JP2001015877A - Metal base printed wiring board, metal base multilayered printed wiring board and manufacture thereof - Google Patents

Metal base printed wiring board, metal base multilayered printed wiring board and manufacture thereof

Info

Publication number
JP2001015877A
JP2001015877A JP11186092A JP18609299A JP2001015877A JP 2001015877 A JP2001015877 A JP 2001015877A JP 11186092 A JP11186092 A JP 11186092A JP 18609299 A JP18609299 A JP 18609299A JP 2001015877 A JP2001015877 A JP 2001015877A
Authority
JP
Japan
Prior art keywords
wiring board
δhm
heat
film
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11186092A
Other languages
Japanese (ja)
Other versions
JP3514669B2 (en
Inventor
Shingetsu Yamada
紳月 山田
Jun Takagi
潤 高木
Koichiro Taniguchi
浩一郎 谷口
Toshihiro Miyake
敏広 三宅
Makoto Totani
眞 戸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Denso Corp
Original Assignee
Mitsubishi Plastics Inc
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc, Denso Corp filed Critical Mitsubishi Plastics Inc
Priority to JP18609299A priority Critical patent/JP3514669B2/en
Publication of JP2001015877A publication Critical patent/JP2001015877A/en
Application granted granted Critical
Publication of JP3514669B2 publication Critical patent/JP3514669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal base multilayered printed wiring board by using a solder heat resistant thermoplastic insulating layer that can be thermally bonded to a conductor foil and a metal base at a relatively low temperature, and yet can surely accomplish integral bonding. SOLUTION: This metal base multilayered printed wiring board is formed by preparing a thermally bondable film 10 for interlayer connection of a layered electrical circuit by opening holes 8 that penetrate both faces of a filmy insulator 7 and filling these holes with a conductive paste 9, and forming a filmy wiring board 6 by thermally bonding a conductor foil and providing printed circuits 11 on both faces of the film 10, then thermally bonding the filmy wiring board 6 on one or both faces of a metal board 4 via an insulating layer 5. In the multilayered printed wiring board, the heat quantity of crystal fusion ΔHm and the heat quantity of crystallization ΔHc that is generated by crystallization during temperature rise, of a thermoplastic resin composition constituting the insulating layer 5 and the thermally bonded filmy wiring board, having characteristics that satisfy a relation given by the expression (ΔHm-ΔHc)/ΔHm}<=0.5 is thermally bonded so as to satisfy a relation (ΔHm-ΔHc)/ΔHm}>=0.7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、金属ベースプリ
ント配線基板、金属ベース多層プリント配線板およびそ
の製造方法に関する。
The present invention relates to a metal-based printed wiring board, a metal-based multilayer printed wiring board, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】金属ベースプリント配線板として、アル
ミニウム、鉄、銅、亜鉛などの金属ベース(基材または
コア)の片面または両面に、絶縁層を介して導体箔を重
ねて接着一体化し、導体箔をエッチングしてプリント回
路を形成したものが知られている。
2. Description of the Related Art As a metal-based printed wiring board, a conductor foil is laminated on one or both sides of a metal base (base material or core) such as aluminum, iron, copper, zinc, etc. via an insulating layer and bonded and integrated to form a conductor. It is known that a printed circuit is formed by etching a foil.

【0003】金属ベースプリント配線板は、金属ベース
の特性によって耐熱性、難燃性、シールド効果、機械的
強度などが優れたものであり、特に熱放散性が良好であ
るという特性を有する。すなわち、金属ベースプリント
配線板は、ベースの金属が高い熱伝導率を有することか
ら、伝導による熱分散性が良く、基板温度の局部的な上
昇が抑えられ、放熱効果が高いものである。
[0003] A metal-based printed wiring board is excellent in heat resistance, flame retardancy, shielding effect, mechanical strength, and the like due to the characteristics of the metal base, and has a characteristic that heat dissipation is particularly good. That is, since the metal of the base has a high thermal conductivity, the metal base printed wiring board has good heat dispersion due to conduction, suppresses a local rise in the substrate temperature, and has a high heat dissipation effect.

【0004】ところで、金属ベースプリント配線板の絶
縁層を形成する素材としては、アルミナなどの放熱性の
良いフィラーを含有したエポキシ樹脂が一般的である。
As a material for forming an insulating layer of a metal-based printed wiring board, an epoxy resin containing a filler having good heat dissipation properties such as alumina is generally used.

【0005】しかしながら、プレス前の半硬化状態のエ
ポキシプリプレグの保存安定性の問題や、プレスに2時
間程度の長時間を要するなど、作業性の面で不具合があ
る。
[0005] However, there are problems in workability such as a problem of storage stability of the semi-cured epoxy prepreg before pressing and a long time of about 2 hours for pressing.

【0006】[0006]

【発明が解決しようとする課題】そこで、この発明の課
題は上記した問題点を解決し、ハンダ耐熱性を有する熱
可塑性の絶縁層を用いて導体箔および金属ベースに対し
て比較的低温で短時間で熱融着することができ、しかも
確実に接着一体化された金属ベースプリント配線板また
は金属ベース多層プリント配線板にすることである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problem and to use a thermoplastic insulating layer having solder heat resistance at a relatively low temperature with respect to a conductive foil and a metal base. An object of the present invention is to provide a metal-based printed wiring board or a metal-based multilayer printed wiring board that can be heat-fused in a short time and that is securely bonded and integrated.

【0007】また、本願の製造方法に係る発明の課題と
しては、導体箔および金属ベースとを熱可塑性の絶縁層
で簡単な工程で確実に熱融着して金属ベース多層プリン
ト配線板を効率良く製造することである。
Another object of the invention according to the manufacturing method of the present invention is to surely heat-bond a conductive foil and a metal base with a thermoplastic insulating layer in a simple process to efficiently produce a metal-based multilayer printed wiring board. Is to manufacture.

【0008】[0008]

【課題を解決するための手段】本願の金属ベースプリン
ト配線板に係る発明においては、上記の課題を解決する
ために、金属板の片面または両面に熱可塑性樹脂組成物
からなる絶縁層を介して導体箔を熱融着し、この導体箔
でプリント回路を形成した金属ベースプリント配線板に
おいて、前記絶縁層が、結晶融解ピーク温度260℃以
上のポリアリールケトン樹脂65〜35重量%と、非晶
性ポリエーテルイミド樹脂35〜65重量%とを含有す
る熱可塑性樹脂組成物からなり、この熱可塑性樹脂組成
物は、示差走査熱量測定で昇温した時に測定されるガラ
ス転移温度が150〜230℃、結晶融解熱量ΔHmと
昇温中の結晶化により発生する結晶化熱量ΔHcとの関
係が下記の式(A) で示される関係を満たす特性のものを
下記の式(B) で示される関係を満たすように熱融着した
ものであることを特徴とする金属ベースプリント配線板
としたのである。
In the invention relating to the metal-based printed wiring board of the present application, in order to solve the above-mentioned problems, one or both sides of the metal plate are interposed via an insulating layer made of a thermoplastic resin composition. In a metal-based printed wiring board in which a conductive foil is heat-sealed and a printed circuit is formed with the conductive foil, the insulating layer is made of 65 to 35% by weight of a polyarylketone resin having a crystal melting peak temperature of 260 ° C. or higher, and amorphous. And a glass transition temperature of 150 to 230 ° C. measured when the temperature of the thermoplastic resin composition is increased by differential scanning calorimetry. The relationship between the heat of crystal melting .DELTA.Hm and the heat of crystallization .DELTA.Hc generated by crystallization during temperature increase satisfying the relationship represented by the following formula (A) is represented by the following formula (B). It was a metal base printed circuit board, characterized in that is obtained by heat-sealing so as to satisfy the relationship.

【0009】 式(A): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5 式(B): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 前記導体箔としては、表面粗化されている導体箔を採用
することが好ましく、前記金属板としては、表面粗化さ
れている金属板を採用することが好ましい。
Formula (A): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5 Formula (B): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7 The conductive foil has a roughened surface. Preferably, a conductive foil is used, and as the metal plate, a metal plate having a roughened surface is preferably used.

【0010】また、本願の金属ベース多層プリント配線
板に係る発明においては、前記の課題を解決するため
に、熱可塑性樹脂組成物からなるフィルム状絶縁体に両
面貫通孔を形成すると共に貫通孔内に導電性ペーストを
充填して積層電気回路の層間接続用熱融着性フィルムを
設け、この層間接続用熱融着用フィルムの両面に導体箔
を熱融着しかつ回路形成してフィルム状配線基板を設
け、金属板の片面または両面に前記熱可塑性樹脂組成物
からなる絶縁層を介してフィルム状配線基板を熱融着し
た金属ベース多層プリント配線板において、前記熱融着
された絶縁層および熱融着されたフィルム状配線基板を
構成する熱可塑性樹脂組成物が、結晶融解ピーク温度2
60℃以上のポリアリールケトン樹脂65〜35重量%
と、非晶性ポリエーテルイミド樹脂35〜65重量%と
を含有し、この熱可塑性樹脂組成物は、示差走査熱量測
定で昇温した時に測定されるガラス転移温度が150〜
230℃、結晶融解熱量ΔHmと昇温中の結晶化により
発生する結晶化熱量ΔHcとの関係が下記の式(A) で示
される関係を満たす特性のものを加熱して下記の式(B)
で示される関係を満たすように熱融着されたものである
ことを特徴とする金属ベースプリント配線板としたので
ある。
In the invention according to the metal-based multilayer printed wiring board of the present application, in order to solve the above-mentioned problems, a double-sided through-hole is formed in a film-like insulator made of a thermoplastic resin composition, and the inside of the through-hole is formed. A heat-fusible film for interlayer connection of a laminated electric circuit is provided by filling a conductive paste into the film, and a conductive foil is heat-fused on both sides of the heat-sealing film for interlayer connection and a circuit is formed to form a film-like wiring board. A metal-based multilayer printed wiring board in which a film-shaped wiring board is heat-sealed on one or both sides of a metal plate via an insulating layer made of the thermoplastic resin composition, wherein the heat-sealed insulating layer and heat The thermoplastic resin composition constituting the fused film-shaped wiring board has a crystal melting peak temperature of 2
65-35% by weight of polyarylketone resin at 60 ° C or higher
And 35 to 65% by weight of an amorphous polyetherimide resin, and the thermoplastic resin composition has a glass transition temperature of 150 to 50 when measured by differential scanning calorimetry.
At 230 ° C., a material having a characteristic in which the relationship between the heat of crystal melting ΔHm and the heat of crystallization ΔHc generated by crystallization during temperature increase satisfies the relationship represented by the following formula (A) is heated to obtain the following formula (B)
A metal-based printed wiring board characterized by being heat-sealed so as to satisfy the relationship shown in (1).

【0011】 式(A): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5 式(B): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 前記導体箔としては、表面粗化されている導体箔を採用
することが好ましく、前記金属板としては、表面粗化さ
れている金属板を採用することが好ましい。
Formula (A): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5 Formula (B): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7 The conductive foil has a roughened surface. Preferably, a conductive foil is used, and as the metal plate, a metal plate having a roughened surface is preferably used.

【0012】上記したように構成されるこの発明の金属
ベースプリント配線板または金属ベース多層プリント配
線板は、結晶性のポリアリールケトン樹脂と非晶性のポ
リエーテルイミド樹脂を所定量配合した絶縁層を有す
る。
A metal-based printed wiring board or a metal-based multilayer printed wiring board according to the present invention having the above-described structure has an insulating layer containing a predetermined amount of a crystalline polyarylketone resin and an amorphous polyetherimide resin. Having.

【0013】絶縁層は、ガラス転移温度が150〜23
0℃のものであり、かつ結晶融解熱量ΔHmと昇温中の
結晶化により発生する結晶化熱量ΔHcとの関係が前記
式(A) で示される関係を満たすものを所定条件で加熱
し、熱融着後に前記式(B) で示される関係を満たすよう
にしたものであって、熱融着時の加熱によりポリアリー
ルケトン樹脂の結晶性が適当に進行しているので、26
0℃に耐えるハンダ耐熱性を確実に有する絶縁層にな
り、機械的強度および電気的絶縁性にも優れたものであ
る。
The insulating layer has a glass transition temperature of 150 to 23.
A material having a temperature of 0 ° C. and having a relationship between the heat of crystal fusion ΔHm and the heat of crystallization ΔHc generated by crystallization during temperature increase satisfying the relationship represented by the above formula (A) is heated under predetermined conditions. After the fusion, the relationship represented by the formula (B) is satisfied. Since the crystallinity of the polyarylketone resin is appropriately advanced by heating at the time of thermal fusion, 26
The insulating layer surely has solder heat resistance to withstand 0 ° C., and has excellent mechanical strength and electrical insulation.

【0014】そして、この絶縁層は、導体箔との接着強
度も大きく、導体箔をエッチングして形成した電気回路
は絶縁層に強固に接着して剥離し難い。通常、表面が粗
化されている導体箔もしくは表面粗化されている金属板
を採用するか、または何れも粗化された導体箔および金
属板を使用して接着強度をより大きくする。
The insulating layer has a high adhesive strength to the conductor foil, and an electric circuit formed by etching the conductor foil is firmly adhered to the insulating layer and hardly peels off. Usually, a conductor foil having a roughened surface or a metal plate having a roughened surface is employed, or a roughened conductor foil and a metal plate are used to increase the adhesive strength.

【0015】また、フィルム状絶縁体と導体箔の接着
は、層間にエポキシ樹脂などの接着剤を介在させないで
熱融着するので、金属ベースプリント配線板または金属
ベース多層プリント配線板の耐熱性、耐薬品性、電気特
性などの諸特性は接着剤の特性に支配されることがな
く、絶縁層の優れた諸特性が充分に活かされる。
Further, since the film-like insulator and the conductor foil are bonded by heat without interposing an adhesive such as epoxy resin between the layers, the heat resistance of the metal-based printed wiring board or the metal-based multilayer printed wiring board can be improved. Various properties such as chemical resistance and electrical properties are not governed by the properties of the adhesive, and the excellent properties of the insulating layer are fully utilized.

【0016】なお、積層電気回路の層間接続用熱融着性
フィルムは、絶縁性の前記熱可塑性樹脂成物で形成され
ており、両面貫通孔内の導電性ペーストによって両面貫
通孔の開口部が電気的接点となって、フィルムの片面ま
たは両面に配置形成された電気回路の要所を層厚方向に
導通する。
The heat-fusible film for interlayer connection of the laminated electric circuit is formed of the insulating thermoplastic resin composition, and the opening of the double-sided through-hole is formed by the conductive paste in the double-sided through-hole. It serves as an electrical contact and conducts in a layer thickness direction at a key point of an electric circuit formed on one or both sides of the film.

【0017】本願の金属ベース多層プリント配線板の製
造方法に係る発明においては、前記の課題を解決するた
め、結晶融解ピーク温度260℃以上のポリアリールケ
トン樹脂65〜35重量%と、非晶性ポリエーテルイミ
ド樹脂35〜65重量%とを含有し、示差走査熱量測定
で昇温した時に測定されるガラス転移温度が150〜2
30℃、結晶融解熱量ΔHmと昇温中の結晶化により発
生する結晶化熱量ΔHcとの関係が下記の式(I) で示さ
れる関係を満たす熱可塑性樹脂組成物からなるフィルム
状絶縁体を形成し、このフィルム状絶縁体に両面貫通孔
を形成すると共に貫通孔内に導電性ペーストを充填して
積層電気回路の層間接続用熱融着性フィルムを形成し、
この層間接続用熱融着性フィルムの両面に導体箔を重ね
て前記熱可塑性樹脂組成物が下記の式(II)で示される関
係を満たすように熱融着した後、前記導体箔に回路を形
成してフィルム状配線基板を設け、金属板の片面または
両面に前記フィルム状絶縁体を介して前記フィルム状配
線基板を重ね、各層を構成する熱可塑性樹脂組成物が下
記の(III) で示される関係を満たすように熱融着するこ
とからなる金属ベース多層プリント配線板の製造方法と
したのである。
In the invention according to the method for manufacturing a metal-based multilayer printed wiring board of the present invention, 65-35% by weight of a polyarylketone resin having a crystal melting peak temperature of 260 ° C. or more is used to solve the above-mentioned problems. 35 to 65% by weight of a polyetherimide resin, and has a glass transition temperature of 150 to 2 when measured by differential scanning calorimetry.
Forming a film-like insulator made of a thermoplastic resin composition in which the relationship between the heat of crystal fusion ΔHm at 30 ° C. and the heat of crystallization ΔHc generated by crystallization during temperature increase satisfies the relationship represented by the following formula (I): Then, a double-sided through-hole is formed in the film-shaped insulator and a conductive paste is filled in the through-hole to form a heat-fusible film for interlayer connection of a laminated electric circuit,
After laminating a conductor foil on both sides of the heat-fusible film for interlayer connection and heat-sealing the thermoplastic resin composition so as to satisfy the relationship represented by the following formula (II), a circuit is formed on the conductor foil. Formed and provided a film-like wiring board, the film-like wiring board is overlapped on one or both sides of a metal plate via the film-like insulator, the thermoplastic resin composition constituting each layer is shown in the following (III) Thus, a method of manufacturing a metal-based multilayer printed wiring board, which is performed by heat-sealing so as to satisfy the relationship described above, was adopted.

【0018】 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.35 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5 式(III): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 上記多層プリント配線板の製造方法においては、層間接
続用熱融着性フィルムの両面に導体箔を重ねて熱融着す
る際に、熱可塑性樹脂組成物の熱融着後の結晶融解熱量
ΔHmと昇温中の結晶化により発生する結晶化熱量ΔH
cとの関係が前記式(II)で示される関係を満たすように
熱融着する。
Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.35 Formula (II): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5 Formula (III): [(ΔHm−ΔHc) /ΔHm]≧0.7 In the method for producing a multilayer printed wiring board, when the conductor foil is laminated on both sides of the heat-fusible film for interlayer connection and heat-sealed, the heat-sealing of the thermoplastic resin composition is performed. Heat of crystal melting ΔHm and heat of crystallization ΔH generated by crystallization during heating
Thermal fusion is performed so that the relationship with c satisfies the relationship represented by the above formula (II).

【0019】そして、金属板の片面または両面にフィル
ム状絶縁体を重ね、その上に前述した層間接続用熱融着
性フィルムの両面に導体箔で回路形成したフィルム状配
線基板を重ね、前記式(II)で示される関係を有する熱可
塑性樹脂組成物が前記式(III) で示される関係を満たす
ように熱融着する。
Then, a film-like insulator is laminated on one or both sides of the metal plate, and a film-like wiring board formed with a conductive foil on both sides of the above-mentioned heat-fusible film for interlayer connection is laminated thereon. The thermoplastic resin composition having the relationship represented by the formula (II) is thermally fused so as to satisfy the relationship represented by the formula (III).

【0020】このようにすると、熱融着後の熱可塑性樹
脂組成物は、ポリアリールケトン樹脂の結晶性が適当に
進行し、260℃に耐えるハンダ耐熱性を確実に有する
絶縁層になり、かつ導体箔との接着強度も大きくなる。
In this way, the thermoplastic resin composition after the heat fusion becomes an insulating layer having a solder heat resistance of 260 ° C., in which the crystallinity of the polyarylketone resin proceeds appropriately, and The bonding strength with the conductor foil also increases.

【0021】そして、加熱加圧による熱融着を行なう時
には熱可塑性樹脂が導体箔との接着温度領域で弾性率が
低下し、微細な配線ピッチにも適当な低粘度の熱可塑性
樹脂が確実に充填されて、内層回路の埋め込み性、すな
わち絶縁の信頼性が極めて高い良好な金属ベース多層プ
リント配線板を製造できる。
When performing heat fusion by heating and pressurizing, the elastic modulus of the thermoplastic resin is reduced in the temperature range where the thermoplastic resin adheres to the conductive foil, and a thermoplastic resin having a low viscosity suitable for a fine wiring pitch is ensured. It is possible to manufacture a good metal-based multilayer printed wiring board that is filled and has extremely high embedding of the inner layer circuit, that is, extremely high insulation reliability.

【0022】なお、フィルム状絶縁体と導体箔の接着
は、層間にエポキシ樹脂などの接着剤を介在させずに熱
融着するため、耐熱性、耐薬品性、電気特性などの諸特
性は接着剤の特性に支配されることがなく、絶縁層の優
れた諸特性が充分に生かされる。また、製造工程中に接
着剤その他の液状積層材料の塗布・乾燥の工程がないの
で、製造効率の良い多層プリント配線板の製造方法とな
る。
Since the film-like insulator and the conductive foil are bonded by heat without interposing an adhesive such as an epoxy resin between the layers, various properties such as heat resistance, chemical resistance, and electric properties are not bonded. The excellent properties of the insulating layer are fully utilized without being influenced by the properties of the agent. Also, since there is no step of applying and drying an adhesive or other liquid laminated material during the manufacturing process, a method of manufacturing a multilayer printed wiring board with high manufacturing efficiency can be achieved.

【0023】[0023]

【発明の実施の形態】この発明の金属ベースプリント配
線板、金属ベース多層プリント配線板およびその製造方
法の実施形態を、以下に添付図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a metal-based printed wiring board, a metal-based multilayer printed wiring board and a method for manufacturing the same according to the present invention will be described below with reference to the accompanying drawings.

【0024】図1に示す第1実施形態は、金属ベースプ
リント配線板に関し、表面粗化されているアルミニウム
板などの金属板1の片面に結晶融解ピーク温度260℃
以上のポリアリールケトン樹脂65〜35重量%と非晶
性ポリエーテルイミド樹脂35〜65重量%とを含有す
る熱可塑性樹脂組成物からなる絶縁層2を介して粗化銅
箔等の表面粗化されている導体箔を熱融着し、この導体
箔をサブトラクティブ法によってプリント回路3を形成
した金属ベースプリント配線板であり、プリント回路3
を接着固定している熱融着後の絶縁層2は、示差走査熱
量測定で昇温した時に測定されるガラス転移温度が15
0〜230℃、結晶融解熱量ΔHmと昇温中の結晶化に
より発生する結晶化熱量ΔHcとの関係が下記の式(A)
で示される関係を満たす特性のものを加熱して下記の式
(B) で示される関係を満たすように熱融着されたもので
ある。
The first embodiment shown in FIG. 1 relates to a metal-based printed wiring board, and has a crystal melting peak temperature of 260 ° C. on one surface of a metal plate 1 such as an aluminum plate whose surface is roughened.
Surface roughening of a roughened copper foil or the like via an insulating layer 2 made of a thermoplastic resin composition containing 65 to 35% by weight of the above polyaryl ketone resin and 35 to 65% by weight of an amorphous polyetherimide resin. A metal-based printed wiring board in which a printed circuit 3 is formed by a subtractive method by heat-sealing a conductive
The heat-fused insulating layer 2 that has the glass transition temperature measured by differential scanning calorimetry has a glass transition temperature of 15
0-230 ° C., the relationship between the heat of crystal melting ΔHm and the heat of crystallization ΔHc generated by crystallization during heating is expressed by the following formula (A).
Heat the material that satisfies the relationship shown by the following formula
It was thermally fused to satisfy the relationship shown in (B).

【0025】 式(A): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5 式(B): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 図1の鎖線に示すように、金属ベースプリント配線板
は、例えば1.0〜1.6mm程度の厚さの金属板1の
両面に対して、熱可塑性樹脂組成物からなる25〜50
μm厚の絶縁層2を介して導体箔を熱融着し、この導体
箔でプリント回路3を形成した2層(両面)構造の金属
ベースプリント配線板であってもよい。
Formula (A): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5 Formula (B): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7 As shown by a chain line in FIG. The printed wiring board is formed of a thermoplastic resin composition on both sides of the metal plate 1 having a thickness of, for example, about 1.0 to 1.6 mm.
A metal-based printed wiring board having a two-layer (both sides) structure in which a conductive foil is heat-sealed through an insulating layer 2 having a thickness of μm and a printed circuit 3 is formed with the conductive foil.

【0026】図2(c)の実線に示す第2実施形態は、
金属板4の片面に熱可塑性樹脂組成物からなる絶縁層5
を介してフィルム状配線基板6を熱融着した金属ベース
多層プリント配線板である。
The second embodiment shown by the solid line in FIG.
An insulating layer 5 made of a thermoplastic resin composition on one surface of a metal plate 4
This is a metal-based multilayer printed wiring board in which a film-shaped wiring board 6 is heat-sealed through the substrate.

【0027】図2(a)、(b)に示すように、層間接
続用熱融着性フィルム10は、熱可塑性樹脂組成物から
なるフィルム状絶縁体7の両面貫通孔8に導電性ペース
ト9を充填したものであり、その両面に導体箔を熱融着
しかつサブトラクティブ法によってプリント回路11を
形成したものがフィルム状配線基板6である。
As shown in FIGS. 2 (a) and 2 (b), the heat-fusible film 10 for interlayer connection is provided with a conductive paste 9 in both side through holes 8 of a film insulator 7 made of a thermoplastic resin composition. The printed wiring board 6 is obtained by heat-sealing conductive foils on both surfaces thereof and forming a printed circuit 11 by a subtractive method.

【0028】第2実施形態の金属ベース多層プリント配
線板の製造方法を詳細に説明すると、先ず、前記した所
定組成および熱特性の熱可塑性樹脂組成物からなるフィ
ルム状絶縁体7に、レーザー加工により両面貫通孔8を
形成し、この内部に導電性ペースト9を充填して積層電
気回路の層間接続用熱融着性フィルム10を形成し、さ
らにこの層間接続用熱融着性フィルム10の両面に粗化
銅箔等の導体箔を真空熱プレス機で熱融着し、これをサ
ブトラクティブ法によって不要部分を除いてプリント回
路11を形成し、金属板の片面(または図2(c)の鎖
線に示すように両面)にフィルム状絶縁体7を介してフ
ィルム状配線基板6を重ね、熱融着により積層一体化し
て得られる。
The method for manufacturing a metal-based multilayer printed wiring board according to the second embodiment will be described in detail. First, a film-like insulator 7 made of a thermoplastic resin composition having the above-mentioned predetermined composition and thermal characteristics is formed by laser processing. A double-sided through hole 8 is formed, and a conductive paste 9 is filled therein to form a heat-fusible film 10 for interlayer connection of a laminated electric circuit. A conductor foil such as a roughened copper foil is heat-sealed by a vacuum heat press machine, and the printed circuit 11 is formed by removing the unnecessary portion by a subtractive method. The printed circuit 11 is formed on one side of a metal plate (or a chain line in FIG. 2C). The film-like wiring board 6 is superposed on the film-like insulator 7 on both sides as shown in FIG.

【0029】絶縁層5の材料となるフィルム状絶縁体7
を製造するには、ポリアリールケトン樹脂と、非晶性ポ
リエーテルイミド樹脂とを配合し、式(I) で示される所
定の結晶性のものを後述する手法で調製する。
Film insulator 7 to be used as material of insulating layer 5
Is prepared by blending a polyarylketone resin and an amorphous polyetherimide resin, and preparing a resin having a predetermined crystallinity represented by the formula (I) by a method described later.

【0030】 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.35 フィルム状絶縁体7に導体箔を熱融着する際には、熱可
塑性樹脂組成物のガラス転移点(Tg ) は越えるが、結
晶融解ピーク温度(Tc ) は越えず、すなわち非晶性が
維持される所定温度範囲に加熱し、好ましくは熱可塑性
樹脂組成物が前記式(II)で示される特性を維持する導体
箔が熱融着されたフィルム状基板を作製する。
Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.35 When the conductive foil is heat-sealed to the film-like insulator 7, the glass transition point (Tg) of the thermoplastic resin composition is obtained. Is exceeded, but does not exceed the crystal melting peak temperature (Tc), that is, it is heated to a predetermined temperature range where amorphousness is maintained, and preferably, the thermoplastic resin composition maintains the characteristics represented by the formula (II). A film-shaped substrate to which a conductive foil is thermally fused is produced.

【0031】 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5 導体箔に対する導電性回路の形成方法は、周知のサブト
ラクティブ法を採用できるが、アディティブ法を採用す
ることもできる。因みに、サブトラクティブ法の具体例
としては、銅箔に紫外線硬化性樹脂からなるドライフィ
ルムをラミネートし、次に導電性回路の切り抜き型を形
成したパターンフィルムをドライフィルムに密着させた
状態で紫外線に露光させ、その後、パターンフィルムお
よび未硬化のドライフィルムを取り除いて塩化第二鉄溶
液でエッチングを行ない、導電性回路の不要部分の銅箔
を除去し、次に、水酸化ナトリム溶液に浸漬して残った
銅箔上のドライフィルムを除去して導電性回路を形成す
る。
Formula (II): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5 As a method of forming a conductive circuit on the conductive foil, a well-known subtractive method can be employed, but an additive method can also be employed. . Incidentally, as a specific example of the subtractive method, a dry film made of an ultraviolet curable resin is laminated on a copper foil, and then a pattern film formed with a cutout mold of a conductive circuit is exposed to ultraviolet light in a state where the pattern film is in close contact with the dry film. Exposure, then remove the pattern film and uncured dry film, perform etching with a ferric chloride solution to remove the copper foil in unnecessary portions of the conductive circuit, and then immerse in a sodium hydroxide solution The remaining dry film on the copper foil is removed to form a conductive circuit.

【0032】金属板4の片面または両面に絶縁層5(フ
ィルム状絶縁体7)を重ね、さらにフィルム状配線基板
6を重ねて一括して熱融着する際には、各層を構成する
熱可塑性樹脂組成物の結晶融解熱量ΔHmと昇温中の結
晶化により発生する結晶化熱量ΔHcとの関係が式(II
I) で示される関係を満たすように熱融着する。
When the insulating layer 5 (film-like insulator 7) is superimposed on one or both sides of the metal plate 4 and the film-like wiring board 6 is further superimposed and heat-sealed at once, the thermoplastic layers constituting the respective layers are formed. The relationship between the heat of crystallization ΔHm of the resin composition and the heat of crystallization ΔHc generated by crystallization during heating is expressed by the formula (II)
Thermal fusion is performed to satisfy the relationship shown in (I).

【0033】 式(III): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 このようにすると、熱可塑性樹脂組成物の結晶融解ピー
ク温度(Tc ) 付近(例えば230〜250℃)まで加
熱することになって、確実な熱融着が可能になると共に
熱可塑性樹脂組成物の結晶化が進み、ハンダ耐熱性に優
れた金属ベース多層プリント配線板を製造できる。
Formula (III): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7 In this manner, the thermoplastic resin composition is heated to around the crystal melting peak temperature (Tc) (for example, 230 to 250 ° C.). As a result, reliable heat fusion becomes possible and crystallization of the thermoplastic resin composition proceeds, so that a metal-based multilayer printed wiring board excellent in solder heat resistance can be manufactured.

【0034】この発明においてフィルム状絶縁体を構成
する第1の成分であるポリアリールケトン樹脂は、その
構造単位に芳香核結合、エーテル結合およびケトン結合
を含む熱可塑性樹脂であり、すなわち、フェニルケトン
とフェニルエーテルの組み合わせ構造からなる耐熱性の
結晶性高分子である。
In the present invention, the polyaryl ketone resin as the first component constituting the film-like insulator is a thermoplastic resin having an aromatic nucleus bond, an ether bond and a ketone bond in its structural unit, that is, phenyl ketone. And a phenyl ether.

【0035】ポリアリールケトン樹脂の代表例として
は、ポリエーテルケトン、ポリエーテルエーテルケト
ン、ポリエーテルケトンケトンなどがあるが、この発明
においては、下記の化1の式に示されるポリエーテルエ
ーテルケトンが好適なものとして使用できる。
Typical examples of the polyarylketone resin include polyetherketone, polyetheretherketone, and polyetherketoneketone. In the present invention, polyetheretherketone represented by the following formula 1 is used. It can be used as suitable.

【0036】[0036]

【化1】 Embedded image

【0037】フィルム状絶縁体を構成する第2の成分で
ある非晶性ポリエーテルイミド樹脂は、その構造単位に
芳香核結合、エーテル結合およびイミド結合を含む非晶
性熱可塑性樹脂であり、この発明においては、下記の化
2の式に示されるポリエーテルイミド樹脂を適用でき
る。
The amorphous polyetherimide resin as the second component constituting the film-shaped insulator is an amorphous thermoplastic resin having an aromatic nucleus bond, an ether bond and an imide bond in its structural unit. In the present invention, a polyetherimide resin represented by the following formula 2 can be applied.

【0038】[0038]

【化2】 Embedded image

【0039】そして、この発明に用いるフィルム状絶縁
体は、上記した2種類の耐熱性樹脂を所定の割合でブレ
ンドした組成物からなり、すなわち、熱可塑性樹脂組成
物は、結晶融解ピーク温度260℃以上のポリアリール
ケトン樹脂65〜35重量%と非晶性ポリエーテルイミ
ド樹脂35〜65重量%とからなり、示差走査熱量測定
で昇温した時に測定されるガラス転移温度が150〜2
30℃のものである。
The film-like insulator used in the present invention is composed of a composition obtained by blending the above two kinds of heat-resistant resins at a predetermined ratio, that is, the thermoplastic resin composition has a crystal melting peak temperature of 260 ° C. It is composed of 65 to 35% by weight of the above-mentioned polyarylketone resin and 35 to 65% by weight of the amorphous polyetherimide resin, and has a glass transition temperature of 150 to 2 as measured when the temperature is raised by differential scanning calorimetry.
30 ° C.

【0040】上記配合割合を限定する理由は、ポリアリ
ールケトン樹脂が65重量%を越えて多量に配合された
り、ポリエーテルイミド樹脂の配合割合が35重量%未
満の少量の配合割合では、組成物の結晶化速度が速くな
り過ぎてその結晶性が高くなりすぎ、熱融着による基板
の多層化が困難になったり、結晶化に伴う体積収縮(寸
法変化)が大きくなって回路基板の信頼性が低下するか
らである。
The reason for limiting the above blending ratio is that the polyarylketone resin is blended in a large amount exceeding 65% by weight or the blending ratio of the polyetherimide resin is less than 35% by weight. The crystallization speed is too fast and the crystallinity is too high, making it difficult to multi-layer the substrate by heat fusion, and increasing the volume shrinkage (dimensional change) due to the crystallization and the reliability of the circuit board. Is reduced.

【0041】また、結晶性ポリアリルエーテルケトン樹
脂が35重量%未満であったり、非晶性ポリエーテルイ
ミド樹脂が65重量%を超えると、組成物の結晶化速度
が遅くなりすぎてその結晶性が低くなり、たとえ結晶融
解ピーク温度が260℃以上であってもハンダ耐熱性が
低下するので、好ましくない。
When the content of the crystalline polyallyl ether ketone resin is less than 35% by weight or the content of the amorphous polyetherimide resin exceeds 65% by weight, the crystallization speed of the composition becomes too slow, and , And even if the crystal melting peak temperature is 260 ° C. or higher, the solder heat resistance decreases, which is not preferable.

【0042】この発明における重要な制御因子であるフ
ィルム状絶縁体の熱融着前の熱特性は、結晶融解熱量Δ
Hmと昇温中の結晶化により発生する結晶化熱量ΔHc
との関係が下記の式(I) で示される関係を満たすことで
ある。
The thermal characteristics of the film-like insulator before thermal fusion, which is an important control factor in the present invention, are represented by the heat of crystal fusion Δ
Hm and heat of crystallization ΔHc generated by crystallization during heating
Is to satisfy the relationship represented by the following formula (I).

【0043】 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.35 (ΔHm−ΔHc)/ΔHmで示される熱特性は、JI
S K 7121、JIS K7122に準じた示差走
査熱量測定で昇温したときのDSC曲線に現れる2つの
転移熱の測定値、結晶融解熱量ΔHm(J/g)と結晶
化熱量ΔHc(J/g)の値から算出される。
Equation (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.35 (ΔHm−ΔHc) / ΔHm
The measured values of two heats of transition appearing on the DSC curve when the temperature is raised by differential scanning calorimetry according to S K 7121 and JIS K 7122, the heat of crystal fusion ΔHm (J / g) and the heat of crystallization ΔHc (J / g) Is calculated from the value of

【0044】(ΔHm−ΔHc)/ΔHmで示される式
の値は、原料ポリマーの種類や分子量、組成物の配合比
率にも依存しているが、フィルム状絶縁体の成形・加工
条件に大きく影響する。すなわち、フィルム状に製膜す
る際に、原料ポリマーを溶融させた後、速やかに冷却す
ることにより、前記式の値を小さくすることができる。
また、これらの数値は、各工程でかかる熱履歴を調整す
ることにより、制御することができる。ここでいう熱履
歴とは、フィルム状絶縁体の温度と、その温度になって
いた時間を指し、温度が高いほど、この数値は大きくな
る傾向がある。
The value of the equation (ΔHm−ΔHc) / ΔHm also depends on the type and molecular weight of the raw material polymer and the compounding ratio of the composition, but greatly affects the molding and processing conditions of the film-shaped insulator. I do. That is, when the film is formed into a film, the raw material polymer is melted and then cooled immediately, whereby the value of the above formula can be reduced.
Further, these numerical values can be controlled by adjusting the heat history in each step. The heat history here refers to the temperature of the film-shaped insulator and the time during which the temperature has been reached, and the higher the temperature, the larger the numerical value tends to be.

【0045】導体箔と熱融着前のフィルム状絶縁体の熱
特性については、前記式(I) で示される値ができるだけ
小さいほうが好ましい。導体箔との熱融着前に0.35
を越えていると、すでに結晶性が高く、多層化の熱融着
時には結晶化がさらに進行して接着強度が低下するので
好ましくない。
Regarding the thermal characteristics of the conductor foil and the film-like insulator before thermal fusion, it is preferable that the value represented by the above formula (I) is as small as possible. 0.35 before thermal fusion with conductor foil
If the ratio exceeds, the crystallinity is already high, and the crystallization further proceeds during the heat-sealing for multi-layering, and the adhesive strength is undesirably reduced.

【0046】前記式(II)で示される関係は、多層プリン
ト配線板を製造する過程において、フィルム状絶縁体の
表面に導体箔を熱融着した銅張積層基板における熱融着
後の測定に基づくものである。
The relationship represented by the above formula (II) is related to the measurement after thermal fusion in a copper-clad laminate in which a conductor foil is thermally fused to the surface of a film-like insulator in the process of manufacturing a multilayer printed wiring board. It is based on

【0047】前記式(II)で示される値が、0.5を越え
ると、すでに結晶性が高く、多層化の熱融着時に結晶化
がさらに進行して接着強度が低下する。また、導体箔と
の熱融着を高温で行なう必要があり製造効率の面からも
好ましくない。
When the value represented by the formula (II) exceeds 0.5, the crystallinity is already high, and the crystallization proceeds further at the time of heat-sealing for multi-layering, whereby the adhesive strength decreases. Further, it is necessary to perform heat fusion with the conductor foil at a high temperature, which is not preferable in terms of manufacturing efficiency.

【0048】そして、多層化後の熱融着後のフィルム状
絶縁体の熱特性は、下記式(III) の関係を満たすことに
なる。
Then, the thermal characteristics of the film-like insulator after the thermal fusion after the multilayering satisfy the relation of the following formula (III).

【0049】 式(III): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7 なぜなら、上記式(III) の値が、0.7未満の低い値で
は、絶縁層の結晶化が不充分であり、ハンダ耐熱性(通
常260℃)を保てないからである。
Formula (III): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7 Because the value of the above formula (III) is lower than 0.7, the crystallization of the insulating layer is insufficient. This is because solder heat resistance (usually 260 ° C.) cannot be maintained.

【0050】この発明に用いるフィルム状絶縁体は、通
常25〜300μmの膜厚のものであり、その製造方法
は、例えばTダイを用いた押出キャスト法やカレンダー
法などの周知の製膜方法を採用すればよく、特に限定さ
れた製造方法を採る必要はない。なお、製膜性や安定生
産性の面からTダイを用いた押出キャスト法を採用する
ことが好ましい。押出キャスト法の成形温度は、組成物
の流動特性や製膜特性によって適宜に調節するが、概ね
組成物の融点以上、430℃以下である。
The film-like insulator used in the present invention generally has a thickness of 25 to 300 μm, and its production method is, for example, a known film-forming method such as an extrusion casting method using a T-die or a calendering method. What is necessary is just to employ | adopt and it is not necessary to employ | adopt a manufacturing method especially limited. In addition, it is preferable to employ the extrusion casting method using a T-die from the viewpoint of film forming property and stable productivity. The molding temperature of the extrusion casting method is appropriately adjusted depending on the flow characteristics and film forming characteristics of the composition, but is generally from the melting point of the composition to 430 ° C. or less.

【0051】この発明に用いるフィルム状絶縁体を構成
する樹脂組成物には、この発明の効果を阻害しない程度
に、他の樹脂その他の添加剤を配合してもよく、その具
体例としては、熱安定剤、紫外線吸収剤、光安定剤、着
色剤、滑剤、難燃剤、無機フィラーなどが挙げられる。
また、フィルム状絶縁体の表面に、ハンドリング性改良
等のためのエンボス化工やコロナ処理などを施してもよ
い。
The resin composition constituting the film-like insulator used in the present invention may contain other resins and other additives to such an extent that the effects of the present invention are not impaired. Examples include a heat stabilizer, an ultraviolet absorber, a light stabilizer, a colorant, a lubricant, a flame retardant, and an inorganic filler.
Further, the surface of the film-shaped insulator may be subjected to embossing or corona treatment for improving the handling properties and the like.

【0052】この発明に用いる金属板としては、金属ベ
ースプリント配線板または金属ベース多層プリント配線
板の熱放散性や機械的強度の向上などの目的に応じて選
択される周知の金属板であり、例えばアルミニウム、
鉄、銅、亜鉛等が挙げられる。板厚は、0.1〜3.0
mm程度のものが好適に使用でき、通例1.0〜1.6
mmである。
The metal plate used in the present invention is a well-known metal plate selected according to the purpose of improving heat dissipation and mechanical strength of a metal-based printed wiring board or a metal-based multilayer printed wiring board. For example, aluminum,
Examples include iron, copper, and zinc. The board thickness is 0.1 to 3.0
mm can be suitably used, and is usually 1.0 to 1.6.
mm.

【0053】また、金属板として、表面粗化された金属
板を使用する場合の粗化(粗面化)の方法としては、サ
ンドブラスト法、ショットブラスト法、ドライホーニン
グ法、化学エッチング法、電解エッチング法等の方法が
例示できる。
When a metal plate having a roughened surface is used as a metal plate, the method of roughening (roughening) includes sand blasting, shot blasting, dry honing, chemical etching, electrolytic etching, and the like. And the like.

【0054】この発明に用いる導体箔としては、例えば
銅、金、銀、アルミニウム、ニッケル、錫などのように
厚さ8〜70μm程度の金属箔が挙げられる。このう
ち、適用される金属箔としては、その表面を黒色酸化処
理などの化成処理した銅箔が特に好ましい。導体箔は、
接着効果を高めるために、フィルム状絶縁体との接触面
(重ねる面)側を予め化学的または機械的に粗化したも
のを用いることが好ましい。粗化方法は、前述の金属板
の場合と同様であり、表面粗化処理された導体箔の具体
例としては、電解銅箔を製造する際に電気化学的に処理
された粗化銅箔などが挙げられる。
Examples of the conductor foil used in the present invention include metal foils having a thickness of about 8 to 70 μm, such as copper, gold, silver, aluminum, nickel, and tin. Among them, the metal foil to be applied is particularly preferably a copper foil whose surface has been subjected to a chemical conversion treatment such as a black oxidation treatment. The conductor foil is
In order to enhance the bonding effect, it is preferable to use a material whose contact surface (overlapping surface) with the film-shaped insulator is chemically or mechanically roughened in advance. The roughening method is the same as in the case of the above-described metal plate, and specific examples of the conductor foil having a roughened surface include a roughened copper foil that has been electrochemically treated when producing an electrolytic copper foil. Is mentioned.

【0055】導体箔をフィルム状絶縁体の片面または両
面に重ねて加熱・加圧条件で熱融着する際には、例えば
熱プレス法もしくは熱ラミネートロール法またはこれら
を組み合わせた方法、その他の周知の加熱圧着方法を採
用することができる。
When the conductor foil is superimposed on one or both surfaces of the film-like insulator and heat-sealed under heating and pressing conditions, for example, a hot pressing method, a heat laminating roll method, a method combining these methods, or other well-known methods Can be adopted.

【0056】[0056]

【実施例および比較例】まず、この発明のフィルム状絶
縁体の条件を満足するフィルム状絶縁体の製造例1〜3
およびこれに対比する参考例1、2の製造方法およびこ
れらの物性について以下に説明する。
EXAMPLES AND COMPARATIVE EXAMPLES First, Production Examples 1 to 3 of a film insulator satisfying the conditions of the film insulator of the present invention.
The production methods of Reference Examples 1 and 2 and the physical properties thereof will be described below.

【0057】〔フィルム状絶縁体の製造例1〕ポリエー
テルエーテルケトン樹脂(ビクトレックス社製:PEE
K381G)(以下の文中または表1、2において、P
EEKと略記する。)60重量%と、ポリエーテルイミ
ド樹脂(ゼネラルエレクトリック社製:Ultem−1
000)(以下の文中または表1、2において、PEI
と略記する。)40重量%を溶融混合した。この混合組
成物を押出成形し、厚さ25μmのフィルム状絶縁体を
製造した。
[Production Example 1 of Film Insulator] Polyetheretherketone resin (Victrex: PEE)
K381G) (in the following text or in Tables 1 and 2, P
Abbreviated as EEK. ) 60% by weight and a polyetherimide resin (manufactured by General Electric Company: Ultem-1)
000) (PEI in the following text or in Tables 1 and 2)
Abbreviated. ) 40% by weight was melt mixed. This mixed composition was extruded to produce a film insulator having a thickness of 25 μm.

【0058】〔フィルム状絶縁体の製造例2〕製造例1
において、混合組成物の配合割合をPEEK40重量
%、PEI60重量%としたこと以外は、同様にしてフ
ィルム状絶縁体を製造した。
[Production Example 2 of Film Insulator] Production Example 1
, A film-like insulator was produced in the same manner except that the mixing ratio of the mixed composition was 40% by weight of PEEK and 60% by weight of PEI.

【0059】〔フィルム状絶縁体の製造例3〕製造例1
において、混合組成物の配合割合をPEEK30重量
%、PEI70重量%としたこと以外は、同様にしてフ
ィルム状絶縁体を製造した。
[Production Example 3 of Film Insulator] Production Example 1
, A film-like insulator was produced in the same manner except that the mixing ratio of the mixed composition was 30% by weight of PEEK and 70% by weight of PEI.

【0060】〔フィルム状絶縁体の参考例1、2〕製造
例1において、混合組成物の配合割合をPEEK100
重量%(参考例1)、またはPEI100重量%(参考
例2)としたこと以外は、同様にしてそれぞれのフィル
ム状絶縁体を製造した。
[Reference Examples 1 and 2 of Film Insulator] In Production Example 1, the mixing ratio of the mixed composition was changed to PEEK100.
Each film-shaped insulator was manufactured in the same manner except that the weight% (Reference Example 1) or the PEI 100% by weight (Reference Example 2) was used.

【0061】上記製造例および参考例で得られたフィル
ム状絶縁体の物性を調べるため、以下の(1) および(2)
に示す項目を測定または測定値から計算値を算出した。
これらの結果は、表1にまとめて示した。
In order to examine the physical properties of the film-like insulator obtained in the above Production Examples and Reference Examples, the following (1) and (2)
The following items were measured or calculated values were calculated from the measured values.
These results are summarized in Table 1.

【0062】(1) ガラス転移温度(℃)、結晶化温度
(℃)、結晶融解ピーク温度(℃) JIS K7121に準じ、試料10mgを使用し、パ
ーキンエルマー社製:DSC−7を用いて加熱速度を1
0℃/分で昇温した時の上記各温度をサーモグラムから
求めた。
(1) Glass transition temperature (° C.), crystallization temperature (° C.), crystal melting peak temperature (° C.) Heating using a 10 mg sample according to JIS K7121 using Perkin Elmer: DSC-7 Speed 1
Each of the above temperatures when the temperature was raised at 0 ° C./min was determined from a thermogram.

【0063】(2) (ΔHm−ΔHc)/ΔHm JIS K7122に準じ、試料10mgを使用し、パ
ーキンエルマー社製:DSC−7を用いて加熱速度を1
0℃/分で昇温した時のサーモグラムから結晶融解熱量
ΔHm(J/g)と結晶化熱量ΔHc(J/g)を求
め、上記式の値を算出した。
(2) (ΔHm−ΔHc) / ΔHm According to JIS K7122, 10 mg of a sample was used, and the heating rate was set to 1 using DSC-7 manufactured by Perkin Elmer.
The heat of crystal fusion ΔHm (J / g) and the heat of crystallization ΔHc (J / g) were determined from the thermogram when the temperature was raised at 0 ° C./min, and the value of the above equation was calculated.

【0064】[0064]

【表1】 [Table 1]

【0065】〔実施例1〕製造例1で得られた厚さ25
μmのフィルム状絶縁体に、レーザーでインナーバイア
ホール(inner via hole) 用の孔開け加工を施し、スク
リーン印刷機を用いて孔内に導電性ペースト剤を充填し
た。この導電性ペーストを充分に乾燥させた後、フィル
ム状絶縁体の両面に厚さ12μmの電気化学的に表面を
粗面化した電解銅箔を積層し、真空雰囲気下760mm
Hgでプレス温度200℃、プレス圧力30kg/cm
2 、プレス時間10分の条件で熱融着させ両面銅張積層
板を作製した。
Example 1 Thickness 25 obtained in Production Example 1
The film-shaped insulator having a thickness of μm was subjected to an opening process for an inner via hole using a laser, and the hole was filled with a conductive paste agent using a screen printer. After the conductive paste was sufficiently dried, an electrolytic copper foil having a 12 μm-thick electrochemically roughened surface was laminated on both surfaces of the film-like insulator, and 760 mm in a vacuum atmosphere.
Pressing temperature 200 ° C, pressing pressure 30kg / cm in Hg
2. A double-sided copper-clad laminate was prepared by heat fusion under the conditions of a press time of 10 minutes.

【0066】作製した両面銅張積層板のフィルム状絶縁
体に対し、前記 (2)(ΔHm−ΔHc)/ΔHmの測定
試験を前記同じ方法で行ない、式値を表2に示した。
The above-mentioned measurement test of (2) (ΔHm−ΔHc) / ΔHm was performed on the film-like insulator of the double-sided copper-clad laminate by the same method as described above.

【0067】また、上記得られた両面銅張積層板に対し
て、後述する(3) の方法で接着強度を調べ、この結果を
表2中に併記した。
The adhesive strength of the obtained double-sided copper-clad laminate was examined by the method (3) described later, and the results are shown in Table 2.

【0068】上記得られた両面銅張積層板にサブトラク
ティブ法によって回路パターンを形成し、導電性回路を
エッチングにより形成した配線基板を2枚製造した。そ
して、2枚の配線基板の間に製造例1で得られた厚さ2
5μmのフィルム状絶縁体を2枚挟んでさらに芯板とし
て5052系(JISH−0012)のアルミニウム板
(厚さ1.5mm)を図2(c)に示す状態に積み重
ね、真空雰囲気下760mmHgでプレス温度220
℃、プレス圧力30kg/cm2 、プレス時間20分の
条件でピンラミネーション方式によって熱融着し、4層
の多層プリント配線板を製造した。
A circuit pattern was formed on the obtained double-sided copper-clad laminate by a subtractive method, and two wiring boards were formed by etching a conductive circuit. The thickness 2 obtained in Production Example 1 between the two wiring boards
A 5052 series (JISH-0012) aluminum plate (1.5 mm thick) is stacked as a core plate with two 5 μm film-shaped insulators sandwiched in between as shown in FIG. 2C, and pressed at 760 mmHg in a vacuum atmosphere. Temperature 220
° C., press pressure 30kg / cm 2, and heat-sealed by a pin lamination method under the conditions of press time 20 minutes, a multilayer printed circuit board was manufactured in four layers.

【0069】得られたアルミニウムベース多層プリント
配線板に対して前記 (2)(ΔHm−ΔHc)/ΔHmの
測定試験を行なうと共に、室温における銅箔回路とフィ
ルム状絶縁体との接着強度を以下の(3) の試験方法で調
べ、さらに層間剥離の有無を走査型電子顕微鏡(下記の
(5) の方法)で観察し、ハンダ耐熱性を下記の(4) の試
験方法で調べ、これらの結果を表2中に示した。
The obtained aluminum-based multilayer printed wiring board was subjected to the above (2) (ΔHm−ΔHc) / ΔHm measurement test, and the adhesive strength between the copper foil circuit and the film-like insulator at room temperature was determined as follows. Check by the test method of (3), and check for delamination by a scanning electron microscope (see below).
(Method (5)), and the solder heat resistance was examined by the following test method (4). The results are shown in Table 2.

【0070】(3) 接着強度 JIS C6481の常態の引き剥がし強さに準拠し
て、銅箔の引き剥がし強さを測定し、その平均値をkg
f/cmで示した。
(3) Adhesive strength The peel strength of the copper foil was measured in accordance with the normal peel strength of JIS C6481, and the average value was measured in kg.
f / cm.

【0071】(4) ハンダ耐熱性 JIS C6481の常態のハンダ耐熱性に準拠し、2
60℃のハンダ浴に試験片の銅箔側がハンダ浴に接触す
る状態で10秒間浮かべた後、浴から取り出して室温ま
で放冷し、その膨れや剥がれ箇所の有無を目視観察し、
その良否を評価した。
(4) Solder heat resistance According to the normal solder heat resistance of JIS C6481,
After floating in a solder bath at 60 ° C. for 10 seconds with the copper foil side of the test piece in contact with the solder bath, take out from the bath and allow it to cool to room temperature, and visually observe the presence or absence of swelling or peeling,
The quality was evaluated.

【0072】(5) 多層プリント配線板をエポキシ樹脂
に包埋し、精密切断機で断面観察用サンプルを作製し、
走査型電子顕微鏡(SEM)で切断面を観察し、フィル
ム状絶縁体と銅箔製の導電性回路との層間剥離の有無を
評価した。
(5) The multilayer printed wiring board is embedded in epoxy resin, and a sample for section observation is prepared by a precision cutting machine.
The cut surface was observed with a scanning electron microscope (SEM), and the presence or absence of delamination between the film-like insulator and the conductive circuit made of copper foil was evaluated.

【0073】[0073]

【表2】 [Table 2]

【0074】〔実施例2〕実施例1において、フィルム
状絶縁体として製造例2を使用し、両面銅張積層板を作
製する際のプレス温度を225℃、4層基板を作製する
際の熱プレス条件を温度240℃、ブレス時間を30分
に変更したこと以外は実施例1と同様にして4層のプリ
ント配線板を作製し、試験(3) 〜(5) の評価を表2中に
併記した。
Example 2 In Example 1, the production temperature was set to 225 ° C. when a double-sided copper-clad laminate was produced by using Production Example 2 as a film-like insulator, and the heat was applied when a 4-layer substrate was produced. A four-layer printed wiring board was prepared in the same manner as in Example 1 except that the pressing conditions were changed to a temperature of 240 ° C. and a breath time to 30 minutes, and the evaluations of Tests (3) to (5) are shown in Table 2. Also described.

【0075】〔比較例1〕実施例1において、両面銅張
積層板を作製する際のプレス温度を215℃としたこと
以外は実施例1と同様にして4層の多層プリント配線板
を作製し、これに対する試験(3) 〜(5) の評価を表2中
に併記した。
Comparative Example 1 A multilayer printed wiring board having four layers was produced in the same manner as in Example 1 except that the pressing temperature at the time of producing the double-sided copper-clad laminate was 215 ° C. Table 2 also shows the evaluations of the tests (3) to (5).

【0076】〔比較例2〕実施例2において、4層の多
層プリント配線板のプレス温度を230℃、プレス時間
を10分に変更したこと以外は実施例2と同様にして4
層の多層プリント配線板を作製し、試験(3) 〜(5) の評
価を表2中に併記した。
Comparative Example 2 The procedure of Example 2 was repeated, except that the pressing temperature of the multilayer printed wiring board having four layers was changed to 230 ° C. and the pressing time was changed to 10 minutes.
A multilayer printed wiring board having a plurality of layers was produced, and the evaluations of Tests (3) to (5) are also shown in Table 2.

【0077】〔比較例3〕実施例1において、フィルム
状絶縁体として製造例3を使用し、両面銅張積層板を作
製する際のプレス温度を240℃、プレス時間を20分
に変更したこと以外は実施例1と同様にして4層の多層
プリント配線板を作製し、これに対する試験(3) 〜(5)
の評価を表2中に併記した。
COMPARATIVE EXAMPLE 3 In Example 1, the production temperature was changed to 240 ° C. and the press time was changed to 20 minutes when producing the double-sided copper-clad laminate using Production Example 3 as the film-like insulator. Except for the above, a four-layered multilayer printed wiring board was produced in the same manner as in Example 1, and tests (3) to (5) for the multilayer printed wiring board were performed.
Are also shown in Table 2.

【0078】表2の結果からも明らかなように、実施例
1の両面銅張積層板の接着強度は、0.7kgf/10
cmという良好な値であり、(ΔHm−ΔHc)/ΔH
mの値も0.31と適正値であった。また、4層の多層
プリント配線板積層時の(ΔHm−ΔHc)/ΔHmの
値も0.96と適正値であり、接着強度は、1.5kg
f/10cmという良好な値であった。また、ハンダ耐
熱性試験の結果は基板に膨れや剥がれが一切観察され
ず、また4層の多層プリント配線板のSEM観察でも層
間剥離は全く観察されず、回路パターン近傍への樹脂の
回り込み(充填量)は良好でありボイドの発生は全く見
受けられなかった。
As is clear from the results in Table 2, the adhesive strength of the double-sided copper-clad laminate of Example 1 was 0.7 kgf / 10
cm, which is (ΔHm−ΔHc) / ΔH
The value of m was also an appropriate value of 0.31. The value of (ΔHm−ΔHc) / ΔHm when laminating four multilayer printed wiring boards is 0.96, which is an appropriate value, and the adhesive strength is 1.5 kg.
It was a good value of f / 10 cm. As a result of the solder heat resistance test, no swelling or peeling was observed on the substrate, no delamination was observed even by SEM observation of the four-layered multilayer printed wiring board, and the resin wrapped around the circuit pattern (filling). Amount) was good, and generation of voids was not observed at all.

【0079】実施例2の両面銅張積層板の接着強度も
1.3kgf/10cmという良好な値であり、ハンダ
耐熱性試験の結果も良好であり、また4層熱融着後のS
EM観察でも層間剥離は全く観察されず、回路パターン
近傍への樹脂の回り込みも良好であった。
The adhesive strength of the double-sided copper-clad laminate of Example 2 was also a good value of 1.3 kgf / 10 cm, the result of the solder heat resistance test was good, and the S
No delamination was observed at all by EM observation, and the resin wrapping around the circuit pattern was good.

【0080】これに対して、比較例1の4層プリント配
線板は、層間の密着性が不十分であり、ハンダ耐熱性も
膨れや剥がれが観察されて不良であった。
On the other hand, the four-layer printed wiring board of Comparative Example 1 was inferior in the adhesion between the layers, and the solder heat resistance was poor because swelling and peeling were observed.

【0081】また、比較例2の4層プリント配線板は、
層間の密着性はあったが、ハンダ耐熱性は不良であっ
た。
The four-layer printed wiring board of Comparative Example 2
Although there was adhesion between the layers, the solder heat resistance was poor.

【0082】また、比較例3は、両面銅張積層板の銅箔
とフィルムの接着強度は0.2kgf/10cmという
低い値であり、エッチング工程において回路が剥離し
た。
In Comparative Example 3, the adhesive strength between the copper foil and the film of the double-sided copper-clad laminate was as low as 0.2 kgf / 10 cm, and the circuit peeled off in the etching step.

【0083】[0083]

【発明の効果】この発明の金属ベースプリント配線板
は、以上説明したように、金属板の片面または両面に所
定の熱特性を有する熱可塑性樹脂組成物からなる絶縁層
を介して導体箔を熱融着し、この導体箔でプリント回路
を形成したので、導体箔および金属ベースに対して比較
的低温で熱融着することができ、しかも確実に接着一体
化されかつハンダ耐熱性を有する金属ベースプリント配
線基板であるという利点がある。
As described above, the metal-based printed wiring board according to the present invention heats the conductive foil through the insulating layer made of a thermoplastic resin composition having predetermined thermal characteristics on one or both sides of the metal plate. Since the printed circuit is formed with this conductive foil, it can be heat-fused to the conductive foil and metal base at a relatively low temperature, and is a metal base that is securely bonded and integrated and has solder heat resistance. There is an advantage that it is a printed wiring board.

【0084】また、この発明の金属ベース多層プリント
配線板は、所定の熱的特性の結晶性熱可塑性樹脂組成物
を絶縁層とするフィルム状配線基板を形成し、金属板の
片面または両面に前記熱可塑性樹脂組成物からなる絶縁
層を介して前記フィルム状配線基板を熱融着により一体
化したものであるので、各層の熱可塑性樹脂成物は優れ
た接着強度を発揮し、4層以上の金属ベース多層プリン
ト配線板でも層間の剥離がなく、所要のハンダ耐熱性を
示すものになる。
Further, the metal-based multilayer printed wiring board of the present invention forms a film-shaped wiring board having a crystalline thermoplastic resin composition having predetermined thermal characteristics as an insulating layer, and the above-mentioned metal-based multilayer printed wiring board is formed on one or both sides of the metal plate. Since the film-like wiring board is integrated by thermal fusion via an insulating layer made of a thermoplastic resin composition, the thermoplastic resin composition of each layer exhibits excellent adhesive strength, and has four or more layers. Even with a metal-based multilayer printed wiring board, there is no delamination between layers, and the required solder heat resistance is exhibited.

【0085】また、各層の熱融着時に微細な配線ピッチ
間にも絶縁性材料が充填され、高配線密度に形成された
内層回路の絶縁性が良好な金属ベース多層プリント配線
板となる。
Further, the insulating material is filled even between the fine wiring pitches at the time of thermal fusion of the respective layers, so that a metal-based multilayer printed wiring board having good insulating properties of the inner layer circuit formed with high wiring density can be obtained.

【0086】この発明の多層プリント配線板の製造方法
は、所定の熱特性を有する結晶性熱可塑性樹脂からなる
フィルム状絶縁体を用いた金属ベース多層プリント配線
板の製造方法であるので、絶縁材料の高配線密度の内層
回路に対する埋め込み性が良好になって回路の絶縁信頼
性が高いものが製造でき、しかも絶縁層を介して多層に
重ねた導体箔および金属ベースとを一度の加熱加圧工程
で確実に熱融着により積層一体化できるので、効率のよ
い製造方法であるという利点がある。
The method of manufacturing a multilayer printed wiring board of the present invention is a method of manufacturing a metal-based multilayer printed wiring board using a film-like insulator made of a crystalline thermoplastic resin having predetermined thermal characteristics. The embedding property of the inner layer circuit with high wiring density is improved, so that a circuit with high insulation reliability can be manufactured. In addition, the conductor foil and metal base laminated in multiple layers via the insulating layer are subjected to a single heating and pressing process. Therefore, since lamination can be surely performed by heat fusion, there is an advantage that the manufacturing method is efficient.

【図面の簡単な説明】[Brief description of the drawings]

【図1】金属ベースプリント配線板の要部の拡大断面図FIG. 1 is an enlarged sectional view of a main part of a metal-based printed wiring board.

【図2】金属ベース多層プリント配線板の製造工程を示
す要部の拡大断面図
FIG. 2 is an enlarged sectional view of a main part showing a manufacturing process of a metal-based multilayer printed wiring board.

【符号の説明】[Explanation of symbols]

1、4 金属板 2、5 絶縁層 3、11 プリント回路 6 フィルム状配線基板 7 フィルム状絶縁体 8 両面貫通孔 9 導電性ペースト 10 層間接続用熱融着性フィルム DESCRIPTION OF SYMBOLS 1, 4 Metal plate 2, 5 Insulating layer 3, 11 Printed circuit 6 Film-shaped wiring board 7 Film-shaped insulator 8 Double-sided through-hole 9 Conductive paste 10 Heat-fusible film for interlayer connection

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/46 H05K 3/46 S (72)発明者 高木 潤 滋賀県長浜市三ッ矢町5番8号 三菱樹脂 株式会社長浜工場内 (72)発明者 谷口 浩一郎 滋賀県長浜市三ッ矢町5番8号 三菱樹脂 株式会社長浜工場内 (72)発明者 三宅 敏広 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 戸谷 眞 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 5E315 AA01 BB01 CC14 DD20 GG01 GG05 5E343 AA07 AA16 AA18 AA22 BB23 BB24 BB25 BB28 BB44 BB67 BB72 DD52 GG02 GG16 5E346 AA42 CC08 EE13 FF18 FF23 GG28 HH08 HH17 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 3/46 H05K 3/46 S (72) Inventor Jun Takagi 5-8, Mitsuyacho, Nagahama-shi, Shiga Mitsubishi Resin Co., Ltd. Nagahama Plant (72) Inventor Koichiro Taniguchi 5-8 Miyayacho, Nagahama City, Shiga Prefecture Mitsubishi Plastics Co., Ltd. Nagahama Plant (72) Inventor Toshihiro Miya 1-1-1 Showacho, Kariya City, Aichi Prefecture Co., Ltd. Within DENSO (72) Inventor Makoto Toya 1-1-1 Showa-cho, Kariya-shi, Aichi F-term within DENSO Corporation (reference) 5E315 AA01 BB01 CC14 DD20 GG01 GG05 5E343 AA07 AA16 AA18 AA22 BB23 BB24 BB25 BB28 BB44 BB67 BB72 GG16 5E346 AA42 CC08 EE13 FF18 FF23 GG28 HH08 HH17

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 金属板の片面または両面に熱可塑性樹脂
組成物からなる絶縁層を介して導体箔を熱融着し、この
導体箔でプリント回路を形成した金属ベースプリント配
線板において、 前記絶縁層が、結晶融解ピーク温度260℃以上のポリ
アリールケトン樹脂65〜35重量%と、非晶性ポリエ
ーテルイミド樹脂35〜65重量%とを含有する熱可塑
性樹脂組成物からなり、この熱可塑性樹脂組成物は、示
差走査熱量測定で昇温した時に測定されるガラス転移温
度が150〜230℃、結晶融解熱量ΔHmと昇温中の
結晶化により発生する結晶化熱量ΔHcとの関係が下記
の式(A)で示される関係を満たす特性のものを下記の式
(B) で示される関係を満たすように熱融着したものであ
ることを特徴とする金属ベースプリント配線板。 式(A): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5 式(B): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7
1. A metal-based printed wiring board in which a conductive foil is heat-sealed on one or both sides of a metal plate via an insulating layer made of a thermoplastic resin composition to form a printed circuit with the conductive foil. The layer is composed of a thermoplastic resin composition containing 65 to 35% by weight of a polyarylketone resin having a crystal melting peak temperature of 260 ° C. or higher and 35 to 65% by weight of an amorphous polyetherimide resin. The composition has a glass transition temperature of 150 to 230 ° C. measured when heated by differential scanning calorimetry, and the relationship between the heat of crystal fusion ΔHm and the heat of crystallization ΔHc generated by crystallization during the temperature rise is represented by the following formula: The characteristic satisfying the relationship shown in (A) is calculated by the following formula.
A metal-based printed wiring board which is heat-sealed so as to satisfy the relationship shown in (B). Equation (A): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5 Equation (B): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7
【請求項2】 導体箔が、表面粗化されている導体箔で
ある請求項1記載の金属ベースプリント配線板。
2. The metal-based printed wiring board according to claim 1, wherein the conductive foil is a surface-roughened conductive foil.
【請求項3】 金属板が、表面粗化されている金属板で
ある請求項1または2に記載の金属ベースプリント配線
板。
3. The metal-based printed wiring board according to claim 1, wherein the metal plate is a surface-roughened metal plate.
【請求項4】 熱可塑性樹脂組成物からなるフィルム状
絶縁体に両面貫通孔を形成すると共に貫通孔内に導電性
ペーストを充填して積層電気回路の層間接続用熱融着性
フィルムを設け、この層間接続用熱融着用フィルムの両
面に導体箔を熱融着しかつ回路形成してフィルム状配線
基板を設け、金属板の片面または両面に前記熱可塑性樹
脂組成物からなる絶縁層を介してフィルム状配線基板を
熱融着した金属ベース多層プリント配線板において、 前記熱融着された絶縁層および熱融着されたフィルム状
配線基板を構成する熱可塑性樹脂組成物が、結晶融解ピ
ーク温度260℃以上のポリアリールケトン樹脂65〜
35重量%と、非晶性ポリエーテルイミド樹脂35〜6
5重量%とを含有し、この熱可塑性樹脂組成物は、示差
走査熱量測定で昇温した時に測定されるガラス転移温度
が150〜230℃、結晶融解熱量ΔHmと昇温中の結
晶化により発生する結晶化熱量ΔHcとの関係が下記の
式(A) で示される関係を満たす特性のものを加熱して下
記の式(B) で示される関係を満たすように熱融着された
ものであることを特徴とする金属ベース多層プリント配
線板。 式(A): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5 式(B): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7
4. A heat insulating film for interlayer connection of a laminated electric circuit is formed by forming a through hole on both sides of a film-shaped insulator made of a thermoplastic resin composition and filling a conductive paste in the through hole. Conductive foil is heat-sealed on both sides of this heat-sealing film for interlayer connection and a circuit is formed to provide a film-like wiring board, and on one or both sides of a metal plate via an insulating layer made of the thermoplastic resin composition. In a metal-based multilayer printed wiring board obtained by heat-sealing a film-shaped wiring board, the thermoplastic resin composition constituting the heat-sealed insulating layer and the heat-sealed film-shaped wiring board has a crystal melting peak temperature of 260. Polyarylketone resin 65 ° C or higher
35% by weight, and amorphous polyetherimide resin 35-6
This thermoplastic resin composition has a glass transition temperature of 150 to 230 ° C. measured when the temperature is raised by differential scanning calorimetry, a heat of crystal fusion ΔHm, and is generated by crystallization during the temperature rise. Is heat-fused so as to satisfy the relationship represented by the following formula (B) by heating a material having a relationship with the crystallization heat quantity ΔHc that satisfies the relationship represented by the following formula (A). A metal-based multilayer printed wiring board, characterized in that: Equation (A): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5 Equation (B): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7
【請求項5】 導体箔が、表面粗化されている導体箔で
ある請求項4記載の金属ベース多層プリント配線板。
5. The metal-based multilayer printed wiring board according to claim 4, wherein the conductive foil is a surface-roughened conductive foil.
【請求項6】 金属板が、表面粗化されている金属板で
ある請求項4または5に記載の金属ベース多層プリント
配線板。
6. The metal-based multilayer printed wiring board according to claim 4, wherein the metal plate is a metal plate having a roughened surface.
【請求項7】 結晶融解ピーク温度260℃以上のポリ
アリールケトン樹脂65〜35重量%と、非晶性ポリエ
ーテルイミド樹脂35〜65重量%とを含有し、示差走
査熱量測定で昇温した時に測定されるガラス転移温度が
150〜230℃、結晶融解熱量ΔHmと昇温中の結晶
化により発生する結晶化熱量ΔHcとの関係が下記の式
(I) で示される関係を満たす熱可塑性樹脂組成物からな
るフィルム状絶縁体を形成し、このフィルム状絶縁体に
両面貫通孔を形成すると共に貫通孔内に導電性ペースト
を充填して積層電気回路の層間接続用熱融着性フィルム
を形成し、この層間接続用熱融着性フィルムの両面に導
体箔を重ねて前記熱可塑性樹脂組成物が下記の式(II)で
示される関係を満たすように熱融着した後、前記導体箔
に回路を形成してフィルム状配線基板を設け、金属板の
片面または両面に前記フィルム状絶縁体を介して前記フ
ィルム状配線基板を重ね、各層を構成する熱可塑性樹脂
組成物が下記の(III) で示される関係を満たすように熱
融着することからなる金属ベース多層プリント配線板の
製造方法。 式(I): 〔(ΔHm−ΔHc)/ΔHm〕≦0.35 式(II): 〔(ΔHm−ΔHc)/ΔHm〕≦0.5 式(III): 〔(ΔHm−ΔHc)/ΔHm〕≧0.7
7. It contains 65 to 35% by weight of a polyaryl ketone resin having a crystal melting peak temperature of 260 ° C. or more and 35 to 65% by weight of an amorphous polyetherimide resin, and when heated by differential scanning calorimetry. The glass transition temperature to be measured is 150 to 230 ° C., and the relationship between the heat of crystal fusion ΔHm and the heat of crystallization ΔHc generated by crystallization during temperature rise is as follows:
(I) forming a film-like insulator made of a thermoplastic resin composition satisfying the relationship shown in (I), forming a double-sided through hole in the film-like insulator, and filling a conductive paste in the through-hole to form a laminated electric insulator. A heat-fusible film for interlayer connection of a circuit is formed, and the thermoplastic resin composition satisfies the relationship represented by the following formula (II) by superposing a conductive foil on both sides of the heat-fusible film for interlayer connection. After heat-sealing as described above, a circuit is formed on the conductive foil to provide a film-like wiring board, and the film-like wiring board is stacked on one or both sides of a metal plate via the film-like insulator to form each layer. A method for producing a metal-based multilayer printed wiring board, comprising: thermally bonding the resulting thermoplastic resin composition so as to satisfy the following relationship (III). Formula (I): [(ΔHm−ΔHc) / ΔHm] ≦ 0.35 Formula (II): [(ΔHm−ΔHc) / ΔHm] ≦ 0.5 Formula (III): [(ΔHm−ΔHc) / ΔHm] ≧ 0.7
JP18609299A 1999-06-30 1999-06-30 Metal-based printed wiring board, metal-based multilayer printed wiring board, and method of manufacturing the same Expired - Fee Related JP3514669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18609299A JP3514669B2 (en) 1999-06-30 1999-06-30 Metal-based printed wiring board, metal-based multilayer printed wiring board, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18609299A JP3514669B2 (en) 1999-06-30 1999-06-30 Metal-based printed wiring board, metal-based multilayer printed wiring board, and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2001015877A true JP2001015877A (en) 2001-01-19
JP3514669B2 JP3514669B2 (en) 2004-03-31

Family

ID=16182236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18609299A Expired - Fee Related JP3514669B2 (en) 1999-06-30 1999-06-30 Metal-based printed wiring board, metal-based multilayer printed wiring board, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3514669B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003086038A1 (en) * 2002-03-29 2003-10-16 Intel Corporation Multi-layer integrated circuit package
CN104159394A (en) * 2014-07-24 2014-11-19 深圳崇达多层线路板有限公司 PCB slice and preparation method thereof
CN110381666A (en) * 2019-06-27 2019-10-25 沪士电子股份有限公司 A kind of groove type buries the multi-layer PCB board production method of copper billet
CN113115522A (en) * 2021-03-29 2021-07-13 景旺电子科技(龙川)有限公司 Metal-based circuit board and hole plugging method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269765A (en) * 1989-04-12 1990-11-05 Mitsui Toatsu Chem Inc Aromatic polyetherketone resin composition
JPH03215987A (en) * 1990-01-19 1991-09-20 Matsushita Electric Works Ltd Metal base wiring board
JPH05310951A (en) * 1992-05-13 1993-11-22 Mitsubishi Petrochem Co Ltd Production of thermoplastic resin composition
JPH08148781A (en) * 1994-09-19 1996-06-07 Denki Kagaku Kogyo Kk Metal base multilayer circuit board
JP2000038464A (en) * 1998-01-21 2000-02-08 Mitsubishi Plastics Ind Ltd Film for heat-resistant laminate and raw plate using the same and used for printed wiring board and production of the board
JP2001015933A (en) * 1999-06-30 2001-01-19 Mitsubishi Plastics Ind Ltd Thermally fusible insulating sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269765A (en) * 1989-04-12 1990-11-05 Mitsui Toatsu Chem Inc Aromatic polyetherketone resin composition
JPH03215987A (en) * 1990-01-19 1991-09-20 Matsushita Electric Works Ltd Metal base wiring board
JPH05310951A (en) * 1992-05-13 1993-11-22 Mitsubishi Petrochem Co Ltd Production of thermoplastic resin composition
JPH08148781A (en) * 1994-09-19 1996-06-07 Denki Kagaku Kogyo Kk Metal base multilayer circuit board
JP2000038464A (en) * 1998-01-21 2000-02-08 Mitsubishi Plastics Ind Ltd Film for heat-resistant laminate and raw plate using the same and used for printed wiring board and production of the board
JP2001015933A (en) * 1999-06-30 2001-01-19 Mitsubishi Plastics Ind Ltd Thermally fusible insulating sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003086038A1 (en) * 2002-03-29 2003-10-16 Intel Corporation Multi-layer integrated circuit package
US6899815B2 (en) 2002-03-29 2005-05-31 Intel Corporation Multi-layer integrated circuit package
US7245001B2 (en) 2002-03-29 2007-07-17 Intel Corporation Multi-layer integrated circuit package
CN100441074C (en) * 2002-03-29 2008-12-03 英特尔公司 Multi-layer integrated circuit package
CN104159394A (en) * 2014-07-24 2014-11-19 深圳崇达多层线路板有限公司 PCB slice and preparation method thereof
CN110381666A (en) * 2019-06-27 2019-10-25 沪士电子股份有限公司 A kind of groove type buries the multi-layer PCB board production method of copper billet
CN110381666B (en) * 2019-06-27 2021-07-06 沪士电子股份有限公司 Groove-type copper block-embedded multilayer PCB manufacturing method
CN113115522A (en) * 2021-03-29 2021-07-13 景旺电子科技(龙川)有限公司 Metal-based circuit board and hole plugging method thereof

Also Published As

Publication number Publication date
JP3514669B2 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
JP3355142B2 (en) Film for heat-resistant laminate, base plate for printed wiring board using the same, and method of manufacturing substrate
KR101014517B1 (en) Manufacturing process for a prepreg with a carrier, prepreg with a carrier, manufacturing process for a thin double-sided plate, thin double-sided plate and manufacturing process for a multilayer-printed circuit board
JP3514647B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP6649770B2 (en) Copper clad laminate for forming built-in capacitor layer, multilayer printed wiring board, and method for manufacturing multilayer printed wiring board
JP3514646B2 (en) Flexible printed wiring board and method of manufacturing the same
JP3514667B2 (en) Heat fusible insulating sheet
JP4468080B2 (en) Conductive paste composition for multilayer wiring board
JP3514669B2 (en) Metal-based printed wiring board, metal-based multilayer printed wiring board, and method of manufacturing the same
JP3514656B2 (en) Surface smooth wiring board and its manufacturing method
JP4582938B2 (en) Insulating sheet manufacturing method and wiring board manufacturing method
JP4126582B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP3514668B2 (en) Coverlay film
JPH1154922A (en) Manufacturing inner layer circuit-contg. laminate board
JP2006182900A (en) Composite material, prepreg, metal-clad laminate, multilayer substrate, and method for producing the same
JP3995836B2 (en) Metal-based printed wiring board, metal-based multilayer printed wiring board, and manufacturing method thereof
JP4248697B2 (en) Heat sealable insulation sheet
JP3356010B2 (en) Manufacturing method of metal foil-clad laminate
JP2003249742A (en) Method of manufacturing heavy current circuit substrate
JP3263173B2 (en) Method for producing resin laminate and method for producing metal-clad laminate
JP4481733B2 (en) Conductive paste composition for multilayer wiring board
JP2001036203A (en) Flexible printed wiring board and its manufacture
JPS6347125A (en) Manufacture of multilayer printed interconnection board
JP5108255B2 (en) Method for manufacturing printed wiring board
JP2004103979A (en) Method for forming plated through-hole
JP3990513B2 (en) Heat-resistant insulating film, base plate for printed wiring board using the same, and method for manufacturing board

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees