WO2021070560A1 - 温度センサ - Google Patents

温度センサ Download PDF

Info

Publication number
WO2021070560A1
WO2021070560A1 PCT/JP2020/034479 JP2020034479W WO2021070560A1 WO 2021070560 A1 WO2021070560 A1 WO 2021070560A1 JP 2020034479 W JP2020034479 W JP 2020034479W WO 2021070560 A1 WO2021070560 A1 WO 2021070560A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
hole
temperature sensor
conductive member
gap
Prior art date
Application number
PCT/JP2020/034479
Other languages
English (en)
French (fr)
Inventor
雅紀 廣中
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112020004909.4T priority Critical patent/DE112020004909T5/de
Priority to CN202080070843.2A priority patent/CN114502934A/zh
Publication of WO2021070560A1 publication Critical patent/WO2021070560A1/ja
Priority to US17/713,659 priority patent/US20220228926A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/16Special arrangements for conducting heat from the object to the sensitive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • G01K13/024Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow of moving gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the temperature sensor is also used, for example, for detecting the temperature in the hydrogen tank, which is arranged in the hydrogen tank of the fuel cell vehicle.
  • the filling speed of hydrogen in the hydrogen tank is controlled based on the detection result of the temperature in the hydrogen tank by the temperature sensor.
  • the temperature sensor described in Patent Document 1 is used by arranging it in a hydrogen tank, the following problems occur.
  • cracks generated in the housing due to blister destruction may be formed so as to communicate with both of the pair of conductive members from the surface of the housing. In that case, the electrical insulation between the pair of conductive members is reduced. Further, although water may enter the hydrogen tank as an impurity, there is a possibility that the water may enter the crack and electrically short-circuit the pair of conductive members.
  • the present disclosure is intended to provide a temperature sensor capable of suppressing the occurrence of blister destruction in the housing.
  • One aspect of the present disclosure is a temperature sensor arranged in a hydrogen tank.
  • a temperature sensitive element for detecting temperature
  • a pair of element electrode wires electrically connected to the temperature sensitive element
  • a pair of conductive members electrically connected to the element electrode wires that are different from each other
  • a resin housing having a pair of through holes for inserting and holding the pair of the conductive members, respectively.
  • the temperature sensor has a gap formed between at least one of the conductive members and the inner peripheral surface of the through hole.
  • a gap is formed between at least one conductive member and the inner peripheral surface of the through hole of the housing. Therefore, the hydrogen dissolved in the housing when the inside of the hydrogen tank in which the temperature sensor is arranged is in a high pressure state passes through the housing and escapes from the housing surface to the outside of the housing as the pressure in the hydrogen tank decreases. .. In addition, the hydrogen passes through the housing and escapes into the gap. Hydrogen moves between polymer chains while colliding with the polymer chains of the resin in the housing, whereas hydrogen can move faster in the gap because there are no substances that hinder the movement. it can. Therefore, more hydrogen dissolved in the housing when the inside of the hydrogen tank is in a high pressure state is more likely to escape from the inside of the housing when the pressure in the hydrogen tank is reduced. This makes it possible to prevent blister destruction from occurring in the housing.
  • FIG. 1 is a partial cross-sectional front view of the temperature sensor according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • FIG. 3 is a schematic cross-sectional view of the surface of the conductive member and the surface of the housing in the first embodiment as viewed microscopically.
  • FIG. 4 is a cross-sectional view showing the distance between the hydrogen that has entered the central portion of the housing and the outside of the housing in the first embodiment.
  • FIG. 5 is a cross-sectional view showing the distance between the hydrogen infiltrated into the central portion of the housing and the outside of the housing in the comparative form.
  • FIG. 6 is a cross-sectional view showing a state in which blister fracture has occurred in the housing in the comparative form.
  • FIG. 7 is a cross-sectional view of the temperature sensor according to the second embodiment.
  • FIG. 8 is a cross-sectional view of the temperature sensor in the modified form of the second embodiment.
  • FIG. 9 is a cross-sectional view of the temperature sensor in another modification of the second embodiment.
  • FIG. 10 is a partial cross-sectional front view of sample A1 in Experimental Example 1.
  • FIG. 11 is a partial cross-sectional front view of sample A3 in Experimental Example 1.
  • FIG. 12 is a partial cross-sectional front view of the temperature sensor in the other embodiment (No. 1).
  • FIG. 13 is a cross-sectional view orthogonal to the longitudinal direction of the temperature sensor in the other embodiment (No. 2).
  • 14A and 14B are a partial cross-sectional front view of the temperature sensor in another embodiment (No. 3), (b) a cross-sectional view taken along the line BB of FIG. 14A, and FIG. 14C. It is a cross-sectional view taken along the line CC of (a).
  • Embodiment 1 An embodiment of the temperature sensor will be described with reference to FIGS. 1 to 6.
  • the temperature sensor 1 of this embodiment is arranged and used in a hydrogen tank.
  • the temperature sensor 1 includes a temperature sensing element 2, a pair of element electrode wires 3, a pair of conductive members 4, and a housing 5.
  • the temperature sensitive element 2 detects the temperature inside the hydrogen tank.
  • the pair of element electrode wires 3 are electrically connected to the temperature sensitive element 2.
  • the pair of conductive members 4 are electrically connected to different element electrode wires 3.
  • the housing 5 is made of resin, that is, a material containing resin.
  • the housing 5 has a pair of through holes 51 for inserting and holding the pair of conductive members 4.
  • a gap c is formed between each of the pair of conductive members 4 and the inner peripheral surface of the through hole 51 of the housing 5. In the drawings, the gap c is shown larger for convenience. Hereinafter, this form will be described in detail.
  • the temperature sensor 1 of this embodiment is mounted in a hydrogen tank used in, for example, a fuel cell vehicle (so-called FCV; Fuel Cell Vehicle) or the like.
  • FCV Fuel Cell Vehicle
  • the filling speed of hydrogen in the hydrogen tank is controlled based on the detection result of the temperature in the hydrogen tank by the temperature sensor 1. Since an impact is generated in the hydrogen tank by filling with hydrogen, the temperature sensor 1 is designed to have a strength that can withstand this.
  • the inside of the hydrogen tank becomes high pressure when filled with hydrogen.
  • the hydrogen gas in the hydrogen tank dissolves in the housing 5 of the temperature sensor 1.
  • the hydrogen in the hydrogen tank is used for running the fuel cell vehicle from there, the hydrogen in the hydrogen tank is reduced and the inside of the hydrogen tank is depressurized. With this decompression, the hydrogen dissolved in the housing 5 tends to pass through the housing 5 and go out of the housing 5. At this time, it is conceivable that a part of the hydrogen dissolved in the housing 5 does not escape from the housing 5, expands inside the housing 5, and bubbles and cracks starting from the bubbles are generated inside the housing 5.
  • the temperature sensor 1 of this embodiment is devised so as to suppress the occurrence of the crack.
  • the temperature sensitive element 2 of the temperature sensor 1 is composed of, for example, a thermistor. Not limited to this, the temperature sensitive element 2 can also be configured by a thermocouple, a resistance temperature measuring resistor made of platinum or the like. The temperature sensitive element 2 is fixed in a state of being sandwiched by the tip portions of the pair of element electrode wires 3.
  • the pair of element electrode wires 3 are arranged side by side in the Y direction.
  • the pair of element electrode wires 3 are formed of, for example, a platinum alloy linearly formed.
  • the tip of the pair of element electrode wires 3 and the temperature sensitive element 2 are sealed inside the sealing body 6.
  • the sealing body 6 separates the temperature sensitive element 2 from the hydrogen atmosphere in the hydrogen tank.
  • the sealant 6 is made of, for example, an insulating glass material.
  • the sealing body 6 can be made of a resin such as a resin similar to the material of the housing 5 described later.
  • Each base end portion of the pair of element electrode wires 3 is connected to the tip end portions of different conductive members 4.
  • the pair of conductive members 4 are arranged side by side substantially parallel to each other.
  • the conductive member 4 is formed straight in the X direction.
  • the conductive member 4 is formed so that the cross-sectional shape orthogonal to the X direction is a quadrangular shape.
  • the conductive member 4 can adopt various shapes such as a round bar shape having a circular cross-sectional shape and a polygonal columnar shape having a polygonal cross-sectional shape.
  • the conductive member 4 can be made of a conductive material such as SUS304. Then, as shown in FIGS. 1 and 2, the conductive member 4 is held in the housing 5.
  • the housing 5 has a pair of through holes 51 formed through through in the X direction.
  • the through hole 51 is formed to be long in the X direction.
  • Conductive members 4 different from each other are arranged in each of the pair of through holes 51.
  • the conductive member 4 is arranged in the through hole 51 so that the tip end side and the proximal end side thereof protrude from the through hole 51.
  • the surface roughness Rz of the surface of the in-hole conductive portion 41 which is a portion of the conductive member 4 arranged in the through hole 51 of the housing 5, is 30 ⁇ m or less. That is, the surface roughness of at least the portion of the conductive member 4 facing the inner peripheral surface of the through hole 51 of the housing 5 is 30 ⁇ m or less.
  • micro unevenness 42 is formed on the surface of the conductive member 4.
  • the surface of the metal member is generally not formed into a perfect surface, and there are irregularities when viewed microscopically.
  • the housing 5 is formed by insert molding in which the conductive member 4 is arranged in the mold. Therefore, a part of the housing 5 enters the unevenness 42 of the conductive member 4 and is formed into a shape along the unevenness 42.
  • the inner peripheral surface of the through hole 51 of the housing 5 and the unevenness 42 on the surface of the conductive member 4 mesh with each other, so that the conductive member 4 does not fall out of the housing 5.
  • the gap c between the inner peripheral surface of the through hole 51 of the housing 5 and the conductive member 4 can be formed, for example, by devising the manufacturing method of the housing 5.
  • the presence or absence of the gap c can be detected by a leak test using He (that is, helium) having the next smallest atomic radius after hydrogen.
  • He that is, helium
  • the leak test first, a molded body composed of the housing 5 and the conductive member 4 having no gap c is prepared. In the molded body, He is fed from one side in the X direction between the housing 5 and the conductive member 4. Then, the reference leak amount, which is the amount of He leaking from the other side in the X direction between the housing 5 and the conductive member 4 in the molded body, is detected.
  • He is sent between the housing 5 and the conductive member 4 of the temperature sensor 1 to be detected for the presence or absence of the gap c, as in the case of the molded body, and the amount of leakage is detected.
  • the leak amount is larger than the reference leak amount by a predetermined value or more, it can be determined that the gap c is formed between the housing 5 and the conductive member 4.
  • the gap c is directly observed with a transmission electron microscope (that is, TEM; Transmission Electron Microscope), or the cross section is directly observed with a scanning electron microscope (that is, SEM; Scanning Electron Microscope). It is also possible.
  • a transmission electron microscope that is, TEM; Transmission Electron Microscope
  • SEM Scanning Electron Microscope
  • a gap c is formed between at least one conductive member 4 and the inner peripheral surface of the through hole 51 of the housing 5. Therefore, the hydrogen dissolved in the housing 5 when the inside of the hydrogen tank in which the temperature sensor 1 is arranged is in a high pressure state passes through the housing 5 and from the surface of the housing 5 to the housing as the pressure in the hydrogen tank is reduced. 5 Get out of the house. In addition, the hydrogen passes through the housing 5 and escapes into the gap c. Hydrogen moves between the polymer chains while colliding with the polymer chains of the resin in the housing 5, whereas it moves faster in the gap c because there is no substance that hinders the movement. be able to. Therefore, more hydrogen dissolved in the housing 5 when the inside of the hydrogen tank is in a high pressure state is more likely to escape from the inside of the housing 5 when the pressure in the hydrogen tank is reduced. This makes it possible to prevent blister destruction from occurring in the housing 5.
  • the resin housing 5 holding the conductive member 4 when the resin housing 5 holding the conductive member 4 is insert-molded, it is insert-molded so as to eliminate a gap between the conductive member 4 and the housing 5 in order to ensure airtightness.
  • the gap between the metal member and the resin material can be eliminated, or as disclosed in Japanese Patent Application Laid-Open No. 2018-126960, the surface of the metal member can be embossed or the like.
  • the unevenness of the metal member By forming the unevenness of the metal member, the gap between the metal member and the resin member is eliminated.
  • a gap c is intentionally formed between the housing 5 and the conductive member 4 in order to prevent the blister destruction of the housing 5 and the deterioration of electrical reliability due to the destruction. It was done.
  • the gap c is continuously formed longer than a predetermined length, the hydrogen dissolved in the housing 5 is released to the gap c, that is, to the outside of the housing 5 when the pressure is reduced in the hydrogen tank. Cheap. Therefore, the occurrence of blister destruction can be further suppressed.
  • a gap c formed continuously from at least one end of the through hole 51 is provided between at least one conductive member 4 and the inner peripheral surface of the through hole 51 of the housing 5 in which the conductive member 4 is arranged.
  • the central portion 411 of the inner conductive portion 41 of each conductive member 4 in the X direction is formed so that the width in the Y direction is narrower than the portion of the inner conductive portion 41 adjacent to the X direction. ..
  • the surface 410 of the in-hole conductive portion 41 has a curved shape that appears in a cross section parallel to the X direction (hereinafter, may be simply referred to as a parallel cross section).
  • the surface 410 of the in-hole conductive portion 41 has a curved shape that appears in a parallel cross section parallel to both the X direction and the Y direction.
  • the housing 5 is formed by the same insert molding as in the first embodiment. Along with this, the housing 5 is formed along the surface 410 of the in-hole conductive portion 41 of the conductive member 4. As a result, the inner peripheral surface 510 of the through hole 51 has a shape in which the shape appearing in the parallel cross section is curved along the surface 410 of the inner conductive portion 41.
  • the surface 410 of the in-hole conductive portion 41 has a curved shape that appears in a parallel cross section.
  • the inner peripheral surface 510 of the through hole 51 of the housing 5 has a shape in which the shape appearing in the parallel cross section is curved along the surface 410 of the inner conductive portion 41. Therefore, the in-hole conductive portion 41 of the conductive member 4 meshes with the housing 5 to easily prevent the conductive member 4 from falling out of the housing 5. In addition, it has the same effect as that of the first embodiment.
  • the housing 5 contains a large number of inorganic fibers in the resin.
  • the content of the inorganic fiber in the housing 5 is 10 wt% or more and 40 wt% or less.
  • the housing 5 can be made of a material containing 33 wt% of glass fibers as inorganic fibers in a polyamide resin such as PA66 resin.
  • the average length of a large number of inorganic fibers is 30 ⁇ m or more and 250 ⁇ m or less. Others are the same as in the first embodiment.
  • each sample A1 to A4 was arranged by penetrating a pair of linear metal materials 40 assuming a conductive member 4 in a columnar cylindrical body 50 assuming a housing 5.
  • the longitudinal direction of the metal material 40 is referred to as the X direction
  • the direction orthogonal to the X direction and the arranging direction of the pair of metal materials 40 is referred to as the Y direction.
  • the portion of the metal material 40 arranged inside the columnar body 50 is referred to as an in-hole conductive portion 41.
  • sample A1 has a gap formation rate of 40%
  • sample A2 has a gap formation rate of 50%
  • sample A3 has a gap formation rate of 80%
  • sample A4 has a gap formation rate of 100%.
  • the sample A4 can be produced by the same insert molding as in the first embodiment.
  • molds appropriately divided in the X direction are used, and first, the temperature of each mold is raised above room temperature. Then, the resin constituting the columnar body 50 is filled and held in the mold in which the metal material 40 is arranged, and then only the mold on one side in the X direction, which is in contact with the metal material 40, is positively pressed. Cool down. This makes it possible to form the gap c at a desired position.
  • the evaluations were evaluations A, B, and C described later. That is, even if the depressurization of the hydrogen tank was repeated until the number of times considering the case where the hydrogen tank was used for 20 years was repeated, no crack due to blister destruction was observed in the cylinder 50, the evaluation was set to A. No cracks due to blister destruction were observed in the cylinder 50 even if the depressurization of the hydrogen tank was repeated until the number of times was taken into consideration when the hydrogen tank was used for 15 years. When cracks due to blister fracture were observed in the cylinder 50 when the depressurization of the hydrogen tank was repeated until the pressure was increased, the evaluation was set to B. When cracks due to blister fracture were observed in the cylinder 50 when the depressurization of the hydrogen tank was repeated until the number of times considering the case where the hydrogen tank was used for 15 years was observed, the evaluation was set to C. The results are shown in Table 1 below.
  • Example 2 This example is an example of evaluating the difficulty of occurrence of blister fracture when the surface roughness Rz of the conductive member is variously changed in the temperature sensor.
  • Example 3 This example is an example of evaluating the difficulty of blister destruction when the content of inorganic fibers in the housing is variously changed in the temperature sensor.
  • the columnar body 50 of the sample C1 is made of PA66 resin and is made of a material that does not contain inorganic fibers.
  • the columnar body 50 of the sample C2 was made of a material containing 10 wt% of glass fibers as inorganic fibers in the PA66 resin.
  • the columnar body 50 of the sample C3 was composed of a material containing 20 wt% of glass fibers as inorganic fibers in the PA66 resin.
  • the columnar body 50 of the sample C4 was made of a material containing 30 wt% of glass fibers as inorganic fibers in the PA66 resin.
  • the columnar body 50 of the sample C5 was made of a material containing 40 wt% of glass fibers as inorganic fibers in the PA66 resin. It was difficult in production to contain more than 40 wt% of glass fiber in the PA66 resin.
  • test conditions in this example and the method of evaluating the difficulty of occurrence of blister destruction are the same as in Experimental Example 2.
  • the results are shown in Table 3.
  • test conditions in this example and the method of evaluating the difficulty of occurrence of blister destruction are the same as in Experimental Example 2.
  • the results are shown in Table 4.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

温度センサ(1)は、水素タンク内に配されて用いられる。温度センサ(1)は、感温素子(2)と一対の素子電極線(3)と一対の導電部材(4)とハウジング(5)とを備える。感温素子(2)は、水素タンク内の温度を検出する。一対の素子電極線(3)は、感温素子(2)に電気的に接続されている。一対の導電部材(4)は、互いに異なる素子電極線(3)に電気的に接続されている。ハウジング(5)は、樹脂製、すなわち樹脂を含有する材料からなる。ハウジング(5)は、一対の導電部材(4)をそれぞれ挿通して保持する一対の貫通孔(51)を有する。一対の導電部材(4)の少なくとも一方とハウジング(5)の貫通孔(51)の内周面との間には、隙間(c)が形成されている。

Description

温度センサ 関連出願の相互参照
 本出願は、2019年10月9日に出願された日本出願番号2019-186124号に基づくもので、ここにその記載内容を援用する。
 本開示は、温度センサに関する。
 特許文献1に記載された温度センサは、温度を感知する感温素子と、感温素子に電気的に接続される白金等の貴金属からなる素子電極線と、素子電極線に電気的に接続される導電部材と、これらを保持する樹脂製のハウジングとを備える。ハウジングを樹脂製とすることにより、温度センサの軽量化、低コスト化を図ることができる。
特開2016-133317号公報
 温度センサは、例えば、燃料電池自動車の水素タンク内に配されて水素タンク内の温度を検出するためにも用いられる。かかる温度センサによる水素タンク内の温度の検出結果に基づいて、水素タンクへの水素の充填速度が制御される。しかしながら、特許文献1に記載の温度センサを、水素タンク内に配して用いる場合には、次のような課題が生じる。
 水素タンク内への水素の充填時、水素タンク内の圧力は高くなる。水素タンク内の圧力上昇に伴い、水素タンク内に配された温度センサにおける樹脂からなるハウジングに溶解する水素量が増加する。
 ここで、燃料電池自動車の走行のために水素タンク内の水素を使用することに伴い、水素タンク内の水素が減り、水素タンク内が減圧される。この減圧に伴い、ハウジングの内外に圧力差が生じ、ハウジング中に溶解した水素は、ハウジング表面からハウジング外に抜け出ようとする。しかしながら、水素タンクが高圧状態にある場合おいて、特にハウジング表面から遠い位置(例えば一対の導電部材の間近傍)まで浸入した水素は、水素タンクの減圧時にハウジングから抜け切れず、ハウジング内部で膨張し、これに起因してハウジング内に気泡や当該気泡を起点としたき裂が生じ得る。かかる現象は、ブリスタ破壊と呼ばれている。
 ブリスタ破壊によりハウジング中に生じるき裂は、ハウジングの表面から一対の導電部材の双方に連通するよう形成されるおそれも考えられる。そうなると、一対の導電部材の間の電気的絶縁性が低下する。また、水素タンク内には、不純物として水分が入り得るが、かかる水分がき裂内に進入して一対の導電部材が電気的に短絡するおそれも考えられる。
 本開示は、ハウジングにおけるブリスタ破壊の発生を抑制することができる温度センサを提供しようとするものである。
 本開示の一態様は、水素タンク内に配される温度センサであって、
 温度を検出するための感温素子と、
 前記感温素子に電気的に接続された一対の素子電極線と、
 互いに異なる前記素子電極線に電気的に接続された一対の導電部材と、
 一対の前記導電部材をそれぞれ挿通して保持する一対の貫通孔を有する樹脂製のハウジングと、を備え、
 少なくとも一方の前記導電部材と、前記貫通孔の内周面との間には、隙間が形成されている、温度センサにある。
 前記態様の温度センサにおいて、少なくとも一方の導電部材と、ハウジングの貫通孔の内周面との間には、隙間が形成されている。それゆえ、温度センサが配された水素タンク内が高圧状態にあるときにハウジング内に溶解していた水素は、水素タンク内の減圧に伴い、ハウジング中を通ってハウジング表面からハウジング外に抜け出される。それに加え、当該水素は、ハウジング中を通って前記隙間に抜け出される。水素は、ハウジング中においては樹脂の高分子鎖に衝突しながら高分子鎖の間を移動するのに対し、前記隙間中においては移動の障害になるような物質がないためより速く移動することができる。それゆえ、水素タンク内が高圧状態にあるときにハウジング内部に溶解した水素は、水素タンク内の減圧時にハウジング内部からより多く抜け出されやすくなる。これにより、ハウジングにおいてブリスタ破壊が発生することを防止することができる。
 以上のごとく、前記態様によれば、ハウジングにおけるブリスタ破壊の発生を抑制することができる温度センサを提供することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、温度センサの一部断面正面図であり、 図2は、図1の、II-II線矢視断面図であり、 図3は、実施形態1における、導電部材の表面及びハウジングの表面をミクロに見た模式断面図であり、 図4は、実施形態1における、ハウジングの中央部に浸入した水素とハウジング外部までの距離を示す断面図であり、 図5は、比較形態における、ハウジングの中央部に浸入した水素とハウジング外部までの距離を示す断面図であり、 図6は、比較形態における、ハウジングにブリスタ破壊が生じた様子を示す断面図であり、 図7は、実施形態2における、温度センサの断面図であり、 図8は、実施形態2の変形形態における、温度センサの断面図であり、 図9は、実施形態2の他の変形形態における、温度センサの断面図であり、 図10は、実験例1における、試料A1の一部断面正面図であり、 図11は、実験例1における、試料A3の一部断面正面図であり、 図12は、その他の実施形態(その1)における、温度センサの一部断面正面図であり、 図13は、その他の実施形態(その2)における、温度センサの長手方向に直交する断面図であり、 図14は、その他の実施形態(その3)における、(a)温度センサの一部断面正面図、(b)本図14(a)のB-B矢視断面図、(c)本図14(a)のC-C矢視断面図である。
(実施形態1)
 温度センサの実施形態につき、図1~図6を用いて説明する。
 本形態の温度センサ1は、水素タンク内に配されて用いられる。
 図1に示すごとく、温度センサ1は、感温素子2と一対の素子電極線3と一対の導電部材4とハウジング5とを備える。感温素子2は、水素タンク内の温度を検出する。一対の素子電極線3は、感温素子2に電気的に接続されている。一対の導電部材4は、互いに異なる素子電極線3に電気的に接続されている。ハウジング5は、樹脂製、すなわち樹脂を含有する材料からなる。ハウジング5は、一対の導電部材4をそれぞれ挿通して保持する一対の貫通孔51を有する。図1、図2に示すごとく、一対の導電部材4のそれぞれとハウジング5の貫通孔51の内周面との間には、隙間cが形成されている。なお、図面においては、便宜上、隙間cを大きめに記載している。
 以後、本形態につき詳説する。
 以後、温度センサ1の中心軸が延びる方向をX方向という。また、X方向の一方側であって、一対の素子電極線3における感温素子2が接続された側を先端側といい、その反対側を基端側という。また、X方向に直交する方向であって、一対の導電部材4が並ぶ方向をY方向という。
 本形態の温度センサ1は、例えば燃料電池自動車(いわゆるFCV;Fuel Cell Vehicle)等に用いられる水素タンク内に取り付けられる。水素タンクへの水素の充填速度は、温度センサ1による水素タンク内の温度の検出結果に基づいて制御される。水素タンク内には、水素の充填によって衝撃が生じるため、温度センサ1は、これに耐え得る強度を有するよう設計される。
 また、水素タンク内は、水素の充填時に高圧になる。水素タンク内が高圧状態であるとき、水素タンク中の水素ガスが温度センサ1のハウジング5に溶解する。そこから燃料電池自動車の走行のために水素タンク内の水素を使用することに伴い、水素タンク内の水素が減り、水素タンク内が減圧される。この減圧に伴い、ハウジング5中に溶解した水素は、当該ハウジング5内を通ってハウジング5の外部に出ようとする。このとき、ハウジング5中に溶解した水素の一部がハウジング5から抜け出せず、ハウジング5の内部で膨張し、ハウジング5内部に気泡、及びこれを起点としたき裂が生じるおそれが考えられる。本形態の温度センサ1は、前記き裂の発生を抑制できるよう工夫したものである。
 温度センサ1の感温素子2は、例えばサーミスタによって構成されている。なお、これに限られず、感温素子2は、熱電対、或いは白金等からなる測温抵抗体によって構成することもできる。感温素子2は、一対の素子電極線3の先端部によって挟まれた状態で固定されている。
 図1に示すごとく、一対の素子電極線3は、Y方向に並んで配されている。一対の素子電極線3は、例えば白金合金を線状に形成してなる。一対の素子電極線3の先端部及び感温素子2は、封止体6の内側に封止されている。
 図1に示すごとく、封止体6は、感温素子2を水素タンク中の水素雰囲気から隔てている。封止体6は、例えば絶縁性のガラス材料からなる。なお、これに限られず、封止体6は、例えば後述するハウジング5の材料と同様の樹脂等、樹脂から構成することも可能である。一対の素子電極線3のそれぞれの基端部は、互いに異なる導電部材4の先端部に接続されている。
 図1に示すごとく、一対の導電部材4は、互いに略平行に並んで配されている。導電部材4は、X方向にまっすぐ形成されている。図2に示すごとく、導電部材4は、X方向に直交する断面形状が四角形状となるよう形成されている。なお、これに限らず、導電部材4は、断面形状が円形となる丸棒形状や、断面形状が多角形となる多角形柱状等、種々の形状を採用することが可能である。導電部材4は、例えばSUS304等の導電材料によって構成することができる。そして、図1、図2に示すごとく、導電部材4は、ハウジング5に保持されている。
 図1に示すごとく、ハウジング5は、X方向に長尺に形成されている。ハウジング5は、PA66樹脂等のポリアミド系樹脂、又はポリフェニレンサルファイド樹脂(すなわちPPS樹脂)を含有する樹脂からなる。ハウジング5は、例えば水素タンクに取り付けられる部位である。
 図1に示すごとく、ハウジング5は、X方向に貫通形成された一対の貫通孔51を有する。貫通孔51は、X方向に長尺に形成されている。一対の貫通孔51のそれぞれには、互いに異なる導電部材4が配されている。導電部材4は、その先端側と基端側とを貫通孔51から突出させるよう貫通孔51内に配されている。
 図1、図2に示すごとく、導電部材4と貫通孔51の内周面との間には、隙間cが形成されている。一対の導電部材4のそれぞれと、当該導電部材4が配された貫通孔51の内周面との間には、X方向における貫通孔51の全長の半分以上の長さ、連続して形成された隙間cを有する。さらに、少なくとも一方の導電部材4と、当該導電部材4が配されたハウジング5の貫通孔51の内周面との間には、貫通孔51の少なくとも一端から連続的に形成された隙間cを有する。本形態において、一対の導電部材4のそれぞれと貫通孔51の内周面との間に形成された一対の隙間cのそれぞれは、X方向における貫通孔51の一端から他端までにわたって連続的に形成されている。つまり、隙間cは、X方向の両側が開放されている。
 図2に示すごとく、隙間cは、導電部材4の全周に形成されている。隙間cは、導電部材4の表面に直交する方向における寸法wが、100nm以上となる部位を有する。すなわち、隙間cの一部又は全体は、当該部位に面する導電部材4の表面の法線方向における寸法wが100nm以上である。
 図3に模式的に示すごとく、ハウジング5の貫通孔51内に配された導電部材4の部位である孔内導電部41の表面の表面粗さRzは、30μm以下である。すなわち、導電部材4における少なくともハウジング5の貫通孔51の内周面に面する部位の表面粗さは、30μm以下である。
 図3に示すごとく、導電部材4の表面には、ミクロな凹凸42が形成されている。金属部材の表面は、一般に完全な面状に形成されることはなく、ミクロに見ると凹凸が存在する。そして、本形態において、ハウジング5は導電部材4を金型内に配置したインサート成形により成形される。そのため、ハウジング5の一部は導電部材4の凹凸42内に進入し、当該凹凸42に沿った形状に成形される。これにより、ハウジング5の貫通孔51の内周面と導電部材4の表面の凹凸42とが噛み合い、導電部材4がハウジング5から抜け落ちないようになる。
 次に、本形態におけるハウジング5の製造方法の一例につき説明する。ハウジング5の貫通孔51の内周面と導電部材4との間の隙間cは、例えばハウジング5の製造方法を工夫することで形成され得る。
 ハウジング5は、当該ハウジング5を成形するための複数の金型に一対の導電部材4を所定間隔で配置し、金型内にハウジング5を構成する樹脂を注入するインサート成形により形成される。本形態においては、インサート成形において、まず、各金型温度を常温よりも高く加熱する。そして、導電部材4を配置した金型内にハウジング5を構成する樹脂を充填、保圧し、その後、導電部材4に接触する金型のみ積極的に冷却する。これにより、ハウジング5を構成する樹脂が硬化、収縮する前に、導電部材4を積極的に冷やして導電部材4を大きく収縮させることができる。これにより、導電部材4とハウジング5との間に隙間cが形成される。このようにインサート成形を工夫することで、導電部材4とハウジング5の貫通孔51の内周面との間に隙間cを積極的に形成することが可能となる。
 次に、温度センサ1の完成品から、ハウジング5の貫通孔51の内周面と導電部材4との間の隙間cの有無の確認の仕方の例につき説明する。
 例えば、前記隙間cの有無は、水素の次に小さい原子半径をもつHe(すなわちヘリウム)を用いたリークテストによって検出が可能である。リークテストにおいては、まず、隙間cを備えないハウジング5及び導電部材4からなる成形体を用意する。当該成形体において、ハウジング5と導電部材4の間におけるX方向の一方側からHeを送り込む。そして、当該成形体におけるハウジング5と導電部材4との間におけるX方向の他方側からリークしてくるHeの量である基準リーク量を検出する。
 次いで、隙間cの有無の検出対象となる温度センサ1の、ハウジング5と導電部材4との間に、前記成形体の場合と同様にHeを送り込み、リーク量を検出する。かかるリーク量が基準リーク量よりも所定値以上多い場合は、ハウジング5と導電部材4との間に隙間cが形成されていると判断することができる。
 また、別の方法としては、透過電子顕微鏡(すなわちTEM;Transmission Electron Microscope)にて隙間cを直接的に観察することや、走査型電子顕微鏡(すなわちSEM;Scanning Electron Microscope)で断面を直接観察すること等も可能である。
 次に、本形態の作用効果につき説明する。
 本形態の温度センサ1において、少なくとも一方の導電部材4と、ハウジング5の貫通孔51の内周面との間には、隙間cが形成されている。それゆえ、温度センサ1が配された水素タンク内が高圧状態にあるときにハウジング5内に溶解していた水素は、水素タンク内の減圧に伴い、ハウジング5中を通ってハウジング5表面からハウジング5外に抜け出される。それに加え、当該水素はハウジング5中を通って前記隙間cに抜け出される。水素は、ハウジング5中においては樹脂の高分子鎖に衝突しながら高分子鎖の間を移動するのに対し、前記隙間c中においては移動の障害になるような物質がないためより速く移動することができる。それゆえ、水素タンク内が高圧状態にあるときにハウジング5内部に溶解した水素は、水素タンク内の減圧時にハウジング5内部からより多く抜け出されやすくなる。これにより、ハウジング5においてブリスタ破壊が発生することを防止することができる。
 ここで、例えば図5に示すごく、本形態のような隙間が形成されていない温度センサ9を考える。かかる温度センサ9において、水素Hがハウジング5の中央部付近に存在した場合、水素タンクの減圧時に、水素は、ハウジング5中を、ハウジング5の略半径r分の比較的長い距離を移動することでようやくハウジング5の外部に放出される。また、水素Hがハウジング5内部を移動する場合は、樹脂の高分子鎖が障害となるため、移動にかかる時間が長くなる。そのため、水素タンクの減圧時にハウジング5内の水素がハウジング5から放出しきれず、ハウジング5内で膨張し、これに伴い図6に示すごとく、ハウジング5にブリスタ破壊が生じることが懸念される。
 次に、図4に示すごとく、本形態のようにハウジング5の貫通孔51の内周面と導電部材4との間に隙間cが形成されている場合を考える。この場合において、水素Hがハウジング5の中央部付近に存在した場合、水素タンクの減圧時に、水素Hは、前記隙間cまでの短い距離dを移動することでハウジング5外部(ここでは隙間c)に放出される。また、水素Hが隙間cを移動する場合は、水素Hの移動を妨げる障害物がなく、移動にかかる時間が短くなる。それゆえ、水素タンクの減圧時にハウジング5中の水素Hがハウジング5から放出されやすく、ブリスタ破壊の発生を抑制することができる。
 ここで、一般に、導電部材4を保持した樹脂製のハウジング5をインサート成形する場合、導電部材4とハウジング5との気密性を確保すべく、これらの間の隙間を無くすようインサート成形される。例えば金属部材の表面のカップリング処理をすることで当該金属部材と樹脂材料との間の隙間を無くしたり、特開2018-126960号公報に開示されているように、金属部材の表面にエンボス等の凹凸を形成することで金属部材と樹脂部材との間の隙間を無くしたりすることが行われている。一方、本形態はこれとは反対に、前述のようにハウジング5のブリスタ破壊及びこれに起因する電気的信頼性の低下を防ぐべく、あえてハウジング5と導電部材4との間に隙間cを形成したものである。
 また、少なくとも一方の導電部材4と、当該導電部材4が配されたハウジング5の貫通孔51の内周面との間には、貫通孔51の長尺方向における貫通孔51の全長の半分以上の長さ、連続して形成された隙間cを有する。このように、隙間cが所定の長さよりも長く連続的に形成されていることにより、ハウジング5中に溶解した水素は、水素タンク中の減圧時に前記隙間c、すなわちハウジング5の外部に放出されやすい。そのため、一層ブリスタ破壊の発生を抑制することができる。
 また、少なくとも一方の導電部材4と、当該導電部材4が配されたハウジング5の貫通孔51の内周面との間には、貫通孔51の少なくとも一端から連続的に形成された隙間cを有する。それゆえ、水素タンクの減圧時にハウジング5から隙間cに放出された水素は、隙間cの端縁から温度センサ1の外部に放出される。それゆえ、ハウジング5の貫通孔51の内周面と導電部材4との間の隙間cと、水素タンク内の空間との間に圧力差が生じることを防止することができる。
 また、隙間cは、導電部材4の表面に直交する方向における寸法が、100nm以上となる部位を有する。水素分子の直径は約0.3nmであり、これに対して十分大きな隙間cを形成することにより、水素が隙間cを移動しやすくなる。
 また、導電部材4におけるハウジング5内に配された部位の表面の表面粗さRzは、30μm以下である。それゆえ、導電部材4の表面とハウジング5とが互いに密着し、これらの間に隙間cが形成されなくなることを防止することができる。
 また、ハウジング5は、ポリアミド系樹脂、又はポリフェニレンサルファイド樹脂を含有する。これらの材料は、水素タンク内の圧力が高圧状態となっても、水素タンク内の水素が溶解し難い材料である。それゆえ、そもそものハウジング5に浸入する水素の量を減らすことができ、これにより、ブリスタ破壊の発生を防止することができる。
 以上のごとく、本形態によれば、ハウジングにおけるブリスタ破壊の発生を抑制することができる温度センサを提供することができる。
(実施形態2)
 本形態は、図7に示すごとく、実施形態1に対して、導電部材4の形状を変更した実施形態である。
 本形態において、各導電部材4の孔内導電部41のX方向の中央部411は、Y方向の幅が、X方向に隣接する孔内導電部41の部位よりも狭くなるよう形成されている。これにより、図7に示すごとく、孔内導電部41の表面410は、X方向に平行な断面(以後、単に平行断面ということもある)に表れる形状が曲がった形状を有する。本形態においては、孔内導電部41の表面410は、X方向及びY方向の双方に平行な平行断面に表れる形状が、曲がった形状を有する。すなわち、各導電部材4の孔内導電部41の表面410は、平行断面に表れる形状が、一直線状ではなく、屈曲、湾曲等、曲がった形状を有する。ここにおける曲がった形状とは、導電部材4の表面に形成された傷のようなミクロな凹凸は含まず、マクロに見て曲がっていることを意味する。また、X方向に平行な断面は無数に存在するが、そのうちの少なくとも1つの断面において、孔内導電部41の表面410が曲がって形成されていればよい。
 そして、本形態においても、ハウジング5は、実施形態1と同様なインサート成形により形成される。これに伴い、ハウジング5は、導電部材4の孔内導電部41の表面410に沿うように形成される。その結果、貫通孔51の内周面510は、平行断面に表れる形状が、孔内導電部41の表面410に沿って曲がった形状を有する。
 その他は、実施形態1と同様である。
 なお、本形態以降において用いた符号のうち、既出の形態において用いた符号と同一のものは、特に示さない限り、既出の形態におけるものと同様の構成要素等を表す。
 本形態において、孔内導電部41の表面410は、平行断面において表れる形状が曲がった形状を有する。さらに、ハウジング5の貫通孔51の内周面510は、平行断面に表れる形状が孔内導電部41の表面410に沿って曲がった形状を有する。それゆえ、導電部材4の孔内導電部41は、ハウジング5と噛み合い、導電部材4がハウジング5から抜け落ちることを防止しやすい。
 その他、実施形態1と同様の作用効果を有する。
 なお、本形態においては、例えば図8に示す例のような形状を採用することも可能である。図8に示す構成は、平行断面において、各孔内導電部41の表面410のうち、Y方向における相手方の孔内導電部41から遠い側の表面410のみ、曲がった形状を有し、ハウジング5の貫通孔51の内周面511は前記孔内導電部41の表面410に沿って曲がった形状を有する。
 また、本形態においては、例えば図9に示す例のような構成を採用することも可能である。図9に示す構成は、孔内導電部41がクランク状に形成されていることにより、孔内導電部41の表面410の平行断面における形状が曲がって形成されている例である。本形態においては、各孔内導電部41の中央部411が、Y方向における相手方の孔内導電部41と反対側に向かうようなクランク状に形成されている。そして、ハウジング5の貫通孔51の内周面511は、前記孔内導電部41の表面410に沿って曲がった形状を有する。
 また、図示は省略するが、例えば孔内導電部41は、X方向及びY方向の双方に直交する方向に突出する部位、或いは凹んだ部位を有し、かつ、ハウジング5の貫通孔51の内周面511が前記孔内導電部41の表面410に沿って曲がった形状を有してもよい。
(実施形態3)
 本実施形態は、実施形態1と基本構成を同様としつつ、ハウジング5の材料を変更した実施形態である。
 本形態において、ハウジング5は、樹脂中に多数の無機繊維を含有してなる。ハウジング5における無機繊維の含有量は、10wt%以上、40wt%以下である。本形態において、ハウジング5は、例えば、PA66樹脂等のポリアミド系樹脂に、無機繊維としてのガラス繊維を33wt%含有した材料で構成することができる。また、ハウジング5は、多数の無機繊維の平均長さが30μm以上、250μm以下である。
 その他は、実施形態1と同様である。
 次に、本形態の作用効果につき説明する。
 本形態において、ハウジング5における無機繊維の含有量は、10wt%以上、40wt%以下である。このように、ハウジング5の無機繊維の含有量を10wt%以上と多くすることで、ハウジング5内にブリスタ破壊に起因する気泡及びき裂が生じても、き裂が無機繊維に到達しやすく、当該き裂がハウジング5の表面まで進んで開口き裂となることを抑制しやすい。なお、ハウジング5の無機繊維の含有量を10wt%以上とすることによる効果については、後述する実験例によって裏付けられる。また、ハウジング5の無機繊維の含有量は、40wt%以下である。これにより、ハウジング5の生産性を向上させやすい。一方、ハウジング5の無機繊維の含有量が40wt%を超えるものは、製造が困難であることを確認している。
 また、ハウジング5における無機繊維の平均長さは、30μm以上、250μm以下である。このように、ハウジング5の無機繊維の平均長さを30μm以上と長くすることで、ハウジング5内にブリスタ破壊に起因する気泡及びき裂が生じても、き裂が無機繊維に到達しやすく、当該き裂が大きく進展し難い。なお、ハウジング5の無機繊維の平均長さを30μm以上とすることによる効果については、後述する実験例によって裏付けられる。また、ハウジング5の無機繊維の平均長さは、250μm以下である。これにより、ハウジング5の生産性を向上させやすい。一方、ハウジング5において、無機繊維の平均長さが250μmを超えるものは、製造が困難であることを確認している。
 その他、実施形態1と同様の作用効果を有する。
(実験例1)
 本例は、温度センサにおいて、X方向におけるハウジングの貫通孔の全長に対する、X方向における、ハウジングの貫通孔の内周面と導電部材との間の隙間の長さの割合を種々変更させた場合の、ブリスタ破壊の発生のし難さを評価した例である。
 本例においては、図10、図11にその一例を示すごとく、4つの試料A1~A4を用意した。各試料A1~A4は、ハウジング5を想定した円柱状の円柱体50中に、導電部材4を想定した直線状の金属材40を一対貫通させて配置している。本例においては、金属材40の長手方向をX方向といい、X方向に直交する方向であって一対の金属材40の並び方向をY方向という。また、本例においては、金属材40における円柱体50の内側に配された部位を孔内導電部41という。
 4つの試料A1~A4は、互いに、孔内導電部41のX方向の長さL1に対する、金属材40と円柱体50との間の隙間cのX方向の長さL2の割合L2/L1(以後、隙間形成率という。)を変更している。試料A1は隙間形成率が40%、試料A2は隙間形成率が50%、試料A3は隙間形成率が80%、試料A4は隙間形成率が100%である。各試料A1~A4のX方向の隙間cの長さ(表1における「隙間長さ」)、及び孔内導電部41のX方向の長さ(表1における「孔内導電部長さ」)は、後記の表1に示す。図10に試料A1の例、図11に試料A3の例を示している。試料A1~A3において隙間cはX方向の一方が開放されており、試料A4において隙間cはX方向の両側が開放されている。
 本例において、試料A4は、実施形態1と同様のインサート成形により作製することが可能である。試料A1~A3においては、X方向に適宜分割された金型を用い、まず、各金型温度を常温よりも高くする。そして、金属材40を配置した金型内に円柱体50を構成する樹脂を充填、保圧し、その後、X方向の一方側の金型であって、金属材40に接触する金型のみを積極的に冷却する。これにより、所望の位置に隙間cを形成することが可能となる。
 各試料A1~A4の円柱体50の寸法は、X方向の長さ(本例ではL1と同じ)が20mm、直径φが6mmとした。各試料A1~A4の円柱体50は、実施形態3におけるハウジング5と同様に、樹脂中に多数の無機繊維を含有してなる。各試料A1~A4の円柱体50は、PA66中に、ガラス繊維を30wt%添加してなる。そして、各試料A1~A4の円柱体50におけるガラス繊維の平均長さは、200μmである。
 各試料A1~A4の金属材40は、SUS304によって構成した。また、各試料A1~A4の金属材40は、厚み(すなわちX方向及びY方向の双方に直交する方向の寸法)を0.6mm、Y方向の幅L3を1.5mm、X方向の長さL4を30mmとした。そして、金属材40の表面粗さRzは、16μmとした。
 本例においては、各試料A1~A4を85MPa水素中に一昼夜曝露させ、その後、水素雰囲気を1MPa/minの減圧速度で85MPaから大気圧まで減圧した。これを、水素タンクを20年使用した場合を考慮した回数となるまで繰り返し、各試料A1~A4の円柱体50にき裂が発生したか否かを確認した。減圧前の各試料A1~A4の温度は85℃とし、減圧に伴う温度降下は成り行きとした。各試料A1~A4のき裂の有無の確認は、X線CTスキャンを用いて確認した。
 そして、試験後の各試料A1~A4におけるブリスタ破壊の発生のし難さを評価した。評価は、後述の評価A、B、Cとした。すなわち、水素タンクを20年使用した場合を考慮した回数となるまで水素タンクの減圧を繰り返しても、円柱体50にブリスタ破壊によるき裂が観測されなかった場合、評価をAとした。水素タンクを15年使用した場合を考慮した回数となるまで水素タンクの減圧を繰り返しても円柱体50にブリスタ破壊によるき裂は観測されないが、水素タンクを20年使用した場合を考慮した回数となるまで水素タンクの減圧を繰り返した場合に円柱体50にブリスタ破壊によるき裂が観測された場合評価をBとした。水素タンクを15年使用した場合を考慮した回数となるまで水素タンクの減圧を繰り返したときに円柱体50にブリスタ破壊によるき裂が観測された場合、評価をCとした。結果を後記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、隙間形成率が40%の試料A1に関しては、評価がCとなった。一方、隙間形成率が50%以上の試料A2~A4に関しては、評価がA又はBとなっており、ブリスタ破壊が生じ難いことが分かる。すなわち、隙間形成率を50%以上にすることにより、ブリスタ破壊の発生が生じ難いことが分かる。さらに、隙間形成率が100%の試料A4に関しては、評価がAとなっていることが分かる。それゆえ、水素タンク内に配される温度センサ1において、隙間cを、ハウジング5の貫通孔51のX方向の両側が開放するよう形成することにより、一層ブリスタ破壊の発生を防止しやすいことが分かる。
(実験例2)
 本例は、温度センサにおいて、導電部材の表面粗さRzを種々変更させた場合の、ブリスタ破壊の発生のし難さを評価した例である。
 本例においては、4つの試料B1~B4を用意した。各試料B1~B4は、実験例1と同様、ハウジングを想定した円柱状の円柱体50中に、導電部材を想定した直線状の金属材40を一対貫通させて配置している。本例においても実験例1と同様、金属材40の長手方向をX方向といい、X方向に直交する方向であって一対の金属材40の並び方向をY方向といい、金属材40における円柱体50の内側に配された部位を孔内導電部41という。
 4つの試料B1~B4は、互いに、金属材40における孔内導電部41の表面粗さRzを異ならせている。試料B1は孔内導電部41の表面粗さRzが10μmであり、試料B2は孔内導電部41の表面粗さRzが16μmであり、試料B3は孔内導電部41の表面粗さRzが30μmであり、試料B4は孔内導電部41の表面粗さRzが40μmである。
 その他の各試料B1~B4の円柱体50及び金属材40の材質及び寸法は、実験例1と同様とした。また、各試料の円柱体50は、実施形態1と同様のインサート成形により作製した。
 本例においても、実験例1と同様、各試料B1~B4を85MPa水素中に一昼夜曝露させ、その後、水素雰囲気を1MPa/minの減圧速度で85MPaから大気圧まで減圧した。これを、水素タンクを15年使用した場合を考慮した回数となるまで繰り返し、各試料B1~B4の円柱体50にき裂が発生したか否かを確認した。減圧前の各試料B1~B4の温度は85℃とし、減圧に伴う温度降下は成り行きとした。各試料B1~B4のき裂の有無の確認は、X線CTスキャンを用いて確認した。
 そして、試験後の各試料B1~B4におけるブリスタ破壊の発生のし難さを評価した。評価は、後述の評価B、Cとした。水素タンクを15年使用した場合を考慮した回数となるまで水素タンクの減圧を繰り返しても、円柱体50にブリスタ破壊によるき裂が観測されなかった場合、評価をBとした。水素タンクを15年使用した場合を考慮した回数となるまで水素タンクの減圧を繰り返したときに円柱体50にブリスタ破壊によるき裂が観測された場合、評価をCとした。結果を後記の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、孔内導電部41の表面粗さRzが30μm以下の試料B1~B3については、評価がBとなっている、すなわちブリスタ破壊が生じ難いことが分かる。つまり、孔内導電部41の表面粗さRzを30μm以下とすることにより、ブリスタ破壊が生じ難くなる。これにより、水素タンク内に配される温度センサにおいて、ハウジングの貫通孔に配される導電部材の孔内導電部の表面粗さRzを30μm以下とすることにより、ブリスタ破壊の発生を抑制しやすいことが分かる。一方で、孔内導電部41の表面粗さRzが30μmを超える試料B4については、評価がCとなっていることが分かる。これは、孔内導電部41の表面粗さRzが30μmよりも大きくなると、孔内導電部41の表面の凹凸に円柱体50が入り込み、円柱体50と金属材40との密着性が向上し、円柱体50と金属材40との間に隙間cが形成され難いためであると考えられる。一方、前述のごとく、水素タンク内に配される温度センサにおいてハウジングの貫通孔に配される導電部材の孔内導電部の表面粗さRzを30μm以下とすることにより、導電部材の孔内導電部とハウジングの貫通孔の内周面との間に隙間を形成しやすく、その結果、ブリスタ破壊の発生を抑制しやすい。
(実験例3)
 本例は、温度センサにおいて、ハウジングにおける無機繊維の含有率を種々変更させた場合の、ブリスタ破壊の発生のし難さを評価した例である。
 本例においては、5つの試料C1~C5を用意した。各試料C1~C5は、実験例1、2と同様、ハウジングを想定した円柱状の円柱体50中に、導電部材を想定した直線状の金属材40を一対貫通させて配置している。本例においても実験例1、2と同様、金属材40の長手方向をX方向といい、X方向に直交する方向であって一対の金属材40の並び方向をY方向といい、金属材40における円柱体50の内側に配された部位を孔内導電部41という。
 本例において、試料C1の円柱体50は、PA66樹脂からなり、無機繊維を含まない材料によって構成した。試料C2の円柱体50はPA66樹脂中に無機繊維としてガラス繊維を10wt%含有した材料によって構成した。試料C3の円柱体50は、PA66樹脂中に無機繊維としてガラス繊維を20wt%含有した材料によって構成した。試料C4の円柱体50は、PA66樹脂中に無機繊維としてガラス繊維を30wt%含有した材料によって構成した。試料C5の円柱体50は、PA66樹脂中に無機繊維としてガラス繊維を40wt%含有した材料によって構成した。なお、PA66樹脂中に、40wt%を超えるガラス繊維を含有させることは、製造上困難であった。
 各試料C1~C5において、実験例1、2と同様、円柱体50におけるガラス繊維の平均長さは200μmとした。その他の各試料C1~C5の円柱体50の各寸法、金属材40の材質、各寸法は、実験例1と同様とした。
 そして、本例における試験条件及びブリスタ破壊の発生し難さの評価の仕方は、実験例2と同様である。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から、円柱体50にガラス繊維を含有しない試料C1については、評価がCとなり、ブリスタ破壊が生じやすいことが分かる。一方、円柱体50において、ガラス繊維を10wt%以上、40wt%以下含有させた試料C2~試料C5は、いずれも評価がBとなり、ブリスタ破壊が生じ難いことが分かる。
 これにより、水素タンク内に配される温度センサにおいて、ハウジングにおける無機繊維の含有量を、10wt%以上、40wt%以下とすることで、ブリスタ破壊に起因するき裂の発生を抑制できることが分かる。
(実験例4)
 本例は、温度センサにおいて、ハウジングにおける無機繊維の平均長さを種々変更した場合の、ブリスタ破壊の発生のし難さを評価した例である。
 本例においては、5つの試料D1~D4を用意した。各試料D1~D4は、実験例1~3と同様、ハウジングを想定した円柱状の円柱体50中に、導電部材を想定した直線状の金属材40を一対貫通させて配置している。本例においても実験例1~3と同様、金属材40の長手方向をX方向といい、X方向に直交する方向であって一対の金属材40の並び方向をY方向といい、金属材40における円柱体50の内側に配された部位を孔内導電部41という。
 本例においては、PA66樹脂中に無機繊維としてガラス繊維を30wt%含有させるとともに、互いにガラス繊維の平均長さを異ならせた試料D1~試料D4を用意した。試料D1の円柱体50におけるガラス繊維の平均長さは10μmとし、試料D2の円柱体50におけるガラス繊維の平均長さは30μmとし、試料D3の円柱体50におけるガラス繊維の平均長さは100μmとし、試料D4の円柱体50におけるガラス繊維の平均長さは250μmとした。なお、円柱体50において、ガラス繊維の平均長さを250μmを超えるようにすることは、製造上の観点から困難であった。
 各試料D1~D4において、円柱体50は、PA66樹脂中に、ガラス繊維を30wt%含有させた。その他の各試料D1~D4の円柱体50の各寸法、金属材40の材質、各寸法は、実験例1と同様とした。
 そして、本例における試験条件及びブリスタ破壊の発生し難さの評価の仕方は、実験例2と同様である。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から、ガラス繊維の平均長さを30μm以上、250μm以下とした試料D2~D4については、評価がBとなり、ブリスタ破壊が生じ難いことが分かる。
 これにより、水素タンク内に配される温度センサにおいて、ハウジングにおける無機繊維の平均長さを、30μm以上、250μm以下とすることで、ブリスタ破壊に起因するき裂の進展を抑制できることが分かる。
 本開示は、前記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。
 例えば、隙間cは、図12に示すごとく、そのX方向の両端が閉じられていてもよい。
 また、前記各実施形態において、隙間cは、導電部材4の全周に形成されている例を示したが、図13に示すごとく、周方向の一部のみに形成されていてもよい。この場合において、隙間cは、図14に示すごとく、X方向の位置によって、周方向の位置が変動しつつ、ハウジング5の貫通孔51におけるX方向の一端から他端まで連続して形成されていてもよい。なお、図14(a)においては、隙間の図示を省略している。
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (9)

  1.  水素タンク内に配される温度センサ(1)であって、
     温度を検出するための感温素子(2)と、
     前記感温素子に電気的に接続された一対の素子電極線(3)と、
     互いに異なる前記素子電極線に電気的に接続された一対の導電部材(4)と、
     一対の前記導電部材をそれぞれ挿通して保持する一対の貫通孔(51)を有する樹脂製のハウジング(5)と、を備え、
     少なくとも一方の前記導電部材と、前記貫通孔の内周面との間には、隙間(c)が形成されている、温度センサ。
  2.  少なくとも一方の前記導電部材と、当該導電部材が配された前記ハウジングの前記貫通孔の前記内周面との間には、前記貫通孔の長尺方向(X)における前記貫通孔の全長の半分以上の長さ、連続して形成された前記隙間を有する、請求項1に記載の温度センサ。
  3.  少なくとも一方の前記導電部材と、当該導電部材が配された前記ハウジングの前記貫通孔の前記内周面との間には、前記貫通孔の少なくとも一端から連続的に形成された前記隙間を有する、請求項1又は2に記載の温度センサ。
  4.  前記隙間は、前記導電部材の表面に直交する方向における寸法(w)が、100nm以上となる部位を有する、請求項1~3のいずれか一項に記載の温度センサ。
  5.  前記導電部材における前記ハウジングの前記貫通孔内に配された孔内導電部(41)の表面(410)は、前記導電部材の長手方向に平行な断面に表れる形状が曲がった形状を有し、前記ハウジングの前記貫通孔の前記内周面は、前記断面に表れる形状が前記孔内導電部の前記表面に沿って曲がった形状を有する、請求項1~4のいずれか一項に記載の温度センサ。
  6.  前記導電部材の前記貫通孔内に配された部位の表面(410)の表面粗さRzは、30μm以下である、請求項1~5のいずれか一項に記載の温度センサ。
  7.  前記ハウジングは、ポリアミド系樹脂、又はポリフェニレンサルファイド樹脂を含有する、請求項1~6のいずれか一項に記載の温度センサ。
  8.  前記ハウジングは、樹脂中に多数の無機繊維を含有してなり、前記ハウジングにおける前記無機繊維の含有量は、10wt%以上、40wt%以下である、請求項1~7のいずれか一項に記載の温度センサ。
  9.  前記ハウジングは、樹脂中に多数の無機繊維を含有してなり、前記ハウジングにおける前記無機繊維の平均長さは、30μm以上、250μm以下である、請求項1~8のいずれか一項に記載の温度センサ。
PCT/JP2020/034479 2019-10-09 2020-09-11 温度センサ WO2021070560A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020004909.4T DE112020004909T5 (de) 2019-10-09 2020-09-11 Temperatursensor
CN202080070843.2A CN114502934A (zh) 2019-10-09 2020-09-11 温度传感器
US17/713,659 US20220228926A1 (en) 2019-10-09 2022-04-05 Temperature sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019186124A JP7276061B2 (ja) 2019-10-09 2019-10-09 温度センサ
JP2019-186124 2019-10-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/713,659 Continuation US20220228926A1 (en) 2019-10-09 2022-04-05 Temperature sensor

Publications (1)

Publication Number Publication Date
WO2021070560A1 true WO2021070560A1 (ja) 2021-04-15

Family

ID=75379993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034479 WO2021070560A1 (ja) 2019-10-09 2020-09-11 温度センサ

Country Status (5)

Country Link
US (1) US20220228926A1 (ja)
JP (1) JP7276061B2 (ja)
CN (1) CN114502934A (ja)
DE (1) DE112020004909T5 (ja)
WO (1) WO2021070560A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140013A (ja) * 1993-11-17 1995-06-02 Nippondenso Co Ltd 温度センサ
US20120026659A1 (en) * 2010-07-30 2012-02-02 Joinset Co., Ltd. Ceramic chip assembly
JP2014226862A (ja) * 2013-05-23 2014-12-08 株式会社デンソー 温度センサ製造用の金型、製造方法、及び温度センサ
JP2016029357A (ja) * 2014-07-24 2016-03-03 株式会社デンソー 温度センサ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384337B2 (ja) 2015-01-15 2018-09-05 株式会社デンソー 温度センサ及びその製造方法
JP6870189B2 (ja) 2017-02-10 2021-05-12 住友電工ファインポリマー株式会社 インサート成形体の製造方法及びインサート成形体
JP7033483B2 (ja) 2018-04-13 2022-03-10 スタンレー電気株式会社 ダイヤルスイッチのスイッチ構造
JP7140013B2 (ja) 2019-03-18 2022-09-21 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140013A (ja) * 1993-11-17 1995-06-02 Nippondenso Co Ltd 温度センサ
US20120026659A1 (en) * 2010-07-30 2012-02-02 Joinset Co., Ltd. Ceramic chip assembly
JP2014226862A (ja) * 2013-05-23 2014-12-08 株式会社デンソー 温度センサ製造用の金型、製造方法、及び温度センサ
JP2016029357A (ja) * 2014-07-24 2016-03-03 株式会社デンソー 温度センサ

Also Published As

Publication number Publication date
CN114502934A (zh) 2022-05-13
US20220228926A1 (en) 2022-07-21
DE112020004909T5 (de) 2022-06-15
JP7276061B2 (ja) 2023-05-18
JP2021060357A (ja) 2021-04-15

Similar Documents

Publication Publication Date Title
CN101336458A (zh) 笼型电涌放电器
US20090078446A1 (en) Fire-resistant safety cable provided with a single insulating covering
IE54432B1 (en) Winding or insulating tape made of a high temperature-resistant synthetic resin
WO2021070560A1 (ja) 温度センサ
US20040212477A1 (en) Sensor and manufacturing method thereof
JPWO2018146787A1 (ja) 測温抵抗体センサ及びその製作方法
KR20110010642A (ko) 전력 터미널 공급 관통구
KR101676588B1 (ko) 터미널 제조 방법 및 터미널
EP2537013B1 (en) Process of manufacturing temperature probes
EP3241755B1 (fr) Reservoir souple de carburant presentant des proprietes de dissipation des charges electrostatiques
JP2015153479A (ja) セラミックヒータ及びこれを用いたガスセンサ素子
US20090253284A1 (en) Electrical connector and method of manufacturing
US20210355321A1 (en) Conductive moulding compounds
ES2688799T3 (es) Procedimiento de fabricación para componente eléctrico, así como componente eléctrico
JP4853269B2 (ja) シース熱電対およびその製造方法
DE202015008966U1 (de) Modular strukturierter Hochtemperaturfühler
JP2008089494A (ja) シース熱電対及びその製造方法
WO2020179274A1 (ja) 温度センサ
CN220006454U (zh) 一种耐热钢焊丝
CN213988338U (zh) 一种便于准确开剥的电力电缆
JP2018147846A (ja) コネクタ予備成形体およびコネクタ
JP2015122161A (ja) 端子台
CN218849409U (zh) 一种低压熔断器
JP2013142600A (ja) 温度センサ
JP2009162625A (ja) 検出素子封止構造およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874229

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20874229

Country of ref document: EP

Kind code of ref document: A1