WO2020125208A1 - 带通滤波器及提高其抑制水平的方法、双工器和电子设备 - Google Patents

带通滤波器及提高其抑制水平的方法、双工器和电子设备 Download PDF

Info

Publication number
WO2020125208A1
WO2020125208A1 PCT/CN2019/114195 CN2019114195W WO2020125208A1 WO 2020125208 A1 WO2020125208 A1 WO 2020125208A1 CN 2019114195 W CN2019114195 W CN 2019114195W WO 2020125208 A1 WO2020125208 A1 WO 2020125208A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling capacitor
resonator
band
pass filter
filter
Prior art date
Application number
PCT/CN2019/114195
Other languages
English (en)
French (fr)
Inventor
庞慰
王蕾
郑云卓
Original Assignee
天津大学
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学, 诺思(天津)微系统有限责任公司 filed Critical 天津大学
Priority to EP19900924.2A priority Critical patent/EP3902137A4/en
Publication of WO2020125208A1 publication Critical patent/WO2020125208A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0153Electrical filters; Controlling thereof
    • H03H7/0161Bandpass filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0542Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a lateral arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • H03H9/0561Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/60Electric coupling means therefor
    • H03H9/605Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H7/463Duplexers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • H03H9/706Duplexers

Definitions

  • Embodiments of the present invention relate to the field of semiconductors, and in particular, to a band-pass filter that improves suppression, a method to increase the suppression level of a filter, a duplexer with the band-pass filter, and a method with the same Electronic equipment with band-pass filter.
  • FBAR film bulk acoustic resonators
  • the frequency-selective devices such as filters and duplexers at the RF front-end are required to suppress the adjacent frequency bands higher and higher, and FBAR devices also need to be improved in this regard. And to improve, not only to increase the level of stopband suppression, but also can not have a large impact on the insertion loss of the passband, but also as far as possible not to increase the overall size of the chip or device.
  • a common method is to increase the inductance of a large inductance on the series and parallel branches to change the resonance frequency of the resonator to improve the stop band suppression, or increase the suppression point (notch) to improve the stop band suppression.
  • these methods need to add additional reactive components, and the value of these components is usually relatively large, it is difficult to achieve on the chip. If it is achieved by winding wires on the substrate or adding discrete components outside the chip, it will inevitably increase the number of layers and the size of the substrate, which will inevitably lead to an increase in the overall size of the filter or duplexer. Moreover, the added windings or discrete components in practice are not ideal, and the losses introduced will be superimposed on the filter, resulting in deterioration of the filter's passband insertion loss.
  • the present invention proposes a special filter architecture that utilizes the coupling between the resonator and the equipotential body to significantly improve the suppression of signals in adjacent frequency bands without increasing losses and not significantly increasing the overall size of the chip Level.
  • a band-pass filter including:
  • a series branch resonator unit with multiple series resonators A series branch resonator unit with multiple series resonators
  • the parallel branch resonator unit has multiple parallel resonators, one end of each parallel resonator is connected to the port of the corresponding series resonator, and the other end is adapted to be connected to the ground terminal through a corresponding grounding inductor,
  • the band-pass filter further includes a coupling circuit unit, and the coupling circuit unit includes:
  • a first coupling capacitor the first end of the first coupling capacitor is connected to the equipotential body, and the second end of the first coupling capacitor is connected to a port of a series resonator;
  • a second coupling capacitor a first end of the second coupling capacitor is connected to the equipotential body, and a second end of the second coupling capacitor is connected to a non-grounded port of a parallel resonator corresponding to the grounding inductance.
  • the band-pass filter has at least two ground terminals, and the second terminal of the second coupling capacitor is connected or the corresponding ground terminal is different from the series connected to the second terminal of the first coupling capacitor A ground terminal connected or corresponding to the parallel resonator adjacent to the resonator.
  • At least two parallel resonators in the plurality of parallel resonators share the same ground terminal.
  • the resonator in the band pass filter is a thin film bulk acoustic resonator.
  • the band-pass filter has a guard ring located around the chip pattern area of the band-pass filter, and the guard ring constitutes the equipotential body.
  • the first coupling capacitor and/or the second coupling capacitor are composed of the overlapping area between the corresponding resonator electrode and the guard ring and the dielectric layer between the two; or the first coupling capacitor and/or Or the second coupling capacitor is obtained by adjusting the distance between the corresponding resonator electrode and the guard ring; or the first coupling capacitor and/or the second coupling capacitor is formed by the interdigitated finger between the corresponding resonator and the guard ring Structural composition.
  • the band-pass filter has a first electrical conductor disposed in the chip pattern area of the band-pass filter, and the first electrical conductor constitutes the equipotential body.
  • the first coupling capacitor and/or the second coupling capacitor are composed of the overlapping area between the corresponding resonator electrode and the first conductor and the dielectric layer between the two; or the first coupling capacitor And/or the second coupling capacitance is obtained by adjusting the distance between the corresponding resonator and the first electrical conductor; or the first coupling capacitance and/or the second coupling capacitance is determined by the corresponding resonator and the first electrical conductor Interdigitated structure between.
  • the band-pass filter has a chip package portion, and the chip package portion is provided with a second conductor; the band-pass filter is provided with two electrically connected through-hole structures, The two electrical connection via structures are electrically connected to the second electrical conductor, respectively; the two electrical connection via structures and the second electrical conductor constitute the equipotential body.
  • the first coupling capacitor and/or the second coupling capacitor is composed of an overlapping area between the corresponding resonator electrode and the point connection via structure and the dielectric layer between the two; or the first coupling The capacitance and/or the second coupling capacitance is obtained by adjusting the distance between the corresponding resonator electrode and the corresponding electrical connection via structure; or the first coupling capacitance and/or the second coupling capacitance is determined by the corresponding resonator and Corresponding to the interdigitated structure between electrically connected via structures.
  • a band-pass filter including:
  • a series branch resonator unit with multiple series resonators A series branch resonator unit with multiple series resonators
  • the parallel branch resonator unit has multiple parallel resonators, one end of each parallel resonator is connected to the port of the corresponding series resonator, and the other end is adapted to be connected to the ground terminal through a corresponding grounding inductor,
  • the band-pass filter further includes a coupling circuit unit, and the coupling circuit unit includes:
  • a first coupling capacitor the first end of the first coupling capacitor is connected to the equipotential body, and the second end of the first coupling capacitor is connected to a non-grounded port of a parallel resonator corresponding to the grounding inductance;
  • a second coupling capacitor, a first end of the second coupling capacitor is connected to the equipotential body, and a second end of the second coupling capacitor is connected to a non-grounded port of a corresponding grounding inductor of another parallel resonator.
  • the one parallel resonator is not adjacent to the other parallel resonator; and the one parallel resonator and the other parallel resonator do not share the same ground terminal.
  • grounding inductance connected to the one parallel resonator is not adjacent to the grounding inductance connected to the other parallel resonator.
  • At least two parallel resonators in the plurality of parallel resonators share the same ground terminal.
  • the resonator in the band pass filter is a thin film bulk acoustic resonator.
  • the band-pass filter has a guard ring located around the chip pattern area of the band-pass filter, and the guard ring constitutes the equipotential body.
  • the first coupling capacitor and/or the second coupling capacitor are composed of the overlapping area between the corresponding resonator electrode and the guard ring and the dielectric layer between the two; or the first coupling capacitor and/or Or the second coupling capacitor is obtained by adjusting the distance between the corresponding resonator electrode and the guard ring; or the first coupling capacitor and/or the second coupling capacitor is formed by the interdigitated finger between the corresponding resonator and the guard ring Structural composition.
  • the band-pass filter has a first electrical conductor disposed in the chip pattern area of the band-pass filter, and the first electrical conductor constitutes the equipotential body.
  • the first coupling capacitor and/or the second coupling capacitor are composed of the overlapping area between the corresponding resonator electrode and the first conductor and the dielectric layer between the two; or the first coupling capacitor And/or the second coupling capacitance is obtained by adjusting the distance between the corresponding resonator and the first electrical conductor; or the first coupling capacitance and/or the second coupling capacitance is determined by the corresponding resonator and the first electrical conductor Interdigitated structure between.
  • the band-pass filter has a chip package portion, and the chip package portion is provided with a second conductor; the band-pass filter is provided with two electrically connected through-hole structures, The two electrical connection via structures are electrically connected to the second electrical conductor, respectively; the two electrical connection via structures and the second electrical conductor constitute the equipotential body.
  • the first coupling capacitor and/or the second coupling capacitor is composed of an overlapping area between the electrode of the corresponding resonator and the electrical connection via structure and the dielectric layer between the two; or the first The coupling capacitance and/or the second coupling capacitance is obtained by adjusting the distance between the corresponding resonator electrode and the corresponding electrical connection via structure; or the first coupling capacitance and/or the second coupling capacitance is determined by the corresponding resonator Interdigitated structure with corresponding electrical connection via structure.
  • the embodiment of the present invention also relates to a method for improving the suppression level of a filter, the filter being the above-mentioned band-pass filter, in which the first end of the first coupling capacitor is connected to the equipotential body , The second end of the first coupling capacitor is connected to the port of a series resonator; the first end of the second coupling capacitor is connected to the equipotential body, and the second end of the second coupling capacitor is connected to the corresponding of a parallel resonator The non-grounding port of the grounding inductor.
  • the method includes the step of adjusting at least one of the first coupling capacitor and the second coupling capacitor so that the transmission zero of the signal moves from the roll-off of the right edge of the passband of the filter to high frequency along the frequency.
  • the embodiment of the present invention also relates to a method for improving the suppression level of a filter, the filter being the above-mentioned band-pass filter, in which the first end of the first coupling capacitor is connected to the equipotential body , The second end of the first coupling capacitor is connected to a non-grounded port of a parallel resonator corresponding to the grounding inductor; the first end of the second coupling capacitor is connected to the equipotential body, and the second end of the second coupling capacitor is connected to The non-ground port of the other parallel resonator corresponding to the ground inductance.
  • the method includes the step of adjusting at least one of the first coupling capacitor and the second coupling capacitor so that the transmission zero of the signal moves from the roll-off of the left edge of the passband of the filter to the low frequency along the frequency.
  • Embodiments of the present invention also relate to a duplexer, including: a transmit filter; and a receive filter.
  • the transmission filter includes the above-mentioned band-pass filter, in which the first end of the first coupling capacitor is connected to the equipotential body, and the second end of the first coupling capacitor is connected to a series resonator Port; the first end of the second coupling capacitor is connected to the equipotential body, and the second end of the second coupling capacitor is connected to a non-grounded port of a parallel resonator corresponding to the grounding inductance.
  • the receiving filter includes the above-mentioned band-pass filter, in which the first end of the first coupling capacitor is connected to the equipotential body, and the second end of the first coupling capacitor is connected to a parallel resonator
  • Embodiments of the present invention also relate to an electronic device having the above-mentioned band-pass filter.
  • Figure 1 is a schematic diagram of a filter structure in the prior art
  • FIG. 2 is a schematic diagram of a filter according to an exemplary embodiment of the present invention.
  • 3a, 3b, and 4a-4f are schematic diagrams of modified embodiments of the filter in FIG. 2;
  • FIG. 5 is a schematic diagram of a filter according to another exemplary embodiment of the present invention.
  • FIG. 6a-6d are schematic diagrams of modified embodiments of the filter in FIG. 5;
  • FIG. 7 schematically shows the arrangement of the resonators in the chip, where the first coupling capacitor and the second coupling capacitor are exemplarily shown, and the guard ring serves as an equipotential body;
  • FIG. 9 schematically shows the arrangement of resonators in the chip, in which the first coupling capacitor and the second coupling capacitor are exemplarily shown, and the first conductor serves as an equipotential body;
  • 11a is a schematic perspective view of a package structure provided on a chip, in which the relationship between the equipotential body and the first coupling capacitor and the second coupling capacitor is exemplarily shown;
  • FIG. 11b is a schematic top view of the chip in FIG. 11a after removing the packaging structure
  • FIG. 13a is a schematic structural diagram of a duplexer to which the filter structure of the present invention is applied as an exemplary embodiment of the present invention
  • 13b is a schematic structural diagram of a duplexer in the prior art
  • FIG. 14a exemplarily shows the transmission characteristic curve of the transmission filter of the duplexer in FIGS. 13a and 13b, where the thick line corresponds to the transmission filter of the duplexer in FIG. 13a, and the thin line corresponds to FIG. 13b
  • FIG. 14b is an enlarged view of the block part in FIG. 14a;
  • FIG. 15a exemplarily shows the transmission characteristic curves of the reception filter of the duplexer in FIGS. 13a and 13b, where the thick line corresponds to the reception filter of the duplexer in FIG. 13a, and the thin line corresponds to FIG. 13b
  • Fig. 15b is an enlarged view of the block portion in Fig. 15a.
  • the present invention proposes a filter that can increase the suppression level of signals in adjacent frequency bands without causing an increase in passband insertion loss.
  • the filter does not have the problem of introducing additional discrete reactive devices, resulting in a substantial increase in the overall size of the chip and an increase in the complexity of the manufacturing process, thereby saving space and reducing costs.
  • the existing ladder-type filter structure based on FBAR is shown in Figure 1.
  • Port 131 is a signal input (or output) port
  • port 132 is a signal output (or input) port
  • the signal to be filtered is input from port 131 (or 132) and output from port 132 (or 131).
  • the series inductance 121 is connected between the port 131 and the resonator 101
  • the series inductance 122 is connected between the port 132 and the resonator 104.
  • the series branch resonators 101, 102, 103, 104 are connected in series between the series inductance 121 and the series inductance 122.
  • One port of the parallel branch resonator 111 is connected between the series branch resonators 101 and 102, and the other port is connected to one port of the ground inductor 123.
  • One port of the parallel branch resonator 112 is connected between the series branch resonators 102 and 103, and the other port is connected to one port of the ground inductor 124.
  • One port of the parallel branch resonator 113 is connected between the series branch resonators 103 and 104, and the other port is connected to one port of the ground inductor 125.
  • One port of the parallel branch resonator 114 is connected between the series branch resonator 104 and the series inductor 122, and the other port is connected to one port of the ground inductor 126.
  • the other ports of the grounding inductors 123, 124, 125, and 126 are all grounded.
  • the resonance frequency fs of the series branch resonators 101, 102, 103, 104 is higher than the resonance frequency fs' of the parallel branch resonators.
  • FIG. 2 is a schematic diagram of a filter according to an exemplary embodiment of the present invention, which can improve the high-frequency near-stopband suppression level above the roll-off edge frequency on the right side of the passband.
  • port 131 is a signal input (or output) port
  • port 132 is a signal output (or input) port
  • the signal to be filtered is input from port 131 (or 132) and output from port 132 (or 131).
  • the series inductance 121 is connected between the port 131 and the resonator 101
  • the series inductance 122 is connected between the port 132 and the resonator 104.
  • the series branch resonators 101, 102, 103, 104 are connected in series between the series inductance 121 and the series inductance 122.
  • One port of the parallel branch resonator 111 is connected between the series branch resonators 101 and 102, and the other port is connected to one port of the ground inductor 123.
  • One port of the parallel branch resonator 112 is connected between the series branch resonators 102 and 103, and the other port is connected to one port of the ground inductor 124.
  • One port of the parallel branch resonator 113 is connected between the series branch resonators 103 and 104, and the other port is connected to one port of the ground inductor 125.
  • One port of the parallel branch resonator 114 is connected between the series branch resonator 104 and the series inductor 122, and the other port is connected to one port of the ground inductor 126.
  • the other ports of the grounding inductors 123, 124, 125, and 126 are all grounded.
  • the coupling capacitance Ca is also increased between the equipotential body U and the node S1; the coupling capacitance Cb is increased between the equipotential body U and the node P4.
  • the resonance frequencies fs of the series branch resonators 101 to 104 may be the same or not completely the same, and the resonance frequencies fs' of the parallel branch resonators 111 to 114 may or may not be the same.
  • the resonance frequency fs of each series branch resonator is higher than the resonance frequency fs' of each parallel branch.
  • Equipotential body U and capacitors Ca and Cb form a signal coupling circuit structure or coupling circuit unit.
  • the addition of the signal coupling circuit structure will cause the transmission zero of the signal to move from the roll-off edge of the right edge of the filter passband to high frequency along the frequency, and the amount of movement can be controlled by adjusting the values of Ca and Cb.
  • Ca and Cb are realized near the two nodes S1 and P4, and then the equipotential body U is realized by some methods, so that the three form a complete signal coupling circuit.
  • the coupling method of the coupling capacitors Ca and Cb connected to the equipotential conductor U in FIG. 2 is not unique, and one port of the capacitor Cb can also be connected to other nodes than P4.
  • the coupling capacitor Ca is connected between a port node of a series resonator and the equipotential body
  • the coupling capacitor Cb is connected between a parallel resonator and the connection node of the corresponding grounding inductor and the equipotential body
  • the parallel resonator is not adjacent to the series resonator; in a further embodiment, the parallel resonator is not connected to the parallel resonator adjacent to the series resonator through a common grounding inductance.
  • FIGS 3a and 3b show two variants of the embodiment in Figure 2.
  • FIGS. 4a to 4f The example shown in Fig. 2 is the case where four parallel branch resonators are grounded through corresponding grounding inductors, and some parallel branch resonators can also be combined and grounded through a common grounding inductor according to design needs. Some modified embodiments in this case are given in FIGS. 4a to 4f.
  • the present invention proposes a band-pass filter, including:
  • a series branch resonator unit with multiple series resonators A series branch resonator unit with multiple series resonators
  • the parallel branch resonator unit has multiple parallel resonators, one end of each parallel resonator is connected to the port of the corresponding series resonator, and the other end is adapted to be connected to the ground terminal through a corresponding grounding inductor,
  • the band-pass filter further includes a coupling circuit unit, and the coupling circuit unit includes:
  • a first coupling capacitor the first end of the first coupling capacitor is connected to the equipotential body, and the second end of the first coupling capacitor is connected to a port of a series resonator;
  • a second coupling capacitor a first end of the second coupling capacitor is connected to the equipotential body, and a second end of the second coupling capacitor is connected to a non-grounded port of a parallel resonator corresponding to the grounding inductance.
  • the present invention also proposes the filter structure in FIG. 5 that can improve the suppression level, which can improve the low-frequency near-stop band suppression level below the roll-off edge frequency on the left side of the passband.
  • port 131 is a signal input (or output) port
  • port 132 is a signal output (or input) port
  • the signal to be filtered is input from port 131 (or 132) and output from port 132 (or 131).
  • the series inductance 121 is connected between the port 131 and the resonator 101
  • the series inductance 122 is connected between the port 132 and the resonator 104.
  • the series branch resonators 101, 102, 103, 104 are connected in series between the series inductance 121 and the series inductance 122.
  • One port of the parallel branch resonator 111 is connected between the series branch resonators 101 and 102, and the other port is connected to one port of the ground inductor 123.
  • One port of the parallel branch resonator 112 is connected between the series branch resonators 102 and 103, and the other port is connected to one port of the ground inductor 124.
  • One port of the parallel branch resonator 113 is connected between the series branch resonators 103 and 104, and the other port is connected to one port of the ground inductor 125.
  • One port of the parallel branch resonator 114 is connected between the series branch resonator 104 and the series inductor 122, and the other port is connected to one port of the ground inductor 126.
  • the other ports of the grounding inductors 123, 124, 125, and 126 are grounded respectively.
  • the coupling capacitance Ca is also increased between the equipotential body U and the node P1; the coupling capacitance Cb is increased between the equipotential body U and the node P4.
  • the resonance frequencies fs of the series branch resonators 101 to 104 may be the same or not the same, and the resonance frequencies fs' of the parallel branch resonators 111 to 114 may be the same or not the same.
  • the resonance frequency fs of each series branch resonator is higher than the resonance frequency fs' of each parallel branch.
  • the equipotential body U and the coupling capacitors Ca and Cb form a signal coupling circuit structure or coupling circuit unit.
  • adding the signal coupling circuit structure will cause the transmission zero of the signal to roll off from the left edge of the filter passband Move to lower frequencies along the frequency, and you can control how much you move by adjusting the values of Ca and Cb.
  • Ca and Cb are realized near the two nodes P1 and P4 respectively, and then the equipotential body U is realized by some methods, so that the three form a complete signal coupling circuit.
  • the coupling capacitors Ca and Cb coupled to the equipotential body U in FIG. 5 are not the only way to connect.
  • the port of the coupling capacitor Cb can also be connected to other nodes than the P4 node.
  • the coupling capacitor Ca can be connected between the equipotential body U and a node of the parallel resonator and the corresponding grounding inductance
  • the coupling capacitor Cb is connected between the equipotential body U and another node of the parallel resonator and the corresponding grounding inductance between.
  • the two parallel resonators are not adjacent or shared by a common grounding inductor.
  • the grounding inductances corresponding to the two parallel resonators are not phase Adjacent.
  • FIG. 6a to 6d respectively show several modified embodiments of FIG. 5.
  • FIG. 6a is based on FIG. 5, and the connection point of the coupling capacitor Cb is changed from P4 to the connection node P3 of the parallel resonator 113 and the inductor 125, which can also achieve the effect of improving the suppression level of the present invention.
  • the parallel resonators 113 and 114 share a common ground through the grounding inductor 126, and the coupling capacitor Cb is connected to the node P4, which can also achieve the effect of improving the suppression level of the present invention.
  • connection point of the coupling capacitor Cb is moved from the P4 node to the connection node of the parallel resonator 113 or 114 and the ground inductor 124, the connection rule is not met, but it can also help to improve the suppression level.
  • connection point of the coupling capacitor Cb is moved from the P4 node to the connection node of the parallel resonator 113 and the ground inductor 125, the connection rule is not met, but it can also help to improve the suppression level.
  • the present invention proposes a band-pass filter, including:
  • a series branch resonator unit with multiple series resonators A series branch resonator unit with multiple series resonators
  • the parallel branch resonator unit has multiple parallel resonators, one end of each parallel resonator is connected to the port of the corresponding series resonator, and the other end is adapted to be connected to the ground terminal through a corresponding grounding inductor,
  • the band-pass filter further includes a coupling circuit unit, and the coupling circuit unit includes:
  • a first coupling capacitor the first end of the first coupling capacitor is connected to the equipotential body, and the second end of the first coupling capacitor is connected to a non-grounded port of a parallel resonator corresponding to the grounding inductance;
  • a second coupling capacitor, a first end of the second coupling capacitor is connected to the equipotential body, and a second end of the second coupling capacitor is connected to a non-grounded port of a corresponding grounding inductor of another parallel resonator.
  • the guard ring around the graphic area of the FBAR chip can be used as the equipotential body U.
  • the first special structure in FIG. 2, the arrangement of the resonators in a FBAR chip is shown in FIG. 7, which uses the peripheral protection ring as the equipotential body U.
  • the side of the series resonator 101 close to the guard ring is the node S1, and the coupling capacitance Ca can be introduced between the guard ring U and the guard ring U in some way.
  • the side of the parallel resonator 114 close to the guard ring is the node P4, and the coupling capacitor Cb can be introduced to the guard ring U by some method.
  • the arrangement of the resonators in a FBAR chip can also be as shown in FIG. 9, that is, a separately added first conductor is used as an equipotential body U, thereby introducing coupling capacitance Ca and Cb.
  • the via via connected to the same conductor pad on the chip packaging structure cap can also be used as the equipotential body U.
  • the arrangement of the resonators in a FBAR chip can also be as shown in FIG. 11a, using two vias via A and via B connected to the same conductor pad on the packaging structure.
  • FIG. 11b is a top plan view of the chip part viewed from above, after omitting the packaging structure cap.
  • the coupling capacitances Ca and Cb can be realized by the overlapping area between the resonator electrode and the guard ring and the dielectric layer between the two.
  • the coupling capacitances Ca and Cb can be realized by reducing the distance between the resonator electrode and the guard ring U to introduce the required coupling capacitance.
  • the coupling capacitances Ca and Cb can also be realized by the interdigitated structure between the resonator and the guard ring U.
  • the coupling capacitances Ca and Cb can be realized by the overlapping area between the resonator electrode and the first electrical conductor and the dielectric layer therebetween.
  • the coupling capacitances Ca and Cb can be realized by reducing the distance between the resonator electrode and the first conductor pad to introduce the required coupling capacitance.
  • the coupling capacitances Ca and Cb can also be realized by the interdigitated structure between the resonator and the first conductor pad.
  • the coupling capacitances Ca and Cb can be realized by the overlapping area between the resonator electrode and the via via and the dielectric layer between the two.
  • the coupling capacitances Ca and Cb can be realized by reducing the distance between the resonator electrode and the vias via A, via B to introduce the required coupling capacitance.
  • the coupling capacitances Ca and Cb can also be realized by the interdigitated structure between the resonator and the vias A and V.
  • FIG. 13a is a schematic diagram of the structure of a duplexer 100, in which: 101 is a transmit filter (TX) filter, 102 is a receive filter (RX filter); a port of the transmit filter 101 is connected to port 105, the port can be connected An external device such as a radio frequency signal generating circuit is used to transmit the radio frequency signal generated by the external device into the transmission filter 101; the other port of the transmission filter 101 is connected to a matching network (match network) 103, which is used to connect the filtered signal Sent into the matching network; one port of the receiving filter 102 is connected to the port 106, which can be connected to a subsequent circuit such as low-noise amplifier, etc.; the other port of the receiving filter 102 is connected to the matching network 103, which is used to receive the antenna The signal is transmitted into the receiving filter 102; the matching network 103 is connected between the antenna 104 and the transmitting filter 101, the receiving filter 102, and is used to adjust the impedance matching of the antenna port.
  • a duplexer 110 is also provided.
  • the schematic structural diagram is shown in FIG. 13b, and the components and functions are the same as those in FIG. 13a, so they are not described in detail.
  • the difference is that the transmit filter (TX) filter 111 and the receive filter (RX) filter 112 use the general trapezoidal architecture shown in FIG. 1 rather than the specific structure given by the present invention, and do not use the equipotential body U and Special signal coupling circuit structure composed of coupling capacitors Ca and Cb.
  • the present invention proposes a duplexer including: a transmit filter; and a receive filter, wherein: the transmit filter includes, for example, the band-pass filter shown in FIG. 2, and the receive filter includes, for example The bandpass filter described in Figure 5.
  • the passband frequency range of the transmit filter is 1710 MHz to 1785 MHz, and the center frequency can be considered to be approximately 1749 MHz; the passband frequency range of the receive filter is 1805 MHz to 1880 MHz, and the center frequency can be considered to be approximately 1844 MHz.
  • the duplexer in this frequency band is used as an example for illustration.
  • the filter structure of this patent is also applicable to duplexers and filters in other frequency bands.
  • FIG. 14a exemplarily shows the transmission characteristic curves of the transmission filters 101 and 111, where the thick line is the performance of the transmission filter 101 and the thin line is the performance of the transmission filter 111.
  • the circuit structure of the transmission filter 101 is shown in FIG. 2, which uses a special coupling circuit structure composed of an equipotential body U and coupling capacitors Ca and Cb. The role of this structure makes the transmission zero of the signal roll off from the right edge of the passband The high frequency shifts to a position of about 1844 MHz, which is basically the same as the center frequency of the receiving filter 102.
  • the shifted transmission zero forms a deep suppression point at 1844MHz, and the suppression level reaches about -78dB (marked by m1 in the figure), and makes the suppression levels in the vicinity of this point all
  • the transmission filter 111 without the equipotential body U and the coupling capacitors Ca and Cb has a transmission characteristic curve as shown by the thin line, and the suppression level at 1844MHz is only about -56dB (m2 in the figure), and The level of inhibition in the vicinity of this point is significantly worse.
  • FIG. 14b is an enlarged view of the part inside the box in FIG. 14a. It can be seen that the two curves in the passband completely overlap, indicating that after using the structure proposed by the present invention such as shown in FIG. At the same time, the passband insertion loss did not deteriorate.
  • FIG. 15a exemplarily shows the transmission characteristic curves of the reception filters 102 and 112.
  • the thick line is the performance of the reception filter 102
  • the thin line is the performance of the reception filter 112.
  • the circuit structure of the receiving filter 102 is shown in FIG. 5, in which a special coupling circuit structure composed of an equipotential body U and coupling capacitors Ca and Cb is used. The role of this structure makes the transmission zero of the signal roll off from the left edge of the passband The frequency shifted to a low frequency to a position of about 1749 MHz, which was basically the same as the center frequency of the transmission filter 101.
  • the shifted transmission zero forms a deeper suppression point at 1749MHz, and the suppression level reaches about -78dB (marked by m1 in the figure), and makes the suppression levels in the vicinity of the point all
  • the transmission filter 112 of the structure that does not use the equipotential body U and the coupling capacitors Ca and Cb has a transmission characteristic curve as shown by the thin line, and the suppression level at 1749MHz is only about -59dB (m2 is marked in the figure), and The level of inhibition in the vicinity of this point is significantly worse.
  • FIG. 15b is an enlarged view of the part inside the box in FIG. 15a. It can be seen that the two curves in the passband completely overlap, indicating that after using the filter structure proposed by the present invention, such as shown in FIG. 5, after improving the band At the same time as the external suppression, the passband insertion loss did not deteriorate.
  • the present invention proposes a method for improving the suppression level of a filter.
  • the filter is, for example, the band-pass filter shown in FIG. 2, and the method includes the steps of:
  • the transmission zero of the signal moves from the roll-off of the right edge of the passband of the filter to the high frequency along the frequency.
  • the present invention also proposes a method for improving the suppression level of a filter.
  • the filter is, for example, a band pass filter shown in FIG. 5, and the method includes the steps of:
  • the transmission zero of the signal moves from the roll-off of the left edge of the passband of the filter to the low frequency along the frequency.
  • Embodiments of the present invention also relate to an electronic device, including the above-mentioned band-pass filter.
  • the electronic devices here include but are not limited to intermediate products such as radio frequency front-ends, filter amplification modules, and terminal products such as mobile phones, WIFI, and drones.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Filters And Equalizers (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明涉及一种带通滤波器,包括:串联支路谐振器单元,具有多个串联谐振器;和并联支路谐振器单元,具有多个并联谐振器,每一个并联谐振器的一端连接到对应串联谐振器的端口,另一端适于通过对应的接地电感连接到接地端,其中:带通滤波器还包括耦合电路单元。耦合电路单元包括:等势体;第一耦合电容,第一耦合电容的第一端连接到所述等势体,第一耦合电容的第二端连接到一个串联谐振器的端口;和第二耦合电容,第二耦合电容的第一端连接到所述等势体,第二耦合电容的第二端连接到一个并联谐振器的对应接地电感的非接地端口。本发明还涉及一种提高滤波器抑制水平的方法,一种具有该带通滤波器的双工器,以及一种具有该带通滤波器的电子设备。

Description

带通滤波器及提高其抑制水平的方法、双工器和电子设备 技术领域
本发明的实施例涉及半导体领域,尤其涉及一种提高抑制度的带通滤波器,一种提高滤波器抑制水平的方法,一种具有该带通滤波器的双工器,以及一种具有该带通滤波器的电子设备。
背景技术
随着当今无线通讯技术的飞速发展,小型化便携式终端设备的应用也日益广泛,因而对于高性能、小尺寸的射频前端模块和器件的需求也日益迫切。近年来,以薄膜体声波谐振器(Film Bulk Acoustic Resonator,简称FBAR)为基础的滤波器、双工器等滤波器件越来越为市场所青睐。一方面是因为其插入损耗低、过渡特性陡峭、选择性高、功率容量高、抗静电放电(ESD)能力强等优异的电学性能,另一方面也是因为其体积小、易于集成的特点所致。
当前,面对越来越严苛的频率资源,要求射频前端的滤波器、双工器等频率选择性器件对于相邻频带的抑制水平也越来越高,FBAR器件也需要在这方面进行改进和提高,既要提高阻带抑制水平,又不能对通带插损产生较大影响,同时还要尽可能不增加芯片或器件的整体尺寸。
常见的方法是在串并联支路上增加大感值的电感改变谐振器谐振频率来提高阻带抑制,或增加抑制点(notch)从而改善阻带抑制。但这些方法都需要增加额外的电抗性元件,而且这些元件的取值通常都是比较大的,要在芯片上实现很困难。如果通过在基板上绕线或是在芯片外增加分立元件的方式来实现,则必然会增加基板的层数和尺寸,从而不可避免的导致滤波器或双工器整体尺寸的增加。而且,实际中增加的绕线或分立元件都不是理想的,其引入的损耗都会叠加到滤波器上,导致滤波器通带插损的恶化。
因此,现有技术的上述方法在改善阻带抑制的同时,会导致芯片损耗的增加和芯片整体尺寸的大幅扩大。
发明内容
为缓解或解决使用现有技术中的上述问题的至少一个方面,提出本发明。
本发明提出了一种特殊的滤波器架构,其利用谐振器和等势体之间的耦合,能够在不增加损耗和不显著增加芯片整体尺寸的前提下,明显改善对相邻频带信号的抑制水平。
根据本发明的实施例的一个方面,提出了一种带通滤波器,包括:
串联支路谐振器单元,具有多个串联谐振器;和
并联支路谐振器单元,具有多个并联谐振器,每一个并联谐振器的一端连接到对应串联谐振器的端口,另一端适于通过对应的接地电感连接到接地端,
其中:
所述带通滤波器还包括耦合电路单元,所述耦合电路单元包括:
等势体;
第一耦合电容,第一耦合电容的第一端连接到所述等势体,第一耦合电容的第二端连接到一个串联谐振器的端口;和
第二耦合电容,第二耦合电容的第一端连接到所述等势体,第二耦合电容的第二端连接到一个并联谐振器的对应接地电感的非接地端口。
可选的,第二耦合电容的第二端所连接到的并联谐振器与第一耦合电容的第二端所连接到的串联谐振器之间还具有另外的所述串联谐振器。
进一步可选的,所述带通滤波器具有至少两个接地端,所述第二耦合电容的第二端所连接或者对应的接地端不同于与第一耦合电容的第二端连接到的串联谐振器相邻的并联谐振器所连接或 者对应的接地端。
更进一步的,所述多个并联谐振器中的至少两个并联谐振器共用同一接地端。
可选的,所述带通滤波器中的谐振器为薄膜体声波谐振器。
可选的,上述带通滤波器中,所述带通滤波器具有位于带通滤波器的芯片图形区域外围的保护环,所述保护环构成所述等势体。进一步的,所述第一耦合电容和/或所述第二耦合电容由对应谐振器电极同保护环之间的重叠区域以及二者之间的介质层构成;或者所述第一耦合电容和/或所述第二耦合电容通过调整对应谐振器电极与保护环之间的距离获得;或者所述第一耦合电容和/或所述第二耦合电容由对应谐振器与保护环之间的叉指结构构成。
可选的,上述带通滤波器中,所述带通滤波器具有设置在带通滤波器的芯片图形区域内的第一导电体,所述第一导电体构成所述等势体。进一步的,所述第一耦合电容和/或所述第二耦合电容由对应谐振器电极同第一导电体之间的重叠区域以及二者之间的介质层构成;或者所述第一耦合电容和/或所述第二耦合电容通过调整对应谐振器与第一导电体之间的距离获得;或者所述第一耦合电容和/或所述第二耦合电容由对应谐振器与第一导电体之间的叉指结构构成。
可选的,上述带通滤波器中,所述带通滤波器具有芯片封装部,所述芯片封装部设置有第二导电体;所述带通滤波器设置有两个电连接通孔结构,所述两个电连接通孔结构分别与所述第二导电体电连接;所述两个电连接通孔结构以及所述第二导电体构成所述等势体。进一步的,所述第一耦合电容和/或所述第二耦合电容由对应谐振器电极和点连接通孔结构之间的重叠区域以及二者之间的介质层构成;或者所述第一耦合电容和/或所述第二耦合电容通过调整对应谐振器电极与对应电连接通孔结构之间的距离获得;或者所述第一耦合电容和/或所述第二耦合电容由对应谐振器与对应电连接通孔结构之间的叉指结构构成。
根据本发明的实施例的另一个方面,提出了一种带通滤波器,包括:
串联支路谐振器单元,具有多个串联谐振器;和
并联支路谐振器单元,具有多个并联谐振器,每一个并联谐振器的一端连接到对应串联谐振器的端口,另一端适于通过对应的接地电感连接到接地端,
其中:
所述带通滤波器还包括耦合电路单元,所述耦合电路单元包括:
等势体;
第一耦合电容,第一耦合电容的第一端连接到所述等势体,第一耦合电容的第二端连接到一个并联谐振器的对应接地电感的非接地端口;和
第二耦合电容,第二耦合电容的第一端连接到所述等势体,第二耦合电容的第二端连接到另一个并联谐振器的对应接地电感的非接地端口。
可选的,所述一个并联谐振器与所述另一个并联谐振器不相邻;并且所述一个并联谐振器与所述另一个并联谐振器不共用同一接地端。
进一步的,所述一个并联谐振器所连接的接地电感与所述另一个并联谐振器所连接的接地电感不相邻。
更进一步的,所述多个并联谐振器中的至少两个并联谐振器共用同一接地端。
可选的,所述带通滤波器中的谐振器为薄膜体声波谐振器。
可选的,上述带通滤波器中,所述带通滤波器具有位于带通滤波器的芯片图形区域外围的保护环,所述保护环构成所述等势体。进一步的,所述第一耦合电容和/或所述第二耦合电容由对应谐振器电极与保护环之间的重叠区域以及二者之间的介质层构成;或者所述第一耦合电容和/或所述第二耦合电容通过调整对应谐振器电极与保护环之间的距离获得;或者所述第一耦合电容和/或所述第二耦合电容由对应谐振器与保护环之间的叉指结构构成。
可选的,上述带通滤波器中,所述带通滤波器具有设置在带通滤波器的芯片图形区域内的第一导电体,所述第一导电体构成所述等势体。进一步的,所述第一耦合电容和/或所述第二耦合电容由对应谐振器电极与第一导电体之间的重叠区域以及二者之间的介质层构成;或者所述第一耦合电容和/或所述第二耦合电容通过调整对应谐振器与第一导电体之间的距离获得;或者所述第一 耦合电容和/或所述第二耦合电容由对应谐振器与第一导电体之间的叉指结构构成。
可选的,上述带通滤波器中,所述带通滤波器具有芯片封装部,所述芯片封装部设置有第二导电体;所述带通滤波器设置有两个电连接通孔结构,所述两个电连接通孔结构分别与所述第二导电体电连接;所述两个电连接通孔结构以及所述第二导电体构成所述等势体。进一步的,所述第一耦合电容和/或所述第二耦合电容由对应谐振器的电极和电连接通孔结构之间的重叠区域以及二者之间的介质层构成;或者所述第一耦合电容和/或所述第二耦合电容通过调整对应谐振器电极与对应电连接通孔结构之间的距离获得;或者所述第一耦合电容和/或所述第二耦合电容由对应谐振器与对应电连接通孔结构之间的叉指结构构成。
本发明的实施例还涉及一种提高滤波器抑制水平的方法,所述滤波器为上述带通滤波器,该带通滤波器中:第一耦合电容的第一端连接到所述等势体,第一耦合电容的第二端连接到一个串联谐振器的端口;第二耦合电容的第一端连接到所述等势体,第二耦合电容的第二端连接到一个并联谐振器的对应接地电感的非接地端口。所述方法包括步骤:通过调节第一耦合电容与第二耦合电容中的至少一个,以使得信号的传输零点从滤波器通带右侧边缘的滚降沿频率处向高频移动。
本发明的实施例也涉及一种提高滤波器抑制水平的方法,所述滤波器为上述带通滤波器,该带通滤波器中,第一耦合电容的第一端连接到所述等势体,第一耦合电容的第二端连接到一个并联谐振器的对应接地电感的非接地端口;第二耦合电容的第一端连接到所述等势体,第二耦合电容的第二端连接到另一个并联谐振器的对应接地电感的非接地端口。所述方法包括步骤:通过调节第一耦合电容与第二耦合电容中的至少一个,以使得信号的传输零点从滤波器通带左侧边缘的滚降沿频率处向低频移动。
本发明的实施例还涉及一种双工器,包括:发射滤波器;和接收滤波器。所述发射滤波器包括上述带通滤波器,该带通滤波器中:第一耦合电容的第一端连接到所述等势体,第一耦合电容的第二端连接到一个串联谐振器的端口;第二耦合电容的第一端连接到所述等势体,第二耦合电容的第二端连接到一个并联谐振器的对应接地电感的非接地端口。所述接收滤波器包括上述的带通滤波器,该带通滤波器中,第一耦合电容的第一端连接到所述等势体,第一耦合电容的第二端连接到一个并联谐振器的对应接地电感的非接地端口;第二耦合电容的第一端连接到所述等势体,第二耦合电容的第二端连接到另一个并联谐振器的对应接地电感的非接地端口。
本发明的实施例还涉及一种电子设备,具有上述的带通滤波器。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1为现有技术中的滤波器结构示意图;
图2为根据本发明的一个示例性实施例的滤波器的示意图;
图3a、3b、4a-4f分别为图2中的滤波器的变形实施例的示意图;
图5为根据本发明的另一个示例性实施例的滤波器的示意图;
图6a-6d分别为图5中的滤波器的变形实施例的示意图;
图7示意性示出了芯片中的谐振器排布,其中示例性示出了第一耦合电容与第二耦合电容,且保护环作为等势体;
图8a-8c分别示例性的示出了图7中第一耦合电容与第二耦合电容的几种不同实现方式;
图9示意性示出了芯片中的谐振器排布,其中示例性示出了第一耦合电容与第二耦合电容,且第一导电体作为等势体;
图10a-10c分别示例性的示出了图9中第一耦合电容与第二耦合电容的几种不同实现方式;
图11a为芯片上设置有封装结构的立体示意图,其中示例性示出等势体与第一耦合电容与第 二耦合电容之间的关系;
图11b为移除了封装结构后图11a中芯片的示意性俯视图;
图12a-12c分别示例性的示出了图11b中第一耦合电容与第二耦合电容的几种不同实现方式;
图13a为作为本发明的一个示例性实施例的应用了本发明的滤波器结构的双工器的结构示意图;
图13b为现有技术中的双工器的结构示意图;
图14a示例性示出了图13a和图13b中的双工器的发射滤波器的传输特性曲线,其中粗线对应于图13a中的双工器的发射滤波器,而细线对应于图13b中的双工器的发射滤波器的传输特性曲线;
图14b为图14a中方框部分的放大图;
图15a示例性示出了图13a和图13b中的双工器的接收滤波器的传输特性曲线,其中粗线对应于图13a中的双工器的接收滤波器,而细线对应于图13b中的双工器的接收滤波器的传输特性曲线;
图15b为图15a中的方框部分的放大图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
本发明提出了一种滤波器,其能够提高对于相邻频带信号的抑制水平,而且不会造成通带插损的增加。此外,该滤波器也不存在引入额外的分立电抗性器件而造成芯片整体尺寸的大幅度增加及制造工艺复杂性的增加等问题,从而节省了空间又降低了成本。
现有的以FBAR为基础的梯形架构滤波器结构如图1所示。端口131为信号输入(或输出)端口,端口132为信号输出(或输入)端口,需要进行滤波的信号从端口131(或132)输入,从端口132(或131)输出。串联电感121连接在端口131和谐振器101之间,串联电感122连接在端口132和谐振器104之间。串联支路谐振器101、102、103、104串联连接在串联电感121和串联电感122之间。并联支路谐振器111的一个端口连接在串联支路谐振器101、102之间的位置,另一个端口连接接地电感123的一个端口。并联支路谐振器112的一个端口连接在串联支路谐振器102、103之间的位置,另一个端口连接接地电感124的一个端口。并联支路谐振器113的一个端口连接在串联支路谐振器103、104之间的位置,另一个端口连接接地电感125的一个端口。并联支路谐振器114的一个端口连接在串联支路谐振器104、串联电感122之间的位置,另一个端口连接接地电感126的一个端口。接地电感123、124、125、126的另外一个端口均接地。其中串联支路谐振器101、102、103、104的谐振频率fs高于并联支路谐振器的谐振频率fs’。
图2为根据本发明的一个示例性实施例的滤波器的示意图,其能够改善高于通带右侧滚降沿频率以上的高频近阻带抑制水平。
在图2中,端口131为信号输入(或输出)端口,端口132为信号输出(或输入)端口,需要进行滤波的信号从端口131(或132)输入,从端口132(或131)输出。串联电感121连接在端口131和谐振器101之间,串联电感122连接在端口132和谐振器104之间。串联支路谐振器101、102、103、104串联连接在串联电感121和串联电感122之间。并联支路谐振器111的一个端口连接在串联支路谐振器101、102之间的位置,另一个端口连接接地电感123的一个端口。并联支路谐振器112的一个端口连接在串联支路谐振器102、103之间的位置,另一个端口连接接地电感124的一个端口。并联支路谐振器113的一个端口连接在串联支路谐振器103、104之间的位置,另一个端口连接接地电感125的一个端口。并联支路谐振器114的一个端口连接在串联支路 谐振器104、串联电感122之间的位置,另一个端口连接接地电感126的一个端口。接地电感123、124、125、126的另外一个端口均接地。在图2中,还在等势体U和节点S1之间,增加了耦合电容Ca;在等势体U和节点P4之间增加了耦合电容Cb。
图2中串联支路谐振器101~104各自的谐振频率fs可以相同也可以不完全相同,并联支路谐振器111~114各自的谐振频率fs’可以相同也可以不完全相同。各串联支路谐振器的谐振频率fs高于各并联支路的谐振频率fs’。
等势体U与电容Ca和Cb组成了一个信号耦合电路结构或者耦合电路单元。图2中,加入该信号耦合电路结构,会使信号的传输零点从滤波器通带右侧边缘的滚降沿频率处向高频移动,通过调节Ca和Cb的数值可以控制移动的多少。这样,只要调节Ca和Cb将传输零点移动到高频近阻带中需要的频率上,即可改善该频率附近的抑制水平。本发明中,在S1和P4两个节点附近分别实现Ca和Cb,再通过某些方法来实现等势体U,使三者组成一个完整的信号耦和电路,。另外,因为电容Ca和Cb可以分别进行调节,所以在解决可实现性的同时也增加了实现的灵活性。使用这种结构能达到的具体技术效果,会在后边实施例中详细介绍,可参考图14a与图14b。
需要特别说明的是,图2中和等势导体U相连接的耦合电容Ca和Cb连接方式并不是唯一的,电容Cb的一个端口也可以接在P4之外的其他节点。
在进一步的实施例中,耦合电容Ca连接在某串联谐振器的一个端口节点和等势体之间,耦合电容Cb连接在某个并联谐振器同相应接地电感的连接节点和等势体之间,该并联谐振器不与该串联谐振器相邻;在更进一步的实施例中,该并联谐振器不和与该串联谐振器相邻的并联谐振器通过公共接地电感接地。
图3a、图3b给出了图2中实施例的两种变形。
图2中给出的示例是4个并联支路谐振器分别通过相应的接地电感接地的情况,根据设计的需要也可以将某些并联支路谐振器进行合路后通过公共接地电感接地。图4a~4f中给出了这种情况下的一些变形实施例。
在图4a中,如果耦合电容Cb的端口不连接在P4节点上,而是连接在并联谐振器113和接地电感125相连接的节点上、或者连接在并联谐振器112和接地电感124相连接的节点上,同样可以达到本发明改善抑制水平的效果。
在图4b中,如果耦合电容Cb的端口不连接在P4节点上,而是连接在并联谐振器113和接地电感125相连接的节点上,同样可以达到本发明改善抑制水平的效果。
在图4c中,如果耦合电容Cb的端口不连接在P4节点上,而是连接在并联谐振器113和接地电感125相连接的节点上、或者连接在并联谐振器112和接地电感125相连接的节点上,同样可以达到本发明改善抑制水平的效果。
在图4d中,如果耦合电容Cb的端口不连接在P4节点上,而是连接在并联谐振器113和接地电感124相连接的节点上、或者连接在并联谐振器112和接地电感124相连接的节点上,同样可以达到本发明改善抑制水平的效果。
在图4e中,如果耦合电容Cb的端口不连接在P4节点上,而是连接在并联谐振器113和接地电感125相连接的节点上,同样可以达到本发明改善抑制水平的效果。
在图4f中,如果Cb的端口不连接在P4节点上,则无论连结在111、112、113哪个并联谐振器与相应接地电感123相连接的节点上,虽不满足连接规则,但也可以有助于改善抑制水平。
基于以上,本发明提出了一种带通滤波器,包括:
串联支路谐振器单元,具有多个串联谐振器;和
并联支路谐振器单元,具有多个并联谐振器,每一个并联谐振器的一端连接到对应串联谐振器的端口,另一端适于通过对应的接地电感连接到接地端,
其中:
所述带通滤波器还包括耦合电路单元,所述耦合电路单元包括:
等势体;
第一耦合电容,第一耦合电容的第一端连接到所述等势体,第一耦合电容的第二端连接到一个串联谐振器的端口;和
第二耦合电容,第二耦合电容的第一端连接到所述等势体,第二耦合电容的第二端连接到一个并联谐振器的对应接地电感的非接地端口。
在图1的结构基础上,本发明还提出了图5中的能够提高抑制水平的滤波器结构,其可改善低于通带左侧滚降沿频率以下的低频近阻带抑制水平。
在图5中,端口131为信号输入(或输出)端口,端口132为信号输出(或输入)端口,需要进行滤波的信号从端口131(或132)输入,从端口132(或131)输出。串联电感121连接在端口131和谐振器101之间,串联电感122连接在端口132和谐振器104之间。串联支路谐振器101、102、103、104串联连接在串联电感121和串联电感122之间。并联支路谐振器111的一个端口连接在串联支路谐振器101、102之间的位置,另一个端口连接接地电感123的一个端口。并联支路谐振器112的一个端口连接在串联支路谐振器102、103之间的位置,另一个端口连接接地电感124的一个端口。并联支路谐振器113的一个端口连接在串联支路谐振器103、104之间的位置,另一个端口连接接地电感125的一个端口。并联支路谐振器114的一个端口连接在串联支路谐振器104、串联电感122之间的位置,另一个端口连接接地电感126的一个端口。接地电感123、124、125、126的另外一个端口分别接地。
在图5中,还在等势体U和节点P1之间,增加了耦合电容Ca;在等势体U和节点P4之间增加了耦合电容Cb。
图5中串联支路谐振器101~104各自的谐振频率fs可以相同也可以不完全相同,并联支路谐振器111~114各自的谐振频率fs’可以相同也可以不完全相同。各串联支路谐振器的谐振频率fs都高于各并联支路的谐振频率fs’。
等势体U与耦合电容Ca和Cb组成了一个信号耦合电路结构或者耦合电路单元,图5中,加入该信号耦合电路结构,会使信号的传输零点从滤波器通带左侧边缘的滚降沿频率处向低频移动,通过调节Ca和Cb的数值可以控制移动的多少。这样,只要调节Ca和Cb将传输零点移动到低频近阻带中需要的频率上,即可改善该频率附近的抑制水平。所以本发明中,在P1和P4两个节点附近分别实现Ca和Cb,再通过某些方法来实现等势体U,使三者组成一个完整的信号耦合电路。
另外,因为耦合电容Ca和Cb可以分别进行调节,所以在解决可实现性的同时也增加了实现的灵活性。使用这种特殊结构能达到的具体技术效果,会在后边实施例中详细介绍,可参考图15a与图15b。
需要特别说明的是,图5中和等势体U相耦合连接的耦合电容Ca和Cb,其连接方式并不是唯一的,耦合电容Cb的端口也可以接在P4节点之外的其他节点上。具体的,耦合电容Ca可连接在等势体U和某个并联谐振器与相应接地电感的节点之间,耦合电容Cb连接在等势体U和另外一个并联谐振器与相应接地电感的节点之间。在可选的实施例中,这两个并联谐振器不是相邻的或通过公共接地电感共地的,在更进一步可选的实施例中,这两个并联谐振器对应的接地电感也不是相邻的。
图6a~6d分别给出了图5的几种变形实施例。图6a是在图5的基础上,将耦合电容Cb的连接点从P4改为并联谐振器113和电感125的连接节点P3,这同样可以达到本发明改善抑制水平的效果。
在图6b中,并联谐振器113和114通过接地电感126共地,耦合电容Cb连接在节点P4上,这同样可以达到本发明改善抑制水平的效果。
在图6c中,如果将耦合电容Cb的连接点从P4节点移动到并联谐振器113或114和接地电 感124的连接节点上,则不符合连接规则,不过,也可有助于改善抑制水平。
而在图6d中,如果将耦合电容Cb的连接点从P4节点移动到并联谐振器113和接地电感125的连接节点上,则不符合连接规则,不过,也可有助于改善抑制水平。
这里需要特别说明的是:每一个串联谐振器如101同与其相邻的一个并联谐振器如111的组合称为一级,所以图2~图6d给出的都是一个4级的FBAR梯形架构滤波器的示例。本发明只是用它作为一个例子,以方便对发明的细节进行详细的说明,而本发明的应用范围并不只局限于4级梯形架构的情况,而是可以应用于任意更多级数或更少级数的情况。
基于以上,本发明提出了一种带通滤波器,包括:
串联支路谐振器单元,具有多个串联谐振器;和
并联支路谐振器单元,具有多个并联谐振器,每一个并联谐振器的一端连接到对应串联谐振器的端口,另一端适于通过对应的接地电感连接到接地端,
其中:
所述带通滤波器还包括耦合电路单元,所述耦合电路单元包括:
等势体;
第一耦合电容,第一耦合电容的第一端连接到所述等势体,第一耦合电容的第二端连接到一个并联谐振器的对应接地电感的非接地端口;和
第二耦合电容,第二耦合电容的第一端连接到所述等势体,第二耦合电容的第二端连接到另一个并联谐振器的对应接地电感的非接地端口。
下面示例性说明上述的滤波器结构中等势体以及耦合电容的实现方式。
在实际当中,可以用FBAR芯片图形区外围的保护环作为等势体U。图2中的第一种特殊结构,在一个FBAR芯片中的谐振器排布如图7所示,就是使用外围的保护环作为等势体U。串联谐振器101靠近保护环的一侧即为节点S1,与保护环U之间可用某种方法引入耦合电容Ca。并联谐振器114靠近保护环的一侧即为节点P4,与保护环U之间可用某种方法引入耦合电容Cb。
在实际当中,也可以在FBAR芯片图形区内增加一块等电势差的导电或者第一导电体(pad)作为等势体U。图2中的第一种特殊结构,在一个FBAR芯片中的谐振器排布也可以如图9所示,就是使用单独增加的第一导电体来作为等势体U,从而引入耦合电容Ca和Cb。
在实际当中,也可以借用和芯片封装结构cap上同一个导电体pad相连的通孔via作为等势体U。图2中所示的滤波器结构,在一个FBAR芯片中的谐振器排布也可以如图11a所示,使用和封装结构上同一个导电体pad相连的两个通孔via A、via B来作为等势体U,从而引入耦合电容Ca和Cb。图11b为省略封装结构cap后,从上向下看的芯片部分的平面顶视图。
图8a-8c为图7中耦合电容Ca和Cb的几种不同实现方式。如图8a中所示,可以通过谐振器电极和保护环之间的重叠区域及二者之间的介质层来实现耦合电容Ca和Cb。如图8b中所示,可以通过减小谐振器电极同保护环U之间的距离从而引入所需的耦合电容来实现耦合电容Ca和Cb。如图8c所示,也可以通过谐振器同保护环U之间的叉指结构来实现耦合电容Ca和Cb。
图10a-10c为图9中Ca和Cb的几种不同实现方式。如图10a中所示,可以通过谐振器电极和第一导电体之间的重叠区域及二者之间的介质层来实现耦合电容Ca和Cb。如图10b中所示,可以通过减小谐振器电极同第一导电体pad之间的距离从而引入所需的耦合电容来实现耦合电容Ca和Cb。如图10c所示,也可以通过谐振器同第一导电体pad之间的叉指结构来实现耦合电容Ca和Cb。
图12a-12c为图11b中耦合电容Ca和Cb的几种不同实现方式,为了清晰简洁,所以给出的都是从上向下看的芯片部分的平面顶视图,省略了封装结构cap。如图12a中所示,可以通过谐振器电极和通孔via之间的重叠区域及二者之间的介质层来实现耦合电容Ca和Cb。如图12b中所示,可以通过减小谐振器电极同通孔via A、via B之间的距离从而引入所需的耦合电容来实现耦合电容Ca和Cb。如图12c所示,也可以通过谐振器同通孔via A、via B之间的叉指结构来实 现耦合电容Ca和Cb。
图7-12c是以图2中的滤波器结构为例对实际当中等势体U的实现方式进行说明的,所有这些实现方式也同样可以用来实现图5中的第二种特殊结构,此处不再赘述。
需要特别说明的是,等势体U的实现方式确定后,耦合电容Ca和Cb的具体实现方式可以不同,比如Ca使用图8a中的方式实现,而Cb使用图8C中的方式实现,都在本发明的保护范围之内。
图13a是一个双工器100的结构示意图,其中:101是发射滤波器(TX filter),102是接收滤波器(RX filter);发射滤波器101的一个端口连接到端口105,该端口可以连接射频信号发生电路等外接设备,用来将外接设备产生的射频信号传输进入发射滤波器101中;发射滤波器101的另一个端口连接到匹配网络(match network)103,用来将滤波之后的信号送入匹配网络;接收滤波器102的一个端口接到端口106,该端口可以连接后级电路如低噪放等;接收滤波器102的另一个端口连接到匹配网络103,用来将天线接收到的信号传输进入接收滤波器102;匹配网络103连接在天线104和发射滤波器101、接收滤波器102之间,用来调节天线端口的阻抗匹配。本实施例中:发射滤波器101使用了本发明提出的例如如图2所示的滤波器结构。接收滤波器102使用了本发明提出的例如如图5所示的滤波器结构。
为了进行对比,还给出了双工器110,其结构示意图如图13b所示,各组成部分及功能同图13a相同,所以不再赘述。不同处在于,发射滤波器(TX filter)111和接收滤波器(RX filter)112使用的是图1所给出的普通梯形架构而非本发明给出的特定结构,没有使用等电势体U和耦合电容Ca和Cb组成的特殊信号耦合电路结构。
基于以上,本发明提出了一种双工器,包括:发射滤波器;和接收滤波器,其中:所述发射滤波器包括例如图2所示的带通滤波器,所述接收滤波器包括例如图5所述的带通滤波器。
图14a和图15a分别给出了双工器100和110的接收滤波器和发射滤波器的传输特性曲线。本例中的双工器,发射滤波器的通带频率范围为1710MHz~1785MHz,中心频率可以认为大约是1749MHz;接收滤波器的通带频率范围为1805MHz~1880MHz,中心频率可以认为大约是1844MHz。为了尽量减小两颗滤波器之间的相互影响,在设计中需要尽可能增大两颗滤波器在对方通带内特别是中心频率附近的抑制度。本实施例中只是用这个频段的双工器进行举例说明,本专利的滤波器结构对其他频段的双工器和滤波器也同样是适用的。
图14a示例性示出了发射滤波器101和111的传输特性曲线,其中粗线是发射滤波器101的性能,细线是发射滤波器111的性能。发射滤波器101的电路结构如图2所示,其中使用了等势体U和耦合电容Ca、Cb组成的特殊耦合电路结构,该结构的作用使得信号的传输零点从通带右侧边缘滚降处向高频移动到了大约1844MHz的位置,同接收滤波器102的中心频率基本一致。从图14a中可以看到,移动后的传输零点在1844MHz处形成了一个较深的抑制点,抑制水平达到-78dB左右(图中m1标出),并且使得该点附近范围内的抑制水平都有明显的改善。而没有使用等势体U和耦合电容Ca、Cb结构的发射滤波器111,其传输特性曲线如细线所示,在1844MHz处的抑制水平仅为-56dB左右(图中m2标出),并且该点附近范围内的抑制水平都明显较差。
另外,图14b是图14a中方框内部分的放大图,可以看到,通带内两条曲线完全重合,说明使用本发明提出的例如图2中示出的结构之后,在改善带外抑制的同时,通带插损没有发生任何恶化。
图15a示例性示出了接收滤波器102和112的传输特性曲线。其中粗线是接收滤波器102的性能,细线是接收滤波器112的性能。接收滤波器102的电路结构如图5所示,其中使用了等势体U和耦合电容Ca、Cb组成的特殊耦合电路结构,该结构的作用使得信号的传输零点从通带左侧边缘滚降处向低频移动到了大约1749MHz的位置,同发射滤波器101的中心频率基本一致。从图15a中可以看到,移动后的传输零点在1749MHz处形成了一个较深的抑制点,抑制水平达到-78dB左右(图中m1标出),并且使得该点附近范围内的抑制水平都有明显的改善。而没有使用 等势体U和耦合电容Ca、Cb结构的发射滤波器112,其传输特性曲线如细线所示,在1749MHz处的抑制水平仅为-59dB左右(图中m2标出),并且该点附近范围内的抑制水平都明显较差。
另外,图15b是图15a图中方框内部分的放大图,可以看到,通带内两条曲线完全重合,说明使用本发明提出的例如图5中示出的滤波器结构之后,在改善带外抑制的同时,通带插损没有发生任何恶化。
相应的,本发明提出了一种提高滤波器抑制水平的方法,所述滤波器为例如图2所示的带通滤波器,所述方法包括步骤:
通过调节第一耦合电容与第二耦合电容中的至少一个,以使得信号的传输零点从滤波器通带右侧边缘的滚降沿频率处向高频移动。
本发明还提出了一种提高滤波器抑制水平的方法,所述滤波器为例如图5所示的带通滤波器,所述方法包括步骤:
通过调节第一耦合电容与第二耦合电容中的至少一个,以使得信号的传输零点从滤波器通带左侧边缘的滚降沿频率处向低频移动。
本发明的实施例也涉及一种电子设备,包括上述的带通滤波器。需要指出的是,这里的电子设备,包括但不限于射频前端、滤波放大模块等中间产品,以及手机、WIFI、无人机等终端产品。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行变化,本发明的范围由所附权利要求及其等同物限定。

Claims (26)

  1. 一种带通滤波器,包括:
    串联支路谐振器单元,具有多个串联谐振器;和
    并联支路谐振器单元,具有多个并联谐振器,每一个并联谐振器的一端连接到对应串联谐振器的端口,另一端适于通过对应的接地电感连接到接地端,
    其中:
    所述带通滤波器还包括耦合电路单元,所述耦合电路单元包括:
    等势体;
    第一耦合电容,第一耦合电容的第一端连接到所述等势体,第一耦合电容的第二端连接到一个串联谐振器的端口;和
    第二耦合电容,第二耦合电容的第一端连接到所述等势体,第二耦合电容的第二端连接到一个并联谐振器的对应接地电感的非接地端口。
  2. 根据权利要求1所述的带通滤波器,其中:
    第二耦合电容的第二端所连接到的并联谐振器与第一耦合电容的第二端所连接到的串联谐振器之间还具有另外的所述串联谐振器。
  3. 根据权利要求2所述的带通滤波器结构,其中:
    所述带通滤波器具有至少两个接地端,所述第二耦合电容的第二端所连接或者对应的接地端不同于与第一耦合电容的第二端连接到的串联谐振器相邻的并联谐振器所连接或者对应的接地端。
  4. 根据权利要求3所述的带通滤波器结构,其中:
    所述多个并联谐振器中的至少两个并联谐振器共用同一接地端。
  5. 根据权利要求1所述的带通滤波谐振器结构,其中:
    所述带通滤波器中的谐振器为薄膜体声波谐振器。
  6. 根据权利要求1-5中任一项所述的带通滤波器,其中:
    所述带通滤波器具有位于带通滤波器的芯片图形区域外围的保护环,所述保护环构成所述等势体。
  7. 根据权利要求6所述的带通滤波器,其中:
    所述第一耦合电容和/或所述第二耦合电容由对应谐振器电极与保护环之间的重叠区域以及二者之间的介质层构成;或者
    所述第一耦合电容和/或所述第二耦合电容通过调整对应谐振器电极与保护环之间的距离获得;或者
    所述第一耦合电容和/或所述第二耦合电容由对应谐振器与保护环之间的叉指结构构成。
  8. 根据权利要求1-5中任一项所述的带通滤波器,其中:
    所述带通滤波器具有设置在带通滤波器的芯片图形区域内的第一导电体,所述第一导电体构成所述等势体。
  9. 根据权利要求8所述的带通滤波器,其中:
    所述第一耦合电容和/或所述第二耦合电容由对应谐振器电极与第一导电体之间的重叠区域以及二者之间的介质层构成;或者
    所述第一耦合电容和/或所述第二耦合电容通过调整对应谐振器电极与第一导电体之间的距离获得;或者
    所述第一耦合电容和/或所述第二耦合电容由对应谐振器与第一导电体之间的叉指结构构成。
  10. 根据权利要求1-5中任一项所述的带通滤波器,其中:
    所述带通滤波器具有芯片封装部,所述芯片封装部设置有第二导电体;
    所述带通滤波器设置有两个电连接通孔结构,所述两个电连接通孔结构分别与所述第二导电体电连接;
    所述两个电连接通孔结构以及所述第二导电体构成所述等势体。
  11. 根据权利要求10所述的带通滤波器,其中:
    所述第一耦合电容和/或所述第二耦合电容由对应谐振器的电极和电连接通孔结构之间的重叠区域以及二者之间的介质层构成;或者
    所述第一耦合电容和/或所述第二耦合电容通过调整对应谐振器电极与对应电连接通孔结构之间的距离获得;或者
    所述第一耦合电容和/或所述第二耦合电容由对应谐振器与对应电连接通孔结构之间的叉指结构构成。
  12. 一种带通滤波器,包括:
    串联支路谐振器单元,具有多个串联谐振器;和
    并联支路谐振器单元,具有多个并联谐振器,每一个并联谐振器的一端连接到对应串联谐振器的端口,另一端适于通过对应的接地电感连接到接地端,
    其中:
    所述带通滤波器还包括耦合电路单元,所述耦合电路单元包括:
    等势体;
    第一耦合电容,第一耦合电容的第一端连接到所述等势体,第一耦合电容的第二端连接到一个并联谐振器的对应接地电感的非接地端口;和
    第二耦合电容,第二耦合电容的第一端连接到所述等势体,第二耦合电容的第二端连接到另一个并联谐振器的对应接地电感的非接地端口。
  13. 根据权利要求12所述的带通滤波器结构,其中:
    所述一个并联谐振器与所述另一个并联谐振器不相邻;并且
    所述一个并联谐振器与所述另一个并联谐振器不共用同一接地端。
  14. 根据权利要求13所述的带通滤波谐振器结构,其中:
    所述一个并联谐振器所连接的接地电感与所述另一个并联谐振器所连接的接地电感不相邻。
  15. 根据权利要求14所述的带通滤波器结构,其中:
    所述多个并联谐振器中的至少两个并联谐振器共用同一接地端。
  16. 根据权利要求12所述的带通滤波谐振器结构,其中:
    所述带通滤波器中的谐振器为薄膜体声波谐振器。
  17. 根据权利要求12-16中任一项所述的带通滤波器,其中:
    所述带通滤波器具有位于带通滤波器的芯片图形区域外围的保护环,所述保护环构成所述等势体。
  18. 根据权利要求17所述的带通滤波器,其中:
    所述第一耦合电容和/或所述第二耦合电容由对应谐振器电极与保护环之间的重叠区域以及二者之间的介质层构成;或者
    所述第一耦合电容和/或所述第二耦合电容通过调整对应谐振器电极与保护环之间的距离获得;或者
    所述第一耦合电容和/或所述第二耦合电容由对应谐振器与保护环之间的叉指结构构成。
  19. 根据权利要求12-16中任一项所述的带通滤波器,其中:
    所述带通滤波器具有设置在带通滤波器的芯片图形区域内的第一导电体,所述第一导电体构成所述等势体。
  20. 根据权利要求19所述的带通滤波器,其中:
    所述第一耦合电容和/或所述第二耦合电容由对应谐振器电极与第一导电体之间的重叠区域以及二者之间的介质层构成;或者
    所述第一耦合电容和/或所述第二耦合电容通过调整对应谐振器电极与第一导电体之间的距离获得;或者
    所述第一耦合电容和/或所述第二耦合电容由对应谐振器与第一导电体之间的叉指结构构成。
  21. 根据权利要求12-16中任一项所述的带通滤波器,其中:
    所述带通滤波器具有芯片封装部,所述芯片封装部设置有第二导电体;
    所述带通滤波器设置有两个电连接通孔结构,所述两个电连接通孔结构分别与所述第二导电体电连接;
    所述两个电连接通孔结构以及所述第二导电体构成所述等势体。
  22. 根据权利要求21所述的带通滤波器,其中:
    所述第一耦合电容和/或所述第二耦合电容由对应谐振器的电极和电连接通孔结构之间的重叠区域以及二者之间的介质层构成;或者
    所述第一耦合电容和/或所述第二耦合电容通过调整对应谐振器电极与对应电连接通孔结构之间的距离获得;或者
    所述第一耦合电容和/或所述第二耦合电容由对应谐振器与对应电连接通孔结构之间的叉指结构构成。
  23. 一种提高滤波器抑制水平的方法,所述滤波器为根据权利要求1-11中任一项所述的带通滤波器,其中,所述方法包括步骤:
    通过调节第一耦合电容与第二耦合电容中的至少一个,以使得信号的传输零点从滤波器通带右侧边缘的滚降沿频率处向高频移动。
  24. 一种提高滤波器抑制水平的方法,所述滤波器为根据权利要求12-12中任一项所述的带通滤波器,其中,所述方法包括步骤:
    通过调节第一耦合电容与第二耦合电容中的至少一个,以使得信号的传输零点从滤波器通带左侧边缘的滚降沿频率处向低频移动。
  25. 一种双工器,包括:
    发射滤波器;和
    接收滤波器,
    其中:
    所述发射滤波器包括根据权利要求1-11中任一项所述的带通滤波器,所述接收滤波器包括根据权利要求12-22中任一项所述的带通滤波器。
  26. 一种电子设备,具有根据权利要求1-22中任一项所述的带通滤波器。
PCT/CN2019/114195 2018-12-18 2019-11-15 带通滤波器及提高其抑制水平的方法、双工器和电子设备 WO2020125208A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19900924.2A EP3902137A4 (en) 2018-12-18 2019-11-15 BAND PASS FILTER AND METHOD FOR IMPROVING THE LEVEL OF SUPPRESSION THEREOF, DUPLEXER AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811550563.2 2018-12-18
CN201811550563.2A CN111342793B (zh) 2018-12-18 2018-12-18 带通滤波器及提高其抑制水平的方法、双工器和电子设备

Publications (1)

Publication Number Publication Date
WO2020125208A1 true WO2020125208A1 (zh) 2020-06-25

Family

ID=71102053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114195 WO2020125208A1 (zh) 2018-12-18 2019-11-15 带通滤波器及提高其抑制水平的方法、双工器和电子设备

Country Status (3)

Country Link
EP (1) EP3902137A4 (zh)
CN (1) CN111342793B (zh)
WO (1) WO2020125208A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117579017A (zh) * 2023-01-19 2024-02-20 北京芯溪半导体科技有限公司 滤波器、滤波器设计方法及通信设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112491384A (zh) * 2020-11-27 2021-03-12 中国电子科技集团公司第十三研究所 一种fbar滤波器电路
CN113507275A (zh) * 2021-07-15 2021-10-15 绍兴汉天下微电子有限公司 一种体声波滤波器、版图布局方法以及通信器件
CN113556095B (zh) * 2021-07-23 2024-04-19 北京中科汉天下电子技术有限公司 交叉耦合声学滤波器
CN114465601B (zh) * 2022-04-13 2022-08-12 苏州汉天下电子有限公司 一种滤波器、双工器以及多工器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651244A (zh) * 2008-08-15 2010-02-17 财团法人工业技术研究院 带通滤波器电路及多层结构及其方法
CN102006026A (zh) * 2010-11-24 2011-04-06 南京理工大学 Ku波段超窄带低损耗高抑制微型带通滤波器
CN102055430A (zh) * 2009-01-27 2011-05-11 太阳诱电株式会社 滤波器、双工器和通信模块
CN103441316A (zh) * 2013-08-01 2013-12-11 南京理工大学 具有幅度均衡功能的微型带通滤波器
US20130335164A1 (en) * 2010-12-22 2013-12-19 Epcos Ag Filter arrangement and method for producing a filter arrangement

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004053319A1 (de) * 2004-11-04 2006-05-11 Epcos Ag Frequenzweiche
US7339445B2 (en) * 2005-10-07 2008-03-04 Infineon Technologies Ag BAW duplexer without phase shifter
WO2009153916A1 (ja) * 2008-06-16 2009-12-23 株式会社村田製作所 弾性境界波装置
JP5355958B2 (ja) * 2008-07-31 2013-11-27 太陽誘電株式会社 フィルタ、分波器および通信機器
JP5240793B2 (ja) * 2009-03-09 2013-07-17 日本電波工業株式会社 デュプレクサ
US8063717B2 (en) * 2009-07-27 2011-11-22 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Duplexer having resonator filters
CN101621147B (zh) * 2009-08-11 2014-03-19 南京理工大学 低损耗双零点2.4千兆赫微型带通滤波器
FR2996385A1 (fr) * 2012-09-28 2014-04-04 St Microelectronics Sa Filtre passif
CN103929148B (zh) * 2013-01-11 2017-09-19 中兴通讯股份有限公司 一种低插损压电声波带通滤波器及实现方法
JP5765502B1 (ja) * 2013-09-17 2015-08-19 株式会社村田製作所 デュプレクサ
CN103715483B (zh) * 2014-01-16 2017-01-25 南京邮电大学 一种宽带带通滤波器
JP6385891B2 (ja) * 2015-06-05 2018-09-05 太陽誘電株式会社 ラダー型フィルタ、デュプレクサおよびモジュール
US10250214B2 (en) * 2016-10-31 2019-04-02 Murata Manufacturing Co., Ltd. Filter device, multiplexer, radio-frequency front end circuit, and communication device
US10873311B2 (en) * 2017-02-15 2020-12-22 Skyworks Solutions, Inc. Acoustic resonators with reduced loss characteristics and methods of manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651244A (zh) * 2008-08-15 2010-02-17 财团法人工业技术研究院 带通滤波器电路及多层结构及其方法
CN102055430A (zh) * 2009-01-27 2011-05-11 太阳诱电株式会社 滤波器、双工器和通信模块
CN102006026A (zh) * 2010-11-24 2011-04-06 南京理工大学 Ku波段超窄带低损耗高抑制微型带通滤波器
US20130335164A1 (en) * 2010-12-22 2013-12-19 Epcos Ag Filter arrangement and method for producing a filter arrangement
CN103441316A (zh) * 2013-08-01 2013-12-11 南京理工大学 具有幅度均衡功能的微型带通滤波器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117579017A (zh) * 2023-01-19 2024-02-20 北京芯溪半导体科技有限公司 滤波器、滤波器设计方法及通信设备

Also Published As

Publication number Publication date
CN111342793B (zh) 2023-09-26
CN111342793A (zh) 2020-06-26
EP3902137A1 (en) 2021-10-27
EP3902137A4 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
WO2020125208A1 (zh) 带通滤波器及提高其抑制水平的方法、双工器和电子设备
JP5237138B2 (ja) フィルタ、デュープレクサ、通信モジュール
US6982612B2 (en) Duplexer and communication apparatus with a matching circuit including a trap circuit for harmonic suppression
US7498899B2 (en) Duplexer with filters including film bulk acoustic resonators
US7339445B2 (en) BAW duplexer without phase shifter
WO2020108527A1 (zh) 具有带通和高通双重功能的基于体声波谐振器的滤波器
WO2020114413A1 (zh) 一种压电声波滤波器及双工器
US20190181826A1 (en) Multilayer band pass filter
US20210194452A1 (en) Multiplexer, and radio frequency front-end circuit and communication device that use the same
JP2007259296A (ja) アンテナ共用器および携帯電話
CN110943711A (zh) 一种双工器以及电子设备
WO2020125344A1 (zh) 基于移相网络提高隔离度的射频压电多工器和电子设备
JP3223848B2 (ja) 高周波部品
CN114826203A (zh) 一种体声波双工器及其优化方法
JP2002118486A (ja) 高周波複合スイッチモジュール
JP5804076B2 (ja) Lcフィルタ回路及び高周波モジュール
WO2018112921A1 (zh) 滤波器和用于调节滤波器性能的方法
CN111342806B (zh) 具有兰姆波谐振器的压电滤波器、双工器和电子设备
TWI540850B (zh) 無線通訊裝置與其濾波器
WO2020125341A1 (zh) 带耦合电感的滤波器单元、滤波器及电子设备
CN104467776A (zh) 一种单芯片射频天线开关模块及射频前端
WO2023147724A1 (zh) 带通滤波电路和多工器
CN114465601A (zh) 一种滤波器、双工器以及多工器
CN111525909A (zh) 一种基于薄膜体声波谐振器技术的滤波器构成的双工器及设备
JP5503764B2 (ja) フィルタ、デュープレクサ、通信モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019900924

Country of ref document: EP

Effective date: 20210719