WO2021065576A1 - 搬送異常予測システム - Google Patents

搬送異常予測システム Download PDF

Info

Publication number
WO2021065576A1
WO2021065576A1 PCT/JP2020/035501 JP2020035501W WO2021065576A1 WO 2021065576 A1 WO2021065576 A1 WO 2021065576A1 JP 2020035501 W JP2020035501 W JP 2020035501W WO 2021065576 A1 WO2021065576 A1 WO 2021065576A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
board
transport
abnormality
time
Prior art date
Application number
PCT/JP2020/035501
Other languages
English (en)
French (fr)
Inventor
顕 中村
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to KR1020227014040A priority Critical patent/KR20220074905A/ko
Priority to CN202080069453.3A priority patent/CN114503247A/zh
Priority to US17/765,374 priority patent/US20220363487A1/en
Publication of WO2021065576A1 publication Critical patent/WO2021065576A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/02Control devices, e.g. for safety, warning or fault-correcting detecting dangerous physical condition of load carriers, e.g. for interrupting the drive in the event of overheating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • G06N3/0442Recurrent networks, e.g. Hopfield networks characterised by memory or gating, e.g. long short-term memory [LSTM] or gated recurrent units [GRU]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67706Mechanical details, e.g. roller, belt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0266Control or detection relating to the load carrier(s)
    • B65G2203/0275Damage on the load carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0266Control or detection relating to the load carrier(s)
    • B65G2203/0291Speed of the load carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/042Sensors
    • B65G2203/044Optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/042Sensors
    • B65G2203/045Thermic

Definitions

  • This disclosure relates to a transport abnormality prediction system.
  • a handling error may occur due to wear of parts or misalignment of the device. If a handling error occurs, the device may stop, the productivity may decrease, or the substrate itself may be damaged.
  • the transport abnormality prediction system is It has a trained model in which the relationship between the data set including the sensor data output from each of the plurality of sensors provided in the board transfer section during the past transfer of the board and the degree of transfer abnormality during the transfer of the board is machine-learned. It is provided with an estimation unit that estimates and outputs the degree of transfer abnormality during the new substrate transfer by inputting a data set including sensor data output from each of the plurality of sensors during the transfer of the new substrate.
  • FIG. 1 is a diagram showing a schematic configuration of a substrate processing apparatus according to an embodiment.
  • FIG. 2 is a block diagram showing a configuration of a transport abnormality prediction system according to an embodiment.
  • FIG. 3 is a diagram showing an example of sensor data during normal substrate transfer.
  • FIG. 4 is a diagram for explaining a substrate transport portion when a transport abnormality occurs.
  • FIG. 5 is a diagram showing an example of sensor data when a transport abnormality occurs.
  • FIG. 6 is a schematic diagram for explaining the configuration of the trained model in the first aspect.
  • FIG. 7 is a schematic diagram for explaining the configuration of the trained model in the second aspect.
  • FIG. 8 is a schematic diagram for explaining the configuration of the trained model in the third aspect.
  • FIG. 9 is a schematic diagram for explaining the configuration of the trained model in the fourth aspect.
  • FIG. 10 is a schematic diagram for explaining the configuration of the trained model in the fifth aspect.
  • FIG. 11 is a schematic diagram for explaining the configuration of the trained model in the sixth aspect.
  • FIG. 12 is a schematic diagram for explaining the trained model in the seventh aspect.
  • FIG. 13 is a schematic diagram for explaining the configuration of the trained model in the eighth aspect.
  • FIG. 14 is a flowchart for explaining an example of the transport abnormality prediction method according to the embodiment.
  • the transport abnormality prediction system is It has a trained model in which the relationship between the data set including the sensor data output from each of the plurality of sensors provided in the board transfer section during the past transfer of the board and the degree of transfer abnormality during the transfer of the board is machine-learned. It is provided with an estimation unit that estimates and outputs the degree of transfer abnormality during the new substrate transfer by inputting a data set including sensor data output from each of the plurality of sensors during the transfer of the new substrate.
  • the estimation unit uses a trained model in which the relationship between the data set including the sensor data in the past substrate transfer and the transfer abnormality degree in the substrate transfer is machine-learned. It is possible to estimate and output the degree of transfer abnormality at the time of transporting the new substrate by integrating the data set including the sensor data at the time of transporting the new substrate from a plurality of index data. As a result, the probability of detecting a transfer abnormality is higher than that of the conventional mode in which an abnormality is determined when the difference between the sensor output during substrate transfer and the sensor output stored during alignment before substrate transfer exceeds a certain threshold value. Can be improved. Further, by using the trained model, it is possible to use the vibration, sound, image data, etc. of the device, which is difficult to handle in the conventional mode, as the sensor data.
  • the transport abnormality prediction system is a transport abnormality prediction system according to the first aspect.
  • the plurality of sensors include one or more of a vibration sensor, a sound sensor, an image sensor, a video sensor, a temperature sensor, a device moving speed sensor, a device operating torque sensor, and a device parallelism sensor.
  • the transport abnormality prediction system is the transport abnormality prediction system according to the first or second aspect.
  • the transport abnormality prediction system is a transport abnormality prediction system according to any one of the first to third aspects.
  • the estimation unit takes as an input a data set including sensor data from the start of transfer during new substrate transfer to the present time, and estimates and outputs the degree of transfer abnormality during the new substrate transfer.
  • the transport abnormality prediction system is a transport abnormality prediction system according to any one of the first to third aspects.
  • the estimation unit receives a data set including sensor data from the start of transfer to the end of transfer during new substrate transfer as an input, and estimates and outputs the degree of transfer abnormality during the new substrate transfer.
  • the transport abnormality prediction system is a transport abnormality prediction system according to any one of the first to third aspects.
  • the estimation unit receives a data set including sensor data from the start of transfer of the first board to the end of transfer of the last board at the time of transferring a plurality of new boards as an input, and transfers the plurality of new boards at the time of transfer. Estimates the degree of anomaly and outputs it.
  • the transport abnormality prediction system is a transport abnormality prediction system according to any one of the first to sixth aspects. Further provided is a re-learning unit for re-learning the trained model using a data set including sensor data output at the time of transporting the new substrate as teacher data.
  • the transport abnormality prediction system is a transport abnormality prediction system according to any one of the first to seventh aspects.
  • the data set further includes time information of at least one of the device operating time, the elapsed time after maintenance, and the component usage time of the board handling unit during the transfer of the board.
  • the transport abnormality prediction system is a transport abnormality prediction system according to any one of the first to eighth aspects.
  • the trained model is machine learning of teacher data in which the remaining time or the number of remaining transports from the time of board transport to the time of a transport abnormality is linked to a data set including sensor data during past board transport.
  • the estimation unit estimates and outputs the transfer abnormality degree based on the remaining time or the number of remaining transfer predicted by the learned model by inputting a data set including sensor data at the time of transporting a new substrate. To do.
  • the transport abnormality prediction system is a transport abnormality prediction system according to any one of the first to eighth aspects.
  • the trained model is machine-learned by the k-nearest neighbor method using a data set including sensor data during normal board transport in the past as teacher data, and the estimation unit uses new sensor data during board transport as training data. With the included data set as an input, the transport abnormality degree is estimated and output based on the distance to the vicinity of k calculated by the trained model.
  • the transport abnormality prediction system is a transport abnormality prediction system according to any one of the first to eighth aspects.
  • the trained model is machine-learned by RSTM (Long Short-Term Memory) using a data set including sensor data at the time of normal board transport in the past as teacher data, and the estimation unit is a new board transport.
  • the sensor at the time of transporting the new board predicted by the trained model from the data set containing the actual sensor data up to the time immediately before the new board is transported by inputting the data set containing the actual sensor data up to the time.
  • the discrepancy between the data set including the data and the data set including the actual sensor data at the time of transporting the new substrate is calculated, and the transport abnormality degree is estimated and output based on the discrepancy.
  • the transport abnormality prediction system is a transport abnormality prediction system according to any one of the first to eighth aspects.
  • the trained model is machine-learned of teacher data in which a data set including sensor data at the time of past board transfer is labeled as to whether or not a transfer abnormality has occurred at the time of board transfer.
  • a data set including sensor data at the time of transporting a new substrate is input, and the transport abnormality degree is estimated and output based on the probability that a transport abnormality has occurred predicted by the learned model.
  • the transport abnormality prediction system is a transport abnormality prediction system according to the twelfth aspect.
  • a data set including sensor data at the time of past board transfer is labeled as to whether or not the board transfer has occurred, and if a transfer error has occurred, a transfer error has occurred.
  • the teacher data labeled with the cause is machine-learned, and the estimation unit predicts each cause of the transfer abnormality by the trained model by inputting a data set including sensor data at the time of transporting a new board. Based on the probability that a transport abnormality has occurred, the degree of the transport abnormality for each cause of the transport abnormality is estimated and output.
  • the transport abnormality prediction system is a transport abnormality prediction system according to any one of the first to thirteenth aspects.
  • the estimation unit has a plurality of trained models, and estimates and outputs the transport abnormality degree based on a combination of predictions by the plurality of trained models.
  • the substrate processing apparatus is Board carrier and The transport abnormality prediction system according to any one of the first to the fourth aspects, and To be equipped.
  • the transport abnormality prediction method is It is a transfer abnormality prediction method executed by a computer. Using a trained model that machine-learned the relationship between the data set including the sensor data output from each of the plurality of sensors provided in the board transfer section during the past transfer of the board and the degree of transfer abnormality during the transfer of the board. A step is included in which a data set including sensor data output from each of the plurality of sensors at the time of transporting a new substrate is input, and the degree of transport abnormality at the time of transporting the new substrate is estimated and output.
  • the transport abnormality prediction program is On the computer Using a trained model that machine-learned the relationship between the data set including the sensor data output from each of the plurality of sensors provided in the board transfer section during the past transfer of the board and the degree of transfer abnormality during the transfer of the board. , The data set including the sensor data output from each of the plurality of sensors at the time of transporting the new substrate is input, and the step of estimating and outputting the transport abnormality degree at the time of transporting the new substrate is executed.
  • the computer-readable recording medium is On the computer Using a trained model that machine-learned the relationship between the data set including the sensor data output from each of the plurality of sensors provided in the board transfer section during the past transfer of the board and the degree of transfer abnormality during the transfer of the board. , A transport abnormality for executing a step of estimating and outputting the transport abnormality degree during the new substrate transport by inputting a data set including sensor data output from each of the plurality of sensors at the time of transporting the new board.
  • the prediction program is recorded non-transitory.
  • the trained model according to the nineteenth aspect of the embodiment is a tuned neural network system. It has an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer. A data set containing the output sensor data is input to the input layer, and the output result output from the output layer is compared with the degree of transport abnormality during transport of the board, and the parameters of each node are compared according to the error. By repeating the process of updating for the data set containing the sensor data during the past multiple board transports, the data set containing the sensor data output during the past board transport and the transfer abnormality degree during the board transport are obtained.
  • FIG. 1 is a diagram showing a schematic configuration of a substrate processing device 1 according to an embodiment.
  • the substrate processing device 1 includes a top ring 6, a substrate transport unit 2, nozzles 3a and 3b, a transport abnormality prediction system 10, and an output device 4.
  • the top ring 6 is provided with an airbag on the lower surface, holds the substrate W downward, and faces the substrate transport position (position facing the substrate transport portion 2) and the substrate processing position (for example, facing a polishing table (not shown)). It is configured to move the substrate W to and from the position (position).
  • the nozzles 3a and 3b are arranged on the side of the top ring 6 at the substrate transport position, and inject air and a shower between the airbag of the top ring 6 and the substrate W to blow the substrate W from the top ring 6. It is configured to be peeled off.
  • the board transfer unit 2 is arranged below the top ring 6 at the board transfer position, and is configured to receive the board W that is peeled off from the top ring 6 and falls.
  • a lifter or a linear transporter (LTP) is used as the substrate transport unit 2 for example.
  • the substrate transport unit 2 is provided with a plurality of sensors 51 to 53 (three in the illustrated example).
  • each of the plurality of sensors 51 to 53 is a vibration sensor (accelerometer) that measures the vibration of the substrate transport portion 2, and the arm portion, shaft portion, and the like of the substrate transport portion 2 of the substrate W. It is attached to the place where the vibration at the time of delivery is directly transmitted.
  • the plurality of sensors 51 to 53 are not limited to vibration sensors, but include vibration sensors, sound sensors, image sensors, video sensors, temperature sensors, device moving speed sensors, device operating torque sensors, and device parallelism sensors. It may consist of one or more of them.
  • FIG. 3 is a diagram showing an example of sensor data output from the sensors 51 to 53 during normal substrate transfer.
  • the area surrounded by the solid line square shows the sensor data from the start of transfer to the end of transfer during the transfer of one substrate (1 cycle).
  • sensor data having the same waveform is repeatedly output from the sensors 51 to 53 for each cycle.
  • FIG. 4 is a diagram for explaining the substrate transport unit 2 when a transport abnormality occurs
  • FIG. 5 is a diagram showing an example of sensor data when a transport abnormality occurs.
  • the substrate W does not peel off symmetrically from the top ring 6, and the substrate W falls in an obliquely tilted posture.
  • the impact when the substrate W is seated on the substrate transport portion 2 is concentrated at one place on the substrate W, so that the substrate W is easily damaged.
  • the substrate W falls from the substrate transport portion 2.
  • the causes (abnormal types) of the transfer abnormality are (1) the positions where the air and the shower injected from the nozzles 3a and 3b hit are displaced, and (2) the shaft of the top ring 6 and the substrate transfer. There are two possible causes: the axis of the part 2 deviates from the axis.
  • sensor data having a waveform different from the normal waveform is output from the sensors 51 to 53.
  • the area surrounded by the solid line square shows the sensor data from the start of the transfer to the end of the transfer when a transfer abnormality occurs.
  • the output device 4 is an interface that outputs various information to a user (for example, the operator of the board processing device 1), and for example, a video display means (display) such as a liquid crystal display, a lamp, a speaker, or the like is used.
  • a video display means display
  • a liquid crystal display such as a liquid crystal display, a lamp, a speaker, or the like is used.
  • the transport abnormality prediction system 10 is communicably connected to each of the plurality of sensors 51 to 53 and the output device 4.
  • FIG. 2 is a block diagram showing the configuration of the transport abnormality prediction system 10. At least a part of the transport abnormality prediction system 10 is composed of one computer or a quantum computing system, or a plurality of computers or quantum computing systems connected to each other via a network.
  • the transport abnormality prediction system 10 includes an input unit 11, a control unit 12, a storage unit 13, and an output unit 14. Each unit 11 to 14 is communicably connected via a bus or a network.
  • the input unit 11 is a communication interface for a plurality of sensors 51 to 5N provided in the board transport unit 2.
  • the input unit 11 may be connected to each output terminal of the plurality of sensors 51 to 5N by wire or wirelessly.
  • the output unit 14 is a communication interface for the output device 4.
  • the output unit 14 may be connected to the input terminal of the output device 4 by wire or wirelessly.
  • the storage unit 13 is a non-volatile data storage such as a flash memory. Various data handled by the control unit 12 are stored in the storage unit 13. For example, the storage unit 13 stores a data set 151 referred to by the estimation unit 121 described later and a threshold value 152 referred to by the output signal transmission unit 122 described later.
  • the data set 151 includes sensor data output from each of the plurality of sensors 51 to 5N provided in the board transport unit 2 at the time of new board transport and acquired via the input unit 11.
  • the data set 151 further includes time information of at least one of the device operating time during the transfer of the substrate, the elapsed time after maintenance, and the component usage time of the substrate handling portion (the portion that gradually wears in contact with the substrate W). You may be.
  • control unit 12 includes an estimation unit 121, an output signal transmission unit 122, and a relearning unit 123. Each of these parts may be realized by the processor in the transport abnormality prediction system 10 executing a predetermined program, or may be implemented by hardware.
  • the estimation unit 121 determines the relationship between the data set including the sensor data output from each of the plurality of sensors 51 to 5N provided in the board transport unit 2 during the past board transport and the transfer abnormality degree during the board transport. It has a machine-learned trained model 120 (for example, a tuned neural network system, see FIGS. 6 to 13), and obtains sensor data output from each of a plurality of sensors 51 to 5N at the time of transporting a new board.
  • the included data set (that is, the data set 131 stored in the storage unit 13) is used as an input, and the transfer abnormality degree at the time of transferring the new substrate is estimated and output.
  • the estimation unit 121 may process in real time, that is, the data set 131 including the sensor data from the start of transfer to the present time at the time of transporting a new substrate is input. , The transfer abnormality degree at the time of transferring the new substrate may be estimated and output.
  • the estimation unit 121 may process one substrate W at a time, that is, includes sensor data from the start of transfer to the end of transfer at the time of transporting a new substrate.
  • the data set 131 may be used as an input to estimate and output the degree of transfer abnormality during the transfer of the new substrate.
  • the estimation unit 121 may process each lot of the substrate W (for example, 25 sheets per lot), that is, the estimation unit 121 may perform a plurality of sheets (1 lot).
  • the data set 131 including the sensor data from the start of transfer of the first board to the end of transfer of the last board as input during the transfer of the new substrate the degree of transfer abnormality during the transfer of the plurality of (1 lot) new boards. May be estimated and output.
  • the estimation unit 121 may use the sensor data output from each of the plurality of sensors 51 to 5N as an input as it is, or extract the intensity of a predetermined frequency domain by FFT (Fast Fourier Transform) (preprocessing). ) May be used as an input.
  • FFT Fast Fourier Transform
  • FIG. 6 is a schematic diagram for explaining the configuration of the trained model 120 in the first aspect.
  • the trained model 120 is a tuned neural network system that includes an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer. It includes a hierarchical neural network or a quantum neural network (QNN) having a structure.
  • QNN quantum neural network
  • a feedforward neural network is illustrated as a hierarchical neural network, but various types of neural networks such as a convolutional neural network (CNN) and a recurrent neural network (RNN) can be used.
  • the trained model 120 may include a neural network in which intermediate layers are multi-layered, that is, deep learning (deep learning).
  • the substrate transfer is applied to the sensor data output from each of the plurality of sensors 51 to 5N provided in the substrate transfer unit 2 during the past substrate transfer.
  • Prepare teacher data labeled with whether or not the time is when a transfer error occurs for example, 0 when a normal board is transferred, 1 when a transfer error occurs
  • the sensor data at the time of one board transfer is input to the input layer, and the output result output from the output layer is compared with the label included in the teacher data whether or not the transfer error has occurred.
  • the process of updating the parameters (weights, thresholds, etc.) of each node according to the error is repeated for each of the plurality of board transport data included in the teacher data.
  • the probability that the transfer of the substrate is the occurrence of a transfer abnormality (transfer abnormality probability). ) Is generated as a trained model 120 (tuned neural network system).
  • the estimation unit 121 receives the sensor data output from each of the plurality of sensors 51 to 5N at the time of transporting a new substrate as an input, and the probability that the transport abnormality occurs predicted by the trained model 120 ( Based on the transfer abnormality probability), the transfer abnormality degree at the time of the new substrate transfer is estimated and output.
  • the transfer abnormality degree may be the probability of occurrence of the transfer abnormality predicted by the trained model 120 (transport abnormality probability) itself, or may be a value obtained by uniquely converting the transfer abnormality probability by a predetermined function. Good.
  • FIG. 7 is a schematic diagram for explaining the configuration of the trained model 120 in the second aspect.
  • the trained model 120 is a tuned neural network system that includes an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer. It includes a hierarchical neural network or a quantum neural network (QNN) having a structure.
  • QNN quantum neural network
  • a feedforward neural network is illustrated as a hierarchical neural network, but various types of neural networks such as a convolutional neural network (CNN) and a recurrent neural network (RNN) can be used.
  • the trained model 120 may include a neural network in which intermediate layers are multi-layered, that is, deep learning (deep learning).
  • the sensor data output from each of the plurality of sensors 51 to 5N provided in the board transfer unit 2 during the past board transfer and the board transfer A transport error occurs when the board is transported to a data set that includes time information (that is, at least one of the device operating time, the elapsed time after maintenance, and the component usage time of the board handling unit) during the transfer of the board.
  • time information that is, at least one of the device operating time, the elapsed time after maintenance, and the component usage time of the board handling unit
  • teacher data labeled as to whether or not it is time for example, 0 when transporting a normal board, 1 when a transport abnormality occurs), and as shown in FIG. 7, one board transport included in the teacher data.
  • the time data set is input to the input layer, and the output result output from the output layer is compared with the label included in the teacher data to determine whether or not the transfer abnormality has occurred, and the error is calculated.
  • the process of updating the parameters (weights, thresholds, etc.) of each node accordingly is repeated for each of the plurality of board transport data included in the teacher data.
  • the substrate transfer is based on the data set including the sensor data output from each of the plurality of sensors 51 to 5N provided in the board transfer unit 2 during the past substrate transfer and the time information during the board transfer.
  • a trained model 120 (tuned neural network system) that predicts the probability that time is when a transport abnormality occurs (transport abnormality probability) is generated.
  • the estimation unit 121 learns by inputting a data set including sensor data output from each of the plurality of sensors 51 to 5N at the time of transporting a new substrate and time information at the time of transporting the new substrate. Based on the probability that a transfer abnormality has occurred (conveyance abnormality probability) predicted by the completed model 120, the degree of transfer abnormality at the time of the new substrate transfer is estimated and output.
  • the transfer abnormality degree may be the probability of occurrence of the transfer abnormality predicted by the trained model 120 (transport abnormality probability) itself, or may be a value obtained by uniquely converting the transfer abnormality probability by a predetermined function. Good.
  • FIG. 8 is a schematic diagram for explaining the configuration of the trained model 120 in the third aspect.
  • the trained model 120 is a tuned neural network system that includes an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer. It includes a hierarchical neural network or a quantum neural network (QNN) having a structure.
  • QNN quantum neural network
  • a feedforward neural network is illustrated as a hierarchical neural network, but various types of neural networks such as a convolutional neural network (CNN) and a recurrent neural network (RNN) can be used.
  • the trained model 120 may include a neural network in which intermediate layers are multi-layered, that is, deep learning (deep learning).
  • the substrate transfer is applied to the sensor data output from each of the plurality of sensors 51 to 5N provided in the substrate transfer unit 2 during the past substrate transfer.
  • a transfer error for example, 0 when a normal board is transferred, 1 when a transfer error occurs
  • the cause of the transfer error (abnormal type).
  • the estimation unit 121 receives the sensor data output from each of the plurality of sensors 51 to 5N at the time of transporting a new substrate as an input, and uses the trained model 120 for each cause (abnormal type) of the transport abnormality. Based on the predicted probability of a transfer abnormality (conveyance abnormality probability), the degree of transfer abnormality at the time of the new substrate transfer is estimated and output for each cause (abnormal type) of the transfer abnormality.
  • the transfer abnormality degree may be the probability of occurrence of the transfer abnormality predicted by the trained model 120 (transport abnormality probability) itself, or may be a value obtained by uniquely converting the transfer abnormality probability by a predetermined function. Good.
  • FIG. 9 is a schematic diagram for explaining the configuration of the trained model 120 in the fourth aspect.
  • the trained model 120 is a tuned neural network system that includes an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer. It includes a hierarchical neural network or a quantum neural network (QNN) having a structure.
  • QNN quantum neural network
  • a feedforward neural network is illustrated as a hierarchical neural network, but various types of neural networks such as a convolutional neural network (CNN) and a recurrent neural network (RNN) can be used.
  • the trained model 120 may include a neural network in which intermediate layers are multi-layered, that is, deep learning (deep learning).
  • the sensor data output from each of the plurality of sensors 51 to 5N provided in the board transfer unit 2 during the past board transfer and the board transfer A transport error occurs when the board is transported to a data set that includes time information (that is, at least one of the device operating time, the elapsed time after maintenance, and the component usage time of the board handling unit) during the transfer of the board. Whether or not it is time (for example, 0 when transporting a normal board, 1 when a transport error occurs) is labeled, and when a transport error occurs, the cause of the transport error (abnormal type) is labeled. As shown in FIG.
  • the teacher data is prepared, and one data set at the time of board transport included in the teacher data is input to the input layer, and the output result output from the output layer and the teacher data are input. Compare the label for whether or not the transfer error occurred when the board was transferred for each cause (abnormal type) of the included transfer error, and update the parameters (weight, threshold, etc.) of each node according to the error.
  • the process is repeated for each of the plurality of substrate transport data included in the teacher data.
  • the substrate transfer is based on the data set including the sensor data output from each of the plurality of sensors 51 to 5N provided in the board transfer unit 2 during the past substrate transfer and the time information during the board transfer.
  • a trained model 120 (tuned neural network system) is generated that predicts the probability that the time is when a transport abnormality occurs (transport abnormality probability) for each cause (abnormal type) of the transport abnormality.
  • the estimation unit 121 learns by inputting a data set including sensor data output from each of the plurality of sensors 51 to 5N at the time of transporting a new substrate and time information at the time of transporting the new substrate. Based on the probability that a transfer abnormality has occurred (transfer abnormality probability) predicted for each cause (abnormal type) of the transfer abnormality by the completed model 120, the degree of the transfer abnormality at the time of the new substrate transfer is determined as the cause of the transfer abnormality. Estimate and output for each (abnormal type).
  • the transfer abnormality degree may be the probability of occurrence of the transfer abnormality predicted by the trained model 120 (transport abnormality probability) itself, or may be a value obtained by uniquely converting the transfer abnormality probability by a predetermined function. Good.
  • FIG. 10 is a schematic diagram for explaining the configuration of the trained model 120 in the fifth aspect.
  • the trained model 120 is a tuned neural network system that includes an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer. It includes a hierarchical neural network or a quantum neural network (QNN) having a structure.
  • QNN quantum neural network
  • a feedforward neural network is illustrated as a hierarchical neural network, but various types of neural networks such as a convolutional neural network (CNN) and a recurrent neural network (RNN) can be used.
  • the trained model 120 may include a neural network in which intermediate layers are multi-layered, that is, deep learning (deep learning).
  • the substrate transfer is applied to the sensor data output from each of the plurality of sensors 51 to 5N provided in the substrate transfer unit 2 during the past substrate transfer.
  • the output result output from the output layer is compared with the remaining time or the number of remaining transports from the time when the board is transported to the time when a transfer error occurs, which is included in the teacher data, and each node is compared according to the error.
  • the process of updating the parameters (weights, thresholds, etc.) of the above is repeated for each of the data at the time of transporting the plurality of substrates included in the teacher data.
  • the remaining time from the board transport to the occurrence of the transport abnormality or the remaining transport A trained model 120 (tuned neural network system) that predicts the number of times is generated.
  • the estimation unit 121 takes the sensor data output from each of the plurality of sensors 51 to 5N at the time of transporting a new substrate as an input, and is based on the remaining time or the number of remaining transports predicted by the trained model 120. Then, the degree of transfer abnormality during the transfer of the new substrate is estimated and output.
  • the transport abnormality may be the remaining time or the number of remaining transports predicted by the trained model 120, or may be a value obtained by uniquely converting the remaining time or the number of remaining transports by a predetermined function.
  • the transport abnormality degree may be a value obtained by dividing the remaining time predicted by the trained model 120 by the average time from the time of maintenance to the occurrence of the transport abnormality, or the remaining time predicted by the trained model 120. It may be a value obtained by dividing the number of transports by the average number of transports from the time of maintenance to the time when a transport abnormality occurs.
  • FIG. 11 is a schematic diagram for explaining the configuration of the trained model 120 in the sixth aspect.
  • the trained model 120 is a tuned neural network system that includes an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer. It includes a hierarchical neural network or a quantum neural network (QNN) having a structure.
  • QNN quantum neural network
  • a feedforward neural network is illustrated as a hierarchical neural network, but various types of neural networks such as a convolutional neural network (CNN) and a recurrent neural network (RNN) can be used.
  • the trained model 120 may include a neural network in which intermediate layers are multi-layered, that is, deep learning (deep learning).
  • the sensor data output from each of the plurality of sensors 51 to 5N provided in the board transport unit 2 during the past board transport, and the board transport time.
  • the data set including the time information (that is, at least one of the device operating time, the elapsed time after maintenance, and the component usage time of the board handling unit) during the transfer of the board, when a transfer abnormality occurs from the time of the transfer of the board.
  • the estimation unit 121 learns by inputting a data set including sensor data output from each of the plurality of sensors 51 to 5N at the time of transporting a new substrate and time information at the time of transporting the new substrate. Based on the remaining time or the number of remaining transports predicted by the completed model 120, the transport abnormality degree at the time of transporting the new substrate is estimated and output.
  • the transport abnormality may be the remaining time or the number of remaining transports predicted by the trained model 120, or may be a value obtained by uniquely converting the remaining time or the number of remaining transports by a predetermined function.
  • the transport abnormality degree may be a value obtained by dividing the remaining time predicted by the trained model 120 by the average time from the time of maintenance to the occurrence of the transport abnormality, or the remaining time predicted by the trained model 120. It may be a value obtained by dividing the number of transports by the average number of transports from the time of maintenance to the time when a transport abnormality occurs.
  • FIG. 12 is a schematic diagram for explaining the configuration of the trained model 120 in the seventh aspect.
  • the trained model 120 is machine-learned by the k-nearest neighbor method using a data set including sensor data at the time of normal board transfer in the past as teacher data, and at the time of new board transfer. Based on the data set containing the sensor data, the distance to the k-nearest neighbor of the data set is calculated.
  • each of the plurality of white circles (“ ⁇ ”) indicates the position in the feature space of the sensor data during the past normal substrate transfer
  • the white triangle (“ ⁇ ”) indicates the position of the new substrate.
  • the estimation unit 121 estimates the transfer abnormality degree based on the distance to the vicinity of k calculated by the trained model 121 by inputting the data set including the sensor data at the time of transporting the new substrate. And output.
  • the transfer abnormality degree may be the distance itself to the vicinity of k calculated by the trained model 120, or may be a value obtained by uniquely converting the distance to the vicinity of k by a predetermined function.
  • FIG. 13 is a schematic diagram for explaining the configuration of the trained model 120 in the eighth aspect.
  • the trained model 120 is a tuned neural network system that includes an input layer, one or more intermediate layers connected to the input layer, and an output layer connected to the intermediate layer. It includes a hierarchical neural network or a quantum neural network (QNN) having a structure.
  • the trained model 120 may include a neural network in which intermediate layers are multi-layered, that is, deep learning (deep learning).
  • the trained model 120 in the eighth aspect is machine-learned by RSTM (Long Short-Term Memory; long-term memory) using a data set including sensor data at the time of normal substrate transfer in the past as training data. is there.
  • the trained model 120 is based on a data set including actual sensor data (sensor data of the first to n-1 cycles) from the time of maintenance to immediately before the time of transporting a new substrate, for example.
  • a data set including the sensor data (predicted value of the sensor data of the nth cycle) at the time of transporting the new substrate is predicted.
  • the estimation unit 121 takes as input a data set including actual sensor data (sensor data of the first to n cycles) from the time of maintenance to the time of transporting a new substrate, and at the time of transporting the new substrate.
  • Sensor data at the time of transporting the new board predicted by the trained model 120 from a data set including actual sensor data (sensor data of the first to n-1 cycles) up to immediately before (prediction of sensor data of the nth cycle).
  • the deviation between the data set including the value) and the data set including the actual sensor data (sensor data of the nth cycle) at the time of transporting the new substrate is calculated, and the transport abnormality degree is estimated based on the deviation.
  • the transfer abnormality degree may be the dissociation itself or a value obtained by uniquely converting the dissociation by a predetermined function.
  • the estimation unit 121 has a plurality of trained models 120 (for example, two or more of the training models 120 in the first to eighth aspects), and a combination of predictions by the plurality of trained models 120 (that is, ensemble learning).
  • the degree of transport abnormality may be estimated and output based on the above.
  • the output signal transmission unit 122 compares the transfer abnormality degree output by the estimation unit 121 with a predetermined threshold value 152, and if the transfer abnormality degree exceeds the threshold value 152, issues a maintenance notification and / or an alarm.
  • the output signal for output is transmitted to the output device 4 via the output unit 14.
  • the re-learning unit 123 relearns the trained model 120 using the data set 131 including the sensor data output at the time of transporting the new board as teacher data.
  • FIG. 14 is a flowchart showing an example of a transport abnormality prediction method.
  • the estimation unit 121 acquires a data set 131 including sensor data output during new substrate transfer from each of the plurality of sensors 51 to 5N provided in the board transfer unit 2 (step S11). ).
  • the data set 131 acquired by the estimation unit 121 may include at least one time information of the device operating time, the elapsed time after maintenance, and the component usage time of the substrate handling unit during the transfer of the substrate 2.
  • the data set 131 acquired by the estimation unit 121 is stored in the storage unit 13.
  • the estimation unit 121 is a trained model in which the relationship between the data set including the sensor data output from each of the plurality of sensors 51 to 5N during the past transfer of the board and the degree of transfer abnormality during the transfer of the substrate is machine-learned.
  • the data set 131 including the sensor data output from each of the plurality of sensors 51 to 5N at the time of transporting the new board is used as an input, and the degree of transport abnormality at the time of transporting the new board is estimated and output ( Step S12).
  • step S12 the estimation unit 121 transfers the data set including the sensor data output from each of the plurality of sensors 51 to 5N during the past transfer of the board and the transfer of each cause (abnormal type) of the transfer abnormality during the transfer of the substrate.
  • the trained model 120 see FIGS. 8 and 9 in which the relationship with the degree of anomaly was machine-learned, a data set 131 containing sensor data output from each of the plurality of sensors 51 to 5N at the time of transporting a new substrate was obtained.
  • the degree of transfer abnormality during the transfer of the new substrate may be estimated and output for each cause (abnormal type) of the occurrence of the transfer abnormality.
  • the output signal transmission unit 122 compares the transfer abnormality degree output by the estimation unit 121 with the predetermined threshold value 152 (step S13).
  • the output signal transmission unit 122 When the transfer abnormality degree output by the estimation unit 121 exceeds the threshold value 152 (step S13: YES), the output signal transmission unit 122 outputs an output signal for outputting a maintenance notification and / or an alarm. It is transmitted to the output device 4 via the unit 14 (step S14).
  • the re-learning unit 123 is a data set including the sensor data output during the transfer of the new substrate.
  • the trained model 120 is retrained with 131 as the teacher data labeled as normal (step S15).
  • the learning model 120 in which the estimation unit 121 machine-learns the relationship between the data set including the sensor data in the past substrate transfer and the transfer abnormality degree in the substrate transfer.
  • the data set 131 including the sensor data at the time of transporting the new substrate can be integrated from a plurality of index data, and the degree of transport abnormality at the time of transporting the new substrate can be estimated and output.
  • the probability of detecting a transfer abnormality is higher than that of the conventional mode in which an abnormality is determined when the difference between the sensor output during substrate transfer and the sensor output stored during alignment before substrate transfer exceeds a certain threshold value. Can be improved.
  • the trained model 120 it is possible to use the vibration, sound, image data, etc. of the device, which is difficult to handle in the conventional mode, as the sensor data.
  • the output signal transmission unit 122 when the transfer abnormality degree estimated by the estimation unit 121 exceeds the threshold value 152, the output signal transmission unit 122 outputs a maintenance notification and / or an alarm. Is transmitted to the output device 4, so that the user (for example, the operator of the board processing device 1) performs maintenance by using the output from the output device 4 as a trigger, so that a handling error can be prevented in advance.
  • the re-learning unit 123 relearns the trained model 120 using the data set 131 including the sensor data output at the time of transporting the new board as the teacher data, so that the operating status of the device is changed.
  • a system that follows changes can be obtained.
  • the estimation unit 121 transports the data set including the sensor data in the past substrate transfer and the transfer for each cause (abnormal type) of the transfer abnormality during the transfer of the substrate. Based on the relationship that exists with the degree of abnormality, the data set including the sensor data at the time of transporting the new board is input, and the degree of transport abnormality at the time of transporting the new board is the cause of the transport abnormality (abnormal type). Since it is estimated and output for each, the maintenance time of the device can be shortened by investigating from the cause (abnormal type) of the transport abnormality estimated to have a high degree of transport abnormality.
  • the transport abnormality prediction system 10 may be composed of one computer or a quantum computing system, or a plurality of computers or quantum computing systems connected to each other via a network, but one or more.
  • a computer-readable recording medium in which a program for realizing a transport abnormality prediction system 10 in a computer or a quantum computing system and a computer-readable recording medium in which the program is recorded non-transitory is also subject to the protection of the present case.

Abstract

搬送異常予測システムは、基板搬送部に設けられた複数のセンサの各々から過去の基板搬送時に出力されたセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習した学習済みモデルを有し、前記複数のセンサの各々から新たな基板搬送時に出力されたセンサデータを含むデータセットを入力として、当該新たな基板搬送時における搬送異常度を推定して出力する推定部を備える。

Description

搬送異常予測システム
 本開示は、搬送異常予測システムに関する。
 半導体製造装置において、基板をハンドリングすることは必須である。しかし、装置が長時間稼働していると、部品の摩耗や機器のズレにより、ハンドリングミスが発生することがある。ハンドリングミスが発生すると、装置が停止して生産性が低下したり、基板自体が破損する可能性がある。
 特許第6325325号公報には、ウェハハンドリングマシンの稼働中におけるセンサの出力を、ウェハハンドリングマシンの稼働前の位置合わせ時に記憶されたセンサの出力と比較して、その差が一定の閾値を超える場合に位置合わせから外れていると判断するシステムが提案されている。
 しかしながら、特許第6325325号公報のシステムでは、ウェハハンドリングマシンの稼働中におけるセンサの出力と稼働前の位置合わせ時に記憶されたセンサの出力との差が一定の閾値を超えると異常であると判断する単純な手法にて異常の検出を行っており、検出確率は高くない。
 搬送異常の検出確率を向上できる搬送異常予測システムを提供することが望まれる。
 本開示の一態様に係る搬送異常予測システムは、
 基板搬送部に設けられた複数のセンサの各々から過去の基板搬送時に出力されたセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習した学習済みモデルを有し、前記複数のセンサの各々から新たな基板搬送時に出力されたセンサデータを含むデータセットを入力として、当該新たな基板搬送時における搬送異常度を推定して出力する推定部
を備える。
図1は、一実施の形態に係る基板処理装置の概略的な構成を示す図である。 図2は、一実施の形態に係る搬送異常予測システムの構成を示すブロック図である。 図3は、正常な基板搬送時のセンサデータの一例を示す図である。 図4は、搬送異常発生時における基板搬送部について説明するための図である。 図5は、搬送異常発生時のセンサデータの一例を示す図である。 図6は、第1の態様における学習済みモデルの構成を説明するための模式図である。 図7は、第2の態様における学習済みモデルの構成を説明するための模式図である。 図8は、第3の態様における学習済みモデルの構成を説明するための模式図である。 図9は、第4の態様における学習済みモデルの構成を説明するための模式図である。 図10は、第5の態様における学習済みモデルの構成を説明するための模式図である。 図11は、第6の態様における学習済みモデルの構成を説明するための模式図である。 図12は、第7の態様における学習済みモデルについて説明するための模式図である。 図13は、第8の態様における学習済みモデルの構成を説明するための模式図である。 図14は、一実施の形態に係る搬送異常予測方法の一例について説明するためのフローチャートである。
 実施形態の第1の態様に係る搬送異常予測システムは、
 基板搬送部に設けられた複数のセンサの各々から過去の基板搬送時に出力されたセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習した学習済みモデルを有し、前記複数のセンサの各々から新たな基板搬送時に出力されたセンサデータを含むデータセットを入力として、当該新たな基板搬送時における搬送異常度を推定して出力する推定部
を備える。
 このような態様によれば、推定部が、過去の基板搬送時におけるセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習した学習済みモデルを用いることで、新たな基板搬送時におけるセンサデータを含むデータセットについて、複数の指標データから総合して、当該新たな基板搬送時における搬送異常度を推定して出力することができる。これにより、基板搬送中におけるセンサの出力と基板搬送前の位置合わせ時に記憶されたセンサの出力との差が一定の閾値を超えると異常と判断する従来の態様に比べて、搬送異常の検出確率を向上できる。また、学習済みモデルを用いることで、従来の態様では扱いにくかった機器の振動、音、画像データなどをセンサデータとして利用することが可能である。
 実施形態の第2の態様に係る搬送異常予測システムは、第1の態様に係る搬送異常予測システムであって、
 前記複数のセンサは、振動センサ、音センサ、画像センサ、映像センサ、温度センサ、機器移動速度センサ、機器動作トルクセンサ、機器平行度センサのうちの1種類または2種類以上からなる。
 実施形態の第3の態様に係る搬送異常予測システムは、第1または2の態様に係る搬送異常予測システムであって、
 前記推定部により出力される前記搬送異常度を、あらかじめ定められた閾値と比較し、前記搬送異常度が前記閾値を超えている場合には、メンテナンス通知および/またはアラームを出力するための出力信号を出力装置に送信する出力信号送信部
をさらに備える。
 実施形態の第4の態様に係る搬送異常予測システムは、第1~3のいずれかの態様に係る搬送異常予測システムであって、
 前記推定部は、新たな基板搬送時における搬送開始から現時点までのセンサデータを含むデータセットを入力として、当該新たな基板搬送時における搬送異常度を推定して出力する。
 実施形態の第5の態様に係る搬送異常予測システムは、第1~3のいずれかの態様に係る搬送異常予測システムであって、
 前記推定部は、新たな基板搬送時における搬送開始から搬送終了までのセンサデータを含むデータセットを入力として、当該新たな基板搬送時における搬送異常度を推定して出力する。
 実施形態の第6の態様に係る搬送異常予測システムは、第1~3のいずれかの態様に係る搬送異常予測システムであって、
 前記推定部は、複数枚の新たな基板搬送時における最初の基板の搬送開始から最後の基板の搬送終了までのセンサデータを含むデータセットを入力として、当該複数枚の新たな基板搬送時における搬送異常度を推定して出力する。
 実施形態の第7の態様に係る搬送異常予測システムは、第1~6のいずれかの態様に係る搬送異常予測システムであって、
 前記新たな基板搬送時に出力されたセンサデータを含むデータセットを教師データとして前記学習済みモデルを再学習させる再学習部
をさらに備える。
 実施形態の第8の態様に係る搬送異常予測システムは、第1~7のいずれかの態様に係る搬送異常予測システムであって、
 前記データセットは、当該基板搬送時における機器動作時間、メンテナンス後経過時間、基板ハンドリング部の部品使用時間のうちの少なくとも1つの時間情報をさらに含む。
 実施形態の第9の態様に係る搬送異常予測システムは、第1~8のいずれかの態様に係る搬送異常予測システムであって、
 前記学習済みモデルは、過去の基板搬送時のセンサデータを含むデータセットに当該基板搬送時から搬送異常発生時までの残り時間または残り搬送回数が紐づけられた教師データを機械学習したものであり、前記推定部は、新たな基板搬送時のセンサデータを含むデータセットを入力として、前記学習済みモデルにより予測される前記残り時間または残り搬送回数に基づいて、前記搬送異常度を推定して出力する。
 実施形態の第10の態様に係る搬送異常予測システムは、第1~8のいずれかの態様に係る搬送異常予測システムであって、
 前記学習済みモデルは、過去の正常な基板搬送時のセンサデータを含むデータセットを教師データとしてk近傍法にて機械学習したものであり、前記推定部は、新たな基板搬送時のセンサデータを含むデータセットを入力として、前記学習済みモデルにより計算されるk近傍までの距離に基づいて、前記搬送異常度を推定して出力する。
 実施形態の第11の態様に係る搬送異常予測システムは、第1~8のいずれかの態様に係る搬送異常予測システムであって、
 前記学習済みモデルは、過去の正常な基板搬送時のセンサデータを含むデータセットを教師データとしてLSTM(Long Short-Term Memory)にて機械学習したものであり、前記推定部は、新たな基板搬送時までの実際のセンサデータを含むデータセットを入力として、当該新たな基板搬送時の直前までの実際のセンサデータを含むデータセットから前記学習済みモデルにより予測される当該新たな基板搬送時のセンサデータを含むデータセットと、当該新たな基板搬送時の実際のセンサデータを含むデータセットとの乖離を計算し、当該乖離に基づいて前記搬送異常度を推定して出力する。
 実施形態の第12の態様に係る搬送異常予測システムは、第1~8のいずれかの態様に係る搬送異常予測システムであって、
 前記学習済みモデルは、過去の基板搬送時のセンサデータを含むデータセットに当該基板搬送時が搬送異常発生時か否かがラベル付けされた教師データを機械学習したものであり、前記推定部は、新たな基板搬送時のセンサデータを含むデータセットを入力として、前記学習済みモデルにより予測される搬送異常発生時である確率に基づいて、前記搬送異常度を推定して出力する。
 実施形態の第13の態様に係る搬送異常予測システムは、第12の態様に係る搬送異常予測システムであって、
 前記学習済みモデルは、過去の基板搬送時のセンサデータを含むデータセットに当該基板搬送時が搬送異常発生時か否かがラベル付けされるとともに、搬送異常発生時の場合には搬送異常の発生原因がラベル付けされた教師データを機械学習したものであり、前記推定部は、新たな基板搬送時のセンサデータを含むデータセットを入力として、前記学習済みモデルにより搬送異常の発生原因ごとに予測される搬送異常発生時である確率に基づいて、搬送異常の発生原因ごとの前記搬送異常度を推定して出力する。
 実施形態の第14の態様に係る搬送異常予測システムは、第1~13のいずれかの態様に係る搬送異常予測システムであって、
 前記推定部は、複数の学習済みモデルを有し、前記複数の学習済みモデルによる予測の組み合わせに基づいて前記搬送異常度を推定して出力する。
 実施形態の第15の態様に係る基板処理装置は、
 基板搬送部と、
 第1~14のいずれかの態様に係る搬送異常予測システムと、
を備える。
 実施形態の第16の態様に係る搬送異常予測方法は、
 コンピュータが実行する搬送異常予測方法であって、
 基板搬送部に設けられた複数のセンサの各々から過去の基板搬送時に出力されたセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習した学習済みモデルを用いて、前記複数のセンサの各々から新たな基板搬送時に出力されたセンサデータを含むデータセットを入力として、当該新たな基板搬送時における搬送異常度を推定して出力するステップ
を含む。
 実施形態の第17の態様に係る搬送異常予測プログラムは、
 コンピュータに、
 基板搬送部に設けられた複数のセンサの各々から過去の基板搬送時に出力されたセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習した学習済みモデルを用いて、前記複数のセンサの各々から新たな基板搬送時に出力されたセンサデータを含むデータセットを入力として、当該新たな基板搬送時における搬送異常度を推定して出力するステップ
を実行させる。
 実施形態の第18の態様に係るコンピュータ読取可能な記録媒体は、
 コンピュータに、
 基板搬送部に設けられた複数のセンサの各々から過去の基板搬送時に出力されたセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習した学習済みモデルを用いて、前記複数のセンサの各々から新たな基板搬送時に出力されたセンサデータを含むデータセットを入力として、当該新たな基板搬送時における搬送異常度を推定して出力するステップ
を実行させるための搬送異常予測プログラムを非一時的(non-transitory)に記録している。
 実施形態の第19の態様に係る学習済みモデルは、チューニングされたニューラルネットワークシステムであって、
 入力層と、入力層に接続された1または2以上の中間層と、中間層に接続された出力層とを有し、基板搬送部に設けられた複数のセンサの各々から過去の基板搬送時に出力されたセンサデータを含むデータセットを入力層に入力し、それにより出力層から出力される出力結果と、当該基板搬送時における搬送異常度とを比較し、その誤差に応じて各ノードのパラメータを更新する処理を、過去の複数回の基板搬送時のセンサデータを含むデータセットについて繰り返すことにより、過去の基板搬送時に出力されたセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習したものであり、
 前記複数のセンサの各々から新たな基板搬送時に出力されたセンサデータを含むデータセットが入力層に入力されると、当該新たな基板搬送時における搬送異常度を推定して出力層から出力するよう、コンピュータを機能させる。
 以下に、添付の図面を参照して、実施の形態の具体例を詳細に説明する。なお、以下の説明および以下の説明で用いる図面では、同一に構成され得る部分について、同一の符号を用いるとともに、重複する説明を省略する。
 図1は、一実施形態に係る基板処理装置1の概略的な構成を示す図である。
 図1に示すように、基板処理装置1は、トップリング6と、基板搬送部2と、ノズル3a、3bと、搬送異常予測システム10と、出力装置4とを有している。
 トップリング6は、下面にエアバッグが設けられており、基板Wを下向きに保持するとともに、基板搬送位置(基板搬送部2と対向する位置)と基板処理位置(たとえば不図示の研磨テーブルと対向する位置)との間で基板Wを移動するように構成されている。
 ノズル3a、3bは、基板搬送位置におけるトップリング6の側方に配置されており、トップリング6のエアバッグと基板Wとの間にエアおよびシャワーを噴射して、トップリング6から基板Wを剥がすように構成されている。
 基板搬送部2は、基板搬送位置におけるトップリング6の下方に配置されており、トップリング6から剥がされて落下する基板Wを受け取るように構成されている。基板搬送部2としては、たとえば、リフターまたはリニアトランスポータ(LTP)が用いられる。
 図1に示すように、基板搬送部2には、複数(図示された例では3つ)のセンサ51~53が設けられている。図示された例では、複数のセンサ51~53はいずれも、基板搬送部2の振動を計測する振動センサ(加速度センサ)であり、基板搬送部2のうちアーム部分や軸部分など、基板Wの受け渡し時の振動が直接伝わる箇所に取り付けられている。
 なお、複数のセンサ51~53は、振動センサに限定されるものではなく、振動センサ、音センサ、画像センサ、映像センサ、温度センサ、機器移動速度センサ、機器動作トルクセンサ、機器平行度センサのうちの1種類または2種類以上からなっていてもよい。
 図3は、正常な基板搬送時にセンサ51~53から出力されるセンサデータの一例を示す図である。図3において、実線の四角で囲まれた領域は、1枚の基板搬送時(1サイクル)における搬送開始から搬送終了までのセンサデータを示している。図3に示すように、正常な搬送時には、1サイクルごとに同様の波形のセンサデータがセンサ51~53から繰り返し出力される。
 図4は、搬送異常発生時における基板搬送部2について説明するための図であり、図5は、搬送異常発生時のセンサデータの一例を示す図である。
 図4に示すように、代表的な搬送異常の徴候としては、基板Wがトップリング6から左右対称に剥がれず、基板Wが斜めに傾いた姿勢で落下する。この場合、基板Wが基板搬送部2に着座する際の衝撃が基板Wの1カ所に集中することで、基板Wが破損しやすくなる。さらに症状が悪化すると、基板搬送部2から基板Wが落下してしまう。図4に示す例では、搬送異常の発生原因(異常種類)として、(1)ノズル3a、3bから噴射されたエアおよびシャワーが当たる位置がずれること、(2)トップリング6の軸と基板搬送部2の軸とがずれること、の2つが考えられる。
 図5に示すように、搬送異常発生時には、正常時の波形とは異なる波形のセンサデータがセンサ51~53から出力される。図5において、実線の四角で囲まれた領域は、搬送異常発生時における搬送開始から搬送終了までのセンサデータを示している。
 出力装置4は、ユーザ(たとえば基板処理装置1のオペレータ)に対して各種情報を出力するインターフェースであり、たとえば液晶ディスプレイなどの映像表示手段(ディスプレイ)やランプ、スピーカーなどが用いられる。
 図1に示すように、搬送異常予測システム10は、複数のセンサ51~53と出力装置4の各々に通信可能に接続されている。
 次に、搬送異常予測システム10の構成について説明する。図2は、搬送異常予測システム10の構成を示すブロック図である。搬送異常予測システム10の少なくとも一部は、1つのコンピュータまたは量子コンピューティングシステム、もしくは互いにネットワークを介して接続された複数のコンピュータまたは量子コンピューティングシステムによって構成されている。
 図2に示すように、搬送異常予測システム10は、入力部11と、制御部12と、記憶部13と、出力部14とを有している。各部11~14は、バスやネットワークを介して通信可能に接続されている。
 このうち入力部11は、基板搬送部2に設けられた複数のセンサ51~5Nに対する通信インターフェースである。入力部11は、複数のセンサ51~5Nの各々の出力端子に有線で接続されてもよいし、無線で接続されてもよい。
 出力部14は、出力装置4に対する通信インターフェースである。出力部14は、出力装置4の入力端子に有線で接続されてもよいし、無線で接続されてもよい。
 記憶部13は、たとえばフラッシュメモリなどの不揮発性データストレージである。記憶部13には、制御部12が取り扱う各種データが記憶される。たとえば、記憶部13には、後述する推定部121により参照されるデータセット151と、後述する出力信号送信部122により参照される閾値152とが記憶される。
 データセット151は、基板搬送部2に設けられた複数のセンサ51~5Nの各々から新たな基板搬送時に出力され、入力部11を介して取得されたセンサデータを含んでいる。データセット151は、当該基板搬送時における機器動作時間、メンテナンス後経過時間、基板ハンドリング部(基板Wと接触して徐々に摩耗する部分)の部品使用時間のうちの少なくとも1つの時間情報をさらに含んでいてもよい。
 図2に示すように、制御部12は、推定部121と、出力信号送信部122と、再学習部123とを有している。これらの各部は、搬送異常予測システム10内のプロセッサが所定のプログラムを実行することにより実現されてもよいし、ハードウェアで実装されてもよい。
 推定部121は、基板搬送部2に設けられた複数のセンサ51~5Nの各々から過去の基板搬送時に出力されたセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習した学習済みモデル120(たとえば、チューニングされたニューラルネットワークシステム、図6~図13参照)を有しており、複数のセンサ51~5Nの各々から新たな基板搬送時に出力されたセンサデータを含むデータセット(すなわち記憶部13に記憶されたデータセット131)を入力として、当該新たな基板搬送時における搬送異常度を推定して出力する。
 推定部121における処理のタイミングの第1例として、推定部121は、リアルタイムで処理してもよく、すなわち、新たな基板搬送時における搬送開始から現時点までのセンサデータを含むデータセット131を入力として、当該新たな基板搬送時における搬送異常度を推定して出力してもよい。
 推定部121における処理のタイミングの第2例として、推定部121は、1枚の基板Wごとに処理してもよく、すなわち、新たな基板搬送時における搬送開始から搬送終了までのセンサデータを含むデータセット131を入力として、当該新たな基板搬送時における搬送異常度を推定して出力してもよい。
 推定部121における処理のタイミングの第3例として、推定部121は、基板Wのロット(たとえば1ロット25枚)ごとに処理してもよく、すなわち、推定部121は、複数枚(1ロット)の新たな基板搬送時における最初の基板の搬送開始から最後の基板の搬送終了までのセンサデータを含むデータセット131を入力として、当該複数枚(1ロット)の新たな基板搬送時における搬送異常度を推定して出力してもよい。
 推定部121は、複数のセンサ51~5Nの各々から出力されたセンサデータをそのまま入力として利用してもよいし、FFT(高速フーリエ変換)によりあらかじめ定められた周波数領域の強度を抽出(前処理)したものを入力として利用してもよい。
 図6は、第1の態様における学習済みモデル120の構成を説明するための模式図である。図6に示す例では、学習済みモデル120は、チューニングされたニューラルネットワークシステムであり、入力層と、入力層に接続された1または2以上の中間層と、中間層に接続され出力層とを有する階層型のニューラルネットワークまたは量子ニューラルネットワーク(QNN)を含んでいる。図6では、階層型のニューラルネットワークとして、フィードフォワードニューラルネットワークが図示されているが、畳み込みニューラルネットワーク(CNN)やリカレントニューラルネットワーク(RNN)など、様々なタイプのニューラルネットワークが使用され得る。学習済みモデル120は、中間層が2層以上に多層化されたニューラルネットワーク、すなわちディープラーニング(深層学習)を含んでいてもよい。
 第1の態様における学習済みモデル120の生成方法の一例について説明すると、基板搬送部2に設けられた複数のセンサ51~5Nの各々から過去の基板搬送時に出力されたセンサデータに、当該基板搬送時が搬送異常発生時か否か(たとえば正常な基板搬送時は0、搬送異常発生時は1)がラベル付けされた教師データを用意しておき、図6に示すように、教師データに含まれる1つの基板搬送時のセンサデータを入力層に入力し、それにより出力層から出力される出力結果と、教師データに含まれる当該基板搬送時が搬送異常発生時か否かのラベルとを比較し、その誤差に応じて各ノードのパラメータ(重みや閾値など)を更新する処理を、教師データに含まれる複数の基板搬送時のデータの各々について繰り返す。これにより、基板搬送部2に設けられた複数のセンサ51~5Nの各々から過去の基板搬送時に出力されたセンサデータに基づいて、当該基板搬送時が搬送異常発生時である確率(搬送異常確率)を予測する学習済みモデル120(チューニングされたニューラルネットワークシステム)が生成される。
 第1の態様において、推定部121は、複数のセンサ51~5Nの各々から新たな基板搬送時に出力されたセンサデータを入力として、学習済みモデル120により予測される搬送異常発生時である確率(搬送異常確率)に基づいて、当該新たな基板搬送時における搬送異常度を推定して出力する。なお、搬送異常度は、学習済みモデル120により予測される搬送異常発生時である確率(搬送異常確率)そのものでもよいし、当該搬送異常確率を所定の関数で一意に変換した値であってもよい。
 図7は、第2の態様における学習済みモデル120の構成を説明するための模式図である。図7に示す例では、学習済みモデル120は、チューニングされたニューラルネットワークシステムであり、入力層と、入力層に接続された1または2以上の中間層と、中間層に接続され出力層とを有する階層型のニューラルネットワークまたは量子ニューラルネットワーク(QNN)を含んでいる。図7では、階層型のニューラルネットワークとして、フィードフォワードニューラルネットワークが図示されているが、畳み込みニューラルネットワーク(CNN)やリカレントニューラルネットワーク(RNN)など、様々なタイプのニューラルネットワークが使用され得る。学習済みモデル120は、中間層が2層以上に多層化されたニューラルネットワーク、すなわちディープラーニング(深層学習)を含んでいてもよい。
 第2の態様における学習済みモデル120の生成方法の一例について説明すると、基板搬送部2に設けられた複数のセンサ51~5Nの各々から過去の基板搬送時に出力されたセンサデータと、当該基板搬送時における時間情報(すなわち、当該基板搬送時における機器動作時間、メンテナンス後経過時間、基板ハンドリング部の部品使用時間のうちの少なくとも1つ)とを含むデータセットに、当該基板搬送時が搬送異常発生時か否か(たとえば正常な基板搬送時は0、搬送異常発生時は1)がラベル付けされた教師データを用意しておき、図7に示すように、教師データに含まれる1つの基板搬送時のデータセットを入力層に入力し、それにより出力層から出力される出力結果と、教師データに含まれる当該基板搬送時が搬送異常発生時か否かのラベルとを比較し、その誤差に応じて各ノードのパラメータ(重みや閾値など)を更新する処理を、教師データに含まれる複数の基板搬送時のデータの各々について繰り返す。これにより、基板搬送部2に設けられた複数のセンサ51~5Nの各々から過去の基板搬送時に出力されたセンサデータと当該基板搬送時における時間情報とを含むデータセットに基づいて、当該基板搬送時が搬送異常発生時である確率(搬送異常確率)を予測する学習済みモデル120(チューニングされたニューラルネットワークシステム)が生成される。
 第2の態様において、推定部121は、複数のセンサ51~5Nの各々から新たな基板搬送時に出力されたセンサデータと当該新たな基板搬送時における時間情報とを含むデータセットを入力として、学習済みモデル120により予測される搬送異常発生時である確率(搬送異常確率)に基づいて、当該新たな基板搬送時における搬送異常度を推定して出力する。なお、搬送異常度は、学習済みモデル120により予測される搬送異常発生時である確率(搬送異常確率)そのものでもよいし、当該搬送異常確率を所定の関数で一意に変換した値であってもよい。
 図8は、第3の態様における学習済みモデル120の構成を説明するための模式図である。図8に示す例では、学習済みモデル120は、チューニングされたニューラルネットワークシステムであり、入力層と、入力層に接続された1または2以上の中間層と、中間層に接続され出力層とを有する階層型のニューラルネットワークまたは量子ニューラルネットワーク(QNN)を含んでいる。図8では、階層型のニューラルネットワークとして、フィードフォワードニューラルネットワークが図示されているが、畳み込みニューラルネットワーク(CNN)やリカレントニューラルネットワーク(RNN)など、様々なタイプのニューラルネットワークが使用され得る。学習済みモデル120は、中間層が2層以上に多層化されたニューラルネットワーク、すなわちディープラーニング(深層学習)を含んでいてもよい。
 第3の態様における学習済みモデル120の生成方法の一例について説明すると、基板搬送部2に設けられた複数のセンサ51~5Nの各々から過去の基板搬送時に出力されたセンサデータに、当該基板搬送時が搬送異常発生時か否か(たとえば正常な基板搬送時は0、搬送異常発生時は1)がラベル付けされるとともに、搬送異常発生時の場合には搬送異常の発生原因(異常種類)がラベル付けされた教師データを用意しておき、図8に示すように、教師データに含まれる1つの基板搬送時のセンサデータを入力層に入力し、それにより出力層から出力される出力結果と、教師データに含まれる搬送異常の発生原因(異常種類)ごとの当該基板搬送時が搬送異常発生時か否かのラベルとを比較し、その誤差に応じて各ノードのパラメータ(重みや閾値など)を更新する処理を、教師データに含まれる複数の基板搬送時のデータの各々について繰り返す。これにより、基板搬送部2に設けられた複数のセンサ51~5Nの各々から過去の基板搬送時に出力されたセンサデータに基づいて、当該基板搬送時が搬送異常発生時である確率(搬送異常確率)を搬送異常の発生原因(異常種類)ごとに予測する学習済みモデル120(チューニングされたニューラルネットワークシステム)が生成される。
 第3の態様において、推定部121は、複数のセンサ51~5Nの各々から新たな基板搬送時に出力されたセンサデータを入力として、学習済みモデル120により搬送異常の発生原因(異常種類)ごとに予測される搬送異常発生時である確率(搬送異常確率)に基づいて、当該新たな基板搬送時における搬送異常度を搬送異常の発生原因(異常種類)ごとに推定して出力する。なお、搬送異常度は、学習済みモデル120により予測される搬送異常発生時である確率(搬送異常確率)そのものでもよいし、当該搬送異常確率を所定の関数で一意に変換した値であってもよい。
 図9は、第4の態様における学習済みモデル120の構成を説明するための模式図である。図9に示す例では、学習済みモデル120は、チューニングされたニューラルネットワークシステムであり、入力層と、入力層に接続された1または2以上の中間層と、中間層に接続され出力層とを有する階層型のニューラルネットワークまたは量子ニューラルネットワーク(QNN)を含んでいる。図9では、階層型のニューラルネットワークとして、フィードフォワードニューラルネットワークが図示されているが、畳み込みニューラルネットワーク(CNN)やリカレントニューラルネットワーク(RNN)など、様々なタイプのニューラルネットワークが使用され得る。学習済みモデル120は、中間層が2層以上に多層化されたニューラルネットワーク、すなわちディープラーニング(深層学習)を含んでいてもよい。
 第4の態様における学習済みモデル120の生成方法の一例について説明すると、基板搬送部2に設けられた複数のセンサ51~5Nの各々から過去の基板搬送時に出力されたセンサデータと、当該基板搬送時における時間情報(すなわち、当該基板搬送時における機器動作時間、メンテナンス後経過時間、基板ハンドリング部の部品使用時間のうちの少なくとも1つ)とを含むデータセットに、当該基板搬送時が搬送異常発生時か否か(たとえば正常な基板搬送時は0、搬送異常発生時は1)がラベル付けされるとともに、搬送異常発生時の場合には搬送異常の発生原因(異常種類)がラベル付けされた教師データを用意しておき、図9に示すように、教師データに含まれる1つの基板搬送時のデータセットを入力層に入力し、それにより出力層から出力される出力結果と、教師データに含まれる搬送異常の発生原因(異常種類)ごとの当該基板搬送時が搬送異常発生時か否かのラベルとを比較し、その誤差に応じて各ノードのパラメータ(重みや閾値など)を更新する処理を、教師データに含まれる複数の基板搬送時のデータの各々について繰り返す。これにより、基板搬送部2に設けられた複数のセンサ51~5Nの各々から過去の基板搬送時に出力されたセンサデータと当該基板搬送時における時間情報とを含むデータセットに基づいて、当該基板搬送時が搬送異常発生時である確率(搬送異常確率)を搬送異常の発生原因(異常種類)ごとに予測する学習済みモデル120(チューニングされたニューラルネットワークシステム)が生成される。
 第4の態様において、推定部121は、複数のセンサ51~5Nの各々から新たな基板搬送時に出力されたセンサデータと当該新たな基板搬送時における時間情報とを含むデータセットを入力として、学習済みモデル120により搬送異常の発生原因(異常種類)ごとに予測される搬送異常発生時である確率(搬送異常確率)に基づいて、当該新たな基板搬送時における搬送異常度を搬送異常の発生原因(異常種類)ごとに推定して出力する。なお、搬送異常度は、学習済みモデル120により予測される搬送異常発生時である確率(搬送異常確率)そのものでもよいし、当該搬送異常確率を所定の関数で一意に変換した値であってもよい。
 図10は、第5の態様における学習済みモデル120の構成を説明するための模式図である。図10に示す例では、学習済みモデル120は、チューニングされたニューラルネットワークシステムであり、入力層と、入力層に接続された1または2以上の中間層と、中間層に接続され出力層とを有する階層型のニューラルネットワークまたは量子ニューラルネットワーク(QNN)を含んでいる。図10では、階層型のニューラルネットワークとして、フィードフォワードニューラルネットワークが図示されているが、畳み込みニューラルネットワーク(CNN)やリカレントニューラルネットワーク(RNN)など、様々なタイプのニューラルネットワークが使用され得る。学習済みモデル120は、中間層が2層以上に多層化されたニューラルネットワーク、すなわちディープラーニング(深層学習)を含んでいてもよい。
 第5の態様における学習済みモデル120の生成方法の一例について説明すると、基板搬送部2に設けられた複数のセンサ51~5Nの各々から過去の基板搬送時に出力されたセンサデータに、当該基板搬送時から搬送異常発生時までの残り時間または残り搬送回数が紐づけられた教師データを用意しておき、図10に示すように、教師データに含まれる1つの基板搬送時のセンサデータを入力層に入力し、それにより出力層から出力される出力結果と、教師データに含まれる当該基板搬送時から搬送異常発生時までの残り時間または残り搬送回数とを比較し、その誤差に応じて各ノードのパラメータ(重みや閾値など)を更新する処理を、教師データに含まれる複数の基板搬送時のデータの各々について繰り返す。これにより、基板搬送部2に設けられた複数のセンサ51~5Nの各々から過去の基板搬送時に出力されたセンサデータに基づいて、当該基板搬送時から搬送異常発生時までの残り時間または残り搬送回数を予測する学習済みモデル120(チューニングされたニューラルネットワークシステム)が生成される。
 第5の態様において、推定部121は、複数のセンサ51~5Nの各々から新たな基板搬送時に出力されたセンサデータを入力として、学習済みモデル120により予測される残り時間または残り搬送回数に基づいて、当該新たな基板搬送時における搬送異常度を推定して出力する。なお、搬送異常度は、学習済みモデル120により予測される残り時間または残り搬送回数そのものでもよいし、当該残り時間または残り搬送回数を所定の関数で一意に変換した値であってもよい。たとえば、搬送異常度は、学習済みモデル120により予測される残り時間を、メンテナンス時から搬送異常発生時までの平均時間で除算した値であってもよいし、学習済みモデル120により予測される残り搬送回数を、メンテナンス時から搬送異常発生時までの平均搬送回数で除算した値であってもよい。
 図11は、第6の態様における学習済みモデル120の構成を説明するための模式図である。図11に示す例では、学習済みモデル120は、チューニングされたニューラルネットワークシステムであり、入力層と、入力層に接続された1または2以上の中間層と、中間層に接続され出力層とを有する階層型のニューラルネットワークまたは量子ニューラルネットワーク(QNN)を含んでいる。図11では、階層型のニューラルネットワークとして、フィードフォワードニューラルネットワークが図示されているが、畳み込みニューラルネットワーク(CNN)やリカレントニューラルネットワーク(RNN)など、様々なタイプのニューラルネットワークが使用され得る。学習済みモデル120は、中間層が2層以上に多層化されたニューラルネットワーク、すなわちディープラーニング(深層学習)を含んでいてもよい。
 第6の態様における学習済みモデル120の生成方法の一例について説明すると、基板搬送部2に設けられた複数のセンサ51~5Nの各々から過去の基板搬送時に出力されたセンサデータ、当該基板搬送時における時間情報(すなわち、当該基板搬送時における機器動作時間、メンテナンス後経過時間、基板ハンドリング部の部品使用時間のうちの少なくとも1つ)とを含むデータセットに、当該基板搬送時から搬送異常発生時までの残り時間または残り搬送回数が紐づけられた教師データを用意しておき、図10に示すように、教師データに含まれる1つの基板搬送時のデータセットを入力層に入力し、それにより出力層から出力される出力結果と、教師データに含まれる当該基板搬送時から搬送異常発生時までの残り時間または残り搬送回数とを比較し、その誤差に応じて各ノードのパラメータ(重みや閾値など)を更新する処理を、教師データに含まれる複数の基板搬送時のデータの各々について繰り返す。これにより、基板搬送部2に設けられた複数のセンサ51~5Nの各々から過去の基板搬送時に出力されたセンサデータと当該基板搬送時における時間情報とを含むデータセットに基づいて、当該基板搬送時から搬送異常発生時までの残り時間または残り搬送回数を予測する学習済みモデル120(チューニングされたニューラルネットワークシステム)が生成される。
 第6の態様において、推定部121は、複数のセンサ51~5Nの各々から新たな基板搬送時に出力されたセンサデータと当該新たな基板搬送時における時間情報とを含むデータセットを入力として、学習済みモデル120により予測される残り時間または残り搬送回数に基づいて、当該新たな基板搬送時における搬送異常度を推定して出力する。なお、搬送異常度は、学習済みモデル120により予測される残り時間または残り搬送回数そのものでもよいし、当該残り時間または残り搬送回数を所定の関数で一意に変換した値であってもよい。たとえば、搬送異常度は、学習済みモデル120により予測される残り時間を、メンテナンス時から搬送異常発生時までの平均時間で除算した値であってもよいし、学習済みモデル120により予測される残り搬送回数を、メンテナンス時から搬送異常発生時までの平均搬送回数で除算した値であってもよい。
 図12は、第7の態様における学習済みモデル120の構成を説明するための模式図である。図12に示す例では、学習済みモデル120は、過去の正常な基板搬送時のセンサデータを含むデータセットを教師データとして、k近傍法にて機械学習したものであり、新たな基板搬送時のセンサデータを含むデータセットに基づいて、当該データセットのk近傍までの距離を計算する。図12に示す例において、複数の白丸(「〇」)はそれぞれ、過去の正常な基板搬送時のセンサデータの特徴空間における位置を示しており、白三角(「△」)は、新たな基板搬送時のセンサデータの特徴空間における位置を示しており、破線は、k=3の場合のk近傍までの距離を示している。
 第7の態様において、推定部121は、新たな基板搬送時のセンサデータを含むデータセットを入力として、学習済みモデル121により計算されるk近傍までの距離に基づいて、搬送異常度を推定して出力する。なお、搬送異常度は、学習済みモデル120により計算されるk近傍までの距離そのものでもよいし、当該k近傍までの距離を所定の関数で一意に変換した値であってもよい。
 図13は、第8の態様における学習済みモデル120の構成を説明するための模式図である。図13に示す例では、学習済みモデル120は、チューニングされたニューラルネットワークシステムであり、入力層と、入力層に接続された1または2以上の中間層と、中間層に接続され出力層とを有する階層型のニューラルネットワークまたは量子ニューラルネットワーク(QNN)を含んでいる。学習済みモデル120は、中間層が2層以上に多層化されたニューラルネットワーク、すなわちディープラーニング(深層学習)を含んでいてもよい。
 第8の態様における学習済みモデル120は、過去の正常な基板搬送時のセンサデータを含むデータセットを教師データとして、LSTM(Long Short-Term Memory;長・短期記憶)にて機械学習したものである。図13に示す例において、学習済みモデル120は、たとえばメンテナンス時から新たな基板搬送時の直前までの実際のセンサデータ(第1~n-1サイクルのセンサデータ)を含むデータセットに基づいて、当該新たな基板搬送時のセンサデータ(第nサイクルのセンサデータの予測値)を含むデータセットを予測する。
 第8の態様において、推定部121は、メンテナンス時から新たな基板搬送時までの実際のセンサデータ(第1~nサイクルのセンサデータ)を含むデータセットを入力として、当該新たな基板搬送時の直前までの実際のセンサデータ(第1~n-1サイクルのセンサデータ)を含むデータセットから学習済みモデル120により予測される当該新たな基板搬送時のセンサデータ(第nサイクルのセンサデータの予測値)を含むデータセットと、当該新たな基板搬送時の実際のセンサデータ(第nサイクルのセンサデータ)を含むデータセットとの乖離を計算し、当該乖離に基づいて搬送異常度を推定して出力する。なお、搬送異常度は、当該乖離そのものであってもよいし、当該乖離を所定の関数で一意に変換した値であってもよい。
 推定部121は、複数の学習済みモデル120(たとえば第1~第8の態様における学習モデル120のうちの2つ以上)を有し、複数の学習済みモデル120による予測の組み合わせ(すなわちアンサンブル学習)に基づいて、搬送異常度を推定して出力してもよい。
 出力信号送信部122は、推定部121により出力される搬送異常度を、あらかじめ定められた閾値152と比較し、搬送異常度が閾値152を超えている場合には、メンテナンス通知および/またはアラームを出力するための出力信号を、出力部14を介して出力装置4に送信する。
 再学習部123は、新たな基板搬送時に出力されたセンサデータを含むデータセット131を教師データとして学習済みモデル120を再学習させる。
 次に、このような構成からなる搬送異常予測システム10による搬送異常予測方法の一例について説明する。図14は、搬送異常予測方法の一例を示すフローチャートである。
 図14に示すように、推定部121が、基板搬送部2に設けられた複数のセンサ51~5Nの各々から新たな基板搬送時に出力されるセンサデータを含むデータセット131を取得する(ステップS11)。推定部121により取得されるデータセット131は、当該基板搬送時2における機器動作時間、メンテナンス後経過時間、基板ハンドリング部の部品使用時間のうちの少なくとも1つ時間情報を含んでいてもよい。推定部121により取得されるデータセット131は、記憶部13に記憶される。
 そして、推定部121は、複数のセンサ51~5Nの各々から過去の基板搬送時に出力されたセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習した学習済みモデル120を用いて、複数のセンサ51~5Nの各々から新たな基板搬送時に出力されたセンサデータを含むデータセット131を入力として、当該新たな基板搬送時における搬送異常度を推定して出力する(ステップS12)。
 ステップS12において、推定部121は、複数のセンサ51~5Nの各々から過去の基板搬送時に出力されたセンサデータを含むデータセットと搬送異常の発生原因(異常種類)ごとの当該基板搬送時における搬送異常度との関係性を機械学習した学習済みモデル120(図8、9参照)を用いて、複数のセンサ51~5Nの各々から新たな基板搬送時に出力されたセンサデータを含むデータセット131を入力として、当該新たな基板搬送時における搬送異常度を搬送異常の発生原因(異常種類)ごとに推定して出力してもよい。
 次に、出力信号送信部122が、推定部121により出力される搬送異常度を、あらかじめ定められた閾値152と比較する(ステップS13)。
 推定部121により出力される搬送異常度が閾値152を超えている場合には(ステップS13:YES)、出力信号送信部122は、メンテナンス通知および/またはアラームを出力するための出力信号を、出力部14を介して出力装置4に送信する(ステップS14)。
 他方、推定部121により出力される搬送異常度が閾値152を超えていない場合には(ステップS13:NO)、再学習部123が、当該新たな基板搬送時に出力されたセンサデータを含むデータセット131を正常時のラベルが付された教師データとして学習済みモデル120を再学習させる(ステップS15)。
 以上のような本実施の形態によれば、推定部121が、過去の基板搬送時におけるセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習した学習済みモデル120を用いることで、新たな基板搬送時におけるセンサデータを含むデータセット131について、複数の指標データから総合して、当該新たな基板搬送時における搬送異常度を推定して出力することができる。これにより、基板搬送中におけるセンサの出力と基板搬送前の位置合わせ時に記憶されたセンサの出力との差が一定の閾値を超えると異常と判断する従来の態様に比べて、搬送異常の検出確率を向上できる。また、学習済みモデル120を用いることで、従来の態様では扱いにくかった機器の振動、音、画像データなどをセンサデータとして利用することが可能である。
 また、本実施の形態によれば、推定部121により推定された搬送異常度が閾値152を超えている場合に、出力信号送信部122が、メンテナンス通知および/またはアラームを出力するための出力信号を出力装置4に送信するため、出力装置4からの出力をトリガとしてユーザ(たとえば基板処理装置1のオペレータ)がメンテナンスを行うことで、ハンドリングミスを事前に防止できる。
 また、本実施の形態によれば、再学習部123が、新たな基板搬送時に出力されたセンサデータを含むデータセット131を教師データとして学習済みモデル120を再学習させるため、装置の稼働状況の変化に追従していくシステムが得られる。
 また、図8、9に示す実施の形態によれば、推定部121が、過去の基板搬送時におけるセンサデータを含むデータセットと搬送異常の発生原因(異常種類)ごとの当該基板搬送時における搬送異常度との間に存在する関係性に基づいて、新たな基板搬送時におけるセンサデータを含むデータセットを入力として、当該新たな基板搬送時における搬送異常度を搬送異常の発生原因(異常種類)ごとに推定して出力するため、搬送異常度が高いと推定された搬送異常の発生原因(異常種類)から調査することにより、装置のメンテナンス時間を短縮させることができる。
 なお、本実施の形態に係る搬送異常予測システム10は、1つのコンピュータまたは量子コンピューティングシステム、もしくは互いにネットワークを介して接続された複数のコンピュータまたは量子コンピューティングシステムによって構成され得るが、1または複数のコンピュータまたは量子コンピューティングシステムに搬送異常予測システム10を実現させるためのプログラム及び当該プログラムを非一時的(non-transitory)に記録したコンピュータ読取可能な記録媒体も、本件の保護対象である。
 以上、実施の形態および変形例を例示により説明したが、本技術の範囲はこれらに限定されるものではなく、請求項に記載された範囲内において目的に応じて変更・変形することが可能である。また、各実施の形態および変形例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。

 

Claims (19)

  1.  基板搬送部に設けられた複数のセンサの各々から過去の基板搬送時に出力されたセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習した学習済みモデルを有し、前記複数のセンサの各々から新たな基板搬送時に出力されたセンサデータを含むデータセットを入力として、当該新たな基板搬送時における搬送異常度を推定して出力する推定部
    を備えたことを特徴とする搬送異常予測システム。
  2.  前記複数のセンサは、振動センサ、音センサ、画像センサ、映像センサ、温度センサ、機器移動速度センサ、機器動作トルクセンサ、機器平行度センサのうちの1種類または2種類以上からなる
    ことを特徴とする請求項1に記載の搬送異常予測システム。
  3.  前記推定部により出力される前記搬送異常度を、あらかじめ定められた閾値と比較し、前記搬送異常度が前記閾値を超えている場合には、メンテナンス通知および/またはアラームを出力するための出力信号を出力装置に送信する出力信号送信部
    をさらに備えたことを特徴とする請求項1または2に記載の搬送異常予測システム。
  4.  前記推定部は、新たな基板搬送時における搬送開始から現時点までのセンサデータを含むデータセットを入力として、当該新たな基板搬送時における搬送異常度を推定して出力する
    ことを特徴とする請求項1~3のいずれかに記載の搬送異常予測システム。
  5.  前記推定部は、新たな基板搬送時における搬送開始から搬送終了までのセンサデータを含むデータセットを入力として、当該新たな基板搬送時における搬送異常度を推定して出力する
    ことを特徴とする請求項1~3のいずれかに記載の搬送異常予測システム。
  6.  前記推定部は、複数枚の新たな基板搬送時における最初の基板の搬送開始から最後の基板の搬送終了までのセンサデータを含むデータセットを入力として、当該複数枚の新たな基板搬送時における搬送異常度を推定して出力する
    ことを特徴とする請求項1~3のいずれかに記載の搬送異常予測システム。
  7.  前記新たな基板搬送時に出力されたセンサデータを含むデータセットを教師データとして前記学習済みモデルを再学習させる再学習部
    をさらに備えたことを特徴とする請求項1~6のいずれかに記載の搬送異常予測システム。
  8.  前記データセットは、当該基板搬送時における機器動作時間、メンテナンス後経過時間、基板ハンドリング部の部品使用時間のうちの少なくとも1つの時間情報をさらに含む、
    ことを特徴とする請求項1~7のいずれかに記載の搬送異常予測システム。
  9.  前記学習済みモデルは、過去の基板搬送時のセンサデータを含むデータセットに当該基板搬送時から搬送異常発生時までの残り時間または残り搬送回数が紐づけられた教師データを機械学習したものであり、前記推定部は、新たな基板搬送時のセンサデータを含むデータセットを入力として、前記学習済みモデルにより予測される前記残り時間または残り搬送回数に基づいて、前記搬送異常度を推定して出力する、
    ことを特徴とする請求項1~8のいずれかに記載の搬送異常予測システム。
  10.  前記学習済みモデルは、過去の正常な基板搬送時のセンサデータを含むデータセットを教師データとしてk近傍法にて機械学習したものであり、前記推定部は、新たな基板搬送時のセンサデータを含むデータセットを入力として、前記学習済みモデルにより計算されるk近傍までの距離に基づいて、前記搬送異常度を推定して出力する
    ことを特徴とする請求項1~8のいずれかに記載の搬送異常予測システム。
  11.  前記学習済みモデルは、過去の正常な基板搬送時のセンサデータを含むデータセットを教師データとしてLSTM(Long Short-Term Memory)にて機械学習したものであり、前記推定部は、新たな基板搬送時までの実際のセンサデータを含むデータセットを入力として、当該新たな基板搬送時の直前までの実際のセンサデータを含むデータセットから前記学習済みモデルにより予測される当該新たな基板搬送時のセンサデータを含むデータセットと、当該新たな基板搬送時の実際のセンサデータを含むデータセットとの乖離を計算し、当該乖離に基づいて前記搬送異常度を推定して出力する、
    ことを特徴とする請求項1~8のいずれかに記載の搬送異常予測システム。
  12.  前記学習済みモデルは、過去の基板搬送時のセンサデータを含むデータセットに当該基板搬送時が搬送異常発生時か否かがラベル付けされた教師データを機械学習したものであり、前記推定部は、新たな基板搬送時のセンサデータを含むデータセットを入力として、前記学習済みモデルにより予測される搬送異常発生時である確率に基づいて、前記搬送異常度を推定して出力する、
    ことを特徴とする請求項1~8のいずれかに記載の搬送異常予測システム。
  13.  前記学習済みモデルは、過去の基板搬送時のセンサデータを含むデータセットに当該基板搬送時が搬送異常発生時か否かがラベル付けされるとともに、搬送異常発生時の場合には搬送異常の発生原因がラベル付けされた教師データを機械学習したものであり、前記推定部は、新たな基板搬送時のセンサデータを含むデータセットを入力として、前記学習済みモデルにより搬送異常の発生原因ごとに予測される搬送異常発生時である確率に基づいて、搬送異常の発生原因ごとの前記搬送異常度を推定して出力する、
    ことを特徴とする請求項12に記載の搬送異常予測システム。
  14.  前記推定部は、複数の学習済みモデルを有し、前記複数の学習済みモデルによる予測の組み合わせに基づいて前記搬送異常度を推定して出力する、
    ことを特徴とする請求項1~13に記載の搬送異常予測システム。
  15.  基板搬送部と、
     請求項1~14のいずれかに記載の搬送異常予測システムと、
    を備えたことを特徴とする基板処理装置。
  16.  コンピュータが実行する搬送異常予測方法であって、
     基板搬送部に設けられた複数のセンサの各々から過去の基板搬送時に出力されたセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習した学習済みモデルを用いて、前記複数のセンサの各々から新たな基板搬送時に出力されたセンサデータを含むデータセットを入力として、当該新たな基板搬送時における搬送異常度を推定して出力するステップ
    を含むことを特徴とする搬送異常予測方法。
  17.  コンピュータに、
     基板搬送部に設けられた複数のセンサの各々から過去の基板搬送時に出力されたセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習した学習済みモデルを用いて、前記複数のセンサの各々から新たな基板搬送時に出力されたセンサデータを含むデータセットを入力として、当該新たな基板搬送時における搬送異常度を推定して出力するステップ
    を実行させるための搬送異常予測プログラム。
  18.  コンピュータに、
     基板搬送部に設けられた複数のセンサの各々から過去の基板搬送時に出力されたセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習した学習済みモデルを用いて、前記複数のセンサの各々から新たな基板搬送時に出力されたセンサデータを含むデータセットを入力として、当該新たな基板搬送時における搬送異常度を推定して出力するステップ
    を実行させるための搬送異常予測プログラムを記録したコンピュータ読取可能な記録媒体。
  19.  入力層と、入力層に接続された1または2以上の中間層と、中間層に接続された出力層とを有し、基板搬送部に設けられた複数のセンサの各々から過去の基板搬送時に出力されたセンサデータを含むデータセットを入力層に入力し、それにより出力層から出力される出力結果と、当該基板搬送時における搬送異常度とを比較し、その誤差に応じて各ノードのパラメータを更新する処理を、過去の複数回の基板搬送時のセンサデータを含むデータセットについて繰り返すことにより、過去の基板搬送時に出力されたセンサデータを含むデータセットと当該基板搬送時における搬送異常度との関係性を機械学習したものであり、
     前記複数のセンサの各々から新たな基板搬送時に出力されたセンサデータを含むデータセットが入力層に入力されると、当該新たな基板搬送時における搬送異常度を推定して出力層から出力するよう、コンピュータを機能させるための学習済みモデル。

     
PCT/JP2020/035501 2019-10-02 2020-09-18 搬送異常予測システム WO2021065576A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227014040A KR20220074905A (ko) 2019-10-02 2020-09-18 반송 이상 예측 시스템
CN202080069453.3A CN114503247A (zh) 2019-10-02 2020-09-18 搬送异常预测系统
US17/765,374 US20220363487A1 (en) 2019-10-02 2020-09-18 Conveyance abnormality prediction system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019181870A JP7319162B2 (ja) 2019-10-02 2019-10-02 搬送異常予測システム
JP2019-181870 2019-10-02

Publications (1)

Publication Number Publication Date
WO2021065576A1 true WO2021065576A1 (ja) 2021-04-08

Family

ID=75272192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035501 WO2021065576A1 (ja) 2019-10-02 2020-09-18 搬送異常予測システム

Country Status (6)

Country Link
US (1) US20220363487A1 (ja)
JP (1) JP7319162B2 (ja)
KR (1) KR20220074905A (ja)
CN (1) CN114503247A (ja)
TW (1) TW202128533A (ja)
WO (1) WO2021065576A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200381281A1 (en) * 2019-05-29 2020-12-03 Tokyo Electron Limited Transfer method and transfer system
CN117302897A (zh) * 2023-11-23 2023-12-29 常州市传动输送机械有限公司 一种带式输送机智能监测防控方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7166395B1 (ja) 2021-06-23 2022-11-07 セイコーソリューションズ株式会社 監視システム、監視方法、及び監視プログラム
WO2023282167A1 (ja) * 2021-07-08 2023-01-12 株式会社Preferred Networks データ処理装置およびプログラム
JP2023023394A (ja) * 2021-08-05 2023-02-16 株式会社荏原製作所 基板支持装置、洗浄装置、基板の回転速度を算出する装置ならびに方法、および機械学習装置
JP7288486B2 (ja) * 2021-09-17 2023-06-07 株式会社Kokusai Electric 基板処理方法、基板処理装置、半導体装置の製造方法、及びプログラム
CN114655655A (zh) * 2022-03-09 2022-06-24 南京北路软件技术有限公司 一种基于UNet网络的传送带跑偏检测方法
TWI804405B (zh) * 2022-08-04 2023-06-01 友達光電股份有限公司 振動偵測方法及振動偵測裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154900A (ja) * 1996-11-25 1998-06-09 Hitachi Ltd 電子部品実装用プリント基板の故障解析方法およびシステム
JP2016045852A (ja) * 2014-08-26 2016-04-04 株式会社日立パワーソリューションズ 異常診断装置及び異常診断方法
JP2017157652A (ja) * 2016-03-01 2017-09-07 パナソニックIpマネジメント株式会社 部品実装用装置及び基板搬送方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW469483B (en) * 1999-04-19 2001-12-21 Applied Materials Inc Method and apparatus for aligning a cassette
US7490010B2 (en) * 2006-08-08 2009-02-10 Tokyo Electron Limited Data collection method, substrate processing apparatus, and substrate processing system
US7486878B2 (en) * 2006-09-29 2009-02-03 Lam Research Corporation Offset correction methods and arrangement for positioning and inspecting substrates
US8135485B2 (en) * 2007-09-28 2012-03-13 Lam Research Corporation Offset correction techniques for positioning substrates within a processing chamber
US8225683B2 (en) * 2007-09-28 2012-07-24 Lam Research Corporation Wafer bow metrology arrangements and methods thereof
US8060330B2 (en) * 2008-12-12 2011-11-15 Lam Research Corporation Method and system for centering wafer on chuck
US9442482B2 (en) * 2013-04-29 2016-09-13 GlobalFoundries, Inc. System and method for monitoring wafer handling and a wafer handling machine
US10714364B2 (en) * 2017-08-31 2020-07-14 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and method for inspecting wafer carriers
US10802475B2 (en) * 2018-07-16 2020-10-13 Elite Robotics Positioner for a robotic workcell
US11328947B1 (en) * 2021-01-26 2022-05-10 Kawasaki Jukogyo Kabushiki Kaisha Aligner apparatus and alignment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10154900A (ja) * 1996-11-25 1998-06-09 Hitachi Ltd 電子部品実装用プリント基板の故障解析方法およびシステム
JP2016045852A (ja) * 2014-08-26 2016-04-04 株式会社日立パワーソリューションズ 異常診断装置及び異常診断方法
JP2017157652A (ja) * 2016-03-01 2017-09-07 パナソニックIpマネジメント株式会社 部品実装用装置及び基板搬送方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200381281A1 (en) * 2019-05-29 2020-12-03 Tokyo Electron Limited Transfer method and transfer system
US11908717B2 (en) * 2019-05-29 2024-02-20 Tokyo Electron Limited Transfer method and transfer system for transferring substrate between transfer device and substrate stage
CN117302897A (zh) * 2023-11-23 2023-12-29 常州市传动输送机械有限公司 一种带式输送机智能监测防控方法及系统
CN117302897B (zh) * 2023-11-23 2024-01-26 常州市传动输送机械有限公司 一种带式输送机智能监测防控方法及系统

Also Published As

Publication number Publication date
TW202128533A (zh) 2021-08-01
JP2021054632A (ja) 2021-04-08
JP7319162B2 (ja) 2023-08-01
US20220363487A1 (en) 2022-11-17
KR20220074905A (ko) 2022-06-03
CN114503247A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2021065576A1 (ja) 搬送異常予測システム
JP2021054632A5 (ja)
EP2911025B1 (en) Initiated test health management system and method
JP5664543B2 (ja) 搬送装置及び搬送方法
JP6392908B2 (ja) 視覚センサの異常原因推定システム
WO2013141066A1 (ja) ゾーンコントローラ、並びに、コンベア装置
US20230266752A1 (en) Container treatment machine and method for monitoring the operation of a container treatment machine
JP6766897B2 (ja) 搬送装置、搬送装置の異常検出方法及び記憶媒体
JP6847898B2 (ja) 予防保全装置及び予防保全システム
JP7366562B2 (ja) 異常判定装置及び異常判定方法
US11059171B2 (en) Method and apparatus for optimizing a target working line
US20240116177A1 (en) Control device and automatic work method
US10521774B2 (en) Preventive maintenance system and preventive maintenance method
KR102092575B1 (ko) 둘 이상의 핸드를 구비하는 이송 장치 및 그 동작 방법
JP4837938B2 (ja) コーティング装置
Ding et al. KrakenBox: Deep Learning-Based Error Detector for Industrial Cyber-Physical Systems
US20240066686A1 (en) Robotic gripper alignment monitoring system
WO2022113445A1 (ja) ロボットシステム及びスリップ判定方法
CN117697765A (zh) 基于传感反馈提高晶圆机械臂传送准确性的方法及系统
WO2023058289A1 (ja) 情報処理装置、推論装置、機械学習装置、情報処理方法、推論方法、及び、機械学習方法
US20240134324A1 (en) Monitoring apparatus for quality monitoring
JP2011254117A (ja) 基板感知方法、基板処理装置及び基板処理方法
JP2018099766A (ja) ロボットシステム及び生産システム
WO2020249671A1 (en) A method for processing sensor input data captured from sensors placed in a production line, and a system thereof
TW202420864A (zh) 用於監測與定位決定相關聯的經訓練的機器學習程序的裝置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227014040

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20873011

Country of ref document: EP

Kind code of ref document: A1