WO2021068670A1 - 一种滤波电路及提高滤波电路性能的方法和信号处理设备 - Google Patents

一种滤波电路及提高滤波电路性能的方法和信号处理设备 Download PDF

Info

Publication number
WO2021068670A1
WO2021068670A1 PCT/CN2020/111342 CN2020111342W WO2021068670A1 WO 2021068670 A1 WO2021068670 A1 WO 2021068670A1 CN 2020111342 W CN2020111342 W CN 2020111342W WO 2021068670 A1 WO2021068670 A1 WO 2021068670A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
series
resonators
filter circuit
designated
Prior art date
Application number
PCT/CN2020/111342
Other languages
English (en)
French (fr)
Inventor
庞慰
蔡华林
Original Assignee
天津大学
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学, 诺思(天津)微系统有限责任公司 filed Critical 天津大学
Publication of WO2021068670A1 publication Critical patent/WO2021068670A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/48Coupling means therefor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details

Definitions

  • This application relates to the technical field of circuit elements, and in particular to a filter circuit and a method and signal processing equipment for improving the performance of the filter circuit.
  • the transition band between various frequency bands is getting narrower and narrower.
  • the roll-off requirements of the filter are getting higher and higher.
  • the filter has the characteristics of high Q value, it has better roll-off and insertion loss advantages than LC (resonant circuit) and SAW (surface acoustic wave, surface acoustic wave filter), but with further performance requirements
  • LC resonant circuit
  • SAW surface acoustic wave, surface acoustic wave filter
  • the present application provides a filter circuit, a method for improving the performance of the filter circuit, and a signal processing device to improve the performance of the filter circuit.
  • an embodiment of the present application provides a filter circuit
  • the filter circuit includes: a plurality of resonators, the plurality of resonators include a first number of series resonators and a second number of parallel resonators, And the input end of the circuit is connected with a first inductance, the output end of the circuit is connected with a second inductance, and the ground end of the circuit is connected with a third inductance; the first number of series resonators include at least A designated series resonator, and the attribute parameters of the designated series resonator are different from the attribute parameters of the other series resonators.
  • the attribute parameter includes: electromechanical coupling coefficient.
  • the input end and the output end of the designated series resonator are respectively connected to a parallel resonator.
  • the designated series resonator is connected in series with a series resonator, it is connected to the parallel resonator respectively.
  • the two resonators split by the designated series resonator have a frequency difference and have unequal areas and/or shapes.
  • the structural parameters of the resonator split by the designated series resonator are different from the structural parameters of the other series resonators, and the structural parameters include: the width of the ring-shaped convex structure of the upper electrode, the width of the concave structure, and Any one or more of the width of the suspended wing structure.
  • an embodiment of the present application provides a signal processing device, including: a signal input circuit, a signal output circuit, and the filter circuit described in the first aspect; the signal input circuit is connected to the filter circuit, so The filter circuit is connected to the signal output circuit.
  • an embodiment of the present application provides a method for improving the performance of a filter circuit.
  • the filter circuit includes a plurality of resonators, and the plurality of resonators includes a first number of series resonators and a second number of parallel resonators.
  • a resonator, and the input terminal of the circuit is connected with a first inductor, the output terminal of the circuit is connected with a second inductor, and the ground terminal of the circuit is connected with a third inductor; the method includes:
  • At least one designated series resonator is provided in the first number of series resonators, and the attribute parameter of the designated series resonator is different from the attribute parameters of the other series resonators.
  • the attribute parameter includes: electromechanical coupling coefficient.
  • the method further includes: respectively connecting the input end and the output end of the designated series resonator to a parallel resonator.
  • the method further includes: connecting the designated series resonator with a series resonator in series, and then respectively connecting with the parallel resonator.
  • the method further includes: setting the two resonators split by the designated series resonator to have a frequency difference and have unequal areas and/or shapes.
  • it further includes: setting the structural parameters of the resonator splitting the designated series resonator to be different from the structural parameters of the other series resonators, and the structural parameters include: the width of the ring-shaped protrusion structure of the upper electrode , Any one or more of the width of the recessed structure and the width of the suspended wing structure.
  • the filter circuit, the method for improving the performance of the filter circuit, and the signal processing device provided by the embodiments of the present application are configured to specify a specified series resonator in the filter, and the attribute parameters of the specified series resonator are compared with those of other series resonators.
  • the attribute parameters are differentiated, which can significantly improve the insertion loss and roll-off of the filter circuit, thereby obtaining better performance than the filter circuit in the prior art.
  • FIG. 1 is a schematic diagram of the structure of a filter circuit in the prior art.
  • Fig. 2a is a schematic structural diagram of a first filter circuit shown in an exemplary embodiment of the present application
  • Fig. 2b is a schematic diagram of the impedance of the first filter circuit shown in an exemplary embodiment of the present application
  • Fig. 3a is a schematic structural diagram of a second filter circuit shown in an exemplary embodiment of the present application.
  • FIG. 3b is a schematic diagram of impedance of a second type of filter circuit shown in an exemplary embodiment of the present application.
  • Fig. 4a is a schematic structural diagram of a third filter circuit shown in an exemplary embodiment of the present application.
  • FIG. 4b is a schematic diagram of impedance of a third filter circuit shown in an exemplary embodiment of the present application.
  • Fig. 4c shows a schematic diagram of the roll-off improvement effect of the above-mentioned third filter circuit
  • Fig. 4d is a schematic structural diagram of an upper electrode of a resonator shown in an exemplary embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a fourth filter circuit shown in an exemplary embodiment of the present application.
  • Fig. 6a is a schematic structural diagram of a fifth filter circuit shown in an exemplary embodiment of the present application.
  • Fig. 6b is a schematic diagram of impedance of a fifth filter circuit shown in an exemplary embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a sixth filter circuit shown in an exemplary embodiment of the present application.
  • Fig. 8a is a schematic structural diagram of a seventh filter circuit shown in an exemplary embodiment of the present application.
  • Fig. 8b is a schematic diagram of impedance of a seventh filter circuit shown in an exemplary embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an eighth filter circuit shown in an exemplary embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a ninth filter circuit shown in an exemplary embodiment of the present application.
  • Fig. 11a is a schematic structural diagram of a tenth filter circuit shown in an exemplary embodiment of the present application.
  • FIG. 11b is a schematic diagram of impedance of a tenth filter circuit shown in an exemplary embodiment of the present application.
  • FIG. 11c is a schematic diagram showing a roll-off improvement effect of a tenth filter circuit according to an exemplary embodiment of the present application.
  • FIG. 12a is a schematic diagram of the comparison result of the overall curves before and after the series split according to an exemplary embodiment of the present application
  • FIG. 12b is a schematic diagram showing a comparison result of Rp at the Fp frequency before and after serial splitting according to an exemplary embodiment of the present application
  • Fig. 12c is a schematic diagram showing the comparison result of Rs at Fs before and after serial splitting according to an exemplary embodiment of the present application
  • FIG. 12d is a schematic diagram showing the effect of adopting tandem splitting according to an exemplary embodiment of the present application.
  • FIG. 1 is a schematic diagram of the structure of a filter circuit in the prior art.
  • the filter circuit in the prior art includes a plurality of resonators, the plurality of resonators include a first number of series resonators 20 and a second number of parallel resonators 40, the figure includes 5
  • the series resonator 20 and the four parallel resonators 40 Take the series resonator 20 and the four parallel resonators 40 as an example, and the input end of the filter circuit is connected to the first inductor 10, the output end of the filter circuit is connected to the second inductor 30, and the ground end of the filter circuit is respectively connected to the third inductor.
  • Inductors 50, one end of each third inductance 50 is connected to the parallel resonator, and the other end is grounded.
  • the difference between the attribute parameter of the series resonator and the attribute parameter of the parallel resonator is greater than a preset value.
  • the aforementioned attribute parameters include: electromechanical coupling coefficient.
  • the electromechanical coupling coefficient of the series resonator and the parallel resonator In order to generate a certain frequency difference between the series resonator and the parallel resonator to form a good out-of-band suppression characteristic, generally set the electromechanical coupling coefficient of the series resonator and the parallel resonator.
  • the electromechanical coupling coefficients are the same or similar, and the electromechanical coupling coefficients between all series resonators are the same, and the electromechanical coupling coefficients between all parallel resonators are the same.
  • FIG. 2a is a schematic structural diagram of the first filter circuit shown in an exemplary embodiment of the present application; referring to FIG. 2a, in the filter circuit provided by this embodiment, the electromechanical coupling coefficient of the series resonator 20 is changed , So that the difference between the electromechanical coupling coefficient of the series resonator 20 and the electromechanical coupling coefficient of the parallel resonator 40 is greater than the preset value.
  • Fig. 2b shows a schematic diagram of the impedance of the first filter circuit.
  • the insertion loss on the right side is improved while ensuring that the suppression remains unchanged. .
  • Fig. 3a shows a schematic structural diagram of a second filter circuit.
  • the electromechanical coupling coefficient of the parallel resonator 40 is changed to make the series connection
  • the difference between the electromechanical coupling coefficient of the resonator 20 and the electromechanical coupling coefficient of the parallel resonator 40 is greater than a preset value.
  • the above may also be to change the electromechanical coupling coefficient of the series resonator and the electromechanical coupling coefficient of the parallel resonator at the same time, so that the difference between the electromechanical coupling coefficient of the series resonator 20 and the electromechanical coupling coefficient of the parallel resonator 40 is greater than the preset value. Set value.
  • the aforementioned preset value may be the general difference between the electromechanical coupling coefficient of the existing series resonator and the electromechanical coupling coefficient of the parallel resonator 40 in the prior art.
  • Fig. 3b shows the impedance schematic diagram of the above-mentioned second filter circuit.
  • the left side insertion loss can be improved while the suppression is not changed. .
  • the first number of series resonators includes at least one designated series resonator, and the attribute parameters of the designated series resonator are the same as those of other series resonators. different.
  • the second number of parallel resonators includes at least one designated parallel resonator, and the attribute parameters of the designated parallel resonator are different from those of other parallel resonators.
  • a designated series resonator and/or a designated parallel resonator are set to improve the insertion loss and roll-off of the frequency wave circuit.
  • the aforementioned attribute parameters include electromechanical coupling coefficients.
  • FIG. 4a is a schematic structural diagram of a third filter circuit shown in an exemplary embodiment of the present application; referring to FIG. 4a, in the filter circuit provided in this embodiment, a designated series resonator 70 is provided, The input and output ends of the designated series resonator 70 are respectively connected to parallel resonators, and the electromechanical coupling coefficient of the designated series resonator 70 is different from the electromechanical coupling coefficients of other series resonators.
  • the designated series resonator 70 (in bold) can be split by itself, or can form a split structure together with the ordinary resonator on the right. That is, the two adjacent resonators are formed after splitting. There are two shown in the figure, but it can actually be divided into more than one. Furthermore, in this embodiment, the insertion loss and roll-off are improved by setting the first number of series resonators to include one or more designated series resonators 70 with different mechanical and electrical coupling coefficients. It will be described below with reference to FIG. 4b.
  • FIG. 4b is an impedance schematic diagram of a third filter circuit shown in an exemplary embodiment of the present application.
  • the dashed line is the impedance diagram of the resonator with the original structure
  • the solid line is the impedance diagram of the new combined structure proposed in the embodiments of the present application.
  • the formed two high impedances serve as zero points for out-of-band suppression. It can be seen from the figure that the position of the out-of-band zero point is more advanced than the one that only changes the frequency, which can better improve the right roll-off.
  • FIG. 4c shows a schematic diagram of the roll-off improvement effect of the above-mentioned third filter circuit
  • the solid line is the roll-off curve of the third filter circuit in this embodiment
  • the dashed line is the existing
  • the third filter circuit provided in the embodiment of the present application improves the roll-off by 1.5 MHz for the same suppression (for example, -50 dB).
  • the frequency difference is realized by adding an additional metal layer to the upper electrodes of two or more resonators that have been split.
  • the difference of the electromechanical coupling coefficient can be changed by changing the annular convex structure, concave structure, and suspended wing structure of the resonator.
  • the Q value of the resonator can be adjusted by changing the annular convex structure, concave structure, and suspended wing structure of the resonator. For a specific performance index, the Q value distribution can be adjusted to obtain the desired performance.
  • Fig. 4d is a schematic structural diagram of an upper electrode of a resonator according to an exemplary embodiment of the present application; referring to Fig.
  • the upper electrode of the resonator includes: a convex structure, a recessed structure, and a suspended wing structure, as shown in Fig. 4d
  • the range a represents the suspended wing structure
  • the range b represents the convex structure
  • the range c represents the concave structure.
  • On the left is a top view of the upper electrode, and on the right is a cross-sectional view of the upper electrode. In the top view, the area with diagonal lines inside is a recessed structure, the ring-shaped areas where the two arrows are located are the convex structure and the suspended wing structure, and the outermost circle is the suspended wing structure.
  • the electromechanical coupling coefficient can be changed by controlling the width of each structure.
  • the width of each structure will affect the distribution of the Q value.
  • FIG. 5 shows a schematic structural diagram of a fourth filter circuit; this embodiment includes a designated series resonator 70, and the designated series resonator 70 is connected to a series resonator. After the devices are connected in series, they are connected to the parallel resonator respectively. Specifically, referring to FIG. 5, the input end of the designated series resonator 70 is connected to a parallel resonator and a series resonator, and the output end of the designated series resonator is only connected to another series resonator.
  • the electromechanical coupling coefficient of the specified series resonator is different from the electromechanical coupling coefficient of other series resonators.
  • the area of the above-mentioned fixed series resonator is different from the area of the electrode of the series resonator to which it is connected, and can be realized by splitting the unequal area of the series resonator.
  • the flexible design of the area can better fill the space of the chip. It is conducive to tighter arrangement, so that the chip area can be fully utilized, which helps to reduce the chip cost; and the spurious phase of the resonator can be offset instead of superimposed, so the insertion loss can be effectively improved.
  • this embodiment has the following positive effects: ensuring process manufacturing reliability; nonlinear splitting ensures better nonlinear performance of the device: power splitting, in high-power applications, multiple resonators will be used for splitting To reduce the power distribution; the layout is more flexible, which is conducive to making full use of die area and reducing diesize.
  • the Q value distribution is affected by the series splitting, and the specific effect can be shown in FIG. 12a to FIG. 12d, as follows:
  • Figure 12a is a schematic diagram of the comparison results of the overall curves before and after the series split. Except for the impedances at the Fs and Fp points, the remaining impedances are basically unchanged. Therefore, the actual splitting has no effect on the other performance of the filter.
  • the solid line is after splitting, the dashed line is before splitting, and most of the solid and dashed lines are overlapped.
  • Figure 12b is a schematic diagram of the comparison results of Rp at the Fp frequency before and after the series split. It can be seen from Figure 4b that after the series split, the Rp value is significantly improved, and the right side of the filter is also significantly improved. The solid line is after splitting, and the dashed line is before splitting.
  • Figure 12c is a schematic diagram of the comparison results of Rs at Fs before and after the series split. It can be seen from Figure 4c that after the series split, Rs also has a significant increase, and the increase of Rs has a certain deterioration on the left side of the passband.
  • the solid line is after splitting, and the dashed line is before splitting.
  • FIG. 12d is a schematic diagram of the effect of adopting tandem splitting. Tandem splitting improves Rp, and the increase of Rp improves the right side of the passband. When there is a higher index requirement on the right side of the filter, the required performance can be obtained by splitting in series.
  • the two split resonators described above have a frequency difference and have unequal areas and/or shapes.
  • the second number of parallel resonators includes at least one designated parallel resonator, and the electromechanical coupling coefficient of the designated parallel resonator is different from the electromechanical coupling coefficient of other parallel resonators.
  • Fig. 6a shows a schematic structural diagram of a fifth filter circuit.
  • a designated parallel resonator 60 is provided, and the input of the designated parallel resonator 60 The terminal is connected to two series resonators, the output terminal of the designated parallel resonator 60 is connected to the third inductor, and the electromechanical coupling coefficient of the designated parallel resonator 60 is different from that of other parallel resonators.
  • FIG. 6b is a schematic diagram of the impedance of the fifth filter circuit shown in an exemplary embodiment of the present application.
  • Figure 6b shows the relationship between the frequency and impedance of the combined resonator in Figure 6a.
  • the dashed line is the impedance diagram of the resonator with the original structure
  • the solid line is the impedance of the new combined structure newly proposed in this embodiment.
  • the two low impedances formed are used as the zero points for out-of-band suppression, and the position of the out-of-band zero point is earlier than the original structure, which can better improve the left side roll-off.
  • FIG. 7 is a schematic structural diagram of a sixth filter circuit shown in an exemplary embodiment of the present application; refer to FIG. 7
  • a designated parallel resonator 60 is included.
  • the designated parallel resonator 60 is connected in series with a parallel resonator.
  • the input end of the designated parallel resonator 60 is connected with two series resonators.
  • the output terminal of the designated parallel resonator 60 is connected to a parallel resonator.
  • the designated parallel resonator can be connected in series with any parallel resonator, and the number of the designated parallel resonator can be multiple, and the designated parallel resonator can be set in any one of the parallel resonators.
  • the aforementioned attribute parameter is the resonator frequency.
  • the first number of series resonators includes at least one designated series resonator, and the resonator frequency of the designated series resonator is different from the electromechanical coupling coefficient of other series resonators.
  • FIG. 8a is a schematic structural diagram of a seventh filter circuit shown in an exemplary embodiment of the present application; referring to FIG. 8a, in the filter circuit provided in this embodiment, a designated series resonator 70 is provided, and the designated series resonance The input terminal and the output terminal of the device 70 are respectively connected to a parallel resonator, and the electromechanical coupling coefficient of the designated series resonator 70 is different from the electromechanical coupling coefficient of other series resonators.
  • the insertion loss and roll-off are improved by setting the first number of series resonators to include one or more designated series resonators 70 with different mechanical and electrical coupling coefficients.
  • Figure 8b is a schematic diagram of the impedance of the seventh filter circuit; refer to Figure 8b, which shows the relationship between the frequency and impedance of the combined resonator shown in Figure 8a, and the dashed line is the impedance of the resonator with the original structure
  • the solid line is a schematic diagram of the impedance of the new combined structure proposed in this embodiment.
  • the two high impedances formed are used as the zero points for out-of-band suppression, and the position of the out-of-band zero points is earlier than the original one. Can improve the roll-off on the right side.
  • FIG. 9 is a schematic structural diagram of an eighth filter circuit according to an exemplary embodiment of the present application; referring to FIG. 9, in this embodiment, the first number of series resonators includes a designated series resonator 70, which The frequency of the designated series resonator 70 is different from the frequencies of the other series resonators 20. And the two ends of the designated resonator 70 are respectively connected to the series resonator and the parallel resonator.
  • the input end of the designated series resonator 70 is connected to a parallel resonator and a series resonator, and the output end of the designated series resonator is connected to only one series resonator.
  • the second number of parallel resonators includes at least one designated parallel resonator, and the resonator frequency of the designated parallel resonator is different from the attribute parameters of the other parallel resonators.
  • FIG. 10 is a schematic structural diagram of a ninth type of filter circuit shown in an exemplary embodiment of the present application; referring to FIG. 10, this embodiment Taking as an example a designated parallel resonator 60, the designated parallel resonator 60 is connected in series with a parallel resonator. Specifically, the input end of the designated parallel resonator 60 is connected to two series resonators, and the designated parallel resonator 60 is connected in series. The output terminal of the resonator 60 is connected to a parallel resonator. The resonator frequency of the designated parallel resonator 60 is different from the resonator frequencies of other parallel resonators.
  • Fig. 11a is a schematic structural diagram of a tenth filter circuit shown in an exemplary embodiment of the present application; referring to Fig. 11a, in the filter circuit provided in this embodiment, a designated parallel resonator 60 is provided, and the designated parallel resonator 60 is provided. The input end of the resonator 60 is connected to two series resonators, the output end of the designated parallel resonator 60 is connected to the third inductor, and the resonator frequency of the designated parallel resonator 60 is the same as that of other parallel resonators. different.
  • Fig. 11b is an impedance diagram of the combined resonator (filter circuit) shown in Fig. 11a, showing the relationship between frequency and impedance in the combined resonator shown in Fig. 11a; the dashed line is the resonator in the prior art
  • the impedance diagram, the solid line is the impedance schematic diagram of the new combined structure proposed in this embodiment, in which for the parallel resonator, the two low impedances formed are used as zero points for out-of-band suppression. It can be seen from the above figure that the position of the out-of-band zero point is earlier than the original, which can improve the left roll-off.
  • Fig. 11c is a schematic diagram of the roll-off improvement effect of the filter circuit shown in Fig. 11a; referring to Fig. 11c, the solid line is the roll-off curve of the filter circuit in this embodiment, and the dashed line is the roll-off curve of the filter circuit in the prior art. The curve can be clearly obtained.
  • the filter circuit provided in the embodiment of the present application improves the roll-off of the same suppression (for example -50dB) by 2MHz.
  • An embodiment of the present invention also provides a signal processing device, including: a signal input circuit, a signal output circuit, and the filter circuit in any one of the above embodiments; the signal input circuit is connected to the filter circuit, and the The filter circuit is connected to the signal output circuit.
  • the signal processing device provided in this embodiment has better roll-off and insertion loss performance, so the signal processing effect is better.
  • the designated parallel resonator can be connected in series with any parallel resonator, and the number of the designated parallel resonator can be multiple, and the designated parallel resonator can be set in any one of the parallel resonators.
  • the filter circuit described in the foregoing embodiment of the present application may include both a designated series resonator and a designated parallel resonator, which is not limited in the present invention.
  • An embodiment of the present application also provides a method for improving the performance of a filter circuit, which is used to obtain the filter circuit described in any of the above embodiments;
  • the filter circuit includes: a plurality of resonators, the plurality of resonators including A first number of series resonators and a second number of parallel resonators, and the input terminal of the circuit is connected with a first inductor, the output terminal of the circuit is connected with a second inductor, and the ground terminal of the circuit is connected with a first inductor.
  • Three inductors; the method includes:
  • At least one designated series resonator is provided in the first number of series resonators, and the attribute parameter of the designated series resonator is different from the attribute parameters of the other series resonators.
  • the insertion loss and rolling of the filter circuit can be significantly improved. Therefore, better performance than the filter circuit in the prior art can be obtained.
  • the above attribute parameters include: electromechanical coupling coefficient.
  • the above method further includes: respectively connecting the input end and the output end of the designated series resonator to a parallel resonator.
  • the above method further includes: connecting the designated series resonator with a series resonator in series, and then connecting with the parallel resonator respectively.
  • the above method further includes: setting the two resonators split by the designated series resonator to have a frequency difference and have unequal areas and/or shapes.
  • the area of the above-mentioned fixed series resonator is different from the area of the electrode of the series resonator to which it is connected, and can be realized by splitting the unequal area of the series resonator.
  • the flexible design of the area can better fill the space of the chip. It is conducive to tighter arrangement, so that the chip area can be fully utilized, which helps to reduce the chip cost; and the spurious phase of the resonator can be offset instead of superimposed, so the insertion loss can be effectively improved.
  • the above method further includes: setting the structural parameters of the resonator splitting the designated series resonator to be different from the structural parameters of the other series resonators, and the structural parameters include: a ring-shaped protrusion of the upper electrode Any one or more of the width of the structure, the width of the recessed structure, and the width of the suspended wing structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

本申请提供一种滤波电路及信号处理设备。其中,滤波电路包括:多个谐振器,所述多个谐振器包括第一数量的串联谐振器和第二数量的并联谐振器,并且滤波电路的输入端连接有第一电感,滤波电路的输出端连接有第二电感,滤波电路的接地端连接有第三电感,所述滤波电路的第一数量的串联谐振器中包含有至少一个指定串联谐振器,所述指定串联谐振器的属性参数与其他所述串联谐振器的属性参数不同。如此,可以改善滤波电路的插损和滚降。

Description

一种滤波电路及提高滤波电路性能的方法和信号处理设备 技术领域
本申请涉及电路元件技术领域,具体而言,涉及一种滤波电路及提高滤波电路性能的方法和信号处理设备。
背景技术
在无线通信系统中,由于对频段的利用率越来越高,各个频段之间的过渡带越来越窄。为了保证滤波器的插损以及对相邻频段的抑制,对滤波器的滚降要求越来越高。滤波器由于具有高Q值的特点,相比LC(谐振电路)和SAW((surface acoustic wave,声表面波滤波器)等有更好的滚降和插损优势,但是随着性能需求的进一步提高,仅仅依靠滤波器的高Q值优势难以获得更好的性能。因此,需要在电路拓扑结构上来改善滤波器的性能。
发明内容
有鉴于此,本申请提供一种滤波电路及提高滤波电路性能的方法和信号处理设备,以改善滤波电路的性能。
具体地,本申请是通过如下技术方案实现的:
第一方面,本申请实施例中提供了一种滤波电路,所述滤波电路包括:多个谐振器,所述多个谐振器包括第一数量的串联谐振器和第二数量的并联谐振器,并且所述电路的输入端连接有第一电感,所述电路的输出端连接有第二电感,所述电路的接地端连接有第三电感;所述第一数量的串联谐振器中包含有至少一个指定串联谐振器,所述指定串联谐振器的属性参数与其他所述串联谐振器的属性参数不同。
可选地,所述属性参数包括:机电耦合系数。
可选地,所述指定串联谐振器的输入端和输出端分别与一并联谐振器相连接。
可选地,所述指定串联谐振器与一串联谐振器串联以后,再分别与并联谐振器连接。
可选地,所述指定串联谐振器拆分的两个谐振器具有频率差且有不等的面积和/或形状。
可选地,所述指定串联谐振器拆分的谐振器的结构参数与所述其他串联谐振器的结构参数不同,所述结构参数包括:上电极的环状凸起结构宽度、凹陷结构宽度和悬翼结构宽度中的任意一个或多个。
第二方面,本申请实施例中提供了一种信号处理设备,包括:信号输入电路、信号输出电路和第一方面所述的滤波电路;所述信号输入电路与所述滤波电路相连接,所述滤波电路与所述信号输出电路相连接。
第三方面,本申请实施例提供了一种提高滤波电路性能的方法,所述滤波电路包括:多个谐振器,所述多个谐振器包括第一数量的串联谐振器和第二数量的并联谐振器,并且所述电路的输入端连接有第一电感,所述电路的输出端连接有第二电感,所述电路的接地端连接有第三电感;所述方法包括:
在所述第一数量的串联谐振器中设置至少一个指定串联谐振器,所述指定串联谐振器的属性参数与其他所述串联谐振器的属性参数不同。
可选地,所述属性参数包括:机电耦合系数。
可选地,还包括:将所述指定串联谐振器的输入端和输出端分别与一并联谐振器相连接。
可选地,还包括:将所述指定串联谐振器与一串联谐振器串联以后,再分别与并联谐振器连接。
可选地,还包括:设置所述指定串联谐振器拆分的两个谐振器具有频率差且有不等的面积和/或形状。
可选地,还包括:设置使所述指定串联谐振器拆分的谐振器的结构参数与所述其他串联谐振器的结构参数不同,所述结构参数包括:上电极的环状凸起结构宽度、凹陷结构宽度和悬翼结构宽度中的任意一个或多个。
本申请实施例所提供的一种滤波电路及提高滤波电路性能的方法和信号处理设备,通过在滤波器中设置指定指定串联谐振器,并且使指定串联谐振器的属性参数与其他串联谐振器的属性参数形成差异化,能够显著的改善滤波电路的插损和滚降,进而得到相对于现有技术中的滤波电路更优的性能。
附图说明
图1是现有技术中的一种滤波电路的结构示意图。
图2a是本申请一示例性实施例示出的第一种滤波电路的结构示意图;
图2b是本申请一示例性实施例示出的第一种滤波电路的阻抗示意图;
图3a是本申请一示例性实施例示出的第二种滤波电路的结构示意图;
图3b是本申请一示例性实施例示出的第二种滤波电路的阻抗示意图;
图4a是本申请一示例性实施例示出的第三种滤波电路的结构示意图;
图4b是本申请一示例性实施例示出的第三种滤波电路的阻抗示意图;
图4c中示出了上述第三种滤波电路的滚降改善效果示意图;
图4d是本申请一示例性实施例示出的一种谐振器上电极的结构示意图;
图5是本申请一示例性实施例示出的第四种滤波电路的结构示意图;
图6a是本申请一示例性实施例示出的第五种滤波电路的结构示意图;
图6b是本申请一示例性实施例示出的第五种滤波电路的阻抗示意图;
图7是本申请一示例性实施例示出的第六种滤波电路的结构示意图;
图8a是本申请一示例性实施例示出的第七种滤波电路的结构示意图;
图8b是本申请一示例性实施例示出的第七种滤波电路的阻抗示意图;
图9是本申请一示例性实施例示出的第八种滤波电路的结构示意图;
图10是本申请一示例性实施例示出的第九种滤波电路的结构示意图;
图11a是本申请一示例性实施例示出的第十种滤波电路的结构示意图;
图11b是本申请一示例性实施例示出的第十种滤波电路的阻抗示意图;
图11c是本申请一示例性实施例示出的第十种滤波电路的滚降改善效果示意图;
图12a是本申请一示例性实施例示出的串联拆分前后整体曲线的对比结果示意图;
图12b是本申请一示例性实施例示出的串联拆分前后Fp频率处的Rp的对比结果示意图;
图12c是本申请一示例性实施例示出的串联拆分前后Fs处的Rs对比结果示 意图;
图12d是本申请一示例性实施例示出的采用串联拆分的效果示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
图1是现有技术中的一种滤波电路的结构示意图。参照图1所示,现有技术中的滤波电路包括多个谐振器,该多个谐振器包括第一数量的串联谐振器20和第二数量的并联谐振器40,图中以包含有5个串联谐振器20和4个并联谐振器40为例,并且该滤波电路的输入端连接有第一电感10,滤波电路的输出端连接有第二电感30,滤波电路的接地端分别连接有第三电感50,每个第三电感50一端与并联谐振器连接,另一端接地。
本申请实施例中提供的一种滤波电路,上述串联谐振器的属性参数与并联谐振器的属性参数的差值大于预设值。
本申请一实施例中,上述的属性参数包括:机电耦合系数。
由于现有技术中的率波电路,为使串联谐振器和并联谐振器产生一定的频率差,来形成好的带外抑制特性,一般都设置使串联谐振器的机电耦合系数和并联谐振器的机电耦合系数相同或相近,并且使所有串联谐振器之间的机电耦合系数相同,所有并联谐振器之间的机电耦合系数相同。
本实施例中,对于滤波电路右侧有滚降要求的滤波器来说,需要尽量降低串联谐振器的机电耦合系数,同时增大并联谐振器的机电耦合系数,来保证带宽不变窄。
示例性的,图2a是本申请一示例性实施例示出的第一种滤波电路的结构示意图;参照图2a所示,本实施例提供的滤波电路中,通过改变串联谐振器20的机电耦合系数,使得串联谐振器20的机电耦合系数与并联谐振器40的机电耦合系 数均的差值大于预设值。
该实施例中提供的滤波器的效果图参照图2b所示,图2b示出了第一种滤波电路的阻抗示意图,本实施例中,在保证抑制不变化的同时,使得右侧插损改善。
而对于左侧有滚降要求的滤波电路来说,需要尽量降低并联谐振器的机电耦合系数,同时增大串联谐振器的机电耦合系数,进而增大串联谐振器20的机电耦合系数与并联谐振器40的机电耦合系数间的差值,以保证带宽不变窄。
本发明另一实施例中,参照图3a所示,图3a示出了第二种滤波电路的结构示意图,本实施例提供的滤波电路中,通过改变并联谐振器40的机电耦合系数,使得串联谐振器20的机电耦合系数与并联谐振器40的机电耦合系数均的差值大于预设值。
可选的,上述也可以是同时改变串联谐振器的机电耦合系数和并联谐振器的机电耦合系数,使得串联谐振器20的机电耦合系数与并联谐振器40的机电耦合系数均的差值大于预设值。
上述预设值可以是现有技术中现有串联谐振器的机电耦合系数与并联谐振器40的机电耦合系数均的通用差值。
该实施例中提供的滤波器的效果图参照图3b所示,图3b示出了上述第二种滤波电路的阻抗示意图,本实施例中,保证抑制不变化的同时,能够左侧插损改善。
本申请另一实施例中所提供的率波电路中,第一数量的串联谐振器中包含有至少一个指定串联谐振器,该指定串联谐振器的属性参数与其他所述串联谐振器的属性参数不同。
和/或,第二数量的并联谐振器中包含有至少一个指定并联谐振器,该指定并联谐振器的属性参数与其他并联谐振器的属性参数不同。
本申请实施例中通过设置指定串联谐振器和/或指定并联谐振器,以改善率波电路的插损和滚降。
上述的属性参数包括机电耦合系数。
本实施例中,通过设置在上述的第一数量的串联谐振器中包含有至少一个指定串联谐振器,并且该指定串联谐振器的机电耦合系数与其他串联谐振器的机电 耦合系数不同,已改善滤波电路的插损和滚降。
示例性的,图4a是本申请一示例性实施例示出的第三种滤波电路的结构示意图;参照图4a所示,在本实施例中提供的滤波电路中,设置一指定串联谐振器70,该指定串联谐振器70的输入端和输出端分别与并联谐振器连接,该指定串联谐振器70的机电耦合系数与其他串联谐振器的机电耦合系数不同。
指定串联谐振器70(加粗的)可以是自己拆分,也可以和右边的普通谐振器共同组成一个拆分结构。即这两个挨着的谐振器是拆分后形成的。图上示出是两个,实际可以是拆成的多个。进而本实施例中,通过设置第一数量的串联谐振器中包含有一个或多个具有不同机机电耦合系数的指定串联谐振器70来改善插损和滚降。以下结合图4b加以说明,图4b是本申请一示例性实施例示出的第三种滤波电路的阻抗示意图。
参照图4b所示,该图是组合谐振器的阻抗图,虚线是原来结构的谐振器的阻抗图,实线是本申请实施例中提出新的组合结构的阻抗示意图,其中对于串联谐振器来说,形成的两个高阻抗作为带外抑制的零点。从图中可以看出,带外零点的位置相比只改变频率的更加提前,从而能够更好的改善右侧滚降。
具体的,图4c中示出了上述第三种滤波电路的滚降改善效果示意图;参照图4c所示,实线是本实施例中的第三种滤波电路的滚降曲线,虚线是现有技术中的滤波电路的滚降曲线,可以明显的看出,本申请实施例提供的第三滤波电路对于相同的抑制(比如-50dB来说)滚降改善了1.5MHz。
可选的,本申请实施例中,频率的差异是通过拆分的两个或者多个谐振器的上电极加入额外的金属层来实现。机电耦合系数的差异通过改变谐振器的环状凸起结构、凹陷结构、悬翼结构等来改变,另外通过改变谐振器的环状凸起结构、凹陷结构、悬翼结构可以调节谐振器Q值的分布,对于特定的性能指标,可以通过Q值分布的调节来获得理想的性能。图4d是本申请一示例性实施例示出的一种谐振器上电极的结构示意图;参照图4c所示,谐振器的上电极包括:凸起结构、凹陷结构以及悬翼结构,具体如图4d所示,范围a表示悬翼结构;范围b表示凸起结构;范围c表示凹陷结构。左边是上电极的俯视图,右侧是上电极的剖面图。俯视图中,内部带斜线的区域是凹陷结构,两个箭头所在的环状区域分别是凸起 结构和悬翼结构,最外圈是悬翼结构。上电极的中凸起结构和凹陷结构之间的宽度越小,机电耦合系数越小;环状凸起结构的宽度越大,机电耦合系数越小;悬翼结构的宽度越大,机电耦合系数越小。因此,可以通过控制各个结构的宽度,改变机电耦合系数。同时,各个结构的宽度会影响Q值的分布,通过合适的结构的选取,可以获得特定机电耦合系数下更好的性能。
本申请一实施例中,参照图5所示,图5示出了第四种滤波电路的结构示意图;本实施例中包含有一个指定串联谐振器70,该指定串联谐振器70与一串联谐振器串联以后,再分别与并联谐振器连接。具体的,参照图5所示,该指定串联谐振器70的输入端连接一并联谐振器和一串联谐振器,该指定串联谐振器的输出端只连接另一串联谐振器。该指定串联谐振器的机电耦合系数与其他串联谐振器的机电耦合系数不同。
上述定串联谐振器的面积与其连接的串联谐振器的电极的面积不同,进而可以是通过串联谐振器的不等面积拆分实现,可以实现通过面积的灵活设计更好的填充芯片的空间,有利于更加紧密的排布,因此可以充分利用芯片面积,有助于降低芯片成本;并且可以使得谐振器的寄生spurious的相位产生抵消而不是叠加,因此可以有效改善插损。
具体的,本实施例具有以下积极效果:保证工艺制造可靠性;非线性拆分保证器件非线性性能较好:功率拆分,在高功率应用的时候,会使用多个谐振器来进行拆分来减小功率分布;版图布局更加灵活,有利于充分利用die面积,减小diesize。
需要说明的是,本实施例中上述的指定串联谐振器的数量和连接位置可以是任意的,本申请对此不作限定。
本申请实施例中通过串联拆分影响Q值分布,具体效果可以参见图12a-图12d所示,如下:
图12a是串联拆分前后整体曲线的对比结果示意图,除了Fs和Fp点的阻抗以外,其余的阻抗基本没有变化,因此实际拆分的时候,对滤波器其他性能没有影响。实线是拆分后,虚线是拆分前,其中实线与虚线大部分为重叠部分。
图12b是串联拆分前后Fp频率处的Rp的对比结果示意图,从图4b可以看 出,串联拆分后,Rp值有显著的提高,对滤波器右侧也有较明显的改善。实线是拆分后,虚线是拆分前。
图12c是串联拆分前后Fs处的Rs对比结果示意图,从图4c可以看出,串联拆分后,Rs也有明显的提高,Rs的提高对通带左侧有一定的恶化。实线是拆分后,虚线是拆分前。
图12d是采用串联拆分的效果示意图,串联拆分改善了Rp,Rp的提高对通带右侧有改善。当滤波器右侧有较高的指标需求的时候,可以通过串联拆分来获得需要的性能。
可选地,上述拆分的两个谐振器具有频率差且有不等的面积和/或形状。
本申请一实施例中,上述第二数量的并联谐振器中包含有至少一个指定并联谐振器,该制定并联谐振器的机电耦合系数与其他并联谐振器的机电耦合系数不同。
示例性的,参照图6a所示,图6a示出了第五种滤波电路的结构示意图,在本实施例中提供的滤波电路中,设置指定并联谐振器60,该指定并联谐振器60的输入端与两个串联谐振器相连接,该指定并联谐振器60的输出端第三电感相连接,该指定并联谐振器60的机电耦合系数与其他并联谐振器的机电耦合系数不同。由此有助于提高滤波器的性能,以下结合图6b加以说明,图6b是本申请一示例性实施例示出的第五种滤波电路的阻抗示意图。
图6b示出的是上述图6a中的组合谐振器的频率和阻抗之间的关系,虚线是原来结构的谐振器的阻抗图,实线是本实施例中新提出的新的组合结构的阻抗示意图,其中对于并联谐振器来说,形成的两个低阻抗作为带外抑制的零点,带外零点的位置相比于原来结构更加提前,从而能够更好的改善左侧滚降。
本发明另一实施例中,上述的指定并联谐振器60可以是与一并联谐振器串联;图7是本申请一示例性实施例示出的第六种滤波电路的结构示意图;参照图7所示,本实施例中以包含有一个指定并联谐振器60为例,该指定并联谐振器60与一并联谐振器串联,具体的,该指定并联谐振器60的输入端与两个串联谐振器相连接,该指定并联谐振器60的输出端与一并联谐振器相连接。
需要说明的是,本实施例中,该指定并联谐振器可以是与任一个并联谐振器 串联,并且该指定并联谐振器的数量可以是多个,并且该指定并联谐振器可以是设置在任何一个并联谐振器与第三电感所在的支路上。
本申请另一实施例中,上述的属性参数为谐振器频率。
可选的,上述第一数量的串联谐振器中包含有至少一个指定串联谐振器,所述指定串联谐振器的谐振器频率与其他串联谐振器的机电耦合系数不同。
图8a是本申请一示例性实施例示出的第七种滤波电路的结构示意图;参照图8a所示,在本实施例中提供的滤波电路中,设置一指定串联谐振器70,该指定串联谐振器70的输入端和输出端分别与并联谐振器连接,该指定串联谐振器70的机电耦合系数与其他串联谐振器的机电耦合系数不同。
进而本实施例中,通过设置第一数量的串联谐振器中包含有一个或多个具有不同机机电耦合系数的指定串联谐振器70来改善插损和滚降。
图8b是上述第七种滤波电路的阻抗示意图;参照图8b所示,该图示出了图8a所示的组合谐振器的频率和阻抗之间的关系,虚线是原来结构的谐振器的阻抗图,实线是本实施例提出的新的组合结构的阻抗示意图,其中对于串联谐振器来说,形成的两个高阻抗作为带外抑制的零点,带外零点的位置相比原来提前,从而能够改善右侧滚降。
图9是本申请一示例性实施例示出的第八种滤波电路的结构示意图;参照图9所示,本实施例中,第一数量的串联谐振器中包含有一个指定串联谐振器70,该指定串联谐振器70的频率与其他串联谐振器20的频率不同。并且该指定谐振器70的两端点分别连接串联谐振器和并联谐振器。
具体的,该指定串联谐振器70的输入端连接并联谐振器和串联谐振器,该指定串联谐振器的输出端只连接一串联谐振器。
本发明另一实施例中,第二数量的并联谐振器中包含有至少一个指定并联谐振器,该指定并联谐振器的谐振器频率与其他所述并联谐振器的属性参数不同。
可选的,上述的指定并联谐振器60可以是与一并联谐振器串联;图10是本申请一示例性实施例示出的第九种滤波电路的结构示意图;参照图10所示,本实施例中以包含有一个指定并联谐振器60为例,该指定并联谐振器60与一并联谐振器串联,具体的,该指定并联谐振器60的输入端与两个串联谐振器相连接,该 指定并联谐振器60的输出端与一并联谐振器相连接。该指定并联谐振器60的谐振器频率与其他并联谐振器的谐振器频率不同。
图11a是本申请一示例性实施例示出的第十种滤波电路的结构示意图;参照图11a所示,在本实施例中提供的滤波电路中,设置有一个指定并联谐振器60,该指定并联谐振器60的输入端与两个串联谐振器相连接,该指定并联谐振器60的输出端与第三电感相连接,该指定并联谐振器60的谐振器频率与其他并联谐振器的谐振器频率不同。
图11b是图11a所示的组合谐振器(滤波电路)的阻抗图,示出了图11a所示的组合谐振器中的频率和阻抗之间的关系;虚线是现有技术中的谐振器的阻抗图,实线是本实施例提出新的组合结构的阻抗示意图,其中对于并联谐振器来说,形成的两个低阻抗作为带外抑制的零点。从上图可以看出,带外零点的位置相比原来提前,从而能够改善左侧滚降。
图11c是图11a所示的滤波电路的滚降改善效果示意图;参照图11c所示,实线是本实施例中的滤波电路的滚降曲线,虚线是现有技术中的滤波电路的滚降曲线,可以明显的得到,本申请实施例中所提供的滤波电路对于相同的抑制(比如-50dB来说)滚降改善了2MHz。
本发明一实施例中还提供了一种信号处理设备,包括:信号输入电路、信号输出电路和上述任一实施例中的滤波电路;所述信号输入电路与所述滤波电路相连接,所述滤波电路与所述信号输出电路相连接。
本实施例中提供的信号处理设备,由于具有更好滚降和插损性能,因此信号处理效果更佳。
需要说明的是,本实施例中,该指定并联谐振器可以是与任一个并联谐振器串联,并且该指定并联谐振器的数量可以是多个,并且该指定并联谐振器可以是设置在任何一个并联谐振器与第三电感所在的支路上。
可选的,本申请上述实施例所述的滤波电路可以是同时包含有指定串联谐振器和指定并联谐振器,本发明对此不做限定。
本申请一实施例中还提供了一种提高滤波电路性能的方法,用于得到上述任一实施例所述的滤波电路;所述滤波电路包括:多个谐振器,所述多个谐振器包 括第一数量的串联谐振器和第二数量的并联谐振器,并且所述电路的输入端连接有第一电感,所述电路的输出端连接有第二电感,所述电路的接地端连接有第三电感;所述方法包括:
在所述第一数量的串联谐振器中设置至少一个指定串联谐振器,所述指定串联谐振器的属性参数与其他所述串联谐振器的属性参数不同。
本实施例中通过在滤波器中设置指定指定串联谐振器,并且使设置的指定串联谐振器的属性参数与其他串联谐振器的属性参数形成差异化,能够显著的改善滤波电路的插损和滚降,进而得到相对于现有技术中的滤波电路更优的性能。
可选地,上述属性参数包括:机电耦合系数。
本实施例中,通过设置在上述的第一数量的串联谐振器中包含有至少一个指定串联谐振器,并且该指定串联谐振器的机电耦合系数与其他串联谐振器的机电耦合系数不同,已改善滤波电路的插损和滚降。
可选地,上述方法还包括:将所述指定串联谐振器的输入端和输出端分别与一并联谐振器相连接。
可选地,上述方法还包括:将所述指定串联谐振器与一串联谐振器串联以后,再分别与并联谐振器连接。
需要说明的是,本实施例中上述的指定串联谐振器的数量和连接位置可以是任意的,本申请对此不作限定。
可选地,上述方法还包括:设置所述指定串联谐振器拆分的两个谐振器具有频率差且有不等的面积和/或形状。
上述定串联谐振器的面积与其连接的串联谐振器的电极的面积不同,进而可以是通过串联谐振器的不等面积拆分实现,可以实现通过面积的灵活设计更好的填充芯片的空间,有利于更加紧密的排布,因此可以充分利用芯片面积,有助于降低芯片成本;并且可以使得谐振器的寄生spurious的相位产生抵消而不是叠加,因此可以有效改善插损。
可选地,上述方法还包括:设置使所述指定串联谐振器拆分的谐振器的结构参数与所述其他串联谐振器的结构参数不同,所述结构参数包括:上电极的环状凸起结构宽度、凹陷结构宽度和悬翼结构宽度中的任意一个或多个。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (13)

  1. 一种滤波电路,所述滤波电路包括:多个谐振器,所述多个谐振器包括第一数量的串联谐振器和第二数量的并联谐振器,并且所述电路的输入端连接有第一电感,所述电路的输出端连接有第二电感,所述电路的接地端连接有第三电感;其特征在于:
    所述第一数量的串联谐振器中包含有至少一个指定串联谐振器,所述指定串联谐振器的属性参数与其他所述串联谐振器的属性参数不同。
  2. 根据权利要求1所述的滤波电路,其特征在于,所述属性参数包括:机电耦合系数。
  3. 根据权利要求1所述的滤波电路,其特征在于,所述指定串联谐振器的输入端和输出端分别与一并联谐振器相连接。
  4. 根据权利要求1所述的滤波电路,其特征在于,所述指定串联谐振器与一串联谐振器串联以后,再分别与并联谐振器连接。
  5. 根据权利要求4所述的滤波电路,其特征在于,所述指定串联谐振器拆分的两个谐振器具有频率差且有不等的面积和/或形状。
  6. 根据权利要求1所述的滤波电路,其特征在于,所述指定串联谐振器拆分的谐振器的结构参数与所述其他串联谐振器的结构参数不同,所述结构参数包括:上电极的环状凸起结构宽度、凹陷结构宽度和悬翼结构宽度中的任意一个或多个。
  7. 一种信号处理设备,其特征在于,包括:信号输入电路、信号输出电路和如权利要求1-6任一所述的滤波电路;所述信号输入电路与所述滤波电路相连接,所述滤波电路与所述信号输出电路相连接。
  8. 一种提高滤波电路性能的方法,所述滤波电路包括:多个谐振器,所述多个谐振器包括第一数量的串联谐振器和第二数量的并联谐振器,并且所述电路的输入端连接有第一电感,所述电路的输出端连接有第二电感,所述电路的接地端连接有第三电感;其特征在于,所述方法包括:
    在所述第一数量的串联谐振器中设置至少一个指定串联谐振器,所述指定串联谐振器的属性参数与其他所述串联谐振器的属性参数不同。
  9. 根据权利要求8所述的方法,其特征在于,所述属性参数包括:机电耦合系数。
  10. 根据权利要求8所述的方法,其特征在于,还包括:将所述指定串联谐振器的输入端和输出端分别与一并联谐振器相连接。
  11. 根据权利要求8所述的方法,其特征在于,还包括:将所述指定串联谐振器与一串联谐振器串联以后,再分别与并联谐振器连接。
  12. 根据权利要求11所述的方法,其特征在于,还包括:设置所述指定串联谐振器拆分的两个谐振器具有频率差且有不等的面积和/或形状。
  13. 根据权利要求8所述的方法,其特征在于,还包括:设置使所述指定串联谐振器拆分的谐振器的结构参数与所述其他串联谐振器的结构参数不同,所述结构参数包括:上电极的环状凸起结构宽度、凹陷结构宽度和悬翼结构宽度中的任意一个或多个。
PCT/CN2020/111342 2019-10-11 2020-08-26 一种滤波电路及提高滤波电路性能的方法和信号处理设备 WO2021068670A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910963593.4 2019-10-11
CN201910963593.4A CN110798169A (zh) 2019-10-11 2019-10-11 一种滤波电路及提高滤波电路性能的方法和信号处理设备

Publications (1)

Publication Number Publication Date
WO2021068670A1 true WO2021068670A1 (zh) 2021-04-15

Family

ID=69440361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111342 WO2021068670A1 (zh) 2019-10-11 2020-08-26 一种滤波电路及提高滤波电路性能的方法和信号处理设备

Country Status (2)

Country Link
CN (1) CN110798169A (zh)
WO (1) WO2021068670A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110798166A (zh) * 2019-10-11 2020-02-14 天津大学 一种滤波电路及提高滤波电路性能的方法和信号处理设备
CN110798169A (zh) * 2019-10-11 2020-02-14 天津大学 一种滤波电路及提高滤波电路性能的方法和信号处理设备
CN110768641A (zh) * 2019-10-11 2020-02-07 天津大学 一种滤波电路及提高滤波电路性能的方法和信号处理设备
CN110798168A (zh) * 2019-10-11 2020-02-14 天津大学 一种滤波电路及提高滤波电路性能的方法和信号处理设备
CN111371407B (zh) * 2020-03-18 2021-02-26 诺思(天津)微系统有限责任公司 调整谐振频率的方法和滤波器、多工器、通信设备
CN112398460B (zh) * 2020-04-14 2021-12-28 诺思(天津)微系统有限责任公司 多工器和通讯设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100207707A1 (en) * 2008-03-27 2010-08-19 Murata Manufacturing Co., Ltd. Acoustic wave filter device
CN102077465A (zh) * 2008-06-30 2011-05-25 株式会社村田制作所 带阻滤波器
CN102405596A (zh) * 2009-04-23 2012-04-04 松下电器产业株式会社 天线共用器
CN106849898A (zh) * 2016-12-13 2017-06-13 北京中科飞鸿科技有限公司 一种17%相对带宽低损耗声表滤波器及其制备方法
US10218335B2 (en) * 2016-02-23 2019-02-26 Taiyo Yuden Co., Ltd. Duplexer
CN110798169A (zh) * 2019-10-11 2020-02-14 天津大学 一种滤波电路及提高滤波电路性能的方法和信号处理设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923794B2 (en) * 2011-11-02 2014-12-30 Triquint Semiconductor, Inc. Temperature compensation of acoustic resonators in the electrical domain
JP6400970B2 (ja) * 2014-07-25 2018-10-03 太陽誘電株式会社 フィルタおよびデュプレクサ
CN109643984B (zh) * 2016-06-21 2023-09-01 诺思(天津)微系统有限责任公司 一种梯形结构宽带压电滤波器
JP2018078542A (ja) * 2016-10-31 2018-05-17 株式会社村田製作所 フィルタ装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
CN109831177A (zh) * 2018-12-20 2019-05-31 天津大学 一种多阻带滤波器及其实现方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100207707A1 (en) * 2008-03-27 2010-08-19 Murata Manufacturing Co., Ltd. Acoustic wave filter device
CN102077465A (zh) * 2008-06-30 2011-05-25 株式会社村田制作所 带阻滤波器
CN102405596A (zh) * 2009-04-23 2012-04-04 松下电器产业株式会社 天线共用器
US10218335B2 (en) * 2016-02-23 2019-02-26 Taiyo Yuden Co., Ltd. Duplexer
CN106849898A (zh) * 2016-12-13 2017-06-13 北京中科飞鸿科技有限公司 一种17%相对带宽低损耗声表滤波器及其制备方法
CN110798169A (zh) * 2019-10-11 2020-02-14 天津大学 一种滤波电路及提高滤波电路性能的方法和信号处理设备

Also Published As

Publication number Publication date
CN110798169A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2021068670A1 (zh) 一种滤波电路及提高滤波电路性能的方法和信号处理设备
WO2021068669A1 (zh) 一种滤波电路及提高滤波电路性能的方法和信号处理设备
WO2021068668A1 (zh) 一种滤波电路及提高滤波电路性能的方法和信号处理设备
WO2021068671A1 (zh) 一种滤波电路及提高滤波电路性能的方法和信号处理设备
CN104412268B (zh) 微波声波滤波器的改进设计
US20160218695A1 (en) Ladder filter
WO2020168958A1 (zh) 一种带通滤波器及双工器
WO2020114413A1 (zh) 一种压电声波滤波器及双工器
US6300849B1 (en) Distributed element filter
CN112350684B (zh) 一种声波滤波器、多工器、通信设备
WO2021143516A1 (zh) 体声波滤波器和信号处理设备
WO2020125208A1 (zh) 带通滤波器及提高其抑制水平的方法、双工器和电子设备
WO2021159881A1 (zh) 调整fbar寄生分量的方法和滤波器、多工器、通信设备
CN111130498A (zh) 一种双工器
WO2018112921A1 (zh) 滤波器和用于调节滤波器性能的方法
US10090824B2 (en) Filter apparatus
CN113630102A (zh) 一种声波滤波器
CN211830724U (zh) 带通滤波电路和多工器
JP3921310B2 (ja) 分布定数フィルタ
JP3964078B2 (ja) 分布定数フィルタ
CN214101324U (zh) 一种基于高频声波谐振器的多工器
CN210927578U (zh) 一种双工器
CN116346069B (zh) 滤波器和电子设备
CN111600573B (zh) 滤波器、多工器、通信设备及滤波器制造方法
JP7483621B2 (ja) 無線周波数フィルタのための補正ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873675

Country of ref document: EP

Kind code of ref document: A1