WO2021065191A1 - 純水製造管理システムおよび純水製造管理方法 - Google Patents
純水製造管理システムおよび純水製造管理方法 Download PDFInfo
- Publication number
- WO2021065191A1 WO2021065191A1 PCT/JP2020/029829 JP2020029829W WO2021065191A1 WO 2021065191 A1 WO2021065191 A1 WO 2021065191A1 JP 2020029829 W JP2020029829 W JP 2020029829W WO 2021065191 A1 WO2021065191 A1 WO 2021065191A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pure water
- water
- valve
- pipe
- control device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/006—Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/008—Control or steering systems not provided for elsewhere in subclass C02F
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
- C02F1/004—Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/16—Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/002—Construction details of the apparatus
- C02F2201/005—Valves
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/05—Conductivity or salinity
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/40—Liquid flow rate
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/42—Liquid level
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/44—Time
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/04—Flow arrangements
- C02F2301/043—Treatment of partial or bypass streams
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/16—Regeneration of sorbents, filters
Definitions
- the present disclosure relates to a pure water production control system and a pure water production control method.
- the present application claims priority based on Japanese Patent Application No. 2019-183622 filed in Japan on October 4, 2019, the contents of which are incorporated herein by reference.
- the product may be washed with pure water.
- Pure water passes through, for example, a sand filtration tower and an activated carbon tower, and water from which impurities and organic substances have been removed is sent to an ion exchange resin device, and sodium, chloride, silica, etc. in the water are removed by the ion exchange resin device.
- silica is a weak ion, it has the property of being difficult to adsorb to the ion exchange resin.
- the ion exchange resin once adsorbs silica, it may then adsorb strong ions and release silica instead. Then, the pure water produced by passing through the ion exchange resin contains a large amount of silica, and the quality of the pure water deteriorates. When such a phenomenon occurs, it is necessary to regenerate the ion exchange resin. Conventionally, the water quality inspection of pure water (for example, the content of silica) is often performed manually.
- Patent Document 1 discloses a method for measuring the alkalinity of each substance in a treatment liquid in a surface cleaning step of a semiconductor substrate.
- a luminescent substance that chemically emits light in response to a specific substance in the treatment liquid is added to the treatment liquid to emit light, and the alkalinity of the specific substance is measured based on the luminosity of the luminescence.
- the present disclosure provides a pure water production management system and a pure water production management method that can solve the above problems.
- the pure water production management system of the present disclosure is provided in a pure water production apparatus, an analyzer that executes a water quality inspection, and a first pipe connected to the outlet side of the production apparatus, and supplies pure water to a water storage tank.
- a first valve for controlling the amount of water, a second pipe branching from the first pipe and connecting to the analyzer, and a control device are provided, and the control device is provided from the manufacturing device to the water storage tank.
- the pure water is being supplied, the water quality inspection of the pure water produced by the manufacturing apparatus flowing in through the second pipe is repeatedly performed by controlling the analyzer, and as a result of the water quality inspection, the pure water is obtained.
- the first valve is opened, and when the water quality of the pure water does not meet the predetermined standard, the first valve is closed.
- a pure water production apparatus In the pure water production management method of the present disclosure, a pure water production apparatus, an analyzer for inspecting water quality, and a first pipe connected to the outlet side of the production apparatus are provided and supplied to a water storage tank.
- the control device transfers pure water from the manufacturing device to the water storage tank.
- the analyzer is controlled to repeatedly perform the water quality inspection of the pure water produced by the manufacturing apparatus flowing in through the second pipe, and as a result of the water quality inspection, the water quality of the pure water is determined.
- the first valve When the predetermined standard is satisfied, the first valve is opened, and when the water quality of the pure water does not meet the predetermined standard, the first valve is closed.
- FIG. 1 is a configuration diagram showing an example of a pure water production management system according to an embodiment.
- the pure water production management system 100 includes a pure water storage tank 1, a pure water production apparatus 2, an activated carbon tower 3, a sand filtration tower 4, a continuous analyzer 10, and pipes (L1 to L7) connecting them. It includes valves (V1 to V10, EV1 to EV3, RV1 to RV2) and instruments (C1 to C4) provided in the pipe. Water flows from the right side to the left side of the paper, and the pure water produced by the pure water production apparatus 2 is supplied to the pure water storage tank 1.
- the upstream side in the direction in which water flows is simply referred to as the upstream side
- the downstream side in the direction in which water flows is simply referred to as the downstream side.
- Tap water is supplied to the sand filtration tower 4.
- the sand filtration tower 4 removes impurities contained in tap water.
- the activated carbon tower 3 provided on the downstream side.
- the sand filtration tower 4 and the activated carbon tower 3 are connected by a pipe L6.
- the pipe L6 is provided with a manual valve V9, a solenoid valve EV3, and a manual valve V8 in this order from the upstream side.
- the manual valves V8 and V9 are adjusted to a predetermined opening degree.
- the solenoid valve EV3 is controlled to have an opening degree so that the water flowing into the activated carbon tower 3 has a predetermined flow rate based on the flow rate measured by the flow meter C4 described later.
- the pipe L7 is connected so as to bypass the solenoid valve EV3.
- the pipe L7 is provided with a manual valve V10. During automatic operation, the manual valve V10 is closed. The water leaving the sand filtration tower 4 flows into the activated carbon tower 3 through the pipe L6.
- Activated carbon tower 3 removes organic matter contained in water. When the water from which the organic matter has been removed leaves the activated carbon tower 3, it is supplied to the pure water production apparatus 2 provided on the downstream side, and a part of the water is supplied to the continuous analyzer 10.
- the activated carbon tower 3 and the pure water production device 2 are connected by a pipe L5.
- the pipe L5 is provided with a manual valve V6, a flow meter C4, and a manual valve V5 in this order from the upstream side.
- the manual valves V5 and V6 are adjusted to a predetermined opening degree.
- the flow meter C4 is connected to the digital indicator controller 11 included in the continuous analyzer 10.
- the flow meter C4 measures the flow rate of water flowing through the pipe L5 and outputs the measured value to the digital indicator controller 11.
- the digital indicator controller 11 is set to adjust the opening degree of the solenoid valve EV3 so that the flow rate of water on the outlet side of the activated carbon tower 3 measured by the flow meter C4 becomes a predetermined flow rate.
- the pipe L4 On the downstream side of the manual valve V5 in the pipe L5, the pipe L4 through which the water supplied to the continuous analyzer 10 passes is branched.
- the pipe L4 connects the continuous analyzer 10 to the downstream side of the manual valve V5 of the pipe L5.
- the pipe L4 is provided with a manual valve V7, a pressure reducing valve RV2, and a pressure gauge C3 in this order along the water flow direction.
- the manual valve V7 is adjusted to a predetermined opening degree, and the pressure reducing valve RV2 adjusts the pressure of water supplied to the continuous analyzer 10.
- the pressure gauge C3 measures the pressure of water flowing through the pipe L4.
- a part of the water discharged from the activated carbon tower 3 is sent to the continuous analyzer 10 through the pipe L4.
- the continuous analyzer 10 inspects the water quality of this water.
- the continuous analyzer 10 measures the electrical conductivity, pH, and silica concentration of the sent water.
- the value measured by the continuous analyzer 10 is stored as indicating the water quality of the water processed by the pure water production apparatus 2, and can be compared with the water quality of the pure water produced by the pure water production apparatus 2 and the ion exchange resin. It is used to predict the period until regeneration or exchange.
- the pure water production apparatus 2 includes an ion exchange resin.
- the pure water production apparatus 2 produces pure water from which sodium, hydrochloric acid, and the like have been removed by using an ion exchange resin, and supplies the pure water to the pure water storage tank 1.
- the pure water production device 2 and the pure water storage tank 1 are connected by a pipe L1.
- the pipe L1 is provided with a manual valve V2, a solenoid valve EV1, and a manual valve V1 in this order from the upstream side.
- the manual valves V1 and V2 are adjusted to a predetermined opening degree.
- the continuous analyzer 10 controls the opening and closing of the solenoid valve EV1.
- the pipe L2 On the upstream side of the manual valve V2 and the downstream side of the manual valve V1 in the pipe L1, the pipe L2 is connected so as to bypass the solenoid valve EV1.
- the pipe L2 is provided with a manual valve V3. During automatic operation, the manual valve V3 is closed.
- the pipe L3 On the upstream side of the manual valve V2 in the pipe L1, the pipe L3 through which the pure water supplied to the continuous analyzer 10 passes is branched.
- the pipe L3 connects the continuous analyzer 10 to the upstream side of the manual valve V2 of the pipe L1.
- the pipe L3 is provided with a manual valve V4, a pressure reducing valve RV1, and a pressure gauge C2 in this order along the water flow direction.
- the manual valve V4 is adjusted to a predetermined opening degree, and the pressure reducing valve RV1 adjusts the pressure of pure water supplied to the continuous analyzer 10.
- the pressure gauge C2 measures the pressure of pure water flowing through the pipe L3. A part of the pure water discharged from the pure water production apparatus 2 is sent to the continuous analyzer 10 through the pipe L3.
- the continuous analyzer 10 inspects the water quality of pure water (electrical conductivity, PH, silica concentration). A certain standard is set for the quality of pure water stored in the pure water storage tank 1. When the value measured by the continuous analyzer 10 does not satisfy this criterion, the continuous analyzer 10 controls the solenoid valve EV1 to be closed and stops the supply of pure water to the pure water storage tank 1.
- the value measured by the continuous analyzer 10 is stored as indicating the water quality of the pure water produced by the pure water production apparatus 2, and is used for predicting the period until the ion exchange resin is regenerated or exchanged.
- the pipe L0 is branched on the upstream side of the manual valve V4 in the pipe L3.
- the solenoid valve EV2 is provided in the pipe L0.
- the pipe L0 is connected to a waste liquid tank (not shown).
- the continuous analyzer 10 controls the opening and closing of the solenoid valve EV2. For example, when the production of pure water is started, the continuous analyzer 10 opens the solenoid valve EV2 and closes the solenoid valve EV1, and discharges water and the like accumulated in the activated carbon tower 3 and the ion exchange resin through the pipe L0. Start manufacturing and supplying pure water from.
- a level meter C1 is provided in the pure water storage tank 1.
- the level meter C1 measures the water level (water storage level) of the pure water storage tank 1 and outputs the measured value to the continuous analyzer 10.
- the continuous analyzer 10 supplies pure water to the solenoid valves EV1 to EV3 and various sensors built in the continuous analyzer 10. Control the flow and start the production of pure water.
- the continuous analyzer 10 stops the production of pure water.
- the continuous analyzer 10 controls the solenoid valve EV1 and the like, and the amount of pure water stored in the pure water storage tank 1 that satisfies the water quality standard is maintained within a predetermined range. Automatic operation is performed. Next, the continuous analyzer 10 will be described.
- FIG. 2 is a configuration diagram showing an example of a continuous analyzer according to an embodiment.
- FIG. 2 shows a schematic configuration diagram of the continuous analyzer 10.
- the continuous analyzer 10 includes a digital indicator controller 11, a control device 12, a standard silica container 13, a pure water container 14, a pump P1, a switching valve CV11, solenoid valves EV11 and EV12, and an electric conductivity meter. It includes C11 and C13, PH meters C12 and C14, and a silica concentration meter C15.
- the electric conductivity meter C11, the pH meter C12, and the solenoid valve EV11 are provided in the pipe L3.
- the electric conductivity meter C13, the pH meter C14, and the solenoid valve EV12 are provided in the pipe L4.
- the pipes L3 and L4 are connected to the switching valve CV11.
- the standard silica container 13 and the switching valve CV11 are connected by a pipe L11, and the pure water container 14 and the switching valve CV11 are connected by a pipe L12.
- the switching valve CV11 and the pump P1 are connected by the pipe L13, and the pump P1 and the silica densitometer C15 are connected by the pipe L14.
- a silica solution having a known concentration is stored in the standard silica container 13, and pure water whose water quality has been tested is stored in the pure water container 14.
- the silica concentration of pure water in the pure water container 14 is known.
- the digital indicator controller 11 adjusts the opening degree of the solenoid valve EV3 so that the flow rate measured by the flow meter C4 illustrated in FIG. 1 becomes a predetermined flow rate.
- the predetermined flow rate is a value set so that the amount of pure water supplied from the pure water production apparatus 2 to the pure water storage tank 1 is 5 tons / hour or less.
- the water level of the pure water storage tank 1 is visually confirmed, and based on this confirmation result, the opening degree of the valve corresponding to the solenoid valve EV3 is manually adjusted to supply the pure water to the pure water storage tank 1. Often the amount is controlled.
- the digital indicator controller 11 can automatically adjust the flow rate of water supplied to the pure water production apparatus 2 and the flow rate of pure water supplied to the pure water storage tank 1.
- the control device 12 controls the pump P1 and the switching valve CV11 in addition to the solenoid valves EV1 to EV3 shown in FIG.
- the control device 12 acquires the measured values measured by the electric conductivity meters C11 and C13, the PH meters C12 and C14, and the silica concentration meter C15.
- the control device 12 analyzes the water quality and the like based on the measured values acquired from the silica densitometer C15 and the like.
- the control device 12 is connected to a notification means such as a monitor, a lamp, and a buzzer, and if there is an abnormality in the water quality of pure water or there is an abnormality in the measurement accuracy of the silica densitometer C15, those abnormalities occur. Is notified to the observer through the notification means.
- the control of the solenoid valves EV1 to EV3 by the control device 12 will be described next with reference to FIG.
- the water quality inspection process will be described with reference to FIG.
- a part of the water discharged from the activated carbon tower 3 is sent to the continuous analyzer 10 through the pipe L4.
- the control device 12 opens the solenoid valve EV12, closes the solenoid valve EV11, and controls the switching valve CV11 so that the pipe L4 and the pipe L13 communicate with each other.
- the control device 12 operates the pump P1.
- the water sent to the pipe L4 passes through the solenoid valve EV12 of the pipe L4 and is sent to the electric conductivity meter C13 and the PH meter C14.
- the electric conductivity meter C13 measures the electric conductivity of water and outputs the measured value to the control device 12.
- the PH meter C14 measures the pH of water and outputs the measured value to the control device 12. Further, water is sent to the silica densitometer C15 via the switching valve CV11 and the pump P1. The silica concentration meter C15 measures the silica concentration of water and outputs the measured value to the control device 12. The water used for the measurement is discharged as a waste liquid to a waste liquid tank (not shown).
- the control device 12 performs the same control to inspect the water quality of the pure water produced by the pure water production device 2. That is, the control device 12 opens the solenoid valve EV11, closes the solenoid valve EV12, and controls the switching valve CV11 so that the pipe L3 and the pipe L13 communicate with each other.
- the control device 12 operates the pump P1.
- the pure water sent to the pipe L3 passes through the solenoid valve EV11 of the pipe L3 and is sent to the electric conductivity meter C11 and the PH meter C12.
- the electric conductivity meter C11 measures the electric conductivity of pure water and outputs the measured value to the control device 12.
- the PH meter C12 measures the pH of pure water and outputs the measured value to the control device 12.
- Pure water is sent to the silica densitometer C15 via the switching valve CV11 and the pump P1.
- the silica concentration meter C15 measures the silica concentration of pure water and outputs the measured value to the control device 12.
- the pure water used for the measurement is discharged as a waste liquid to a waste liquid tank (not shown).
- the continuous analyzer 10 has a mechanism for inspecting the measurement accuracy of the silica densitometer C15.
- the continuous analyzer 10 supplies a standard silica solution or pure water having a known silica concentration to the silica densitometer C15, and the silica concentration is based on the measured value of the silica densitometer C15 when those solutions are supplied. The measurement accuracy of the total C15 is inspected.
- the control device 12 when inspecting the measurement accuracy of the silica densitometer C15 using a standard silica solution, the control device 12 closes the solenoid valve EV11 and the solenoid valve EV12, and sets the switching valve CV11 so that the pipe L11 and the pipe L13 communicate with each other. Control. Then, the control device 12 operates the pump P1. Then, the standard silica solution of the standard silica container 13 is sucked, and the standard silica solution is sent to the silica densitometer C15 via the switching valve CV11 and the pump P1. The silica densitometer C15 measures the silica concentration of the standard silica solution and outputs the measured value to the control device 12.
- the standard silica solution used for the measurement is discharged as a waste liquid to a waste liquid tank (not shown).
- the control device 12 compares the measured value measured by the silica densitometer C15 with the known silica concentration, and determines whether or not the difference is within a predetermined allowable range. When the difference is out of the permissible range, the control device 12 notifies the observer of an abnormality in the measurement accuracy of the silica densitometer C15 by the notification means.
- the control device 12 when inspecting the measurement accuracy of the silica densitometer C15 using pure water, the control device 12 closes the solenoid valve EV11 and the solenoid valve EV12, and controls the switching valve CV11 so that the pipe L12 and the pipe L13 communicate with each other. To do. Then, the control device 12 operates the pump P1. Then, the pure water in the pure water container 14 is sucked and sent to the silica densitometer C15 via the switching valve CV11 and the pump P1.
- the silica concentration meter C15 measures the silica concentration of pure water and outputs the measured value to the control device 12.
- the pure water used for the measurement is discharged as a waste liquid to a waste liquid tank (not shown).
- the control device 12 compares the measured value measured by the silica concentration meter C15 with the silica concentration (known) of pure water, and determines whether or not the difference is within a predetermined allowable range. When the difference is out of the permissible range, the control device 12 notifies the observer of an abnormality in the measurement accuracy of the silica densitometer C15 by the notification means.
- control device 12 may repeat and continuously perform the water quality inspection with the water quality inspection of the water supplied through the pipe L4 and the water quality inspection of the pure water supplied through the pipe L3 as one set.
- the water quality inspection of the pure water supplied through the pipe L3 may be continuously performed, and the water quality inspection of the water supplied through the pipe L4 may be performed at a longer time interval than the water quality inspection of the pure water.
- the control device 12 continuously and continuously inspects the water quality of pure water and the like, and intermittently (for example, every day) inspects the measurement accuracy with the standard silica solution and pure water. The switching of the liquid to be inspected can be smoothly switched by the control of the control device 12 as described above.
- the accuracy of the water quality inspection can be maintained by performing the measurement accuracy inspection of the silica concentration C15 without hindering the production of pure water.
- the measurement accuracy of the silica concentration C15 is lowered, maintenance can be performed promptly and the accurate water quality inspection can be restarted.
- FIG. 3 is a flowchart showing an example of the pure water production process according to the embodiment.
- the control device 12 acquires the water storage level of pure water measured by the level meter C1 in FIG. 1 at predetermined time intervals, and the digital indicator controller 11 determines the flow rate measured by the flow meter C4 in FIG. Get at the time interval of.
- the control device 12 controls the solenoid valves EV1 to EV3 to be closed.
- the control device 12 has stopped the water quality inspection process by the continuous analyzer 10. For example, the control device 12 stops the pump P1 (FIG. 2).
- the control device 12 performs the following processing in a predetermined control cycle.
- the control device 12 determines whether or not the water storage level of the pure water storage tank 1 is low based on the water storage level measured by the level meter C1 (step S11). For example, if the latest water storage level acquired from the level meter C1 is equal to or less than a predetermined first threshold value, the control device 12 determines that the water storage level is low, and if it exceeds the first threshold value, it determines that the water storage level is not low. To do. When the water storage level is not low (step S11; No), it is not necessary to produce pure water because a sufficient amount of pure water is stored in the pure water storage tank 1. The control device 12 repeats the process of step S11 in the initial state.
- step S11 When the water storage level is low (step S11; Yes), the control device 12 starts the production of pure water.
- the control device 12 performs a purge process (step S12).
- the purge treatment is a treatment for discharging water or the like staying in the pure water production management system 100.
- the control device 12 closes the solenoid valve EV1 and opens the solenoid valve EV2.
- the control device 12 instructs the digital indicator controller 11 to open the solenoid valve EV3.
- the digital indicator controller 11 opens the solenoid valve EV3.
- the control device 12 executes a water quality inspection before supplying pure water to the pure water storage tank 1 (step S13).
- the control device 12 closes the solenoid valve EV12 and opens the solenoid valve EV11.
- the control device 12 starts the water quality inspection process by the continuous analyzer 10.
- the control device 12 controls the switching valve CV11 to communicate the pipe L3 and the pipe L13 to start the pump P1.
- the water supplied to the sand filtration tower 4 passes through the pipe L6, the activated carbon tower 3, the pipe L5, the pure water production device 2, the pipe L1, and the pipe L3, and the electric conductivity meter C11 included in the continuous analyzer 10 is provided.
- PH meter C12, silica concentration meter C15 Each instrument measures the water quality and outputs the measurement result to the control device 12.
- the control device 12 compares the electric conductivity, PH, and silica concentration with the respective reference values to determine whether or not the water quality is appropriate.
- the control device 12 determines that the water quality is not appropriate. When the difference between each measured value and each reference value is within a predetermined allowable range, the control device 12 determines that the water quality is appropriate.
- step S14 When it is determined that the water quality is not appropriate (step S14; No), the control device 12 gives an alarm to the observer through the communication means that the water quality of the pure water produced by the pure water production device 2 does not meet the standard. Notify (step S23). For example, the control device 12 displays on the monitor a message recommending the regeneration of the ion exchange resin or the replacement of the ion exchange resin, as well as the electric conductivity, PH, and silica concentration of pure water. Next, the control device 12 stops the water quality inspection (step S24). The control device 12 stops the pump P1 and closes the solenoid valve EV3.
- the control device 12 When it is determined that the water quality is appropriate (step S14; Yes), the control device 12 starts supplying pure water to the pure water storage tank 1 (step S15). Specifically, the control device 12 controls the solenoid valve EV1 to open. The control device 12 instructs the digital indicator controller 11 to control the opening degree of the solenoid valve EV3. The digital indicator controller 11 controls the opening degree of the solenoid valve EV3 so that the flow rate measured by the flow meter C4 becomes a predetermined flow rate. As a result, the water supplied to the sand filtration tower 4 is adjusted to an appropriate flow rate by the solenoid valve EV3, and passes through the pipe L6, the activated carbon tower 3, the pipe L5, the pure water production device 2, and the pipe L1 to store pure water. It is supplied to the tank 1.
- the control device 12 continuously inspects the water quality of pure water (step S16). For example, the control device 12 controls the switching valve CV11 so as to communicate the pipe L3 and the pipe L13, and starts the pump P1 only for a time during which the amount of pure water required for the water quality inspection can be taken in. When the control device 12 takes in pure water, the control device 12 stops the pump P1 until the inspection is completed. Next, when the predetermined time elapses, the pump P1 is started again to inspect the water quality of pure water. Alternatively, the control device 12 may control the switching valve CV12 so as to communicate the pipe L4 and the pipe L13, start the pump P1 for a predetermined time, and inspect the water quality of the water passing through the activated carbon tower 3. As described with reference to FIG.
- the water quality inspection can be performed by switching between the pure water produced by the pure water producing apparatus 2 and the water treated by the pure water producing apparatus 2. Further, the measurement accuracy of the silica densitometer C15 can be inspected by selecting either a silica solution having a known concentration or pure water that has been inspected. Which of these processes is to be performed can be arbitrarily set.
- the observer sets the cycle for inspecting the water quality of pure water and water and the cycle for inspecting the measurement accuracy of the silica concentration meter C15 in the control device 12.
- the control device 12 switches the inspection target according to the cycle set by the observer, and repeatedly performs the water quality inspection and the like.
- control device 12 inspects the water quality of the pure water produced by the pure water production device 2 once every 30 minutes.
- the control device 12 performs both the water quality inspection of the pure water produced by the pure water production device 2 and the water on the outlet side of the activated carbon tower 3 once every 30 minutes.
- step S17 Every time the water quality of pure water is inspected, the control device 12 determines whether or not the water quality is appropriate in the same manner as in step S14 (step S17). When the water quality is not appropriate (step S17; No), the control device 12 closes the solenoid valve EV1 and stops the supply of pure water to the pure water storage tank 1 (step S22). Next, the control device 12 notifies the observer of an alarm that the water quality of pure water does not meet the standard through the notification means (step S23). Next, the control device 12 stops the water quality inspection (step S24). The control device 12 stops the pump P1 and closes the solenoid valve EV3.
- step S17 the control device 12 determines whether the water storage level of the water storage tank is high (step S18). For example, if the latest water storage level acquired from the level meter C1 is equal to or higher than a predetermined second threshold value (second threshold value> first threshold value), the control device 12 determines that the water storage level is high and falls below the second threshold value. If so, it is judged that it is not high. When the water storage level is not high (step S18; No), the control device 12 repeats the process from step S16 while continuing to supply pure water to the pure water storage tank 1.
- second threshold value> first threshold value a predetermined second threshold value
- step S18 When the water storage level is high (step S18; Yes), the control device 12 stops the supply of pure water because a sufficient amount of pure water is stored in the pure water storage tank 1 (step S19). Specifically, the control device 12 closes the solenoid valve EV3 and then closes the solenoid valve EV1. The control device 12 stops the water quality inspection (step S20). The control device 12 stops the pump P1.
- control device 12 analyzes the measured values of electrical conductivity, PH, and silica concentration (step S21). For example, the control device 12 analyzes the relationship between the elapsed time since the last time the ion exchange resin was regenerated or exchanged or the amount of pure water produced, and the measured values of electrical conductivity, pH, and silica concentration. Based on the trends of electrical conductivity, PH, and silica concentration, the control device 12 predicts the replacement time of the ion exchange resin and the like.
- each graph of electric conductivity, PH, and silica concentration is extrapolated, and the electric conductivity and PH are obtained.
- the time when any of the values of the silica concentration exceeds the threshold set for each is predicted as the time for exchanging the ion exchange resin or the time for regenerating the ion exchange resin.
- control device 12 may analyze changes in the electrical conductivity, pH, and silica concentration of the water collected at the outlet side of the activated carbon tower 3 and use it for predicting the replacement time of the ion exchange resin. For example, when the water quality of the water collected at the outlet side of the activated carbon tower 3 is worse than before, when extrapolating the graph of the electric conductivity, pH, and silica concentration of pure water illustrated above, the slope is calculated. The water quality may be increased according to the degree of deterioration to predict the replacement time of the ion exchange resin.
- control device 12 replaces the ion exchange resin based on the difference between the result of the water quality test of the water collected at the outlet side of the activated carbon tower 3 and the result of the water quality test of the pure water produced by the pure water production device 2. You may predict the time and so on. For example, if the difference between the two in terms of silica concentration is within a predetermined range, it may be determined that the adsorption capacity of silica is reduced, and a predetermined period may be predicted as the replacement time of the ion exchange resin.
- the control device 12 is an ion exchange resin based on the change in the difference between the result of the water quality test of the water collected at the outlet side of the activated carbon tower 3 and the result of the water quality test of the pure water produced by the pure water production device 2. You may predict the replacement time of the. For example, the difference between the two regarding the silica concentration immediately after the exchange of the ion exchange resin and the difference between the two regarding the latest silica concentration are calculated, and if this difference is larger than a predetermined value, the silica adsorption capacity decreases. It may be determined that the ion exchange resin is replaced and the predetermined period ahead may be predicted as the replacement time of the ion exchange resin. The control device 12 notifies the observer of the predicted replacement time and regeneration time of the ion exchange resin by using the notification means.
- the water storage level of the pure water storage tank 1 is visually confirmed, and the amount of water sent is adjusted by manually adjusting the valve corresponding to the solenoid valve EV3 in FIG.
- the water quality is manually inspected.
- the pure water production management system 100 of the present embodiment the water quality of the pure water produced by the pure water production apparatus 2 can be continuously monitored. As a result, even if the water quality of pure water suddenly fluctuates due to deterioration of the ion exchange resin or the like, the fluctuation can be quickly detected and dealt with.
- the change in the water storage level in the pure water storage tank 1 is monitored, and when the amount of pure water stored is insufficient, the production of pure water is automatically started, and when the amount of pure water stored reaches the maximum value, it is automatically started. Stop the production of pure water.
- the speed of supplying pure water to the pure water storage tank 1 can be automatically controlled to an appropriate amount according to the performance of the pure water production apparatus 2 and the like. With these functions, according to the present embodiment, it is possible to automate the production of pure water whose quality is guaranteed.
- the pure water production management system 100 illustrated in FIG. 1 it is possible to automate only the water quality inspection while manually controlling the production of pure water as in the conventional case. Specifically, when the measured value of the level meter C1 becomes a low water storage level, the user closes the manual valves V1, V2, V3, V8, and V9. Then, the solenoid valve E2 and the manual valve V10 are opened. When the purging process is performed while maintaining this state for a predetermined time, the solenoid valve E2 is closed and the control device 12 is instructed to start the water quality inspection. The control device 12 inspects the water quality of the pure water produced by the pure water production apparatus 2 in the same manner as in step S13 of FIG. 3, and notifies the user of the inspection result by using the notification means.
- the user opens the manual valve V3.
- the user adjusts the opening degree of the manual valve V10 so that the amount of pure water supplied to the pure water storage tank 1 is, for example, 5 tons / hour or less while observing the measured value of the flow meter C4.
- the pure water production management system 100 can be manually operated to produce pure water with guaranteed quality.
- the measurement and control of silica concentration is aimed at producing pure water and applying it to water quality control, but in addition, washing water of the treatment liquid in the aircraft surface treatment line and treatment liquid (for example, chromate treatment liquid) ) Can also be applied to control the silica concentration.
- FIG. 4 is a diagram showing an example of the hardware configuration of the control device according to the embodiment.
- the computer 900 includes a CPU 901, a main storage device 902, an auxiliary storage device 903, an input / output interface 904, and a communication interface 905.
- the control device 12 described above is mounted on the computer 900.
- Each of the above-mentioned functions is stored in the auxiliary storage device 903 in the form of a program.
- the CPU 901 reads the program from the auxiliary storage device 903, expands it to the main storage device 902, and executes the above processing according to the program.
- the CPU 901 reserves a storage area in the main storage device 902 according to the program.
- the CPU 901 secures a storage area for storing the data being processed in the auxiliary storage device 903 according to the program.
- a program for realizing all or a part of the functions of the control device 12 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read by the computer system and executed. May be performed by.
- the term "computer system” as used herein includes hardware such as an OS and peripheral devices.
- the "computer system” shall also include a homepage providing environment (or display environment) if a WWW system is used.
- the "computer-readable recording medium” refers to a portable medium such as a CD, DVD, or USB, or a storage device such as a hard disk built in a computer system.
- the distributed computer 900 may expand the program to the main storage device 902 and execute the above processing.
- the above-mentioned program may be for realizing a part of the above-mentioned functions, and may further realize the above-mentioned functions in combination with a program already recorded in the computer system.
- the pure water production management system (100) is connected to a pure water production apparatus (2), an analyzer (10) for performing a water quality inspection, and an outlet side of the production apparatus.
- a first valve (EV1) provided in the first pipe (L1) and controlling the amount of pure water supplied to the water storage tank, and a first valve (EV1) branched from the first pipe (L1) and connected to the analyzer.
- the control device (12) includes two pipes (L3) and a control device (12), while the control device (12) supplies pure water from the manufacturing device (2) to the water storage tank (1).
- the analyzer (10) is controlled to perform a water quality inspection of the pure water produced by the manufacturing apparatus (2) flowing in through the second pipe (L3), and as a result of the water quality inspection, the water quality of the pure water is obtained.
- the first valve (EV1) is opened, and when the water quality of the pure water does not meet the predetermined criteria, the first valve is closed.
- the pure water production management system (100) the water quality of the produced pure water is inspected in parallel while the pure water is being supplied, and when the water quality meets the standard, the pure water is supplied. continue. As a result, the quality of the pure water supplied to the water storage tank (1) can be ensured. By controlling the control device (12), the water quality inspection can be continuously performed.
- the pure water production control system (100) is the pure water production control system of (1), and is the third pipe (L5) connected to the inlet side of the production apparatus (2). , L6) is further provided with a third valve (EV3) for controlling the amount of water supplied to the manufacturing apparatus (2).
- a third valve (EV3) for controlling the amount of water supplied to the manufacturing apparatus (2).
- the water quality of the pure water produced by the manufacturing apparatus (2) is inspected, and when the water quality meets the standard, the supply of pure water is started. As a result, the quality of pure water supplied to the water storage tank (1) can be ensured.
- the pure water production control system (100) is the pure water production control system of (2), and is a discharge pipe (2) connected to the outlet side of the production apparatus (2).
- a second valve (EV2) provided in L0) is further provided, and the control device (12) is used when the manufacturing device (2) starts supplying pure water to the water storage tank (1).
- the third valve (EV3) is opened, the second valve (EV2) is opened, the second valve (EV2) is closed after a predetermined time has elapsed, and then the water quality by the analyzer (10) is used. Start the inspection.
- the water quality of the pure water produced by the manufacturing apparatus (2) can be inspected after the water accumulated in the manufacturing apparatus (2) is discharged before the start of the supply of pure water. It can be performed.
- the pure water production management system (100) is the pure water production management system of (2) to (3), and the control device (12) is the third pipe (L5). , L6), the opening degree of the third valve (EV3) is controlled so that the flow rate of water supplied to the manufacturing apparatus (2) becomes a predetermined flow rate.
- the control device (12) is the third pipe (L5). , L6), the opening degree of the third valve (EV3) is controlled so that the flow rate of water supplied to the manufacturing apparatus (2) becomes a predetermined flow rate.
- the pure water production management system (100) is the pure water production management system of (2) to (4), which is branched from the third pipe (L5, L6) and described above.
- a fourth pipe (L4) connected to the analyzer (10) is further provided, and the analyzer (10) inspects the quality of water flowing in through the fourth pipe (L4).
- the water quality of the water flowing into the manufacturing apparatus (2) can be inspected.
- the water quality of the water that the manufacturing apparatus (2) must treat can be grasped, and the pure water produced by the manufacturing apparatus (2) from the water can be grasped. It can be compared with water quality.
- the pure water production control system (100) is the pure water production control system of (1) to (5), and the control device (12) is the pure water production control system measured by the level meter.
- the pure water supply is started, and when the water storage level becomes equal to or higher than a predetermined second threshold value, the first valve is closed and the pure water is closed. Stop the supply of.
- the pure water production management system (100) according to the seventh aspect is the pure water production management system of (1) to (6), and the control device (12) has the water quality of the pure water. If the prescribed criteria are not met, an alarm is issued. As a result, it is possible to grasp that an abnormality has occurred in the quality of pure water.
- the pure water production control system (100) is the pure water production control system of (1) to (7), and the control device (12) obtains the result of the water quality inspection.
- the analysis is performed to predict at least one of the regeneration time and the replacement time of the ion exchange resin provided in the manufacturing apparatus (2).
- a new ion exchange resin can be prepared in advance, and an implementation plan or exchange plan for the regeneration process of the ion exchange resin can be formulated.
- the pure water production control system (100) is the pure water production control system of (2), and has a first bypass pipe (L2) that bypasses the first valve (EV1).
- the first manual valve (V3) provided in the first bypass pipe (L2), the third bypass pipe (L7) that bypasses the third valve (EV3), and the third bypass pipe (L7).
- a third manual valve (V10) provided is further provided.
- the pure water production management method is provided in a pure water production apparatus, an analyzer that executes a water quality inspection, and a first pipe connected to the outlet side of the production apparatus.
- the control device is said to be from the manufacturing device. While the pure water is being supplied to the water storage tank, the water quality inspection of the pure water produced by the manufacturing apparatus that flows in through the second pipe is repeatedly performed by controlling the analyzer, and as a result of the water quality inspection, the result of the water quality inspection is obtained.
- the first valve is opened, and when the water quality of the pure water does not meet the predetermined standard, the first valve is closed.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Treatment Of Water By Ion Exchange (AREA)
Abstract
水質が担保された純水の製造を自動化するシステムを提供する。 純水製造管理システムは、純水の製造装置と、水質の検査を実行する分析装置と、製造装置の出口側に接続された第1配管に設けられ貯水タンクへ供給する純水の量を制御する第1弁と、第1配管から分岐して分析装置へ接続する第2配管と、制御装置と、を備え、制御装置は、貯水タンクへの純水の供給を行っている間、分析装置を制御して第2配管を通じて流入する純水の水質検査を繰り返し実行し、水質検査の結果、純水の水質が所定の基準を満たす場合、第1弁を開とし、純水の水質が所定の基準を満たさない場合、第1弁を閉とする。
Description
本開示は、純水製造管理システムおよび純水製造管理方法に関する。
本願は、2019年10月4日に、日本に出願された特願2019-183622号に基づき優先権を主張し、その内容をここに援用する。
本願は、2019年10月4日に、日本に出願された特願2019-183622号に基づき優先権を主張し、その内容をここに援用する。
アルミ、チタンなどの航空機部材の表面処理を行うラインには、脱脂、洗浄、エッチング、皮膜などの処理工程が存在する。例えば、洗浄処理工程では、純水を用いて製品の洗浄を行うことがある。純水は、例えば、砂濾過塔、活性炭塔を通過させて、不純物や有機物を取り除いた水を、イオン交換樹脂装置に送り込み、イオン交換樹脂装置によって、水中のナトリウム、塩化物、シリカなどを取り除いて製造する。シリカは弱イオンのため、イオン交換樹脂に吸着しにくいという性質を有する。従って、イオン交換樹脂が、一旦、シリカを吸着しても、その後、強イオンを吸着して、代わりにシリカを放出することがある。すると、イオン交換樹脂を通過して製造された純水にシリカが多く含まれることになり、純水の品質が劣化する。このような現象が生じると、イオン交換樹脂の再生処理を行う必要がある。従来、純水の水質検査(例えば、シリカの含有量)は、手作業で行う場合が多い。
特許文献1には、半導体基板の表面洗浄工程における処理液中の各物質のアルカリ度を測定する方法が開示されている。特許文献1の測定方法では、処理液中の特定物質に反応して化学発光する発光物質を処理液に加えて発光させ、その発光光度に基づいて、特定物質のアルカリ度を測定する。
しかし、手作業による水質検査には時間が掛かり、連続して水質検査を繰り返すことにより、継続的に水質を監視することは難しい。そのため、シリカの急増などの水質の変化を速やかに検出できない可能性がある。
本開示は、上記課題を解決することができる純水製造管理システムおよび純水製造管理方法を提供する。
本開示の純水製造管理システムは、純水の製造装置と、水質の検査を実行する分析装置と、前記製造装置の出口側に接続された第1配管に設けられ、貯水タンクへ供給する純水の量を制御する第1弁と、前記第1配管から分岐して前記分析装置へ接続する第2配管と、制御装置と、を備え、前記制御装置は、前記製造装置から前記貯水タンクへの純水の供給を行っている間、前記分析装置を制御して前記第2配管を通じて流入する前記製造装置によって製造された純水の水質検査を繰り返し実行し、前記水質検査の結果、前記純水の水質が所定の基準を満たす場合、前記第1弁を開とし、前記純水の水質が所定の基準を満たさない場合、前記第1弁を閉とする。
本開示の純水製造管理方法では、純水の製造装置と、水質の検査を実行する分析装置と、前記製造装置の出口側に接続された第1配管に設けられ、貯水タンクへ供給する純水の量を制御する第1弁と、前記第1配管から分岐して前記分析装置へ接続する第2配管と、を備えるシステムにおいて、制御装置が、前記製造装置から前記貯水タンクへ純水の供給を行っている間、前記分析装置を制御して前記第2配管を通じて流入する前記製造装置によって製造された純水の水質検査を繰り返し実行し、前記水質検査の結果、前記純水の水質が所定の基準を満たす場合、前記第1弁を開とし、前記純水の水質が所定の基準を満たさない場合、前記第1弁を閉とする。
上述の純水製造管理システムおよび純水製造管理方法によれば、純水の製造過程における水質管理を自動化することができる。
<実施形態>
以下、一実施形態に係る純水製造管理システムについて、図1~図4を参照しながら説明する。
(システム構成)
図1は、一実施形態に係る純水製造管理システムの一例を示す構成図である。
純水製造管理システム100は、純水貯水タンク1と、純水製造装置2と、活性炭塔3と、砂濾過塔4と、連続分析装置10と、これらを接続する配管(L1~L7)、配管に設けられたバルブ(V1~V10、EV1~EV3、RV1~RV2)、計器(C1~C4)を含んで構成される。水は、紙面の右側から左側へ流れ、純水製造装置2で製造された純水は、純水貯水タンク1へ供給される。以下、水が流れる方向の上流側を単に上流側、水が流れる方向の下流側を単に下流側と記載する。砂濾過塔4へは水道水が供給される。砂濾過塔4は、水道水に含まれる不純物を除去する。不純物が除去された水は、砂濾過塔4を出ると、下流側に設けられた活性炭塔3へ供給される。砂濾過塔4と活性炭塔3は配管L6で接続されている。配管L6には、上流側から順に、手動弁V9、電磁弁EV3、手動弁V8が設けられている。手動弁V8、V9は所定の開度に調整されている。電磁弁EV3は、後述する流量計C4が計測する流量に基づいて、活性炭塔3へ流入する水が、所定の流量となるような開度に制御される。手動弁V9の上流側、手動弁V8の下流側では、電磁弁EV3をバイパスするように配管L7が接続されている。配管L7には、手動弁V10が設けられている。自動運転時、手動弁V10は、閉とされている。砂濾過塔4を出た水は、配管L6を通じて活性炭塔3へ流入する。
以下、一実施形態に係る純水製造管理システムについて、図1~図4を参照しながら説明する。
(システム構成)
図1は、一実施形態に係る純水製造管理システムの一例を示す構成図である。
純水製造管理システム100は、純水貯水タンク1と、純水製造装置2と、活性炭塔3と、砂濾過塔4と、連続分析装置10と、これらを接続する配管(L1~L7)、配管に設けられたバルブ(V1~V10、EV1~EV3、RV1~RV2)、計器(C1~C4)を含んで構成される。水は、紙面の右側から左側へ流れ、純水製造装置2で製造された純水は、純水貯水タンク1へ供給される。以下、水が流れる方向の上流側を単に上流側、水が流れる方向の下流側を単に下流側と記載する。砂濾過塔4へは水道水が供給される。砂濾過塔4は、水道水に含まれる不純物を除去する。不純物が除去された水は、砂濾過塔4を出ると、下流側に設けられた活性炭塔3へ供給される。砂濾過塔4と活性炭塔3は配管L6で接続されている。配管L6には、上流側から順に、手動弁V9、電磁弁EV3、手動弁V8が設けられている。手動弁V8、V9は所定の開度に調整されている。電磁弁EV3は、後述する流量計C4が計測する流量に基づいて、活性炭塔3へ流入する水が、所定の流量となるような開度に制御される。手動弁V9の上流側、手動弁V8の下流側では、電磁弁EV3をバイパスするように配管L7が接続されている。配管L7には、手動弁V10が設けられている。自動運転時、手動弁V10は、閉とされている。砂濾過塔4を出た水は、配管L6を通じて活性炭塔3へ流入する。
活性炭塔3は、水に含まれる有機物を除去する。有機物が除去された水は、活性炭塔3を出ると、下流側に設けられた純水製造装置2へ供給され、一部は、連続分析装置10へ供給される。活性炭塔3と純水製造装置2は配管L5で接続されている。配管L5には、上流側から順に、手動弁V6、流量計C4、手動弁V5が設けられている。手動弁V5、V6は所定の開度に調整されている。流量計C4は、連続分析装置10が備えるデジタル指示調節計11と接続されている。流量計C4は、配管L5を流れる水の流量を計測し、その計測値をデジタル指示調節計11へ出力する。デジタル指示調節計11は、流量計C4が計測した活性炭塔3の出口側の水の流量が、所定の流量となるように電磁弁EV3の開度を調整するように設定されている。配管L5における手動弁V5の下流側では、連続分析装置10へ供給する水が通る配管L4が分岐している。配管L4は、配管L5の手動弁V5の下流側と連続分析装置10を接続する。配管L4には、水の流れ方向に沿って順に、手動弁V7、減圧弁RV2、圧力計C3が設けられている。手動弁V7は、所定の開度に調整され、減圧弁RV2は、連続分析装置10へ供給される水の圧力を調整する。圧力計C3は、配管L4を流れる水の圧力を計測する。活性炭塔3を出た水の一部は、配管L4を通じて連続分析装置10へ送られる。連続分析装置10は、この水の水質の検査を行う。例えば、連続分析装置10は、送られてきた水の電気伝導率、PH、シリカ濃度を計測する。連続分析装置10が計測した値は、純水製造装置2が処理する水の水質を示すものとして記憶され、純水製造装置2で製造された純水の水質との比較や、イオン交換樹脂の再生や交換までの期間の予測などに用いられる。
活性炭塔3を出た水の大部分は、配管L5を通じて、純水製造装置2へ供給される。純水製造装置2は、イオン交換樹脂を備えている。純水製造装置2は、イオン交換樹脂によって、ナトリウムや塩酸などを取り除いた純水を製造し、その純水を純水貯水タンク1へ供給する。純水製造装置2と純水貯水タンク1は配管L1で接続されている。配管L1には、上流側から順に、手動弁V2、電磁弁EV1、手動弁V1が設けられている。手動弁V1、V2は所定の開度に調整されている。連続分析装置10は、電磁弁EV1の開閉を制御する。配管L1における手動弁V2の上流側、手動弁V1の下流側では、電磁弁EV1をバイパスするように配管L2が接続されている。配管L2には、手動弁V3が設けられている。自動運転時、手動弁V3は、閉とされている。配管L1における手動弁V2の上流側では、連続分析装置10へ供給する純水が通る配管L3が分岐している。配管L3は、配管L1の手動弁V2の上流側と連続分析装置10を接続する。配管L3には、水の流れ方向に沿って順に、手動弁V4、減圧弁RV1、圧力計C2が設けられている。手動弁V4は、所定の開度に調整され、減圧弁RV1は、連続分析装置10へ供給される純水の圧力を調整する。圧力計C2は、配管L3を流れる純水の圧力を計測する。純水製造装置2を出た純水の一部は、配管L3を通じて連続分析装置10へ送られる。連続分析装置10は、純水の水質の検査(電気伝導率、PH、シリカ濃度)を行う。純水貯水タンク1に貯留される純水の水質には、一定の基準が設けられている。連続分析装置10が計測した値がこの基準を満たさない場合、連続分析装置10は、電磁弁EV1を閉に制御して、純水貯水タンク1への純水の供給を停止する。連続分析装置10が計測した値は、純水製造装置2によって製造された純水の水質を示すものとして記憶され、イオン交換樹脂の再生や交換までの期間の予測などに用いられる。
配管L3における手動弁V4の上流側にて配管L0が分岐している。配管L0には、電磁弁EV2が設けられている。配管L0は、図示しない廃液タンクに接続している。連続分析装置10は、電磁弁EV2の開閉を制御する。例えば、純水の製造を開始するとき、連続分析装置10は、電磁弁EV2を開、電磁弁EV1を閉として、活性炭塔3やイオン交換樹脂に溜った水などを、配管L0を通じて排出してから純水の製造、供給を開始する。
純水貯水タンク1には、レベル計C1が設けられている。レベル計C1は、純水貯水タンク1の水位(貯水レベル)を計測し、計測した値を連続分析装置10へ出力する。連続分析装置10は、レベル計C1が計測した貯水レベルが低下して所定値(第1閾値)に達すると、電磁弁EV1~EV3や、連続分析装置10が内蔵する各種センサへの純水の流れを制御して、純水の製造を開始する。レベル計C1が計測した貯水レベルが上昇して所定値(第2閾値)に達すると、連続分析装置10は、純水の製造を停止する。純水製造管理システム100では、連続分析装置10が電磁弁EV1等の制御を行って、純水貯水タンク1に貯水された、水質基準を満たす純水の量が所定の範囲内に維持されるように自動運転を行う。次に連続分析装置10について説明する。
図2は、一実施形態に係る連続分析装置の一例を示す構成図である。
図2に、連続分析装置10の概略構成図を示す。連続分析装置10は、デジタル指示調節計11と、制御装置12と、標準シリカ容器13と、純水容器14と、ポンプP1と、切替弁CV11と、電磁弁EV11、EV12と、電気伝導率計C11、C13と、PH計C12、C14と、シリカ濃度計C15とを備える。電気伝導率計C11と、PH計C12と、電磁弁EV11は、配管L3に設けられている。電気伝導率計C13と、PH計C14と、電磁弁EV12は、配管L4に設けられている。配管L3,L4は、切替弁CV11へ接続されている。標準シリカ容器13と切替弁CV11は配管L11で接続され、純水容器14と切替弁CV11は配管L12で接続されている。切替弁CV11とポンプP1は配管L13で接続され、ポンプP1とシリカ濃度計C15は配管L14で接続されている。標準シリカ容器13には濃度既知のシリカ溶液が貯留され、純水容器14には水質検査済みの純水が貯留されている。純水容器14の純水のシリカ濃度は既知である。
図2に、連続分析装置10の概略構成図を示す。連続分析装置10は、デジタル指示調節計11と、制御装置12と、標準シリカ容器13と、純水容器14と、ポンプP1と、切替弁CV11と、電磁弁EV11、EV12と、電気伝導率計C11、C13と、PH計C12、C14と、シリカ濃度計C15とを備える。電気伝導率計C11と、PH計C12と、電磁弁EV11は、配管L3に設けられている。電気伝導率計C13と、PH計C14と、電磁弁EV12は、配管L4に設けられている。配管L3,L4は、切替弁CV11へ接続されている。標準シリカ容器13と切替弁CV11は配管L11で接続され、純水容器14と切替弁CV11は配管L12で接続されている。切替弁CV11とポンプP1は配管L13で接続され、ポンプP1とシリカ濃度計C15は配管L14で接続されている。標準シリカ容器13には濃度既知のシリカ溶液が貯留され、純水容器14には水質検査済みの純水が貯留されている。純水容器14の純水のシリカ濃度は既知である。
デジタル指示調節計11は、図1で例示した流量計C4が計測する流量が、所定の流量となるように電磁弁EV3の開度を調整する。所定の流量とは、純水製造装置2から純水貯水タンク1へ供給する純水の量が5トン/時間以下となるように設定された値である。従来より、純水貯水タンク1の水位を目視により確認し、この確認結果に基づいて、電磁弁EV3に相当するバルブの開度を手動で調節し、純水貯水タンク1へ供給する純水の量を制御することが多い。本実施形態では、デジタル指示調節計11により、純水製造装置2へ供給する水の流量、純水貯水タンク1へ供給する純水の流量を自動的に調整することができる。
制御装置12は、図1に示す電磁弁EV1~EV3に加え、ポンプP1と、切替弁CV11を制御する。制御装置12は、電気伝導率計C11、C13と、PH計C12、C14、シリカ濃度計C15が計測した計測値を取得する。制御装置12は、シリカ濃度計C15等から取得した計測値に基づいて、水質の分析等を行う。制御装置12は、モニタ、ランプ、ブザー等の通知手段と接続されていて、純水の水質に異常があったり、シリカ濃度計C15の計測精度に異常が有ったりすると、それらの異常の発生を、通知手段を通じて監視員に通知する。制御装置12による電磁弁EV1~EV3の制御については、次に図3を用いて説明する。ここでは、図2を参照して、水質の検査処理について説明する。
(水質検査の処理)
例えば、活性炭塔3を出た水の一部は、配管L4を通って連続分析装置10へ送られる。この水の水質検査を行う場合、制御装置12は、電磁弁EV12を開とし、電磁弁EV11を閉とし、配管L4と配管L13が連通するように切替弁CV11を制御する。制御装置12は、ポンプP1を動作させる。すると、配管L4へ送出された水は、配管L4の電磁弁EV12を通過して、電気伝導率計C13とPH計C14へ送られる。電気伝導率計C13は、水の電気伝導率を計測し、計測した値を制御装置12へ出力する。PH計C14は、水のPHを計測し、計測した値を制御装置12へ出力する。さらに水は、切替弁CV11とポンプP1を経由してシリカ濃度計C15へ送られる。シリカ濃度計C15は、水のシリカ濃度を計測し、計測した値を制御装置12へ出力する。計測に用いた水は、廃液として図示しない廃液タンクへ排出される。
例えば、活性炭塔3を出た水の一部は、配管L4を通って連続分析装置10へ送られる。この水の水質検査を行う場合、制御装置12は、電磁弁EV12を開とし、電磁弁EV11を閉とし、配管L4と配管L13が連通するように切替弁CV11を制御する。制御装置12は、ポンプP1を動作させる。すると、配管L4へ送出された水は、配管L4の電磁弁EV12を通過して、電気伝導率計C13とPH計C14へ送られる。電気伝導率計C13は、水の電気伝導率を計測し、計測した値を制御装置12へ出力する。PH計C14は、水のPHを計測し、計測した値を制御装置12へ出力する。さらに水は、切替弁CV11とポンプP1を経由してシリカ濃度計C15へ送られる。シリカ濃度計C15は、水のシリカ濃度を計測し、計測した値を制御装置12へ出力する。計測に用いた水は、廃液として図示しない廃液タンクへ排出される。
制御装置12は、同様の制御を行って、純水製造装置2が製造した純水の水質検査を行う。つまり、制御装置12は、電磁弁EV11を開とし、電磁弁EV12を閉とし、配管L3と配管L13が連通するように切替弁CV11を制御する。制御装置12は、ポンプP1を動作させる。すると、配管L3へ送出された純水は、配管L3の電磁弁EV11を通過して、電気伝導率計C11とPH計C12へ送られる。電気伝導率計C11は、純水の電気伝導率を計測し、計測した値を制御装置12へ出力する。PH計C12は、純水のPHを計測し、計測した値を制御装置12へ出力する。純水は、切替弁CV11とポンプP1を経由してシリカ濃度計C15へ送られる。シリカ濃度計C15は、純水のシリカ濃度を計測し、計測した値を制御装置12へ出力する。計測に用いた純水は、廃液として図示しない廃液タンクへ排出される。
さらに連続分析装置10は、シリカ濃度計C15の計測精度を検査する機構を有している。例えば、連続分析装置10は、シリカ濃度が既知の標準シリカ溶液や純水をシリカ濃度計C15へ供給し、それらの液が供給されたときのシリカ濃度計C15の計測値に基づいて、シリカ濃度計C15の計測精度を検査する。
例えば、標準シリカ溶液を用いてシリカ濃度計C15の計測精度を検査する場合、制御装置12は、電磁弁EV11と電磁弁EV12を閉とし、配管L11と配管L13が連通するように切替弁CV11を制御する。そして、制御装置12は、ポンプP1を動作させる。すると、標準シリカ容器13の標準シリカ溶液が吸引され、標準シリカ溶液は、切替弁CV11とポンプP1を経由してシリカ濃度計C15へ送られる。シリカ濃度計C15は、標準シリカ溶液のシリカ濃度を計測し、計測した値を制御装置12へ出力する。計測に用いた標準シリカ溶液は、廃液として図示しない廃液タンクへ排出される。制御装置12は、シリカ濃度計C15が計測した計測値と、既知のシリカ濃度とを比較して、その差が所定の許容範囲内かどうかを判定する。差が許容範囲外の場合、制御装置12は、通知手段によって、シリカ濃度計C15の計測精度の異常を監視員に通知する。
例えば、純水を用いてシリカ濃度計C15の計測精度を検査する場合、制御装置12は、電磁弁EV11と電磁弁EV12を閉とし、配管L12と配管L13が連通するように切替弁CV11を制御する。そして、制御装置12は、ポンプP1を動作させる。すると、純水容器14の純水が吸引され、切替弁CV11とポンプP1を経由してシリカ濃度計C15へ送られる。シリカ濃度計C15は、純水のシリカ濃度を計測し、計測した値を制御装置12へ出力する。計測に用いた純水は、廃液として図示しない廃液タンクへ排出される。制御装置12は、シリカ濃度計C15が計測した計測値と、純水のシリカ濃度(既知)とを比較して、その差が所定の許容範囲内かどうかを判定する。差が許容範囲外の場合、制御装置12は、通知手段によって、シリカ濃度計C15の計測精度の異常を監視員に通知する。
例えば、制御装置12は、配管L4を通じて供給される水の水質検査と、配管L3を通じて供給される純水の水質検査とを1セットとして、この水質検査を繰り返し、連続して行ってもよいし、配管L3を通じて供給される純水の水質検査を連続して行い、配管L4を通じて供給される水の水質検査を、純水の水質検査よりも長い時間間隔で行ってもよい。制御装置12は、純水などの水質検査等を継続して連続的に行い、標準シリカ溶液や純水による計測精度の検査を間欠的(例えば、1日ごと)に行う。検査対象液の切り替えは、上記のように制御装置12の制御によってスムーズに切り替えることができる。従って、純水の製造を阻害することなく、シリカ濃度C15の計測精度検査を行って、水質検査の精度を維持することができる。シリカ濃度C15の計測精度が低下した場合には、速やかにメンテナンスを行って、精度のよい水質検査を再開することができる。
(純水製造処理)
次に図3を参照して、純水製造管理システム100の制御の一例について説明する。
図3は、一実施形態に係る純水製造処理の一例を示すフローチャートである。
前提として、制御装置12は、図1のレベル計C1の計測した純水の貯水レベルを所定の時間間隔で取得し、デジタル指示調節計11は、図1の流量計C4の計測する流量を所定の時間間隔で取得する。初期状態として、純水製造管理システム100は、純水の製造を行っていないとする。このとき、制御装置12は、電磁弁EV1~EV3を閉に制御している。制御装置12は、連続分析装置10による水質検査処理を停止している。例えば、制御装置12は、ポンプP1(図2)を停止している。制御装置12は、以下の処理を所定の制御周期で行う。
次に図3を参照して、純水製造管理システム100の制御の一例について説明する。
図3は、一実施形態に係る純水製造処理の一例を示すフローチャートである。
前提として、制御装置12は、図1のレベル計C1の計測した純水の貯水レベルを所定の時間間隔で取得し、デジタル指示調節計11は、図1の流量計C4の計測する流量を所定の時間間隔で取得する。初期状態として、純水製造管理システム100は、純水の製造を行っていないとする。このとき、制御装置12は、電磁弁EV1~EV3を閉に制御している。制御装置12は、連続分析装置10による水質検査処理を停止している。例えば、制御装置12は、ポンプP1(図2)を停止している。制御装置12は、以下の処理を所定の制御周期で行う。
まず、制御装置12が、レベル計C1が計測した貯水レベルに基づいて、純水貯水タンク1の貯水レベルが低かどうかを判定する(ステップS11)。例えば、レベル計C1から取得した最新の貯水レベルが所定の第1閾値以下であれば、制御装置12は、貯水レベルが低と判定し、第1閾値を上回っていれば、低ではないと判定する。貯水レベルが低ではない場合(ステップS11;No)、純水貯水タンク1には十分な量の純水が貯水されている為、純水を製造する必要が無い。制御装置12は、初期状態のまま、ステップS11の処理を繰り返す。
貯水レベルが低の場合(ステップS11;Yes)、制御装置12は、純水の製造を開始する。まず、制御装置12は、パージ処理を行う(ステップS12)。パージ処理とは、純水製造管理システム100内に滞留した水などを排出する処理である。制御装置12は、電磁弁EV1を閉、電磁弁EV2を開とする。制御装置12は、デジタル指示調節計11に電磁弁EV3の開を指示する。デジタル指示調節計11は、電磁弁EV3の開にする。これにより、砂濾過塔4に供給された水は、配管L6、活性炭塔3、配管L5、純水製造装置2、配管L1、配管L3、配管L0、を通って、図示しない廃液タンクへ排出される。この過程で、純水製造装置2、活性炭塔3、各配管に溜った水が排出される。所定時間が経過すると、制御装置12は、純水貯水タンク1へ純水を供給する前に、水質検査を実行する(ステップS13)。制御装置12は、電磁弁EV12を閉、電磁弁EV11を開とする。制御装置12は、連続分析装置10による水質検査処理を開始する。例えば、制御装置12は、切替弁CV11を制御して、配管L3と配管L13を連通させ、ポンプP1を起動する。これにより、砂濾過塔4に供給された水は、配管L6、活性炭塔3、配管L5、純水製造装置2、配管L1、配管L3を通って、連続分析装置10が備える電気伝導率計C11、PH計C12、シリカ濃度計C15へと送られる。各計器は、水質の計測を行い、計測結果を制御装置12へ出力する。制御装置12は、電気伝導率、PH,シリカ濃度をそれぞれの基準値と比較して水質が適切か否かを判定する。各計測値とそれぞれの基準値との差が所定の許容範囲を超える場合、制御装置12は、水質は適切ではないと判定する。各計測値とそれぞれの基準値との差が所定の許容範囲内の場合、制御装置12は、水質は適切であると判定する。
水質が適切ではないと判定した場合(ステップS14;No)、制御装置12は、通信手段を通じて、純水製造装置2によって製造された純水の水質が基準を満たさない旨の警報を監視員に通知する(ステップS23)。例えば、制御装置12は、純水の電気伝導率、PH、シリカ濃度とともに、イオン交換樹脂の再生やイオン交換樹脂の交換を勧めるメッセージをモニタに表示する。次に制御装置12は、水質検査を停止する(ステップS24)。制御装置12は、ポンプP1を停止し、電磁弁EV3を閉とする。
水質が適切であると判定した場合(ステップS14;Yes)、制御装置12は、純水貯水タンク1への純水の供給を開始する(ステップS15)。具体的には、制御装置12は、電磁弁EV1を開に制御する。制御装置12は、デジタル指示調節計11に電磁弁EV3の開度制御を指示する。デジタル指示調節計11は、流量計C4が計測する流量が、所定の流量となるように電磁弁EV3の開度を制御する。これにより、砂濾過塔4に供給された水は、電磁弁EV3で適切な流量に調整され、配管L6、活性炭塔3、配管L5、純水製造装置2、配管L1を通って、純水貯水タンク1へ供給される。
制御装置12は、純水の水質検査を継続して行う(ステップS16)。例えば、制御装置12は、配管L3と配管L13を連通させるよう切替弁CV11を制御し、水質検査に必要な量の純水を取り込むことができる時間だけポンプP1を起動する。制御装置12は、純水を取り込むと検査が終了するまでポンプP1を停止する。次に所定時間が経過すると、再びポンプP1を起動し、純水の水質検査を行う。あるいは、制御装置12は、配管L4と配管L13を連通させるよう切替弁CV12を制御し、ポンプP1を所定時間だけ起動して、活性炭塔3を通過した水の水質検査を行ってもよい。図2を用いて説明したように、連続分析装置10では、純水製造装置2が製造した純水、純水製造装置2が処理する水を切り替えて水質検査を行うことができる。さらに濃度既知のシリカ溶液、検査済みの純水の何れかを選択してシリカ濃度計C15の計測精度の検査を行うことができる。これらの何れの処理を行うかは任意に設定可能である。監視員は、純水および水の水質検査を行う周期、シリカ濃度計C15の計測精度検査を行う周期を制御装置12に設定する。制御装置12は、監視員によって設定された周期に従って検査対象を切り替えて、繰り返し水質検査等を行う。例えば、制御装置12は、30分に1回ずつ、純水製造装置2が製造した純水の水質検査を行う。例えば、制御装置12は、30分に1回ずつ、純水製造装置2が製造した純水と活性炭塔3の出口側の水の水質検査の両方を行う。
純水の水質検査を行うたびに、制御装置12は、ステップS14と同様にして、水質が適切か否かを判定する(ステップS17)。水質が適切ではない場合(ステップS17;No)、制御装置12は、電磁弁EV1を閉として、純水貯水タンク1への純水の供給を停止する(ステップS22)。次に制御装置12は、通知手段を通じて、純水の水質が基準を満たさない旨の警報を監視員に通知する(ステップS23)。次に制御装置12は、水質検査を停止する(ステップS24)。制御装置12は、ポンプP1を停止し、電磁弁EV3を閉とする。
水質が適切な場合(ステップS17;Yes)、制御装置12は、貯水タンクの貯水レベルが高かどうかを判定する(ステップS18)。例えば、レベル計C1から取得した最新の貯水レベルが所定の第2閾値(第2閾値>第1閾値)以上であれば、制御装置12は、貯水レベルが高と判定し、第2閾値を下回っていれば、高ではないと判定する。貯水レベルが高ではない場合(ステップS18;No)、制御装置12は、純水貯水タンク1への純水の供給を継続しつつ、ステップS16からの処理を繰り返す。
貯水レベルが高の場合(ステップS18;Yes)、純水貯水タンク1には十分な量の純水が貯水されている為、制御装置12は、純水の供給を停止する(ステップS19)。具体的には、制御装置12は、電磁弁EV3を閉とし、次に電磁弁EV1を閉とする。制御装置12は、水質検査を停止する(ステップS20)。制御装置12は、ポンプP1を停止する。
次に制御装置12は、電気伝導率、PH、シリカ濃度の計測値を分析する(ステップS21)。例えば、制御装置12は、前回、イオン交換樹脂の再生や交換を行ってからの経過時間または製造した純水の量と、電気伝導率、PH、シリカ濃度の計測値の関係を分析する。電気伝導率、PH、シリカ濃度のトレンドに基づいて、制御装置12は、イオン交換樹脂の交換時期などを予測する。例えば、制御装置12は、横軸を時間、縦軸を電気伝導率、PH、シリカ濃度とする3つのグラフにおいて、電気伝導率、PH、シリカ濃度の各グラフを外挿し、電気伝導率、PH、シリカ濃度の値の何れかがそれぞれに対して設定された閾値を超える時期をイオン交換樹脂の交換時期、またはイオン交換樹脂の再生時期として予測する。
制御装置12は、同様に活性炭塔3の出口側で採取した水の電気伝導率、PH、シリカ濃度の変化を分析し、イオン交換樹脂の交換時期などの予測に用いてもよい。例えば、活性炭塔3の出口側で採取した水の水質が以前より悪化している場合、上で例示した純水の電気伝導率、PH、シリカ濃度のグラフを外挿する際に、その傾きを水質の悪化の程度に応じて上昇させて、イオン交換樹脂の交換時期などを予測するようにしてもよい。あるいは、制御装置12は、活性炭塔3の出口側で採取した水の水質検査の結果と純水製造装置2が製造した純水の水質検査の結果との差に基づいて、イオン交換樹脂の交換時期などを予測してもよい。例えば、シリカ濃度についての両者の差が所定の範囲内であれば、シリカの吸着能力が低下していると判断し、所定期間先をイオン交換樹脂の交換時期として予測してもよい。あるいは、制御装置12は、活性炭塔3の出口側で採取した水の水質検査の結果と純水製造装置2が製造した純水の水質検査の結果との差の変化に基づいて、イオン交換樹脂の交換時期などを予測してもよい。例えば、イオン交換樹脂の交換直後におけるシリカ濃度についての両者の差と、最新のシリカ濃度についての両者の差の差分を計算し、この差分が所定値よりも大きければ、シリカの吸着能力が低下していると判断し、所定期間先をイオン交換樹脂の交換時期として予測してもよい。制御装置12は、予測したイオン交換樹脂の交換時期や再生時期を、通知手段を用いて監視員に通知する。
従来より、純水貯水タンク1の貯水レベルを目視で確認し、図1の電磁弁EV3に相当するバルブを手動で調節することにより送水量を調整して純水を製造し、製造した純水については、手作業によって水質検査を行うことが多い。これに対し、本実施形態の純水製造管理システム100によれば、純水製造装置2が製造する純水の水質の監視を連続的に継続して行うことができる。これにより、イオン交換樹脂の劣化などによって純水の水質に急激な変動が起こったとしても、その変動を速やかに検出し、対処することができる。純水貯水タンク1における貯水レベルの変化を監視し、純水の貯水量が足りなくなると、自動的に純水の製造を開始し、純水の貯水量が最大値に達すると、自動的に純水の製造を停止する。デジタル指示調節計11を導入することにより、純水貯水タンク1への純水の供給スピードを、純水製造装置2の性能などに応じて適切な量に自動的に制御することができる。これらの機能により、本実施形態によれば、品質が担保された純水の製造を自動化することができる。
図1に例示する純水製造管理システム100では、従来通り手動による純水の製造制御を行いつつ、水質検査だけを自動化することも可能である。具体的には、レベル計C1の計測値が貯水レベル低となると、ユーザは、手動弁V1、V2、V3、V8、V9を閉とする。そして、電磁弁E2と手動弁V10を開とする。所定時間この状態を保ってパージ処理を行うと、電磁弁E2を閉とし、制御装置12へ水質検査の開始を指示する。
制御装置12は、図3のステップS13と同様にして、純水製造装置2が製造した純水の水質検査を行い、通知手段を用いて検査結果をユーザに通知する。水質が適切な場合、ユーザは、手動弁V3を開とする。ユーザは、流量計C4の計測値を見ながら、純水貯水タンク1への純水の供給量が、例えば、5トン/時間以下となるように手動弁V10の開度を調節する。これにより、例えば、電磁弁EV1、EV3が故障したときでも、手動で純水製造管理システム100を運転し、品質が担保された純水を製造することができる。
制御装置12は、図3のステップS13と同様にして、純水製造装置2が製造した純水の水質検査を行い、通知手段を用いて検査結果をユーザに通知する。水質が適切な場合、ユーザは、手動弁V3を開とする。ユーザは、流量計C4の計測値を見ながら、純水貯水タンク1への純水の供給量が、例えば、5トン/時間以下となるように手動弁V10の開度を調節する。これにより、例えば、電磁弁EV1、EV3が故障したときでも、手動で純水製造管理システム100を運転し、品質が担保された純水を製造することができる。
シリカ濃度の計測および管理は、上記したように純水の製造、水質管理への適用を目的とするが、その他、航空機表面処理ラインにおける処理液の水洗水や、処理液(例えば、クロメート処理液)のシリカ濃度の管理へも適用可能である。
図4は、一実施形態に係る制御装置のハードウェア構成の一例を示す図である。
コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、入出力インタフェース904、通信インタフェース905を備える。
上述の制御装置12は、コンピュータ900に実装される。そして、上述した各機能は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。CPU901は、プログラムに従って、記憶領域を主記憶装置902に確保する。CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903に確保する。
コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、入出力インタフェース904、通信インタフェース905を備える。
上述の制御装置12は、コンピュータ900に実装される。そして、上述した各機能は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。CPU901は、プログラムに従って、記憶領域を主記憶装置902に確保する。CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903に確保する。
制御装置12の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各機能部による処理を行ってもよい。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。「コンピュータ読み取り可能な記録媒体」とは、CD、DVD、USB等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行しても良い。上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
以上のとおり、本開示に係るいくつかの実施形態を説明したが、これら全ての実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態及びその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
<付記>
各実施形態に記載の純水製造管理システム100、純水製造管理方法は、例えば以下のように把握される。
各実施形態に記載の純水製造管理システム100、純水製造管理方法は、例えば以下のように把握される。
(1)第1の態様に係る純水製造管理システム(100)は、純水の製造装置(2)と、水質の検査を実行する分析装置(10)と、前記製造装置の出口側に接続された第1配管(L1)に設けられ、貯水タンクへ供給する純水の量を制御する第1弁(EV1)と、前記第1配管(L1)から分岐して前記分析装置へ接続する第2配管(L3)と、制御装置(12)と、を備え、前記制御装置(12)は、前記製造装置(2)から前記貯水タンク(1)への純水の供給を行っている間、前記分析装置(10)を制御して前記第2配管(L3)を通じて流入する前記製造装置(2)によって製造された純水の水質検査を実行し、前記水質検査の結果、前記純水の水質が所定の基準を満たす場合、前記第1弁(EV1)を開とし、前記純水の水質が所定の基準を満たさない場合、前記第1弁を閉とする。
純水製造管理システム(100)によれば、純水の供給を行っている間に並行して、製造した純水の水質検査を実行して、水質が基準を満たす場合に純水の供給を継続する。これにより、貯水タンク(1)に供給される純水の品質を担保することができる。
制御装置(12)の制御により、水質検査を連続的に行うことができる。
制御装置(12)の制御により、水質検査を連続的に行うことができる。
(2)第2の態様に係る純水製造管理システム(100)は、(1)の純水製造管理システムであって、前記製造装置(2)の入口側に接続された第3配管(L5,L6)に設けられ、前記製造装置(2)へ供給する水量を制御する第3弁(EV3)、をさらに備え、前記制御装置(12)は、前記製造装置(2)が前記貯水タンク(1)への純水の供給を開始するときに、前記第1弁(EV1)を閉とし、前記第3弁(EV3)を開とし、前記分析装置(10)を起動して前記第2配管(L3)を通じて流入する前記純水の水質検査を開始し、前記水質検査の結果、前記純水の水質が所定の基準を満たす場合、前記第1弁を開とする。
これにより、純水の供給を開始する際に、製造装置(2)が製造した純水の水質を検査して、水質が基準を満たす場合に純水の供給を開始する。これにより、貯水タンク(1)に供給される純水の水質を担保することができる。
(3)第3の態様に係る純水製造管理システム(100)は、(2)の純水製造管理システムであって、前記製造装置(2)の出口側に接続された排出用の配管(L0)に設けられた第2弁(EV2)、をさらに備え、前記制御装置(12)は、前記製造装置(2)が前記貯水タンク(1)への純水の供給を開始するときに、前記第3弁(EV3)を開とし、前記第2弁(EV2)を開とし、所定時間が経過した後に前記第2弁(EV2)を閉とし、その後、前記分析装置(10)による前記水質検査を開始する。
これにより、純水の供給の開始前に製造装置(2)に溜った水を排出してから、製造装置(2)が製造した純水の水質検査を行うことができるので、正確な水質検査を行うことができる。
(4)第4の態様に係る純水製造管理システム(100)は、(2)~(3)の純水製造管理システムであって、前記制御装置(12)は、前記第3配管(L5,L6)から前記製造装置(2)へ供給される水の流量が所定の流量となるように、前記第3弁(EV3)の開度を制御する。
これにより、製造装置(2)へ供給する水および貯水タンク(1)へ供給する純水の送水制御を自動化することができる。
これにより、製造装置(2)へ供給する水および貯水タンク(1)へ供給する純水の送水制御を自動化することができる。
(5)第5の態様に係る純水製造管理システム(100)は、(2)~(4)の純水製造管理システムであって、前記第3配管(L5、L6)から分岐して前記分析装置(10)へ接続する第4配管(L4)、をさらに備え、前記分析装置(10)は、前記第4配管(L4)を通じて流入する水の水質検査を行う。
これにより、製造装置(2)に流入する水の水質検査を行うことができる。製造装置(2)に流入する水の水質検査を行うことにより、製造装置(2)が処理しなければならない水の水質を把握したり、製造装置(2)が当該水から製造する純水の水質と比較したりすることができる。
これにより、製造装置(2)に流入する水の水質検査を行うことができる。製造装置(2)に流入する水の水質検査を行うことにより、製造装置(2)が処理しなければならない水の水質を把握したり、製造装置(2)が当該水から製造する純水の水質と比較したりすることができる。
(6)第6の態様に係る純水製造管理システム(100)は、(1)~(5)の純水製造管理システムであって、前記制御装置(12)は、レベル計が計測した前記貯水タンク(1)の貯水レベルが所定の第1閾値以下となると、前記純水の供給を開始し、前記貯水レベルが所定の第2閾値以上となると、前記第1弁を閉として前記純水の供給を停止する。
これにより、純水の供給の開始終了の制御を自動化することができる。
これにより、純水の供給の開始終了の制御を自動化することができる。
(7)第7の態様に係る純水製造管理システム(100)は、(1)~(6)の純水製造管理システムであって、前記制御装置(12)は、前記純水の水質が所定の基準を満たさない場合、警報を発する。
これにより、純水の品質に異常が生じたことを把握することができる。
これにより、純水の品質に異常が生じたことを把握することができる。
(8)第8の態様に係る純水製造管理システム(100)は、(1)~(7)の純水製造管理システムであって、前記制御装置(12)は、前記水質検査の結果を分析し、前記製造装置(2)が備えるイオン交換樹脂の再生時期および交換時期のうち少なくとも一方を予測する。
これにより、前もって新しいイオン交換樹脂を用意したり、イオン交換樹脂の再生処理の実施計画や交換計画を立案したりすることができる。
これにより、前もって新しいイオン交換樹脂を用意したり、イオン交換樹脂の再生処理の実施計画や交換計画を立案したりすることができる。
(9)第9の態様に係る純水製造管理システム(100)は、(2)の純水製造管理システムであって、前記第1弁(EV1)をバイパスする第1バイパス配管(L2)と、前記第1バイパス配管(L2)に設けられた第1手動弁(V3)と、前記第3弁(EV3)をバイパスする第3バイパス配管(L7)と、前記第3バイパス配管(L7)に設けられた第3手動弁(V10)と、をさらに備える。
これにより、第1弁(EV1)と第3弁(EV3)を閉としても、第1バイパス配管を利用して純水の供給が可能になり、第3バイパス配管を利用して製造装置への水の供給が可能になる。
これにより、第1弁(EV1)と第3弁(EV3)を閉としても、第1バイパス配管を利用して純水の供給が可能になり、第3バイパス配管を利用して製造装置への水の供給が可能になる。
(10)第10の態様に係る純水製造管理方法は、純水の製造装置と、水質の検査を実行する分析装置と、前記製造装置の出口側に接続された第1配管に設けられ、貯水タンクへ供給する純水の量を制御する第1弁と、前記第1配管から分岐して前記分析装置へ接続する第2配管と、を備えるシステムにおいて、制御装置が、前記製造装置から前記貯水タンクへ純水の供給を行っている間、前記分析装置を制御して前記第2配管を通じて流入する前記製造装置によって製造された純水の水質検査を繰り返し実行し、前記水質検査の結果、前記純水の水質が所定の基準を満たす場合、前記第1弁を開とし、前記純水の水質が所定の基準を満たさない場合、前記第1弁を閉とする。
100・・・純水製造管理システム
1・・・純水貯水タンク
2・・・純水製造装置
3・・・活性炭塔
4・・・砂濾過塔
10・・・連続分析装置
11・・・デジタル指示調節計
12・・・制御装置
13・・・標準シリカ容器
14・・・純水容器
P1・・・ポンプ
CV11・・・切替弁
EV1、EV2、EV3、EV11、EV12・・・電磁弁
C11、C13・・・電気伝導率計
C12、C14・・PH計
C15・・・シリカ濃度計
V1~V10・・・手動弁
RV1~RV2・・・減圧弁
L1~L7・・・配管
C1・・・レベル計
C2、C3・・・圧力計
C4・・・流量計
900・・・コンピュータ
901・・・CPU
902・・・主記憶装置
903・・・補助記憶装置
904・・・入出力インタフェース
905・・・通信インタフェース
1・・・純水貯水タンク
2・・・純水製造装置
3・・・活性炭塔
4・・・砂濾過塔
10・・・連続分析装置
11・・・デジタル指示調節計
12・・・制御装置
13・・・標準シリカ容器
14・・・純水容器
P1・・・ポンプ
CV11・・・切替弁
EV1、EV2、EV3、EV11、EV12・・・電磁弁
C11、C13・・・電気伝導率計
C12、C14・・PH計
C15・・・シリカ濃度計
V1~V10・・・手動弁
RV1~RV2・・・減圧弁
L1~L7・・・配管
C1・・・レベル計
C2、C3・・・圧力計
C4・・・流量計
900・・・コンピュータ
901・・・CPU
902・・・主記憶装置
903・・・補助記憶装置
904・・・入出力インタフェース
905・・・通信インタフェース
Claims (10)
- 純水の製造装置と、
水質の検査を実行する分析装置と、
前記製造装置の出口側に接続された第1配管に設けられ、貯水タンクへ供給する純水の量を制御する第1弁と、
前記第1配管から分岐して前記分析装置へ接続する第2配管と、
制御装置と、
を備え、
前記制御装置は、前記製造装置から前記貯水タンクへの純水の供給を行っている間、前記分析装置を制御して前記第2配管を通じて流入する前記製造装置によって製造された純水の水質検査を繰り返し実行し、前記水質検査の結果、前記純水の水質が所定の基準を満たす場合、前記第1弁を開とし、前記純水の水質が所定の基準を満たさない場合、前記第1弁を閉とする、
純水製造管理システム。 - 前記製造装置の入口側に接続された第3配管に設けられ、前記製造装置へ供給する水量を制御する第3弁、をさらに備え、
前記制御装置は、前記製造装置が前記貯水タンクへの純水の供給を開始するときに、前記第1弁を閉とし、前記第3弁を開とし、前記分析装置を起動して前記第2配管を通じて流入した前記純水の水質検査を開始し、前記水質検査の結果、前記純水の水質が所定の基準を満たす場合、前記第1弁を開とする、
請求項1に記載の純水製造管理システム。 - 前記製造装置の出口側に接続された排出用の配管に設けられた第2弁、をさらに備え、
前記制御装置は、前記製造装置が前記貯水タンクへの純水の供給を開始するときに、前記第3弁を開とし、前記第2弁を開とし、所定時間が経過した後に前記第2弁を閉とし、その後、前記分析装置による前記水質検査を開始する、
請求項2に記載の純水製造管理システム。 - 前記制御装置は、前記第3配管から前記製造装置へ供給される水の流量が所定の流量となるように、前記第3弁の開度を制御する、
請求項2から請求項3の何れか1項に記載の純水製造管理システム。 - 前記第3配管から分岐して前記分析装置へ接続する第4配管、
をさらに備え、
前記分析装置は、前記第4配管を通じて流入する水の水質検査を行う、
請求項2から請求項4の何れか1項に記載の純水製造管理システム。 - 前記制御装置は、レベル計が計測した前記貯水タンクの貯水レベルが所定の第1閾値以下となると、前記純水の製造を開始し、
前記貯水レベルが所定の第2閾値以上となると、前記第1弁を閉とする、
請求項1から請求項5の何れか1項に記載の純水製造管理システム。 - 前記制御装置は、前記純水の水質が所定の基準を満たさない場合、警報を発する、
請求項1から請求項6の何れか1項に記載の純水製造管理システム。 - 前記制御装置は、前記水質検査の結果を分析し、前記製造装置が備えるイオン交換樹脂の再生時期および交換時期のうち少なくとも一方を予測する、
請求項1から請求項7の何れか1項に記載の純水製造管理システム。 - 前記第1弁をバイパスする第1バイパス配管と、
前記第1バイパス配管に設けられた第1手動弁と、
前記第3弁をバイパスする第3バイパス配管と、
前記第3バイパス配管に設けられた第3手動弁と、
をさらに備える請求項2に記載の純水製造管理システム。 - 純水の製造装置と、水質の検査を実行する分析装置と、前記製造装置の出口側に接続された第1配管に設けられ、貯水タンクへ供給する純水の量を制御する第1弁と、前記第1配管から分岐して前記分析装置へ接続する第2配管と、を備えるシステムにおいて、制御装置が、
前記製造装置から前記貯水タンクへ純水の供給を行っている間、前記分析装置を制御して前記第2配管を通じて流入する前記製造装置によって製造された純水の水質検査を繰り返し実行し、前記水質検査の結果、前記純水の水質が所定の基準を満たす場合、前記第1弁を開とし、前記純水の水質が所定の基準を満たさない場合、前記第1弁を閉とする、
純水製造管理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/618,222 US20220162091A1 (en) | 2019-10-04 | 2020-08-04 | Pure water manufacturing management system and pure water manufacturing management method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019183622A JP7139301B2 (ja) | 2019-10-04 | 2019-10-04 | 純水製造管理システムおよび純水製造管理方法 |
JP2019-183622 | 2019-10-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021065191A1 true WO2021065191A1 (ja) | 2021-04-08 |
Family
ID=75336882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/029829 WO2021065191A1 (ja) | 2019-10-04 | 2020-08-04 | 純水製造管理システムおよび純水製造管理方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220162091A1 (ja) |
JP (1) | JP7139301B2 (ja) |
WO (1) | WO2021065191A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7203471B1 (ja) * | 2022-09-22 | 2023-01-13 | 豊大株式会社 | 液体処理装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4921837A (ja) * | 1971-06-11 | 1974-02-26 | ||
JPH0550057A (ja) * | 1991-08-22 | 1993-03-02 | Mitsubishi Heavy Ind Ltd | 水処理装置の採水制御装置 |
JPH06182323A (ja) * | 1992-12-18 | 1994-07-05 | Hitachi Ltd | 飲料水浄化調整装置 |
JP2003305454A (ja) * | 2003-02-17 | 2003-10-28 | Meidensha Corp | 取水水質管理装置 |
JP2010190681A (ja) * | 2009-02-17 | 2010-09-02 | Beckman Coulter Inc | 自動分析装置とその純水管理方法 |
WO2019106927A1 (ja) * | 2017-11-30 | 2019-06-06 | 株式会社テイエルブイ | 液体流通システム、処理ライン及び液体流通方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50113258U (ja) * | 1974-02-24 | 1975-09-16 | ||
US11154648B2 (en) * | 2013-01-09 | 2021-10-26 | Medtronic, Inc. | Fluid circuits for sorbent cartridge with sensors |
-
2019
- 2019-10-04 JP JP2019183622A patent/JP7139301B2/ja active Active
-
2020
- 2020-08-04 WO PCT/JP2020/029829 patent/WO2021065191A1/ja active Application Filing
- 2020-08-04 US US17/618,222 patent/US20220162091A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4921837A (ja) * | 1971-06-11 | 1974-02-26 | ||
JPH0550057A (ja) * | 1991-08-22 | 1993-03-02 | Mitsubishi Heavy Ind Ltd | 水処理装置の採水制御装置 |
JPH06182323A (ja) * | 1992-12-18 | 1994-07-05 | Hitachi Ltd | 飲料水浄化調整装置 |
JP2003305454A (ja) * | 2003-02-17 | 2003-10-28 | Meidensha Corp | 取水水質管理装置 |
JP2010190681A (ja) * | 2009-02-17 | 2010-09-02 | Beckman Coulter Inc | 自動分析装置とその純水管理方法 |
WO2019106927A1 (ja) * | 2017-11-30 | 2019-06-06 | 株式会社テイエルブイ | 液体流通システム、処理ライン及び液体流通方法 |
Also Published As
Publication number | Publication date |
---|---|
US20220162091A1 (en) | 2022-05-26 |
JP7139301B2 (ja) | 2022-09-20 |
JP2021058832A (ja) | 2021-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002035743A (ja) | 軟水装置 | |
US11932555B2 (en) | Water treatment management apparatus and water quality monitoring method | |
WO2021065191A1 (ja) | 純水製造管理システムおよび純水製造管理方法 | |
WO2014156694A1 (ja) | 微粒子測定方法及び微粒子測定システム並びに超純水製造システム | |
KR20170102357A (ko) | 센서의 정확도를 유지하기 위한 장치 | |
KR20170102545A (ko) | 센서의 정확도를 유지하기 위한 장치, 시스템 및 방법 | |
CN106659980A (zh) | 水处理装置的附着物监控装置、水处理装置及其运行方法以及水处理装置的清洗方法 | |
JP7154213B2 (ja) | 軟水化装置及び軟水化装置の操作方法 | |
KR101612231B1 (ko) | 역삼투막 베셀의 세정 진단 장치 및 방법 | |
JP2010261793A (ja) | 液体中の溶存物質含有量測定方法及び測定装置、並びに、エッチング液再生システム | |
JP2015072279A (ja) | 超純水の純度を測定する方法および装置 | |
KR102218025B1 (ko) | 수처리용 고분자 분리막의 노후화 진단 방법 및 그 장치 | |
JP5489089B2 (ja) | 完全性試験装置 | |
JP4864671B2 (ja) | 水質異常検出装置、水質異常検出方法及び水処理装置 | |
JP2017202432A (ja) | 腐食性アニオン除去装置及びアニオン交換樹脂の再生方法 | |
CN107308823B (zh) | 用于判断膜元件损坏的方法和装置 | |
JP2007117859A (ja) | 空気浄化装置 | |
TW202310926A (zh) | 離子交換裝置的運轉方法 | |
JP6998834B2 (ja) | イオン交換樹脂の洗浄試験装置 | |
WO2021065190A1 (ja) | 監視システムおよび監視方法 | |
JP4859504B2 (ja) | 水処理システム、及び、この水処理システムの制御方法 | |
Liu et al. | Role of membrane autopsy in enhancing reverse osmosis plant operation | |
US10436764B2 (en) | System and method for plant fuel quality | |
CN113740386A (zh) | 一种精确测量水质氢电导率的测量装置及测量方法 | |
WO2024004472A1 (ja) | 純水製造装置の膜ろ過装置の性能評価装置とこれを用いた純水製造システム、及び純水製造装置の膜ろ過装置の性能評価方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20871310 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20871310 Country of ref document: EP Kind code of ref document: A1 |