WO2021066385A1 - 하이브리드 타이어 코드 및 그 제조 방법 - Google Patents
하이브리드 타이어 코드 및 그 제조 방법 Download PDFInfo
- Publication number
- WO2021066385A1 WO2021066385A1 PCT/KR2020/012881 KR2020012881W WO2021066385A1 WO 2021066385 A1 WO2021066385 A1 WO 2021066385A1 KR 2020012881 W KR2020012881 W KR 2020012881W WO 2021066385 A1 WO2021066385 A1 WO 2021066385A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aramid
- nylon
- twisted yarn
- yarn
- pet
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 239000004760 aramid Substances 0.000 claims abstract description 108
- 229920003235 aromatic polyamide Polymers 0.000 claims abstract description 108
- 229920001778 nylon Polymers 0.000 claims description 79
- 239000004677 Nylon Substances 0.000 claims description 78
- 239000000853 adhesive Substances 0.000 claims description 25
- 230000001070 adhesive effect Effects 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 14
- 238000001035 drying Methods 0.000 claims description 9
- 238000007654 immersion Methods 0.000 claims description 8
- 230000014759 maintenance of location Effects 0.000 claims description 5
- 238000009661 fatigue test Methods 0.000 claims description 4
- 238000007598 dipping method Methods 0.000 claims description 2
- 230000000704 physical effect Effects 0.000 abstract description 14
- 239000000835 fiber Substances 0.000 description 28
- 229920005594 polymer fiber Polymers 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 229920001971 elastomer Polymers 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 229920000728 polyester Polymers 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000012779 reinforcing material Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- 229920000126 latex Polymers 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- KVBYPTUGEKVEIJ-UHFFFAOYSA-N benzene-1,3-diol;formaldehyde Chemical compound O=C.OC1=CC=CC(O)=C1 KVBYPTUGEKVEIJ-UHFFFAOYSA-N 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000008234 soft water Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
- D02G3/48—Tyre cords
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/005—Reinforcements made of different materials, e.g. hybrid or composite cords
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/02—Yarns or threads characterised by the material or by the materials from which they are made
- D02G3/04—Blended or other yarns or threads containing components made from different materials
- D02G3/047—Blended or other yarns or threads containing components made from different materials including aramid fibres
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/26—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
- D02G3/28—Doubled, plied, or cabled threads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C2009/0071—Reinforcements or ply arrangement of pneumatic tyres characterised by special physical properties of the reinforcements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C2009/0071—Reinforcements or ply arrangement of pneumatic tyres characterised by special physical properties of the reinforcements
- B60C2009/0078—Modulus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C2009/0071—Reinforcements or ply arrangement of pneumatic tyres characterised by special physical properties of the reinforcements
- B60C2009/0085—Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C2009/0071—Reinforcements or ply arrangement of pneumatic tyres characterised by special physical properties of the reinforcements
- B60C2009/0092—Twist structure
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/40—Yarns in which fibres are united by adhesives; Impregnated yarns or threads
- D02G3/404—Yarns or threads coated with polymeric solutions
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/02—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/02—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
- D10B2331/021—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/06—Load-responsive characteristics
- D10B2401/063—Load-responsive characteristics high strength
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/02—Reinforcing materials; Prepregs
- D10B2505/022—Reinforcing materials; Prepregs for tyres
Definitions
- the present invention uses the difference in fineness between general-purpose industrial fibers such as nylon and polyester and aramid filaments, so that the aramid-covered form is more easily formed, and the fatigue performance is excellent with uniform physical properties, so that it can be used as a high-performance tire material. It relates to a suitable hybrid tire cord and a method of manufacturing the same.
- Fiber cords are widely used as reinforcing materials for rubber products such as tires, conveyor belts, V-belts, and hoses.
- Materials for the fiber cord include nylon fiber, polyester fiber, rayon fiber, and the like.
- One of the important ways to improve the performance of the final rubber product is to improve the properties of the fiber cord used as a reinforcing material.
- Tire cords are divided according to the part and role used, and are divided into a carcass part that fully supports the tire, a belt part that supports load and prevents deformation due to high-speed driving, and a cap ply part that prevents deformation of the belt part.
- a carcass part that fully supports the tire
- a belt part that supports load and prevents deformation due to high-speed driving
- a cap ply part that prevents deformation of the belt part.
- Nylon and aramid are the main types of capply materials currently used, and polyester is the main types of carcass materials.
- nylon is used in most tire standards because it shows lower price than other materials, excellent adhesion performance, and adhesion after fatigue. It also exhibits a high shrinkage stress, which is advantageous for supporting belt cords at high speeds required by the capply.
- nylon exhibits a low value in the modulus part and exhibits the same performance as a flat spot because it varies greatly at room temperature and high temperature, and has a weakness as a cap ply.
- aramid used as a capply material exhibits lower shrinkage stress than nylon, but has excellent creep characteristics, and has very high modulus characteristics and little change in modulus at room temperature and high temperature. There is hardly any deformed flat spot phenomenon.
- Such aramid material is mainly used in high-end tires where the quality of tires is very important, but the material itself is very expensive, so it is almost impossible to apply to general-purpose tires.
- aramid is difficult to apply to general tires because it is very difficult to expand during tire forming and curing due to its high modulus, and has a disadvantage in that it is difficult to secure low fatigue performance, that is, long-term durability due to low elongation.
- Another object of the present invention is to provide a hybrid tire cord and a method for manufacturing the same, which can contribute to providing a high-performance tire by improving manufacturing efficiency in an easier manner and maintaining uniform and excellent physical properties.
- Hybrid tire cords are provided.
- the nylon or PET filament yarn uses a nylon or PET filament yarn having a fineness higher than 200 denier than the aramid filament yarn,
- first element may be referred to as a second element, and similarly, a second element may be referred to as a first element.
- twisting a yarn or filament in a counterclockwise direction is referred to as a lower edge (Z-twist), and twisting a yarn or filament in a clockwise direction is referred to as S-twist.
- 'single yarn' refers to a single ply yarn made by twisting a filament in either direction, and a single yarn produced by lowering the filament is referred to as'lower twisted yarn'.
- 'Cabled yarn' refers to a thread made by twisting two or more single yarns together in either direction, and is also referred to as'raw cord'.
- 'Fiber cord' refers to a ply-twisted yarn containing an adhesive so that it can be directly applied to rubber products, and is also referred to as a'dipped cord'. Fabrics containing adhesives when fabrics are manufactured by weaving ply-twisted yarns and then dipping the fabrics in an adhesive solution are also included in'Fiber Cords'.
- The'twist number' used herein refers to the number of twists per 1m, and the unit is TPM (Twist Per Meter).
- a hybrid tire cord that has a lower edge may be provided.
- the present invention includes general-purpose industrial fibers such as nylon and polyester and aramid filaments, and the general-purpose industrial filaments are characterized by using a filament having a fineness of 200de higher than that of the aramid filament.
- the hybrid fiber cord of the present invention is set to the same number of twists as the lower and upper twisted yarns, the range of twists of the final dip cord is general-purpose industrial lower twisted yarn and aramid due to the twisting phenomenon that occurs during the manufacture of the dip cord. It provides a hybrid fiber cord having a range of within ⁇ 30TPM of a lower twisted yarn and a 2-ply ply twisted yarn in which each of the lower twisted yarns are staged together.
- the hybrid fiber cord is a) using a single twisting machine that simultaneously performs the lower and upper edges like a cable cord, by setting the general-purpose industrial filament and aramid to the same number of twists, and performing the lower and upper edges at the same time. It is produced by a method comprising the step of preparing a ply-twisted yarn, and b) immersing the thus-prepared ply-twisted yarn in an adhesive solution, followed by drying and heat treatment.
- the first lower-twisted yarn and the second lower-twisted yarn are twisted in a third direction to provide a ply-twisted yarn.
- the lower stage and the stage may be performed at the same time.
- the first lower-twisted yarn may be an aramid lower-twisted yarn
- the second lower-twisted yarn may be a nylon or PET lower-twisted yarn.
- the most important feature of the method for manufacturing the hybrid cord of the present invention is that the fineness of the general-purpose molten polymer fiber is increased, the fineness of the aramid is relatively lower than that of the general-purpose molten polymer fiber, and then twisted at the same time. Cord).
- the thus manufactured low cord is heat treated (adhesive treatment), it can be provided as a final product, Dip Cord.
- the hybrid cord manufactured in this way naturally forms a structure in which aramid covers the molten polymer fiber, and in the SS Curve Pattern of the cord product, the physical properties of the molten polymer fiber are expressed at the beginning to increase the elongation and fatigue performance, and In the second half, the physical properties of aramid are expressed, and the modulus and strength are high.
- the lower twisted aramid yarn is wrapped around nylon or PET in a spiral, so when measuring the tensile properties, the properties of Nynron or PET are initially expressed, and the middle or the latter is spiraled.
- the existing aramid lower twisted yarns are arranged in a straight line, a force is applied directly to the aramid filament, and the physical properties of aramid and nylon or PET are expressed.
- the hybrid cord of the present invention exhibits higher fatigue performance compared to aramid because fatigue is added to relatively flexible nylon or PET under-twisted yarn in a fatigue test in which low tensile and compression are repeated.
- the present invention provides a hybrid tire cord having a shape in which aramid naturally covers a general-purpose polymer, rather than providing a structure in which aramid is forcibly covered with a general-purpose polymer fiber as in the prior art.
- the aramid filament and the nylon or PET filament are combined with the lower edge and the upper edge, and the aramid filament may be a filament having a fineness of 500 to 1500 denier (de).
- nylon or PET filaments may be used as general-purpose polymer fibers, and these fibers may be filaments having a fineness of 800 to 3000 denier (de).
- the fineness ranges of the two fibers are not overlapped or are not used in the same category, and the fineness of the general-purpose polymer fiber is set relatively high compared to the aramid fiber.
- Aramid low-twisted yarn and general-purpose high-spray fiber low-twisted yarn ie, nylon or PET low-twisted yarn.
- the nylon or PET filament yarn uses a filament set higher than 200 denier (de) compared to the aramid filament yarn, so that aramid can form a structure that naturally surrounds a general-purpose polymer.
- a filament set higher than 200 denier (de) compared to the aramid filament yarn, so that aramid can form a structure that naturally surrounds a general-purpose polymer.
- a ring twisting machine in which the lower edge and the upper edge are arranged in a batch manner is used, or aramid
- a separate operation of applying different twisted yarn tensions of general-purpose polymer fibers is required.
- aramid wraps the general-purpose polymer in a non-uniform shape, which may cause a problem of uneven physical properties (especially the central body and the lower body).
- the aramid lower-twisted yarn is twisted using an aramid filament yarn of 500 to 1500 denier
- the nylon or PET lower twisted yarn is a nylon or PET filament yarn of 800 to 3000 denier
- the fineness of the aramid filament yarn Nylon or PET filament yarns, which are 200 denier or more higher than the range, may be used to form a lower strand.
- the second twisting direction may be the same as the first twisting direction
- the third twisting direction may be a direction opposite to the first twisting direction.
- the hybrid cord may have a length of 1.01 to 1.10 times the length of the lower twisted aramid yarn after untwisting the upper edge of the hybrid tire cord of a predetermined length (post-untwist).
- the hybrid tire cord may further include an adhesive coated on the lower-twisted aramid yarn and the under-twisted nylon or PET yarn.
- the hybrid fiber cord of the present invention may have a cutting strength of 8.0 to 15.0 g/d as measured by ASTM D885, and an elongation at break of 5 to 20% as measured by ASTM D885.
- the hybrid tire cord may have a dry heat shrinkage of 0.5 to 5.0% measured at a super load of 0.01 g/denier for 2 minutes at 180°C.
- the hybrid tire cord may have a difference between the maximum value and the minimum value of the central body (@6.8kgf) measured by ASTM D885 within 0.5%, and the strength measured by ASTM D885 may be 30 kgf or more.
- the hybrid fiber cord of the present invention exhibits a value within 0.5% of the difference between the maximum value and the minimum value of the median (EASL) value.
- the hybrid fiber cord of the present invention has a strength retention rate of 90% or more after a disk fatigue test conducted according to the JIS-L 1017 method of the Japanese Standard Association (JSA).
- JSA Japanese Standard Association
- a method of manufacturing a hybrid tire cord using PET filament yarn may be provided.
- the hybrid tire cord of the present invention is made of hybrid fibers, and an example applicable to the tire is presented as follows.
- a hybrid type in which other general-purpose industrial filaments and aramid filaments are mixed can also sufficiently satisfy the physical properties required in the tire.
- the hybrid fiber cord of the present invention as in steps 1 to 3 described above, a lower-twisting process for each of a general-purpose industrial filament and aramid, and a stage-twisting process of twisting together a general-purpose industrial lower-twisted yarn and aramid lower-twisted yarn manufactured by the lower-twisting process.
- it can be prepared by immersing the ply-twisted yarn prepared by the lower and upper-edge processes in an adhesive solution, followed by drying and heat treatment.
- the fineness of the aramid filament and nylon or PET filament used in the present invention is 200de higher than the fineness of the nylon or PET filament compared to the fineness of the aramid filament, so that the aramid filament and the fineness of nylon or PET filament are similarly applied. It has the biggest difference with the structure.
- the second step may be performed simultaneously with the first step, and the third step may be performed continuously with the first and second steps.
- the first, second, and third steps are performed by a single twisting machine, it is possible to provide a high-performance hybrid tire cord having excellent physical properties in an easier method.
- the method of the present invention can improve fatigue performance more effectively than the case of using a conventional ring twisting machine, and can provide a hybrid tire cord having high strength.
- the second direction may be the same direction as the first direction
- the third direction may be the opposite direction to the first direction
- the fineness of the nylon or PET filament is 200 de or more compared to the aramid filament fineness, so even if the tension applied to each filament is the same during the twisting process, the aramid filament spirals around the nylon or PET filament and returns the nylon or It may be 1.01 to 1.10 times the length of the PET filament lower twisted yarn.
- the method of the present invention comprises the steps of immersing the ply-twisted yarn in an adhesive solution; Drying the ply-twisted yarn impregnated with the adhesive solution by the immersion process; And heat-treating the dried ply-twisted yarn.
- the hybrid fiber cord of the present invention is completed by immersing and passing the obtained ply-twisted yarn in an adhesive solution, drying, and heat treatment.
- the adhesive solution is not particularly limited in the present invention, and RFL solution (Resorcinol Formaldehyde Latex) or an epoxy adhesive composition solution, which is an adhesive solution for tire cords commonly used in this field, may be used.
- RFL solution Resorcinol Formaldehyde Latex
- epoxy adhesive composition solution which is an adhesive solution for tire cords commonly used in this field
- the temperature and time of the drying process performed following the immersion process varies depending on the composition of the adhesive solution, but the drying process is typically performed at 70 to 200°C for 30 to 120 seconds.
- the step of heat-treating the ply-twisted yarn may be performed at 200 to 250° C. for 30 to 120 seconds.
- the adhesive component of the adhesive solution impregnated in the ply-twisted yarn in the previous step is coated on the surface of the ply-twisted yarn, thereby increasing the adhesion with the rubber composition used in manufacturing the tire in the subsequent process.
- the hybrid fiber cord of the present invention gives the lower edge and upper edge of the same number of twists in the twisting process, but a twisting phenomenon occurs in the step of drying after immersion in the adhesive solution, so that the difference in the number of twists within 15% between the lower edge and the upper edge is Can occur.
- the hybrid cord provided by this method has a cutting strength of 8.0 to 15.0 g/d, an elongation at break of 5 to 20%, and an ultra-load of 0.01 g/De for 2 minutes at 180°C, as described above.
- the dry heat shrinkage rate measured in ' has a physical property of 0.5 to 5.0%.
- the hybrid fiber cord of the present invention exhibits a value within 0.5% of the difference between the maximum value and the minimum value of the median (EASL) value.
- the hybrid fiber cord of the present invention may have a strength retention rate of 90% or more after a disk fatigue test performed according to the JIS-L 1017 method of the Japanese Standard Association (JSA).
- the present invention by providing a hybrid structure using the difference in fineness between a general-purpose polymer fiber and aramid, it is possible to more easily manufacture a hybrid cord in a form covered with an aramid, and a hybrid cord having uniform physical properties and a method for manufacturing the same. Can provide.
- the present invention can produce a hybrid naturally covered aramid through a single cable coder twisting machine in which upper and lower edges are simultaneously performed, compared to a conventional batch method, thereby increasing manufacturing efficiency. Accordingly, the present invention does not forcibly manufacture a low-cord in a form in which aramid is covered, but a structure that is naturally covered by a difference in fineness is formed, thereby having more uniform properties in terms of physical properties.
- the hybrid tire cord provided in the present invention has superior fatigue resistance properties than the conventional one, and exhibits high strength and is suitable for use as a material for a high-performance tire.
- Aramid filament 1000de and PET filament 2000de using a cable corder twisting machine the lower edge (Z-edge) is counterclockwise and the upper edge (S-edge) is clockwise with a number of twists of 300TPM.
- a hybrid ply-twisted yarn was manufactured by simultaneously applying the lower and upper edges (row cord cord manufacturing).
- the thus-prepared low-cord was first immersed in an epoxy-based adhesive, dried at 150° C. for 100 seconds, and then heat treated at 240° C. for 100 seconds. Then, 2.0% by weight of resorcinol, 3.2% by weight of formalin (37%), 1.1% by weight of sodium hydroxide (10%), 43.9% by weight of styrene/butadiene/vinylpyridine (15/70/15) latex ( 41%), and a resorcinol-formaldehyde-latex (RFL) adhesive solution containing the remaining amount of water, and the first heat-treated low cord was secondarily immersed.
- an epoxy-based adhesive dried at 150° C. for 100 seconds, and then heat treated at 240° C. for 100 seconds. Then, 2.0% by weight of resorcinol, 3.2% by weight of formalin (37%), 1.1% by weight of sodium hydroxide (10%), 43.9% by weight of styrene/butadiene/vinylpyridine (15/
- the tension applied to the low cord during the first immersion and heat treatment was controlled to be 0.5 kg/cord.
- the cord containing the RFL solution by the second immersion was subjected to a second heat treatment in the same manner as the first immersion to complete a hybrid cord (dip cord manufacturing).
- a hybrid cord was manufactured in the same manner as in Example 1, except that a nylon filament having a different fineness was used instead of a PET filament to prepare a hybrid low cord.
- a low-twisted yarn was manufactured using a ring-twisting machine (Ring-Twister) to prepare a low-cord in a form in which the aramid lower-twisted yarn covers the PET lower-twisted yarn.
- the immersion process and the heat treatment process of the low cord were carried out in the same manner as in Example 1 to produce a hybrid cord.
- a hybrid cord was manufactured in the same manner as in Comparative Example 1, except that a nylon filament having a different fineness was used instead of a PET filament, and a hybrid low cord was manufactured.
- ASTM D-885 test method by applying a tensile speed of 300 m/min to 10 samples of 250 mm using an Instron Tester (Instron Engineering Corp., Canton, Mass), the hybrid cord (dip cord) Strong, short and middle body (at 6.8 kg) were measured, respectively. Then, the cutting strength (g/d) of each sample was obtained by dividing the strength, cutting and mid-length (at 6.8 kg) of each sample by the total fineness of the dip cord. Then, by calculating the average value of each of the ten samples of the strong, cut and middle body (at 6.8 kg), each of the strong, cut and middle body (at 6.8 kg) of the deep code was obtained.
- Length (measure the difference in length of aramid-PET or nylon filament)
- the lower edge and upper edge of the raw cord were cut into 1m length, and the twist directions of the upper edge and the lower edge were reversed to unwound, and the lengths of the aramid filament and general-purpose polymer filament (nylon or PET) were measured.
- a Disk Fatigue Tester After preparing a sample by vulcanizing a hybrid tire cord whose strength (strength before fatigue) has been measured to rubber, a Disk Fatigue Tester was installed according to the JIS-L 1017 method of the Japanese Standard Association (JSA). The sample was subjected to fatigue by repeating tension and contraction within ⁇ 8% for 16 hours while rotating at 80° C. at a speed of 2500 rpm. Then, after removing the rubber from the sample, the strength after fatigue of the hybrid tire cord was measured. Based on the strength before fatigue and strength after fatigue, the strength retention rate defined by Equation 1 below was calculated.
- the strength (kgf) before and after fatigue is determined by using an Instron Tester (Instron Engineering Corp., Canton, Mass) according to the ASTM D-885 test method for a sample of 250 mm at a tensile speed of 300 m/min. It was determined by measuring the strength at break of the hybrid tire cord while applying.
- Example 1 rescue Filament yarn for the first lower thread Aramid 1000de Aramid 1000de Aramid 1000de Aramid 1000de 2nd lower twisted filament yarn PET1000de Nylon840de PET2000de Nylon2520de Soft water TPM 400 400 300 300 strong kgf 20.4 21.4 31.8 35.6 burglar g/d 10.2 11.6 10.6 10.1 Desperate % 8.7 9.8 8.9 14.1 @6.8kgf % 2.8 4.6 2.1 5.8 Zhongshin (Max.-Min.) % 0.8 1.2 0.2 0.3 Length difference, based on Dip Cord (Aramid-nylon or PET) kgf Aramid 2.5cm ⁇ Aramid 5.4 cm ⁇ Aramid 7.5 cm ⁇ Aramid 6.2cm ⁇ Fatigue performance % 81.7 83.4 91.3 94.5
- Example 1 and 2 of the present invention after setting the fineness of nylon or PET filament, which is a general-purpose polymer fiber, to 200 denier or more than the aramid filament fineness, the lower edge and the upper edge were continuously performed in one twisting machine.
- the strength was equal or higher.
- the difference between the maximum and minimum values of the central body (@6.8kgf) measured by ASTM D885 is within 0.5%
- the strength measured by ASTM D885 is 30 kgf or more
- the aramid filament is nylon.
- the PET filament was spirally wrapped and turned, and the length of the aramid lower-twisted yarn was longer than that of the nylon or PET lower-twisted yarn, and the fatigue performance was 90% or more, showing excellent results.
- Comparative Examples 1 and 2 are batch-type methods using a conventional ring twisting machine, and the fineness of PET or nylon filaments is the same as the fineness of the aramid filament or the fineness of the aramid filament in the difference in fineness of the two fibers used in the manufacture of ply-twisted yarn. Less than that, the fatigue performance was lowered, and the overall physical properties were lower than those of Examples 1 and 2.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Tires In General (AREA)
Abstract
본 발명은 섬도 차이를 이용하여, 아라미드가 커버링된 형태의 하이브리드 코드를 보다 쉽게 제조할 수 있고 물성도 균일하여 타이어의 성능을 개선하는 하이브리드 코드의 제조방법에 관한 것이다.
Description
관련 출원(들)과의 상호 인용
본 출원은 2019년 9월 30일자 한국특허출원 제 10-2019-0121169 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 나일론과 폴리에스테르와 같은 범용 산업용 섬유와 아라미드 필라멘트의 섬도 차이를 이용함으로써, 아라미드가 커버링된 형태가 보다 쉽게 형성되고, 균일한 물성과 함께 피로 성능이 우수하여, 고성능 타이어 소재로 사용하기 적합한 하이브리드 타이어 코드 및 그 제조방법에 관한 것이다.
타이어, 컨베이어 밸트, V-밸트, 호스 등의 고무 제품의 보강재로서 섬유 코드, 특히 접착제로 처리된 섬유 코드가 널리 이용되고 있다. 섬유 코드의 재료로는 나일론 섬유, 폴리에스테르 섬유, 레이온 섬유 등이 있다. 최종 고무 제품의 성능을 향상시키는 중요한 방법들 중 하나는 보강재로서 사용되는 섬유 코드의 물성을 향상시키는 것이다.
자동차의 성능이 향상되고 도로상황의 개선에 따라 주행속도가 점차 증가하고 있어, 고속 주행 시에도 타이어의 안정성 및 내구성을 유지할 수 있도록 타이어의 고무 보강재로 사용되는 타이어 코드에 대한 연구가 활발히 진행되고 있다.
타이어 코드는 사용되는 부위 및 역할에 따라 구분되며, 타이어를 전체적으로 지지하는 카카스 부분과, 고속주행에 따른 하중 지지 및 변형을 방지하는 벨트 부분, 벨트 부분의 변형을 방지하는 캡플라이 부분으로 나뉜다. 타이어의 성능향상을 위해서는 각 부위의 보강소재에 대한 성능 향상이 우선시 되어야 하겠으며, 보강소재의 성능 향상을 위해서는 소재의 변경, 구조 개발 등의 방법이 연구되어지고 있다.
현재 사용되어지고 있는 캡플라이 소재로는 나일론과 아라미드가 주종을 이루고 있으며, 카카스 소재로는 폴리에스테르가 주종을 이루고 있다. 그 중 나일론은 타소재 대비 낮은 가격, 우수한 접착 성능 및 피로후의 접착성능을 보여주고 있기 때문에 대부분의 타이어 규격에서 사용되고 있다. 또한 캡플라이에서 요구되는 고속에서의 벨트 코드지지를 위해 유리한 높은 수축응력을 나타낸다. 그러나 나일론은 모듈러스 부분에 낮은 값을 나타내며, 상온 및 고온에서 변화가 크기 때문에 플랫 스팟과 같은 성능을 나타내어 캡플라이로서의 약점을 가지고 있다.
상기 나일론 외에 캡플라이 소재로 사용되고 있는 아라미드는 나일론에 비하여 낮은 수축응력을 나타내나 우수한 크리프 특성을 보유하고 있고, 매우 높은 모듈러스 특성과 상온 및 고온에서의 모듈러스의 변화량이 적기 때문에 장시간 주차한 경우 타이어가 변형되는 플랫 스팟 현상이 거의 없다. 이러한 아라미드 재질은 타이어의 품질이 매우 중요시되는 고급 타이어에서 주로 사용되고 있으나, 재료 자체의 가격이 매우 높기 때문에 범용적인 타이어에서는 적용이 거의 불가능하다. 또한 아라미드는 높은 모듈러스로 인하여 타이어 성형 및 가류 중 팽창이 매우 어렵기 때문에 일반적인 타이어에 적용하기 어렵고 낮은 절신으로 인하여 낮은 피로 성능 즉, 장기간의 내구성을 확보하기 어려운 단점을 가지고 있다.
이와 같은 단점들을 보완하기 위하여, 나일론과 폴리에스테르와 같은 범용 산업용 섬유와 아라미드를 같이 사용하는 하이브리드 구조가 개발되어 왔으며, 이러한 하이브리드 타이어 코드는 기존 고급 승용 및 SUV, LT 타이어에 국한되어 적용되었다면, 최근에는 일반 승용 및 전기차 등으로 사용범위가 확대되어 사용량이 점차 늘고 있는 추세이다.
고성능 타이어에 하이브리드 보강재가 적용되기 위해서는 고강력 및 고모듈러스가 요구되며, 이를 만족시키기 위해 아라미드가 필수적으로 적용되어야 했으나, 아라미드는 낮은 피로성능 및 고무와의 접착성능이 낮은 단점을 가지고 있어 이에 대한 개선이 필요한 상황이다.
또한, 기존의 아라미드가 커버링 된 형태의 하이브리드 코드를 제조하기 위해서는 아라미드를 하연하는 단계, 나일론 또는 PET를 하연하는 단계, 각각 하연된 아라미드와 나일론을 상연하는 단계로 나뉘어져 있어 제조 방법이 복잡하고 배치식으로 진행되어 제조 효율이 낮은 단점이 있었다.
본 발명의 목적은 기존 아라미드의 신율과 피로성능이 낮은 특성을 개선하고, 이와 동시에 범용 용융 고분자 섬유(나일론, PET 등)의 강력과 모듈러스가 낮은 특성이 개선된 하이브리드 타이어 코드 및 그 제조방법을 제공하는 것이다.
본 발명의 다른 목적은 보다 쉬운 방법으로 제조 효율을 향상시키고, 균일하고 우수한 물성을 유지하여 고성능 타이어를 제공하는데 기여할 수 있는, 하이브리드 타이어 코드 및 그 제조방법을 제공하는 것이다.
본 명세서에서는, 제1 꼬임 방향의 아라미드 하연사, 제2 꼬임 방향의 나일론 또는 PET 하연사, 및 상기 아라미드 하연사와 나일론 또는 PET 하연사 상에 코팅된 접착제를 포함하고, 상기 아라미드 하연사와 상기 나일론 또는 PET 하연사는 제3 꼬임 방향으로 서로 상연되어 있으며, 상기 나일론 또는 PET 하연사는, 아라미드 하연사를 형성하기 위한 아라미드 필라멘트사의 섬도보다 200 데니어 이상 높은 섬도 차이를 갖는 나일론 또는 PET 필라멘트사로 하연되어 있는 것인 하이브리드 타이어 코드를 제공한다.
또한, 본 발명에서는 아라미드 필라멘트사를 제1 방향으로 하연하여 아라미드 하연사를 형성하는 제1 단계;
나일론 또는 PET 필라멘트사를 제2 방향으로 하연하여 나일론 또는 PET 하연사를 형성하는 제2 단계; 및
상기 아라미드 하연사와 상기 나일론 또는 PET 하연사를 제3 방향으로 상연하여 합연사를 형성하는 제3 단계를 포함하고,
상기 나일론 또는 PET 필라멘트사는 상기 아라미드 필라멘트사의 섬도 보다 200 데니어 이상 높은 섬도를 갖는 나일론 또는 PET 필라멘트사를 사용하는,
하이브리드 타이어 코드의 제조방법을 제공한다.
이하, 발명의 구현 예들에 따른 내피로특성이 우수하고 고강력 특성을 갖는 하이브리드 타이어 코드 및 그 제조방법에 대해 상세히 설명하기로 한다.
그에 앞서, 본 명세서에서 명시적인 언급이 없는 한, 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다.
본 명세서에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 명세서에서 사용되는 '포함'의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
그리고, 본 명세서에서 '제1' 및 '제2'와 같이 서수를 포함하는 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로 사용되며, 상기 서수에 의해 한정되지 않는다. 예를 들어, 본 발명의 권리 범위 내에서 제1 구성요소는 제2 구성요소로도 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로 명명될 수 있다.
또, 본 명세서에서, 반시계 방향으로 실(yarn) 또는 필라멘트를 꼬는 것을 하연(Z-twist)이라 하고, 시계 방향으로 실 또는 필라멘트를 꼬는 것을 상연(S-twist)이라 한다.
본 명세서에서 사용되는 '단사(single yarn)'는 필라멘트를 어느 한 쪽 방향으로 꼬아서 만든 한 가닥(ply)의 실을 의미하며, 필라멘트가 하연됨으로서 제조되는 단사를 '하연사'라 지칭한다.
본 명세서에서 사용되는 '합연사(cabled yarn)'는 2 가닥 이상의 단사들을 어느 한쪽 방향으로 함께 꼬아서 만든 실을 의미하며, '로 코드(raw cord)'로 지칭되기도 한다.
본 명세서에서 사용되는 '섬유 코드'는 고무 제품에 바로 적용될 수 있도록 접착제를 함유한 합연사를 의미하며, '딥 코드(dipped cord)'로 지칭되기도 한다. 합연사를 짜서 직물을 제조한 후 이 직물을 접착제 용액에 침지(dipping)한 경우의 접착제를 함유한 직물도 '섬유 코드'에 포함된다.
본 명세서에서 사용되는 '꼬임수(twist number)'는 1m 당 꼬임의 횟수를 의미하며, 그 단위는 TPM(Twist Per Meter)이다.
본 발명의 일 구현예에 따라, 제1 꼬임 방향의 아라미드 하연사, 제2 꼬임 방향의 나일론 또는 PET 하연사, 및 상기 아라미드 하연사와 나일론 또는 PET 하연사 상에 코팅된 접착제를 포함하고, 상기 아라미드 하연사와 상기 나일론 또는 PET 하연사는 제3 꼬임 방향으로 서로 상연되어 있으며, 상기 나일론 또는 PET 하연사는, 아라미드 하연사를 형성하기 위한 아라미드 필라멘트사의 섬도보다 200 데니어 이상 높은 섬도 차이를 갖는 나일론 또는 PET 필라멘트사로 하연되어 있는 것인 하이브리드 타이어 코드가 제공될 수 있다.
본 발명은 나일론, 폴리에스테르와 같은 범용 산업용 섬유와 아라미드 필라멘트를 포함하고, 상기 범용 산업용 필라멘트는 아라미드 필라멘트의 섬도 대비 200de 높은 필라멘트를 사용하는 특징이 있다.
본 발명의 하이브리드 섬유 코드는 하연사와 상연사가 동일한 꼬임수로 설정이 되어지긴 하나, 딥코드 제조 시 발생되는 연풀림(꼬임 풀림) 현상에 의해 최종 딥코오드의 꼬임수 범위가 범용 산업용 하연사, 아라미드 하연사 그리고 각각의 하연사가 함께 상연된 2플라이 합연사가 ±30TPM 이내의 범위를 갖는 하이브리드 섬유 코드를 제공한다.
또, 상기 하이브리드 섬유 코드는 a) 케이블 코드(Cable Corder)와 같이 하연 및 상연을 동시에 수행하는, 하나의 연사기를 이용하여 범용 산업용 필라멘트와 아라미드를 동일 꼬임수로 설정하여 하연 및 상연을 동시에 실시하여 합연사를 제조하는 단계, 및 b) 이렇게 제조된 상기 합연사를 접착제 용액에 침지 후 건조 및 열처리하는 단계를 포함하는 방법에 의해 제조된다.
즉, 본 발명에서는 제1 필라멘트사와 제2 필라멘트사를 이용하여 제1 하연사와 제2 하연사를 형성 후, 제3 방향으로 제1 하연사와 제2 하연사를 상연하여 합연사를 제공할 수 있다. 또한 상기 하연과 상연은 동시에 수행될 수 있다. 이때 상기 제1 하연사는 아라미드 하연사이고, 제2 하연사는 나일론 또는 PET 하연사 일 수 있다.
이러한 본 발명의 하이브리드 코드의 제조방법에 대한 가장 큰 특징은, 범용 용융 고분자 섬유의 섬도를 높게 하고, 아라미드의 섬도를 상기 범용 용융 고분자 섬유보다 상대적으로 낮게 한 후, 동시에 꼬임을 주어 로코드(Raw Cord)를 제조하는 것이다. 이렇게 제조된 로코드를 열처리(접착처리)하면, 최종 제품인 딥코드(Dip Cord)로 제공할 수 있다. 이러한 방법으로 제조된 하이브리드 코드는 자연적으로 아라미드가 용융 고분자 섬유를 커버링 하는 구조가 형성되어, 코드 제품의 S-S Curve Pattern 상에서 초반에는 용융 고분자 섬유의 물성을 발현하게 하여 신율과 피로성능을 높이고, 중/후반에는 아라미드의 물성이 발현하게 하여 모듈러스와 강력이 높은 특징을 갖는다.
본 발명의 섬도 차이를 두어 형성되는 하이브리드 코드는, 아라미드 하연사가 나일론 또는 PET를 나선형으로 감싸고 있어, 인장 물성을 측정할 때 초기에는 나인론 또는 PET의 물성이 발현되며, 중반 또는 후반부에는 나선형으로 되어있던 아라미드 하연사가 직선상으로 배열되면서 아라미드 필라멘트에 직접 힘이 가해져 아라미드와 나일론 또는 PET가 합쳐진 물성이 발현되게 된다.
따라서, 본 발명의 하이브리드 코드는 낮은 인장과 압축이 반복되는 피로시험에서 상대적으로 유연한 나일론 또는 PET 하연사에 피로가 가중되어 아라미드 대비 높은 피로성능이 발현되게 된다.
구체적으로, 본 발명에서는 종래처럼 강제로 아라미드가 범용 고분자 섬유를 커버링한 구조를 제공하는 것이 아니라, 자연적으로 아라미드가 범용 고분자를 커버링할 수 있는 형태를 갖는 하이브리드 타이어 코드를 제공하는 것을 특징으로 한다.
이에, 본 발명에서는 하이브리드 코드를 제공하기 위해, 아라미드 필라멘트와 나일론 또는 PET 필라멘트를 하연 및 상연하는 단계를 포함하고, 상기 아라미드 필라멘트는 500 내지 1500 데니어(de)의 섬도를 갖는 필라멘트를 사용할 수 있다. 또한, 나일론 또는 PET 필라멘트를 범용 고분자 섬유로 사용할 수 있으며, 이러한 섬유는 800 내지 3000 데니어(de)의 섬도를 갖는 필라멘트를 사용할 수 있다.
그런데, 본 발명에서 상기 아라미드와 범용 고분자 섬유를 사용하여 하연사를 형성할 때, 두 섬유의 섬도 범위가 중첩되거나 동일한 범주로 사용하지 않으며, 아라미드 섬유 대비 범용 고분자 섬유의 섬도를 상대적으로 높게 설정하여, 아라미드 하연사 및 범용 고분사 섬유 하연사 (즉, 나일론 또는 PET 하연사)를 제공한다.
바람직하게는, 상기 나일론 또는 PET 필라멘트사는 아라미드 필라멘트사 대비 200 데니어(de) 이상으로 높게 설정한 필라멘트를 사용함으로써, 아라미드가 범용 고분자를 자연스럽게 감싸는 구조를 형성할 수 있게 한다. 이때, 상기 나일론 또는 PET 필라멘트사의 섬도 차이가 없거나 200 데니어 이하이면 아라미드가 범용 고분자 섬유를 감싸는 구조를 형성하는 합연사를 제조하는데 있어서, 하연과 상연을 배치식으로 진행하는 링연사기를 사용하거나, 아라미드 또는 범용 고분자 섬유의 연사 장력을 다르게 적용하는 별도의 작업이 필요하다. 이렇게 강제적으로 커버링 구조를 발현하게 하는 연사공정 시스템에서는 아라미드가 범용 고분자를 감싸는 형태가 균일하지 않아 물성(특히 중신 및 절신)이 불균일한 문제를 야기시킬 수 있다.
이러한 방법에 따라, 상기 아라미드 하연사는 500 내지 1500 데니어의 아라미드 필라멘트사를 사용하여 하연되어 있고, 상기 나일론 또는 PET 하연사는, 800 내지 3000 데니어의 나일론 또는 PET 필라멘트사를 사용하고, 상기 아라미드 필라멘트사의 섬도 범위 보다는 200 데니어 이상 높은 나일론 또는 PET 필라멘트사를 사용하여 하연되어 있는 형태가 될 수 있다.
상기 하이브리드 타이어 코드에서, 상기 제2 꼬임 방향은 상기 제1 꼬임 방향과 동일한 방향이고, 상기 제3 꼬임 방향은 상기 제1 꼬임 방향의 반대 방향일 수 있다. 또, 상기 하이브리드 코드는, 소정 길이의 상기 하이브리드 타이어 코드에서 상연을 언트위스트 후(post-untwist) 상기 아라미드 하연사의 길이는 상기 나일론 또는 PET 하연사의 길이의 1.01 내지 1.10배일 수 있다.
또, 상기 하이브리드 타이어 코드는, 상기 아라미드 하연사와 상기 나일론 또는 PET 하연사 상에 코팅된 접착제를 더 포함할 수 있다.
이러한 본 발명의 하이브리드 섬유 코드는 ASTM D885에 의해 측정된 절단강도가 8.0 내지 15.0 g/d고, ASTM D885에 의해 측정된 파단신율이 5 내지 20%일 수 있다.
또, 상기 하이브리드 타이어 코드는, 180℃에서 2분 동안 초하중 0.01g/denier에서 측정된 건열 수축율이 0.5 내지 5.0%일 수 있다.
상기 하이브리드 타이어 코드는, ASTM D885에 의해 측정된 중신(@6.8kgf)의 최대값과 최소값의 차이가 0.5% 이내이고, ASTM D885에 의해 측정된 강력이 30 kgf 이상일 수 있다.
또한, 본 발명의 하이브리드 섬유 코드는 중신(EASL)값의 최대값과 최소값의 차이가 0.5% 이내의 값을 나타낸다.
또한, 본 발명의 하이브리드 섬유 코드는 일본표준협회(Japanese Standard Association: JSA)의 JIS-L 1017 방법에 따라 실시되는 디스크 피로 테스트 후의 강력유지율이 90%이상이다.
한편, 본 발명의 다른 일 구현예에 따라, 아라미드 필라멘트사를 제1 방향으로 하연하여 아라미드 하연사를 형성하는 제1 단계; 나일론 또는 PET 필라멘트사를 제2 방향으로 하연하여 나일론 또는 PET 하연사를 형성하는 제2 단계; 및 상기 아라미드 하연사와 상기 나일론 또는 PET 하연사를 제3 방향으로 상연하여 합연사를 형성하는 제3 단계를 포함하고, 상기 나일론 또는 PET 필라멘트사는 상기 아라미드 필라멘트사의 섬도 보다 200 데니어 이상 높은 섬도를 갖는 나일론 또는 PET 필라멘트사를 사용하는, 하이브리드 타이어 코드의 제조방법이 제공될 수 있다.
이하에서는 상술한 본 발명의 하이브리드 섬유 코드의 제조방법을 더욱 상세히 설명하도록 한다.
본 발명의 하이브리드 타이어 코드는 하이브리드 섬유로 이루어진 것으로서, 타이어에 적용될 수 있는 예시를 하기와 같이 제시한다. 또, 하기에 제시하는 나일론 또는 PET 필라멘트 및 아라미드가 혼합된 하이브리드 타입 외에 다른 범용 산업용 필라멘트 및 아라미드 필라멘트가 혼합된 하이브리드 타입 또한 타이어에서 요구되는 물성을 충분히 만족시킬 수 있다.
이러한 본 발명의 하이브리드 섬유 코드는, 상술한 제1 내지 3단계와 같이, 범용 산업용 필라멘트와 아라미드 각각에 대한 하연 공정 및 상기 하연 공정에 의해 제조되는 범용 산업용 하연사 및 아라미드 하연사를 함께 꼬는 상연 공정을 동시에 수행하고, 상기 하연 및 상연 공정에 의해 제조된 합연사를 접착제 용액에 침지시킨 후 건조 및 열처리하여 제조될 수 있다.
특히, 본 발명에 사용되는 아라미드 필라멘트와 나일론 또는 PET 필라멘트의 섬도는 나일론 또는 PET 필라멘트의 섬도가 아라미드 필라멘트의 섬도 대비 200de 이상 높게 적용되어 아라미드 필라멘트와 나일론 또는 PET 필라멘트의 섬도를 유사하게 적용하는 기존 하이브리드 구조와 가장 큰 차이점을 갖게 된다.
따라서, 본 발명에서는 상술한 바와 같이 섬도 차이를 갖는 아라미드 필라멘트사와 나일론 또는 PET 필라멘트를 이용하여, 제1, 2 단계를 수행하여 각각 아라미드 하연사와 나일론 또는 PET 하연사를 형성하고, 또한 상기 아라미드 하연사와 상기 나일론 또는 PET 하연사를 함께 상연함으로써, 2-플라이 합연사를 제조할 수 있다.
이때, 상기 제2 단계는 상기 제1 단계와 동시에 수행되며, 상기 제3 단계는 상기 제1 및 제2 단계들과 연속적으로 수행될 수 있다. 특히, 상기 제1, 제2 및 제3 단계들은 하나의 연사기에 의해 수행되므로, 보다 쉬운 방법으로 물성이 우수한 고성능의 하이브리드 타이어 코드를 제공할 수 있다. 또 본 발명의 방법은 종래 링 연사기를 사용하는 경우보다 더 효과적으로 피로 성능을 향상시킬 수 있으며 고강력을 갖는 하이브리드 타이어 코드를 제공할 수 있다.
또, 상술한 바와 같이, 본 발명의 방법으로 제조된 하이브리드 타이어 코드에서, 상기 제2 방향은 상기 제1 방향과 동일한 방향이고, 상기 제3 방향은 상기 제1 방향의 반대 방향일 수 있다.
상기 제1, 제2 단계에서 상기 나일론 또는 PET 필라멘트의 섬도는 아라미드 필라멘트 섬도 대비 200 de이상 높아 꼬임공정 중 각 필라멘트에 주어지는 장력이 동일하더라도 아라미드 필라멘트가 나일론 또는 PET 필라멘트를 나선형으로 감싸고 돌아 상기 나일론 또는 PET 필라멘트 하연사 길이의 1.01 내지 1.10배가 될 수 있다.
본 발명의 방법은, 상기 합연사를 접착제 용액에 침지시키는 단계; 상기 침지 공정에 의해 상기 접착제 용액이 함침된 상기 합연사를 건조시키는 단계; 및 상기 건조된 합연사를 열처리하는 단계를 더 포함할 수 있다.
즉, 타이어와의 접착성을 향상시키기 위해, 위에서 얻어진 합연사를 접착제 용액에 침지, 통과시키는 단계를 거친 후 건조한 후 열처리하여 본 발명의 하이브리드 섬유 코드를 완성한다.
상기 접착제 용액은 본 발명에서 특별히 한정하지 않으며, 이 분야에서 통상적으로 사용되는 타이어 코드용 접착제 용액인 RFL 용액(Resorcinol Formaldehyde Latex) 또는 에폭시계 접착 조성액 등을 사용할 수 있다.
상기 침지 공정에 이어서 수행되는 건조 공정의 온도 및 시간은 상기 접착제 용액의 조성에 따라 달라지나, 통상적으로 70 내지 200℃에서 30 내지 120초간 건조 공정이 실시된다.
상기 합연사를 열처리하는 단계는 200 내지 250℃에서 30 내지 120초간 실시될 수 있다.
이러한 건조 및 열처리 공정들을 통해, 이전 단계에서 합연사에 함침된 접착제 용액의 접착제 성분이 합연사 표면에 코팅됨으로써 후속 공정에서 타이어 제조시 사용되는 고무 조성물과의 접착성이 증가된다.
한편, 본 발명의 하이브리드 섬유 코드는 연사공정에서 동일한 꼬임수의 하연과 상연을 부여하지만, 접착제 용액에 침지 후 건조시키는 단계에서 연풀림 현상이 발생하여 하연과 상연에서 15% 이내의 꼬임수 차이가 발생할 수 있다.
이러한 방법으로 제공된 하이브리드 코드는 상술한 바대로, ASTM D885에 의해 측정된 절단강도가 8.0 내지 15.0 g/d고, 파단신율이 5 내지 20%고, 180℃에서 2분 동안 초하중 0.01g/De'에서 측정된 건열 수축율이 0.5 내지 5.0%인 물성을 가진다. 또한, 본 발명의 하이브리드 섬유 코드는 중신(EASL)값의 최대값과 최소값의 차이가 0.5% 이내의 값을 나타낸다. 또한, 본 발명의 하이브리드 섬유 코드는 일본표준협회(Japanese Standard Association: JSA)의 JIS-L 1017 방법에 따라 실시되는 디스크 피로 테스트 후의 강력유지율이 90%이상일 수 있다.
본 발명에 따르면, 범용 고분자 섬유와 아라미드의 섬도 차이를 이용하여 하이브리드 구조를 제공함으로써, 아라미드가 커버링된 형태의 하이브리드 코드를 보다 쉽게 제조할 수 있으며, 균일한 물성을 갖는 하이브리드 코드 및 그 제조 방법을 제공할 수 있다.
또한, 본 발명은 종래의 배치식으로 진행되는 방법에 비해, 상/하연이 동시에 이루어지는 하나의 케이블 코더 연사기를 통해 아라미드가 자연스럽게 커버링 된 하이브리드를 제조할 수 있어서, 제조 효율을 높일 수 있다. 따라서, 본 발명은 강제로 아라미드가 커버링된 형태로 로코드를 제조하는 것이 아니고 섬도 차이에 의해 자연적으로 커버링 되는 구조가 형성되어 물성적으로 보다 균일한 특성을 갖게 된다. 또한, 본 발명에서 제공되는 하이브리드 타이어 코드는 내피로 특성도 종래보다 우수하고, 고강력을 나타내어 고성능 타이어의 소재로 사용하기에 적합하다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예 1]
아라미드 필라멘트 1000de와 PET 필라멘트 2000de를 케이블 코더(Cable Corder) 연사기를 이용하여, 300TPM의 꼬임수로 하연(Z-연)을 반시계 방향으로 하고, 상연(S-연)을 시계방향으로 하며, 상기 하연과 상연을 동시에 가해주어 하이브리드 합연사를 제조하였다(row cord 코드 제조).
이렇게 제조된 로코드를 에폭시계(Epoxy Base)의 접착제에 1차 침지 후 150℃에서 100초 동안 건조시킨 후 240℃에서 100초 동안 열처리하였다. 이후, 2.0 중량%의 레소시놀, 3.2 중량%의 포르말린(37%), 1.1 중량%의 수산화나트륨(10%), 43.9 중량%의 스티렌/부타디엔/비닐피리딘(15/70/15) 라텍스(41%), 및 잔량의 물을 포함하는 레소시놀-포름알데히드-라텍스(RFL) 접착제 용액에, 상기 1차 열처리된 로코드를 2차 침지하였다.
상기 1차 침지 및 열처리 시 로코드에 가해지는 장력은 0.5kg/cord가 되도록 제어 되었다. 상기 2차 침지에 의해 RFL 용액을 함유하게 된 코드를 상기 1차 침지와 동일한 방법으로 2차 열처리를 실시하여 하이브리드 코드(dip cord 제조)를 완성하였다.
[실시예 2]
표 1과 같이, PET 필라멘트 대신 섬도가 다른 나일론 필라멘트를 사용하여 하이브리드 로코드를 제조한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 하이브리드 코드를 제조하였다.
[비교예 1]
PET 필라멘트와 아라미드 필라멘트를 400TPM의 꼬임수로 각각 하연사를 제조한 후, 링 연사기(Ring-Twister)를 사용하여 아라미드 하연사가 PET 하연사를 커버링 하는 형태의 로코드를 제조하였다. 그 외, 로코드의 침지 공정 및 열처리 공정은 실시예 1과 동일한 방법으로 실시하여, 하이브리드 코드를 제조하였다.
[비교예 2]
표 1과 같이, PET 필라멘트 대신 섬도가 다른 나일론 필라멘트를 사용하여, 하이브리드 로코드를 제조한 것을 제외하고는, 비교예 1과 동일한 방법으로 하이브리드 코드를 제조하였다.
[실험예]
다음 방법으로 물성을 측정하여, 그 결과를 표 1에 나타내었다.
1) 강력, 절신, 중신, 강도(절단강도)
ASTM D-885 시험방법에 따라, 인스트론 시험기(Instron Engineering Corp., Canton, Mass)를 이용하여 250 mm의 샘플 10개에 대하여 300 m/min 인장속도를 가함으로써, 하이브리드 코드(딥 코드)의 강력, 절신 및 중신(at 6.8 kg)을 각각 측정하였다. 이어서, 각 샘플의 강력, 절신 및 중신(at 6.8 kg)을 딥 코드의 전체 섬도로 나눔으로써 각 샘플의 절단강도(g/d)를 구하였다. 이어서, 10개 샘플들의 강력, 절신 및 중신(at 6.8 kg)의 평균치를 각각 산출함으로써 딥 코드의 강력, 절신 및 중신(at 6.8 kg)을 얻었다.
2) 길이 (아라미드-PET 또는 나일론 필라멘트 길이 차이 측정)
하연과 상연이 되어있는 로코드(Raw Cord)를 1m 길이로 자른 후 상연 및 하연의 꼬임 방향을 반대로 하여 꼬임을 푼 후 아라미드 필라멘트와 범용 고분자 필라멘트 (나일론 또는 PET)에 대한 길이를 측정하였다.
3) 피로 성능
강력(피로 전 강력)이 측정된 하이브리드 타이어 코드를 고무에 가류하여 시료를 제조한 후, 일본표준협회(Japanese Standard Association: JSA)의 JIS-L 1017 방법에 따라 디스크 피로 측정기(Disk Fatigue Tester)를 이용하여 80℃에서 2500 rpm의 속도로 회전시키면서 ±8% 범위 내에서 인장 및 수축을 16시간 동안 반복함으로써 상기 시료에 피로를 가하였다. 이어서, 상기 시료로부터 고무를 제거한 후 하이브리드 타이어 코드의 피로 후 강력을 측정하였다. 상기 피로 전 강력과 피로 후 강력을 기초로 하여 하기의 식 1에 의해 정의되는 강력 유지율을 계산하였다.
[식 1]
강력 유지율(%) = [피로 후 강력(kgf)/피로 전 강력(kgf)] × 100
여기서, 피로 전 및 피로 후 강력(kgf)은, ASTM D-885 시험방법에 따라, 인스트론 시험기(Instron EngineeringCorp., Canton, Mass)를 이용하여 250 mm의 샘플에 대하여 300 m/min 인장속도를 가하면서 하이브리드 타이어 코드의 절단 강력(Strength at Break)을 측정함으로써 구하였다.
Sample | 비교예 1 | 비교예 2 | 실시예 1 | 실시예 2 | |
구조 | 제1 하연사용필라멘트사 | Aramid 1000de | Aramid 1000de | Aramid 1000de | Aramid 1000de |
제2 하연사용필라멘트사 | PET1000de | Nylon840de | PET2000de | Nylon2520de | |
연수 | TPM | 400 | 400 | 300 | 300 |
강력 | kgf | 20.4 | 21.4 | 31.8 | 35.6 |
강도 | g/d | 10.2 | 11.6 | 10.6 | 10.1 |
절신 | % | 8.7 | 9.8 | 8.9 | 14.1 |
중신@6.8kgf | % | 2.8 | 4.6 | 2.1 | 5.8 |
중신 (Max. - Min.) | % | 0.8 | 1.2 | 0.2 | 0.3 |
길이 차이, Dip Cord 기준(Aramid-나일론 or PET) | kgf | Aramid 2.5cm↑ | Aramid 5.4cm↑ | Aramid 7.5cm↑ | Aramid 6.2cm ↑ |
피로 성능 | % | 81.7 | 83.4 | 91.3 | 94.5 |
표 1의 결과를 보면, 본 발명의 실시예 1 및 2는 범용 고분자 섬유인 나일론 또는 PET 필라멘트의 섬도가 아라미드 필라멘트 섬도보다 200 데니어 이상으로 높게 설정한 후, 하나의 연사기에서 하연 및 상연을 연속적으로 진행함으로써, 비교예 1 및 2에 비해, 동등 이상의 강도를 나타내었다. 특히, 실시예 1 및 2는 ASTM D885에 의해 측정된 중신(@6.8kgf)의 최대값과 최소값의 차이가 0.5% 이내이고, ASTM D885에 의해 측정된 강력이 30 kgf 이상이며, 아라미드 필라멘트가 나일론 또는 PET 필라멘트를 나선형으로 감싸고 돌아서, 아라미드 하연사의 길이가 나일론 또는 PET 하연사의 길이보다 길었으며, 피로 성능이 90% 이상으로 우수한 결과를 나타내었다.
반면, 비교예 1 및 2는 종래 링 연사기를 이용하는 배치식 방법이고, 합연사 제조시 사용되는 두 섬유의 섬도 차이에 있어서 PET 또는 나일론 필라멘트의 섬도가 아라미드 필라멘트의 섬도 대비 동일하거나, 아라미드 필라멘트의 섬도보다 더 적어서 피로성능이 떨어지고, 전체적인 물성이 실시예 1 및 2보다 낮았다.
Claims (10)
- 제1 꼬임 방향의 아라미드 하연사,제2 꼬임 방향의 나일론 또는 PET 하연사, 및상기 아라미드 하연사와 나일론 또는 PET 하연사 상에 코팅된 접착제를 포함하고,상기 아라미드 하연사와 상기 나일론 또는 PET 하연사는 제3 꼬임 방향으로 서로 상연되어 있으며,상기 나일론 또는 PET 하연사는, 아라미드 하연사를 형성하기 위한 아라미드 필라멘트사의 섬도보다 200 데니어 이상 높은 섬도 차이를 갖는 나일론 또는 PET 필라멘트사로 하연되어 있는 것인,하이브리드 타이어 코드.
- 제1항에 있어서,상기 아라미드 하연사는 500 내지 1500 데니어의 아라미드 필라멘트사를 사용하여 하연되어 있고,상기 나일론 또는 PET 하연사는, 800 내지 3000 데니어의 나일론 또는 PET 필라멘트사를 사용하고, 상기 아라미드 필라멘트사의 섬도 범위 보다는 200 데니어 이상 높은 나일론 또는 PET 필라멘트사를 사용하여 하연되어 있는 것인,하이브리드 타이어 코드.
- 제1항에 있어서,상기 제2 꼬임 방향은 제1 꼬임 방향과 동일한 방향이고, 상기 제3 꼬임 방향은 상기 제1 꼬임 방향의 반대 방향인 하이브리드 타이어 코드.
- 제1항에 있어서,소정 길이의 하이브리드 타이어 코드에서, 상연을 언트위스트한 후 측정되는 상기 아라미드 하연사의 길이는 상기 나일론 또는 PET 하연사의 길이의 1.01 내지 1.10 배인 하이브리드 타이어 코드.
- 제1항에 있어서, 일본표준협회의 JIS-L 1017 방법에 따라 실시되는 디스크 피로 테스트 후의 강력 유지율이 적어도 90% 이상인, 하이브리드 타이어 코드.
- 제1항에 있어서, ASTM D885에 의해 측정된 절단강도 및 파단신율이 각각 8.0 내지 15.0 g/d 및 5 내지 20%이며, ASTM D885에 의해 측정된 중신(@6.8kgf)의 최대값과 최소값의 차이가 0.5% 이내이고, ASTM D885에 의해 측정된 강력이 30 kgf이상인, 하이브리드 타이어 코드.
- 아라미드 필라멘트사를 제1 방향으로 하연하여 제1하연사인 아라미드 하연사를 형성하는 제1 단계;나일론 또는 PET 필라멘트사를 제2 방향으로 하연하여, 제2하연사인 나일론 또는 PET 하연사를 형성하는 제2 단계; 및상기 아라미드 하연사와 상기 나일론 또는 PET 하연사를 제3 방향으로 상연하여 합연사를 형성하는 제3 단계를 포함하고,상기 나일론 또는 PET 필라멘트사는 상기 아라미드 필라멘트사의 섬도 보다 200 데니어 이상 높은 섬도를 갖는 나일론 또는 PET 필라멘트사를 사용하는,하이브리드 타이어 코드의 제조방법.
- 제7항에 있어서,상기 제1 단계는 500 내지 1500 데니어의 섬도를 갖는 아라미드 필라멘트사를 제1 꼬임 방향으로 하연하는 단계를 포함하고,상기 제2 단계는, 상기 아라미드 필라멘트의 섬도 보다 200 데니어 이상 높게 설정한 800 내지 3000 데니어의 섬도 범위의 나일론 또는 PET 필라멘트사를 사용하여 제2 꼬임 방향으로 하연하는 단계를 포함하는,하이브리드 타이어 코드의 제조방법.
- 제1항에 있어서,상기 제1 단계 내지 제 3단계는 하나의 연사기에서 동시에 각각 수행되고,상기 제3단계는 제1 단계 및 제2 단계들과 연속적으로 수행되며,상기 제2 꼬임 방향은 상기 제1 꼬임 방향과 동일한 방향이고,상기 제3 꼬임 방향은 상기 제1 꼬임 방향의 반대 방향인하이브리드 타이어 코드의 제조방법.
- 제1항에 있어서, 상기 방법은상기 합연사를 접착제 용액에 침지시키는 단계; 상기 침지 공정에 의해 상기 접착제 용액이 함침된 상기 합연사를 건조시키는 단계; 및 상기 건조된 합연사를 열처리하는 단계;를 더 포함하는 하이브리드 타이어 코드의 제조방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/635,780 US12084793B2 (en) | 2019-09-30 | 2020-09-23 | Hybrid tire cord and method for manufacturing thereof |
EP20870642.4A EP4006218A4 (en) | 2019-09-30 | 2020-09-23 | HYBRID TIRE CORD AND METHOD FOR PRODUCING THEREOF |
JP2022515122A JP7356582B2 (ja) | 2019-09-30 | 2020-09-23 | ハイブリッドタイヤコードおよびその製造方法 |
CN202080067244.5A CN114514344B (zh) | 2019-09-30 | 2020-09-23 | 混合轮胎帘子线及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190121169A KR102477590B1 (ko) | 2019-09-30 | 2019-09-30 | 하이브리드 타이어 코드 및 그 제조 방법 |
KR10-2019-0121169 | 2019-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021066385A1 true WO2021066385A1 (ko) | 2021-04-08 |
Family
ID=75337202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/012881 WO2021066385A1 (ko) | 2019-09-30 | 2020-09-23 | 하이브리드 타이어 코드 및 그 제조 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US12084793B2 (ko) |
EP (1) | EP4006218A4 (ko) |
JP (1) | JP7356582B2 (ko) |
KR (1) | KR102477590B1 (ko) |
CN (1) | CN114514344B (ko) |
WO (1) | WO2021066385A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010012828A (ja) * | 2008-07-01 | 2010-01-21 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
KR101602605B1 (ko) * | 2015-06-29 | 2016-03-21 | 코오롱인더스트리 주식회사 | 하이브리드 타이어 코드 및 그 제조방법 |
JP2016060343A (ja) * | 2014-09-17 | 2016-04-25 | 東洋ゴム工業株式会社 | 空気入りタイヤ |
KR20170088626A (ko) * | 2016-01-25 | 2017-08-02 | 한국타이어 주식회사 | 하이브리드 코드 및 이를 사용한 타이어 |
KR20180063924A (ko) * | 2016-12-02 | 2018-06-14 | 주식회사 효성 | 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4155394A (en) * | 1977-08-29 | 1979-05-22 | The Goodyear Tire & Rubber Company | Tire cord composite and pneumatic tire |
KR20000050439A (ko) * | 1999-01-08 | 2000-08-05 | 조충환 | 카카스부에 스틸코드가 적용된 승용차 및 소형트럭용 레이디얼 타이어 |
KR100683956B1 (ko) * | 2005-03-30 | 2007-02-16 | 금호타이어 주식회사 | 타이어용 나일론―스틸 하이브리드 코드 |
JP4961780B2 (ja) | 2006-03-14 | 2012-06-27 | 横浜ゴム株式会社 | 空気入りタイヤ及びその製造方法 |
US20090090447A1 (en) * | 2007-10-05 | 2009-04-09 | Baldwin Jr Donald William | Tire cord reinforcement |
JP5285265B2 (ja) | 2007-11-26 | 2013-09-11 | 住友ゴム工業株式会社 | タイヤ用コード及びそれを用いた自動二輪車用タイヤ |
KR101353700B1 (ko) * | 2010-09-17 | 2014-01-21 | 코오롱인더스트리 주식회사 | 혼합 섬유 및 그 제조방법 |
KR101260390B1 (ko) * | 2011-07-25 | 2013-05-21 | 한국타이어 주식회사 | 아라미드 코드와 나일론 66과의 하이브리드 코드 및 이를 보강 코드로 사용하는 공기입 타이어 |
JP6338291B2 (ja) * | 2012-10-26 | 2018-06-06 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | タイヤまたはベルトなどの物体の補強のための複合層 |
KR101580352B1 (ko) | 2012-12-27 | 2015-12-23 | 코오롱인더스트리 주식회사 | 하이브리드 섬유 코드 및 그 제조방법 |
US9175425B2 (en) * | 2013-02-27 | 2015-11-03 | E I Du Pont Nemours And Company | Unbalanced hybrid cords and methods for making on cable cording machines |
US20140237983A1 (en) * | 2013-02-27 | 2014-08-28 | E I Du Pont De Nemours And Company | Unbalanced Hybrid Cords and Methods for Making on Cable Cording Machines |
DE102013223573A1 (de) | 2013-11-19 | 2015-05-21 | Continental Reifen Deutschland Gmbh | Dünner Hybridfestigkeitsträger für elastomere Erzeugnisse, insbesondere für die Gürtelbandage eines Fahrzeugluftreifens, sowie Verfahren zur Herstellung |
JP6742511B2 (ja) * | 2016-09-29 | 2020-08-19 | コーロン インダストリーズ インク | ハイブリッドタイヤコード及びその製造方法 |
KR102415569B1 (ko) * | 2016-09-29 | 2022-06-30 | 코오롱인더스트리 주식회사 | 하이브리드 타이어 코드 및 그 제조방법 |
KR101878778B1 (ko) * | 2016-12-02 | 2018-07-17 | 주식회사 효성 | 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어 |
JP6319409B1 (ja) | 2016-12-09 | 2018-05-09 | 横浜ゴム株式会社 | 空気入りタイヤ |
DE102017215655A1 (de) * | 2017-09-06 | 2019-03-07 | Continental Reifen Deutschland Gmbh | Fahrzeugluftreifen aufweisend eine Gürtelbandage |
-
2019
- 2019-09-30 KR KR1020190121169A patent/KR102477590B1/ko active IP Right Grant
-
2020
- 2020-09-23 EP EP20870642.4A patent/EP4006218A4/en active Pending
- 2020-09-23 WO PCT/KR2020/012881 patent/WO2021066385A1/ko unknown
- 2020-09-23 CN CN202080067244.5A patent/CN114514344B/zh active Active
- 2020-09-23 US US17/635,780 patent/US12084793B2/en active Active
- 2020-09-23 JP JP2022515122A patent/JP7356582B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010012828A (ja) * | 2008-07-01 | 2010-01-21 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
JP2016060343A (ja) * | 2014-09-17 | 2016-04-25 | 東洋ゴム工業株式会社 | 空気入りタイヤ |
KR101602605B1 (ko) * | 2015-06-29 | 2016-03-21 | 코오롱인더스트리 주식회사 | 하이브리드 타이어 코드 및 그 제조방법 |
KR20170088626A (ko) * | 2016-01-25 | 2017-08-02 | 한국타이어 주식회사 | 하이브리드 코드 및 이를 사용한 타이어 |
KR20180063924A (ko) * | 2016-12-02 | 2018-06-14 | 주식회사 효성 | 내피로도가 우수한 하이브리드 딥코드 및 이를 적용한 래디얼 공기입 타이어 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4006218A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN114514344B (zh) | 2023-08-22 |
CN114514344A (zh) | 2022-05-17 |
JP2022547156A (ja) | 2022-11-10 |
EP4006218A4 (en) | 2023-10-18 |
EP4006218A1 (en) | 2022-06-01 |
US12084793B2 (en) | 2024-09-10 |
KR102477590B1 (ko) | 2022-12-13 |
KR20210038245A (ko) | 2021-04-07 |
JP7356582B2 (ja) | 2023-10-04 |
US20220307162A1 (en) | 2022-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014104680A1 (en) | Hybrid fiber cord and method for manufacturing the same | |
AU773621B2 (en) | Hybrid cabled cord and a method to make it | |
WO2017003169A1 (ko) | 하이브리드 타이어 코드 및 그 제조방법 | |
WO2013048097A2 (ko) | 아라미드 섬유 코드 및 그 제조방법 | |
CN109843604B (zh) | 混合轮胎帘线及其制造方法 | |
US6855423B2 (en) | Wrapped cord | |
US6539698B2 (en) | Wrapped cord | |
WO2021066385A1 (ko) | 하이브리드 타이어 코드 및 그 제조 방법 | |
US11938765B2 (en) | Hybrid tire cord with strong adhesion to rubber and excellent fatigue resistance, and method for manufacturing the same | |
WO2022231286A1 (ko) | 바이오 유래 성분을 포함하는 코드 및 그 제조방법 | |
WO2024147648A1 (ko) | 폴리에틸렌테레프탈레이트 타이어코드 및 이를 이용한 타이어 | |
CN117043402A (zh) | 包含生物基组分的帘线及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20870642 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020870642 Country of ref document: EP Effective date: 20220224 |
|
ENP | Entry into the national phase |
Ref document number: 2022515122 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |