樹脂フィルムを複合材料に加熱加圧して貼着する方法が挙げられる。フッ素系樹脂を含んである樹脂フィルムを加熱加圧することによって、複合材料にフッ素系樹脂が浸透し、導体層等の剥がれを効果的に抑制できるとともに、複合材料として良好な比誘電率等を確保できる。
 フッ素系樹脂を含んでなる樹脂フィルムの厚みは、通常0.050μm以上、好ましくは0.10μm以上、より好ましくは0.40μm以上、さらに好ましくは1.0μm以上、特に好ましくは1.5μm以上であり、通常30μm以下、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは8.0μm以下、特に好ましくは6.0μm以下、最も好ましくは5.0μm以下である。
The resin layer forming step is a step of forming a resin containing a fluororesin on one side or both sides of a composite material, but the resin layer is formed by using a press machine or the like to form a resin film containing a fluororesin. Examples thereof include a method of applying heat and pressure to a composite material. By heating and pressurizing the resin film containing the fluorine-based resin, the fluorine-based resin permeates the composite material, effectively suppressing the peeling of the conductor layer, etc., and ensuring a good relative permittivity as the composite material. it can.
The thickness of the resin film containing the fluororesin is usually 0.050 μm or more, preferably 0.10 μm or more, more preferably 0.40 μm or more, still more preferably 1.0 μm or more, and particularly preferably 1.5 μm or more. It is usually 30 μm or less, preferably 20 μm or less, more preferably 10 μm or less, still more preferably 8.0 μm or less, particularly preferably 6.0 μm or less, and most preferably 5.0 μm or less.
 樹脂層形成工程における圧力は、通常0.01MPa以上、好ましくは0.10MPa以上、より好ましくは0.50MPa以上、さらに好ましくは0.80MPa以上、特に好ましくは1.00MPa以上であり、通常50MPa以下、好ましくは40MPa以下、より好ましくは30MPa以下、さらに好ましくは20MPa以下、特に好ましくは10MPa以下である。前記範囲内であると、導体層等の剥がれを効果的に抑制できるとともに、複合材料として良好な比誘電率等を確保できる。 The pressure in the resin layer forming step is usually 0.01 MPa or more, preferably 0.10 MPa or more, more preferably 0.50 MPa or more, still more preferably 0.80 MPa or more, particularly preferably 1.00 MPa or more, and usually 50 MPa or less. It is preferably 40 MPa or less, more preferably 30 MPa or less, still more preferably 20 MPa or less, and particularly preferably 10 MPa or less. Within the above range, peeling of the conductor layer or the like can be effectively suppressed, and a good relative permittivity or the like can be secured as a composite material.
 樹脂層形成工程における温度は、通常250℃以上、好ましくは280℃以上、より好ましくは300℃以上、さらに好ましくは320℃以上、特に好ましくは340℃以上であり、通常500℃以下、好ましくは480℃以下、より好ましくは460℃以下、さらに好ましくは440℃以下、特に好ましくは420℃以下である。前記範囲内であると、導体層等の剥がれを効果的に抑制できるとともに、複合材料として良好な比誘電率等を確保できる。 The temperature in the resin layer forming step is usually 250 ° C. or higher, preferably 280 ° C. or higher, more preferably 300 ° C. or higher, further preferably 320 ° C. or higher, particularly preferably 340 ° C. or higher, and usually 500 ° C. or lower, preferably 480 ° C. or higher. ℃ or less, more preferably 460 ° C or less, still more preferably 440 ° C or less, and particularly preferably 420 ° C or less. Within the above range, peeling of the conductor layer or the like can be effectively suppressed, and a good relative permittivity or the like can be secured as a composite material.
 樹脂層形成工程における加熱加圧時間は、通常1秒間以上、好ましくは30秒間以上、より好ましくは1分間以上、さらに好ましくは2分間以上、特に好ましくは3分間以上であり、通常180分間以下、好ましくは120分間以下、より好ましくは60分間以下、さらに好ましくは30分間以下、特に好ましくは20分間以下である。前記範囲内であると、導体層等の剥がれを効果的に抑制できるとともに、複合材料として良好な比誘電率等を確保できる。 The heating and pressurizing time in the resin layer forming step is usually 1 second or longer, preferably 30 seconds or longer, more preferably 1 minute or longer, further preferably 2 minutes or longer, particularly preferably 3 minutes or longer, and usually 180 minutes or shorter. It is preferably 120 minutes or less, more preferably 60 minutes or less, still more preferably 30 minutes or less, and particularly preferably 20 minutes or less. Within the above range, peeling of the conductor layer or the like can be effectively suppressed, and a good relative permittivity or the like can be secured as a composite material.
 樹脂層形成工程に使用する装置としては、プレス機、熱ロールラミネート機、ベルトプレス機等が挙げられる。 Examples of the device used in the resin layer forming process include a press machine, a thermal roll laminating machine, and a belt press machine.
 導体層形成工程は、前記複合材料の片面又は両面に、導体層を形成する工程であるが、導体層の形成方法としては、スパッタリング、メッキ、金属箔の加圧接着、ラミネート法等が挙げられる。 The conductor layer forming step is a step of forming a conductor layer on one side or both sides of the composite material, and examples of the conductor layer forming method include sputtering, plating, pressure bonding of metal foil, and laminating method. ..
 パターニング工程は、金属層をパターニング処理する工程であるが、パターニング処理方法としては、フォトレジスト等を用いたアディティブ(Additive)法、エッチングによるサブトラクティブ(Subtractive)法等が挙げられる。 The patterning step is a step of patterning a metal layer, and examples of the patterning process include an additive method using a photoresist and the like, a subtractive method by etching, and the like.
 以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The present invention will be described in more detail with reference to examples below, but the present invention can be appropriately modified as long as it does not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limited by the specific examples shown below.
<実施例1>
 無機微粒子凝集体として親水性フュームドシリカ(日本アエロジル社製、品番「AEROSIL50」、BET比表面積50±15m2/g、平均一次粒子径40nm、二次凝集物の平均粒子径0.2μm)を、表面修飾剤として下記式で表されるトリエトキシ-1H,1H,2H,2H-トリデカフルオロ-n-オクチルシラン(東京化成工業社製、品番「T1770」)を使用して修飾した。
Figure JPOXMLDOC01-appb-C000003
<Example 1>
As an inorganic fine particle aggregate, hydrophilic fumed silica (manufactured by Nippon Aerosil Co., Ltd., product number "AEROSIL50", BET specific surface area 50 ± 15 m 2 / g, average primary particle size 40 nm, average particle size 0.2 μm of secondary aggregate) is used. As a surface modifier, triethoxy-1H, 1H, 2H, 2H-tridecafluoro-n-octylsilane (manufactured by Tokyo Chemical Industry Co., Ltd., product number "T1770") was used for modification.
Figure JPOXMLDOC01-appb-C000003
 具体的には、イソプロパノール832.9gに対して、表面修飾剤40.8g、酢酸22.1g、純水43.2g、及び無機微粒子凝集体80gを加え、24時間撹拌して、無機微粒子凝集体の分散液を得た。次に分散液を100℃で1時間加熱し、さらに200℃で2時間加熱して、表面修飾された無機微粒子凝集体を得た。 Specifically, 40.8 g of a surface modifier, 22.1 g of acetic acid, 43.2 g of pure water, and 80 g of inorganic fine particle aggregates were added to 832.9 g of isopropanol, and the mixture was stirred for 24 hours to stir the inorganic fine particle aggregates. The dispersion liquid of was obtained. Next, the dispersion was heated at 100 ° C. for 1 hour and then at 200 ° C. for 2 hours to obtain surface-modified inorganic fine particle aggregates.
 次に、無孔質無機微粒子として溶融シリカ(デンカ社製、品番「SFP-130MC」、BET比表面積6.2m2/g、平均一次粒子径0.6μm)を、表面修飾剤として同じくトリエトキシ-1H,1H,2H,2H-トリデカフルオロ-n-オクチルシラン(東京化成工業社製、品番「T1770」)を使用して修飾した。 Next, fused silica (manufactured by Denka Co., Ltd., product number "SFP-130MC", BET specific surface area 6.2 m 2 / g, average primary particle diameter 0.6 μm) was used as a non-porous inorganic fine particle, and triethoxy- was also used as a surface modifier. It was modified with 1H, 1H, 2H, 2H-tridecafluoro-n-octylsilane (manufactured by Tokyo Chemical Industry Co., Ltd., product number "T1770").
 具体的には、イソプロパノール83.3gに対して、表面修飾剤6.8g、酢酸2.1g、純水4.3g、及び無孔質無機微粒子80gを加え、24時間撹拌して、無孔質無機微粒子の分散液を得た。次に分散液を100℃で1時間加熱し、さらに200℃で2時間加熱して、表面修飾された無孔質無機微粒子を得た。 Specifically, to 83.3 g of isopropanol, 6.8 g of a surface modifier, 2.1 g of acetic acid, 4.3 g of pure water, and 80 g of non-porous inorganic fine particles were added, and the mixture was stirred for 24 hours to be non-porous. A dispersion of inorganic fine particles was obtained. Next, the dispersion was heated at 100 ° C. for 1 hour and then at 200 ° C. for 2 hours to obtain surface-modified non-porous inorganic fine particles.
 次に高速流動型ミキサを使用して、ポリテトラフルオロエチレン(以下、「PTFE」と略す場合がある。)と無機微粒子凝集体と無孔質無機微粒子と揮発性添加剤を混合した。具体的には、ポリテトラフルオロエチレン(ダイキン社製、品番「ポリフロンPTFE F-104」、平均粒子径550μm)を準備し、固形分量を考慮して、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比44:46:10になるように加え、回転速度14m/sec、温度24℃で1分間攪拌混合した後、揮発性添加剤として炭化水素油(エクソンモービル社製、品番「アイソパーM」)を、ポリテトラフルオロエチレンと無機微粒子凝集体と無孔質無機微粒子の合計を100質量部としたときに65質量部になるように加え、回転速度3m/sec、温度24℃で5分間混合してペーストを得た。 Next, using a high-speed flow mixer, polytetrafluoroethylene (hereinafter, may be abbreviated as "PTFE"), inorganic fine particle aggregates, non-porous inorganic fine particles, and volatile additives were mixed. Specifically, polytetrafluoroethylene (manufactured by Daikin Co., Ltd., product number "Polyflon PTFE F-104", average particle size 550 μm) was prepared, and in consideration of the solid content, polytetrafluoroethylene and surface-modified inorganic fine particle coagulation were prepared. The aggregate and the non-porous inorganic fine particles are added so as to have a mass ratio of 44:46:10, and after stirring and mixing at a rotation speed of 14 m / sec and a temperature of 24 ° C. for 1 minute, hydrocarbon oil (Exxon Mobile) is used as a volatile additive. (Manufactured by the company, product number "Isoper M") is added so that the total of polytetrafluoroethylene, inorganic fine particle aggregates and non-porous inorganic fine particles is 65 parts by mass, and the rotation speed is 3 m / sec. , The mixture was mixed at a temperature of 24 ° C. for 5 minutes to obtain a paste.
 ペーストを1対の圧延ロールに通して、厚み3mm、幅10~50mm、長さ150mmの楕円状母シート(シート状成形体)にし、この母シートを複数枚作製した。次に、この母シートの圧延方向を揃えて2枚積層し、この積層物を先の圧延方向のまま前記圧延ロール間に通して圧延し、第1の圧延積層シートを複数枚作製した。次に、4枚の第1の圧延積層シートの圧延方向を揃えて積層し、同様の方向に圧延して第2の圧延積層シートを作製した。このように、シートを積層し圧延する工程を、母シートの積層圧延から数えて合計5回繰り返して第3の圧延積層シートを作製した(構成層数512)。次に第3の圧延積層シートを4枚積層し、シート面は平行のまま先の圧延方向から積層シートを90度回転させて前記圧延ロール間に通して圧延し、前記圧延ロール間のギャップを0.5mmずつ狭めて複数回圧延し、厚み約0.18mmのシートを得た。得られた圧延積層シートを150℃で20分間加熱して揮発性添加剤を除去し、シート状の複合材料を作製した。 The paste was passed through a pair of rolling rolls to form an elliptical mother sheet (sheet-shaped molded product) having a thickness of 3 mm, a width of 10 to 50 mm, and a length of 150 mm, and a plurality of the mother sheets were prepared. Next, two sheets of the mother sheet were laminated in the same rolling direction, and the laminate was passed between the rolling rolls in the same rolling direction and rolled to prepare a plurality of first rolled laminated sheets. Next, the four first rolled laminated sheets were laminated in the same rolling direction, and rolled in the same direction to prepare a second rolled laminated sheet. In this way, the step of laminating and rolling the sheets was repeated a total of 5 times counting from the laminating and rolling of the mother sheet to produce a third rolled laminated sheet (the number of constituent layers 512). Next, four third rolled laminated sheets are laminated, and the laminated sheets are rotated 90 degrees from the previous rolling direction while keeping the sheet surfaces parallel, and the laminated sheets are passed between the rolling rolls to be rolled, and a gap between the rolling rolls is formed. The sheet was narrowed by 0.5 mm and rolled a plurality of times to obtain a sheet having a thickness of about 0.18 mm. The obtained rolled laminated sheet was heated at 150 ° C. for 20 minutes to remove volatile additives, and a sheet-like composite material was prepared.
 次に、Fluon(登録商標)PTFEディスパージョンAD939E(AGC社製、固形分60質量%)をポリイミドキャリア上片面にWET厚が4μmになるようにディップコーティング塗工し、150℃で5分間、380℃で5分間加熱することで樹脂層となる樹脂フィルムを作製した。導体層となるCu箔(JX金属社、品番「BHFX-HS-92F」)を準備し、樹脂フィルムとCu箔を積層して、プレス機で圧力6MPa、温度360℃、10分間加圧することで樹脂導体シートを作製した。この樹脂導体シートと前述のシート状の複合材料を積層し、360℃、5分間、4MPaで加圧成形して導体層との積層シートを作製した。なお、得られた積層シートについて、後述する板状の複合材料と樹脂導体シートの引き剥がし強さを測定した。次に得られた積層シートについて、38質量%の塩化鉄第二水溶液(サンハヤト社製、エッチング液H-200A)に30分間浸漬させて導体層を除去した後、純水で洗浄後、乾燥させて板状の複合材料を得た。 Next, Fluon (registered trademark) PTFE dispersion AD939E (manufactured by AGC, solid content 60% by mass) was dip-coated on one side of the polyimide carrier so that the WET thickness was 4 μm, and 380 for 5 minutes at 150 ° C. A resin film to be a resin layer was prepared by heating at ° C. for 5 minutes. By preparing a Cu foil (JX Nippon Mining & Metals Co., Ltd., product number "BHFX-HS-92F") as a conductor layer, laminating a resin film and a Cu foil, and pressurizing with a press machine at a pressure of 6 MPa and a temperature of 360 ° C. for 10 minutes. A resin conductor sheet was produced. This resin conductor sheet and the above-mentioned sheet-shaped composite material were laminated and pressure-molded at 360 ° C. for 5 minutes at 4 MPa to prepare a laminated sheet with the conductor layer. With respect to the obtained laminated sheet, the peeling strength of the plate-shaped composite material and the resin conductor sheet, which will be described later, was measured. Next, the obtained laminated sheet was immersed in a 38% by mass second aqueous solution of iron chloride (manufactured by Sanhayato Co., Ltd., etching solution H-200A) for 30 minutes to remove the conductor layer, washed with pure water, and dried. A plate-shaped composite material was obtained.
<実施例2>
 高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比44:28:28になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Example 2>
Same as in Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 44:28:28 during mixing with a high-speed flow mixer. A composite material was obtained by the method.
<実施例3>
 V型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比44:15:41になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Example 3>
The same method as in Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates, and non-porous inorganic fine particles were added so as to have a mass ratio of 44:15:41 during mixing with a V-type mixer. Obtained a composite material.
<実施例4>
 無孔質無機微粒子として、コージライト粉末(AGCセラミックス社製 FINEタイプ)、平均粒子径25μmを用い、高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比44:30:26になるように加え、揮発性添加剤をポリテトラフルオロエチレンと無機微粒子凝集体と無孔質無機微粒子の合計を100質量部としたときに50質量部になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Example 4>
As the non-porous inorganic fine particles, Kojilite powder (FINE type manufactured by AGC Ceramics Co., Ltd.) and an average particle diameter of 25 μm are used, and when mixed with a high-speed flow type mixer, polytetrafluoroethylene and surface-modified inorganic fine particle aggregates and no pores are formed. The mass ratio of the quality inorganic fine particles is 44:30:26, and the volatile additive is 50 mass when the total of polytetrafluoroethylene, inorganic fine particle aggregates and non-porous inorganic fine particles is 100 parts by mass. A composite material was obtained by the same method as in Example 1 except that the particles were added in portions.
<実施例5>
 高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比38:28:34になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Example 5>
Same as in Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 38:28:34 during mixing with a high-speed flow mixer. A composite material was obtained by the method.
<実施例6>
 高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比34:28:38になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Example 6>
Similar to Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 34:28:38 when mixed with a high-speed flow mixer. A composite material was obtained by the method.
<実施例7>
 高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比30:28:42になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Example 7>
Similar to Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 30:28:42 when mixed with a high-speed flow mixer. A composite material was obtained by the method.
<実施例8>
 高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比26:28:46になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Example 8>
Similar to Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 26:28:46 when mixed with a high-speed flow mixer. A composite material was obtained by the method.
<比較例1>
 高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比60:40:0になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Comparative example 1>
Similar to Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 60:40: 0 when mixing with a high-speed flow mixer. A composite material was obtained by the method.
<比較例2>
 高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比40:60:0になるように加え、揮発性添加剤をポリテトラフルオロエチレンと無機微粒子凝集体と無孔質無機微粒子の合計を100質量部としたときに100質量部になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Comparative example 2>
When mixed with a high-speed flow mixer, polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 40:60: 0, and a volatile additive was added as polytetrafluoro. A composite material was obtained by the same method as in Example 1 except that ethylene, inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to be 100 parts by mass when the total was 100 parts by mass.
<比較例3>
 高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比20:80:0になるように加え、揮発性添加剤をポリテトラフルオロエチレンと無機微粒子凝集体と無孔質無機微粒子の合計を100質量部としたときに150質量部になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Comparative example 3>
When mixed with a high-speed flow mixer, polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 20:80: 0, and a volatile additive was added as polytetrafluoro. A composite material was obtained by the same method as in Example 1 except that ethylene, inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to be 150 parts by mass when the total was 100 parts by mass.
<比較例4>
 高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比60:0:40になるように加え、揮発性添加剤をポリテトラフルオロエチレンと無機微粒子凝集体と無孔質無機微粒子の合計を100質量部としたときに45質量部になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Comparative example 4>
When mixed with a high-speed flow mixer, polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 60: 0: 40, and a volatile additive was added as polytetrafluoro. A composite material was obtained by the same method as in Example 1 except that ethylene, inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to be 45 parts by mass when the total was 100 parts by mass.
<比較例5>
 高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比40:0:60になるように加えた以外、比較例4と同様の方法により複合材料を得た。
<Comparative example 5>
Similar to Comparative Example 4 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 40: 0: 60 during mixing with a high-speed flow mixer. A composite material was obtained by the method.
<比較例6>
 高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比20:0:80になるように加えた以外、比較例4と同様の方法により複合材料を得た。
<Comparative Example 6>
Similar to Comparative Example 4 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 20: 0: 80 during mixing with a high-speed flow mixer. A composite material was obtained by the method.
<比較例7>
 高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比44:50:6になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Comparative Example 7>
Same as in Example 1 except that polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 44:50: 6 during mixing with a high-speed flow mixer. A composite material was obtained by the method.
<比較例8>
 無孔質無機微粒子として、コージライト粉末(AGCセラミックス社製 FINEタイプ)、平均粒子径25μmを用い、高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比44:0:56になるように加え、揮発性添加剤をポリテトラフルオロエチレンと無機微粒子凝集体と無孔質無機微粒子の合計を100質量部としたときに30質量部になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Comparative Example 8>
As the non-porous inorganic fine particles, Kojilite powder (FINE type manufactured by AGC Ceramics Co., Ltd.) and an average particle diameter of 25 μm are used, and when mixed with a high-speed flow type mixer, polytetrafluoroethylene and surface-modified inorganic fine particle aggregates and no pores are formed. The mass ratio of the quality inorganic fine particles is 44: 0: 56, and the volatile additive is 30 mass when the total of polytetrafluoroethylene, inorganic fine particle aggregates and non-porous inorganic fine particles is 100 parts by mass. A composite material was obtained by the same method as in Example 1 except that the particles were added in portions.
<比較例9>
 高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比70:30:0になるように加え、揮発性添加剤をポリテトラフルオロエチレンと無機微粒子凝集体と無孔質無機微粒子の合計を100質量部としたときに54質量部になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Comparative Example 9>
When mixed with a high-speed flow mixer, polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 70:30: 0, and a volatile additive was added as polytetrafluoro. A composite material was obtained by the same method as in Example 1 except that ethylene, inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to be 54 parts by mass when the total was 100 parts by mass.
<比較例10>
 高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比50:50:0になるように加え、揮発性添加剤をポリテトラフルオロエチレンと無機微粒子凝集体と無孔質無機微粒子の合計を100質量部としたときに82質量部になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Comparative Example 10>
When mixed with a high-speed flow mixer, polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 50:50: 0, and a volatile additive was added as polytetrafluoro. A composite material was obtained by the same method as in Example 1 except that ethylene, inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to be 82 parts by mass when the total was 100 parts by mass.
<比較例11>
 高速流動型ミキサでの混合時に、ポリテトラフルオロエチレンと表面修飾した無機微粒子凝集体と無孔質無機微粒子とが質量比30:70:0になるように加え、揮発性添加剤をポリテトラフルオロエチレンと無機微粒子凝集体と無孔質無機微粒子の合計を100質量部としたときに122質量部になるように加えた以外、実施例1と同様の方法により複合材料を得た。
<Comparative Example 11>
When mixed with a high-speed flow mixer, polytetrafluoroethylene, surface-modified inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to have a mass ratio of 30:70: 0, and a volatile additive was added as polytetrafluoro. A composite material was obtained by the same method as in Example 1 except that ethylene, inorganic fine particle aggregates and non-porous inorganic fine particles were added so as to be 122 parts by mass when the total was 100 parts by mass.
 得られたそれぞれの板状の複合材料について、下記の通りに気孔率、引き剥がし強さ、比誘電率・誘電正接、引張強度・引張弾性率、及び熱膨張係数を測定した。結果を表1~3に示す。 For each of the obtained plate-shaped composite materials, the porosity, peeling strength, relative permittivity / dielectric loss tangent, tensile strength / tensile elastic modulus, and coefficient of thermal expansion were measured as follows. The results are shown in Tables 1 to 3.
<気孔率>
 複合材料の体積、ポリテトラフルオロエチレン(PTFE)の比重と質量(配合質量)、無機微粒子凝集体の比重と質量(配合質量)、無孔質無機微粒子の比重と質量(配合質量)、その他の充填剤の比重と質量(配合質量)を測定し、下記式に代入することによって算出した。
 [気孔率(%)]=([複合材料の体積]-[PTFEの質量/PTFEの比重]-[無機微粒子凝集体の質量/無機微粒子凝集体の比重]-[無孔質無機微粒子の質量/無孔質無機微粒子の比重]-[その他の充填剤の質量/その他の充填剤の比重])/[複合材料の体積]×100
<Porosity>
Volume of composite material, specific gravity and mass of polytetrafluoroethylene (PTFE) (blending mass), specific gravity and mass of inorganic fine particle aggregates (blending mass), specific gravity and mass of non-porous inorganic fine particles (blending mass), etc. It was calculated by measuring the specific gravity and mass (blending mass) of the filler and substituting it into the following formula.
[Pore ratio (%)] = ([Volume of composite material]-[Mass of PTFE / Specific gravity of PTFE]-[Mass of inorganic fine particle aggregates / Specific gravity of inorganic fine particle aggregates]-[Mass of non-porous inorganic fine particles] / Specific gravity of non-porous inorganic fine particles]-[Mass of other fillers / Specific gravity of other fillers]) / [Volume of composite material] x 100
<引き剥がし強さ>
 実施例1~8、及び比較例1~11の複合材料それぞれについて、日本工業規格JIS C6481:1996に準拠したプリント配線板用銅張積層板試験を実施した。導体層が10mmの幅でラミネートされた状態で長さ約100mmの試験片を作製し、導体層部分を90°の方向に速度50mm/分の速度で剥がしたときの荷重の平均値を引き剥がし強さとして測定した。
<Peeling strength>
For each of the composite materials of Examples 1 to 8 and Comparative Examples 1 to 11, a copper-clad laminate test for a printed wiring board conforming to Japanese Industrial Standards JIS C6481: 1996 was carried out. A test piece having a length of about 100 mm was prepared with the conductor layer laminated to a width of 10 mm, and the average value of the load when the conductor layer portion was peeled off at a speed of 50 mm / min in the direction of 90 ° was peeled off. Measured as strength.
<比誘電率・誘電正接>
 測定周波数を10GHzとし、空洞共振器摂動法により複素誘電率を測定し、その実数部(εr’)を比誘電率とした。また、実数部と虚数部(εr”)の比(εr”/εr’)から誘電正接を求めた。
 比誘電率測定装置(アジレント・テクノロジー社製「ネットワークアナライザN5230C」、及び関東電子応用開発社製「空洞共振器10GHz」)を用い、各シートから短冊状のサンプル(サンプルサイズ幅2mm×長さ70mm)を切り出し測定した。
<Relative permittivity / dielectric loss tangent>
The measurement frequency was set to 10 GHz, the complex permittivity was measured by the cavity resonator perturbation method, and the real part (εr') of the complex permittivity was taken as the relative permittivity. Further, the dielectric loss tangent was obtained from the ratio (εr ″ / εr') of the real part and the imaginary part (εr ″).
Using a relative permittivity measuring device (“Network Analyzer N5230C” manufactured by Agilent Technologies and “Cavity Resonator 10 GHz” manufactured by Kanto Electronics Applied Development Co., Ltd.), a strip-shaped sample (sample size width 2 mm × length 70 mm) was used from each sheet. ) Was cut out and measured.
<引張強度・引張弾性率>
 板状の複合材料の引張強度(引張破断強度)及び引張弾性率は、日本工業規格JIS K7161に定められた方法に準拠して測定した。より具体的には、卓上型精密万能試験機オートグラフAGS-X(島津製作所社製)を引張試験機に用い、測定温度25℃、引張速度100mm/分、初期のつかみ具間距離10mmの測定条件にて、ダンベル状1号形又はダンベル状2号形(並行部分の幅10mm)とした試験片の長手方向(MD方向)に引張試験を実施した。そして、試験片が切断されるまでに記録される最大の引張力を求め、これを試験片の断面積で除した値を引張強度(単位:MPa)とし、引張試験時の0.05%と0.25%のひずみ2点間に対応する応力/ひずみ曲線の傾きとして引張弾性率(単位:GPa)とした。
<Tensile strength / modulus of elasticity>
The tensile strength (tensile breaking strength) and tensile elastic modulus of the plate-shaped composite material were measured according to the method specified in Japanese Industrial Standard JIS K7161. More specifically, a desktop precision universal testing machine Autograph AGS-X (manufactured by Shimadzu Corporation) is used as a tensile testing machine to measure a measurement temperature of 25 ° C., a tensile speed of 100 mm / min, and an initial distance between gripping tools of 10 mm. Under the conditions, a tensile test was carried out in the longitudinal direction (MD direction) of the dumbbell-shaped No. 1 type or dumbbell-shaped No. 2 type (width of the parallel portion 10 mm). Then, the maximum tensile force recorded before the test piece is cut is obtained, and the value obtained by dividing this by the cross-sectional area of the test piece is defined as the tensile strength (unit: MPa), which is 0.05% at the time of the tensile test. The tensile elastic modulus (unit: GPa) was defined as the slope of the stress / strain curve corresponding between the two points of 0.25% strain.
<熱膨張係数>
 -50℃~200℃の平均熱線膨張係数を熱膨張係数として採用し、TMA(Thermal Mechanical Analysis)法を利用して算出した。
 熱機械分析装置(BRUKER AXS社製、「TMA4000SA」)を用い、幅4mm、長さ20mmの複合材料を長さ方向に固定し、2gの荷重をかけて行った。室温から昇温速度10℃/分で200℃まで昇温し、30分間保持することで材料の残留応力を除去した。次いで、10℃/分で-50℃まで冷却し、15分間保持した後、2℃/分で200℃まで昇温させた。2回目の昇温過程における-50℃~200℃の平均熱線膨張係数を熱膨張係数とした。
<Coefficient of thermal expansion>
The average coefficient of linear thermal expansion of −50 ° C. to 200 ° C. was adopted as the coefficient of thermal expansion, and the calculation was performed using the TMA (Thermal Mechanical Analysis) method.
Using a thermomechanical analyzer (“TMA4000SA” manufactured by BRUKER AXS), a composite material having a width of 4 mm and a length of 20 mm was fixed in the length direction and a load of 2 g was applied. The residual stress of the material was removed by raising the temperature from room temperature to 200 ° C. at a heating rate of 10 ° C./min and holding for 30 minutes. Then, the mixture was cooled to −50 ° C. at 10 ° C./min, held for 15 minutes, and then heated to 200 ° C. at 2 ° C./min. The average coefficient of linear thermal expansion of −50 ° C. to 200 ° C. in the second heating process was defined as the coefficient of thermal expansion.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例5~8、比較例2~3、10~11の複合材料の充填剤総含有量と誘電正接の関係を表したグラフを図2に、実施例5~8、比較例2~3、9~11の複合材料の充填剤総含有量と熱膨張係数の関係を表したグラフを図3に示す。図2のグラフから、充填剤がフュームドシリカのような多孔性無機微粒子凝集体単独であると、充填剤の含有量の増加に伴って誘電正接が上昇してしまうとともに、溶融シリカのような無孔質無機微粒子を配合することによって、それを顕著に抑制できることが明らかである。また、図3のグラフから、多孔性無機微粒子凝集体の含有量の低下に伴う熱膨張係数の上昇を、無孔質無機微粒子の適度な配合で抑制できることも明らかである。即ち、多孔性無機微粒子凝集体と無孔質無機微粒子を適度に配合した板状の複合材料は、種々の特性に関して調和のとれた優れた材料であると言えるのである。 Graphs showing the relationship between the total filler content and the dielectric loss tangent of the composite materials of Examples 5 to 8 and Comparative Examples 2 to 3 and 10 to 11 are shown in FIG. FIG. 3 shows a graph showing the relationship between the total filler content of the composite materials 9 to 11 and the coefficient of thermal expansion. From the graph of FIG. 2, when the filler is a porous inorganic fine particle aggregate alone such as fumed silica, the dielectric loss tangent increases as the content of the filler increases, and the filler is like molten silica. It is clear that it can be remarkably suppressed by blending non-porous inorganic fine particles. Further, from the graph of FIG. 3, it is clear that the increase in the coefficient of thermal expansion accompanying the decrease in the content of the porous inorganic fine particle aggregates can be suppressed by an appropriate blending of the non-porous inorganic fine particles. That is, it can be said that the plate-shaped composite material in which the porous inorganic fine particle agglomerates and the non-porous inorganic fine particles are appropriately mixed is an excellent material that is harmonious in terms of various properties.
 前記実施例においては、本発明における具体的な形態について示したが、前記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 Although the specific embodiment of the present invention has been shown in the above-described embodiment, the above-mentioned embodiment is merely an example and is not interpreted in a limited manner. Various variations apparent to those skilled in the art are intended to be within the scope of the present invention.
 本発明の一態様である複合材料は、携帯電話、コンピュータ等の回路基板、ミリ波レーダー用のマイクロストリップパッチアンテナの基板等として利用することができる。 The composite material according to one aspect of the present invention can be used as a circuit board for mobile phones, computers, etc., a substrate for a microstrip patch antenna for millimeter-wave radar, and the like.

Claims (2)

  1.  フッ素系樹脂及び充填剤を含む板状の複合材料であって、
     前記充填剤が、平均一次粒子径5~200nmの無機微粒子が凝集して形成された多孔性無機微粒子凝集体、及び平均一次粒子径0.2~50μmの無孔質無機微粒子を含み、
     前記多孔性無機微粒子凝集体と前記無孔質無機微粒子の総含有量が、前記複合材料の20~90質量%であり、前記多孔性無機微粒子凝集体と前記無孔質無機微粒子の総含有量に対する前記無孔質無機微粒子の含有量の質量比(前記無孔質無機微粒子の含有量/(前記多孔性無機微粒子凝集体の含有量+前記無孔質無機微粒子の含有量))が、0.15~0.90であることを特徴とする、板状の複合材料。
    A plate-shaped composite material containing a fluororesin and a filler.
    The filler contains a porous inorganic fine particle agglomerate formed by aggregating inorganic fine particles having an average primary particle diameter of 5 to 200 nm, and a non-porous inorganic fine particle having an average primary particle diameter of 0.2 to 50 μm.
    The total content of the porous inorganic fine particle aggregate and the non-porous inorganic fine particle is 20 to 90% by mass of the composite material, and the total content of the porous inorganic fine particle agglomerate and the non-porous inorganic fine particle is 20 to 90% by mass. The mass ratio of the content of the non-porous inorganic fine particles to the mass ratio (content of the non-porous inorganic fine particles / (content of the porous inorganic fine particle aggregate + content of the non-porous inorganic fine particles)) is 0. A plate-shaped composite material characterized by being .15 to 0.90.
  2.  気孔率が15体積%以上である、請求項1に記載の板状の複合材料。 The plate-shaped composite material according to claim 1, which has a porosity of 15% by volume or more.
PCT/JP2020/037835 2019-10-10 2020-10-06 Plate-shaped composite material WO2021070805A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021551656A JPWO2021070805A1 (en) 2019-10-10 2020-10-06
KR1020227000974A KR20220080069A (en) 2019-10-10 2020-10-06 plate-shaped composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019186861 2019-10-10
JP2019-186861 2019-10-10

Publications (1)

Publication Number Publication Date
WO2021070805A1 true WO2021070805A1 (en) 2021-04-15

Family

ID=75438186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037835 WO2021070805A1 (en) 2019-10-10 2020-10-06 Plate-shaped composite material

Country Status (4)

Country Link
JP (1) JPWO2021070805A1 (en)
KR (1) KR20220080069A (en)
TW (1) TW202115174A (en)
WO (1) WO2021070805A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071012A1 (en) * 2022-09-29 2024-04-04 日東電工株式会社 Patch antenna
WO2024071037A1 (en) * 2022-09-29 2024-04-04 日東電工株式会社 Patch antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231843A (en) * 1990-02-08 1991-10-15 Hitachi Chem Co Ltd Fluororesin laminated sheet
JP2012056994A (en) * 2010-09-06 2012-03-22 Sumitomo Bakelite Co Ltd Prepreg, metal-clad laminate, printed wiring board, and semiconductor device
JP2017179311A (en) * 2016-03-31 2017-10-05 日立化成株式会社 Resin composition, prepreg, resin sheet and laminate
WO2018221556A1 (en) * 2017-05-31 2018-12-06 日東電工株式会社 Tabular composite material containing polytetrafluoroethylene and filler
JP2019073603A (en) * 2017-10-13 2019-05-16 味の素株式会社 Resin composition layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03212987A (en) 1990-01-17 1991-09-18 Matsushita Electric Works Ltd Composite material for electrical use, laminated sheet and printed wiring board
JPH06119810A (en) 1990-02-21 1994-04-28 Rogers Corp Dielectric composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231843A (en) * 1990-02-08 1991-10-15 Hitachi Chem Co Ltd Fluororesin laminated sheet
JP2012056994A (en) * 2010-09-06 2012-03-22 Sumitomo Bakelite Co Ltd Prepreg, metal-clad laminate, printed wiring board, and semiconductor device
JP2017179311A (en) * 2016-03-31 2017-10-05 日立化成株式会社 Resin composition, prepreg, resin sheet and laminate
WO2018221556A1 (en) * 2017-05-31 2018-12-06 日東電工株式会社 Tabular composite material containing polytetrafluoroethylene and filler
JP2019073603A (en) * 2017-10-13 2019-05-16 味の素株式会社 Resin composition layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071012A1 (en) * 2022-09-29 2024-04-04 日東電工株式会社 Patch antenna
WO2024071037A1 (en) * 2022-09-29 2024-04-04 日東電工株式会社 Patch antenna

Also Published As

Publication number Publication date
KR20220080069A (en) 2022-06-14
TW202115174A (en) 2021-04-16
JPWO2021070805A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2018221556A1 (en) Tabular composite material containing polytetrafluoroethylene and filler
WO2021070805A1 (en) Plate-shaped composite material
JP7200197B2 (en) Insulating resin material, insulating resin material with metal layer and wiring substrate using the same
TWI725538B (en) Metal-clad laminate, printed circuit board, and method for manufacturing the same
WO2021235276A1 (en) Method for manufacturing dielectric sheet, method for manufacturing substrate for high-frequency printed circuit board, dielectric sheet, and substrate for high-frequency printed circuit board
US20220220265A1 (en) Plate-shaped composite material
JP7102402B2 (en) Plate-like composite material containing polytetrafluoroethylene and filler
TWI832880B (en) plate composite material
WO2017018105A1 (en) Fluororesin porous body, metal layer-equipped porous body using same, and wiring substrate
WO2017159816A1 (en) Insulating resin material, metal-layer-attached insulating resin material using same, and wiring substrate
JP2019102177A (en) Carbon nanotube-containing anisotropically conductive film and method for manufacturing the same
TW202406998A (en) Method for producing aqueous dispersion, and aqueous dispersion
WO2024070415A1 (en) Dispersion composition, fluororesin film, metal-clad laminated board, and method for producing same
TW202404808A (en) Metal-clad laminated board and method for producing same
TW202317697A (en) Sheet manufacturing method, laminate sheet manufacturing method and sheet
JP2022072333A (en) Composition including tetrafluoroethylene polymer, liquid composition comprising the composition, laminate and film
WO2024128221A1 (en) Composition, sheet and method for producing same
JP2022069962A (en) Dispersion and method for producing laminate
JP2015133344A (en) Electromagnetic wave noise suppression member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551656

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873823

Country of ref document: EP

Kind code of ref document: A1