WO2021070787A1 - 車両用灯具、配光可変ランプの制御方法 - Google Patents

車両用灯具、配光可変ランプの制御方法 Download PDF

Info

Publication number
WO2021070787A1
WO2021070787A1 PCT/JP2020/037752 JP2020037752W WO2021070787A1 WO 2021070787 A1 WO2021070787 A1 WO 2021070787A1 JP 2020037752 W JP2020037752 W JP 2020037752W WO 2021070787 A1 WO2021070787 A1 WO 2021070787A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light spot
vehicle
light distribution
lamp
Prior art date
Application number
PCT/JP2020/037752
Other languages
English (en)
French (fr)
Inventor
光治 眞野
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2021551646A priority Critical patent/JPWO2021070787A1/ja
Publication of WO2021070787A1 publication Critical patent/WO2021070787A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means

Definitions

  • This disclosure relates to vehicle lamps used in automobiles and the like.
  • Vehicle lamps can generally switch between low beam and high beam.
  • the low beam illuminates the vicinity of the own vehicle with a predetermined illuminance, and the light distribution regulation is defined so as not to give glare to the oncoming vehicle or the preceding vehicle, and is mainly used when traveling in an urban area.
  • the high beam illuminates a wide area and a distant place in front with a relatively high illuminance, and is mainly used when traveling at high speed on a road where there are few oncoming vehicles or preceding vehicles. Therefore, although the high beam is more visible to the driver than the low beam, there is a problem that glare is given to the driver or pedestrian of the vehicle existing in front of the vehicle.
  • ADB Adaptive Driving Beam
  • a method based on a tail lamp or a headlamp is known (hereinafter referred to as a light source detection method).
  • 1 (a) to 1 (c) are diagrams for explaining vehicle detection and light distribution control by a light source detection method.
  • 1 (a) to 1 (c) show a traveling scene passing by the oncoming vehicle 900.
  • PTN shows a light distribution pattern (irradiation region) of a light distribution variable lamp of the own vehicle.
  • a region including one or a plurality of light spots (hereinafter referred to as a light spot region) 904 is generated.
  • the light spot region 904 indicates the position of the headlamp or the tail lamp.
  • the light distribution variable lamp of the own vehicle updates the light distribution pattern PNT so that the light spot region 904 and its surroundings are shielded from light. This makes it possible to prevent glare from being given to the oncoming vehicle 900.
  • 2 (a) to 2 (c) are diagrams for explaining problems that occur in relation to vehicle detection and light distribution control by the light source detection method.
  • reflectors 906 and 908 such as a line-of-sight guide (deriniator) are present in front of the vehicle.
  • the reflector 908 included in the irradiation region (light distribution pattern) of the light distribution variable lamp of the own vehicle behaves like a light source because it reflects the beam of the headlight of the own vehicle.
  • FIG. 2 (b) an image in which the reflector 908 is captured as a light spot is generated as shown in FIG. 2 (b).
  • a light spot region 910 including the reflector 908 is generated. That is, in this case, the delineator is erroneously determined to be a headlamp or a tail lamp.
  • the light distribution variable lamp of the own vehicle updates the light distribution pattern PTN so that the light spot region 910 and its surroundings are shielded from light.
  • the reflector that had been irradiated with the beam until then is no longer irradiated with the beam, so that the reflection from the reflector 908 is eliminated.
  • the reflector 908 does not appear as a light spot.
  • the light spot region 910 disappears and returns to the original light distribution pattern PTN as shown in FIG. 2 (a). Then, the reflector 908 is detected as a light spot again, and the light spot region 910 is shielded from light.
  • This disclosure has been made in view of such a problem, and one of the exemplary purposes of the embodiment is to provide a vehicle lamp with suppressed hunting.
  • the vehicle lighting equipment receives the light distribution variable lamp and the light spot data indicating the existence range of the light spot, so that a light distribution pattern including a light-shielding region located above the existence range of the light spot indicated by the light spot data can be obtained. It is equipped with a controller that controls a variable light distribution lamp.
  • the upper side of the existing range of the light spot is shielded from light, and it is possible to prevent the interior of the oncoming vehicle or the preceding vehicle from being illuminated. .. Further, when the light spot data including the reflector as a light spot is input, the upper side of the light spot existing range is shielded from light, and the beam irradiation to the light spot existing range is maintained. As a result, hunting can be prevented.
  • the shading area may be arranged so that there is a gap between the lower end thereof and the upper end of the existence range of the light spot. Hunting can be prevented when the beam of the variable light distribution lamp moves up and down due to pitching of the vehicle.
  • the height (angle) of the gap between the light-shielding area and the existence range of the light spot may be narrower as the size of the light spot is smaller.
  • the height (angle) of the light-shielding area may be narrower as the size of the light spot is smaller.
  • the upper end of the light-shielding area may coincide with the upper end of the irradiable range of the variable light distribution lamp.
  • variable light distribution lamp may be configured so that the light distribution can be controlled in two stages, upper and lower.
  • the controller may arrange the light-shielding region in the corresponding range in the upper row.
  • the upper limit angle of the lower row may be lower than the upper 1 degree.
  • hunting can be suppressed.
  • 1 (a) to 1 (c) are diagrams for explaining vehicle detection and light distribution control by a light source detection method.
  • 2 (a) to 2 (c) are diagrams for explaining problems that occur in relation to vehicle detection and light distribution control by the light source detection method.
  • 10 (a) to 10 (c) are diagrams for explaining the light distribution control according to the modified example 5.
  • FIG. 3 is a block diagram of the lamp system 2 including the vehicle lamp 100 according to the embodiment.
  • the lamp system 2 includes an ADB ECU (Electronic Control Unit) 4, a camera 6, and a vehicle lamp 100.
  • ADB ECU Electronic Control Unit
  • the ADB ECU 4 receives the image of the camera 6 and detects a light spot from the image.
  • the light spot may include a self-luminous light source and a reflector that reflects the beam of the vehicle lamp 100.
  • the ADB ECU 4 supplies the light spot data S1 indicating the existence range of the light spot to the controller 120 of the vehicle lamp 100.
  • the ADB ECU 4 and the camera 6 may be built in the vehicle lamp 100.
  • the vehicle lamp 100 includes a low beam unit 102 and a high beam unit 104.
  • the low beam unit 102 has a fixed light distribution pattern and illuminates a predetermined high beam region 702 on the virtual vertical screen 700.
  • the high beam unit 104 is an ADB (Adaptive Driving Beam), and is configured to be able to adaptively control the light distribution pattern 704 according to the situation in front of the vehicle and the state of the own vehicle.
  • the high beam unit 104 includes a light distribution variable lamp 110 and a controller 120.
  • the light distribution variable lamp 110 is configured to have a variable light distribution.
  • the configuration of the variable light distribution lamp 110 is not particularly limited, but at least the light distribution can be controlled in the horizontal direction with high resolution by dividing the light distribution into two in the vertical direction.
  • the variable light distribution lamp 110 may be of an array system including an array of light emitting elements that can be individually turned on and off.
  • LEDs light emitting elements having a particularly high resolution, those commercially available as micro LEDs may be used.
  • variable light distribution lamp 110 may be a lamp having a patterning device such as a DMD (Digital Micromirror Device) or a liquid crystal.
  • a patterning device such as a DMD (Digital Micromirror Device) or a liquid crystal.
  • the high beam region 702 is divided into multiple areas in each of the height direction and the horizontal direction. It may be possible to switch on and off for each.
  • variable light distribution lamp 110 may be a scanning type lamp.
  • the variable light distribution lamp 110 may be configured to scan a plurality of beams having different heights in the horizontal direction and control the on / off of each beam.
  • the controller 120 receives the light spot data S1 from the ADB ECU 4.
  • the controller 120 controls the light distribution variable lamp 110 so that a light distribution pattern including a light-shielding region located above the existence range of the light spot indicated by the light spot data S1 can be obtained.
  • the format and signal format of the optical spot data S1 are not particularly limited.
  • the above is the basic configuration of the vehicle lamp 100. Subsequently, the characteristic light distribution control by the vehicle lamp 100 will be described.
  • FIGS. 4A to 4C are diagrams illustrating vehicle detection and light distribution control in the lamp system 2 of FIG. 4 (a) to 4 (c) show a traveling scene passing by the oncoming vehicle 900, as in FIGS. 1 (a) to 1 (c).
  • PTN shows a light distribution pattern (irradiation region) of the light distribution variable lamp of the own vehicle.
  • the ADB ECU 4 processes the image of the camera 6 to generate light spot data S1 indicating the existence ranges of the two light spots (light spot region 904), as shown in FIG. 4 (b).
  • the controller 120 receives the light spot data S1 and updates the light distribution pattern PTN so as to include a light shielding region 920 located above the light spot region 904 as shown in FIG. 4 (c).
  • a gap ⁇ y may be inserted between the light spot region 904 and the light shielding region 920.
  • the light spot data S1 including the headlamp or the tail lamp as the light spot is input, the upper side of the existing range of the light spot is shielded from light, and it is possible to prevent the interior of the oncoming vehicle or the preceding vehicle from being illuminated. Glare can be prevented.
  • FIG. 5 (a) to 5 (c) are diagrams illustrating vehicle detection and light distribution control in the lamp system 2 of FIG.
  • the traveling scene of FIG. 5A is the same as the traveling scene of FIG. 2A, and reflectors 906 and 908 such as a line-of-sight guide marker (deriniator) are present in front of the vehicle.
  • the reflector 908 included in the irradiation region (light distribution pattern) of the light distribution variable lamp of the own vehicle behaves like a light source because it reflects the beam of the headlight of the own vehicle.
  • an image in which the reflector 908 is captured as a light spot is generated as shown in FIG. 5 (b).
  • the ADB ECU 4 processes the image of the camera 6 to generate light spot data S1 indicating the existence ranges of the two light spots (light spot region 910), as shown in FIG. 5 (b).
  • the controller 120 receives the light spot data S1 and updates the light distribution pattern PTN. Specifically, as shown in FIG. 4 (c), the light spot region 910 is updated to include the light shielding region 920 located above the light spot region 910. In the updated light distribution pattern PTN, the irradiation of the beam to the light spot region 910 is maintained, so that the reflector 908 continues to be recognized as a light spot, and the light distribution pattern of FIG. 5C is maintained.
  • Modification example 1 6 (a) to 6 (c) are diagrams for explaining vehicle detection and light distribution control according to the first modification.
  • the traveling scene of FIG. 6A is the same as the traveling scene of FIG. 2A, and reflectors 906 and 908 such as a line-of-sight guide marker (deriniator) are present in front of the vehicle.
  • reflectors 906 and 908 such as a line-of-sight guide marker (deriniator) are present in front of the vehicle.
  • the light spot region 912 is independently generated for each reflector 908. Then, as shown in FIG. 6C, a light-shielding region 922 is provided for each light spot region 912. In this case as well, hunting can be prevented.
  • FIG. 7 is a diagram for explaining the light distribution control according to the second modification.
  • this modification 2 the height (angle) of the gap ⁇ y between the light-shielding region 922 and the light spot region 912 becomes narrower as the size of the light spot region 912 becomes smaller.
  • the smaller the size of the light spot that is, the farther the light spot is, the narrower the corresponding gap is, so that a light distribution with less discomfort can be obtained.
  • the height (angle) of the light-shielding region may be narrowed as the size of the light spot region 912 is smaller.
  • FIG. 8 is a diagram illustrating light distribution control according to the third modification.
  • the light spot region has been a rectangle having sides extending in the horizontal direction and the vertical direction, but this is not the case.
  • the light spot region 914 can be defined as an arbitrary quadrangle.
  • the light-shielding region 924 may be formed along the upper side 916 of the light spot region 914. More flexibly, the light spot region may be defined as an arbitrary polygon.
  • FIG. 9 is a diagram for explaining the light distribution control according to the modified example 4.
  • the upper end of the light-shielding region 918 coincides with the upper end of the irradiable range of the light distribution variable lamp.
  • Modification 5 10 (a) to 10 (c) are diagrams for explaining the light distribution control according to the modified example 5.
  • the light distribution variable lamp 110 is configured so that the light distribution can be controlled in two stages, upper and lower. That is, the irradiation area of the high beam is divided into two in the vertical direction, and a light-shielding region can be independently formed at an arbitrary position in the horizontal direction for each of the upper region 930 and the lower region 932.
  • the controller 120 arranges the light shielding region 926 in the corresponding range of the upper region 930 as shown in FIG. 10 (c).
  • the upper limit angle of the lower region 932 is lower than the upper 1 degree, preferably near 0 degree.
  • This disclosure relates to vehicle lamps used in automobiles and the like.
  • Lamp system 4 ADB ECU 6 Camera S1 Light spot data 100 Vehicle lighting equipment 102 Low beam unit 104 High beam unit 110 Variable light distribution lamp 900 Oncoming vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

車両用灯具(100)は、配光可変ランプ(110)とコントローラ(120)を備える。コントローラ(120)は、光点の存在範囲を示す光点データ(S1)を受け、光点データ(S1)が示す光点の存在範囲の上方に位置する遮光領域を含む配光パターンが得られるように配光可変ランプ(110)を制御する。

Description

車両用灯具、配光可変ランプの制御方法
 本開示は、自動車などに用いられる車両用灯具に関する。
 車両用灯具は、一般にロービームとハイビームとを切りかえることが可能である。ロービームは、自車近傍を所定の照度で照明するものであって、対向車や先行車にグレアを与えないよう配光規定が定められており、主に市街地を走行する場合に用いられる。一方、ハイビームは、前方の広範囲および遠方を比較的高い照度で照明するものであり、主に対向車や先行車が少ない道路を高速走行する場合に用いられる。したがって、ハイビームはロービームと比較してより運転者による視認性に優れているが、車両前方に存在する車両の運転者や歩行者にグレアを与えてしまうという問題がある。
 近年、車両の周囲の状態にもとづいて、ハイビームの配光パターンを動的、適応的に制御するADB(Adaptive Driving Beam)技術が提案されている。ADB技術は、車両の前方の先行車両、対向車両の有無を検出し、車両に対応する領域を減光するなどして、車両に与えるグレアを低減するものである。
 ADB制御では、先行車両や対向車両の位置検出が重要である。それらを簡易に検出する手法として、テイルランプやヘッドランプにもとづくものが知られている(以下、光源検知方式という)。図1(a)~(c)は、光源検知方式による車両検出および配光制御を説明する図である。図1(a)~(c)には、対向車900とすれ違う走行シーンが示される。図1(a)~(c)において、PTNは、自車の配光可変ランプの配光パターン(照射領域)を示す。
 自車前方をカメラによって撮影することにより、対向車900のヘッドランプ902が光点(輝点)として写った画像が生成される。カメラの画像を処理することにより、図1(b)に示すように、ひとつ、あるいは複数の光点を含む領域(以下、光点領域という)904が生成される。この光点領域904は、ヘッドランプやテイルランプの位置を示している。自車の配光可変ランプは、図1(c)に示すように、光点領域904およびその周囲が遮光されるように、配光パターンPNTを更新する。これにより対向車900にグレアを与えるのを防止できる。
国際公開第2016/104319号
 本発明者は、光源検知方式について検討した結果、以下の課題を認識するに至った。図2(a)~(c)は、光源検知方式による車両検出および配光制御に関連して生ずる問題を説明する図である。
 図2(a)の走行シーンにおいて、車両前方には、視線誘導標(デリニエータ)などの反射体906、908が存在している。自車の配光可変ランプの照射領域(配光パターン)に含まれる反射体908は、自車のヘッドライトのビームを反射するため、光源のように振る舞う。この反射体908をカメラによって撮影すると、図2(b)に示すように、反射体908が光点として写った画像が生成される。この画像を処理することにより、反射体908を含む光点領域910が生成される。つまり、このケースではデリニエータがヘッドランプあるいはテイルランプと誤判定されている。自車の配光可変ランプは、図2(c)に示すように、光点領域910およびその周囲が遮光されるように、配光パターンPTNを更新する。
 配光パターンPTNを更新した結果、それまでビームが照射されていた反射体にビームが照射されなくなるため、反射体908からの反射がなくなる。この状態をカメラで撮影すると、反射体908は光点として写らなくなる。その結果、光点領域910が消失し、図2(a)に示すような元の配光パターンPTNに戻る。そして、再び反射体908が光点として検出され、光点領域910が遮光される。このように、従来の光源検知方式では、車両前方に反射体が存在する場合に、反射体を含む領域が、照射、遮光を交互に繰り返す現象が発生する(ハンチング)。ヘッドランプのハンチングは、自車の運転者あるいは周囲の交通参加者に違和感を与えるため好ましくない。
 本開示はかかる課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、ハンチングを抑制した車両用灯具の提供にある。
 本開示のある態様は、車両用灯具に関する。車両用灯具は、配光可変ランプと、光点の存在範囲を示す光点データを受け、光点データが示す光点の存在範囲の上方に位置する遮光領域を含む配光パターンが得られるように配光可変ランプを制御するコントローラと、を備える。
 この態様によると、ヘッドランプやテイルランプを光点として含む光点データが入力されたときに、光点の存在範囲より上側が遮光され、対向車や先行車の室内を照射するのを防止できる。また反射体を光点として含む光点データが入力されたときに、光点の存在範囲より上側が遮光され、光点の存在範囲へのビームの照射が維持される。これにより、ハンチングを防止できる。
 遮光領域は、その下端と光点の存在範囲の上端の間にギャップが存在するように配置されてもよい。車両のピッチングにより配光可変ランプのビームが上下に移動したときに、ハンチングを防止できる。
 遮光領域と光点の存在範囲のギャップの高さ(角度)は、光点のサイズが小さいほど狭くてもよい。これにより、サイズが小さい光点、すなわちより遠くにある光点ほど、ギャップが狭くなっていくため、違和感の少ない配光を得ることができる。
 遮光領域の高さ(角度)は、光点のサイズが小さいほど狭くてもよい。これにより、サイズが小さい光点、すなわちより遠くにある光点ほど、遮光領域の高さ(角度)が狭くなっていくため、違和感の少ない配光を得ることができる。
 遮光領域の上端は、配光可変ランプの照射可能範囲の上端と一致してもよい。
 配光可変ランプは、上下二段にて配光制御できるように構成されてもよい。コントローラは、光点の存在範囲が下段のある範囲に含まれるとき、上段の対応する範囲に遮光領域を配置してもよい。
 下段の上限角度は、上1度より低くてもよい。これにより対向車や先行車が検出されたときに、下段の照射を維持しても、対向車や先行車に与えるグレアを防止できる。
 なお、以上の構成要素の任意の組み合わせや、本開示の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本開示の態様として有効である。
 本開示のある態様によれば、ハンチングを抑制できる。
図1(a)~(c)は、光源検知方式による車両検出および配光制御を説明する図である。 図2(a)~(c)は、光源検知方式による車両検出および配光制御に関連して生ずる問題を説明する図である。 実施の形態に係る車両用灯具を備える灯具システムのブロック図である。 図4(a)~(c)は、図3の灯具システムにおける車両検出および配光制御を説明する図である。 図5(a)~(c)は、図3の灯具システムにおける車両検出および配光制御を説明する図である。 図6(a)~(c)は、変形例1に係る車両検出および配光制御を説明する図である。 変形例2に係る配光制御を説明する図である。 変形例3に係る配光制御を説明する図である。 変形例4に係る配光制御を説明する図である。 図10(a)~(c)は、変形例5に係る配光制御を説明する図である。
 以下、本開示を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、開示を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも開示の本質的なものであるとは限らない。
 図3は、実施の形態に係る車両用灯具100を備える灯具システム2のブロック図である。灯具システム2は、ADB用ECU(Electronic Control Unit)4、カメラ6および車両用灯具100を備える。
 カメラ6は、車両前方を撮影する。ADB用ECU4は、カメラ6の画像を受け、画像の中から、光点を検出する。上述したように、光点には、自発光する光源と、車両用灯具100のビームを反射する反射体が含まれうる。ADB用ECU4は、車両用灯具100のコントローラ120に対して、光点の存在範囲を示す光点データS1を供給する。複数の光点が同じ車両の灯具として認識しうる程度に近接して存在する場合、それらをひとつの光源群として扱い、光点群ごとに、それらの存在範囲を示す光点データを生成してもよい。あるいは同じ車両の灯具でなくても、複数の光点をひとつの光点群として扱ってもよい。なおADB用ECU4やカメラ6は、車両用灯具100に内蔵されてもよい。
 車両用灯具100は、ロービームユニット102およびハイビームユニット104を含む。ロービームユニット102は、固定された配光パターンを有し、仮想鉛直スクリーン700上の所定のハイビーム領域702を照射する。
 ハイビームユニット104はADB(Adaptive Driving Beam)であり、車両前方の状況や自車の状態に応じて、配光パターン704を適応的に制御可能に構成される。ハイビームユニット104は、配光可変ランプ110およびコントローラ120を備える。
 配光可変ランプ110は、配光が可変に構成される。配光可変ランプ110の構成は特に限定されないが、少なくとも上下方向に2分割で、水平方向に高分解能で配光制御が可能となっている。たとえば配光可変ランプ110は、個別に点消灯が可能な発光素子のアレイを備えるアレイ方式であってもよい。特に解像度が高い発光素子(LED)のアレイは、マイクロLEDとして市販されるそれを用いてもよい。
 あるいは配光可変ランプ110は、DMD(Digital Micromirror Device)や液晶などのパターニングデバイスを有するランプであってもよく、この場合、ハイビーム領域702を高さ方向、水平方向それぞれについて多分割して、エリアごとにオン、オフを切り替え可能であってもよい。
 あるいは配光可変ランプ110はスキャン方式のランプであってもよい。この場合、配光可変ランプ110は、高さが異なる複数のビームを、水平方向にスキャンし、各ビームのオン、オフを制御するように構成すればよい。
 コントローラ120は、ADB用ECU4から、光点データS1を受ける。コントローラ120は、光点データS1が示す光点の存在範囲の上方に位置する遮光領域を含む配光パターンが得られるように配光可変ランプ110を制御する。光点データS1のフォーマットや信号形式は特に限定されない。
 以上が車両用灯具100の基本構成である。続いてこの車両用灯具100による特徴的な配光制御を説明する。
 図4(a)~(c)は、図3の灯具システム2における車両検出および配光制御を説明する図である。図4(a)~(c)には、図1(a)~(c)と同様に、対向車900とすれ違う走行シーンが示される。図4(a)~(c)において、PTNは、自車の配光可変ランプの配光パターン(照射領域)を示す。
 自車前方をカメラ6によって撮影することにより、対向車900のヘッドランプ902が光点(輝点)として写った画像が生成される。ADB用ECU4は、カメラ6の画像を処理することにより、図4(b)に示すように、2個の光点の存在範囲(光点領域904)を示す光点データS1を生成する。
 コントローラ120は、光点データS1を受け、配光パターンPTNを、図4(c)に示すように、光点領域904の上側に位置する遮光領域920を含むように更新する。光点領域904と遮光領域920の間にはギャップΔyを挿入するとよい。
 このように、ヘッドランプやテイルランプを光点として含む光点データS1が入力されたときには、光点の存在範囲より上側が遮光され、対向車や先行車の室内を照射するのを防止でき、グレアを防止できる。
 図5(a)~(c)は、図3の灯具システム2における車両検出および配光制御を説明する図である。図5(a)の走行シーンは、図2(a)の走行シーンと同様であり、車両前方には、視線誘導標(デリニエータ)などの反射体906、908が存在している。自車の配光可変ランプの照射領域(配光パターン)に含まれる反射体908は、自車のヘッドライトのビームを反射するため、光源のように振る舞う。この反射体908をカメラによって撮影すると、図5(b)に示すように、反射体908が光点として写った画像が生成される。
 ADB用ECU4は、カメラ6の画像を処理することにより、図5(b)に示すように、2個の光点の存在範囲(光点領域910)を示す光点データS1を生成する。
 コントローラ120は、光点データS1を受け、配光パターンPTNを更新する。具体的には図4(c)に示すように、光点領域910の上側に位置する遮光領域920を含むように更新する。更新後の配光パターンPTNにおいて、光点領域910へのビームの照射は維持されるため、反射体908は光点として認識され続け、図5(c)の配光パターンが維持される。
 このように、図3の車両用灯具100によれば、反射体が存在する場合のハンチングを抑制することができる。
 また、遮光領域と光点の存在範囲の間にギャップΔyを挿入することにより、車両のピッチングにより配光可変ランプのビームが上下に移動したときに、ハンチングを防止できる。
 従来ではハンチング回避の観点から、発光体のみを検出し、反射体を検出しないように、光点の検出のためのスレッショルドを高く設定する必要があった。この場合、自転車のなどの光量の小さい灯具が検出できず、自転車の運転者にグレアを与えるおそれがある。図3の車両用灯具100によれば、反射体にもとづくハンチングを防止できることから、光点の検出のしきい値を低く、言い換えれば検出感度を高めることができる。これにより、自転車の灯具なども検出できるようになり、自転車の運転者に与えるグレアも防止できるようになる。
(変形例1)
 図6(a)~(c)は、変形例1に係る車両検出および配光制御を説明する図である。図6(a)の走行シーンは、図2(a)の走行シーンと同様であり、車両前方には、視線誘導標(デリニエータ)などの反射体906、908が存在している。
 この変形例1では、図6(b)に示すように、光点領域912が、反射体908ごとに独立して生成される。そして図6(c)に示すように、光点領域912ごとに遮光領域922が設けられる。この場合も、ハンチングを防止できる。
(変形例2)
 図7は、変形例2に係る配光制御を説明する図である。この変形例2においては、遮光領域922と光点領域912のギャップΔyの高さ(角度)が、光点領域912のサイズが小さいほど狭くなっている。これにより、サイズが小さい光点、すなわちより遠くにある光点ほど、それに対応するギャップが狭くなっていくため、違和感の少ない配光を得ることができる。
 ギャップの高さに加えて、あるいはそれに代えて、遮光領域の高さ(角度)を、光点領域912のサイズが小さいほど、狭めてもよい。これにより、サイズが小さい光点、すなわちより遠くにある光点ほど、それに対応する遮光領域の高さ(角度)が狭くなっていくため、違和感の少ない配光を得ることができる。
(変形例3)
 図8は、変形例3に係る配光制御を説明する図である。これまでの説明では、光点領域が、水平方向と鉛直方向に伸びる辺を持った長方形であったが、その限りでない。変形例3では、光点領域914を、任意の四角形として定義することができる。この場合、遮光領域924は、光点領域914の上辺916に沿って形成すればよい。より柔軟に、光点領域を任意の多角形として定義するようにしてもよい。
(変形例4)
 図9は、変形例4に係る配光制御を説明する図である。この変形例4では、遮光領域918の上端が、配光可変ランプの照射可能範囲の上端と一致している。
(変形例5)
 図10(a)~(c)は、変形例5に係る配光制御を説明する図である。この変形例5では、図10(a)に示すように、配光可変ランプ110は、上下二段にて配光制御できるように構成される。すなわち、ハイビームの照射エリアは、垂直方向に2分割されており、上段領域930と下段領域932それぞれについて、水平方向の任意の位置に、独立に遮光領域を形成可能となっている。
 図10(b)に示すように、対向車900が現れると、光点領域904を示す光点データS1が生成される。コントローラ120は、光点データS1が下段領域932に含まれるとき、図10(c)に示すように上段領域930の対応する範囲に遮光領域926を配置する。
 この場合において、下段領域932の上限角度は、上1度より低く、好ましくは0度近傍とするとよい。これにより対向車や先行車が検出されたときに、下段領域932の照射を維持しても、対向車や先行車に与えるグレアを防止できる。
 実施の形態にもとづき、具体的な語句を用いて本開示を説明したが、実施の形態は、本開示の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本開示の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
 本開示は、自動車などに用いられる車両用灯具に関する。
 2 灯具システム
 4 ADB用ECU
 6 カメラ
 S1 光点データ
 100 車両用灯具
 102 ロービームユニット
 104 ハイビームユニット
 110 配光可変ランプ
 900 対向車

Claims (8)

  1.  配光可変ランプと、
     光点の存在範囲を示す光点データを受け、前記光点データが示す前記光点の存在範囲の上方に位置する遮光領域を含む配光パターンが得られるように前記配光可変ランプを制御するコントローラと、
     を備えることを特徴とする車両用灯具。
  2.  前記遮光領域は、その下端と前記光点の存在範囲の上端の間にギャップが存在するように配置されることを特徴とする請求項1に記載の車両用灯具。
  3.  前記ギャップの高さは、前記光点のサイズが小さいほど狭いことを特徴とする請求項2に記載の車両用灯具。
  4.  前記遮光領域の高さは、前記光点のサイズが小さいほど狭いことを特徴とする請求項1から3のいずれかに記載の車両用灯具。
  5.  前記遮光領域の上端は、前記配光可変ランプの照射可能範囲の上端と一致することを特徴とする請求項1から3のいずれかに記載の車両用灯具。
  6.  前記配光可変ランプは、上下二段にて配光制御できるように構成され、
     前記コントローラは、前記光点の存在範囲が下段のある範囲に含まれるとき、上段の対応する範囲に前記遮光領域を配置することを特徴とする請求項1に記載の車両用灯具。
  7.  前記下段の上限角度は、上1度より低いことを特徴とする請求項6に記載の車両用灯具。
  8.  配光可変ランプの制御方法であって、
     カメラの画像から光点を検出し、前記光点の存在範囲を示す光点データを生成するステップと、
     前記光点データにもとづいて、前記光点の存在範囲の上方に位置する遮光領域を含む配光パターンを生成するステップと、
     前記配光パターンが得られるように前記配光可変ランプを制御するステップと、
     を備えることを特徴とする制御方法。
PCT/JP2020/037752 2019-10-08 2020-10-05 車両用灯具、配光可変ランプの制御方法 WO2021070787A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021551646A JPWO2021070787A1 (ja) 2019-10-08 2020-10-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-185253 2019-10-08
JP2019185253 2019-10-08

Publications (1)

Publication Number Publication Date
WO2021070787A1 true WO2021070787A1 (ja) 2021-04-15

Family

ID=75436828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037752 WO2021070787A1 (ja) 2019-10-08 2020-10-05 車両用灯具、配光可変ランプの制御方法

Country Status (2)

Country Link
JP (1) JPWO2021070787A1 (ja)
WO (1) WO2021070787A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094127A (ja) * 2006-10-06 2008-04-24 Hitachi Ltd 自動車用ヘッドライト制御装置
JP2011031807A (ja) * 2009-08-04 2011-02-17 Koito Mfg Co Ltd 車両用前照灯の配光制御システム
JP2016058166A (ja) * 2014-09-05 2016-04-21 株式会社小糸製作所 車両用灯具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094127A (ja) * 2006-10-06 2008-04-24 Hitachi Ltd 自動車用ヘッドライト制御装置
JP2011031807A (ja) * 2009-08-04 2011-02-17 Koito Mfg Co Ltd 車両用前照灯の配光制御システム
JP2016058166A (ja) * 2014-09-05 2016-04-21 株式会社小糸製作所 車両用灯具

Also Published As

Publication number Publication date
JPWO2021070787A1 (ja) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2015033764A1 (ja) 車両用灯具
US7510310B2 (en) Vehicle lighting device
CN102635823B (zh) 车辆用前照灯的配光控制装置
JP2017174736A (ja) 車両用灯具、および当該車両用灯具を備えた車両
DE102015225890A1 (de) Fahrzeugleuchte
US20170088036A1 (en) Headlamp device for a vehicle and method for controlling the headlamp device
US9751455B2 (en) Headlight controller and vehicle headlight system
EP2495128B1 (en) Light distribution control device
CN104456348A (zh) 车辆用前照灯
JP5823214B2 (ja) 車両用前照灯装置
JP7201425B2 (ja) 車両用灯具システム、車両用灯具の制御装置および車両用灯具の制御方法
JP7121051B2 (ja) 車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法
JP2010162960A (ja) 車両用前照灯装置
JP2016168915A (ja) 車両灯具システム
JP7237607B2 (ja) 車両用灯具システム、車両用灯具の制御装置および車両用灯具の制御方法
JPWO2019003887A1 (ja) 車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法
US11704910B2 (en) Vehicle detecting device and vehicle lamp system
JP7312913B2 (ja) 自動車両の照明システムを制御するための方法
JP7084392B2 (ja) 車両用灯具システム、車両用灯具の制御装置及び車両用灯具の制御方法
WO2021070787A1 (ja) 車両用灯具、配光可変ランプの制御方法
JP2013147111A (ja) 車両用前照灯の点灯制御装置、車両用前照灯システム
JP7354450B2 (ja) 自動車両の照明システムを制御するための方法
CN209776290U (zh) 车辆检测装置以及车辆用灯具系统
CN116323311A (zh) 车辆用灯和其控制装置及控制方法
US20240083344A1 (en) Vehicle lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873978

Country of ref document: EP

Kind code of ref document: A1