WO2021065579A1 - Die head - Google Patents

Die head Download PDF

Info

Publication number
WO2021065579A1
WO2021065579A1 PCT/JP2020/035541 JP2020035541W WO2021065579A1 WO 2021065579 A1 WO2021065579 A1 WO 2021065579A1 JP 2020035541 W JP2020035541 W JP 2020035541W WO 2021065579 A1 WO2021065579 A1 WO 2021065579A1
Authority
WO
WIPO (PCT)
Prior art keywords
lip
die head
coating
coating liquid
base material
Prior art date
Application number
PCT/JP2020/035541
Other languages
French (fr)
Japanese (ja)
Inventor
諭司 國安
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020227010544A priority Critical patent/KR102636770B1/en
Priority to CN202080068203.8A priority patent/CN114450095B/en
Priority to JP2021550630A priority patent/JP7270757B2/en
Publication of WO2021065579A1 publication Critical patent/WO2021065579A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0254Coating heads with slot-shaped outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00

Definitions

  • This disclosure relates to die heads.
  • a method of forming a target coating layer on a base material is known.
  • Patent Document 1 describes coating in a coating member manufacturing apparatus in which a coating liquid discharge port is formed between a pair of lip tips and a coating film is formed on the surface of a member to be coated that moves relative to the discharge port. Described is an apparatus for manufacturing a coating member in which the tip of the downstream lip located on the film forming side has a larger contact angle with water than the tip of the upstream lip.
  • Patent Document 2 describes a die coating device used when a coating liquid for forming a transparent conductive layer containing at least a metal material is applied onto a transparent base material to form a transparent conductive layer, and is used for forming the transparent conductive layer. It has a die head that discharges the coating liquid, a coating liquid tank that houses the coating liquid for forming the transparent conductive layer, and a liquid feeding path that sends the coating liquid for forming the transparent conductive layer from the coating liquid tank to the die head. As the die head, a die coating device in which a liquid-repellent region is formed on a surface located at least in a direction opposite to the coating direction is described.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-248349
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2016-68047
  • the contact portion of the lip with the coating liquid is covered with the coating liquid once the coating liquid adheres (that is, a film formed by the coating liquid is formed on the contact portion. Will be done). Since the contact portion of the lip with the coating liquid is covered with the coating liquid, that becomes the starting point and coating streaks are generated.
  • the coating streaks caused by the lip on the most upstream side are the streaks caused by the dry matter (that is, solid content) of the coating liquid generated on the land surface or the edge of the land surface disturbing the shape of the bead end, and the land.
  • the streaks are caused by the droplets formed by the difference in surface tension between the coating liquid formed on the surface and the bead and the droplets adhering to the end of the bead.
  • linear film thickness unevenness that is, streaks
  • extending along the transport direction of the base material appears individually or continuously in a plurality of layers, and the width thereof is about 0.1 mm to 5 mm.
  • linear film thickness unevenness that is, streaks
  • the coating streaks caused by the lip on the most downstream side reach the surface connected to the land surface on the side opposite to the slot forming surface of the lip, and are droplets of the coating liquid or a dried product (that is, solid content) of the coating liquid.
  • the streak is caused by disturbing the shape of the bead end.
  • linear film thickness unevenness that is, streaks
  • extending along the transport direction of the base material appears individually or continuously in a plurality of streaks, and the width thereof is about 0.1 mm to 5 mm.
  • the film is observed by observing the surface shape of the formed coating film while observing the shape of the bead at the time of coating. It can be confirmed by capturing the shape of the uneven thickness. That is, by associating the observation result of the shape of the bead with the shape of the formed film thickness unevenness, it is a coating streak caused by the lip on the most upstream side, or a coating streak caused by the lip on the most downstream side. You can check if it is.
  • the planar observation of the coating film may be visually observed, a magnifying glass may be used, or an apparatus for observing the planar surface by transmission or reflection may be used. Further, a microscope may be used for observing the surface shape of the coating film, or a cross Nicol method may be used depending on the type of the coating film.
  • an object to be solved by one embodiment of the present disclosure is to provide a die head capable of suppressing the occurrence of coating streaks.
  • ⁇ 1> It has two or more lips in parallel and a slot formed between adjacent lips to transfer and discharge the coating liquid. At least one of the land surface of the lip at one end in the parallel direction and the outer surface of the lip at the other end in the parallel direction connected to the land surface on the side opposite to the slot forming surface has a dynamic contact angle hysteresis of 20 ° or less due to methyl ethyl ketone. Is a die head.
  • ⁇ 2> The die head according to ⁇ 1>, wherein the land surface of the lip at one end in the parallel direction and the outer surface of the lip at the other end in the parallel direction have a ten-point average roughness Rzjis of 1.0 ⁇ m or less. ..
  • the surface having the dynamic contact angle hysteresis of 20 ° or less due to the methyl ethyl ketone is the fluorine-containing compound.
  • ⁇ 6> The die head according to any one of ⁇ 1> to ⁇ 5>, wherein the lip at the other end in the parallel direction has a curved surface at a portion connected to the land surface on the outer surface in a side view.
  • ⁇ 7> The die head according to ⁇ 6>, wherein the curved surface of the lip at the other end in the parallel direction is a curved surface having a radius of curvature of 0.2 mm or more.
  • the lip at one end in the parallel direction is located on the downstream side with respect to the coating direction, and the lip at the other end in the parallel direction is located on the upstream side with respect to the coating direction, ⁇ 1> to ⁇ 7.
  • a die head capable of suppressing the occurrence of coating streaks is provided.
  • the term "process” is included in the term not only in an independent process but also in the case where the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value described in one numerical range is the upper limit value of the numerical range described in another stepwise description, or the lower limit value described in a certain numerical range is. , May be replaced with the lower limit of the numerical range described in other steps.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • the "solid content" refers to a component other than a solvent (preferably an organic solvent).
  • the clean state is a three-phase interface composed of a solid (that is, an outer surface and a land surface), a liquid (that is, a coating liquid), and a gas (that is, an atmosphere) on the outer surface and the land surface when the die head is viewed from the side.
  • the above-mentioned effect of forming a clean state can be obtained regardless of the type of coating liquid applied to the die head. Conceivable.
  • a three-phase interface is formed on the outer surface and the land surface, the amount of the coating liquid staying on the outer surface and the land surface is reduced, and a film of the coating liquid is present on the outer surface and the land surface. It is considered that the occurrence of coating streaks caused by this can be suppressed.
  • the die heads described in Patent Documents 1 and 2 once a film is formed by the coating liquid on the outer surface, this film is not removed and the outer surface is not exposed, so that the three-phase interface is not formed. ..
  • the die head of the present disclosure has two or more lips in parallel and a slot formed between adjacent lips to transfer and discharge the coating liquid, and the land surface of the lip at one end in the parallel direction. And at least one of the outer surface of the lip at the other end in the parallel direction, which is opposite to the slot forming surface and is connected to the land surface, has a dynamic contact angle hysteresis of 20 ° or less due to methyl ethyl ketone.
  • the lip at one end in the parallel direction is on the downstream side with respect to the coating direction
  • the lip at the other end in the parallel direction is on the upstream side with respect to the coating direction. Can be suppressed.
  • the "coating direction” in the present disclosure refers to the direction in which the coating film is formed.
  • the die head and the member to be coated are relatively moved. That is, “moving the die head and the member to be coated relative to each other” means moving the member to be coated with respect to the fixed die head, moving the die head with respect to the fixed member to be coated, and the die head. And the member to be coated are moved to each other in one direction.
  • the base material which is the member to be coated
  • the transport direction of the base material and the above-mentioned "coating direction” are opposite to each other.
  • the outer surface of the lip at the other end in the parallel direction which is opposite to the slot forming surface and is connected to the land surface, has a dynamic contact angle hysteresis of 20 ° or less due to methyl ethyl ketone. Unless otherwise noted, this includes the dynamic contact angle hysteresis of methyl ethyl ketone of 20 ° or less on all or part of the outer surface of the lip at the other end in the parallel direction.
  • the region where the dynamic contact angle hysteresis of methyl ethyl ketone is 20 ° or less preferably includes at least a region in contact with the coating liquid.
  • the region in contact with the coating liquid is also referred to as a contact portion.
  • the lower limit of the dynamic contact angle hysteresis due to methyl ethyl ketone is 1 ° in any aspect, for example, from the viewpoint of the measurement limit.
  • the lip on the most upstream side with respect to the transport direction of the base material described above is caused.
  • the amount of coating streaks generated due to the most downstream lip may be different. Therefore, in the die head of the present disclosure, the corresponding surface of the lip on the side where coating streaks are likely to occur, that is, the land surface of the lip at one end in the parallel direction and / or the outer surface of the lip at the other end in the parallel direction is moved by methyl ethyl ketone.
  • the land surface of the lip at one end in the parallel direction and the land surface of the lip at the other end in the parallel direction on the opposite side of the slot forming surface are set to 20 ° or less for both the outer surface connected to and the outer surface.
  • Dynamic contact angle hysteresis is based on the forward and backward contact angles when the droplet is plucked on the surface of a horizontally supported solid wall, the solid wall is gradually tilted, and the droplet begins to slide down. Calculated.
  • the measurement is performed by the sliding method as described above (that is, the state of the droplet when the droplet is plucked on the surface of a horizontally supported solid wall, the solid wall is gradually tilted, and the droplet starts to slide). Method of measuring) is used.
  • the measurement is performed in an environment of room temperature of 25 ° C. and humidity of 50%. The conditions for the measurement are that the surface temperature of the solid wall is 25 ° C., the droplet temperature is 25 ° C., and the droplet amount is usually 1 ⁇ L.
  • the amount is ⁇ 4 ⁇ L, but the amount of liquid is not limited from the viewpoint of reproducing a situation close to an actual phenomenon.
  • the die head itself may be used for the solid wall, or the same surface as the land surface, outer surface, etc., which is the measurement target area (specifically, the same surface treatment layer and the same ten-point average roughness) may be used.
  • a plate-like material having a surface having Rzjis) may be used.
  • the die head of the present disclosure is an extrusion type die head, and a bead is formed by collecting the coating liquid discharged from the slot between a slot for discharging the coating liquid and a member to be coated (for example, a base material) to form a bead.
  • the coating liquid is applied to the member to be coated via the above. That is, the bead is a coating liquid pool formed between the die head and the member to be coated.
  • FIG. 1 is a schematic side view showing an example of the tip end portion of the die head in the present disclosure.
  • the die head 100A shown in FIG. 1 has an upstream lip 10 located on the upstream side and a downstream lip 20 located on the downstream side with respect to the transport direction X of the base material F to be coated. That is, in the embodiment shown in FIG. 1, since the coating liquid is applied onto the base material F that is transported and moved, the transport direction X of the base material is opposite to the coating direction.
  • the contact portion 20Cz in the downstream lip 20 is described so as to have a step with respect to the surface 20C of the downstream lip 20, but this notation is for convenience of explanation and the contact portion 20Cz. Does not have a configuration in which there is a step with respect to the surface 20C of the downstream lip 20. This also applies to the contact portion 20Cz on the surface 20C of the downstream lip 20 shown in FIG. 2, which will be described later, and the contact portion 50Cz on the surface 50C of the downstream lip 50 shown in FIG.
  • the upstream lip 10 has a slot forming surface 10B, and the downstream lip 20 has a slot forming surface 20B. As shown in FIG. 1, the upstream lip 10 has a slot forming surface 10B and a downstream side lip 10.
  • a slot 30 for transferring and discharging the coating liquid L is formed between the side lip 20 and the slot forming surface 20B.
  • the slot 30 communicates with a manifold (not shown).
  • the manifold is a space extending along the width direction of the die head 100A (that is, the depth direction in FIG. 1), and the coating liquid L supplied to the die head 100A is expanded in the coating width direction (that is, the width direction of the die head 100A). It is poured and the coating liquid L is temporarily stored.
  • a bead B is formed between the slot 30 and the base material F at the time of coating, and the coating liquid L is applied to the base material F via the bead B.
  • the land surface 10A of the upstream lip 10 has a dynamic contact angle hysteresis of 20 ° or less.
  • the land surface 10A is an example of the land surface of the lip at one end in the parallel direction.
  • the contact portion 20Cz with the coating liquid on the surface 20C of the downstream lip 20 also has a dynamic contact angle hysteresis of 20 ° or less.
  • the contact portion 20 Cz is a part of the outer surface of the lip at the other end in the parallel direction, which is connected to the land surface on the side opposite to the slot forming surface, and is an example of the contact portion with the coating liquid.
  • the region of the contact portion 20Cz with the coating liquid which occupies the surface 20C of the downstream lip 20, may be a region where the coating liquid can come into contact, which is assumed in consideration of the coating liquid, coating conditions, and the like.
  • the formation region of the contact portion 20Cz with the coating liquid for example, a region of 1 mm or more from the edge portion of the land surface 20A is set. From the viewpoint of surface treatment efficiency and the like, it is preferable that the dynamic contact angle hysteresis of the entire surface of the surface 20C of the downstream lip 20 is 20 ° or less.
  • the land surface 20A also preferably has a dynamic contact angle hysteresis of 20 ° or less. Further, from the viewpoint that the coating liquid is easily removed when cleaning the die head 100A and failure due to dirt on the slot 30 is unlikely to occur when the subsequent coating is restarted, the slot forming surface 10B of the upstream lip 10 and the slot forming surface of the downstream lip 20 are less likely to occur. It is preferable that the dynamic contact angle hysteresis of both 20B is 20 ° or less.
  • the land surfaces 10A and 20A both refer to surfaces facing the base material F.
  • the distance between the land surface 10A of the upstream lip 10 and the base material F and the distance between the land surface 20A of the downstream lip 20 and the base material F are both the viscosity of the coating liquid and the coating film to be formed. It may be determined according to the film thickness and the like.
  • the distance between the land surface 10A of the upstream lip 10 and the base material F and the distance between the land surface 20A of the downstream lip 20 and the base material F can be selected from 50 ⁇ m to 500 ⁇ m, respectively, and are 100 ⁇ m. You may choose up to 300 ⁇ m.
  • the above distance refers to the shortest distance between the land surface and the base material. Such a distance can be measured with, for example, a taper gauge.
  • FIG. 2 is a schematic side view showing another example of the tip end portion of the die head in the present disclosure.
  • the die head shown in FIG. 2 is a die head for multi-layer coating.
  • the die head 100B shown in FIG. 2 has an upstream lip 10 on the most upstream side, a downstream lip 20 on the most downstream side, and an upstream lip 10 and a downstream side with respect to the transport direction X of the base material F to be coated. It has an intermediate lip 40, which is between the lip 20 and the lip 20.
  • the upstream lip 10 has a slot forming surface 10B
  • the downstream lip 20 has a slot forming surface 20B
  • the intermediate lip 40 has slot forming surfaces 40B 1 and 40B 2 .
  • Slot 30a for transferring and discharging the coating liquid L 1 between the slot formation surface 40B 1 of the slot forming surface 10B and the intermediate lip 40 of the upstream lip 10 is formed.
  • the slot 30b for transferring and discharging the coating liquid L 2 between the slot formation surface 20B of the slot forming surface 40B 2 and the downstream lip 20 of the intermediate lip 40 is formed. Then, the slot 30a and the slot 30b communicate with each other through a manifold (not shown).
  • the manifold in the die head 100B is the same as the manifold in the die head 100A.
  • the time of coating, slot 30a, slots 30b, and between the base material F, and the bead B is formed by the coating solution L 1 and the coating solution L 2, via the bead B
  • the coating liquid L 1 and the coating liquid L 2 are applied to the base material F.
  • the land surface 10A of the upstream lip 10 has a dynamic contact angle hysteresis of 20 ° or less.
  • the land surface 10A is an example of the land surface of the lip at one end in the parallel direction.
  • the contact portion 20Cz with the coating liquid on the surface 20C of the downstream lip 20 also has a dynamic contact angle hysteresis of 20 ° or less.
  • the contact portion 20 Cz is a part of the outer surface of the lip at the other end in the parallel direction, which is connected to the land surface on the side opposite to the slot forming surface, and is an example of the contact portion with the coating liquid.
  • the dynamic contact angle hysteresis of the land surface 10A and the contact portion 20Cz with the coating liquid is 20 ° or less, the above-mentioned three-phase interface is formed at the land surface 10A and the contact portion 20Cz with the coating liquid. As a result, the occurrence of coating streaks can be suppressed.
  • the region where the contact portion 20Cz with the coating liquid occupies the surface 20C of the downstream lip 20 is a region where the coating liquid can come into contact, which is assumed in consideration of the coating liquid, the coating conditions, and the like. Good.
  • the formation region of the contact portion 20Cz with the coating liquid for example, a region of 1 mm or more from the edge portion of the land surface 20A is set. From the viewpoint of surface treatment efficiency and the like, it is preferable that the dynamic contact angle hysteresis of the entire surface of the surface 20C of the downstream lip 20 is 20 ° or less.
  • the land surface 20A of the side lip 20 also preferably has a dynamic contact angle hysteresis of 20 ° or less. Further, from the viewpoint that the coating liquid can be easily removed when cleaning the die head 100B, it is preferable that the land surface 40A of the intermediate lip 40 also has a dynamic contact angle hysteresis of 20 ° or less.
  • the slot forming surface 10B of the upstream lip 10 and the slot of the downstream lip 20 also preferably have a dynamic contact angle hysteresis of 20 ° or less.
  • the land surfaces 10A, 20A, and 40A all mean surfaces facing the base material F.
  • the distance between the land surface 10A of the upstream lip 10 and the base material F, the distance between the land surface 20A of the downstream lip 20 and the base material F, and the land surface 40A and the base material F of the intermediate lip 40 may be determined according to the viscosity of the coating liquid, the thickness of the coating film to be formed, and the like.
  • the distance between the land surface 10A of the upstream lip 10 and the base material F, the distance between the land surface 20A of the downstream lip 20 and the base material F, and the distance between the land surface 40A of the intermediate lip 40 and the base material F. Can be selected from 50 ⁇ m to 500 ⁇ m, respectively, and may be selected from 100 ⁇ m to 300 ⁇ m.
  • FIG. 3 will be used to describe yet another aspect of the die head in the present disclosure.
  • FIG. 3 is a schematic side view showing still another example of the tip end portion of the die head in the present disclosure.
  • the die head 100C shown in FIG. 3 has an upstream lip 10 on the upstream side and a downstream lip 50 on the downstream side with respect to the transport direction X of the base material F to be coated.
  • the die head 100C shown in FIG. 3 has a configuration in which the downstream lip 50 is provided instead of the downstream lip 20 in the die head 100C shown in FIG. Since each component other than the downstream lip 50 shown in FIG. 3 has the same function and configuration as each component in the die head 100A shown in FIG. 1, description thereof will be omitted here.
  • the downstream lip 50 in the die head 100C has a land surface 50A, a slot forming surface 50B, and a surface 50C.
  • the surface 50C of the downstream lip 50 has a contact portion 50Cz with the coating liquid.
  • the contact portion 50 Cz is a part of the outer surface of the lip at the other end in the parallel direction, which is connected to the land surface on the side opposite to the slot forming surface, and is an example of the contact portion with the coating liquid.
  • the contact portion 50Cz has a curved surface whose portion connected to the land surface 50A is convex when viewed from the side as shown in FIG.
  • the dynamic contact angle hysteresis of the land surface 10A and the contact portion 50Cz with the coating liquid is 20 ° or less, the above-mentioned three-phase interface is formed on the land surface 10A and the contact portion 50Cz. As a result, the occurrence of coating streaks can be suppressed.
  • the three-phase interface formed during the application of the coating liquid by the die head 100C usually moves in the region of the contact portion 50 Cz due to various factors. Since the portion connected to the land surface 50A has a convex curved surface such as the contact portion 50Cz, the degree of freedom of movement of the formed three-phase interface can be improved.
  • the movement of the three-phase interface is not hindered by the corners of the downstream lip 50. Further, at the contact portion 50 Cz, the liquid does not remain at the corner even if the three-phase interface moves (even if the liquid separates from the three-phase interface and adheres to the corner, it remains at the corner. It is possible to suppress the occurrence of coating streaks. By improving the degree of freedom of movement of the three-phase interface at the contact portion 50 Cz, the occurrence of coating streaks can be suppressed more effectively.
  • the convex curved surface at the contact portion 50 Cz is preferably an arc curved surface from the viewpoint of processing accuracy. Further, the convex curved surface at the contact portion 50 Cz is preferably a curved surface having a radius of curvature of 0.1 mm or more, and preferably a curved surface having a radius of curvature of 0.2 mm or more. The upper limit of the radius of curvature of the convex curved surface is, for example, 10 mm.
  • the radius of curvature of the curved surface is measured by the following method. Observe from the side with a microscope (for example, manufactured by KEYENCE CORPORATION), and obtain the radius of curvature from the observed image. The radius of curvature is obtained for 10 points on the curved surface, and the arithmetic mean value at 10 points is taken as the radius of curvature of the curved surface on the outer surface.
  • the region (including the convex curved surface) of the contact portion 50Cz with the coating liquid, which occupies the surface 50C of the downstream lip 50, is a region where the coating liquid can come into contact, which is assumed in consideration of the coating liquid, coating conditions, and the like. It should be.
  • As the formation region of the contact portion 50 Cz with the coating liquid for example, a region of 1 mm or more from the edge portion of the land surface 50A is set. From the viewpoint of surface treatment efficiency and the like, it is preferable that the dynamic contact angle hysteresis of the entire surface of the surface 50C of the downstream lip 50 is 20 ° or less.
  • the land surface 50A also preferably has a dynamic contact angle hysteresis of 20 ° or less.
  • the land surface 50A is a surface facing the base material F and refers to a flat surface portion. That is, when viewed from the side as shown in FIG. 3, the region indicated by the straight line is the land portion of the downstream lip.
  • the distance between the land surface 10A of the upstream lip 10 and the base material F and the distance between the land surface 50A of the downstream lip 50 and the base material F are both the viscosity of the coating liquid and the coating film to be formed. It may be determined according to the film thickness and the like.
  • the distance between the land surface 10A of the upstream lip 10 and the base material F and the distance between the land surface 50A of the downstream lip 50 and the base material F can be selected from 50 ⁇ m to 500 ⁇ m, respectively, and are 100 ⁇ m. You may choose up to 300 ⁇ m.
  • the above distance refers to the shortest distance between the land surface and the base material. Such a distance can be measured with, for example, a taper gauge.
  • the die head of the present disclosure is preferably made of metal, and the main body of the die head and the tip of the lip may be made of different metals.
  • the metal constituting the die head of the present disclosure in addition to stainless steel, cemented carbide (for example, TF15 (Mitsubishi Materials Corporation), cemented carbide (for example, Nippon Tungsten)) used for the tip of the lip is used. Co., Ltd.) and the like.
  • cemented carbide for example, TF15 (Mitsubishi Materials Corporation), cemented carbide (for example, Nippon Tungsten)
  • the convex curved surface may be formed by chamfering.
  • the surface treatment layer formed by using the fluorine-containing compound is, for example, a composition such as "Fluorine-based ultrathin film coat MX-031" of Surf Industry Co., Ltd. (specifically, a composition containing a fluorine-containing compound). , for example, a coating agent) is preferably used.
  • the fluorine-containing compound used for the surface treatment is not particularly limited as long as it is a compound capable of having a dynamic contact angle hysteresis of 20 ° or less.
  • the fluorine-containing compound is preferably a compound having a perfluoropolyether group.
  • Examples of the perfluoropolyether group include-(OCF 2 ) n1 -,-(OC 2 F 4 ) n 2 -,-(OC 3 F 6 ) n 3 -,-(OC 4 F 8 ) n4- , and these. Examples include two or more linked groups.
  • n1 to n4 each independently represent an integer of 1 or more, and 20 to 200 is preferable, and 30 to 200 is more preferable.
  • the fluorine-containing compound contains-(OCF 2 ) n1 -,-(OC 2 F 4 ) n 2 -,-(OC 3 F 6 ) n 3-, or-(OC 4 F 8 ) n 4- , n1 , N2, n3, or n4 represent an integer greater than or equal to 2.
  • the barfluoro group at ⁇ (OC 3 F 6 ) n3 ⁇ and ⁇ (OC 4 F 8 ) n4 ⁇ may be a straight chain or a branched chain, and is preferably a straight chain.
  • the fluorine-containing compound is preferably a compound having a hydrolyzable group or a Si atom-containing group to which a hydroxyl group is bonded (that is, a silicon-containing compound) in addition to the perfluoropolyether group.
  • a hydrolyzable group or the Si atom-containing group to which a hydroxyl group is bonded a group represented by ⁇ Si ( Ra ) m (R b ) 3-m is preferable.
  • R a represents a hydroxyl group or a hydrolyzable group
  • R b represents a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or ⁇ Y—Si (R c ) p (R d ) 3-p
  • m represents an integer of 1 to 3.
  • Y is a divalent organic group
  • R c has the same meaning as R a
  • R d have the same meanings as R b
  • p is an integer of 0-3.
  • the hydrolyzable group include a group that imparts a hydroxy group (silanol group) by hydrolysis.
  • an alkoxy group having 1 to 6 carbon atoms, a cyano group, an acetoxy group, a chlorine atom, and an isocyanate group is preferable, and an alkoxy group having 1 to 6 carbon atoms (more preferably 1 to 4) is more preferable.
  • Examples of the divalent organic group represented by Y include an alkylene group, a group in which an alkylene group and an ether bond (—O—) are combined, and a group in which an alkylene group and an arylene group are combined.
  • the fluorine-containing compound having a perfluoropolyether group a commercially available product may be used.
  • a composition (for example, a coating agent) containing a fluorine-containing compound having a perfluoropolyether group Daikin Industries, Ltd.
  • a coating agent for example, a coating agent
  • examples thereof include “Optur DSX”, “Optur DSX-E” and “Optur UD100" from Shinetsu Chemical Industry Co., Ltd., and "KY-164" and "KY-108” from Shinetsu Chemical Industry Co., Ltd.
  • the fluorine-containing compound is applied to the surface-treated portion of the die head (specifically, the region where the dynamic contact angle hysteresis is 20 ° or less, such as the land surface 10A and the contact portion 20 Cz with the coating liquid). After applying, it is dried and cured.
  • the means for applying the fluorine-containing compound include brush coating, dip coating, and spray coating.
  • the dynamic contact angle hysteresis of the surface-treated portion of the die head (specifically, the land surface 10A, the contact portion 20 Cz with the coating liquid, etc.) is set to 20 ° or less. It is preferable to perform pretreatment on the area to be treated. Examples of the pretreatment include acid treatment, alkali treatment, primer treatment, rough surface treatment, surface modification treatment such as plasma, and the like.
  • the surface-treated layer preferably has a ten-point average roughness Rzjis of 2.0 or less, more preferably 1.5 ⁇ m or less, and even more preferably 1.0 ⁇ m or less.
  • the lower limit of the ten-point average roughness Rzjis of the surface-treated layer is, for example, 0.001 ⁇ m or more from the viewpoint of the measurement limit.
  • the ten-point average roughness Rzjis is a value measured by the method described in JIS B 0601-2001.
  • a stylus type surface roughness measuring machine (Surfcom, Tokyo Seimitsu Co., Ltd.) is used.
  • the base material F is not particularly limited as long as it is a member to be coated, and may be appropriately selected depending on the use of the coating layer. For example, when continuous coating is performed by the die head of the present disclosure, a long base material may be used. In particular, from the viewpoint of transportability and the like, a polymer film is preferably used as the base material.
  • the light transmittance of the base material is preferably 80% or more.
  • the base material include a polyester-based base material (film or sheet of polyethylene terephthalate, polyethylene naphthalate, etc.), a cellulose-based base material (film or sheet of diacetyl cellulose, triacetyl cellulose (TAC), etc.), and a polycarbonate-based base material.
  • Poly (meth) acrylic base material film or sheet such as polymethyl methacrylate
  • polystyrene base material film or sheet such as polystyrene, acrylonitrile styrene copolymer
  • olefin base material polyethylene, polypropylene, cyclic or Polyamide having a norbornene structure, film or sheet of ethylene-propylene copolymer, etc.
  • polyamide-based substrate film or sheet of polyvinyl chloride, nylon, aromatic polyamide, etc.
  • polyimide-based substrate polysulfone-based substrate, poly Ethersulfone-based base material, polyether ether ketone-based base material, polyphenylene sulfide-based base material, vinyl alcohol-based base material, polyvinylidene chloride-based base material, polyvinyl butyral-based base material, poly (meth) acrylate-based base material, polyoxy Examples thereof include a transparent base material such as a methylene-based base
  • the base material may be one in which a layer is formed in advance on the above polymer film.
  • a layer is formed in advance on the above polymer film.
  • the layer formed in advance include an adhesive layer, a barrier layer against water, oxygen and the like, a refractive index adjusting layer, an alignment layer and the like.
  • the base material F is transported in the transport direction X, but the means for transporting the base material is not limited to this embodiment. That is, the means for transporting the base material is not particularly limited, and for example, the base material can be transported in a stretched state, and the transport means at the time of coating by the die head is a backup roll from the viewpoint of improving the coating accuracy. Is preferable. That is, the coating liquid is preferably applied to the base material wound on the backup roll by the die head.
  • the backup roll is a member that is rotatably configured and can be continuously transported by winding the base material, and rotationally drives the transport speed of the base material at the same speed.
  • the backup roll may be heated from the viewpoint of suppressing brushing of the coating film due to a decrease in the film surface temperature (that is, whitening of the coating film due to the occurrence of fine dew condensation) in order to enhance the drying promotion of the coating film. .. Further, it is preferable that the backup roll detects the surface temperature and the surface temperature of the backup roll is maintained by the temperature control means based on the temperature.
  • the temperature control means of the backup roll includes a heating means and a cooling means. As the heating means, induction heating, water heating, oil heating and the like are used, and as the cooling means, cooling with cooling water is used.
  • the diameter of the backup roll is preferably 100 mm to 1000 mm, more preferably 100 mm to 800 mm, further preferably 200 mm to 700 mm, from the viewpoint of easy wrapping of the base material, easy application by the die head, and the manufacturing cost of the backup roll. preferable.
  • the transport speed of the base material on the backup roll is preferably, for example, 10 m / min to 100 m / min from the viewpoint of ensuring productivity and coatability.
  • the lap angle of the base material with respect to the backup roll is preferably 60 ° or more, more preferably 90 ° or more, from the viewpoint of stabilizing the transport of the base material during coating and suppressing the occurrence of uneven thickness of the coating film.
  • the upper limit of the lap angle can be set to, for example, 180 °.
  • the lap angle refers to an angle including a transport direction of the base material when the base material comes into contact with the backup roll and a transport direction of the base material when the base material is separated from the backup roll.
  • the coating liquid is not particularly limited as long as it can be discharged by the die head. Since the die head of the present disclosure suppresses the generation of coating streaks, its effect is remarkably exhibited by applying it particularly when forming a coating film having a thin layer (for example, a wet thickness of 20 ⁇ m or less).
  • the coating liquid applied to the die head of the present disclosure is not particularly limited as long as it is a fluid liquid material.
  • the coating liquid may be a curable coating liquid containing a polymerizable or crosslinkable compound, or may be a non-curable coating liquid.
  • the organic solvent used in the coating liquid is not particularly limited as long as it is an organic solvent capable of dissolving or dispersing the components contained in the coating liquid.
  • the content of the organic solvent is not particularly limited.
  • the coating liquid applied to the die head of the present disclosure is not particularly limited as long as it is a fluid liquid material. However, when a coating liquid in which coating streaks are likely to occur is used, the effect is remarkably exhibited by using the die head of the present disclosure.
  • the coating liquid is a coating liquid that forms an optically anisotropic layer, and is, for example, one kind or two or more kinds of polymerizable liquid crystal compounds, a polymerization initiator, a leveling agent, an organic solvent, and the like.
  • examples thereof include a coating liquid containing 20% by mass to 40% by mass of a solid content concentration.
  • This coating liquid may further contain a liquid crystal compound other than the polymerizable liquid crystal compound, an orientation control agent, a surfactant, a tilt angle control agent, an orientation aid, a plasticizer, a cross-linking agent, and the like.
  • the coating liquid is a coating liquid that forms a polarizing layer, for example, a liquid crystal polymer, a dichroic compound, and an organic solvent that dissolves the liquid crystal polymer and the dichroic compound.
  • a coating liquid containing 1% by mass to 7% by mass of a solid content.
  • This coating liquid may further contain an interface improver, a polymerization initiator, various additives and the like.
  • the coating liquid is a coating liquid that forms a hard coat layer, for example, a polymerizable compound (preferably a polyfunctional polymerizable compound), inorganic particles (preferably silica particles), and polymerization.
  • a coating liquid containing an initiator and an organic solvent and having a solid content concentration of 40% by mass to 60% by mass.
  • This coating liquid may further contain a monomer, various additives, and the like.
  • the coating liquid is a coating liquid that forms an alignment layer, which contains, for example, polyvinyl alcohol (preferably modified polyvinyl alcohol having an acryloyl group), water, and an organic solvent, and is solid.
  • polyvinyl alcohol preferably modified polyvinyl alcohol having an acryloyl group
  • water preferably modified polyvinyl alcohol having an acryloyl group
  • organic solvent preferably organic solvent
  • coating liquid having a component concentration of 1% by mass to 10% by mass.
  • This coating liquid may further contain a cross-linking agent or the like.
  • the target coating layer formed from the coating liquid is not particularly limited, and examples thereof include a hard coat layer, an optically anisotropic layer, a polarizing layer, and a refractive index adjusting layer in the case of an optical film application. ..
  • the thickness of the layer formed from the coating liquid varies depending on the application, but can be, for example, 5 ⁇ m or less, more preferably 0.1 ⁇ m to 100 ⁇ m.
  • a base material As a base material, a long triacetyl cellulose (TAC) film (TD40UL, FUJIFILM Corporation, refractive index 1.48) having a thickness of 60 ⁇ m and a width of 1340 mm was prepared.
  • TAC triacetyl cellulose
  • ⁇ Preparation of coating liquid> (Preparation of coating liquid A) The following components were mixed to prepare a coating liquid A.
  • one of R 1 and R 2 represents a methyl group and the other represents a hydrogen atom
  • R 3 and R 4 represent one of them.
  • the group adjacent to the methacryloyl group represents a divalent group in which an ethylene group is replaced with a methyl group.
  • the polymerizable liquid crystal compounds L-9 and L-10 are mixtures of positional isomers having different methyl group substitution positions, respectively.
  • the following components were mixed to prepare a coating liquid B.
  • the following liquid crystal polymer LP1 4.011 parts by mass (weight average molecular weight: 13,300, structural unit (1) and structural unit (2) in the molecule 80:20 [(1) :( 2); mass Ratio].)
  • the following bicolor compound D1 0.792 parts by mass
  • the following bicolor compound D2 0.963 parts by mass
  • the following interface improver F2 0.087 parts by mass
  • the following interface improver F3 0.073 parts by mass
  • the following interface improver F4 (weight average molecular weight: 10,000): 0.073 parts by mass tetrahydrofuran (organic solvent having a boiling point of 80 ° C. or less): 37.6004 parts by mass Cyclopentanone: 56.4006 parts by mass
  • Glutaraldehyde crosslinking agent: 1 part by mass, water: 378 parts by mass, methanol: 120 parts by mass are mixed with 20 parts by mass of the following modified polyvinyl alcohol (PVA, degree of polymerization 1,000): coating liquid. D was prepared.
  • a die head 100A having the same configuration as that shown in FIG. 1 was produced.
  • the land surface 10A of the upstream lip 10, the surface 20C of the downstream lip 20, and the surface corresponding to the land surface 20A of the downstream lip 20 were surface-treated by the following method. .. First, a 0.1% by mass NaOH aqueous solution was attached, and then the preparation was carried out by drying. Then, surface treatment was performed using MX-031 of Surf Industry Co., Ltd.
  • the dynamic contact angle hysteresis by methyl ethyl ketone was measured by the method described above and found to be 18 °.
  • the Rzjis of the surface-treated layer was measured by the method described above and found to be 1.1 ⁇ m.
  • the dynamic contact angle hysteresis by methyl ethyl ketone was measured for the surface-treated layer of the die head 2 by the method described above, it was 15 °.
  • the Rzjis of the surface-treated layer was measured by the method described above and found to be 0.9 ⁇ m.
  • a die head 100B having the same configuration as in FIG. 2 was produced.
  • the land surface 10A of the upstream lip 10, the surface 20C of the downstream lip 20, the land surface 20A of the downstream lip 20, and the land surface 40A of the intermediate lip 40 are surfaced by the following method. Processing was performed. First, a 0.1% by mass NaOH aqueous solution was attached, and then the preparation was carried out by drying. Then, surface treatment was performed using MX-031 of Surf Industry Co., Ltd.
  • the dynamic contact angle hysteresis by methyl ethyl ketone was measured by the method described above and found to be 18 °.
  • the Rzjis of the surface-treated layer was measured by the method described above and found to be 1.1 ⁇ m.
  • the die head 4 was produced in the same manner as the die head 1 except that the pretreatment and the surface treatment were changed to the following methods. That is, in the die head 100A having the same configuration as that of FIG. 1, the surface corresponding to the land surface 10A of the upstream lip 10, the surface 20C of the downstream lip 20, and the land surface 20A of the downstream lip 20 is opposed to the tetrafluoroethylene of DuPont. Fluororesin coating was performed using an ethylene resin. When the dynamic contact angle hysteresis by methyl ethyl ketone was measured on the surface coated with the fluororesin as described above by the method described above, it was 21 °. Further, the Rzjis of the fluororesin-coated surface was measured by the method described above and found to be 1.1 ⁇ m.
  • the die head 5 was produced in the same manner as the die head 1 except that the pretreatment and the surface treatment were changed to the following methods. That is, in the die head 100A having the same configuration as that of FIG. 1, the surfaces corresponding to the land surface 10A of the upstream lip 10 and the land surface 20C of the downstream lip 20 and the land surface 20A of the downstream lip 20 are subjected to nickel by electroless plating. And a composite plating layer of polytetrafluoroethylene was formed. With respect to the composite plating layer formed as described above, the dynamic contact angle hysteresis by methyl ethyl ketone was measured by the method described above and found to be 40 °. Further, the Rzjis of the composite plating layer was measured by the method described above and found to be 1.1 ⁇ m.
  • a die head 100C having the same configuration as in FIG. 3 was produced.
  • the land surface 10A of the upstream lip 10, the surface 50C of the downstream lip 50, and the surface corresponding to the land surface 50A of the downstream lip 50 were surface-treated by the following method. ..
  • a lip 50 having a convex curved surface having a radius of curvature of 0.1 mm was used at a portion of the surface 50C connected to the land surface 50A of the contact portion 50Cz.
  • a 0.1% by mass NaOH aqueous solution was attached, and then the preparation was carried out by drying.
  • the die head 7 was produced in the same manner as the die head 6 except that the downstream lip having the following shape was subjected to the above surface treatment. That is, as the downstream lip 50, a lip 50 having a convex curved surface having a radius of curvature of 0.2 mm was used at a portion of the surface 50C connected to the land surface 50A of the contact portion 50Cz.
  • the surface-treated layer formed as described above the dynamic contact angle hysteresis by methyl ethyl ketone was measured by the method described above and found to be 18 °.
  • the Rzjis of the surface-treated layer was measured by the method described above and found to be 1.1 ⁇ m.
  • Example 1 The die head 1 was arranged as shown in FIG. 1, and the coating liquid A was continuously applied onto the TAC film to form a coating film having a thickness of 3 ⁇ m and a width of 200 mm. Specifically, the TAC film was conveyed on a backup roll having a surface temperature of 60 ° C. and an outer diameter of 300 mm, and the coating liquid A was applied to the base material on the backup roll using the die head 1. At this time, the lap angle of the TAC film was 150 °, and the transport speed of the TAC film was 30 m / min.
  • the distance between the land surface 10A of the upstream lip 10 of the die head 1 and the base material (TAC film) F is 100 ⁇ m
  • the distance between the land surface 20A of the downstream lip 20 and the base material (TAC film) F is 100 ⁇ m. Met.
  • the coating film was formed in an environment of 23 ° C. and 50% RH.
  • Example 2 A coating film having a thickness of 0.5 ⁇ m was formed with a width of 200 mm in the same manner as in Example 1 except that the coating liquid A was replaced with the coating liquid B.
  • Example 3 A coating film having a thickness of 5 ⁇ m was formed with a width of 200 mm in the same manner as in Example 1 except that the coating liquid A was replaced with the coating liquid C.
  • Example 4 A coating film having a thickness of 1 ⁇ m was formed with a width of 200 mm in the same manner as in Example 1 except that the coating liquid A was replaced with the coating liquid D.
  • Example 5 Comparative Examples 1 and 5
  • a coating film having a thickness of 3 ⁇ m was formed with a width of 200 mm in the same manner as in Example 1 except that the die head 1 was replaced with the die heads 2, 4 or 5.
  • Example 6 Comparative Examples 2 and 6
  • a coating film having a thickness of 0.3 ⁇ m was formed with a width of 200 mm in the same manner as in Example 2 except that the die head 1 was replaced with the die heads 2, 4 or 5.
  • Example 7 Comparative Examples 3 and 7
  • a coating film having a thickness of 5 ⁇ m was formed with a width of 200 mm in the same manner as in Example 3 except that the die head 1 was replaced with the die heads 2, 4 or 5.
  • Example 8 Comparative Examples 4 and 8
  • a coating film having a thickness of 1 ⁇ m was formed with a width of 200 mm in the same manner as in Example 4 except that the die head 1 was replaced with the die heads 2, 4 or 5.
  • Example 9 The die head 3 was arranged as shown in FIG. 2, and the coating liquid A and the coating liquid A were continuously coated on the TAC film to form a coating film having a total thickness of 30 ⁇ m (upper layer 5 ⁇ m, lower layer 25 ⁇ m) with a width of 200 mm.
  • the TAC film was conveyed on a backup roll having a surface temperature of 60 ° C. and an outer diameter of 300 mm, and the coating liquid A was applied to the base material on the backup roll using a die head.
  • the lap angle of the TAC film was 150 °
  • the transport speed of the TAC film was 30 m / min.
  • the distance between the land surface 10A of the upstream lip 10 of the die head 3 and the base material (TAC film) F is 100 ⁇ m
  • the distance between the land surface 20A of the downstream lip 20 and the base material (TAC film) F is 120 ⁇ m.
  • the distance between the land surface 40A of the intermediate lip 40 and the base material (TAC film) F was 70 ⁇ m.
  • Example 10 A coating film having a thickness of 3 ⁇ m was formed with a width of 200 mm in the same manner as in Example 1 except that the die head 1 was replaced with the die head 6 or 7 shown in Table 1 below.
  • Example 11 A coating film having a thickness of 0.5 ⁇ m was formed with a width of 200 mm in the same manner as in Example 2 except that the die head 1 was replaced with the die head 6 or 7 shown in Table 1 below.
  • the coating streaks 1 caused by the lip on the most upstream side were used, and the coating streaks 2 caused by the lip on the most downstream side were used.
  • the evaluation of the coating streaks was performed on the sample 1 in which the coating film formed 5 minutes after the start of coating was cut out to the above size, and the sample 2 in which the coating film formed 2 hours after the start of coating was cut out to the above size. I went about two of them. The former was designated as "application streaks after 5 minutes”, and the latter was designated as "application streaks after 2 hours”.
  • the evaluation indexes are as follows. The results are shown in Table 1.

Landscapes

  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Provided is a die head, which has: two or more lips disposed in a row and a slot for transferring and discharging coating liquid, the slot being formed between adjacent lips. The land surface of one of the lips at one end in the direction of the row and/or the outer surface of another lip at the other end in the direction of the row, the outer surface being on the side opposite the slot-forming surface of the lip and joining with the land surface, forms a dynamic contact angle hysteresis of 20° or less, which is provided by methyl ethyl ketone.

Description

ダイヘッドDie head
 本開示は、ダイヘッドに関する。 This disclosure relates to die heads.
 ダイヘッドを備えた塗布装置において、基材上に目的とする塗工層を形成する方法が知られている。 In a coating device equipped with a die head, a method of forming a target coating layer on a base material is known.
 特許文献1には、一対のリップ先端部の間に塗布液の吐出口を形成し、吐出口に対して相対移動する被塗布部材の表面に塗膜を形成する塗布部材の製造装置において、塗膜の形成側に位置する下流側リップの先端部を、上流側リップの先端部よりも水に対する接触角度を大きくした塗布部材の製造装置が記載されている。 Patent Document 1 describes coating in a coating member manufacturing apparatus in which a coating liquid discharge port is formed between a pair of lip tips and a coating film is formed on the surface of a member to be coated that moves relative to the discharge port. Described is an apparatus for manufacturing a coating member in which the tip of the downstream lip located on the film forming side has a larger contact angle with water than the tip of the upstream lip.
 特許文献2には、少なくとも金属材料を含有する透明導電層形成用塗工液を透明基材上に塗布して透明導電層を形成する際に用いられるダイコート装置であって、透明導電層形成用塗工液を吐出するダイヘッドと、透明導電層形成用塗工液を収容する塗液タンクと、塗液タンクからダイヘッドへ透明導電層形成用塗工液を送液する送液経路とを有し、ダイヘッドは、少なくとも塗布方向と反対方向に位置する表面上に撥液領域が形成されているダイコート装置が記載されている。 Patent Document 2 describes a die coating device used when a coating liquid for forming a transparent conductive layer containing at least a metal material is applied onto a transparent base material to form a transparent conductive layer, and is used for forming the transparent conductive layer. It has a die head that discharges the coating liquid, a coating liquid tank that houses the coating liquid for forming the transparent conductive layer, and a liquid feeding path that sends the coating liquid for forming the transparent conductive layer from the coating liquid tank to the die head. As the die head, a die coating device in which a liquid-repellent region is formed on a surface located at least in a direction opposite to the coating direction is described.
    特許文献1:特開2002-248399号公報
    特許文献2:特開2016-68047号公報
Patent Document 1: Japanese Patent Application Laid-Open No. 2002-248349 Patent Document 2: Japanese Patent Application Laid-Open No. 2016-68047
 ダイヘッドにおいて、通常、リップにおける塗布液との接触部は、一旦、塗布液が付着してしまうと、その後は、塗布液にて覆われてしまう(つまり、上記接触部に塗布液による皮膜が形成されてしまう)。リップにおける塗布液との接触部が塗布液に覆われてしまうことで、そこが起点となって、塗布スジが発生してしまう。
 ここでいう塗布スジには2つの種類がある。つまり、例えば、被塗布部材である基材の搬送方向に対し、最上流側のリップに起因する塗布スジと最下流側のリップに起因する塗布スジとの2つである。
 最上流側のリップに起因する塗布スジは、ランド面又はランド面縁部で発生する塗布液の乾燥物(即ち固形分)がビード端部の形状を乱すことが原因のスジの場合と、ランド面に形成された塗布液による皮膜とビードとの表面張力差による流れがつくる液滴がビード端部に付着することが原因のスジの場合と、がある。前者の場合、基材の搬送方向に沿ってのびる線状の膜厚ムラ(即ちスジ)が単独で又は複数で連続的に現れ、その幅は0.1mm~5mm程度である。後者の場合、基材の搬送方向に沿ってのびる線状の膜厚ムラ(即ちスジ)が単独で又は複数で散発的に現れ、その幅は0.1mm~5mm程度である。
 一方、最下流側のリップに起因する塗布スジは、リップのスロット形成面とは逆側でランド面と繋がる面にまで到達した、塗布液の液滴又は塗布液の乾燥物(即ち固形分)が、ビード端部の形状を乱すことが原因のスジである。このスジ場合、基材の搬送方向に沿ってのびる線状の膜厚ムラ(即ちスジ)が単独で又は複数で連続的に現れ、その幅は0.1mm~5mm程度である。
 最上流側のリップに起因する塗布スジ及び最下流側のリップに起因する塗布スジの確認は、塗布の際のビードの形状を観察しつつ、形成された塗膜の面状を観察して膜厚ムラの形状を捉えることで、確認することができる。つまり、ビードの形状の観察結果と形成された膜厚ムラの形状とを紐づけることで、最上流側のリップに起因する塗布スジであるか、また、最下流側のリップに起因する塗布スジであるか、を確認することができる。
 ここで、塗膜の面状の観察は、目視であってもよいし、拡大鏡を用いてもよいし、透過又は反射にて面状の観察する装置を用いてもよい。また、塗膜の面状の観察には、顕微鏡を用いてもよいし、塗膜の種類によっては、クロスニコル法を用いてもよい。
In the die head, usually, the contact portion of the lip with the coating liquid is covered with the coating liquid once the coating liquid adheres (that is, a film formed by the coating liquid is formed on the contact portion. Will be done). Since the contact portion of the lip with the coating liquid is covered with the coating liquid, that becomes the starting point and coating streaks are generated.
There are two types of coating streaks referred to here. That is, for example, there are two coating streaks caused by the lip on the most upstream side and the coating streaks caused by the lip on the most downstream side with respect to the transport direction of the base material to be coated.
The coating streaks caused by the lip on the most upstream side are the streaks caused by the dry matter (that is, solid content) of the coating liquid generated on the land surface or the edge of the land surface disturbing the shape of the bead end, and the land. There are cases where the streaks are caused by the droplets formed by the difference in surface tension between the coating liquid formed on the surface and the bead and the droplets adhering to the end of the bead. In the former case, linear film thickness unevenness (that is, streaks) extending along the transport direction of the base material appears individually or continuously in a plurality of layers, and the width thereof is about 0.1 mm to 5 mm. In the latter case, linear film thickness unevenness (that is, streaks) extending along the transport direction of the base material appears sporadically alone or in plurality, and the width thereof is about 0.1 mm to 5 mm.
On the other hand, the coating streaks caused by the lip on the most downstream side reach the surface connected to the land surface on the side opposite to the slot forming surface of the lip, and are droplets of the coating liquid or a dried product (that is, solid content) of the coating liquid. However, the streak is caused by disturbing the shape of the bead end. In the case of this streak, linear film thickness unevenness (that is, streaks) extending along the transport direction of the base material appears individually or continuously in a plurality of streaks, and the width thereof is about 0.1 mm to 5 mm.
To confirm the coating streaks caused by the most upstream lip and the coating streaks caused by the most downstream lip, the film is observed by observing the surface shape of the formed coating film while observing the shape of the bead at the time of coating. It can be confirmed by capturing the shape of the uneven thickness. That is, by associating the observation result of the shape of the bead with the shape of the formed film thickness unevenness, it is a coating streak caused by the lip on the most upstream side, or a coating streak caused by the lip on the most downstream side. You can check if it is.
Here, the planar observation of the coating film may be visually observed, a magnifying glass may be used, or an apparatus for observing the planar surface by transmission or reflection may be used. Further, a microscope may be used for observing the surface shape of the coating film, or a cross Nicol method may be used depending on the type of the coating film.
 そこで、本開示の一実施態様が解決しようとする課題は、塗布スジの発生を抑制しうるダイヘッドを提供することにある。 Therefore, an object to be solved by one embodiment of the present disclosure is to provide a die head capable of suppressing the occurrence of coating streaks.
 課題を解決するための具体的手段には、以下の態様が含まれる。 Specific means for solving the problem include the following aspects.
 <1> 並列する2つ以上のリップ、並びに、隣り合うリップ間に形成され且つ塗布液を移送及び吐出するスロットを有し、
 並列方向一端のリップのランド面と、並列方向他端のリップの、スロット形成面とは逆側でランド面と繋がる外側面と、の少なくとも一方は、メチルエチルケトンによる動的接触角ヒステリシスが20°以下である、ダイヘッド。
<1> It has two or more lips in parallel and a slot formed between adjacent lips to transfer and discharge the coating liquid.
At least one of the land surface of the lip at one end in the parallel direction and the outer surface of the lip at the other end in the parallel direction connected to the land surface on the side opposite to the slot forming surface has a dynamic contact angle hysteresis of 20 ° or less due to methyl ethyl ketone. Is a die head.
 <2> 上記並列方向一端のリップの上記ランド面、及び、上記並列方向他端のリップにおける上記外側面は、十点平均粗さRzjisが1.0μm以下である、<1>に記載のダイヘッド。 <2> The die head according to <1>, wherein the land surface of the lip at one end in the parallel direction and the outer surface of the lip at the other end in the parallel direction have a ten-point average roughness Rzjis of 1.0 μm or less. ..
 <3> 上記並列方向他端のリップの上記ランド面の、上記メチルエチルケトンによる動的接触角ヒステリシスが20°以下である、<1>又は<2>に記載のダイヘッド。 <3> The die head according to <1> or <2>, wherein the dynamic contact angle hysteresis due to the methyl ethyl ketone on the land surface of the lip at the other end in the parallel direction is 20 ° or less.
 <4> 上記並列方向一端のリップのランド面、及び、上記並列方向他端のリップにおける上記外側面のうち、上記メチルエチルケトンによる動的接触角ヒステリシスが20°以下である面が、フッ素含有化合物を用いて形成された表面処理層を備える、<1>~<3>のいずれか1つに記載のダイヘッド。
 <5> 上記フッ素含有化合物がパーフルオロポリエーテル基を有する化合物である、<4>に記載のダイヘッド。
 <6> 上記並列方向他端のリップは、側面視にて、上記外側面におけるランド面と繋がる部位が曲面を有する、<1>~<5>のいずれか1つに記載のダイヘッド。
 <7> 上記並列方向他端のリップにおける上記曲面が曲率半径0.2mm以上の曲面である、<6>に記載のダイヘッド。
 <8> 塗布の際、上記並列方向一端のリップが塗布方向に対して下流側に位置し、上記並列方向他端のリップが塗布方向に対して上流側に位置する、<1>~<7>のいずれか1つに記載のダイヘッド。
<4> Of the land surface of the lip at one end in the parallel direction and the outer surface of the lip at the other end in the parallel direction, the surface having the dynamic contact angle hysteresis of 20 ° or less due to the methyl ethyl ketone is the fluorine-containing compound. The die head according to any one of <1> to <3>, comprising a surface treatment layer formed in use.
<5> The die head according to <4>, wherein the fluorine-containing compound is a compound having a perfluoropolyether group.
<6> The die head according to any one of <1> to <5>, wherein the lip at the other end in the parallel direction has a curved surface at a portion connected to the land surface on the outer surface in a side view.
<7> The die head according to <6>, wherein the curved surface of the lip at the other end in the parallel direction is a curved surface having a radius of curvature of 0.2 mm or more.
<8> At the time of coating, the lip at one end in the parallel direction is located on the downstream side with respect to the coating direction, and the lip at the other end in the parallel direction is located on the upstream side with respect to the coating direction, <1> to <7. The die head described in any one of>.
 本開示の一実施態様によれば、塗布スジの発生を抑制しうるダイヘッドが提供される。 According to one embodiment of the present disclosure, a die head capable of suppressing the occurrence of coating streaks is provided.
本開示におけるダイヘッドの先端部の一例を示す概略側面図である。It is a schematic side view which shows an example of the tip part of the die head in this disclosure. 本開示におけるダイヘッドの先端部の別の一例を示す概略側面図である。It is a schematic side view which shows another example of the tip part of the die head in this disclosure. 本開示におけるダイヘッドの先端部の更に別の一例を示す概略側面図である。It is a schematic side view which shows still another example of the tip part of the die head in this disclosure.
 以下、本開示のダイヘッドについて詳細に説明する。
 なお、本開示は、以下において図面を参照して説明する実施態様に何ら制限されず、本開示の目的の範囲内において、適宜変更を加えて実施することができる。各図面において同一の符号を用いて示す構成要素は、同一の構成要素であることを意味する。各実施態様において重複する構成要素及び符号については、説明を省略することがある。
 図面における寸法は、必ずしも実際の寸法及び比率を表すものではない。
Hereinafter, the die head of the present disclosure will be described in detail.
It should be noted that the present disclosure is not limited to the embodiments described below with reference to the drawings, and can be carried out with appropriate modifications within the scope of the purpose of the present disclosure. The components shown by using the same reference numerals in each drawing mean that they are the same components. The description of overlapping components and symbols in each embodiment may be omitted.
The dimensions in the drawings do not necessarily represent the actual dimensions and ratios.
 本開示において、「工程」の語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値は、他の段階的な記載の数値範囲の上限値に、又はある数値範囲で記載された下限値は、他の段階的な記載の数値範囲の下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、2以上の好ましい態様の組み合わせはより好ましい態様である。
 本開示において、「固形分」とは溶剤(好ましくは有機溶剤)以外の成分をいう。
In the present disclosure, the term "process" is included in the term not only in an independent process but also in the case where the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
In the present disclosure, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value described in one numerical range is the upper limit value of the numerical range described in another stepwise description, or the lower limit value described in a certain numerical range is. , May be replaced with the lower limit of the numerical range described in other steps. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
In the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
In the present disclosure, the "solid content" refers to a component other than a solvent (preferably an organic solvent).
 既述したように、ダイヘッドを用いた塗布において、上記の塗布スジの発生を抑制する方法が検討されてきている。
 本発明者が検討を行った結果、被塗布部材である基材の搬送方向に対し、最上流側のリップの、スロット形成面とは逆側でランド面と繋がる外側面と、最下流側のリップのランド面と、の2箇所のうち少なくとも一方について、メチルエチルケトンによる動的接触角ヒステリシスを20°以下とすることで、塗布スジの発生を抑制しうるといった知見を得た。
 動的接触角ヒステリシスが20°以下である上記外側面及びランド面は、一旦、塗布液にて覆われてしまっても塗布液がすみやかに動き、ビード形成時には清浄状態に戻ることができる。清浄状態とは、ダイヘッドを側面視した際、上記外側面及び上記ランド面にて、固体(即ち外側面及びランド面)、液体(即ち塗布液)、及び気体(即ち大気)からなる三相界面が形成されることを指す。
 特に、表面張力が20°程度と低いメチルエチルケトンでの動的接触角ヒステリシスを20°以下とすることで、ダイヘッドに適用する塗布液の種類によらず、上記の清浄状態の形成効果が得られると考えられる。
 上記外側面及び上記ランド面にて三相界面が形成されると、外側面及びランド面に滞留する塗布液が低減することになり、上記外側面及び上記ランド面に塗布液による皮膜が存在することで生じる塗布スジの発生を抑制することができるものと考えられる。
 上記特許文献1及び2に記載のダイヘッドでは、上記外側面は一旦塗布液による皮膜が形成してしまうとこの皮膜が除かれることはなく、外側面が露出しないことから上記三相界面は形成されない。
As described above, in coating using a die head, a method of suppressing the occurrence of the above-mentioned coating streaks has been studied.
As a result of the study by the present inventor, with respect to the transport direction of the base material to be coated, the outer surface of the lip on the most upstream side, which is opposite to the slot forming surface and is connected to the land surface, and the most downstream side. It was found that the occurrence of coating streaks can be suppressed by setting the dynamic contact angle hysteresis due to methyl ethyl ketone to 20 ° or less for at least one of the two locations, that is, the land surface of the lip.
Even if the outer surface and the land surface having the dynamic contact angle hysteresis of 20 ° or less are once covered with the coating liquid, the coating liquid moves quickly and can return to a clean state when the bead is formed. The clean state is a three-phase interface composed of a solid (that is, an outer surface and a land surface), a liquid (that is, a coating liquid), and a gas (that is, an atmosphere) on the outer surface and the land surface when the die head is viewed from the side. Refers to the formation of.
In particular, by setting the dynamic contact angle hysteresis of methyl ethyl ketone having a low surface tension of about 20 ° to 20 ° or less, the above-mentioned effect of forming a clean state can be obtained regardless of the type of coating liquid applied to the die head. Conceivable.
When a three-phase interface is formed on the outer surface and the land surface, the amount of the coating liquid staying on the outer surface and the land surface is reduced, and a film of the coating liquid is present on the outer surface and the land surface. It is considered that the occurrence of coating streaks caused by this can be suppressed.
In the die heads described in Patent Documents 1 and 2, once a film is formed by the coating liquid on the outer surface, this film is not removed and the outer surface is not exposed, so that the three-phase interface is not formed. ..
 以上の知見に基づく、本開示のダイヘッドは、並列する2つ以上のリップ、並びに、隣り合うリップ間に形成され且つ塗布液を移送及び吐出するスロットを有し、並列方向一端のリップのランド面と、並列方向他端のリップの、スロット形成面とは逆側でランド面と繋がる外側面と、の少なくとも一方は、メチルエチルケトンによる動的接触角ヒステリシスが20°以下である。
 本開示のダイヘッドは、塗布の際、並列方向一端のリップが塗布方向に対して下流側にあり、並列方向他端のリップが塗布方向に対して上流側にある、ことで、塗布スジの発生を抑制しうる。
 ここで、本開示における「塗布方向」とは、塗膜が形成される方向を指す。
 本開示のダイヘッドを用いた塗布の際には、ダイヘッドと被塗布部材とを相対的に移動させて行われる。即ち、「ダイヘッドと被塗布部材とを相対的に移動させる」とは、固定したダイヘッドに対して被塗布部材を移動させること、固定した被塗布部材に対してダイヘッドを移動させること、及び、ダイヘッドと被塗布部材とを一方向に相互に移動させることを含む。
 固定したダイヘッドに対し被塗布部材である基材を搬送移動する場合には、基材の搬送方向と上記「塗布方向」とは逆になる。
 また、本開示において、「並列方向他端のリップの、スロット形成面とは逆側でランド面と繋がる外側面が、メチルエチルケトンによる動的接触角ヒステリシスが20°以下である。」とは、特に断りのない限り、並列方向他端のリップの外側面の全面又は一部においてメチルエチルケトンの動的接触角ヒステリシスが20°以下であることを包含する。並列方向他端のリップの外側面において、メチルエチルケトンの動的接触角ヒステリシスが20°以下である領域は、少なくとも塗布液に接触する領域を含むことが好ましい。
 以下、塗布液に接触する領域を接触部ともいう。
 更に、本開示において、メチルエチルケトンによる動的接触角ヒステリシスの下限値は、いずれの面においても、例えば、測定限界の観点から、1°が挙げられる。
Based on the above findings, the die head of the present disclosure has two or more lips in parallel and a slot formed between adjacent lips to transfer and discharge the coating liquid, and the land surface of the lip at one end in the parallel direction. And at least one of the outer surface of the lip at the other end in the parallel direction, which is opposite to the slot forming surface and is connected to the land surface, has a dynamic contact angle hysteresis of 20 ° or less due to methyl ethyl ketone.
In the die head of the present disclosure, at the time of coating, the lip at one end in the parallel direction is on the downstream side with respect to the coating direction, and the lip at the other end in the parallel direction is on the upstream side with respect to the coating direction. Can be suppressed.
Here, the "coating direction" in the present disclosure refers to the direction in which the coating film is formed.
When coating using the die head of the present disclosure, the die head and the member to be coated are relatively moved. That is, "moving the die head and the member to be coated relative to each other" means moving the member to be coated with respect to the fixed die head, moving the die head with respect to the fixed member to be coated, and the die head. And the member to be coated are moved to each other in one direction.
When the base material, which is the member to be coated, is transported and moved to the fixed die head, the transport direction of the base material and the above-mentioned "coating direction" are opposite to each other.
Further, in the present disclosure, "the outer surface of the lip at the other end in the parallel direction, which is opposite to the slot forming surface and is connected to the land surface, has a dynamic contact angle hysteresis of 20 ° or less due to methyl ethyl ketone." Unless otherwise noted, this includes the dynamic contact angle hysteresis of methyl ethyl ketone of 20 ° or less on all or part of the outer surface of the lip at the other end in the parallel direction. On the outer surface of the lip at the other end in the parallel direction, the region where the dynamic contact angle hysteresis of methyl ethyl ketone is 20 ° or less preferably includes at least a region in contact with the coating liquid.
Hereinafter, the region in contact with the coating liquid is also referred to as a contact portion.
Further, in the present disclosure, the lower limit of the dynamic contact angle hysteresis due to methyl ethyl ketone is 1 ° in any aspect, for example, from the viewpoint of the measurement limit.
 従来のダイヘッド(例えば、上記特許文献1及び2に記載のダイヘッド)においては、塗布液の種類、塗布条件によっては、既述した、基材の搬送方向に対し、最上流側のリップに起因する塗布スジと最下流側のリップに起因する塗布スジとの発生量が異なることがある。
 そのため、本開示のダイヘッドにおいては、塗布スジが発生しやすい側のリップにおける該当面、即ち上記並列方向一端のリップのランド面及び/又は上記並列方向他端のリップの外側面について、メチルエチルケトンによる動的接触角ヒステリシスを20°以下とすることで、塗布スジの発生量を効果的に低減することができる。
 塗布スジの発生量をより効果的に低減させるためには、本開示のダイヘッドにおいて、並列方向一端のリップのランド面と、並列方向他端のリップの、スロット形成面とは逆側でランド面と繋がる外側面と、の両方について、メチルエチルケトンによる動的接触角ヒステリシスを20°以下とする態様である。
In the conventional die head (for example, the die head described in Patent Documents 1 and 2 above), depending on the type of the coating liquid and the coating conditions, the lip on the most upstream side with respect to the transport direction of the base material described above is caused. The amount of coating streaks generated due to the most downstream lip may be different.
Therefore, in the die head of the present disclosure, the corresponding surface of the lip on the side where coating streaks are likely to occur, that is, the land surface of the lip at one end in the parallel direction and / or the outer surface of the lip at the other end in the parallel direction is moved by methyl ethyl ketone. By setting the target contact angle hysteresis to 20 ° or less, the amount of coating streaks generated can be effectively reduced.
In order to more effectively reduce the amount of coating streaks generated, in the die head of the present disclosure, the land surface of the lip at one end in the parallel direction and the land surface of the lip at the other end in the parallel direction on the opposite side of the slot forming surface. This is an embodiment in which the dynamic contact angle hysteresis due to methyl ethyl ketone is set to 20 ° or less for both the outer surface connected to and the outer surface.
[メチルエチルケトンによる動的接触角ヒステリシス]
 まず、メチルエチルケトンによる動的接触角ヒステリシスについて説明する。
 なお、「メチルエチルケトンによる動的接触角ヒステリシス」は、単に、「動的接触角ヒステリシス」ともいう。
 動的接触角ヒステリシスとは、液滴が固体壁の表面を滑落するときの前進接触角(θa)と後退接触角(θr)との差[θa-θr]を指す。本開示においては、液滴として、メチルエチルケトンの液滴を用いる。
 動的接触角ヒステリシスは、水平に支持した固体壁の表面に液滴を摘下し、固体壁を徐々に傾けて、液滴が滑落を開始したときの、前進接触角及び後退接触角に基づき算出される。
 測定には、上記のように滑落法(即ち、水平に支持した固体壁の表面に液滴を摘下し、固体壁を徐々に傾けて、液滴が滑落を開始したときの液滴の状態を測定する方法)が用いられる。また、測定は、室温25℃、湿度50%の環境下で行い、測定の際の条件としては、固体壁の表面温度を25℃とし、液滴温度も25℃とし、液滴量は通常1μL~4μLとするが、実際の現象に近い状況を再現するという観点から、液量は制限されない。なお、固体壁には、ダイヘッド自体を用いてもよいし、測定対象領域である、ランド面、外側面等と同じ表面(具体的には、同じ表面処理層を有し且つ同じ十点平均粗さRzjisを有する表面)を有する板状物を用いてもよい。
[Dynamic contact angle hysteresis by methyl ethyl ketone]
First, the dynamic contact angle hysteresis due to methyl ethyl ketone will be described.
The "dynamic contact angle hysteresis by methyl ethyl ketone" is also simply referred to as "dynamic contact angle hysteresis".
The dynamic contact angle hysteresis refers to the difference [θa−θr] between the forward contact angle (θa) and the receding contact angle (θr) when the droplet slides down the surface of the solid wall. In the present disclosure, as the droplet, a droplet of methyl ethyl ketone is used.
Dynamic contact angle hysteresis is based on the forward and backward contact angles when the droplet is plucked on the surface of a horizontally supported solid wall, the solid wall is gradually tilted, and the droplet begins to slide down. Calculated.
The measurement is performed by the sliding method as described above (that is, the state of the droplet when the droplet is plucked on the surface of a horizontally supported solid wall, the solid wall is gradually tilted, and the droplet starts to slide). Method of measuring) is used. The measurement is performed in an environment of room temperature of 25 ° C. and humidity of 50%. The conditions for the measurement are that the surface temperature of the solid wall is 25 ° C., the droplet temperature is 25 ° C., and the droplet amount is usually 1 μL. The amount is ~ 4 μL, but the amount of liquid is not limited from the viewpoint of reproducing a situation close to an actual phenomenon. The die head itself may be used for the solid wall, or the same surface as the land surface, outer surface, etc., which is the measurement target area (specifically, the same surface treatment layer and the same ten-point average roughness) may be used. A plate-like material having a surface having Rzjis) may be used.
 本開示のダイヘッドは、エクストルージョン型のダイヘッドであり、塗布液を吐出するスロットと被塗布部材(例えば、基材)との間にスロットから吐出された塗布液を溜めてビードを形成し、ビードを介して塗布液を被塗布部材に塗布するものである。
 即ち、ビードとは、ダイヘッドと被塗布部材との間に形成される塗布液溜まりである。
The die head of the present disclosure is an extrusion type die head, and a bead is formed by collecting the coating liquid discharged from the slot between a slot for discharging the coating liquid and a member to be coated (for example, a base material) to form a bead. The coating liquid is applied to the member to be coated via the above.
That is, the bead is a coating liquid pool formed between the die head and the member to be coated.
 以下、図面を参照して、本開示のダイヘッドについて詳細に説明する。
 図1は、本開示におけるダイヘッドの先端部の一例を示す概略側面図である。
Hereinafter, the die head of the present disclosure will be described in detail with reference to the drawings.
FIG. 1 is a schematic side view showing an example of the tip end portion of the die head in the present disclosure.
 図1に示すダイヘッド100Aは、被塗布部材である基材Fの搬送方向Xに対し、上流側に位置する上流側リップ10と、下流側に位置する下流側リップ20と、を有する。
 つまり、図1に示す態様では、搬送移動する基材F上に、塗布液の塗布が行われることから、基材の搬送方向Xは、塗布方向とは逆方向となる。
 なお、図1において、下流側リップ20における接触部20Czは、下流側リップ20の面20Cに対し段差があるように表記しているが、この表記は説明の便宜上のものであり、接触部20Czは下流側リップ20の面20Cに対して段差がある構成を有するものではない。これは、後述する図2に示す下流側リップ20の面20Cにおける接触部20Cz、及び、図3に示す下流側リップ50の面50Cにおける接触部50Czも同様である。
The die head 100A shown in FIG. 1 has an upstream lip 10 located on the upstream side and a downstream lip 20 located on the downstream side with respect to the transport direction X of the base material F to be coated.
That is, in the embodiment shown in FIG. 1, since the coating liquid is applied onto the base material F that is transported and moved, the transport direction X of the base material is opposite to the coating direction.
In addition, in FIG. 1, the contact portion 20Cz in the downstream lip 20 is described so as to have a step with respect to the surface 20C of the downstream lip 20, but this notation is for convenience of explanation and the contact portion 20Cz. Does not have a configuration in which there is a step with respect to the surface 20C of the downstream lip 20. This also applies to the contact portion 20Cz on the surface 20C of the downstream lip 20 shown in FIG. 2, which will be described later, and the contact portion 50Cz on the surface 50C of the downstream lip 50 shown in FIG.
 ダイヘッド100Aでは、上流側リップ10はスロット形成面10Bを、また、下流側リップ20はスロット形成面20Bを有しており、図1に示すように、上流側リップ10のスロット形成面10Bと下流側リップ20のスロット形成面20Bとの間に、塗布液Lを移送及び吐出するスロット30が形成されている。
 スロット30は不図示のマニホールドに連通している。マニホールドは、ダイヘッド100Aの幅方向(即ち、図1中の奥行方向)に沿って伸びる空間であり、ダイヘッド100Aに供給された塗布液Lを塗布幅方向(即ち、ダイヘッド100Aの幅方向)に拡流し、塗布液Lを一時的に貯留する。
In the die head 100A, the upstream lip 10 has a slot forming surface 10B, and the downstream lip 20 has a slot forming surface 20B. As shown in FIG. 1, the upstream lip 10 has a slot forming surface 10B and a downstream side lip 10. A slot 30 for transferring and discharging the coating liquid L is formed between the side lip 20 and the slot forming surface 20B.
The slot 30 communicates with a manifold (not shown). The manifold is a space extending along the width direction of the die head 100A (that is, the depth direction in FIG. 1), and the coating liquid L supplied to the die head 100A is expanded in the coating width direction (that is, the width direction of the die head 100A). It is poured and the coating liquid L is temporarily stored.
 図1に示すダイヘッド100Aは、塗布時には、スロット30と基材Fとの間にビードBが形成されており、このビードBを介して塗布液Lが基材Fへと塗布される。 In the die head 100A shown in FIG. 1, a bead B is formed between the slot 30 and the base material F at the time of coating, and the coating liquid L is applied to the base material F via the bead B.
 ダイヘッド100Aにおいて、上流側リップ10のランド面10Aは、動的接触角ヒステリシスが20°以下である。ランド面10Aは、並列方向一端のリップのランド面の一例である。また、下流側リップ20の面20Cにおける塗布液との接触部20Czも、動的接触角ヒステリシスが20°以下である。接触部20Czは、並列方向他端のリップの、スロット形成面とは逆側でランド面と繋がる外側面の一部であって、塗布液との接触部の一例である。
 ランド面10A及び塗布液との接触部20Czの動的接触角ヒステリシスが20°以下であることで、ランド面10A及び塗布液との接触部20Czにて、既述の三相界面が形成され、その結果、塗布スジの発生を抑制することができる。
 下流側リップ20の面20Cに占める、塗布液との接触部20Czの形成領域は、塗布液、塗布条件等を鑑みて想定される、塗布液が接触しうる領域であればよい。塗布液との接触部20Czの形成領域は、例えば、ランド面20Aの縁部から1mm以上の領域が設定される。
 なお、表面処理の効率等の観点から、下流側リップ20の面20Cの全面の動的接触角ヒステリシスが20°以下であることが好ましい。
In the die head 100A, the land surface 10A of the upstream lip 10 has a dynamic contact angle hysteresis of 20 ° or less. The land surface 10A is an example of the land surface of the lip at one end in the parallel direction. Further, the contact portion 20Cz with the coating liquid on the surface 20C of the downstream lip 20 also has a dynamic contact angle hysteresis of 20 ° or less. The contact portion 20 Cz is a part of the outer surface of the lip at the other end in the parallel direction, which is connected to the land surface on the side opposite to the slot forming surface, and is an example of the contact portion with the coating liquid.
When the dynamic contact angle hysteresis of the land surface 10A and the contact portion 20Cz with the coating liquid is 20 ° or less, the above-mentioned three-phase interface is formed at the land surface 10A and the contact portion 20Cz with the coating liquid. As a result, the occurrence of coating streaks can be suppressed.
The region of the contact portion 20Cz with the coating liquid, which occupies the surface 20C of the downstream lip 20, may be a region where the coating liquid can come into contact, which is assumed in consideration of the coating liquid, coating conditions, and the like. As the formation region of the contact portion 20Cz with the coating liquid, for example, a region of 1 mm or more from the edge portion of the land surface 20A is set.
From the viewpoint of surface treatment efficiency and the like, it is preferable that the dynamic contact angle hysteresis of the entire surface of the surface 20C of the downstream lip 20 is 20 ° or less.
 また、振動などの外乱で三相界面が接触部20Czからランド面20Aに移動しても、ランド面20Aにて塗布液の皮膜を形成することを防ぐことができる観点から、下流側リップ20のランド面20Aも動的接触角ヒステリシスが20°以下であることが好ましい。
 更に、ダイヘッド100Aの洗浄時に塗布液が除去し易く、その後の塗布の再開時にスロット30の汚れによる故障が起きにくい観点から、上流側リップ10のスロット形成面10Bと下流側リップ20のスロット形成面20Bとも動的接触角ヒステリシスが20°以下であることが好ましい。
 ここで、ランド面10A及び20Aは、いずれも、基材Fに対向する面を指す。
Further, even if the three-phase interface moves from the contact portion 20Cz to the land surface 20A due to disturbance such as vibration, the downstream lip 20 can be prevented from forming a coating liquid film on the land surface 20A. The land surface 20A also preferably has a dynamic contact angle hysteresis of 20 ° or less.
Further, from the viewpoint that the coating liquid is easily removed when cleaning the die head 100A and failure due to dirt on the slot 30 is unlikely to occur when the subsequent coating is restarted, the slot forming surface 10B of the upstream lip 10 and the slot forming surface of the downstream lip 20 are less likely to occur. It is preferable that the dynamic contact angle hysteresis of both 20B is 20 ° or less.
Here, the land surfaces 10A and 20A both refer to surfaces facing the base material F.
 ダイヘッド100Aにおいて、上流側リップ10のランド面10Aと基材Fとの距離、及び、下流側リップ20のランド面20Aと基材Fとの距離は、いずれも、塗布液の粘度、形成する塗膜の膜厚等に応じて決定されればよい。
 例えば、上流側リップ10のランド面10Aと基材Fとの距離、及び、下流側リップ20のランド面20Aと基材Fとの距離は、それぞれ、50μm~500μmを選択することができ、100μm~300μmを選択してもよい。
 ここで、上記距離は、ランド面と基材との最短距離を指す。かかる距離は、例えば、テーパーゲージにて測定することができる。
In the die head 100A, the distance between the land surface 10A of the upstream lip 10 and the base material F and the distance between the land surface 20A of the downstream lip 20 and the base material F are both the viscosity of the coating liquid and the coating film to be formed. It may be determined according to the film thickness and the like.
For example, the distance between the land surface 10A of the upstream lip 10 and the base material F and the distance between the land surface 20A of the downstream lip 20 and the base material F can be selected from 50 μm to 500 μm, respectively, and are 100 μm. You may choose up to 300 μm.
Here, the above distance refers to the shortest distance between the land surface and the base material. Such a distance can be measured with, for example, a taper gauge.
 続いて、図2を用いて、本開示におけるダイヘッドの別の態様を説明する。
 ここで、図2は、本開示におけるダイヘッドの先端部の別の一例を示す概略側面図である。
 図2に示すダイヘッドは、重層塗布用のダイヘッドである。
Subsequently, another aspect of the die head in the present disclosure will be described with reference to FIG.
Here, FIG. 2 is a schematic side view showing another example of the tip end portion of the die head in the present disclosure.
The die head shown in FIG. 2 is a die head for multi-layer coating.
 図2に示すダイヘッド100Bは、被塗布部材である基材Fの搬送方向Xに対し、最上流側の上流側リップ10と、最下流側の下流側リップ20と、上流側リップ10と下流側リップ20との間にある中間リップ40と、を有する。
 上流側リップ10はスロット形成面10Bを、下流側リップ20がスロット形成面20Bを、更に、中間リップ40がスロット形成面40B及び40Bを有している。上流側リップ10のスロット形成面10Bと中間リップ40のスロット形成面40Bとの間に塗布液Lを移送及び吐出するスロット30aが形成されている。また、中間リップ40のスロット形成面40Bと下流側リップ20のスロット形成面20Bとの間に塗布液Lを移送及び吐出するスロット30bが形成されている。
 そして、スロット30a及びスロット30bはそれぞれ不図示のマニホールドに連通している。ダイヘッド100Bにおけるマニホールドは、ダイヘッド100Aにおけるマニホールドと同様である。
The die head 100B shown in FIG. 2 has an upstream lip 10 on the most upstream side, a downstream lip 20 on the most downstream side, and an upstream lip 10 and a downstream side with respect to the transport direction X of the base material F to be coated. It has an intermediate lip 40, which is between the lip 20 and the lip 20.
The upstream lip 10 has a slot forming surface 10B, the downstream lip 20 has a slot forming surface 20B, and the intermediate lip 40 has slot forming surfaces 40B 1 and 40B 2 . Slot 30a for transferring and discharging the coating liquid L 1 between the slot formation surface 40B 1 of the slot forming surface 10B and the intermediate lip 40 of the upstream lip 10 is formed. The slot 30b for transferring and discharging the coating liquid L 2 between the slot formation surface 20B of the slot forming surface 40B 2 and the downstream lip 20 of the intermediate lip 40 is formed.
Then, the slot 30a and the slot 30b communicate with each other through a manifold (not shown). The manifold in the die head 100B is the same as the manifold in the die head 100A.
 図2に示すダイヘッド100Bは、塗布時には、スロット30a、スロット30b、及び基材Fとの間に、塗布液L及び塗布液LによるビードBが形成されており、このビードBを介して塗布液L及び塗布液Lが基材Fへと塗布される。 Die head 100B shown in FIG. 2, the time of coating, slot 30a, slots 30b, and between the base material F, and the bead B is formed by the coating solution L 1 and the coating solution L 2, via the bead B The coating liquid L 1 and the coating liquid L 2 are applied to the base material F.
 ダイヘッド100Bにおいて、上流側リップ10のランド面10Aは、動的接触角ヒステリシスが20°以下である。ランド面10Aは、並列方向一端のリップのランド面の一例である。また、下流側リップ20の面20Cにおける塗布液との接触部20Czも、動的接触角ヒステリシスが20°以下である。接触部20Czは、並列方向他端のリップの、スロット形成面とは逆側でランド面と繋がる外側面の一部であって、塗布液との接触部の一例である。
 ランド面10A及び塗布液との接触部20Czの動的接触角ヒステリシスが20°以下であることで、ランド面10A及び塗布液との接触部20Czにて、既述の三相界面が形成され、その結果、塗布スジの発生を抑制することができる。
 ダイヘッド100Bにおいても、下流側リップ20の面20Cに占める、塗布液との接触部20Czの形成領域は、塗布液、塗布条件等を鑑みて想定される、塗布液が接触しうる領域であればよい。塗布液との接触部20Czの形成領域は、例えば、ランド面20Aの縁部から1mm以上の領域が設定される。
 なお、表面処理の効率等の観点から、下流側リップ20の面20Cの全面の動的接触角ヒステリシスが20°以下であることが好ましい。
In the die head 100B, the land surface 10A of the upstream lip 10 has a dynamic contact angle hysteresis of 20 ° or less. The land surface 10A is an example of the land surface of the lip at one end in the parallel direction. Further, the contact portion 20Cz with the coating liquid on the surface 20C of the downstream lip 20 also has a dynamic contact angle hysteresis of 20 ° or less. The contact portion 20 Cz is a part of the outer surface of the lip at the other end in the parallel direction, which is connected to the land surface on the side opposite to the slot forming surface, and is an example of the contact portion with the coating liquid.
When the dynamic contact angle hysteresis of the land surface 10A and the contact portion 20Cz with the coating liquid is 20 ° or less, the above-mentioned three-phase interface is formed at the land surface 10A and the contact portion 20Cz with the coating liquid. As a result, the occurrence of coating streaks can be suppressed.
Even in the die head 100B, the region where the contact portion 20Cz with the coating liquid occupies the surface 20C of the downstream lip 20 is a region where the coating liquid can come into contact, which is assumed in consideration of the coating liquid, the coating conditions, and the like. Good. As the formation region of the contact portion 20Cz with the coating liquid, for example, a region of 1 mm or more from the edge portion of the land surface 20A is set.
From the viewpoint of surface treatment efficiency and the like, it is preferable that the dynamic contact angle hysteresis of the entire surface of the surface 20C of the downstream lip 20 is 20 ° or less.
 また、ダイヘッド100Bにおいて、振動などの外乱で三相界面が接触部20Czからランド面20Aに移動しても、ランド面20Aにて塗布液の皮膜を形成することを防ぐことができる観点から、下流側リップ20のランド面20Aも動的接触角ヒステリシスが20°以下であることが好ましい。
 更に、ダイヘッド100Bの洗浄時に塗布液が除去し易い観点から、中間リップ40のランド面40Aも動的接触角ヒステリシスが20°以下であることが好ましい。
 更に、ダイヘッド100Bの洗浄時に塗布液が除去し易く、その後の塗布の再開時にスロット30a及び30bの汚れによる故障が起きにくい観点から、上流側リップ10のスロット形成面10B、下流側リップ20のスロット形成面20B、及び中間リップ40のスロット形成面40B及び40Bも、動的接触角ヒステリシスが20°以下であることが好ましい。
 ここで、ランド面10A、20A、及び40Aは、いずれも、基材Fに対向する面を意味する。
Further, in the die head 100B, even if the three-phase interface moves from the contact portion 20Cz to the land surface 20A due to disturbance such as vibration, it can be prevented from forming a coating liquid film on the land surface 20A, which is downstream. The land surface 20A of the side lip 20 also preferably has a dynamic contact angle hysteresis of 20 ° or less.
Further, from the viewpoint that the coating liquid can be easily removed when cleaning the die head 100B, it is preferable that the land surface 40A of the intermediate lip 40 also has a dynamic contact angle hysteresis of 20 ° or less.
Further, from the viewpoint that the coating liquid can be easily removed when cleaning the die head 100B and failure due to dirt on the slots 30a and 30b is unlikely to occur when the subsequent coating is restarted, the slot forming surface 10B of the upstream lip 10 and the slot of the downstream lip 20 The forming surface 20B and the slot forming surfaces 40B 1 and 40B 2 of the intermediate lip 40 also preferably have a dynamic contact angle hysteresis of 20 ° or less.
Here, the land surfaces 10A, 20A, and 40A all mean surfaces facing the base material F.
 ダイヘッド100Bにおいて、上流側リップ10のランド面10Aと基材Fとの距離、下流側リップ20のランド面20Aと基材Fとの距離、及び、中間リップ40のランド面40Aと基材Fとの距離は、いずれも、塗布液の粘度、形成する塗膜の膜厚等に応じて決定されればよい。
 例えば、上流側リップ10のランド面10Aと基材Fとの距離、下流側リップ20のランド面20Aと基材Fとの距離、及び、中間リップ40のランド面40Aと基材Fとの距離は、それぞれ、50μm~500μmを選択することができ、100μm~300μmを選択してもよい。
In the die head 100B, the distance between the land surface 10A of the upstream lip 10 and the base material F, the distance between the land surface 20A of the downstream lip 20 and the base material F, and the land surface 40A and the base material F of the intermediate lip 40 The distances may be determined according to the viscosity of the coating liquid, the thickness of the coating film to be formed, and the like.
For example, the distance between the land surface 10A of the upstream lip 10 and the base material F, the distance between the land surface 20A of the downstream lip 20 and the base material F, and the distance between the land surface 40A of the intermediate lip 40 and the base material F. Can be selected from 50 μm to 500 μm, respectively, and may be selected from 100 μm to 300 μm.
 加えて、図3を用いて、本開示におけるダイヘッドの更に別の態様を説明する。
 ここで、図3は、本開示におけるダイヘッドの先端部の更に別の一例を示す概略側面図である。
 図3に示すダイヘッド100Cは、被塗布部材である基材Fの搬送方向Xに対し、上流側の上流側リップ10と、下流側の下流側リップ50と、を有する。
 図3に示すダイヘッド100Cは、図1に示すダイヘッド100Cにおける下流側リップ20の代わりに下流側リップ50を備えた構成を有する。図3に示す下流側リップ50以外の各構成要素は、機能及び構成共に、図1に示すダイヘッド100Aにおける各構成要素と同様であるため、ここでは説明を省略する。
In addition, FIG. 3 will be used to describe yet another aspect of the die head in the present disclosure.
Here, FIG. 3 is a schematic side view showing still another example of the tip end portion of the die head in the present disclosure.
The die head 100C shown in FIG. 3 has an upstream lip 10 on the upstream side and a downstream lip 50 on the downstream side with respect to the transport direction X of the base material F to be coated.
The die head 100C shown in FIG. 3 has a configuration in which the downstream lip 50 is provided instead of the downstream lip 20 in the die head 100C shown in FIG. Since each component other than the downstream lip 50 shown in FIG. 3 has the same function and configuration as each component in the die head 100A shown in FIG. 1, description thereof will be omitted here.
 ダイヘッド100Cにおける下流側リップ50は、ランド面50A、スロット形成面50B、及び面50Cを有している。そして、下流側リップ50の面50Cには、塗布液との接触部50Czを有する。接触部50Czは、並列方向他端のリップの、スロット形成面とは逆側でランド面と繋がる外側面の一部であって、塗布液との接触部の一例である。そして、接触部50Czは、図3のように側面視にて、ランド面50Aと繋がる部位が凸状の曲面を有する。
 ダイヘッド100Cにおいて、ランド面10A及び塗布液との接触部50Czの動的接触角ヒステリシスは20°以下であることから、ランド面10A及び接触部50Czにて、既述の三相界面が形成され、その結果、塗布スジの発生を抑制することができる。
 ダイヘッド100Cによる塗布液の塗布中に形成される三相界面は、通常、様々な要因で接触部50Czの領域で動く。接触部50Czのように、ランド面50Aと繋がる部位が凸状の曲面を有することで、形成された三相界面の動きの自由度を向上させることができる。つまり、三相界面の動きが下流側リップ50の角部によって阻害されることがない。また、接触部50Czにおいて、三相界面が動いても角部に液が残存することがなく(三相界面から液が分離して角部に付着しても、それが角部に残存することがなく)、塗布スジの発生を抑制できる。
 接触部50Czにおいて、三相界面の動きの自由度が向上することで、塗布スジの発生をより効果的に抑制することができる。
The downstream lip 50 in the die head 100C has a land surface 50A, a slot forming surface 50B, and a surface 50C. The surface 50C of the downstream lip 50 has a contact portion 50Cz with the coating liquid. The contact portion 50 Cz is a part of the outer surface of the lip at the other end in the parallel direction, which is connected to the land surface on the side opposite to the slot forming surface, and is an example of the contact portion with the coating liquid. The contact portion 50Cz has a curved surface whose portion connected to the land surface 50A is convex when viewed from the side as shown in FIG.
In the die head 100C, since the dynamic contact angle hysteresis of the land surface 10A and the contact portion 50Cz with the coating liquid is 20 ° or less, the above-mentioned three-phase interface is formed on the land surface 10A and the contact portion 50Cz. As a result, the occurrence of coating streaks can be suppressed.
The three-phase interface formed during the application of the coating liquid by the die head 100C usually moves in the region of the contact portion 50 Cz due to various factors. Since the portion connected to the land surface 50A has a convex curved surface such as the contact portion 50Cz, the degree of freedom of movement of the formed three-phase interface can be improved. That is, the movement of the three-phase interface is not hindered by the corners of the downstream lip 50. Further, at the contact portion 50 Cz, the liquid does not remain at the corner even if the three-phase interface moves (even if the liquid separates from the three-phase interface and adheres to the corner, it remains at the corner. It is possible to suppress the occurrence of coating streaks.
By improving the degree of freedom of movement of the three-phase interface at the contact portion 50 Cz, the occurrence of coating streaks can be suppressed more effectively.
 接触部50Czにおける凸状の曲面は、加工精度の観点から、円弧曲面であることが好ましい。
 また、接触部50Czにおける凸状の曲面は、曲率半径0.1mm以上の曲面であることが好ましく、曲率半径0.2mm以上の曲面であることが好ましい。
 凸状の曲面の曲率半径の上限は、例えば、10mmである。
The convex curved surface at the contact portion 50 Cz is preferably an arc curved surface from the viewpoint of processing accuracy.
Further, the convex curved surface at the contact portion 50 Cz is preferably a curved surface having a radius of curvature of 0.1 mm or more, and preferably a curved surface having a radius of curvature of 0.2 mm or more.
The upper limit of the radius of curvature of the convex curved surface is, for example, 10 mm.
 ここで、曲面の曲率半径は、以下の方法にて測定される。
 側面からマイクロスコープ(例えば、(株)キーエンス製)により観察し、観察画像から曲率半径を求める。
 曲面の10箇所について曲率半径を求め、10箇所での算術平均値を、外側面における曲面の曲率半径とする。
Here, the radius of curvature of the curved surface is measured by the following method.
Observe from the side with a microscope (for example, manufactured by KEYENCE CORPORATION), and obtain the radius of curvature from the observed image.
The radius of curvature is obtained for 10 points on the curved surface, and the arithmetic mean value at 10 points is taken as the radius of curvature of the curved surface on the outer surface.
 下流側リップ50の面50Cに占める、塗布液との接触部50Czの形成領域(凸状の曲面を含む)は、塗布液、塗布条件等を鑑みて想定される、塗布液が接触しうる領域であればよい。塗布液との接触部50Czの形成領域は、例えば、ランド面50Aの縁部から1mm以上の領域が設定される。
 なお、表面処理の効率等の観点から、下流側リップ50の面50Cの全面の動的接触角ヒステリシスが20°以下であることが好ましい。
The region (including the convex curved surface) of the contact portion 50Cz with the coating liquid, which occupies the surface 50C of the downstream lip 50, is a region where the coating liquid can come into contact, which is assumed in consideration of the coating liquid, coating conditions, and the like. It should be. As the formation region of the contact portion 50 Cz with the coating liquid, for example, a region of 1 mm or more from the edge portion of the land surface 50A is set.
From the viewpoint of surface treatment efficiency and the like, it is preferable that the dynamic contact angle hysteresis of the entire surface of the surface 50C of the downstream lip 50 is 20 ° or less.
 また、振動などの外乱で三相界面が接触部50Czからランド面50Aに移動しても、ランド面50Aにて塗布液の皮膜を形成することを防ぐことができる観点から、下流側リップ50のランド面50Aも動的接触角ヒステリシスが20°以下であることが好ましい。
 下流側リップ50のように、接触部50Czのランド面50Aと繋がる部位が凸状の曲面を有する場合、ランド面50Aは、基材Fに対向する面であって、平面部を指す。つまり、図3のように側面視したとき、直線で示される領域が下流側リップのランド部となる。
Further, even if the three-phase interface moves from the contact portion 50 Cz to the land surface 50 A due to disturbance such as vibration, the downstream lip 50 can be prevented from forming a coating liquid film on the land surface 50 A. The land surface 50A also preferably has a dynamic contact angle hysteresis of 20 ° or less.
When the portion of the contact portion 50Cz connected to the land surface 50A has a convex curved surface as in the downstream lip 50, the land surface 50A is a surface facing the base material F and refers to a flat surface portion. That is, when viewed from the side as shown in FIG. 3, the region indicated by the straight line is the land portion of the downstream lip.
 ダイヘッド100Cにおいて、上流側リップ10のランド面10Aと基材Fとの距離、及び、下流側リップ50のランド面50Aと基材Fとの距離は、いずれも、塗布液の粘度、形成する塗膜の膜厚等に応じて決定されればよい。
 例えば、上流側リップ10のランド面10Aと基材Fとの距離、及び、下流側リップ50のランド面50Aと基材Fとの距離は、それぞれ、50μm~500μmを選択することができ、100μm~300μmを選択してもよい。
 ここで、上記距離は、ランド面と基材との最短距離を指す。かかる距離は、例えば、テーパーゲージにて測定することができる。
In the die head 100C, the distance between the land surface 10A of the upstream lip 10 and the base material F and the distance between the land surface 50A of the downstream lip 50 and the base material F are both the viscosity of the coating liquid and the coating film to be formed. It may be determined according to the film thickness and the like.
For example, the distance between the land surface 10A of the upstream lip 10 and the base material F and the distance between the land surface 50A of the downstream lip 50 and the base material F can be selected from 50 μm to 500 μm, respectively, and are 100 μm. You may choose up to 300 μm.
Here, the above distance refers to the shortest distance between the land surface and the base material. Such a distance can be measured with, for example, a taper gauge.
 本開示のダイヘッドは、金属製であることが好ましく、ダイヘッドの本体とリップの先端部とが別の金属にて形成されていてもよい。
 本開示のダイヘッドを構成する金属として具体的には、ステンレス鋼の他、リップの先端部に用いられる、超微粒合金(例えば、TF15(三菱マテリアル(株))、超硬合金(例えば、日本タングステン(株))等が挙げられる。
 なお、本開示のダイヘッドでは、既述のように、塗布液の接触部が凸状の曲面を有する形態の場合、凸状の曲面は面取り加工にて形成されればよい。
The die head of the present disclosure is preferably made of metal, and the main body of the die head and the tip of the lip may be made of different metals.
Specifically, as the metal constituting the die head of the present disclosure, in addition to stainless steel, cemented carbide (for example, TF15 (Mitsubishi Materials Corporation), cemented carbide (for example, Nippon Tungsten)) used for the tip of the lip is used. Co., Ltd.) and the like.
In the die head of the present disclosure, as described above, when the contact portion of the coating liquid has a convex curved surface, the convex curved surface may be formed by chamfering.
[表面処理]
 続いて、動的接触角ヒステリシスの制御方法について説明する。
 上記のランド面10A、塗布液との接触部20Cz等の動的接触角ヒステリシスを20°以下にする方法としては、フッ素含有化合物及びケイ素含有化合物からなる群より選択される少なくとも1種の化合物を用いた表面処理が挙げられる。
 つまり、上記のランド面10A、塗布液との接触部20Cz等は、フッ素含有化合物を用いて形成される表面処理層を備えることが好ましい。フッ素含有化合物を用いて形成される表面処理層には、例えば、サーフ工業(株)の「フッ素系超薄膜コート MX-031」等の組成物(具体的には、フッ素含有化合物を含む組成物、例えば、コーティング剤)が好ましく用いられる。
[surface treatment]
Subsequently, a method of controlling the dynamic contact angle hysteresis will be described.
As a method for reducing the dynamic contact angle hysteresis of the land surface 10A, the contact portion 20 Cz with the coating liquid, and the like to 20 ° or less, at least one compound selected from the group consisting of a fluorine-containing compound and a silicon-containing compound is used. The surface treatment used can be mentioned.
That is, it is preferable that the land surface 10A, the contact portion 20Cz with the coating liquid, and the like include a surface treatment layer formed by using a fluorine-containing compound. The surface treatment layer formed by using the fluorine-containing compound is, for example, a composition such as "Fluorine-based ultrathin film coat MX-031" of Surf Industry Co., Ltd. (specifically, a composition containing a fluorine-containing compound). , For example, a coating agent) is preferably used.
(フッ素含有化合物)
 表面処理に用いるフッ素含有化合物としては、動的接触角ヒステリシスを20°以下しうる化合物であれば特に制限はない。
 フッ素含有化合物として具体的には、パーフルオロポリエーテル基を有する化合物であることが好ましい。
(Fluorine-containing compound)
The fluorine-containing compound used for the surface treatment is not particularly limited as long as it is a compound capable of having a dynamic contact angle hysteresis of 20 ° or less.
Specifically, the fluorine-containing compound is preferably a compound having a perfluoropolyether group.
 上記パーフルオロポリエーテル基としては、-(OCFn1-、-(OCn2-、-(OCn3-、-(OCn4-、及びこれらが2以上連結した基等が挙げられる。なお、n1~n4は、各々独立に、1以上の整数を表し、20~200が好ましく、30~200がより好ましい。但し、フッ素含有化合物が、-(OCFn1-、-(OCn2-、-(OCn3-、又は-(OCn4-を含む場合、n1、n2、n3、又はn4は、2以上の整数を表す。
 なお、-(OCn3-及び-(OCn4-におけるバーフルオロ基は、直鎖であっても分岐鎖であってもよく、好ましくは直鎖である。
Examples of the perfluoropolyether group include-(OCF 2 ) n1 -,-(OC 2 F 4 ) n 2 -,-(OC 3 F 6 ) n 3 -,-(OC 4 F 8 ) n4- , and these. Examples include two or more linked groups. In addition, n1 to n4 each independently represent an integer of 1 or more, and 20 to 200 is preferable, and 30 to 200 is more preferable. However, when the fluorine-containing compound contains-(OCF 2 ) n1 -,-(OC 2 F 4 ) n 2 -,-(OC 3 F 6 ) n 3-, or-(OC 4 F 8 ) n 4- , n1 , N2, n3, or n4 represent an integer greater than or equal to 2.
The barfluoro group at − (OC 3 F 6 ) n3 − and − (OC 4 F 8 ) n4 − may be a straight chain or a branched chain, and is preferably a straight chain.
 また、フッ素含有化合物は、パーフルオロポリエーテル基の他に、加水分解性基又は水酸基が結合したSi原子含有基を有する化合物(即ち、ケイ素含有化合物にも該当)であることが好ましい。
 上記加水分解性基又は水酸基が結合したSi原子含有基としては、-Si(R(R3-mで表される基が好ましい。Rは水酸基又は加水分解性基を表し、Rは、水素原子、炭素数1~22のアルキル基、又は、-Y-Si(R(R3-pを表し、mは1~3の整数を表す。ここで、Yは、2価の有機基を表し、RはRと同義であり、RはRと同義であり、pは0~3の整数を表す。
 上記加水分解性基としては、加水分解によりヒドロキシ基(シラノール基)を与える基が挙げられ、具体的には、炭素数1~6のアルコキシ基、シアノ基、アセトキシ基、塩素原子、及びイソシアネート基等が挙げられる。中でも、加水分解性基としては、炭素数1~6(より好ましくは1~4)のアルコキシ基又はシアノ基が好ましく、炭素数1~6(より好ましくは1~4)のアルコキシ基がより好ましい。
 Yで表される2価の有機基としては、アルキレン基、アルキレン基とエーテル結合(-O-)とを組み合わせた基、アルキレン基とアリーレン基とを組み合わせた基が挙げられる。
Further, the fluorine-containing compound is preferably a compound having a hydrolyzable group or a Si atom-containing group to which a hydroxyl group is bonded (that is, a silicon-containing compound) in addition to the perfluoropolyether group.
As the hydrolyzable group or the Si atom-containing group to which a hydroxyl group is bonded, a group represented by −Si ( Ra ) m (R b ) 3-m is preferable. R a represents a hydroxyl group or a hydrolyzable group, R b represents a hydrogen atom, an alkyl group having 1 to 22 carbon atoms, or −Y—Si (R c ) p (R d ) 3-p , and m Represents an integer of 1 to 3. Here, Y is a divalent organic group, R c has the same meaning as R a, R d have the same meanings as R b, p is an integer of 0-3.
Examples of the hydrolyzable group include a group that imparts a hydroxy group (silanol group) by hydrolysis. Specifically, an alkoxy group having 1 to 6 carbon atoms, a cyano group, an acetoxy group, a chlorine atom, and an isocyanate group. And so on. Among them, as the hydrolyzable group, an alkoxy group having 1 to 6 carbon atoms (more preferably 1 to 4) or a cyano group is preferable, and an alkoxy group having 1 to 6 carbon atoms (more preferably 1 to 4) is more preferable. ..
Examples of the divalent organic group represented by Y include an alkylene group, a group in which an alkylene group and an ether bond (—O—) are combined, and a group in which an alkylene group and an arylene group are combined.
 フッ素含有化合物の詳細については、特開2015-200884号公報の段落0033~0103に記載の含フッ素シラン化合物、国際公開第2018/012344号公報の段落0148~0223に記載の式(1a)、(1b)、(2a)、(2b)、(3a)、又は、(3b)で表される化合物(パーフルオロポリエーテル系化合物)の記載を参酌でき、これらの内容は本明細書に組み込まれる。 For details of the fluorine-containing compound, see the fluorine-containing silane compound described in paragraphs 0033 to 0103 of JP-A-2015-200884, and the formulas (1a), The description of the compound (perfluoropolyether-based compound) represented by 1b), (2a), (2b), (3a), or (3b) can be referred to, and these contents are incorporated in the present specification.
 パーフルオロポリエーテル基を有するフッ素含有化合物としては、市販品を用いてもよく、具体的には、パーフルオロポリエーテル基を有するフッ素含有化合物を含む組成物(例えば、コーティング剤)として、ダイキン工業(株)の「オプツールDSX」、「オプツールDSX-E」、「オプツールUD100」、信越化学工業(株)の「KY-164」、「KY-108」等が挙げられる。 As the fluorine-containing compound having a perfluoropolyether group, a commercially available product may be used. Specifically, as a composition (for example, a coating agent) containing a fluorine-containing compound having a perfluoropolyether group, Daikin Industries, Ltd. Examples thereof include "Optur DSX", "Optur DSX-E" and "Optur UD100" from Shinetsu Chemical Industry Co., Ltd., and "KY-164" and "KY-108" from Shinetsu Chemical Industry Co., Ltd.
-表面処理-
 フッ素含有化合物を用いた表面処理は、例えば、以下の方法が用いられる。
 即ち、フッ素含有化合物を、ダイヘッドにおける被表面処理部(具体的には、上記のランド面10A、塗布液との接触部20Cz等の、動的接触角ヒステリシスを20°以下にする領域)等に付与した後、乾燥、硬化処理をおこなう。
 フッ素含有化合物の付与手段としては、例えば、刷毛塗り、ディップ塗布、スプレー塗布等が挙げられる。
-surface treatment-
For the surface treatment using the fluorine-containing compound, for example, the following method is used.
That is, the fluorine-containing compound is applied to the surface-treated portion of the die head (specifically, the region where the dynamic contact angle hysteresis is 20 ° or less, such as the land surface 10A and the contact portion 20 Cz with the coating liquid). After applying, it is dried and cured.
Examples of the means for applying the fluorine-containing compound include brush coating, dip coating, and spray coating.
-下処理-
 フッ素含有化合物を用いた表面処理の前に、ダイヘッドにおける被表面処理部(具体的には、上記のランド面10A、塗布液との接触部20Cz等の、動的接触角ヒステリシスを20°以下にする領域)等に対し、下処理を行うことが好ましい。
 下処理としては、酸処理、アルカリ処理、プライマー処理、粗面処理、プラズマ等の表面改質処理等が挙げられる。
-Preparation-
Before the surface treatment using the fluorine-containing compound, the dynamic contact angle hysteresis of the surface-treated portion of the die head (specifically, the land surface 10A, the contact portion 20 Cz with the coating liquid, etc.) is set to 20 ° or less. It is preferable to perform pretreatment on the area to be treated.
Examples of the pretreatment include acid treatment, alkali treatment, primer treatment, rough surface treatment, surface modification treatment such as plasma, and the like.
 表面処理層は、十点平均粗さRzjisが2.0以下であることが好ましく、1.5μm以下であることがより好ましく、1.0μm以下であることが更に好ましい。表面処理層の十点平均粗さRzjisの下限値は、測定限界の観点から、例えば、0.001μm以上が挙げられる。
 ここで、十点平均粗さRzjisは、JIS B 0601-2001に記載の方法により測定される値である。測定装置としては、例えば、触針式表面粗さ測定機(サーフコム、(株)東京精密)が用いられる。
The surface-treated layer preferably has a ten-point average roughness Rzjis of 2.0 or less, more preferably 1.5 μm or less, and even more preferably 1.0 μm or less. The lower limit of the ten-point average roughness Rzjis of the surface-treated layer is, for example, 0.001 μm or more from the viewpoint of the measurement limit.
Here, the ten-point average roughness Rzjis is a value measured by the method described in JIS B 0601-2001. As the measuring device, for example, a stylus type surface roughness measuring machine (Surfcom, Tokyo Seimitsu Co., Ltd.) is used.
 続いて、ダイヘッドにより塗布が行われる基材、基材の搬送手段、及び塗布液について説明する。 Next, the base material to be coated by the die head, the means for transporting the base material, and the coating liquid will be described.
[基材]
 基材Fとしては、被塗布部材であれば特に制限はなく、塗工層の用途に応じて、適宜、選択すればよい。例えば、本開示のダイヘッドにより連続塗布を行う場合には、長尺の基材であればよい。特に、搬送性等の観点からは、基材には、ポリマーフィルムが好ましく用いられる。
[Base material]
The base material F is not particularly limited as long as it is a member to be coated, and may be appropriately selected depending on the use of the coating layer. For example, when continuous coating is performed by the die head of the present disclosure, a long base material may be used. In particular, from the viewpoint of transportability and the like, a polymer film is preferably used as the base material.
 光学フィルム用途であれば、基材の光透過率は、80%以上であることが好ましい。
 光学フィルム用途であれば、基材としてポリマーフィルムを用いる場合には、光学的等方性のポリマーフィルムを用いるのが好ましい。
 基材としては、例えば、ポリエステル系基材(ポリエチレンテレフタレート、ポリエチレンナフタレート等のフィルム若しくはシート)、セルロース系基材(ジアセチルセルロース、トリアセチルセルロース(TAC)等のフィルム若しくはシート)、ポリカーボネート系基材、ポリ(メタ)アクリル系基材(ポリメチルメタクリレート等のフィルム若しくはシート)、ポリスチレン系基材(ポリスチレン、アクリロニトリルスチレン共重合体等のフィルム若しくはシート)、オレフィン系基材(ポリエチレン、ポリプロピレン、環状若しくはノルボルネン構造を有するポリオレフィン、エチレンプロピレン共重合体等のフィルム若しくはシート)、ポリアミド系基材(ポリ塩化ビニル、ナイロン、芳香族ポリアミド等のフィルム若しくはシート)、ポリイミド系基材、ポリスルホン系基材、ポリエーテルスルホン系基材、ポリエーテルエーテルケトン系基材、ポリフェニレンスルフィド系基材、ビニルアルコール系基材、ポリ塩化ビニリデン系基材、ポリビニルブチラール系基材、ポリ(メタ)アクリレート系基材、ポリオキシメチレン系基材、エポキシ樹脂系基材等の透明基材、又は上記のポリマー材料をブレンドしたブレンドポリマーからなる基材等が挙げられる。
For optical film applications, the light transmittance of the base material is preferably 80% or more.
For optical film applications, when a polymer film is used as the base material, it is preferable to use an optically isotropic polymer film.
Examples of the base material include a polyester-based base material (film or sheet of polyethylene terephthalate, polyethylene naphthalate, etc.), a cellulose-based base material (film or sheet of diacetyl cellulose, triacetyl cellulose (TAC), etc.), and a polycarbonate-based base material. , Poly (meth) acrylic base material (film or sheet such as polymethyl methacrylate), polystyrene base material (film or sheet such as polystyrene, acrylonitrile styrene copolymer), olefin base material (polyethylene, polypropylene, cyclic or Polyamide having a norbornene structure, film or sheet of ethylene-propylene copolymer, etc.), polyamide-based substrate (film or sheet of polyvinyl chloride, nylon, aromatic polyamide, etc.), polyimide-based substrate, polysulfone-based substrate, poly Ethersulfone-based base material, polyether ether ketone-based base material, polyphenylene sulfide-based base material, vinyl alcohol-based base material, polyvinylidene chloride-based base material, polyvinyl butyral-based base material, poly (meth) acrylate-based base material, polyoxy Examples thereof include a transparent base material such as a methylene-based base material and an epoxy resin-based base material, and a base material made of a blended polymer blended with the above polymer materials.
 基材としては、上記のポリマーフィルム上に予め層が形成されたものであってもよい。
 予め形成される層としては、接着層、水、酸素等に対するバリア層、屈折率調整層、配向層等が挙げられる。
The base material may be one in which a layer is formed in advance on the above polymer film.
Examples of the layer formed in advance include an adhesive layer, a barrier layer against water, oxygen and the like, a refractive index adjusting layer, an alignment layer and the like.
[基材の搬送手段]
 図1及び図2では、基材Fが搬送方向Xに向かって搬送されているが、基材の搬送手段はこの態様に限定されるものではない。
 つまり、基材の搬送手段は特に制限はなく、例えば、基材を張架した状態にて搬送することができ、塗布精度が高まる観点から、ダイヘッドによる塗布時の搬送手段は、バックアップロールであることが好ましい。
 即ち、ダイヘッドによる塗布液の塗布は、バックアップロール上に巻き掛けられた基材に対し行われることが好ましい。
[Means for transporting base material]
In FIGS. 1 and 2, the base material F is transported in the transport direction X, but the means for transporting the base material is not limited to this embodiment.
That is, the means for transporting the base material is not particularly limited, and for example, the base material can be transported in a stretched state, and the transport means at the time of coating by the die head is a backup roll from the viewpoint of improving the coating accuracy. Is preferable.
That is, the coating liquid is preferably applied to the base material wound on the backup roll by the die head.
 バックアップロールは、回転自在に構成されており、基材を巻き掛けて連続搬送することができる部材であって、基材の搬送速度を同速度で回転駆動する。 The backup roll is a member that is rotatably configured and can be continuously transported by winding the base material, and rotationally drives the transport speed of the base material at the same speed.
 バックアップロールは、塗膜の乾燥促進を高めるため、膜面温度低下による塗膜のブラッシング(即ち、微細な結露が生じることによる塗膜の白化)の抑制など観点から、加温されていてもよい。
 また、バックアップロールは、表面温度を検知し、その温度に基づいて温度制御手段によってバックアップロールの表面温度が維持されることが好ましい。
 バックアップロールの温度制御手段には、加熱手段及び冷却手段がある。加熱手段としては、誘導加熱、水加熱、油加熱等が用いられ、冷却手段としては、冷却水による冷却が用いられる。
The backup roll may be heated from the viewpoint of suppressing brushing of the coating film due to a decrease in the film surface temperature (that is, whitening of the coating film due to the occurrence of fine dew condensation) in order to enhance the drying promotion of the coating film. ..
Further, it is preferable that the backup roll detects the surface temperature and the surface temperature of the backup roll is maintained by the temperature control means based on the temperature.
The temperature control means of the backup roll includes a heating means and a cooling means. As the heating means, induction heating, water heating, oil heating and the like are used, and as the cooling means, cooling with cooling water is used.
 バックアップロールの直径としては、基材が巻き掛け易い観点、ダイヘッドによる塗布が容易な観点、バックアップロールの製造コストの観点から、100mm~1000mmが好ましく、100mm~800mmがより好ましく、200mm~700mmが更に好ましい。 The diameter of the backup roll is preferably 100 mm to 1000 mm, more preferably 100 mm to 800 mm, further preferably 200 mm to 700 mm, from the viewpoint of easy wrapping of the base material, easy application by the die head, and the manufacturing cost of the backup roll. preferable.
 バックアップロールでの基材の搬送速度は、生産性の確保の観点、及び、塗布性の観点から、例えば、10m/min~100m/minであることが好ましい。 The transport speed of the base material on the backup roll is preferably, for example, 10 m / min to 100 m / min from the viewpoint of ensuring productivity and coatability.
 バックアップロールに対する基材のラップ角は、塗布時の基材搬送を安定化され、塗膜の厚みムラの発生を抑制する観点から、60°以上が好ましく、90°以上がより好ましい。また、ラップ角の上限は、例えば、180°に設定することができる。
 なお、ラップ角とは、基材がバックアップロールに接触する際の基材の搬送方向と、バックアップロールから基材が離間する際の基材の搬送方向と、からなる角度をいう。
The lap angle of the base material with respect to the backup roll is preferably 60 ° or more, more preferably 90 ° or more, from the viewpoint of stabilizing the transport of the base material during coating and suppressing the occurrence of uneven thickness of the coating film. The upper limit of the lap angle can be set to, for example, 180 °.
The lap angle refers to an angle including a transport direction of the base material when the base material comes into contact with the backup roll and a transport direction of the base material when the base material is separated from the backup roll.
[塗布液]
 塗布液としては、ダイヘッドにより吐出可能な塗布液であれば特に制限はない。
 本開示のダイヘッドは、塗布スジの発生が抑制されることから、特に、薄層(例えば、湿潤厚み20μm以下)の塗膜を形成する際に適用することで、その効果が顕著に現れる。
[Coating liquid]
The coating liquid is not particularly limited as long as it can be discharged by the die head.
Since the die head of the present disclosure suppresses the generation of coating streaks, its effect is remarkably exhibited by applying it particularly when forming a coating film having a thin layer (for example, a wet thickness of 20 μm or less).
 本開示のダイヘッドに適用される塗布液としては、流動性がある液状物であれば特に制限はない。
 塗布液としては、重合性又は架橋性化合物を含む硬化性塗布液であってもよいし、非硬化性塗布液であってもよい。
The coating liquid applied to the die head of the present disclosure is not particularly limited as long as it is a fluid liquid material.
The coating liquid may be a curable coating liquid containing a polymerizable or crosslinkable compound, or may be a non-curable coating liquid.
 また、有機溶剤を含む塗布液の場合、塗布スジが発生しやすい傾向にある。そのため、本開示のダイヘッドに対し、有機溶剤を含む塗布液を適用すると、塗布スジの発生の抑制効果が現れやすい。
 塗布液に用いられる有機溶剤には特に制限はなく、塗布液に含まれる成分を溶解又は分散しうる有機溶剤であればよい。
 有機溶剤の含有量は特に制限はない。
Further, in the case of a coating liquid containing an organic solvent, coating streaks tend to occur easily. Therefore, when a coating liquid containing an organic solvent is applied to the die head of the present disclosure, the effect of suppressing the occurrence of coating streaks is likely to appear.
The organic solvent used in the coating liquid is not particularly limited as long as it is an organic solvent capable of dissolving or dispersing the components contained in the coating liquid.
The content of the organic solvent is not particularly limited.
(塗布液の例)
 本開示のダイヘッドに適用される塗布液としては、流動性がある液状物であれば特に制限はない。ただし、塗布スジが発生しやすい塗布液を用いた場合、本開示のダイヘッドを用いることで、その効果が顕著に現れる。
(Example of coating liquid)
The coating liquid applied to the die head of the present disclosure is not particularly limited as long as it is a fluid liquid material. However, when a coating liquid in which coating streaks are likely to occur is used, the effect is remarkably exhibited by using the die head of the present disclosure.
 塗布液の1例としては、光学異方性層を形成する塗布液であって、例えば、1種又は2種以上の重合性液晶化合物と、重合開始剤と、レベリング剤と、有機溶剤と、を含み、固形分濃度が20質量%~40質量%の塗布液が挙げられる。この塗布液は、更に、重合性液晶化合物以外の液晶化合物、配向制御剤、界面活性剤、チルト角制御剤、配向助剤、可塑剤、及び架橋剤等を含んでいてもよい。 One example of the coating liquid is a coating liquid that forms an optically anisotropic layer, and is, for example, one kind or two or more kinds of polymerizable liquid crystal compounds, a polymerization initiator, a leveling agent, an organic solvent, and the like. Examples thereof include a coating liquid containing 20% by mass to 40% by mass of a solid content concentration. This coating liquid may further contain a liquid crystal compound other than the polymerizable liquid crystal compound, an orientation control agent, a surfactant, a tilt angle control agent, an orientation aid, a plasticizer, a cross-linking agent, and the like.
 塗布液の別の1例としては、偏光層を形成する塗布液であって、例えば、液晶性ポリマーと、二色性化合物と、液晶性ポリマー及び二色性化合物を溶解する有機溶剤と、を含み、固形分濃度が1質量%~7質量%の塗布液が挙げられる。この塗布液は、更に、界面改良剤、重合開始剤、及び各種添加剤等を含んでいてもよい。 Another example of the coating liquid is a coating liquid that forms a polarizing layer, for example, a liquid crystal polymer, a dichroic compound, and an organic solvent that dissolves the liquid crystal polymer and the dichroic compound. Examples thereof include a coating liquid containing 1% by mass to 7% by mass of a solid content. This coating liquid may further contain an interface improver, a polymerization initiator, various additives and the like.
 塗布液の更に別の1例としては、ハードコート層を形成する塗布液であって、例えば、重合性化合物(好ましくは多官能の重合性化合物)と、無機粒子(好ましくはシリカ粒子)、重合開始剤、及び有機溶剤と、を含み、固形分濃度が40質量%~60質量%の塗布液が挙げられる。この塗布液は、更に、モノマー、及び各種添加剤等を含んでいてもよい。 Yet another example of the coating liquid is a coating liquid that forms a hard coat layer, for example, a polymerizable compound (preferably a polyfunctional polymerizable compound), inorganic particles (preferably silica particles), and polymerization. Examples thereof include a coating liquid containing an initiator and an organic solvent and having a solid content concentration of 40% by mass to 60% by mass. This coating liquid may further contain a monomer, various additives, and the like.
 塗布液の更に別の1例としては、配向層を形成する塗布液であって、例えば、ポリビニルアルコール(好ましくはアクリロイル基を有する変性ポリビニルアルコール)と、水、及び有機溶剤と、を含み、固形分濃度が1質量%~10質量%の塗布液が挙げられる。この塗布液は、更に、架橋剤等を含んでいてもよい。 Yet another example of the coating liquid is a coating liquid that forms an alignment layer, which contains, for example, polyvinyl alcohol (preferably modified polyvinyl alcohol having an acryloyl group), water, and an organic solvent, and is solid. Examples thereof include a coating liquid having a component concentration of 1% by mass to 10% by mass. This coating liquid may further contain a cross-linking agent or the like.
(目的とする塗工層)
 塗布液から形成される目的とする塗工層としては、特に制限はなく、例えば、光学フィルム用途であれば、ハードコート層、光学異方性層、偏光層、屈折率調整層等が挙げられる。
 塗布液から形成される層の厚さとしては、用途に応じて異なるが、例えば、5μm以下、より好ましくは0.1μm~100μmの範囲とすることができる。
(Target coating layer)
The target coating layer formed from the coating liquid is not particularly limited, and examples thereof include a hard coat layer, an optically anisotropic layer, a polarizing layer, and a refractive index adjusting layer in the case of an optical film application. ..
The thickness of the layer formed from the coating liquid varies depending on the application, but can be, for example, 5 μm or less, more preferably 0.1 μm to 100 μm.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist of the present invention is not exceeded.
<基材の準備>
 基材として、厚み60μm、幅1340mmの長尺状のトリアセチルセルロース(TAC)フィルム(TD40UL、富士フイルム(株)、屈折率1.48)を用意した。
<Preparation of base material>
As a base material, a long triacetyl cellulose (TAC) film (TD40UL, FUJIFILM Corporation, refractive index 1.48) having a thickness of 60 μm and a width of 1340 mm was prepared.
<塗布液の準備>
(塗布液Aの調製)
 下記成分を混合し、塗布液Aを調製した。
・下記重合性液晶化合物L-9 : 47.50質量部
・下記重合性液晶化合物L-10 : 47.50質量部
・下記重合性液晶化合物L-3 : 5.00質量部
・下記重合開始剤PI-1 : 0.50質量部
・下記レベリング剤T-1(重量平均分子量:10,000) : 0.20質量部
・メチルエチルケトン : 235.00質量部
<Preparation of coating liquid>
(Preparation of coating liquid A)
The following components were mixed to prepare a coating liquid A.
-The following polymerizable liquid crystal compound L-9: 47.50 parts by mass-The following polymerizable liquid crystal compound L-10: 47.50 parts by mass-The following polymerizable liquid crystal compound L-3: 5.00 parts by mass-The following polymerization initiator PI-1: 0.50 parts by mass, the following leveling agent T-1 (weight average molecular weight: 10,000): 0.20 parts by mass, methyl ethyl ketone: 235.00 parts by mass
Figure JPOXMLDOC01-appb-C000001

 
Figure JPOXMLDOC01-appb-C000001

 
 上記の重合性液晶化合物L-9、及び上記の重合性液晶化合物L-10において、R及びRのうち一方はメチル基を他方は水素原子を表し、R及びRはのうち一方はメチル基を他方は水素原子を表す。すなわち、上記重合性液晶化合物L-9、及び上記重合性液晶化合物L-10は、それぞれ、メチル基の位置が異なる位置異性体の混合物である。 In the above-mentioned polymerizable liquid crystal compound L-9 and the above-mentioned polymerizable liquid crystal compound L-10, one of R 1 and R 2 represents a methyl group and the other represents a hydrogen atom, and R 3 and R 4 represent one of them. Represents a methyl group and the other represents a hydrogen atom. That is, the polymerizable liquid crystal compound L-9 and the polymerizable liquid crystal compound L-10 are mixtures of positional isomers having different methyl group positions.
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000002

 
 上記重合性液晶化合物L-9及びL-10において、メタクリロイル基に隣接する基はエチレン基にメチル基が置換した2価の基を表す。重合性液晶化合物L-9及びL-10は、それぞれ、メチル基の置換位置が異なる位置異性体の混合物である。 In the above polymerizable liquid crystal compounds L-9 and L-10, the group adjacent to the methacryloyl group represents a divalent group in which an ethylene group is replaced with a methyl group. The polymerizable liquid crystal compounds L-9 and L-10 are mixtures of positional isomers having different methyl group substitution positions, respectively.
(塗布液Bの調製)
 下記成分を混合し、塗布液Bを調製した。
 下記の液晶性ポリマーLP1 : 4.011質量部
 (重量平均分子量:13,300、構造単位(1)と構造単位(2)とを分子中に80:20〔(1):(2);質量比〕の割合で含む。)
 下記の二色性化合物D1 : 0.792質量部
 下記の二色性化合物D2 : 0.963質量部
 下記の界面改良剤F2 : 0.087質量部
 下記の界面改良剤F3 : 0.073質量部
 下記の界面改良剤F4(重量平均分子量:10,000) : 0.073質量部
 テトラヒドロフラン(沸点80℃以下の有機溶媒) : 37.6004質量部
 シクロペンタノン : 56.4006質量部
(Preparation of coating liquid B)
The following components were mixed to prepare a coating liquid B.
The following liquid crystal polymer LP1: 4.011 parts by mass (weight average molecular weight: 13,300, structural unit (1) and structural unit (2) in the molecule 80:20 [(1) :( 2); mass Ratio].)
The following bicolor compound D1: 0.792 parts by mass The following bicolor compound D2: 0.963 parts by mass The following interface improver F2: 0.087 parts by mass The following interface improver F3: 0.073 parts by mass The following interface improver F4 (weight average molecular weight: 10,000): 0.073 parts by mass tetrahydrofuran (organic solvent having a boiling point of 80 ° C. or less): 37.6004 parts by mass Cyclopentanone: 56.4006 parts by mass
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000005

 
(塗布液Cの調製)
 メチルエチルケトン500質量部に対して、IPA(イソプロパノール)500質量部、部分カプロラクトン変性の多官能アクリレート(KAYARAD DPCA-20、日本化薬(株))750質量部、シリカゾル(MIBK-ST、日産化学工業(株))200質量部、及び、光重合開始剤(Omnirad 184(旧イルガキュア184)、IGM Resins B.V.)50質量部を添加し、塗布液Cを調製した。
(Preparation of coating liquid C)
500 parts by mass of IPA (isopropanol), 750 parts by mass of partially caprolactone-modified polyfunctional acrylate (KAYARAD DPCA-20, Nippon Kayaku Co., Ltd.), silica sol (MIBK-ST, Nissan Chemical Industry Co., Ltd.) with respect to 500 parts by mass of methyl ethyl ketone. Co., Ltd.) 200 parts by mass and 50 parts by mass of a photopolymerization initiator (Omnirad 184 (formerly Irgacure 184) and IGM Resins VV) were added to prepare a coating liquid C.
(塗布液Dの調製)
 下記の変性ポリビニルアルコール(PVA、重合度1,000):20質量部に対して、グルタルアルデヒド(架橋剤):1質量部、水:378質量部、メタノール:120質量部を混合し、塗布液Dを調製した。
(Preparation of coating liquid D)
Glutaraldehyde (crosslinking agent): 1 part by mass, water: 378 parts by mass, methanol: 120 parts by mass are mixed with 20 parts by mass of the following modified polyvinyl alcohol (PVA, degree of polymerization 1,000): coating liquid. D was prepared.
Figure JPOXMLDOC01-appb-C000006

 
Figure JPOXMLDOC01-appb-C000006

 
 上記(PVA)中、主鎖の各構成単位に付記した数値はモル比である。 In the above (PVA), the numerical value added to each structural unit of the main chain is the molar ratio.
<ダイヘッド1の準備>
 ステンレス鋼(SUS630)を用い、図1と同じ構成のダイヘッド100Aを作製した。
 図1に示すダイヘッド100Aにおいて、上流側リップ10のランド面10A、下流側リップ20の面20C、及び下流側リップ20のランド面20Aに該当する面に対し、以下の方法で表面処理を行った。
 まず、0.1質量%のNaOH水溶液を付着させて、その後、乾燥することにて下処理を行った。
 その後、サーフ工業(株)のMX-031を用いて、表面処理を行った。
 以上のようにして形成した表面処理層について、既述の方法で、メチルエチルケトンによる動的接触角ヒステリシスを測定したところ、18°であった。
 また、表面処理層のRzjisについて、既述の方法で測定したところ、1.1μmであった。
<Preparation of die head 1>
Using stainless steel (SUS630), a die head 100A having the same configuration as that shown in FIG. 1 was produced.
In the die head 100A shown in FIG. 1, the land surface 10A of the upstream lip 10, the surface 20C of the downstream lip 20, and the surface corresponding to the land surface 20A of the downstream lip 20 were surface-treated by the following method. ..
First, a 0.1% by mass NaOH aqueous solution was attached, and then the preparation was carried out by drying.
Then, surface treatment was performed using MX-031 of Surf Industry Co., Ltd.
With respect to the surface-treated layer formed as described above, the dynamic contact angle hysteresis by methyl ethyl ketone was measured by the method described above and found to be 18 °.
The Rzjis of the surface-treated layer was measured by the method described above and found to be 1.1 μm.
<ダイヘッド2の準備>
 上流側リップ10のランド面10A、下流側リップ20の面20C、及び下流側リップ20のランド面20Aに該当する面に対する研削仕上げ条件を変えた以外は、ダイヘッド1と同様にして、ステンレス鋼(SUS630)を用いた図1に示す構成のダイヘッド100Aを作製した。
 その後、ダイヘッド1と同じ方法で、下処理及び表面処理を行い、ダイヘッド2を得た。
 ダイヘッド2の表面処理層について、既述の方法で、メチルエチルケトンによる動的接触角ヒステリシスを測定したところ、15°であった。
 また、表面処理層のRzjisについて、既述の方法で測定したところ、0.9μmであった。
<Preparation for die head 2>
Similar to the die head 1, stainless steel (stainless steel, except that the grinding finish conditions for the land surface 10A of the upstream lip 10 and the surface 20C of the downstream lip 20 and the surface corresponding to the land surface 20A of the downstream lip 20 were changed. A die head 100A having the configuration shown in FIG. 1 using SUS630) was produced.
Then, the die head 2 was obtained by performing a pretreatment and a surface treatment in the same manner as the die head 1.
When the dynamic contact angle hysteresis by methyl ethyl ketone was measured for the surface-treated layer of the die head 2 by the method described above, it was 15 °.
The Rzjis of the surface-treated layer was measured by the method described above and found to be 0.9 μm.
<ダイヘッド3の準備>
 ステンレス鋼(SUS630)を用い、図2と同じ構成のダイヘッド100Bを作製した。
 図2に示すダイヘッド100Bにおいて、上流側リップ10のランド面10A、下流側リップ20の面20C、下流側リップ20のランド面20A、及び中間リップ40のランド面40Aに対し、以下の方法で表面処理を行った。
 まず、0.1質量%のNaOH水溶液を付着させて、その後、乾燥することにて下処理を行った。
 その後、サーフ工業(株)のMX-031を用いて、表面処理を行った。
 以上のようにして形成した表面処理層について、既述の方法で、メチルエチルケトンによる動的接触角ヒステリシスを測定したところ、18°であった。
 また、表面処理層のRzjisについて、既述の方法で測定したところ、1.1μmであった。
<Preparation of die head 3>
Using stainless steel (SUS630), a die head 100B having the same configuration as in FIG. 2 was produced.
In the die head 100B shown in FIG. 2, the land surface 10A of the upstream lip 10, the surface 20C of the downstream lip 20, the land surface 20A of the downstream lip 20, and the land surface 40A of the intermediate lip 40 are surfaced by the following method. Processing was performed.
First, a 0.1% by mass NaOH aqueous solution was attached, and then the preparation was carried out by drying.
Then, surface treatment was performed using MX-031 of Surf Industry Co., Ltd.
With respect to the surface-treated layer formed as described above, the dynamic contact angle hysteresis by methyl ethyl ketone was measured by the method described above and found to be 18 °.
The Rzjis of the surface-treated layer was measured by the method described above and found to be 1.1 μm.
<ダイヘッド4の準備>
 ダイヘッド1において、下処理及び表面処理を以下の方法に変えた以外は、ダイヘッド1と同様にして、ダイヘッド4を作製した。
 即ち、図1と同じ構成のダイヘッド100Aにおいて、上流側リップ10のランド面10A、下流側リップ20の面20C、及び下流側リップ20のランド面20Aに該当する面に対し、デュポン社のテトラフルオロエチレン樹脂を用いてフッ素樹脂コーティングを行った。
 以上のようにしてフッ素樹脂コーティングを行った面について、既述の方法で、メチルエチルケトンによる動的接触角ヒステリシスを測定したところ、21°であった。
 また、フッ素樹脂コーティングした面のRzjisについて、既述の方法で測定したところ、1.1μmであった。
<Preparation of die head 4>
In the die head 1, the die head 4 was produced in the same manner as the die head 1 except that the pretreatment and the surface treatment were changed to the following methods.
That is, in the die head 100A having the same configuration as that of FIG. 1, the surface corresponding to the land surface 10A of the upstream lip 10, the surface 20C of the downstream lip 20, and the land surface 20A of the downstream lip 20 is opposed to the tetrafluoroethylene of DuPont. Fluororesin coating was performed using an ethylene resin.
When the dynamic contact angle hysteresis by methyl ethyl ketone was measured on the surface coated with the fluororesin as described above by the method described above, it was 21 °.
Further, the Rzjis of the fluororesin-coated surface was measured by the method described above and found to be 1.1 μm.
<ダイヘッド5の準備>
 ダイヘッド1において、下処理及び表面処理を以下の方法に変えた以外は、ダイヘッド1と同様にして、ダイヘッド5を作製した。
 即ち、図1と同じ構成のダイヘッド100Aにおいて、上流側リップ10のランド面10A、下流側リップ20の面20C、及び下流側リップ20のランド面20Aに該当する面に対し、無電解めっきによりニッケル及びポリテトラフルオロエチレンの複合めっき層を形成した。
 以上のようにして形成した複合めっき層について、既述の方法で、メチルエチルケトンによる動的接触角ヒステリシスを測定したところ、40°であった。
 また、複合めっき層のRzjisについて、既述の方法で測定したところ、1.1μmであった。
<Preparation of die head 5>
In the die head 1, the die head 5 was produced in the same manner as the die head 1 except that the pretreatment and the surface treatment were changed to the following methods.
That is, in the die head 100A having the same configuration as that of FIG. 1, the surfaces corresponding to the land surface 10A of the upstream lip 10 and the land surface 20C of the downstream lip 20 and the land surface 20A of the downstream lip 20 are subjected to nickel by electroless plating. And a composite plating layer of polytetrafluoroethylene was formed.
With respect to the composite plating layer formed as described above, the dynamic contact angle hysteresis by methyl ethyl ketone was measured by the method described above and found to be 40 °.
Further, the Rzjis of the composite plating layer was measured by the method described above and found to be 1.1 μm.
<ダイヘッド6の準備>
 ステンレス鋼(SUS630)を用い、図3と同じ構成のダイヘッド100Cを作製した。
 図3に示すダイヘッド100Cにおいて、上流側リップ10のランド面10A、下流側リップ50の面50C、及び下流側リップ50のランド面50Aに該当する面に対し、以下の方法で表面処理を行った。なお、下流側リップ50として、面50Cにおける接触部50Czのランド面50Aに繋がる部位に、曲率半径0.1mmの凸状の曲面を有するものを用いた。
 まず、0.1質量%のNaOH水溶液を付着させて、その後、乾燥することにて下処理を行った。
 その後、サーフ工業(株)のMX-031を用いて、表面処理を行った。
 以上のようにして形成した表面処理層について、既述の方法で、メチルエチルケトンによる動的接触角ヒステリシスを測定したところ、18°であった。
 また、表面処理層のRzjisについて、既述の方法で測定したところ、1.1μmであった。
<Preparation of die head 6>
Using stainless steel (SUS630), a die head 100C having the same configuration as in FIG. 3 was produced.
In the die head 100C shown in FIG. 3, the land surface 10A of the upstream lip 10, the surface 50C of the downstream lip 50, and the surface corresponding to the land surface 50A of the downstream lip 50 were surface-treated by the following method. .. As the downstream lip 50, a lip 50 having a convex curved surface having a radius of curvature of 0.1 mm was used at a portion of the surface 50C connected to the land surface 50A of the contact portion 50Cz.
First, a 0.1% by mass NaOH aqueous solution was attached, and then the preparation was carried out by drying.
Then, surface treatment was performed using MX-031 of Surf Industry Co., Ltd.
With respect to the surface-treated layer formed as described above, the dynamic contact angle hysteresis by methyl ethyl ketone was measured by the method described above and found to be 18 °.
The Rzjis of the surface-treated layer was measured by the method described above and found to be 1.1 μm.
<ダイヘッド7の準備>
 ダイヘッド6において、以下の形状の下流側リップに対し上記の表面処理を行った以外は、ダイヘッド6と同様にして、ダイヘッド7を作製した。
 即ち、下流側リップ50として、面50Cにおける接触部50Czのランド面50Aに繋がる部位に、曲率半径0.2mmの凸状の曲面を有するものを用いた。
 以上のようにして形成した表面処理層について、既述の方法で、メチルエチルケトンによる動的接触角ヒステリシスを測定したところ、18°であった。
 また、表面処理層のRzjisについて、既述の方法で測定したところ、1.1μmであった。
<Preparation of die head 7>
In the die head 6, the die head 7 was produced in the same manner as the die head 6 except that the downstream lip having the following shape was subjected to the above surface treatment.
That is, as the downstream lip 50, a lip 50 having a convex curved surface having a radius of curvature of 0.2 mm was used at a portion of the surface 50C connected to the land surface 50A of the contact portion 50Cz.
With respect to the surface-treated layer formed as described above, the dynamic contact angle hysteresis by methyl ethyl ketone was measured by the method described above and found to be 18 °.
The Rzjis of the surface-treated layer was measured by the method described above and found to be 1.1 μm.
(実施例1)
 ダイヘッド1を図1のように配置し、TACフィルム上に塗布液Aの連続塗布を行い、厚み3μmの塗膜を幅200mmで形成した。
 具体的には、表面温度60℃、外径300mmのバックアップロール上に、TACフィルムを搬送し、バックアップロール上の基材に対し、ダイヘッド1を用い、塗布液Aの塗布を行った。このとき、TACフィルムのラップ角は150°であり、TACフィルムの搬送速度は30m/分であった。
 更に、ダイヘッド1の上流側リップ10のランド面10Aと基材(TACフィルム)Fとの距離は100μmであり、下流側リップ20のランド面20Aと基材(TACフィルム)Fとの距離は100μmであった。
 ここで、塗膜の形成は、23℃、50%RHの環境下で行った。
(Example 1)
The die head 1 was arranged as shown in FIG. 1, and the coating liquid A was continuously applied onto the TAC film to form a coating film having a thickness of 3 μm and a width of 200 mm.
Specifically, the TAC film was conveyed on a backup roll having a surface temperature of 60 ° C. and an outer diameter of 300 mm, and the coating liquid A was applied to the base material on the backup roll using the die head 1. At this time, the lap angle of the TAC film was 150 °, and the transport speed of the TAC film was 30 m / min.
Further, the distance between the land surface 10A of the upstream lip 10 of the die head 1 and the base material (TAC film) F is 100 μm, and the distance between the land surface 20A of the downstream lip 20 and the base material (TAC film) F is 100 μm. Met.
Here, the coating film was formed in an environment of 23 ° C. and 50% RH.
(実施例2)
 塗布液Aを塗布液Bに代えた以外は、実施例1と同様にして、厚み0.5μmの塗膜を幅200mmで形成した。
(Example 2)
A coating film having a thickness of 0.5 μm was formed with a width of 200 mm in the same manner as in Example 1 except that the coating liquid A was replaced with the coating liquid B.
(実施例3)
 塗布液Aを塗布液Cに代えた以外は、実施例1と同様にして、厚み5μmの塗膜を幅200mmで形成した。
(Example 3)
A coating film having a thickness of 5 μm was formed with a width of 200 mm in the same manner as in Example 1 except that the coating liquid A was replaced with the coating liquid C.
(実施例4)
 塗布液Aを塗布液Dに代えた以外は、実施例1と同様にして、厚み1μmの塗膜を幅200mmで形成した。
(Example 4)
A coating film having a thickness of 1 μm was formed with a width of 200 mm in the same manner as in Example 1 except that the coating liquid A was replaced with the coating liquid D.
(実施例5、比較例1、5)
 ダイヘッド1をダイヘッド2、4又は5に代えた以外は、実施例1と同様にして、厚み3μmの塗膜を幅200mmで形成した。
(Example 5, Comparative Examples 1 and 5)
A coating film having a thickness of 3 μm was formed with a width of 200 mm in the same manner as in Example 1 except that the die head 1 was replaced with the die heads 2, 4 or 5.
(実施例6、比較例2、6)
 ダイヘッド1をダイヘッド2、4又は5に代えた以外は、実施例2と同様にして、厚み0.3μmの塗膜を幅200mmで形成した。
(Example 6, Comparative Examples 2 and 6)
A coating film having a thickness of 0.3 μm was formed with a width of 200 mm in the same manner as in Example 2 except that the die head 1 was replaced with the die heads 2, 4 or 5.
(実施例7、比較例3、7)
 ダイヘッド1をダイヘッド2、4又は5に代えた以外は、実施例3と同様にして、厚み5μmの塗膜を幅200mmで形成した。
(Example 7, Comparative Examples 3 and 7)
A coating film having a thickness of 5 μm was formed with a width of 200 mm in the same manner as in Example 3 except that the die head 1 was replaced with the die heads 2, 4 or 5.
(実施例8、比較例4、8)
 ダイヘッド1をダイヘッド2、4又は5に代えた以外は、実施例4と同様にして、厚み1μmの塗膜を幅200mmで形成した
(Example 8, Comparative Examples 4 and 8)
A coating film having a thickness of 1 μm was formed with a width of 200 mm in the same manner as in Example 4 except that the die head 1 was replaced with the die heads 2, 4 or 5.
(実施例9)
 ダイヘッド3を図2のように配置し、TACフィルム上に塗布液Aと塗布液Aとの連続重層塗布を行い、総厚み30μm(上層5μm、下層25μm)の塗膜を幅200mmで形成した。
 具体的には、表面温度60℃、外径300mmのバックアップロール上に、TACフィルムを搬送し、バックアップロール上の基材に対し、ダイヘッドを用い、塗布液Aの塗布を行った。このとき、TACフィルムのラップ角は150°であり、TACフィルムの搬送速度は30m/分であった。
 更に、ダイヘッド3の上流側リップ10のランド面10Aと基材(TACフィルム)Fとの距離は100μmであり、下流側リップ20のランド面20Aと基材(TACフィルム)Fとの距離は120μmであり、中間リップ40のランド面40Aと基材(TACフィルム)Fとの距離は70μmであった。
(Example 9)
The die head 3 was arranged as shown in FIG. 2, and the coating liquid A and the coating liquid A were continuously coated on the TAC film to form a coating film having a total thickness of 30 μm (upper layer 5 μm, lower layer 25 μm) with a width of 200 mm.
Specifically, the TAC film was conveyed on a backup roll having a surface temperature of 60 ° C. and an outer diameter of 300 mm, and the coating liquid A was applied to the base material on the backup roll using a die head. At this time, the lap angle of the TAC film was 150 °, and the transport speed of the TAC film was 30 m / min.
Further, the distance between the land surface 10A of the upstream lip 10 of the die head 3 and the base material (TAC film) F is 100 μm, and the distance between the land surface 20A of the downstream lip 20 and the base material (TAC film) F is 120 μm. The distance between the land surface 40A of the intermediate lip 40 and the base material (TAC film) F was 70 μm.
(実施例10、12)
 ダイヘッド1を下記表1に記載のダイヘッド6又は7に代えた以外は、実施例1と同様にして、厚み3μmの塗膜を幅200mmで形成した。
(Examples 10 and 12)
A coating film having a thickness of 3 μm was formed with a width of 200 mm in the same manner as in Example 1 except that the die head 1 was replaced with the die head 6 or 7 shown in Table 1 below.
(実施例11、13)
 ダイヘッド1を下記表1に記載のダイヘッド6又は7に代えた以外は、実施例2と同様にして、厚み0.5μmの塗膜を幅200mmで形成した。
(Examples 11 and 13)
A coating film having a thickness of 0.5 μm was formed with a width of 200 mm in the same manner as in Example 2 except that the die head 1 was replaced with the die head 6 or 7 shown in Table 1 below.
(観察:三相界面の確認)
 カメラを内部に備えたガラス製の透明ロール上に、上記の各例と同様の方法で塗布を行い、塗布を行っている際の、上流側リップ10のランド面10A、及び、下流側リップ20の面20Cを、透明ロールの内部のカメラで観察した。
 上流側リップ10のランド面10A、及び、下流側リップ20の面20Cが、一旦塗布液に覆われた後、覆われた領域が再度露出し、固体面として三相界面が形成されていれば、三相界面「有り」と判断した。
 結果を表1に示す。
(Observation: Confirmation of three-phase interface)
The land surface 10A of the upstream lip 10 and the downstream lip 20 when the coating is applied on a transparent glass roll provided with a camera in the same manner as in each of the above examples. Surface 20C was observed with a camera inside the transparent roll.
If the land surface 10A of the upstream lip 10 and the surface 20C of the downstream lip 20 are once covered with the coating liquid, the covered area is exposed again, and a three-phase interface is formed as a solid surface. , It was judged that there was a three-phase interface.
The results are shown in Table 1.
(評価:塗布スジの評価)
 上記の各例で塗布を行っている際のビードの形状を、正面方向側(即ち、上流側リップ10の面10C側)及び背面方向側(即ち、下流側リップ20の面20C側)から観察すると共に、形成された塗膜(幅200mm×長さ5000mmのサイズ)を、ライトテーブル上に載置し、透過光を当てて、濃淡又は濃淡の繰り返しの有無を目視にて観察し、ビードの形状の観察結果と濃淡で示される膜厚ムラとを紐づけて、塗布スジを評価した。
 基材の搬送方向に対し、最上流側のリップに起因する塗布スジ1とし、最下流側のリップに起因する塗布スジ2とした。
 なお、塗布スジの評価は、塗布開始5分後から形成された塗膜を上記サイズで切り出した試料1と、塗布開始2時間後から形成された塗膜を上記サイズで切り出した試料2と、の2つについて行った。前者を「5分後塗布スジ」と、また、後者を「2時間後塗布スジ」とした。
 評価指標は以下の通りである。結果を表1に示す。
(Evaluation: Evaluation of coating streaks)
Observe the shape of the bead during coating in each of the above examples from the front side (that is, the surface 10C side of the upstream lip 10) and the back side (that is, the surface 20C side of the downstream lip 20). At the same time, the formed coating film (size of width 200 mm × length 5000 mm) is placed on a light table, exposed to transmitted light, and visually observed for the presence or absence of repeated shades or shades of the bead. The coating streaks were evaluated by associating the observation results of the shape with the uneven film thickness indicated by the shading.
With respect to the transport direction of the base material, the coating streaks 1 caused by the lip on the most upstream side were used, and the coating streaks 2 caused by the lip on the most downstream side were used.
The evaluation of the coating streaks was performed on the sample 1 in which the coating film formed 5 minutes after the start of coating was cut out to the above size, and the sample 2 in which the coating film formed 2 hours after the start of coating was cut out to the above size. I went about two of them. The former was designated as "application streaks after 5 minutes", and the latter was designated as "application streaks after 2 hours".
The evaluation indexes are as follows. The results are shown in Table 1.
-塗布スジの評価指標-
1:塗布スジがみられない。
2:塗布スジが極弱く観察された。
3:はっきりとした塗布スジが1本以上5本未満で観察された。
4:はっきりとした塗布スジが5本以上、全面に観察された。
-Evaluation index of coating streaks-
1: No coating streaks are seen.
2: The coating streaks were observed to be extremely weak.
3: Clear application streaks were observed with 1 or more and less than 5 streaks.
4: Five or more clear coating streaks were observed on the entire surface.
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000007

 
 表1に示すように、実施例により形成された塗膜は、いずれも、塗布スジ1及び塗布スジ2の発生が抑制されていることが分かる。
 より具体的に説明する。
 上流側リップ10のランド面10A及び下流側リップ20の面20Cの、動的接触角ヒステリシスの値が21°又は40°であるダイヘッドを用いて形成した塗膜、即ち、比較例1~8により形成された塗膜は、塗布液A~Dのすべてにおいて、基材の搬送方向に対して最上流側のリップに起因する塗布スジが見られた。また、同様に、比較例1~8により形成された塗膜は、塗布液A~Dのすべてにおいて、基材の搬送方向に対して最下流側のリップに起因する塗布スジも見られた。
 一方で、上流側リップ10のランド面10A及び下流側リップ20の面20Cの、動的接触角ヒステリシスの値が18°又は15°であるダイヘッドを用いて形成した塗膜、即ち、実施例1~9により形成された塗膜は、塗布液A~Dのすべてにおいて、基材の搬送方向に対して最上流側のリップに起因する塗布スジが見られなかった。同様に、実施例1~9により形成された塗膜は、塗布液A~Dのすべてにおいて、基材の搬送方向に対して最下流側のリップに起因する塗布スジも見られなかった。
As shown in Table 1, it can be seen that in each of the coating films formed by the examples, the generation of the coating streaks 1 and the coating streaks 2 is suppressed.
This will be described more specifically.
According to a coating film formed by using a die head having a dynamic contact angle hysteresis value of 21 ° or 40 ° on the land surface 10A of the upstream lip 10 and the surface 20C of the downstream lip 20, that is, Comparative Examples 1 to 8. In the formed coating film, coating streaks due to the lip on the most upstream side with respect to the transport direction of the base material were observed in all of the coating liquids A to D. Similarly, in the coating films formed in Comparative Examples 1 to 8, in all of the coating liquids A to D, coating streaks caused by the lip on the most downstream side with respect to the transport direction of the base material were also observed.
On the other hand, a coating film formed by using a die head having a dynamic contact angle hysteresis value of 18 ° or 15 ° on the land surface 10A of the upstream lip 10 and the surface 20C of the downstream lip 20, that is, Example 1. In the coating films formed by 9 to 9, no coating streaks due to the lip on the most upstream side with respect to the transport direction of the base material were observed in all of the coating liquids A to D. Similarly, in the coating films formed in Examples 1 to 9, in all of the coating liquids A to D, no coating streaks due to the lip on the most downstream side with respect to the transport direction of the base material were observed.
 表1に示すように、実施例10~13では、2時間後においても、塗布スジ1及び塗布スジ2の発生が抑制されていることが分かる。特に、下流側リップ50における曲面の曲率半径を0.2mm以上にすることで、2時間後における塗布スジ1及び塗布スジ2の発生が効果的に抑制されていることが分かる。 As shown in Table 1, in Examples 10 to 13, it can be seen that the occurrence of the coating streaks 1 and the coating streaks 2 is suppressed even after 2 hours. In particular, it can be seen that the occurrence of the coating streaks 1 and the coating streaks 2 after 2 hours is effectively suppressed by setting the radius of curvature of the curved surface of the downstream lip 50 to 0.2 mm or more.
 2019年9月30日に出願された日本国特許出願2019-180291及び2020年3月6日に出願された日本国特許出願2020-039221の開示はその全体が参照により本明細書に取り込まれる。 The disclosures of Japanese patent application 2019-180291 filed on September 30, 2019 and Japanese patent application 2020-039221 filed on March 6, 2020 are incorporated herein by reference in their entirety.
 10 上流側リップ
 10A 上流側リップのランド面
 10B 上流側リップのスロット形成面
 10C 上流側リップのスロット形成面とは逆側の面
 20、50 下流側リップ
 20A、50A 下流側リップのランド面
 20B、50B 下流側リップのスロット形成面
 20C、50C 下流側リップのスロット形成面とは逆側の面(即ち外周面)
 20Cz、50Cz 塗布液との接触部
 30、30a、30b スロット
 40 中間リップ
 40A 中間リップのランド面
 40B、40B 中間リップのスロット形成面
 100A、100B、100C ダイヘッド
 F 基材(被塗布部材の一例)
 L、L、L 塗布液
 X 基材の搬送方向
 B ビード
10 Upstream lip 10A Upstream lip land surface 10B Upstream lip slot formation surface 10C Upstream lip slot formation surface Opposite surface 20, 50 Downstream lip 20A, 50A Downstream lip land surface 20B, 50B Downstream lip slot forming surface 20C, 50C Downstream lip slot forming surface opposite to the slot forming surface (that is, the outer peripheral surface)
20Cz, 50Cz Contact part with coating liquid 30, 30a, 30b Slot 40 Intermediate lip 40A Land surface of intermediate lip 40B 1 , 40B 2 Slot forming surface of intermediate lip 100A, 100B, 100C Die head F base material (example of member to be coated) )
L, L 1 , L 2 Coating liquid X Substrate transfer direction B bead

Claims (8)

  1.  並列する2つ以上のリップ、並びに、隣り合うリップ間に形成され且つ塗布液を移送及び吐出するスロットを有し、
     並列方向一端のリップのランド面と、並列方向他端のリップの、スロット形成面とは逆側でランド面と繋がる外側面と、の少なくとも一方は、メチルエチルケトンによる動的接触角ヒステリシスが20°以下である、ダイヘッド。
    It has two or more lips in parallel and a slot formed between adjacent lips to transfer and discharge the coating liquid.
    At least one of the land surface of the lip at one end in the parallel direction and the outer surface of the lip at the other end in the parallel direction connected to the land surface on the side opposite to the slot forming surface has a dynamic contact angle hysteresis of 20 ° or less due to methyl ethyl ketone. Is a die head.
  2.  前記並列方向一端のリップの前記ランド面、及び、前記並列方向他端のリップにおける前記外側面は、十点平均粗さRzjisが1.0μm以下である、請求項1に記載のダイヘッド。 The die head according to claim 1, wherein the land surface of the lip at one end in the parallel direction and the outer surface of the lip at the other end in the parallel direction have a ten-point average roughness Rzjis of 1.0 μm or less.
  3.  前記並列方向他端のリップの前記ランド面の、前記メチルエチルケトンによる動的接触角ヒステリシスが20°以下である、請求項1又は請求項2に記載のダイヘッド。 The die head according to claim 1 or 2, wherein the dynamic contact angle hysteresis due to the methyl ethyl ketone on the land surface of the lip at the other end in the parallel direction is 20 ° or less.
  4.  前記並列方向一端のリップのランド面、及び、前記並列方向他端のリップにおける前記外側面のうち、前記メチルエチルケトンによる動的接触角ヒステリシスが20°以下である面が、フッ素含有化合物を用いて形成された表面処理層を備える、請求項1~請求項3のいずれか1項に記載のダイヘッド。 Of the land surface of the lip at one end in the parallel direction and the outer surface of the lip at the other end in the parallel direction, a surface having a dynamic contact angle hysteresis of 20 ° or less due to the methyl ethyl ketone is formed by using a fluorine-containing compound. The die head according to any one of claims 1 to 3, further comprising a surface-treated layer.
  5.  前記フッ素含有化合物がパーフルオロポリエーテル基を有する化合物である、請求項4に記載のダイヘッド。 The die head according to claim 4, wherein the fluorine-containing compound is a compound having a perfluoropolyether group.
  6.  前記並列方向他端のリップは、側面視にて、前記外側面におけるランド面と繋がる部位が曲面を有する、請求項1~請求項5のいずれか1項に記載のダイヘッド。 The die head according to any one of claims 1 to 5, wherein the lip at the other end in the parallel direction has a curved surface at a portion connected to the land surface on the outer surface in a side view.
  7.  前記並列方向他端のリップにおける前記曲面が曲率半径0.2mm以上の曲面である、請求項6に記載のダイヘッド。 The die head according to claim 6, wherein the curved surface of the lip at the other end in the parallel direction is a curved surface having a radius of curvature of 0.2 mm or more.
  8.  塗布の際、前記並列方向一端のリップが塗布方向に対して下流側に位置し、前記並列方向他端のリップが塗布方向に対して上流側に位置する、請求項1~請求項7のいずれか1項に記載のダイヘッド。 Any of claims 1 to 7, wherein at the time of coating, the lip at one end in the parallel direction is located on the downstream side with respect to the coating direction, and the lip at the other end in the parallel direction is located on the upstream side with respect to the coating direction. The die head according to item 1.
PCT/JP2020/035541 2019-09-30 2020-09-18 Die head WO2021065579A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227010544A KR102636770B1 (en) 2019-09-30 2020-09-18 die head
CN202080068203.8A CN114450095B (en) 2019-09-30 2020-09-18 Die head
JP2021550630A JP7270757B2 (en) 2019-09-30 2020-09-18 die head

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019180291 2019-09-30
JP2019-180291 2019-09-30
JP2020-039221 2020-03-06
JP2020039221 2020-03-06

Publications (1)

Publication Number Publication Date
WO2021065579A1 true WO2021065579A1 (en) 2021-04-08

Family

ID=75337296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035541 WO2021065579A1 (en) 2019-09-30 2020-09-18 Die head

Country Status (4)

Country Link
JP (1) JP7270757B2 (en)
KR (1) KR102636770B1 (en)
CN (1) CN114450095B (en)
WO (1) WO2021065579A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091028A (en) * 1995-06-12 1997-01-07 Konica Corp Coating apparatus
JP2002248399A (en) * 2001-02-27 2002-09-03 Toray Ind Inc Method and apparatus for manufacturing coating member
JP2011507700A (en) * 2007-12-31 2011-03-10 スリーエム イノベイティブ プロパティズ カンパニー Application method of coating material
JP2011235452A (en) * 2010-05-06 2011-11-24 Toyobo Co Ltd Coating die for solution film forming, and solution film forming method
JP2014026107A (en) * 2012-07-26 2014-02-06 Asahi Kasei E-Materials Corp Method for manufacturing photosensitive element
JP2018183762A (en) * 2017-04-27 2018-11-22 株式会社ヒラノテクシード Coating apparatus and coating method of the same
JP2018193548A (en) * 2017-05-12 2018-12-06 ダイキン工業株式会社 Surface treatment agent containing perfluoro(poly)ether group-containing compound

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266001A (en) * 2002-03-15 2003-09-24 Seiko Epson Corp Film formation apparatus, device fabrication method and electronic apparatus
JP4353681B2 (en) * 2002-07-18 2009-10-28 大日本印刷株式会社 Die head for coating
JP2004216298A (en) * 2003-01-16 2004-08-05 Mitsubishi Chemicals Corp Coating method and slit die nozzle
JP2005040979A (en) * 2003-07-22 2005-02-17 Seiko Epson Corp Liquid drop ejection head, liquid drop ejector, and functional film
JP2007144362A (en) 2005-11-30 2007-06-14 Toppan Printing Co Ltd Method for manufacturing die head
JP2016068047A (en) 2014-09-30 2016-05-09 大日本印刷株式会社 Die coating apparatus and manufacturing method for transparent conductive base material
JP2017148763A (en) 2016-02-26 2017-08-31 東レ株式会社 Coating application device, coating application method, and method for manufacturing laminate film using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH091028A (en) * 1995-06-12 1997-01-07 Konica Corp Coating apparatus
JP2002248399A (en) * 2001-02-27 2002-09-03 Toray Ind Inc Method and apparatus for manufacturing coating member
JP2011507700A (en) * 2007-12-31 2011-03-10 スリーエム イノベイティブ プロパティズ カンパニー Application method of coating material
JP2011235452A (en) * 2010-05-06 2011-11-24 Toyobo Co Ltd Coating die for solution film forming, and solution film forming method
JP2014026107A (en) * 2012-07-26 2014-02-06 Asahi Kasei E-Materials Corp Method for manufacturing photosensitive element
JP2018183762A (en) * 2017-04-27 2018-11-22 株式会社ヒラノテクシード Coating apparatus and coating method of the same
JP2018193548A (en) * 2017-05-12 2018-12-06 ダイキン工業株式会社 Surface treatment agent containing perfluoro(poly)ether group-containing compound

Also Published As

Publication number Publication date
CN114450095A (en) 2022-05-06
JP7270757B2 (en) 2023-05-10
JPWO2021065579A1 (en) 2021-04-08
KR102636770B1 (en) 2024-02-14
KR20220051853A (en) 2022-04-26
CN114450095B (en) 2024-03-26

Similar Documents

Publication Publication Date Title
CN101031825A (en) Optical films and process for making them
US20060110549A1 (en) Cover sheet comprising tie layer for polarizer and method of manufacturing the same
WO2005111665A2 (en) Protective sheeting for polarizers with improved glue composition
JP2008137002A (en) Method for drying coating film and apparatus therefor, and optical film using the same
JP2006113561A (en) Producing method of light-scattering film, polarizing plate comprising light-scattering film and liquid crystal display device comprising the polarizing plate
JP2011145703A (en) Method for manufacturing antiglare and antireflection film
US20060144514A1 (en) Polarizing plate laminated with an improved glue composition and a method of manufacturing the same
US20060108065A1 (en) Cover sheet comprising an adhesion promoting layer for a polarizer and method of making the same
JP2003222704A (en) Reflection preventive film, polarizing plate and display device
JP2004341070A (en) Glare shielding film and its manufacturing method, antireflection film, polarizing plate and picture display device
JP2008180905A (en) Manufacturing method and support for optical film, optical film, polarizer, and image display
JP2005084113A (en) Glare-proof film and its manufacturing method, polarizing plate and picture display device
WO2021065579A1 (en) Die head
WO2020039990A1 (en) Laminate manufacturing method
WO2021182132A1 (en) Die head
WO2021176778A1 (en) Die head
JP2008152119A (en) Optical film
TW201539060A (en) Method for transporting film and method for manufacturing optical film
JP2006272130A (en) Coating method of coating liquid, coating device of coating liquid, optical film and antireflection film
JP5322478B2 (en) Slot die coater and coating method
JP2023085992A (en) Die head and coated film manufacturing method
JP2000052492A (en) Anti-reflective laminate, optically functional laminate, and display device
JP2004042278A (en) Anti-reflection film, polarizing plate and display device
JP6077428B2 (en) Film transport method
JP2008152118A (en) Optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550630

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227010544

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872937

Country of ref document: EP

Kind code of ref document: A1