WO2021065203A1 - 加熱冷却装置及び加熱冷却方法 - Google Patents

加熱冷却装置及び加熱冷却方法 Download PDF

Info

Publication number
WO2021065203A1
WO2021065203A1 PCT/JP2020/030196 JP2020030196W WO2021065203A1 WO 2021065203 A1 WO2021065203 A1 WO 2021065203A1 JP 2020030196 W JP2020030196 W JP 2020030196W WO 2021065203 A1 WO2021065203 A1 WO 2021065203A1
Authority
WO
WIPO (PCT)
Prior art keywords
led light
substrate
heating
led
cooling
Prior art date
Application number
PCT/JP2020/030196
Other languages
English (en)
French (fr)
Inventor
遠藤 昇佐
洋平 緑川
洋平 中込
圭宏 小林
康雄 中谷
斉藤 進
粲星 安
佑太 ▲高▼橋
隆浩 木嶋
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US17/754,446 priority Critical patent/US20220336238A1/en
Priority to KR1020227013376A priority patent/KR20220066942A/ko
Priority to JP2021550388A priority patent/JP7365423B2/ja
Publication of WO2021065203A1 publication Critical patent/WO2021065203A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement

Definitions

  • the present disclosure relates to a heating / cooling device and a heating / cooling method.
  • Patent Document 1 discloses a processing system including a COR processing device that performs COR processing on a substrate and a PHT processing device that performs PHT processing on a substrate.
  • the PHT processing apparatus has a mounting table on which two substrates are placed in a horizontal state, and the mounting table is provided with a heater. The substrate after being subjected to the COR treatment is heated by this heater, and a PHT treatment is performed to vaporize (sublimate) the reaction product produced by the COR treatment.
  • the technology according to the present disclosure efficiently heat-treats and cools the substrate.
  • One aspect of the present disclosure is a chamber and a plurality of substrate holding portions provided inside the chamber, and each substrate holding portion includes a plurality of substrate holding portions configured to hold the substrate and the chamber.
  • a plurality of LED light sources provided outside the above, the plurality of LED light sources correspond to the plurality of substrate holding portions, and each LED light source emits LED light to the substrate held by the corresponding substrate holding portions.
  • the LED light is configured to irradiate through a plurality of LED light sources having a wavelength for heating the substrate and a plurality of transmission windows provided between the plurality of substrate holding portions and the plurality of LED light sources.
  • the plurality of transmissive windows correspond to the plurality of LED light sources, and each transmissive window includes a plurality of transmissive windows configured to transmit the LED light emitted from the corresponding LED light sources.
  • the heat treatment and the cooling treatment of the substrate can be efficiently performed.
  • a step of etching and removing an oxide film formed on the surface of a semiconductor wafer (hereinafter, may be referred to as a "wafer") is performed.
  • the etching process of the oxide film is performed by a COR (Chemical Oxide Removal) treatment and a PHT (Post Heat Treatment) treatment.
  • the COR treatment is a treatment in which an oxide film formed on a wafer is reacted with a processing gas to change the quality of the oxide film to produce a reaction product.
  • the PHT treatment is a heat treatment in which the reaction product produced in the COR treatment is heated and vaporized. Then, by continuously performing these COR treatment and PHT treatment, the oxide film formed on the wafer is etched.
  • the heating temperature of the wafer in the PHT treatment is, for example, about 300 ° C.
  • the wafer is heated by the heater embedded in the mounting table, and the heating rate is, for example, about 0.45 ° C./sec. Therefore, it takes time to heat-treat the wafer.
  • the wafer after heat treatment is naturally cooled to a temperature that can be held by the transfer arm.
  • This cooling rate is, for example, about 0.5 ° C./sec, which also takes time. Therefore, there is room for improvement in the conventional PHT treatment.
  • FIG. 1 is a plan view showing an outline of the configuration of the wafer processing apparatus 1 according to the present embodiment.
  • the wafer processing apparatus 1 is provided with various processing modules for performing COR processing, PHT processing, CST (Cooling Storage) processing, and orientation processing on the wafer W as a substrate will be described as an example.
  • the module configuration of the wafer processing apparatus 1 of the present disclosure is not limited to this, and can be arbitrarily selected.
  • the wafer processing apparatus 1 has a configuration in which the atmosphere unit 10 and the decompression unit 11 are integrally connected via load lock modules 20a and 20b.
  • the atmosphere unit 10 includes a plurality of atmosphere modules that perform desired processing on the wafer W in an atmospheric pressure atmosphere.
  • the decompression unit 11 includes a plurality of decompression modules that perform a desired process on the wafer W in a decompression atmosphere.
  • the load lock module 20a temporarily holds the wafer W in order to deliver the wafer W conveyed from the loader module 30 described later in the atmosphere unit 10 to the transfer module 60 described later in the decompression unit 11.
  • the load lock module 20a has an upper stocker 21a and a lower stocker 22a that hold the two wafers W along the vertical direction.
  • the load lock module 20a is connected to the loader module 30 described later via a gate 24a provided with a gate valve 23a.
  • the gate valve 23a ensures airtightness between the load lock module 20a and the loader module 30 and enables mutual communication.
  • the load lock module 20a is connected to the transfer module 60, which will be described later, via a gate 26a provided with a gate valve 25a.
  • the gate valve 25a ensures airtightness between the load lock module 20a and the transfer module 60 and allows communication with each other.
  • An air supply unit (not shown) for supplying gas and an exhaust unit (not shown) for discharging gas are connected to the load lock module 20a, and the inside of the load lock module 20a has an atmospheric pressure atmosphere and a decompression atmosphere. It is configured to be switchable to. That is, the load lock module 20a is configured so that the wafer W can be appropriately transferred between the atmospheric unit 10 in the atmospheric pressure atmosphere and the decompression unit 11 in the decompression atmosphere.
  • the load lock module 20b has the same configuration as the load lock module 20a. That is, the load lock module 20b has an upper stocker 21b and a lower stocker 22b, a gate valve 23b and a gate 24b on the loader module 30 side, and a gate valve 25b and a gate 26b on the transfer module 60 side.
  • the number and arrangement of the load lock modules 20a and 20b are not limited to this embodiment and can be set arbitrarily.
  • the atmosphere unit 10 includes a loader module 30 provided with a wafer transfer mechanism 40 described later, a load port 32 on which a hoop 31 capable of storing a plurality of wafers W is placed, a CST module 33 for cooling the wafer W, and a wafer W. It has an oriental module 34 for adjusting the horizontal orientation of the wafer.
  • the loader module 30 has a rectangular housing inside, and the inside of the housing is maintained in an atmospheric pressure atmosphere.
  • a plurality of, for example, three load ports 32 are arranged side by side on one side surface forming the long side of the housing of the loader module 30.
  • Load lock modules 20a and 20b are arranged side by side on the other side surface forming the long side of the housing of the loader module 30.
  • a CST module 33 is provided on one side of the loader module 30 that constitutes a short side of the housing.
  • An oriental module 34 is provided on the other side surface forming the short side of the housing of the loader module 30.
  • the number and arrangement of the load port 32, the CST module 33, and the oriental module 34 are not limited to this embodiment, and can be arbitrarily designed.
  • the CST module 33 can accommodate a plurality of wafers W, for example, more than the number of wafers W accommodated in the hoop 31, in multiple stages at equal intervals, and cools the plurality of wafers W.
  • the oriental module 34 rotates the wafer W to adjust the orientation in the horizontal direction. Specifically, the oriental module 34 is adjusted so that the orientation from the reference position (for example, the notch position) in the horizontal direction is the same for each wafer processing when the wafer processing is performed on each of the plurality of wafers W. Ru.
  • the wafer transfer mechanism 40 for transporting the wafer W is provided inside the loader module 30, a wafer transfer mechanism 40 for transporting the wafer W is provided.
  • the wafer transfer mechanism 40 includes transfer arms 41a and 41b that hold and move the wafer W, a turntable 42 that rotatably supports the transfer arms 41a and 41b, and a rotary mounting table 43 on which the turntable 42 is mounted. doing.
  • the wafer transfer mechanism 40 is configured to be movable in the longitudinal direction inside the housing of the loader module 30.
  • the decompression unit 11 has a transfer module 60 that simultaneously conveys two wafers W, a COR module 61 that performs COR processing on the wafer W transferred from the transfer module 60, and a PHT module 62 that performs PHT processing. There is.
  • the insides of the transfer module 60, the COR module 61, and the PHT module 62 are each maintained in a reduced pressure atmosphere.
  • a plurality of COR modules 61 and PHT modules 62, for example, three are provided with respect to the transfer module 60.
  • the transfer module 60 has a rectangular housing inside, and is connected to the load lock modules 20a and 20b via the gate valves 25a and 25b as described above.
  • the transfer module 60 sequentially conveys the wafer W carried into the load lock module 20a to one COR module 61 and one PHT module 62 to perform COR treatment and PHT treatment, and then passes through the load lock module 20b to the atmosphere. Carry out to section 10.
  • the COR module 61 Inside the COR module 61, two stages 63 and 63 on which two wafers W are placed side by side in the horizontal direction are provided.
  • the COR module 61 simultaneously performs COR processing on two wafers W by placing the wafers W side by side on the stages 63 and 63.
  • the COR module 61 is connected to an air supply unit (not shown) that supplies processing gas, purge gas, and the like, and an exhaust unit (not shown) that discharges the gas.
  • the COR module 61 is connected to the transfer module 60 via a gate 65 provided with a gate valve 64.
  • the gate valve 64 ensures airtightness between the transfer module 60 and the COR module 61 and allows communication with each other.
  • two buffers 101a and 101b which will be described later, are provided on which two wafers W are placed side by side in the horizontal direction.
  • the PHT module 62 simultaneously performs PHT processing on the two wafers W by placing the wafers W side by side on the buffers 101a and 101b.
  • the specific configuration of the PHT module 62 will be described later.
  • a wafer transfer mechanism 70 for transporting the wafer W is provided inside the transfer module 60.
  • the wafer transfer mechanism 70 includes a transfer arm 71a and 71b that hold and move two wafers W, a turntable 72 that rotatably supports the transfer arms 71a and 71b, and a rotary mounting table 73 that mounts the turntable 72. And have. Further, inside the transfer module 60, a guide rail 74 extending in the longitudinal direction of the transfer module 60 is provided. The rotary mounting table 73 is provided on the guide rail 74, and the wafer transfer mechanism 70 is configured to be movable along the guide rail 74.
  • the load lock module 20a receives the two wafers W held by the upper stocker 21a and the lower stocker 22a by the transfer arm 71a and transfers them to the COR module 61. Further, the two wafers W subjected to the COR treatment are held by the transfer arm 71a and transferred to the PHT module 62. Further, the two wafers W subjected to the PHT treatment are held by the transfer arm 71b and carried out to the load lock module 20b.
  • the above wafer processing apparatus 1 is provided with a control unit 80.
  • the control unit 80 is, for example, a computer equipped with a CPU, a memory, or the like, and has a program storage unit (not shown).
  • the program storage unit stores a program that controls the processing of the wafer W in the wafer processing apparatus 1. Further, the program storage unit also stores a program for controlling the operation of the drive system such as the above-mentioned various processing modules and the transfer mechanism to realize the wafer processing described later in the wafer processing apparatus 1.
  • the program may be recorded on a computer-readable storage medium H and may be installed on the control unit 80 from the storage medium H.
  • the wafer processing apparatus 1 is configured as described above. Next, the wafer processing in the wafer processing apparatus 1 will be described.
  • the wafer transfer mechanism 40 takes out two wafers W from the hoop 31 and transfers them to the oriental module 34.
  • the oriental module 34 the direction of the wafer W from the horizontal direction from the reference position (for example, the notch position) is adjusted (orientation processing).
  • two wafers W are carried into the load lock module 20a by the wafer transfer mechanism 40.
  • the gate valve 23a is closed, the inside of the load lock module 20a is sealed, and the pressure is reduced.
  • the gate valve 25a is opened, and the inside of the load lock module 20a and the inside of the transfer module 60 are communicated with each other.
  • the two wafers W are held by the transfer arm 71a of the wafer transfer mechanism 70, and are carried into the transfer module 60 from the load lock module 20a. Subsequently, the wafer transfer mechanism 70 moves to the front of one COR module 61.
  • the gate valve 64 is opened, and the transfer arm 71a holding the two wafers W enters the COR module 61. Then, one wafer W is placed on each of the stages 63 and 63 from the transfer arm 71a. After that, the transfer arm 71a exits from the COR module 61.
  • the gate valve 64 is closed, and the COR module 61 performs COR processing on the two wafers W.
  • a treatment gas is supplied to the surface of the oxide film, the oxide film and the treatment gas are chemically reacted, and the oxide film is altered to produce a reaction product.
  • hydrogen fluoride gas and ammonia gas are used as the treatment gas, and ammonium fluorosilicate (AFS) is produced as a reaction product.
  • AFS ammonium fluorosilicate
  • the gate valve 64 is opened and the transfer arm 71a enters the COR module 61. Then, two wafers W are delivered from the stages 63 and 63 to the transfer arm 71a, and the two wafers W are held by the transfer arm 71a. After that, the transfer arm 71a exits the COR module 61, and the gate valve 64 is closed.
  • the wafer transfer mechanism 70 moves to the front of the PHT module 62. Subsequently, the gate valve 66 is opened, and the transfer arm 71a holding the two wafers W enters the PHT module 62. Then, one wafer W is placed on each of the transfer arms 71a and the buffers 101a and 101b. After that, the transfer arm 71a exits from the PHT module 62. Subsequently, the gate valve 66 is closed, and PHT processing is performed on the two wafers W. The specific processing of this PHT processing will be described later.
  • the gate valve 66 is opened and the transfer arm 71b enters the PHT module 62. Then, two wafers W are delivered from the stages 64a and 64b to the transfer arm 71b, and the two wafers W are held by the transfer arm 71b. After that, the transfer arm 71b exits the PHT module 62, and the gate valve 66 is closed.
  • the gate valve 25b is opened, and two wafers W are carried into the load lock module 20b by the wafer transfer mechanism 70.
  • the gate valve 25b is closed, the inside of the load lock module 20b is sealed, and the inside of the load lock module 20b is opened to the atmosphere.
  • the two wafers W are transferred to the CST module 33 by the wafer transfer mechanism 40.
  • the wafer W is subjected to CST processing to cool the wafer W.
  • the PHT module 62 raises and lowers a chamber 100 that is airtightly configured, a plurality of buffers that hold the wafer W inside the chamber 100, buffers 101a and 101b as two substrate holding portions in the present embodiment, and buffers 101a and 101b, respectively.
  • the elevating mechanisms 102a and 102b as two moving mechanisms, the air supply unit 103 that supplies gas to the inside of the chamber 100, the heating unit 104 that heats the wafer W held in the buffers 101a and 101b, and the chamber 100. It has an exhaust unit 105 for discharging internal gas.
  • the chamber 100 is, for example, a substantially rectangular parallelepiped container as a whole, which is made of a metal such as aluminum or stainless steel.
  • the chamber 100 has, for example, a cylindrical side wall 110 having a substantially rectangular shape in a plan view and having an upper surface and a lower surface open, a ceiling plate 111 that airtightly covers the upper surface of the side wall 110, and a bottom plate 112 that covers the lower surface of the side wall 110. ing.
  • a sealing member 113 that keeps the inside of the chamber 100 airtight is provided between the upper end surface of the side wall 110 and the ceiling plate 111.
  • each of the side wall 110, the ceiling plate 111, and the bottom plate 112 is provided with a heater (not shown), and the side wall 110, the ceiling plate 111, and the bottom plate 112 are heated to, for example, 100 ° C. or higher by the heater, for example. It suppresses the adhesion of sublimated AFS and other deposits (depots).
  • a part of the bottom plate 112 is opened, and transparent windows 114a and 114b are fitted in the opening.
  • the transmission windows 114a and 114b are provided between the buffers 101a and 101b and the LED light sources 150a and 150b described later, and are configured to transmit the LED light from the LED light sources 150a and 150b.
  • the material of the transmission windows 114a and 114b is not particularly limited as long as it transmits LED light, but quartz is used, for example. Further, as will be described later, the LED light sources 150a and 150b are provided corresponding to the two buffers 101a and 101b, and the transmission windows 114a and 114b are provided two corresponding to the two LED light sources 150a and 150b.
  • heating plates 115a and 115b are provided on the lower surfaces of the transmission windows 114a and 114b.
  • the heating plates 115a and 115b are configured to transmit LED light from the LED light sources 150a and 150b.
  • the materials of the heating plates 115a and 115b are not particularly limited as long as they transmit LED light, but for example, a heater in which a heating wire / conductive substance is attached to transparent quartz is used. Then, by heating the transmission windows 114a and 114b with the heating plates 115a and 115b to, for example, 100 ° C. or higher, the adhesion (depot) to the transmission windows 114a and 114b is suppressed, and the transmission windows 114a and 114b are formed. It can suppress clouding.
  • the transmission windows 114a and 114b are supported by a support member 116 provided on the upper surface of the bottom plate 112.
  • a sealing member 117 that keeps the inside of the chamber 100 airtight is provided between the bottom plate 112 and the transmission windows 114a and 114b (heating plates 115a and 115b).
  • one holding member 121 is provided with a temperature measuring pin 122 as a temperature measuring unit that contacts the back surface of the wafer W and measures the temperature of the wafer W.
  • a thermocouple for example, is provided inside the temperature measuring pin 122 to measure the temperature of the wafer W.
  • the temperature measuring pin 122 is configured to transmit LED light from the LED light sources 150a and 150b.
  • the material of the temperature measuring pin 122 is not particularly limited as long as it transmits LED light. For example, sapphire is used for the portion in contact with the back surface of the wafer W, and quartz is used for the portion containing the thermocouple.
  • the contact type temperature measuring pin 122 is used to measure the temperature of the wafer W, but the temperature measuring unit is not limited to this.
  • a non-contact type temperature sensor may be used, or an indirect type temperature measuring unit may be used.
  • a radiation thermometer is used and is provided outside the ceiling plate 111. Then, the temperature of the wafer W is measured from above by this non-contact type temperature sensor.
  • the indirect temperature measuring unit has a heated material made of silicon, which is the same material as the wafer W, and a sheath thermocouple. Then, the LED light radiated to the wafer W is also irradiated to the heated object, and the temperature of the heated object is measured by a sheath thermocouple to obtain the temperature of the wafer W by conversion.
  • the remaining two holding members 121 are provided with support pins 123 for holding the wafer W.
  • the support pin 123 simply supports the wafer W and does not have a built-in thermocouple like the temperature measurement pin 122. Further, the support pin 123 is configured to transmit LED light from the LED light sources 150a and 150b.
  • the material of the support pin 123 is not particularly limited as long as it transmits LED light, but quartz is used, for example.
  • each elevating mechanism 102a and 102b raises and lowers the buffers 101a and 101b.
  • the elevating mechanisms 102a and 102b support the buffer drive unit 130 provided outside the chamber 100 and the arm members 120 of the buffers 101a and 101b, and are connected to the buffer drive unit 130, respectively. It has a drive shaft 131 that extends vertically upwardly inside the chamber 100 through the bottom plate 112 of the 100.
  • a motor driver (not shown) is used for the buffer drive unit 130.
  • the elevating mechanism 102a and 102b can arrange the buffers 101a and 101b at arbitrary height positions by elevating and lowering the drive shaft 131 by the buffer drive unit 130. As a result, as will be described later, the position where the heat treatment of the wafer W is performed and the position where the cooling treatment is performed can be appropriately adjusted.
  • the air supply unit 103 supplies gas (cooling gas and purge gas) to the inside of the chamber 100.
  • the air supply unit 103 has shower heads 140a and 140b as gas distribution units that distribute and supply gas inside the chamber 100.
  • Two shower heads 140a and 140b are provided on the lower surface of the ceiling plate 111 of the chamber 100 corresponding to the buffers 101a and 101b.
  • the shower heads 140a and 140b have, for example, a substantially cylindrical frame 141 having an open lower surface and supported by the lower surface of the ceiling plate 111, and a substantially disk-shaped shower plate fitted in the inner surface of the frame 141, respectively. It has 142.
  • the shower plate 142 is provided at a desired distance from the ceiling portion of the frame body 141.
  • a space 143 is formed between the ceiling portion of the frame body 141 and the upper surface of the shower plate 142. Further, the shower plate 142 is provided with a plurality of openings 144 that penetrate the shower plate 142 in the thickness direction.
  • a gas supply source 146 is connected to the space 143 between the ceiling of the frame 141 and the shower plate 142 via the gas supply pipe 145.
  • Gas supply source 146 is configured to be supplied as a cooling gas or a purge gas for example, N 2 gas or Ar gas or the like. Therefore, the gas supplied from the gas supply source 146 is supplied toward the wafer W held in the buffers 101a and 101b via the space 143 and the shower plate 142.
  • the gas supply pipe 145 is provided with a flow rate adjusting mechanism 147 for adjusting the amount of gas supplied, and is configured to be able to individually control the amount of gas supplied to each wafer W.
  • the heating unit 104 heats the wafer W held in the buffers 101a and 101b.
  • the heating unit 104 has two LED light sources 150a and 150b provided outside the chamber 100, and LED mounting substrates 151a and 151b on which the LED light sources 150a and 150b are mounted on the surface.
  • the LED mounting substrates 151a and 151b are provided so as to be fitted under the bottom plate 112 of the chamber 100, and the LED light sources 150a and 150b are arranged below the transmission windows 114a and 114b. That is, the LED light sources 150a and 150b are provided corresponding to the buffers 101a and 101b, the shower heads 140a and 140b, and the transmission windows 114a and 114b, respectively.
  • the LED light emitted from the LED light sources 150a and 150b passes through the transmission windows 114a and 114b and irradiates the wafer W held in the buffers 101a and 101b.
  • the LED light heats the wafer W to a desired temperature.
  • the LED light has a wavelength that passes through the transmission windows 114a and 114b made of quartz and is absorbed by the wafer W made of silicon.
  • the wavelength of the LED light is, for example, 400 nm to 1100 nm, more preferably 800 nm to 1100 nm, and 855 nm in this embodiment.
  • cooling plates 153a and 153b for cooling the LED light sources 150a and 150b are provided via heat transfer sheets 152a and 152b. Since a minute gap is formed between the LED mounting substrates 151a and 151b and the cooling plates 153a and 153b, heat transfer sheets 152a and 152b are provided to improve heat transfer.
  • cooling water flows inside the cooling plates 153a and 153b as a cooling medium.
  • a cooling water supply source 155 configured to be able to supply cooling water is connected to each of the cooling plates 153a and 153b via a cooling water supply pipe 154.
  • an LED control board 156 that controls the LED light sources 150a and 150b is provided below the cooling plates 153a and 153b.
  • the LED control board 156 is commonly provided on the two LED light sources 150a and 150b.
  • An LED power supply 157 is connected to the LED control board 156.
  • components 158 that require cooling such as FETs and diodes, are mounted on the surface of the LED control board 156.
  • These parts 158 are provided on the cooling plates 153a and 153b via the heat transfer pad 159. That is, the cooling plates 153a and 153b cool the component 158 in addition to the LED light sources 150a and 150b described above.
  • the component 160 that does not require cooling in the LED control board 156 is provided on the back surface of the LED control board 156.
  • the exhaust unit 105 has an exhaust pipe 170 that discharges the gas inside the chamber 100.
  • the exhaust pipe 170 is arranged outside the transmission windows 114a and 114b in the bottom plate 112. Since transmission windows 114a and 114b and LED light sources 150a and 150b are provided below the wafer W, the exhaust pipe 170 is arranged at a position offset from these transmission windows 114a and 114b and LED light sources 150a and 150b. LED.
  • a pump 172 is connected to the exhaust pipe 170 via a valve 171.
  • an automatic pressure control valve (APC valve) is used.
  • the pump 172 for example, a turbo molecular pump (TMP) is used.
  • the gas inside the chamber 100 can be forcibly discharged with a large pressure.
  • FIG. 5 is an explanatory diagram showing how the PHT module 62 performs PHT processing. Note that FIG. 5 shows half of the chamber 100 (for example, buffer 101a, transmission window 114a, shower head 140a, LED light source 150a, etc.), that is, one wafer W, but actually two wafers W. Processed at the same time.
  • the buffer 101a is lowered and the wafer W is placed at the heating position P2.
  • the heating position P2 is a position as close to the LED light source 150a as possible, for example, the distance between the wafer W and the LED light source 150a is 200 mm or less. Then, the temperature of the wafer W is measured by the temperature measuring pin 122. Thereby, the reference temperature of the wafer W is confirmed.
  • the LED light emitted from the LED light source 150a passes through the transmission window 114a and irradiates the wafer W.
  • the wafer W is heated to a desired heating temperature, for example 300 ° C. (heat treatment step).
  • This heating temperature of 300 ° C. is a temperature equal to or higher than the sublimation temperature of AFS on the wafer W, as will be described later.
  • the heating rate is, for example, 12 ° C./sec.
  • the LED light source 150a controls the pulse of the LED light so that the temperature is within a certain range.
  • the pulse width is, for example, 1 KHz to 500 KHz, and is 200 KHz in this embodiment.
  • the air supply unit 103 supplies a N 2 gas as a purge gas from a shower head 140a of the air supply unit 103.
  • the pressure inside the chamber 100 is adjusted to, for example, 0.1 Torr to 10 Torr. Since the N 2 gas from the shower head 140a is uniformly supplied from the plurality of openings 144, the gas flow inside the chamber 100 can be rectified.
  • the temperature of the wafer W is measured by the temperature measuring pin 122, and the LED light source 150a is feedback-controlled. Specifically, based on the temperature measurement result, the LED light emitted from the LED light source 150a is controlled so that the wafer W has a desired heating temperature.
  • the temperature of the wafer W is maintained at 300 ° C., and after a desired time elapses, the AFS on the wafer W is heated and vaporized (sublimated). After that, the LED light source 150a is turned off.
  • the end point detection method at this time is arbitrary, but it may be monitored by, for example, a gas analyzer (for example, OES, QMS, FT-IR, etc.) or a film thickness meter.
  • the cooling position P3 is a position as close to the shower head 140a as possible, for example, the distance between the wafer W and the shower head 140a is 200 mm or less.
  • the wafer W is cooled desired cooling temperature, for example up to 180 ° C. (cooling process).
  • the cooling temperature of 180 ° C. is a temperature at which the transfer arm 71b of the wafer transfer mechanism 70 can hold the wafer W.
  • the cooling rate is, for example, 11 ° C./sec. Further, since the N 2 gas from the shower head 140a is uniformly supplied from the plurality of openings 144, the wafer W can be uniformly cooled.
  • the supply of N 2 gas from the shower head 140a is continued.
  • the supply amount of N 2 gas in the cooling treatment step is, for example, 40 L / min, which is larger than the supply amount of N 2 gas in the heat treatment step.
  • the supply amount of N 2 gas depends on the volume of the chamber 100.
  • the pressure inside the chamber 100 in the cooling treatment step is 1 Torr to 100 Torr, which is higher than the pressure inside the chamber 100 in the heat treatment step.
  • the supply amount of N 2 gas in the cooling treatment step is restored.
  • the end point detection method at this time is arbitrary, but for example, it may be controlled by the cooling time, or the temperature of the wafer W may be measured by the temperature measuring pin 122.
  • the buffer 101a is lowered, and the wafer W is placed again at the transfer position P1 as shown in FIG. 5 (a).
  • the gate valve 66 is opened, and the wafer W is delivered from the buffer 101a to the transfer arm 71b of the wafer transfer mechanism 70.
  • the wafer W is carried out from the PHT module 62.
  • the inside of the chamber 100 is exhausted by the exhaust unit 105.
  • the exhaust unit 105 In this case, in normal operation, it is evacuated by the N 2 gas from the shower head 140a.
  • the pump 172 may be operated to perform high-speed exhaust to shorten the exhaust time.
  • the LED light sources 150a and 150b are used, and the heating rate (12 ° C./sec) is the heating rate (0.45 ° C.) by the conventionally used heater. / Second) faster. Therefore, the heat treatment of the wafer W can be efficiently performed in a short time, and the throughput of the wafer processing can be improved.
  • the amount of cooling gas supplied from the shower heads 140a and 140b is increased to a large flow rate, and the cooling rate (11 ° C./sec) is the cooling rate (0.5) of the conventional natural cooling. °C / sec) faster. Therefore, the cooling process of the wafer W can be efficiently performed in a short time, and the throughput of the wafer process can be further improved.
  • FIG. 6 shows the results shown in FIG. 6 .
  • the horizontal axis of FIG. 6 shows the process time
  • the left vertical axis shows the thickness of the film on the wafer W (the thickness before heat treatment is 0 nm)
  • the right vertical axis shows the temperature of the wafer W.
  • the film thickness decreased by 40 nm in 13 seconds after the LED light sources 150a and 150b were turned on, and the AFS could be sublimated.
  • heating with a conventional heater takes 1 minute or more.
  • the temperature of the wafer W could be cooled to a desired temperature in 12 seconds after the LED light sources 150a and 150b were turned off.
  • conventional natural cooling takes more than 1 minute. Therefore, according to the present embodiment, it was found that each of the heat treatment and the cooling treatment can be performed in a short time.
  • no black member is provided inside the chamber 100.
  • the arm member 120 of the buffers 101a and 101b, the drive shaft 131, and other members whose temperature is intentionally raised by the LED light may be black.
  • the heat treatment step and the cooling treatment step may be repeated in order to prevent the temperature of the wafer W from rising too high. For example, when there is a resist film on the wafer W, it is possible to prevent the resist film from being damaged by adjusting the temperature of the wafer W.
  • the transfer arm 71b of the wafer transfer mechanism 70 cools the wafer W to a temperature at which the wafer W can be held, for example, 180 ° C., but the cooling temperature of the wafer W is not limited to this. ..
  • the cooling temperature may be 80 ° C., which is a temperature at which COR treatment is possible.
  • the CST processing can be omitted and the throughput of the wafer processing can be improved. ..
  • FIG. 7 is an explanatory diagram showing the configurations of the LED light sources 150a and 150b and the LED mounting substrates 151a and 151b.
  • FIG. 7A is an explanatory diagram showing the configurations of the LED light sources 150a and 150b and the LED mounting boards 151a and 151b of the present embodiment
  • FIG. 7B shows the configurations of the LED light source 500 and the LED mounting board 501 of the comparative example. It is explanatory drawing.
  • the LED mounting substrates 151a and 151b have a structure in which a plurality of insulating substrates are laminated.
  • this multiple laminated structure is preferable, first, as a comparative example, a case where the LED mounting substrate 501 has a single-layer structure of an insulating substrate will be described as shown in FIG. 7B.
  • the LED light source 500 has a plurality of LED elements 502.
  • the plurality of LED elements 502 are arranged in a grid pattern on the surface of the LED mounting substrate 501, which is a single-layer insulating substrate. Note that FIG. 7B shows an example in which five LED elements 502a to 502e are arranged in each of the two rows L1 and L2, but in reality, there are three or more rows and six or more LED elements 502. Is placed.
  • the potential difference between the LED elements 502a to 502e in the first row L1 and the ED elements 502a to 502e in the second row L2 becomes large, and the insulation distance D2 needs to be large. Cannot place many 502s (cannot increase density).
  • the LED mounting substrates 151a and 151b of the present embodiment have a structure in which the insulating substrates 200 are laminated in a plurality of layers.
  • the number of layers may actually be three or more.
  • a copper foil (not shown) is provided between the insulating substrates 200a and 200b.
  • the LED light sources 150a and 150b each have a plurality of LED elements 210.
  • the plurality of LED elements 210 are arranged in a grid pattern on the surface of the upper insulating substrate 200a. Note that FIG. 7B shows an example in which five LED elements 210a to 210e are arranged in each of the two rows L1 and L2, but in reality, three or more rows and six or more LED elements 210 Is placed.
  • the plurality of LED elements 210 are connected by wiring 211.
  • the wiring 211 extends to the lower insulating substrate 200b after sequentially connecting the LED elements 210a to 210e of the first row L1.
  • the wiring 211 is folded back and arranged below the LED element 210a in the second row L2.
  • the wiring 211 extends upward and is connected to the LED element 210a in the second row L2, and further connects the LED element 210a to the LED element 210e in sequence.
  • the LED elements 210a to 210e in the first row L1 and the LED elements 210a to 210e in the second row L2 have the same polarity in the same direction. That is, the anode (anode) side of the LED elements 210a to 210e in the first row L1 is the anode (anode) side of the ED elements 210a to 210e in the second row L2.
  • the potential difference between the LED elements 210a to 210e in the first row L1 and the ED elements 210a to 210e in the second row L2 becomes smaller, the insulation distance D1 can be reduced, and the LEDs on the LED mounting substrates 151a and 151b can be reduced.
  • the number of elements 210 can be increased (increased in density). Therefore, according to the present embodiment, the wafer W can be efficiently heat-treated by using a large number of LED elements 210.
  • the respective insulation distances D1 between the adjacent LED elements 210a to 210e in the first row L1 and the ED elements 210a to 210e in the second row L2 are preferably set to 2.0 mm or less, and 1.2 mm or less. It is more preferable to set to. Further, the potential difference between the adjacent LED elements 210a to 210e in the first row L1 and the ED elements 210a to 210e in the second row L2 is preferably set to 150 V or less. The insulation distance D1 and the potential difference are set so that the heating rate when heating the wafer W achieves a desired rate, for example, 12 ° C./sec.
  • the LED mounting boards 151a and 151b are divided into a plurality of zones Z1 to Z14, but in order to secure an insulation distance between the zones Z1 to Z14, the insulating board 200b for folding back the wiring 211 is a zone. It may be different for each Z1 to Z14.
  • the insulating substrate 200b in the zone Z1 may be the second layer
  • the insulating substrate 200b in the zone Z2 may be the third layer.
  • each LED element 210 is connected to a copper inlay or VIA. With this copper inlay or VIA, the heat of the LED element 210 can be released to the outside of the LED mounting substrates 151a and 151b.
  • FIG. 8 is a plan view showing an outline of the configurations of the LED light sources 150a and 150b.
  • FIG. 9 is a plan view showing the configuration of control channels of the two LED light sources 150a and 150b.
  • the LED mounting substrates 151a and 151b are divided into a plurality of zones Z1 to Z14 in a plan view.
  • the LED mounting substrates 151a and 151b are divided in the radial direction into a central portion (Center), an intermediate portion (Middle), and an outer peripheral portion (Edge).
  • the central portion is divided into zones Z1 to Z4, the middle portion is divided into zones Z5 to Z8, and the outer peripheral portion is divided into zones Z9 to Z14.
  • the number of sections of the LED mounting boards 151a and 151b is not limited to this embodiment and can be set arbitrarily. For example, when a temperature difference occurs in the wafer surface due to the distance between the LED light sources 150a and 150b and the surrounding members, the outer peripheral portion may be divided into a number according to the temperature difference.
  • LED elements 210 of LED light sources 150a and 150b are arranged in each of zones Z1 to Z14. Since the number of LED elements 210 in each of the zones Z1 to Z14 is equal in this way, the voltage of each of the zones Z1 to Z14 can be made equal. In the present embodiment, the voltage of one LED element 210 is 1.8V, and the voltage of each zone Z1 to Z14 is suppressed to 400V. Since a maximum potential difference of about 200 V is formed between the zones Z1 to Z14, it is necessary to secure an insulation distance corresponding to that amount. Further, the number of LED elements 210 in each of the zones Z1 to Z14 is not limited to this embodiment and can be set arbitrarily.
  • the control channels (temperature control channels) of the LED light sources 150a and 150b are divided into four.
  • Zones Z1 to Z4 in the center of the LED mounting boards 151a and 151b are the first channel C1
  • zones Z5 to Z8 in the middle are the second channel C2
  • zones Z9 to Z13 in the outer periphery are the third channel C3, and the outer periphery.
  • the zone Z14 of the unit is the fourth channel C4.
  • the central portion, the intermediate portion, and the outer peripheral portion are separately controlled, that is, they are controlled by concentric circles.
  • the zones Z14 are adjacent to each other.
  • the zones Z9 to Z13 (third channel C3) and the zone Z4 (fourth channel C4) are set as separate channels.
  • the plurality of LED light sources correspond to the plurality of substrate holding portions, and each LED light source irradiates the substrate held by the corresponding substrate holding portion with LED light.
  • the LED light is a plurality of LED light sources having a wavelength for heating the substrate, and a plurality of transmission windows provided between the plurality of substrate holding portions and the plurality of LED light sources. Each of the transmission windows corresponds to the plurality of LED light sources, and each transmission window is configured to transmit the LED light emitted from the corresponding LED light source.
  • a plurality of gas distribution units provided inside, the plurality of gas distribution units correspond to the plurality of substrate holding units, and each gas distribution unit cools to a substrate held by the corresponding substrate holding unit.
  • a heating / cooling device having a plurality of gas distributors, which are configured to distribute and supply gas.
  • the substrate is heated by using the LED light source, and the heating rate thereof is faster than the heating rate by the heater conventionally used. Therefore, the heat treatment of the substrate can be efficiently performed in a short time.
  • the substrate is cooled by increasing the supply amount of the cooling gas from the gas distribution unit to a large flow rate, and the cooling rate is faster than the cooling rate of the conventional natural cooling. Therefore, the substrate cooling process can be efficiently performed in a short time. As a result, the throughput of substrate processing can be improved.
  • a plurality of moving mechanisms provided corresponding to the plurality of substrate holding portions, and each moving mechanism is configured to move the substrate holding portion between the transmission window and the gas distribution portion.
  • the substrate holding portion (board) can be arranged at an arbitrary height position by the moving mechanism. Therefore, the position where the heat treatment of the substrate is performed and the position where the cooling treatment is performed can be appropriately adjusted.
  • a plurality of temperature measuring units provided corresponding to the plurality of substrate holding units, and each temperature measuring unit is configured to measure the temperature of the substrate held by the substrate holding unit.
  • the LED light source can be feedback-controlled by measuring the temperature of the substrate by the temperature measuring unit, and the heating temperature of the substrate can be appropriately adjusted.
  • a plurality of LED mounting boards provided corresponding to the plurality of LED light sources, and a plurality of LED mounting boards on which the LED light sources are mounted and the plurality of LEDs are mounted on the surface of each LED mounting board.
  • a plurality of cooling plates provided corresponding to the mounting board, and each cooling plate is further provided with a plurality of cooling plates provided on the back surface of the LED mounting board and configured to cool the LED light source.
  • the heating / cooling device according to any one of (1) to (3) above. According to the above (4), the LED light source can be appropriately operated by cooling the LED light source with the cooling plate.
  • An LED control board provided on the opposite side of the cooling plate to the LED mounting board and controlling the LED light source is further provided, and the cooling plate is a component provided on the surface of the LED control board.
  • the heating / cooling device according to (4) above According to the above (5), by cooling the parts of the LED control board with the cooling plate, the parts can be operated appropriately. Moreover, the cooling plate is efficient because it can cool the LED light source and the LED control board at the same time.
  • the LED mounting substrate has a structure in which a plurality of insulating substrates are laminated, and the LED light source has a plurality of LED elements arranged in a plurality of rows on the surface of the insulating substrate on the outermost layer.
  • the wiring connecting the LED elements in the row is extended downward and arranged on the insulating substrate in the lower layer, and further extended upward and connected to the LED elements in the adjacent row in the row (4).
  • the polarities of adjacent LED elements can be made the same in the same direction, the potential difference between the adjacent LED elements can be reduced, and the insulation distance can be reduced. As a result, the density of the LED elements in the LED mounting substrate can be increased, and the heat treatment of the substrate can be efficiently performed.
  • the wavelength of the LED light is 400 nm to 1100 nm. According to the above (8), the LED light having a wavelength range of 400 nm to 1100 nm is absorbed by the substrate while passing through the transmission window. Therefore, the substrate can be heated efficiently.
  • a plurality of heating plates provided corresponding to the plurality of transmission windows, and each heating plate is configured to heat the transmission window and transmit the LED light from the LED light source.
  • the heating / cooling device according to any one of (1) to (10) above, further comprising a plurality of heating plates. According to the above (11), by heating the transmission window with the heating plate, it is possible to suppress the adhesion of deposits to the transmission window and suppress the fogging of the transmission window. Moreover, since the heating plate transmits the LED light, the substrate can be appropriately irradiated with the LED light.
  • step c) the purge gas is supplied from the gas distribution unit to the inside of the chamber, and the supply amount of the cooling gas in the step e) is larger than the supply amount of the purge gas in the step c).
  • the temperature of the substrate held by the substrate holding portion is measured, and the LED light source is feedback-controlled based on the measurement result of the temperature of the substrate. ).
  • the heating / cooling method according to any one of.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

加熱冷却装置は、チャンバと、前記チャンバの内部に設けられ、基板を保持する複数の基板保持部と、前記チャンバの外部に設けられ、前記基板保持部に保持された基板に、当該基板を加熱する波長を有するLED光を照射する複数のLED光源と、前記複数の基板保持部と前記複数のLED光源との間に設けられ、前記LED光源から照射された前記LED光を透過する複数の透過窓と、前記チャンバの内部に設けられ、前記基板保持部に保持された基板に冷却ガスを分配して供給する複数のガス分配部と、を有する。

Description

加熱冷却装置及び加熱冷却方法
 本開示は、加熱冷却装置及び加熱冷却方法に関する。
 特許文献1には、基板にCOR処理を行うCOR処理装置と、基板にPHT処理を行うPHT処理装置とを備えた処理システムが開示されている。PHT処理装置は、基板を2枚、水平状態で載置する載置台を有し、載置台にはヒータが設けられている。このヒータによりCOR処理が施された後の基板を加熱して、COR処理により生成した反応生成物を気化(昇華)させるPHT処理が行われる。
特許第5352103号公報
 本開示にかかる技術は、基板の加熱処理及び冷却処理を効率よく行う。
 本開示の一態様は、チャンバと、前記チャンバの内部に設けられる複数の基板保持部であり、各基板保持部は、基板を保持するように構成される、複数の基板保持部と、前記チャンバの外部に設けられる複数のLED光源であり、前記複数のLED光源は、前記複数の基板保持部にそれぞれ対応し、各LED光源は、対応する前記基板保持部に保持された基板にLED光を照射するように構成され、前記LED光は、当該基板を加熱する波長を有する、複数のLED光源と、前記複数の基板保持部と前記複数のLED光源との間に設けられる複数の透過窓であり、前記複数の透過窓は、前記複数のLED光源にそれぞれ対応し、各透過窓は、対応する前記LED光源から照射された前記LED光を透過するように構成される、複数の透過窓と、前記チャンバの内部に設けられる複数のガス分配部であり、前記複数のガス分配部は、前記複数の基板保持部にそれぞれ対応し、各ガス分配部は、対応する前記基板保持部に保持された基板に冷却ガスを分配して供給するように構成される、複数のガス分配部と、を有する、加熱冷却装置である。
 本開示によれば、基板の加熱処理及び冷却処理を効率よく行うことができる。
本実施形態にかかるウェハ処理装置の構成の概略を示す平面図である。 PHTモジュールの構成の概略を示す縦断面図である。 PHTモジュールの構成の概略を示す平面図である。 バッファの構成の概略を示す平面図である。 PHTモジュールにおいてPHT処理を行う様子を示す説明図である。 PHTモジュールにおけるPHT処理を行った実験結果を示すグラフである。 LED光源とLED実装基板の構成を示す説明図である。 LED光源の構成の概略を示す平面図である。 2つのLED光源の制御チャンネルの構成を示す平面図である。
 半導体デバイスの製造プロセスにおいては、半導体ウェハ(以下、「ウェハ」という場合がある。)の表面に形成された酸化膜をエッチングして除去する工程が行われている。例えば特許文献1に開示されているように、酸化膜のエッチング工程は、COR(Chemical Oxide Removal)処理とPHT(Post Heat Treatment)処理により行われる。
 COR処理は、ウェハ上に形成された酸化膜と処理ガスとを反応させ、当該酸化膜を変質させて反応生成物を生成する処理である。PHT処理は、COR処理において生成された反応生成物を加熱して気化させる加熱処理である。そして、これらCOR処理とPHT処理を連続的に行うことにより、ウェハ上に形成された酸化膜のエッチングが行われる。
 ここで、PHT処理におけるウェハの加熱温度は、例えば300℃程度である。一方、従来の特許文献1に記載のPHT処理装置では、載置台に埋設されたヒータによってウェハが加熱されるが、この加熱速度は例えば0.45℃/秒程度である。このため、ウェハの加熱処理に時間がかかる。
 また、従来のPHT処理装置では、加熱処理後のウェハを搬送アームが保持できる温度まで自然冷却する。この冷却速度は例えば0.5℃/秒程度であり、やはり時間がかかる。したがって、従来のPHT処理には改善の余地がある。
 本開示にかかる技術は、ウェハの加熱処理及び冷却処理を効率よく行う。以下、本実施形態にかかるウェハ処理装置及びウェハ処理方法について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
<ウェハ処理装置>
 先ず、本実施形態にかかるウェハ処理装置の構成について説明する。図1は、本実施形態にかかるウェハ処理装置1の構成の概略を示す平面図である。本実施形態においては、ウェハ処理装置1が、基板としてのウェハWにCOR処理、PHT処理、CST(Cooling Storage)処理、及びオリエント処理を行う、各種処理モジュールを備える場合を例に説明する。なお、本開示のウェハ処理装置1のモジュール構成はこれに限られず、任意に選択され得る。
 図1に示すようにウェハ処理装置1は、大気部10と減圧部11がロードロックモジュール20a、20bを介して一体に接続された構成を有している。大気部10は、大気圧雰囲気下においてウェハWに所望の処理を行う複数の大気モジュールを備える。減圧部11は、減圧雰囲気下においてウェハWに所望の処理を行う複数の減圧モジュールを備える。
 ロードロックモジュール20aは、大気部10の後述するローダーモジュール30から搬送されたウェハWを、減圧部11の後述するトランスファモジュール60に引き渡すため、ウェハWを一時的に保持する。ロードロックモジュール20aは、2枚のウェハWを鉛直方向に沿って保持する上部ストッカ21aと下部ストッカ22aを有している。
 ロードロックモジュール20aは、ゲートバルブ23aが設けられたゲート24aを介して後述するローダーモジュール30に接続されている。このゲートバルブ23aにより、ロードロックモジュール20aとローダーモジュール30の間の気密性の確保と互いの連通を両立する。また、ロードロックモジュール20aは、ゲートバルブ25aが設けられたゲート26aを介して後述するトランスファモジュール60に接続されている。このゲートバルブ25aにより、ロードロックモジュール20aとトランスファモジュール60の間の気密性の確保と互いの連通を両立する。
 ロードロックモジュール20aにはガスを供給する給気部(図示せず)とガスを排出する排気部(図示せず)が接続され、当該給気部と排気部によって内部が大気圧雰囲気と減圧雰囲気に切り替え可能に構成されている。すなわちロードロックモジュール20aは、大気圧雰囲気の大気部10と、減圧雰囲気の減圧部11との間で、適切にウェハWの受け渡しができるように構成されている。
 なお、ロードロックモジュール20bはロードロックモジュール20aと同様の構成を有している。すなわち、ロードロックモジュール20bは、上部ストッカ21bと下部ストッカ22b、ローダーモジュール30側のゲートバルブ23bとゲート24b、トランスファモジュール60側のゲートバルブ25bとゲート26bを有している。
 なお、ロードロックモジュール20a、20bの数や配置は、本実施形態に限定されるものではなく、任意に設定できる。
 大気部10は、後述するウェハ搬送機構40を備えたローダーモジュール30と、複数のウェハWを保管可能なフープ31を載置するロードポート32と、ウェハWを冷却するCSTモジュール33と、ウェハWの水平方向の向きを調節するオリエンタモジュール34とを有している。
 ローダーモジュール30は内部が矩形の筐体からなり、筐体の内部は大気圧雰囲気に維持されている。ローダーモジュール30の筐体の長辺を構成する一側面には、複数、例えば3つのロードポート32が並設されている。ローダーモジュール30の筐体の長辺を構成する他側面には、ロードロックモジュール20a、20bが並設されている。ローダーモジュール30の筐体の短辺を構成する一側面には、CSTモジュール33が設けられている。ローダーモジュール30の筐体の短辺を構成する他側面には、オリエンタモジュール34が設けられている。
 なお、ロードポート32、CSTモジュール33、及びオリエンタモジュール34の数や配置は、本実施形態に限定されるものではなく、任意に設計できる。
 フープ31は複数、例えば1ロット25枚のウェハWを等間隔で多段に重なるようにして収容する。また、ロードポート32に載置されたフープ31の内部は、例えば、大気や窒素ガスなどで満たされて密閉されている。
 CSTモジュール33は、複数、例えばフープ31に収容される枚数以上のウェハWを等しい間隔で多段に収容することができ、当該複数のウェハWの冷却処理を行う。
 オリエンタモジュール34は、ウェハWを回転させて水平方向の向きの調節を行う。具体的に、オリエンタモジュール34は、複数のウェハWのそれぞれにウェハ処理を行うにあたり、当該ウェハ処理毎に、基準位置(例えばノッチ位置)からの水平方向からの向きが同じになるように調節される。
 ローダーモジュール30の内部には、ウェハWを搬送するウェハ搬送機構40が設けられている。ウェハ搬送機構40は、ウェハWを保持して移動する搬送アーム41a、41bと、搬送アーム41a、41bを回転可能に支持する回転台42と、回転台42を搭載した回転載置台43とを有している。ウェハ搬送機構40は、ローダーモジュール30の筐体の内部において長手方向に移動可能に構成されている。
 減圧部11は、2枚のウェハWを同時に搬送するトランスファモジュール60と、トランスファモジュール60から搬送されたウェハWにCOR処理を行うCORモジュール61と、PHT処理を行うPHTモジュール62とを有している。トランスファモジュール60、CORモジュール61、及びPHTモジュール62の内部は、それぞれ減圧雰囲気に維持される。トランスファモジュール60に対し、CORモジュール61及びPHTモジュール62は複数、例えば3つずつ設けられている。
 トランスファモジュール60は内部が矩形の筐体からなり、上述したようにゲートバルブ25a、25bを介してロードロックモジュール20a、20bに接続されている。トランスファモジュール60は、ロードロックモジュール20aに搬入されたウェハWを一のCORモジュール61、一のPHTモジュール62に順次搬送してCOR処理とPHT処理を施した後、ロードロックモジュール20bを介して大気部10に搬出する。
 CORモジュール61の内部には、2枚のウェハWを水平方向に並べて載置する2つのステージ63、63が設けられている。CORモジュール61は、ステージ63、63にウェハWを並べて載置することにより、2枚のウェハWに対して同時にCOR処理を行う。なお、CORモジュール61には、処理ガスやパージガスなどを供給する給気部(図示せず)とガスを排出する排気部(図示せず)が接続されている。
 また、CORモジュール61は、ゲートバルブ64が設けられたゲート65を介してトランスファモジュール60に接続されている。このゲートバルブ64により、トランスファモジュール60とCORモジュール61の間の気密性の確保と互いの連通を両立する。
 PHTモジュール62の内部には、2枚のウェハWを水平方向に並べて載置する2つの後述するバッファ101a、101bが設けられている。PHTモジュール62は、バッファ101a、101bにウェハWを並べて載置することにより、2枚のウェハWに対して同時にPHT処理を行う。なお、PHTモジュール62の具体的な構成は後述する。
 また、PHTモジュール62は、ゲートバルブ66が設けられたゲート67を介してトランスファモジュール60に接続されている。このゲートバルブ66により、トランスファモジュール60とPHTモジュール62の間の気密性の確保と互いの連通を両立する。
 トランスファモジュール60の内部には、ウェハWを搬送するウェハ搬送機構70が設けられている。ウェハ搬送機構70は、2枚のウェハWを保持して移動する搬送アーム71a、71bと、搬送アーム71a、71bを回転可能に支持する回転台72と、回転台72を搭載した回転載置台73とを有している。また、トランスファモジュール60の内部には、トランスファモジュール60の長手方向に延伸するガイドレール74が設けられている。回転載置台73はガイドレール74上に設けられ、ウェハ搬送機構70をガイドレール74に沿って移動可能に構成されている。
 トランスファモジュール60では、ロードロックモジュール20aにおいて上部ストッカ21aと下部ストッカ22aに保持された2枚のウェハWを搬送アーム71aで受け取り、CORモジュール61に搬送する。また、COR処理が施された2枚のウェハWを、搬送アーム71aが保持し、PHTモジュール62に搬送する。また更に、PHT処理が施された2枚のウェハWを、搬送アーム71bが保持し、ロードロックモジュール20bに搬出する。
 以上のウェハ処理装置1には、制御部80が設けられている。制御部80は、例えばCPUやメモリ等を備えたコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、ウェハ処理装置1におけるウェハWの処理を制御するプログラムが格納されている。また、プログラム格納部には、上述の各種処理モジュールや搬送機構などの駆動系の動作を制御して、ウェハ処理装置1における後述のウェハ処理を実現させるためのプログラムも格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、当該記憶媒体Hから制御部80にインストールされたものであってもよい。
<ウェハ処理装置の動作>
 本実施形態にかかるウェハ処理装置1は以上のように構成されている。次に、ウェハ処理装置1におけるウェハ処理について説明する。
 先ず、複数のウェハWを収納したフープ31がロードポート32に載置される。
 次に、ウェハ搬送機構40によって、フープ31から2枚のウェハWが取り出され、オリエンタモジュール34に搬送される。オリエンタモジュール34においてウェハWは、基準位置(例えばノッチ位置)からの水平方向からの向きが調節(オリエント処理)される。
 次に、ウェハ搬送機構40によって、2枚のウェハWがロードロックモジュール20aに搬入される。ロードロックモジュール20aに2枚のウェハWが搬入されると、ゲートバルブ23aが閉じられ、ロードロックモジュール20a内が密閉され、減圧される。その後、ゲートバルブ25aが開放され、ロードロックモジュール20aの内部とトランスファモジュール60の内部が連通される。
 次に、ロードロックモジュール20aとトランスファモジュール60が連通すると、ウェハ搬送機構70の搬送アーム71aによって2枚のウェハWが保持され、ロードロックモジュール20aからトランスファモジュール60に搬入される。続いて、ウェハ搬送機構70が一のCORモジュール61の前まで移動する。
 次に、ゲートバルブ64が開放され、2枚のウェハWを保持する搬送アーム71aがCORモジュール61に進入する。そして、搬送アーム71aからステージ63、63のそれぞれに、1枚ずつウェハWが載置される。その後、搬送アーム71aはCORモジュール61から退出する。
 次に、搬送アーム71aがCORモジュール61から退出すると、ゲートバルブ64が閉じられ、CORモジュール61において2枚のウェハWに対してCOR処理が行われる。COR処理では、酸化膜の表面に処理ガスを供給し、酸化膜と処理ガスとを化学反応させ、当該酸化膜を変質させて反応生成物を生成する。この処理ガスには例えばフッ化水素ガスとアンモニアガスが用いられ、反応生成物としてフルオロ珪酸アンモニウム(AFS)が生成される。
 次に、CORモジュール61におけるCOR処理が終了すると、ゲートバルブ64が開放され、搬送アーム71aがCORモジュール61に進入する。そして、ステージ63、63から搬送アーム71aに2枚のウェハWが受け渡され、搬送アーム71aで2枚のWが保持される。その後、搬送アーム71aはCORモジュール61から退出し、ゲートバルブ64が閉じられる。
 次に、ウェハ搬送機構70がPHTモジュール62の前まで移動する。続いて、ゲートバルブ66が開放され、2枚のウェハWを保持する搬送アーム71aがPHTモジュール62に進入する。そして、搬送アーム71aからバッファ101a、101bのそれぞれに、1枚ずつウェハWが載置される。その後、搬送アーム71aはPHTモジュール62から退出する。続いて、ゲートバルブ66が閉じられ、2枚のウェハWに対してPHT処理が行われる。なお、このPHT処理の具体的な処理は後述する。
 次に、ウェハWのPHT処理が終了すると、ゲートバルブ66が開放され、搬送アーム71bがPHTモジュール62に進入する。そして、ステージ64a、64bから搬送アーム71bに2枚のウェハWが受け渡され、搬送アーム71bで2枚のウェハWが保持される。その後、搬送アーム71bはPHTモジュール62から退出し、ゲートバルブ66が閉じられる。
 次に、ゲートバルブ25bが開放され、ウェハ搬送機構70によって2枚のウェハWがロードロックモジュール20bに搬入される。ロードロックモジュール20b内にウェハWが搬入されると、ゲートバルブ25bが閉じられ、ロードロックモジュール20b内が密閉され、大気開放される。
 次に、ウェハ搬送機構40によって、2枚のウェハWがCSTモジュール33に搬送される。CSTモジュール33では、ウェハWにCST処理が行われ、当該ウェハWが冷却される。
 次に、ウェハ搬送機構40によって、2枚のウェハWがフープ31に戻されて収容される。こうして、ウェハ処理装置1における一連のウェハ処理が終了する。
<PHTモジュール>
 次に、加熱冷却装置としてのPHTモジュール62の構成について説明する。図2は、PHTモジュール62の構成の概略を示す縦断面図である。図3は、PHTモジュール62の内部構成の概略を示す平面図である。なお、本実施形態のPHTモジュール62では、複数、例えば2枚のウェハWに対して処理を行う。
 PHTモジュール62は、気密に構成されたチャンバ100と、チャンバ100の内部でウェハWを保持する複数、本実施形態では2つの基板保持部としてのバッファ101a、101bと、各バッファ101a、101bを昇降させる2つの移動機構としての昇降機構102a、102bと、チャンバ100の内部にガスを供給する給気部103と、バッファ101a、101bに保持されたウェハWを加熱する加熱部104と、チャンバ100の内部のガスを排出する排気部105と、を有している。
 チャンバ100は、例えばアルミニウム、ステンレス等の金属により形成された、全体として例えば略直方体状の容器である。チャンバ100は、平面視の形状が例えば略矩形で上面及び下面が開口した筒状の側壁110と、側壁110の上面を気密に覆う天井板111と、側壁110の下面を覆う底板112を有している。側壁110の上端面と天井板111との間には、チャンバ100の内部を気密に保つシール部材113が設けられている。また、側壁110、天井板111、底板112のそれぞれにはヒータ(図示せず)が設けられており、ヒータにより側壁110、天井板111、底板112を例えば100℃以上に加熱することで、例えば昇華したAFSなどの付着物(デポ)が付着するのを抑制する。
 底板112の一部は開口し、当該開口部分には透過窓114a、114bが嵌め込まれている。透過窓114a、114bは、バッファ101a、101bと後述するLED光源150a、150bの間に設けられ、LED光源150a、150bからのLED光を透過させるように構成されている。透過窓114a、114bの材料はLED光を透過させるものであれば特に限定されないが、例えば石英が用いられる。また、後述するようにLED光源150a、150bは2つのバッファ101a、101bに対応して設けられ、透過窓114a、114bはこれら2つのLED光源150a、150bに対応して2つ設けられている。
 透過窓114a、114bの下面には、例えばヒータ(図示せず)を内蔵した加熱板115a、115bが設けられている。加熱板115a、115bは、LED光源150a、150bからのLED光を透過させるように構成されている。加熱板115a、115bの材料はLED光を透過させるものであれば特に限定されないが、例えば透明の石英に電熱線・導電性の物質を付着させたヒータが用いられる。そして、加熱板115a、115bで透過窓114a、114bを例えば100℃以上に加熱することで、当該透過窓114a、114bに付着物(デポ)が付着するのを抑制し、透過窓114a、114bが曇るのを抑制することができる。
 透過窓114a、114bは、底板112の上面に設けられた支持部材116に支持されている。底板112と透過窓114a、114b(加熱板115a、115b)との間には、チャンバ100の内部を気密に保つシール部材117が設けられている。
 バッファ101a、101bはチャンバ100の内部に2つ設けられ、各バッファ101a、101bはウェハWを保持する。バッファ101a、101bはそれぞれ、図4に示すように略C字型に構成されたアーム部材120を有している。アーム部材120は、ウェハWの径より大きい曲率半径でウェハWの周縁部に沿って湾曲している。アーム部材120には、当該アーム部材120から内側に突出し、ウェハWの裏面外周部を保持する保持部材121が複数箇所、例えば3箇所に設けられている。各保持部材121は、LED光源150a、150bからのLED光を透過させるように構成されている。保持部材121の材料はLED光を透過させるものであれば特に限定されないが、例えば石英が用いられる。なお、従来の特許文献1に記載のように、例えばアルミニウム製の載置台にウェハWを載置する場合、当該ウェハWの裏面にアルミニウム成分が転写し、ウェハWの裏面の金属汚染が発生するおそれがある。この点、本実施形態では、ウェハWの裏面外周部が保持されるので、金属汚染を抑制することができる。
 3つの保持部材121のうち、1つの保持部材121には、ウェハWの裏面に接触して、当該ウェハWの温度を測定する温度測定部としての温度測定ピン122が設けられている。温度測定ピン122の内部には、例えば熱電対が設けられ、ウェハWの温度を測定する。また温度測定ピン122は、LED光源150a、150bからのLED光を透過させるように構成されている。温度測定ピン122の材料はLED光を透過させるものであれば特に限定されないが、例えばウェハWの裏面に接触する部分にはサファイアが用いられ、熱電対を内蔵する部分には石英が用いられる。
 なお、本実施形態では、ウェハWの温度を測定するために、接触型の温度測定ピン122を用いたが、温度測定部はこれに限定されない。例えば温度測定部として、非接触型の温度センサを用いてもよいし、間接式の温度測定部を用いてもよい。非接触型の温度センサには、例えば放射温度計が用いられ、天井板111の外部に設けられる。そして、この非接触型の温度センサにより、ウェハWの温度が上方から測定される。間接式の温度測定部は、ウェハWと同じ材料であるシリコンから構成される加熱物と、シース熱電対とを有している。そして、ウェハWに照射されるLED光が加熱物にも照射され、加熱された加熱物の温度をシース熱電対で測定することで、ウェハWの温度を換算により求める。
 3つの保持部材121のうち、残りの2つの保持部材121には、ウェハWを保持する支持ピン123が設けられる。支持ピン123は単にウェハWを支持するものであり、温度測定ピン122のように熱電対は内蔵されていない。また支持ピン123は、LED光源150a、150bからのLED光を透過させるように構成されている。支持ピン123の材料はLED光を透過させるものであれば特に限定されないが、例えば石英が用いられる。
 昇降機構102a、102bは2つ設けられ、各昇降機構102a、102bはバッファ101a、101bを昇降させる。昇降機構102a、102bはそれぞれ、図2に示すようにチャンバ100の外部に設けられたバッファ駆動部130と、バッファ101a、101bのアーム部材120を支持し、且つバッファ駆動部130に接続され、チャンバ100の底板112を貫通してチャンバ100の内部を鉛直上方に延伸する駆動軸131を有している。バッファ駆動部130には、例えばモータドライバ(図示せず)によって駆動するアクチュエータが用いられる。そして昇降機構102a、102bは、バッファ駆動部130によって駆動軸131を昇降させることで、バッファ101a、101bを任意の高さ位置に配置させることができる。その結果、後述するようにウェハWの加熱処理を行う位置と冷却処理を行う位置を適切に調整することができる。
 給気部103は、チャンバ100の内部にガス(冷却ガス及びパージガス)を供給する。給気部103は、チャンバ100の内部にガスを分配して供給するガス分配部としてのシャワーヘッド140a、140bを有している。シャワーヘッド140a、140bは、チャンバ100の天井板111の下面に、バッファ101a、101bに対応して2つ設けられている。シャワーヘッド140a、140bはそれぞれ、例えば下面が開口し、天井板111の下面に支持された略円筒形の枠体141と、当該枠体141の内側面に嵌め込まれた略円板状のシャワープレート142を有している。シャワープレート142は、枠体141の天井部と所望の距離を離して設けられている。これにより、枠体141の天井部とシャワープレート142の上面との間には空間143が形成されている。また、シャワープレート142には、当該シャワープレート142を厚み方向に貫通する開口144が複数設けられている。
 枠体141の天井部とシャワープレート142との間の空間143には、ガス供給管145を介してガス供給源146が接続されている。ガス供給源146は、冷却ガス又はパージガスとして例えばNガスやArガスなどを供給可能に構成されている。そのため、ガス供給源146から供給されたガスは、空間143、シャワープレート142を介して、バッファ101a、101bに保持されたウェハWに向かって供給される。また、ガス供給管145にはガスの供給量を調節する流量調節機構147が設けられており、各ウェハWに供給するガスの量を個別に制御できるように構成されている。
 加熱部104は、バッファ101a、101bに保持されたウェハWを加熱する。加熱部104は、チャンバ100の外部に設けられた2つのLED光源150a、150bと、各LED光源150a、150bを表面に実装するLED実装基板151a、151bを有している。LED実装基板151a、151bはチャンバ100の底板112の下部に嵌め込まれるように設けられ、LED光源150a、150bは透過窓114a、114bの下方に配置される。すなわち、LED光源150a、150bは、バッファ101a、101b、シャワーヘッド140a、140b及び透過窓114a、114bのそれぞれに対応して設けられている。そして、LED光源150a、150bから発せられたLED光は、透過窓114a、114bを透過し、バッファ101a、101bに保持されたウェハWに照射される。このLED光により、ウェハWが所望の温度に加熱される。
 なお、LED光は、石英からなる透過窓114a、114bを透過し、シリコンからなるウェハWに吸収される波長を有する。具体的には、LED光の波長は、例えば400nm~1100nmであり、より好ましくは800nm~1100nmであり、本実施形態では855nmである。
 LED実装基板151a、151bの裏面には、伝熱シート152a、152bを介して、LED光源150a、150bを冷却する冷却板153a、153bが設けられている。LED実装基板151a、151bと冷却板153a、153bの間には微小な隙間ができるため、伝熱シート152a、152bを設けて熱伝達を向上させる。冷却板153a、153bの内部には、冷却媒体として、例えば冷却水が流通する。冷却板153a、153bにはそれぞれ、冷却水供給管154を介して、冷却水を供給可能に構成された冷却水供給源155が接続されている。
 冷却板153a、153bの下方には、LED光源150a、150bを制御するLED制御基板156が設けられている。LED制御基板156は、2つのLED光源150a、150bに共通に設けられている。LED制御基板156には、LED電源157が接続されている。LED制御基板156の表面には、例えばFETやダイオードなどの冷却が必要な部品158が実装されている。これらの部品158は、伝熱パッド159を介して冷却板153a、153bに設けられている。すなわち冷却板153a、153bは、上述したLED光源150a、150bに加えて、部品158も冷却する。なお、LED制御基板156において冷却が不要な部品160は、当該LED制御基板156の裏面に設けられる。
 排気部105は、チャンバ100の内部のガスを排出する排気管170を有している。排気管170は、図3に示すように、底板112において透過窓114a、114bの外側に配置されている。ウェハWの下方には、透過窓114a、114bやLED光源150a、150bなどが設けられているため、排気管170はこれら透過窓114a、114bやLED光源150a、150bなどからオフセットした位置に配置される。排気管170には、図2に示すように、バルブ171を介してポンプ172が接続されている。バルブ171には、例えば自動圧力制御バルブ(APCバルブ)が用いられる。ポンプ172には、例えばターボ分子ポンプ(TMP)が用いられる。そしてポンプ172を用いる場合、チャンバ100の内部のガスを大きな圧力で強制的に排出することができる。
<PHTモジュールの動作>
 本実施形態にかかるPHTモジュール62は以上のように構成されている。次に、PHTモジュール62におけるPHT処理(加熱冷却処理)について説明する。図5は、PHTモジュール62においてPHT処理を行う様子を示す説明図である。なお、図5は、チャンバ100の半分(例えばバッファ101a、透過窓114a、シャワーヘッド140a、LED光源150a等)、すなわち1枚のウェハWを示しているが、実際には2枚のウェハWが同時に処理される。
 先ず、ゲートバルブ66が開放され、図5(a)に示すように搬送ポジションP1において、PHTモジュール62にウェハWが搬入され、ウェハ搬送機構70の搬送アーム71aからバッファ101aに受け渡される。その後、ゲートバルブ66が閉じられる。
 次に、図5(b)に示すようにバッファ101aを下降させ、加熱ポジションP2にウェハWを配置する。加熱ポジションP2は、できるだけLED光源150aに近い位置であり、例えばウェハWとLED光源150aの間は200mm以下である。その後、温度測定ピン122によってウェハWの温度を測定する。これにより、ウェハWの基準の温度を確認する。
 次に、LED光源150aをオンにする。LED光源150aから発せられたLED光は、透過窓114aを透過し、ウェハWに照射される。その結果、ウェハWが所望の加熱温度、例えば300℃まで加熱される(加熱処理工程)。この加熱温度の300℃は、後述するようにウェハW上のAFSの昇華温度以上の温度である。加熱速度は、例えば12℃/秒である。またLED光源150aは、温度が一定の範囲内になるように、LED光のパルス制御を行う。パルス幅は、例えば1KHz~500KHzであり、本実施形態では200KHzである。
 この際、給気部103のシャワーヘッド140aからパージガスとしてのNガスを供給する。そして、チャンバ100の内部の圧力を例えば0.1Torr~10Torrに調整する。シャワーヘッド140aからのNガスは複数の開口144から均一に供給されるので、チャンバ100の内部のガスの流れを整流することができる。
 またこの際、温度測定ピン122によりウェハWの温度を測定し、LED光源150aがフィードバック制御される。具体的には、温度測定結果に基づいて、ウェハWが所望の加熱温度になるように、LED光源150aから発せられるLED光を制御する。
 そして、ウェハWの温度を300℃に維持し、所望の時間経過後、ウェハW上のAFSを加熱して気化(昇華)させる。その後、LED光源150aをオフにする。この際の終点検出方法は任意であるが、例えばガス分析器(例えばOES、QMS、FT-IRなど)や膜厚計などでモニターしてもよい。
 次に、図5(c)に示すようにバッファ101aを上昇させ、冷却ポジションP3にウェハWを配置する。冷却ポジションP3は、できるだけシャワーヘッド140aに近い位置であり、例えばウェハWとシャワーヘッド140aの間は200mm以下である。
 続いて、シャワーヘッド140aから冷却ガスとしてのNガスを供給し、ウェハWが所望の冷却温度、例えば180℃まで冷却される(冷却処理工程)。この冷却温度の180℃は、ウェハ搬送機構70の搬送アーム71bがウェハWを保持可能な温度である。冷却速度は、例えば11℃/秒である。また、シャワーヘッド140aからのNガスは複数の開口144から均一に供給されるので、ウェハWを均一に冷却することができる。
 加熱処理工程から冷却処理工程にかけて、シャワーヘッド140aからのNガスの供給は継続される。但し、冷却処理工程におけるNガスの供給量は、例えば40L/分であり、加熱処理工程のNガスの供給量よりも多い。但し、Nガスの供給量はチャンバ100の容積に依存する。また、冷却処理工程におけるチャンバ100の内部の圧力は1Torr~100Torrであり、加熱処理工程におけるチャンバ100の内部の圧力より高い。
 その後、ウェハWが所望の冷却温度に到達すると、冷却処理工程におけるNガスの供給量を元に戻す。この際の終点検出方法は任意であるが、例えば冷却時間で制御してもよいし、温度測定ピン122でウェハWの温度を測定してもよい。
 次に、バッファ101aを下降させ、再び図5(a)に示したように搬送ポジションP1にウェハWを配置する。その後、ゲートバルブ66が開放され、バッファ101aからウェハ搬送機構70の搬送アーム71bにウェハWが受け渡される。そして、PHTモジュール62からウェハWが搬出される。
 なお、PHTモジュール62におけるPHT処理(加熱冷却処理)では、排気部105によってチャンバ100の内部が排気される。この際、通常の操業では、シャワーヘッド140aからのNガスによって排気する。但し、ポンプ172を作動させ高速排気を行い、排気時間を短縮してもよい。
 以上の実施形態によれば、PHTモジュール62における加熱処理工程において、LED光源150a、150bを用いており加熱速度(12℃/秒)は、従来用いられているヒータによる加熱速度(0.45℃/秒)より速い。したがって、ウェハWの加熱処理を短時間で効率よく行うことができ、ウェハ処理のスループットを向上させることができる。
 また、PHTモジュール62における冷却処理工程において、シャワーヘッド140a、140bからの冷却ガスの供給量を大流量にしており冷却速度(11℃/秒)は、従来の自然冷却の冷却速度(0.5℃/秒)より速い。したがって、ウェハWの冷却処理を短時間で効率よく行うことができ、ウェハ処理のスループットをさらに向上させることができる。
 具体的に、本発明者が実験を行ったところ、図6に示す結果が得られた。図6の横軸はプロセス時間を示し、左縦軸はウェハW上の膜の厚み(加熱処理前の厚みを0nmとする)を示し、右縦軸はウェハWの温度を示す。図6に示すように、LED光源150a、150bをオンにしてから13秒で膜厚が40nm減少し、AFSを昇華させることができた。この点、従来のヒータによる加熱では1分以上かかる。また、LED光源150a、150bをオフにしてから12秒でウェハWの温度を所望の温度まで冷却することができた。この点、従来の自然冷却では1分以上かかる。したがって、本実施形態によれば、加熱処理と冷却処理のそれぞれの時間を短時間で行えることが分かった。
 以上の実施形態のPHTモジュール62では、原則、チャンバ100の内部に黒色の部材を設けない。但し、例えばバッファ101a、101bのアーム部材120や駆動軸131など、あえてLED光によって温度を上げたい部材は黒色にしてもよい。
 以上の実施形態のPHTモジュール62において、ウェハWの温度が上がり過ぎないようにするために、加熱処理工程と冷却処理工程を繰り返し行ってもよい。例えばウェハW上にレジスト膜がある場合、ウェハWの温度を調整することで、当該レジスト膜が損傷を被るのを抑制することができる。
 以上の実施形態のPHTモジュール62では、冷却処理工程において、ウェハ搬送機構70の搬送アーム71bがウェハWを保持可能な温度、例えば180℃まで冷却したが、ウェハWの冷却温度はこれに限定されない。例えば冷却温度は、COR処理が可能な温度である80℃であってもよい。例えば、CORモジュール61におけるCOR処理とPHTモジュール62のおけるPHT処理を繰り返し行う場合(いわゆる、マルチビジット処理を行う場合)、CST処理を省略することができ、ウェハ処理のスループットを向上させることができる。
<LED光源とLED実装基板>
 次に、LED光源150a、150bとLED実装基板151a、151bの構成について説明する。図7は、LED光源150a、150bとLED実装基板151a、151bの構成を示す説明図である。図7(a)は本実施形態のLED光源150a、150bとLED実装基板151a、151bの構成を示す説明図であり、(b)は比較例のLED光源500とLED実装基板501の構成を示す説明図である。
 本実施形態では、図7(a)に示すようにLED実装基板151a、151bは絶縁基板が複数に積層された構造を有している。この複数積層構造が好ましい理由を説明するため、先ず比較例として、図7(b)に示すようにLED実装基板501が絶縁基板の単層構造を有する場合について説明する。
 図7(b)に示すようにLED光源500は複数のLED素子502を有している。複数のLED素子502は、単層の絶縁基板であるLED実装基板501の表面に格子状に配置される。なお、図7(b)では、2列L1、L2のそれぞれに5つのLED素子502a~502eが配置された例を示しているが、実際には、3列以上かつ6つ以上のLED素子502が配置されている。
 複数のLED素子502は、配線503で接続されている。具体的に配線503は、第1列L1のLED素子502a~502eを順次接続した後、折り返され、第2列L2のLED素子502e~502aを順次接続する。かかる場合、第1列L1のLED素子502a~502eと第2列L2のLED素子502a~502eはそれぞれ、同一方向において極性が反対になる。すなわち、第1列L1のLED素子502a~502eのアノード(陽極)側は、第2列L2のED素子502a~502eのカソード(陰極)側となる。その結果、第1列L1のLED素子502a~502eと第2列L2のED素子502a~502eのそれぞれの電位差が大きくなり、絶縁距離D2が大きくとる必要があるため、LED実装基板501においてLED素子502を多く配置できない(密度を上げられない)。
 これに対して、図7(a)に示すように本実施形態のLED実装基板151a、151bは、絶縁基板200が複数に積層された構造を有している。なお図7(a)には、2層の絶縁基板200a、200bを図示しているが、実際には3層以上であってもよい。また、絶縁基板200a、200b間には、銅箔(図示せず)が設けられている。
 LED光源150a、150bはそれぞれ、複数のLED素子210を有している。複数のLED素子210は、上層の絶縁基板200aの表面に格子状に配置される。なお、図7(b)では、2列L1、L2のそれぞれに5つのLED素子210a~210eが配置された例を示しているが、実際には、3列以上かつ6つ以上のLED素子210が配置されている。
 複数のLED素子210は、配線211で接続されている。具体的に配線211は、第1列L1のLED素子210a~210eを順次接続した後、下層の絶縁基板200bまで延伸する。絶縁基板200bにおいて配線211は、折り返され、第2列L2のLED素子210aの下方まで配設される。配線211は、上方に延伸して第2列L2のLED素子210aに接続され、さらにLED素子210a~LED素子210eを順次接続する。
 かかる場合、第1列L1のLED素子210a~210eと第2列L2のLED素子210a~210eはそれぞれ、同一方向において極性が同じになる。すなわち、第1列L1のLED素子210a~210eのアノード(陽極)側は、第2列L2のED素子210a~210eのアノード(陽極)側となる。その結果、第1列L1のLED素子210a~210eと第2列L2のED素子210a~210eのそれぞれの電位差が小さくなり、絶縁距離D1を小さくすることができ、LED実装基板151a、151bにおけるLED素子210の数を多く(密度を大きく)することができる。したがって、本実施形態によれば、多数のLED素子210を用いることで、ウェハWを効率よく加熱処理することが可能となる。
 なお、隣り合う第1列L1のLED素子210a~210eと第2列L2のED素子210a~210eの間のそれぞれの絶縁距離D1は、2.0mm以下に設定するのが良く、1.2mm以下に設定するのがさらに好ましい。また、隣り合う第1列L1のLED素子210a~210eと第2列L2のED素子210a~210eのそれぞれの電位差は、150V以下に設定するのが好ましい。これら絶縁距離D1と電位差はそれぞれ、ウェハWを加熱する際の加熱速度が所望の速度、例えば12℃/秒を達成するように設定される。
 なお、後述するようにLED実装基板151a、151bは複数のゾーンZ1~Z14に区画されるが、各ゾーンZ1~Z14間の絶縁距離を確保するため、配線211を折り返すための絶縁基板200bはゾーンZ1~Z14毎に異なっていてもよい。例えばゾーンZ1における絶縁基板200bは2層目で、ゾーンZ2における絶縁基板200bは3層目であってもよい。
 また、各LED素子210は、銅インレイ又はVIAに接続されている。この銅インレイ又はVIAにより、LED素子210の熱をLED実装基板151a、151bの外部に逃がすことができる。
 次に、LED光源150a、150bの構成について説明する。図8は、LED光源150a、150bの構成の概略を示す平面図である。図9は、2つのLED光源150a、150bの制御チャンネルの構成を示す平面図である。
 図8に示すようにLED実装基板151a、151bは、平面視において複数のゾーンZ1~Z14に区画される。LED実装基板151a、151bは径方向に、中央部(Center)、中間部(Middle)、外周部(Edge)に区画される。中央部はゾーンZ1~Z4に4分割され、中間部はゾーンZ5~Z8に4分割され、外周部はゾーンZ9~Z14に6分割される。なお、LED実装基板151a、151bの区画数は、本実施形態に限定されず、任意に設定できる。例えばLED光源150a、150bの周囲の部材との距離の関係で、ウェハ面内で温度差が生じる場合、外周部はその温度差に応じた数に分割してもよい。
 各ゾーンZ1~Z14のそれぞれには、LED光源150a、150bのLED素子210が約200個配置される。このように各ゾーンZ1~Z14におけるLED素子210の数が等しいため、各ゾーンZ1~Z14の電圧を等しくすることができる。本実施形態では、1個のLED素子210の電圧が1.8Vであり、各ゾーンZ1~Z14の電圧を400Vに抑えている。なお、各ゾーンZ1~Z14間では、最大約200Vの電位差がつくため、その分の絶縁距離を確保する必要がある。また、各ゾーンZ1~Z14におけるのLED素子210の数は、本実施形態に限定されず、任意に設定できる。
 図9に示すようにLED光源150a、150bの制御チャンネル(温度制御チャンネル)は、4つに分かれている。LED実装基板151a、151bの中央部のゾーンZ1~Z4が第1のチャンネルC1、中間部のゾーンZ5~Z8が第2のチャンネルC2、外周部のゾーンZ9~Z13が第3のチャンネルC3、外周部のゾーンZ14が第4のチャンネルC4である。このように中心部、中間部、外周部に分かれて制御し、すなわち同心円で制御している。また、2つのLED光源150a、150bにおいて、ゾーンZ14は隣接している。そして、2つのLED光源150a、150bが干渉するのを抑制するため、ゾーンZ9~Z13(第3のチャンネルC3)とゾーンZ4(第4のチャンネルC4)を別チャンネルとしている。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)チャンバと、前記チャンバの内部に設けられる複数の基板保持部であり、各基板保持部は、基板を保持するように構成される、複数の基板保持部と、前記チャンバの外部に設けられる複数のLED光源であり、前記複数のLED光源は、前記複数の基板保持部にそれぞれ対応し、各LED光源は、対応する前記基板保持部に保持された基板にLED光を照射するように構成され、前記LED光は、当該基板を加熱する波長を有する、複数のLED光源と、前記複数の基板保持部と前記複数のLED光源との間に設けられる複数の透過窓であり、前記複数の透過窓は、前記複数のLED光源にそれぞれ対応し、各透過窓は、対応する前記LED光源から照射された前記LED光を透過するように構成される、複数の透過窓と、前記チャンバの内部に設けられる複数のガス分配部であり、前記複数のガス分配部は、前記複数の基板保持部にそれぞれ対応し、各ガス分配部は、対応する前記基板保持部に保持された基板に冷却ガスを分配して供給するように構成される、複数のガス分配部と、を有する、加熱冷却装置。
 前記(1)によれば、加熱冷却装置では、LED光源を用いて基板を加熱し、その加熱速度は、従来用いられているヒータによる加熱速度より速い。したがって、基板の加熱処理を短時間で効率よく行うことができる。また、加熱冷却装置では、ガス分配部からの冷却ガスの供給量を大流量にして基板を冷却し、その冷却速度は、従来の自然冷却の冷却速度より速い。したがって、基板の冷却処理を短時間で効率よく行うことができる。その結果、基板処理のスループットを向上させることができる。
(2)前記複数の基板保持部に対応して設けられる複数の移動機構であり、各移動機構は、前記透過窓と前記ガス分配部との間で前記基板保持部を移動させるように構成される、複数の移動機構をさらに有する、前記(1)に記載の加熱冷却装置。
 前記(2)によれば、移動機構により基板保持部(基板)を任意の高さ位置に配置させることができる。したがって、基板の加熱処理を行う位置と冷却処理を行う位置を適切に調整することができる。
(3)前記複数の基板保持部に対応して設けられる複数の温度測定部であり、各温度測定部は、前記基板保持部に保持された基板の温度を測定するように構成される、複数の温度測定部をさらに有する、前記(1)又は(2)に記載の加熱冷却装置。
 前記(3)によれば、温度測定部により基板の温度を測定することで、LED光源をフィードバック制御することができ、基板の加熱温度を適切に調整することができる。
(4)前記複数のLED光源に対応して設けられる複数のLED実装基板であり、各LED実装基板の表面には、前記LED光源が実装される、複数のLED実装基板と、前記複数のLED実装基板に対応して設けられる複数の冷却板であり、各冷却板は、前記LED実装基板の裏面に設けられ、前記LED光源を冷却するように構成される、複数の冷却板と、をさらに有する、前記(1)~(3)のいずれかに記載の加熱冷却装置。
 前記(4)によれば、冷却板によってLED光源を冷却することで、当該LED光源を適切に動作させることができる。
(5)前記冷却板に対して前記LED実装基板と反対側に設けられ、前記LED光源を制御するLED制御基板をさらに有し、前記冷却板は、前記LED制御基板の表面に設けられた部品を冷却する、前記(4)に記載の加熱冷却装置。
 前記(5)によれば、冷却板によってLED制御基板の部品を冷却することで、当該部品を適切に動作させることができる。しかも、冷却板は、LED光源とLED制御基板を同時に冷却できるので効率がよい。
(6)前記LED実装基板は、絶縁基板が複数に積層された構造を有し、前記LED光源は、最表層の前記絶縁基板の表面において複数列に並べて配置された複数のLED素子を有し、一列の前記LED素子を接続する配線は、下方に延伸して下層の前記絶縁基板に配設され、さらに上方に延伸して前記一列の隣列の前記LED素子に接続される、前記(4)又は(5)に記載の加熱冷却装置。
 前記(6)によれば、隣接するLED素子の極性を同一方向において同じにでき、当該隣接するLED素子の電位差を小さくして、絶縁距離を小さくすることができる。その結果、LED実装基板におけるLED素子の密度を大きくすることができ、基板の加熱処理を効率よく行うことができる。
(7)前記LED実装基板は、平面視において複数のゾーンに区画され、前記ゾーンには、前記LED素子が複数配置される、前記(4)~(6)のいずれかに記載の加熱冷却装置。
 前記(7)によれば、LED実装基板を複数のゾーンに区画することにより、より精度のよい加熱処理を実現することができる。
(8)前記LED光の波長は400nm~1100nmである、前記(1)~(7)のいずれかに記載の加熱冷却装置。
 前記(8)によれば、400nm~1100nmの波長範囲を有するLED光は、透過窓を透過しつつ、基板に吸収される。したがって、基板を効率よく加熱することができる。
(9)前記基板保持部は、基板の外周部の複数箇所を保持する、前記(1)~(8)のいずれかに記載の加熱冷却装置。
 前記(9)によれば、基板の外周部が保持されるので、LED光が基板保持部に邪魔されず、当該LED光を基板に適切に照射することができる。
(10)前記基板保持部において、基板の外周部を保持する保持部材は、前記LED光源からの前記LED光を透過させるように構成されている、前記(9)に記載の加熱冷却装置。
 前記(10)によれば、保持部材がLED光を透過させるので、当該LED光を基板に適切に照射することができる。
(11)前記複数の透過窓に対応して設けられる複数の加熱板であり、各加熱板は、前記透過窓を加熱し、且つ前記LED光源からの前記LED光を透過させるように構成されている、複数の加熱板をさらに有する、前記(1)~(10)のいずれかに記載の加熱冷却装置。
 前記(11)によれば、加熱板で透過窓を加熱することにより、透過窓に付着物が付着するのを抑制し、透過窓が曇るのを抑制することができる。しかも、加熱板はLED光を透過させるので、当該LED光を基板に適切に照射することができる。
(12)a)チャンバの内部に複数の基板を搬入し、基板保持部で基板を保持する工程と、b)前記基板保持部を前記チャンバの外部に設けられたLED光源側に移動させる工程と、c)前記基板保持部に保持された基板に対して前記LED光源からLED光を照射して、当該基板を加熱する工程と、d)前記基板保持部を前記チャンバの内部に設けられたガス分配部側に移動させる工程と、e)前記基板保持部に保持された基板に対して前記ガス分配部から冷却ガスを分配して供給し、当該基板を冷却する工程と、を有する、加熱冷却方法。
(13)前記c)工程において、前記ガス分配部から前記チャンバの内部にパージガスを供給し、前記e)工程における前記冷却ガスの供給量は、前記c)工程における前記パージガスの供給量よりも多い、前記(12)に記載の加熱冷却方法。
(14)前記e)工程における前記チャンバの内部の圧力は、前記c)工程における前記チャンバの内部の圧力より高い、前記(12)又は(13)に記載の加熱冷却方法。
(15)前記c)工程において、前記基板保持部に保持された基板の温度を測定し、前記基板の温度の測定結果に基づいて、前記LED光源をフィードバック制御する、前記(12)~(14)のいずれかに記載の加熱冷却方法。
  62  PHTモジュール
  100 チャンバ
  114a、114b 透過窓
  140a、140b シャワーヘッド
  150a、150b LED光源
  W   ウェハ

Claims (15)

  1. チャンバと、
    前記チャンバの内部に設けられる複数の基板保持部であり、各基板保持部は、基板を保持するように構成される、複数の基板保持部と、
    前記チャンバの外部に設けられる複数のLED光源であり、前記複数のLED光源は、前記複数の基板保持部にそれぞれ対応し、各LED光源は、対応する前記基板保持部に保持された基板にLED光を照射するように構成され、前記LED光は、当該基板を加熱する波長を有する、複数のLED光源と、
    前記複数の基板保持部と前記複数のLED光源との間に設けられる複数の透過窓であり、前記複数の透過窓は、前記複数のLED光源にそれぞれ対応し、各透過窓は、対応する前記LED光源から照射された前記LED光を透過するように構成される、複数の透過窓と、
    前記チャンバの内部に設けられる複数のガス分配部であり、前記複数のガス分配部は、前記複数の基板保持部にそれぞれ対応し、各ガス分配部は、対応する前記基板保持部に保持された基板に冷却ガスを分配して供給するように構成される、複数のガス分配部と、を有する、加熱冷却装置。
  2. 前記複数の基板保持部に対応して設けられる複数の移動機構であり、各移動機構は、前記透過窓と前記ガス分配部との間で前記基板保持部を移動させるように構成される、複数の移動機構をさらに有する、請求項1に記載の加熱冷却装置。
  3. 前記複数の基板保持部に対応して設けられる複数の温度測定部であり、各温度測定部は、前記基板保持部に保持された基板の温度を測定するように構成される、複数の温度測定部をさらに有する、請求項1又は2に記載の加熱冷却装置。
  4. 前記複数のLED光源に対応して設けられる複数のLED実装基板であり、各LED実装基板の表面には、前記LED光源が実装される、複数のLED実装基板と、
    前記複数のLED実装基板に対応して設けられる複数の冷却板であり、各冷却板は、前記LED実装基板の裏面に設けられ、前記LED光源を冷却するように構成される、複数の冷却板と、をさらに有する、請求項1~3のいずれか一項に記載の加熱冷却装置。
  5. 前記冷却板に対して前記LED実装基板と反対側に設けられ、前記LED光源を制御するLED制御基板をさらに有し、
    前記冷却板は、前記LED制御基板の表面に設けられた部品を冷却する、請求項4に記載の加熱冷却装置。
  6. 前記LED実装基板は、絶縁基板が複数に積層された構造を有し、
    前記LED光源は、最表層の前記絶縁基板の表面において複数列に並べて配置された複数のLED素子を有し、
    一列の前記LED素子を接続する配線は、下方に延伸して下層の前記絶縁基板に配設され、さらに上方に延伸して前記一列の隣列の前記LED素子に接続される、請求項4又は5に記載の加熱冷却装置。
  7. 前記LED実装基板は、平面視において複数のゾーンに区画され、
    前記ゾーンには、前記LED素子が複数配置される、請求項4~6のいずれか一項に記載の加熱冷却装置。
  8. 前記LED光の波長は400nm~1100nmである、請求項1~7のいずれか一項に記載の加熱冷却装置。
  9. 前記基板保持部は、基板の外周部の複数箇所を保持する、請求項1~8のいずれか一項に記載の加熱冷却装置。
  10. 前記基板保持部において、基板の外周部を保持する保持部材は、前記LED光源からの前記LED光を透過させるように構成されている、請求項9に記載の加熱冷却装置。
  11. 前記複数の透過窓に対応して設けられる複数の加熱板であり、各加熱板は、前記透過窓を加熱し、且つ前記LED光源からの前記LED光を透過させるように構成されている、複数の加熱板をさらに有する、請求項1~10のいずれか一項に記載の加熱冷却装置。
  12. a)チャンバの内部に複数の基板を搬入し、基板保持部で基板を保持する工程と、
    b)前記基板保持部を前記チャンバの外部に設けられたLED光源側に移動させる工程と、
    c)前記基板保持部に保持された基板に対して前記LED光源からLED光を照射して、当該基板を加熱する工程と、
    d)前記基板保持部を前記チャンバの内部に設けられたガス分配部側に移動させる工程と、
    e)前記基板保持部に保持された基板に対して前記ガス分配部から冷却ガスを分配して供給し、当該基板を冷却する工程と、を有する、加熱冷却方法。
  13. 前記c)工程において、前記ガス分配部から前記チャンバの内部にパージガスを供給し、
    前記e)工程における前記冷却ガスの供給量は、前記c)工程における前記パージガスの供給量よりも多い、請求項12に記載の加熱冷却方法。
  14. 前記e)工程における前記チャンバの内部の圧力は、前記c)工程における前記チャンバの内部の圧力より高い、請求項12又は13に記載の加熱冷却方法。
  15. 前記c)工程において、前記基板保持部に保持された基板の温度を測定し、
    前記基板の温度の測定結果に基づいて、前記LED光源をフィードバック制御する、請求項12~14のいずれか一項に記載の加熱冷却方法。
PCT/JP2020/030196 2019-10-04 2020-08-06 加熱冷却装置及び加熱冷却方法 WO2021065203A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/754,446 US20220336238A1 (en) 2019-10-04 2020-08-06 Heating/cooling device and heating/cooling method
KR1020227013376A KR20220066942A (ko) 2019-10-04 2020-08-06 가열 냉각 장치 및 가열 냉각 방법
JP2021550388A JP7365423B2 (ja) 2019-10-04 2020-08-06 加熱冷却装置及び加熱冷却方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-184004 2019-10-04
JP2019184004 2019-10-04

Publications (1)

Publication Number Publication Date
WO2021065203A1 true WO2021065203A1 (ja) 2021-04-08

Family

ID=75338129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030196 WO2021065203A1 (ja) 2019-10-04 2020-08-06 加熱冷却装置及び加熱冷却方法

Country Status (4)

Country Link
US (1) US20220336238A1 (ja)
JP (1) JP7365423B2 (ja)
KR (1) KR20220066942A (ja)
WO (1) WO2021065203A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2886101B2 (ja) * 1994-05-14 1999-04-26 韓國電子通信研究院 冷却装置が補強された急速熱処理装置
JP2017126734A (ja) * 2016-01-13 2017-07-20 東京エレクトロン株式会社 基板処理方法、基板処理装置及び基板処理システム
JP2017130518A (ja) * 2016-01-19 2017-07-27 東京エレクトロン株式会社 基板温調装置及び基板処理装置
JP2018518044A (ja) * 2015-04-29 2018-07-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 基板の変形を矯正する方法及び装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352103Y2 (ja) 1973-04-12 1978-12-13

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2886101B2 (ja) * 1994-05-14 1999-04-26 韓國電子通信研究院 冷却装置が補強された急速熱処理装置
JP2018518044A (ja) * 2015-04-29 2018-07-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 基板の変形を矯正する方法及び装置
JP2017126734A (ja) * 2016-01-13 2017-07-20 東京エレクトロン株式会社 基板処理方法、基板処理装置及び基板処理システム
JP2017130518A (ja) * 2016-01-19 2017-07-27 東京エレクトロン株式会社 基板温調装置及び基板処理装置

Also Published As

Publication number Publication date
KR20220066942A (ko) 2022-05-24
US20220336238A1 (en) 2022-10-20
JP7365423B2 (ja) 2023-10-19
JPWO2021065203A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
US7624772B2 (en) Load lock apparatus, processing system and substrate processing method
TWI565533B (zh) 成膜方法、電腦記憶媒體及成膜系統
JP6642936B2 (ja) Oled封止用のマスク管理システム及び方法
JP4860167B2 (ja) ロードロック装置,処理システム及び処理方法
KR101002553B1 (ko) 기판 처리 장치, 기판 처리 방법 및 기록 매체
CN107564812B (zh) 热处理方法及热处理装置
KR101155026B1 (ko) 기판 처리 장치 및 이를 이용한 기판 처리 방법
US20080223399A1 (en) Substrate processing apparatus, substrate processing method and storage medium
US20080223400A1 (en) Substrate processing apparatus, substrate processing method and storage medium
KR20160115398A (ko) 히터 블록 및 기판 처리 장치
US11688619B2 (en) Vacuum processing apparatus and substrate transfer method
US20180247836A1 (en) Removal apparatus for removing residual gas and substrate treating facility including the same
US11856655B2 (en) Substrate processing apparatus and substrate processing method
WO2021065203A1 (ja) 加熱冷却装置及び加熱冷却方法
KR20170055819A (ko) 기판 처리 장치
KR20190012965A (ko) 기판 처리 장치 및 방법
JP4885023B2 (ja) ロードロック装置および基板の処理システム
JP7470580B2 (ja) 加熱装置、基板処理システム及び加熱方法
KR20220040995A (ko) 가열 장치 및 가열 방법
KR102305354B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101909183B1 (ko) 기판 처리 장치
JP7450373B2 (ja) 基板処理装置及び基板処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227013376

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20873273

Country of ref document: EP

Kind code of ref document: A1