JPH03231843A - Fluororesin laminated sheet - Google Patents

Fluororesin laminated sheet

Info

Publication number
JPH03231843A
JPH03231843A JP2888990A JP2888990A JPH03231843A JP H03231843 A JPH03231843 A JP H03231843A JP 2888990 A JP2888990 A JP 2888990A JP 2888990 A JP2888990 A JP 2888990A JP H03231843 A JPH03231843 A JP H03231843A
Authority
JP
Japan
Prior art keywords
fluororesin
base material
inorganic filler
fiber base
laminate according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2888990A
Other languages
Japanese (ja)
Inventor
Kohei Tsumura
津村 航平
Mitsuhiro Inoue
光弘 井上
Katsuhiro Onose
勝博 小野瀬
Harumi Negishi
春巳 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2888990A priority Critical patent/JPH03231843A/en
Publication of JPH03231843A publication Critical patent/JPH03231843A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/034Organic insulating material consisting of one material containing halogen
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Abstract

PURPOSE:To produce fluororesin laminated sheet, the permittivity of which is small, by a method wherein metal foil is laminated onto one side or both sides of fluororesin-impregnated fiber base material layer, which contains fine inorganic filler powder having specified physical properties, so as to be made into an integral body under heat and pressure. CONSTITUTION:Water soluble dispersing liquid of fluororesin is prepared, to which fine inorganic filler powder having characteristic values such as permittivity of 2 - 4, specific gravity of 1.5 - 3.0, mean particle diameter of 0.05 - 9mum and thermal expansion coefficient of (2 - 20)X10<-6>/ deg.C is added. After fiber base material is impregnated with said water soluble dispersing liquid of fluororesin, fluororesin prepregs consisting of the impregnated base material are laminated to one another so as to provide metal foil on both sides or one side of it in order to be made into an integral body under heat and pressure, resulting in producing fluororesin laminated sheet. Concretely, copper-clad lami nated sheet, which is produced by integrating copper foils 1 on outer surfaces with fluororesin base material layer 2, to which fine molten silica powder is added and which is formed on the inner surface of each of the foils, is exam pled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ふっ素樹脂積層板及びその製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a fluororesin laminate and a method for manufacturing the same.

(従来の技術) プリント配線板としてこれまでは紙、ガラス繊維、ケブ
ラー繊維などの繊維基材にフェノール樹脂、エポキシ樹
脂、ポリイミド樹脂などの熱硬化性樹脂を含浸し、裏面
に銅箔などの金属箔を張った積層板が広く用いられてき
た。
(Prior technology) Until now, printed wiring boards have been made by impregnating a fiber base material such as paper, glass fiber, or Kevlar fiber with a thermosetting resin such as phenol resin, epoxy resin, or polyimide resin, and then using a metal such as copper foil on the back side. Foil-covered laminates have been widely used.

ところが、最近では、これまでの熱硬化性樹脂主体の積
層板に代わってふっ素樹脂を繊維基材に含浸させた積層
板が注目されてきた。このふっ素樹脂を用いた積層板は
次のような特長を有するためである。
However, recently, instead of the conventional laminates mainly made of thermosetting resins, laminates in which the fiber base material is impregnated with fluororesin have attracted attention. This is because the laminate using this fluororesin has the following features.

すなわち、ふっ素樹脂は誘電率、誘電正接がフェノール
樹脂、エポキシ樹脂、ポリイミド樹脂などの熱硬化性樹
脂に比べて小さい点である。
That is, fluororesin has a smaller dielectric constant and dielectric loss tangent than thermosetting resins such as phenol resin, epoxy resin, and polyimide resin.

プリント配線板においてその回路の信号伝送速度及び伝
送損失は基板の誘電率及び誘電正接に大きく影響される
。基板の誘電率が小さいほどその信号の伝送速度は大き
く、また誘電正接が小さいほど伝送損失は小さくなる。
In a printed wiring board, the signal transmission speed and transmission loss of the circuit are greatly influenced by the dielectric constant and dielectric loss tangent of the board. The smaller the dielectric constant of the substrate, the higher the signal transmission speed, and the smaller the dielectric loss tangent, the smaller the transmission loss.

したがって、コンピュータなど信号伝送の高度化、高効
率化が要求される用途では基板には低誘電率、低誘電正
接であることが要求される。このようなことから低誘電
率、低誘電正接のふっ素樹脂基板は注目をあびている。
Therefore, in applications such as computers that require advanced signal transmission and high efficiency, the substrate is required to have a low dielectric constant and a low dielectric loss tangent. For these reasons, fluororesin substrates with low dielectric constants and low dielectric loss tangents are attracting attention.

ところが、このような特長を有するふっ素樹脂積層板に
も次に述べる問題点がある。
However, even the fluororesin laminate having such features has the following problems.

それは、熱膨張係数が大きい点である。The reason is that it has a large coefficient of thermal expansion.

最も一般的なガラス布基材ふっ素樹脂積層板の面方向の
熱膨張係数は50〜70X10−“/’Cとエポキシ樹
脂、ポリイミド樹脂などのガラス布基材熱硬化性樹脂積
層板の10〜15X10−“/’Cに比べて大きい。こ
れは、基板上に接続する部品との接続信頼性の低下をも
たらす。基板とに接続するシリコンチップ(熱膨張係数
3.5X 10−’/’C)  アルミナチップ(熱膨
張係数6〜7 X 10−’/’C)との熱膨張係数差
が大きいと使用時の熱変化により部品と基板との接続部
にクラックあるいは剥離等の欠陥が発生しやすい。
The coefficient of thermal expansion in the plane direction of the most common glass cloth-based fluororesin laminate is 50 to 70X10-''/'C, and that of glass cloth-based thermosetting resin laminates made of epoxy resin, polyimide resin, etc. is 10 to 15X10. -“/' Larger than C. This results in a decrease in connection reliability with components connected on the board. If there is a large difference in the thermal expansion coefficient between the silicon chip (thermal expansion coefficient 3.5 x 10-'/'C) connected to the substrate and the alumina chip (thermal expansion coefficient 6-7 x 10-'/'C), the Defects such as cracks or peeling are likely to occur at the connections between components and substrates due to thermal changes.

また、熱膨張係数が大きいと基板を多層化した時に寸法
安定性が低下し好ましくない。
Moreover, if the coefficient of thermal expansion is large, the dimensional stability will decrease when the substrate is multilayered, which is undesirable.

そこで、これを改良するためふっ素樹脂に無機光1剤を
添加する方法が提案された。
Therefore, in order to improve this problem, a method was proposed in which an inorganic light agent was added to the fluororesin.

(発明が解決しようとする課題) この充填剤として従来チタニア(Tie、)  やチタ
ン酸バリウム(BaTiO*)の微粉末が使用されてい
た。しかし、これらは特開昭62−19451  (B
aTiOs添加)に開示されているように誘電率が太き
(なってしまい、誘電率が小さくできるというふっ素樹
脂積層板の特徴がなくなってしまう問題があり、また寸
法安定性向上の効果も明確でなかった。
(Problems to be Solved by the Invention) As this filler, fine powders of titania (Tie) and barium titanate (BaTiO*) have conventionally been used. However, these are JP-A-62-19451 (B
There is a problem that the dielectric constant becomes large (as disclosed in 2003) (addition of aTiOs), and the characteristic of fluororesin laminates, which can reduce the dielectric constant, is lost, and the effect of improving dimensional stability is not clear. There wasn't.

特にふっ素樹脂積層板をコンピュータの信号伝送の高速
化に使用する場合、信号伝送速度は誘電率の平方根に反
比例するため、誘電率2.4の材料に比べ誘電率4の材
料は伝送速度が77%と低下する。また、このようなコ
ンピュータ用の基板は高度化が要求され高多層化と寸法
安定性が要求される。そこで従来の充填剤では高速化と
寸法安定性を十分に満足することができなかった。
In particular, when using fluororesin laminates to speed up computer signal transmission, the signal transmission speed is inversely proportional to the square root of the dielectric constant, so a material with a dielectric constant of 4 has a transmission speed of 77% compared to a material with a dielectric constant of 2.4. %. In addition, such computer substrates are required to be highly sophisticated, and are required to have a high number of layers and dimensional stability. Therefore, with conventional fillers, it was not possible to fully satisfy high speed and dimensional stability.

そこで本発明は、誘電率が小さくしかも寸法安定性の優
れた無機充填剤入りふっ素樹脂積層板を提案することを
目的としたものである。
Therefore, an object of the present invention is to propose a fluororesin laminate containing an inorganic filler that has a small dielectric constant and excellent dimensional stability.

(課題を解決するための手段) 本発明によるふっ素樹脂積層板は、誘電率2〜4、比重
1.5〜3.0、平均粒径0.05〜9μm、熱膨張係
数2〜20 x 10−’  110Cの無機光1剤微
粉末をふっ素樹脂に添加するという技術的手段を講じて
いる。
(Means for Solving the Problems) The fluororesin laminate according to the present invention has a dielectric constant of 2 to 4, a specific gravity of 1.5 to 3.0, an average particle size of 0.05 to 9 μm, and a coefficient of thermal expansion of 2 to 20 x 10. -' We have taken a technical measure of adding 110C inorganic light 1 agent fine powder to fluororesin.

す、なわち、ふっ素樹脂ダイスバージョン中のふっ素樹
脂と比重、粒径が近くディスパージョンに分散させやす
い特性をもち、しかも誘電率もふっ素樹脂に近い値で熱
膨張係数が小さい無機充填剤を使用することが大きな特
徴である。
In other words, we use an inorganic filler that has a specific gravity and particle size similar to the fluororesin in the fluororesin die version, making it easy to disperse in the dispersion, and also has a dielectric constant close to that of the fluororesin and a small coefficient of thermal expansion. A major feature is that

この充填剤を添加することによりふっ素樹脂積層板の特
徴である誘電率の小さいことをそのまま変えずに、熱膨
張係数を小さくすることが初めて可能になる。これによ
り寸法安定性に優れ誘tk率の小さい、高速演算用コン
ピュータに適した基板を提供することができるようにな
る。
By adding this filler, it becomes possible for the first time to reduce the coefficient of thermal expansion without changing the low dielectric constant, which is a characteristic of fluororesin laminates. This makes it possible to provide a substrate that has excellent dimensional stability and a low dielectric constant, and is suitable for high-speed computing computers.

(作用) 次に本発明について詳細に説明する。(effect) Next, the present invention will be explained in detail.

ふっ素樹脂としてはテトラフロエチレン4UH(Tpg
)、フッ化エチレンプロピレン樹脂(pgp)、パーフ
ロロアルコキシ樹jff(pFA)等があるが、TFF
iが融点が高く最も一般的に使用されている。またこれ
らを混合して用いてもかまわない。ふっ素樹脂ディスパ
ージョンはふっ素樹脂を微粉末の状態で水に分散させた
ものであり、TFEの場合微粉末の粒径が0゜2μm位
、比重は2.1であり、通常樹脂分として水に50〜6
0.t%分散させた状態で市販されている。
As the fluororesin, tetrafluoroethylene 4UH (Tpg
), fluorinated ethylene propylene resin (pgp), perfluoroalkoxy resin jff (pFA), etc., but TFF
i has a high melting point and is most commonly used. Moreover, these may be used in combination. Fluororesin dispersion is made by dispersing fluororesin in water in the form of fine powder. In the case of TFE, the particle size of the fine powder is about 0°2 μm and the specific gravity is 2.1, and it is usually dispersed in water as a resin component. 50-6
0. It is commercially available in the form of t% dispersion.

金属箔としては、銅、アルミニウム、鉄、ステンレス、
ニッケル、銀などの金属あるいは合金の箔が用いられる
が、中でて銅箔は最も一般的にプノント基板の回路部と
して用いられており、しかも安価であるため最も好適で
ある。
Metal foils include copper, aluminum, iron, stainless steel,
Foils made of metals or alloys such as nickel and silver are used, but copper foil is most commonly used as the circuit part of the Phnom board and is the most suitable because it is inexpensive.

無機充填剤としては、ふっ素樹脂の誘電率が2.1であ
るため2〜4程度が良く、4以トでは添加することによ
り、積層板の誘電率が大きくなってしまい好ましくない
。また、2以下でもよいが2以下の適切な充填剤はみあ
たらない。
As the inorganic filler, the dielectric constant of the fluororesin is 2.1, so it is preferable to use an inorganic filler of about 2 to 4. Adding more than 4 is not preferable because the dielectric constant of the laminate increases. Further, although the filler may be 2 or less, no suitable filler with 2 or less has been found.

比重に関しては、ふっ素樹脂の比重が2.1であるため
それに近い1.5〜3.0が分散させやすく適している
。1.5以下では微粉末の状態でみかけの比重がさらに
軽くなりディスパージョンへ均一分散させにくく、また
分散後も分離しやすく好ましくない。逆に3.0以北で
は比重が重いためディスパージョンへ分散させた後、充
填剤が沈降しやすく好ましくない。
Regarding the specific gravity, since the specific gravity of the fluororesin is 2.1, a value close to that of 1.5 to 3.0 is suitable for easy dispersion. If it is less than 1.5, the apparent specific gravity in the fine powder state becomes even lighter, which makes it difficult to uniformly disperse it in a dispersion, and it also tends to separate even after dispersion, which is not preferable. On the other hand, if the specific gravity is higher than 3.0, the filler tends to settle after being dispersed into the dispersion, which is not preferable.

平均粒径に関しては、ディスパージョン中のふっ素樹脂
微粉末の粒径が0.05〜0.5μmであるため、充填
剤の粒径も0.05〜9μmが適している。0.05μ
m以下では粒径が小さすぎ浮遊しゃすくディスパージョ
ンに分散させにくい。また9μm以とではふっ素樹脂微
粉末に比べ粒径が大きすぎ均一に分散させにくく好まし
くない。
Regarding the average particle size, since the particle size of the fluororesin fine powder in the dispersion is 0.05 to 0.5 μm, the particle size of the filler is also suitably 0.05 to 9 μm. 0.05μ
If the particle size is less than m, the particle size is too small to float and be difficult to disperse in a dispersion. Moreover, if the particle size is 9 μm or more, the particle size is too large compared to the fluororesin fine powder and it is difficult to uniformly disperse it, which is not preferable.

充填剤は積層板の熱膨張系数を小さくすることを目的に
添加するため、充填剤の熱膨張係数も小さい方がよく、
2〜20 X 10” ]/’Cが良い。2 X 10
−’以下でもよいが適切な充填剤がみあたらない。また
2 0 X I F’以とでは添加の効果が少なく好ま
しくない。
Fillers are added to reduce the coefficient of thermal expansion of the laminate, so it is better if the coefficient of thermal expansion of the filler is also small.
2 to 20 x 10” /'C is good. 2 x 10
-' or less is acceptable, but no suitable filler has been found. Further, if the amount is 20 X IF' or more, the effect of addition is small and is not preferable.

充填剤の添加量は混合するふっ素樹脂に対し10〜10
0体積%が適切である。1096以下でもよいが効果が
少ない。また1 00%以上添加すると均一分散させに
くく好ましくない。
The amount of filler added is 10 to 10 to the fluororesin to be mixed.
0% by volume is suitable. It may be less than 1096, but the effect will be less. Moreover, if it is added in an amount of 100% or more, it is difficult to uniformly disperse it, which is not preferable.

使用する繊維基材はガラス繊維の織布が最も適している
。ガラス繊維の織布はガラス繊維の材質の種類及び織布
の厚さ・目付の種類が多く、各種のふっ素樹脂積層板を
製造するのに適切である。これらの充填剤に適した材料
として溶融シリカ(shot)微粉末がある。溶融シリ
カ微粉末は誘電率3.5、比重2.2、平均粒径3μm
、熱膨張係数4 X 10’−” 17℃ であり、各
種の要求条件を満足している。しかも溶融シリカは結晶
性シリカに比べ軟かいため機械加工性が良く積層板材料
として適している。
The most suitable fiber base material to be used is glass fiber woven fabric. Glass fiber woven fabrics are available in many types of glass fiber materials, woven fabric thicknesses, and fabric weights, and are suitable for manufacturing various fluororesin laminates. Suitable materials for these fillers include shot fine powder of fused silica. Fused silica fine powder has a dielectric constant of 3.5, a specific gravity of 2.2, and an average particle size of 3 μm.
, a coefficient of thermal expansion of 4 x 10'-''17°C, satisfying various requirements.Furthermore, since fused silica is softer than crystalline silica, it has good machinability and is suitable as a laminate material.

また、ふっ素樹脂は弾性率が低く軟かいため、機械加工
時のガラス繊維の切削性が悪い。そこで充填剤を添加す
ることにより樹脂層の弾性率が太き(なり、ガラス繊維
の切削性が向上する。
Furthermore, since fluororesin has a low elastic modulus and is soft, it has poor cutting properties for glass fibers during machining. Therefore, by adding a filler, the elastic modulus of the resin layer becomes thicker, and the cutting properties of glass fibers are improved.

特にスルーホール穴明は時のドリル加工性が良くなり、
穴内壁の表面粗さが向上する。
In particular, through-hole drilling has improved drilling processability,
The surface roughness of the inner wall of the hole is improved.

(実施例) 本発明の実施例を第1図を用いて説明する。(Example) An embodiment of the present invention will be described with reference to FIG.

第1図は外表面の銅箔1とその内表面に形成された溶融
シリカ微粉末添加ふっ素樹脂基材層2が一体化された銅
張積層板である。
FIG. 1 shows a copper-clad laminate in which a copper foil 1 on the outer surface and a fluororesin base layer 2 added with fine fused silica powder formed on the inner surface are integrated.

ふっ素樹脂基材層はふっ素樹脂を含浸させたガラス布を
加圧加熱して一体化したものである。
The fluororesin base material layer is made by pressing and heating glass cloth impregnated with fluororesin to integrate it.

次にこのふっ素樹脂積層板の製造法を示す。Next, a method for manufacturing this fluororesin laminate will be described.

テトラフロロエチレン(T F E’) 樹脂ティスパ
ージョン(三井フロロケミカル社製)に溶融シリカ微粉
末(龍森社製):誘電率3,5、比重2.2、平均粒径
3μm、熱膨張係数4”10−’17Cを添加する。添
加量はTFB樹脂に対し25体積%とする。このダイス
バージョンに厚さ0、1 mmのガラス布(日東紡社製
)を浸漬し、乾燥・焼成を行い溶融シリカ微粉末添加ふ
っ素樹脂プリプレグを作製する。このプリプレグは厚さ
0.13 mmである。このプリプレグを8枚積層しそ
の両面に厚さ35μmの銅箔を設け、40h f / 
cnl、400℃で加圧・加熱して一体化し、厚さ1世
のふっ素樹脂積層板を作製する。
Tetrafluoroethylene (T F E') Resin tispersion (Mitsui Fluorochemical Co., Ltd.) and fused silica fine powder (Tatsumori Co., Ltd.): dielectric constant 3.5, specific gravity 2.2, average particle size 3 μm, thermal expansion coefficient 4"10-'17C is added. The amount added is 25% by volume based on the TFB resin. A glass cloth (manufactured by Nittobo Co., Ltd.) with a thickness of 0.1 mm is immersed in this dice version, and dried and fired. A fluororesin prepreg with fused silica fine powder added was prepared. This prepreg has a thickness of 0.13 mm. Eight sheets of this prepreg were laminated, and copper foil with a thickness of 35 μm was provided on both sides of the prepreg.
cnl, and are integrated by pressurizing and heating at 400°C to produce a fluororesin laminate with a thickness of 1st grade.

このふっ素樹脂積層板の特性は誘電率2.8(IMHz
)、誘電正接0.0003 (1MH,)熱膨張係数3
0X 10” 17℃、絶縁抵抗6×10“°Ω、銅箔
引きはがし強さ1.8に4f/cmと優れた特性を有し
ていた。
The characteristics of this fluororesin laminate are a dielectric constant of 2.8 (IMHz
), dielectric loss tangent 0.0003 (1MH,) thermal expansion coefficient 3
It had excellent properties such as 0x10" 17°C, insulation resistance 6x10"°Ω, and copper foil peeling strength of 1.8 and 4 f/cm.

次に比較例を示す。Next, a comparative example will be shown.

比較例の積層板を第2図に示す。実施例においてダイス
バージョンに溶融シリカを添加しない以外はすべて同一
条件で行った。このふっ素樹脂積層板の特性は、誘電率
2.6、誘電正接0゜0003、熱膨張係数60 x 
10−” 17℃、絶縁抵抗7 X 10”Ω 銅箔引
きはがし強さ1.9Klf/crnである。
A laminate of a comparative example is shown in FIG. All experiments were carried out under the same conditions as in the examples except that fused silica was not added to the die version. The characteristics of this fluororesin laminate are a dielectric constant of 2.6, a dielectric loss tangent of 0°0003, and a coefficient of thermal expansion of 60 x
10-" 17°C, insulation resistance 7 x 10"Ω, copper foil peeling strength 1.9 Klf/crn.

実施例は比較例と比べ、熱膨張係数が1/2と大幅に低
下するが、誘電率も2.8と低く、その他の特性も充填
剤を入れない積層板と比べ同等である。
The thermal expansion coefficient of the example is significantly reduced to 1/2 compared to the comparative example, but the dielectric constant is also low at 2.8, and other properties are the same as those of the laminate without filler.

また、スルーホール用のドリル加工をした時の穴内壁の
表面粗さは、実施例で20μm、比較例で28μmと実
施例の方が優れていた。
Furthermore, the surface roughness of the inner wall of the hole when drilling a through hole was 20 μm in the example and 28 μm in the comparative example, which was better in the example.

(発明の効果) 本発明の方法によれば、従来のふっ素樹脂積層板に比べ
、熱膨張係数が約1/2となり寸法安定性が向上し、か
つスルーホールのドリル加工性も白土し、誘電率が高く
ならず電気特性にすぐれた積層板が得られた。
(Effects of the Invention) According to the method of the present invention, compared to conventional fluororesin laminates, the coefficient of thermal expansion is approximately 1/2, dimensional stability is improved, and the drilling workability of through holes is also improved. A laminate with excellent electrical properties was obtained without increasing the ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例の構成を示す積層構成図、第
2図は比較例の構成を示す積層構成図である。 1・・・銅箔、2・・・溶融シリカ微粉末人基材層、3
・・・ふっ素樹脂基材層
FIG. 1 is a laminated configuration diagram showing the configuration of an example of the present invention, and FIG. 2 is a laminated configuration diagram showing the configuration of a comparative example. 1... Copper foil, 2... Fused silica fine powder human base material layer, 3
...Fluororesin base material layer

Claims (1)

【特許請求の範囲】 1、誘電率2〜4、比重1.5〜3.0、平均粒径0.
05〜9μm、熱膨張係数2〜20×10^−^6/℃
の無機充填剤微粉末を添加したふっ素樹脂ディスパージ
ョン(水溶性分散液)を含浸させた繊維基材からなるふ
っ素樹脂プリプレグを積層し、その両面又は片面に金属
箔を設け加圧加熱により一体化したことを特徴とするふ
っ素樹脂積層板の製造法。 2、誘電率2〜4、比重1.5〜3.0、平均粒径0.
05〜9μmの無機充填剤微粉末とふっ素樹脂を含浸さ
せた繊維基材層の両面又は片面に金属箔を設け、一体化
されていることを特徴とするふっ素樹脂積層板。 3、ふっ素樹脂ディスパージョンへの無機充填剤の添加
量がふっ素樹脂に対し10〜100体積%である請求項
1記載のふっ素樹脂積層板の製造法。 4、繊維基材がガラス繊維の織布である請求項1記載の
ふっ素樹脂積層板の製造法及び請求項2記載のふっ素樹
脂積層板。 5、金属箔が銅箔である請求項1記載のふっ素樹脂積層
板の製造法及び請求項2記載のふっ素樹脂積層板。 6、無機充填剤が溶融シリカ(SiO_2)微粉末であ
る請求項1記載のふっ素樹脂積層板の製造法及び請求項
2記載のふっ素樹脂積層板。
[Claims] 1. Dielectric constant 2-4, specific gravity 1.5-3.0, average particle size 0.
05~9μm, thermal expansion coefficient 2~20×10^-^6/℃
A fluororesin prepreg made of a fiber base material impregnated with a fluororesin dispersion (water-soluble dispersion) containing fine inorganic filler powder is laminated, metal foil is placed on both or one side of the fluororesin prepreg, and they are integrated by pressure heating. A method for manufacturing a fluororesin laminate, characterized by the following. 2, dielectric constant 2-4, specific gravity 1.5-3.0, average particle size 0.
1. A fluororesin laminate, characterized in that a fiber base material layer impregnated with a fine inorganic filler powder of 0.05 to 9 μm and a fluororesin is provided with metal foil on both or one side of the fiber base material layer and is integrated with the fiber base material layer. 3. The method for producing a fluororesin laminate according to claim 1, wherein the amount of the inorganic filler added to the fluororesin dispersion is 10 to 100% by volume based on the fluororesin. 4. The method for producing a fluororesin laminate according to claim 1, and the fluororesin laminate according to claim 2, wherein the fiber base material is a glass fiber woven fabric. 5. The method for producing a fluororesin laminate according to claim 1, and the fluororesin laminate according to claim 2, wherein the metal foil is copper foil. 6. The method for producing a fluororesin laminate according to claim 1, and the fluororesin laminate according to claim 2, wherein the inorganic filler is fused silica (SiO_2) fine powder.
JP2888990A 1990-02-08 1990-02-08 Fluororesin laminated sheet Pending JPH03231843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2888990A JPH03231843A (en) 1990-02-08 1990-02-08 Fluororesin laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2888990A JPH03231843A (en) 1990-02-08 1990-02-08 Fluororesin laminated sheet

Publications (1)

Publication Number Publication Date
JPH03231843A true JPH03231843A (en) 1991-10-15

Family

ID=12260966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2888990A Pending JPH03231843A (en) 1990-02-08 1990-02-08 Fluororesin laminated sheet

Country Status (1)

Country Link
JP (1) JPH03231843A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688000A (en) * 1990-02-16 1994-03-29 Internatl Business Mach Corp <Ibm> Fluoropolymer composition and its production
JP2010046998A (en) * 2008-08-25 2010-03-04 Chuko Kasei Kogyo Kk Composite sheet and composite body
WO2021070805A1 (en) * 2019-10-10 2021-04-15 日東電工株式会社 Plate-shaped composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688000A (en) * 1990-02-16 1994-03-29 Internatl Business Mach Corp <Ibm> Fluoropolymer composition and its production
JP2010046998A (en) * 2008-08-25 2010-03-04 Chuko Kasei Kogyo Kk Composite sheet and composite body
WO2021070805A1 (en) * 2019-10-10 2021-04-15 日東電工株式会社 Plate-shaped composite material

Similar Documents

Publication Publication Date Title
EP0248617B1 (en) Process for making substrates for printed circuit boards
US4876120A (en) Tailorable multi-layer printed wiring boards of controlled coefficient of thermal expansion
EP0313961B1 (en) Glass fiber reinforced fluoropolymeric circuit laminate
EP0244699A2 (en) Substrate for a printed circuit board
JP2009164582A (en) Lightweight circuit board with conductivity constraining core
US5061548A (en) Ceramic filled fluoropolymeric composite material
JPS607796A (en) Copper-lined laminated board for printed circuit and method of producing same
JPH03231843A (en) Fluororesin laminated sheet
JP2956370B2 (en) Copper clad laminate and method for producing the same
US5281466A (en) Low volume fraction ceramic filled fluoropolymeric composite material
JPH04125140A (en) Production of fluororesin laminated sheet
JP3077857B2 (en) Metal base circuit board
JP2612129B2 (en) Laminated board
JPH0697670A (en) Board for multilayer printed wiring
JPH05291711A (en) Board for high-frequency circuit use
JP2023002495A (en) Dielectric material and flexible copper clad laminate including the same
JP3263173B2 (en) Method for producing resin laminate and method for producing metal-clad laminate
JP3605917B2 (en) Manufacturing method of laminated board with inner layer circuit
JP2001015877A (en) Metal base printed wiring board, metal base multilayered printed wiring board and manufacture thereof
JP2002053682A (en) Method for producing prepreg, prepreg, printed circuit board and laminated board
JPH035140A (en) Laminated board
JP2022186605A (en) laminate
JPH03231840A (en) Thermoplastic resin laminated sheet
JP2917645B2 (en) Manufacturing method of copper clad laminate
JPH06305078A (en) Production of laminated sheet