WO2021065138A1 - 測距装置および制御方法 - Google Patents

測距装置および制御方法 Download PDF

Info

Publication number
WO2021065138A1
WO2021065138A1 PCT/JP2020/026581 JP2020026581W WO2021065138A1 WO 2021065138 A1 WO2021065138 A1 WO 2021065138A1 JP 2020026581 W JP2020026581 W JP 2020026581W WO 2021065138 A1 WO2021065138 A1 WO 2021065138A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
range
distance
data
image data
Prior art date
Application number
PCT/JP2020/026581
Other languages
English (en)
French (fr)
Inventor
安寿 稲田
清原 督三
加藤 弓子
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080062997.7A priority Critical patent/CN114341672A/zh
Priority to EP20872538.2A priority patent/EP4040108A4/en
Priority to JP2021550350A priority patent/JPWO2021065138A1/ja
Publication of WO2021065138A1 publication Critical patent/WO2021065138A1/ja
Priority to US17/695,736 priority patent/US20220206155A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4868Controlling received signal intensity or exposure of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • This disclosure relates to a distance measuring device and a control method.
  • Patent Document 1 describes a light projecting system including a light source, a light receiving system including a photodetector that receives light projected from the light source system and reflected by an object, and a signal to which an output signal of the photodetector is input.
  • An object detection device including a processing system and a control system is disclosed. The control system sets at least one region within the light projection range of the light projection system as a region of interest, and when the light projection condition of the light projection system or the processing condition of the signal processing system is projected onto the region of interest and the region of interest. It is controlled so as to be different from when the light is projected to an area other than the above.
  • Patent Document 2 discloses a lidar (Light Detection and Ringing) device.
  • the lidar device includes a first beam scanner, a second beam scanner, and a controller.
  • the first beam scanner scans the first region with the first laser beam of the first scan pattern.
  • the second beam scanner scans a second region narrower than the first region with the second laser beam of the second scan pattern.
  • the controller drives the first beam scanner to scan the first region and acquire the data of the reflected light from the first laser beam. Then, one or more objects are determined from the data, and the second beam scanner is driven to irradiate the inside of the second region to monitor the objects.
  • Patent Document 3 discloses a ranging imaging device. Based on the signal output from the image sensor that detects passive light, this range-finding imaging device identifies a subject that requires range-finding from the entire imaging target area. Then, the subject is irradiated with a laser beam, and the reflected light is detected to measure the distance to the subject.
  • Patent Document 4 discloses a device that scans a space with an optical beam and receives reflected light from an object with an image sensor to acquire distance information.
  • the present disclosure provides a technique that makes it possible to efficiently acquire distance data of a specific area in a distance measurement target scene.
  • the ranging device includes a light emitting device capable of emitting a plurality of types of light having different degrees of spread, and a light receiving device for detecting reflected light based on the light emitted from the light emitting device.
  • a processing circuit that controls the light emitting device and the light receiving device and processes a signal output from the light receiving device.
  • the processing circuit causes the light emitting device to emit a first light that illuminates the first range in the scene, and causes the light receiving device to detect the first reflected light generated by the irradiation of the first light.
  • the first detection data is output, and based on the first detection data, one or more second ranges narrower than the first range are determined, and the light emitting device is subjected to the second range.
  • a second light having a smaller degree of spread than the first light is emitted, and the light receiving device is made to detect the second reflected light generated by the irradiation of the second light.
  • the detection data of the above is output, and the distance data in the second range is generated and output based on the second detection data.
  • the present disclosure may be implemented by recording media such as systems, devices, methods, integrated circuits, computer programs or computer readable recording disks, systems, devices, methods, integrated circuits, etc. It may be realized by any combination of a computer program and a recording medium.
  • the computer-readable recording medium may include a volatile recording medium, or may include a non-volatile recording medium such as a CD-ROM (Compact Disc-Read Only Memory).
  • the device may consist of one or more devices. When the device is composed of two or more devices, the two or more devices may be arranged in one device, or may be separately arranged in two or more separated devices.
  • "device" can mean not only one device, but also a system consisting of a plurality of devices.
  • FIG. It is a figure which shows the basic structure of a distance measuring device. It is a figure for demonstrating the outline of operation of a distance measuring device. It is a flowchart which shows the flow of one distance measuring operation by a distance measuring device. It is a figure which shows typically the structure of the distance measuring apparatus in Embodiment 1.
  • FIG. It is a flowchart which shows the example of one distance measurement operation. It is a figure which shows an example of a distance image. It is a figure which shows the example of the 2nd range selected. It is a figure which shows the example of the range which a scan beam is irradiated. It is a flowchart which shows another example of one distance measurement operation.
  • all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram is, for example, a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (range scale integration). ) Can be performed by one or more electronic circuits.
  • the LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips.
  • functional blocks other than the storage element may be integrated on one chip.
  • it is called LSI or IC, but the name changes depending on the degree of integration, and it may be called system LSI, VLSI (very large scale integration), or ULSI (ultra large scale integration).
  • a Field Programmable Gate Array (FPGA) programmed after the LSI is manufactured, or a reconfigurable logistic device capable of reconfiguring the junction relationship inside the LSI or setting up the circuit partition inside the LSI can also be used for the same purpose.
  • FPGA Field Programmable Gate Array
  • circuits, units, devices, members or parts can be executed by software processing.
  • the software is recorded on a non-temporary recording medium such as one or more ROMs, optical disks, hard disk drives, etc., and when the software is executed by a processor, the functions identified by the software It is performed by a processor and peripherals.
  • the system or device may include one or more non-temporary recording media on which the software is recorded, a processor, and the required hardware devices, such as an interface.
  • FIG. 1 is a block diagram showing a schematic configuration of a distance measuring device according to an exemplary embodiment of the present disclosure.
  • the distance measuring device in this embodiment includes a light emitting device 100, a light receiving device 200, and a processing circuit 300.
  • the ranging device can be used, for example, as part of a rider system mounted on a vehicle.
  • the distance measuring device is configured to irradiate the scene to be measured with light to generate and output distance data.
  • the "distance data" in the present disclosure is the absolute distance from the reference point of one or more measurement points in the scene, or data in any format representing the relative depth between the measurement points, or the above. Means data in any format for calculating the distance or depth of.
  • the distance data may be, for example, distance image data or three-dimensional point cloud data. Further, the distance data is not limited to data that directly represents the distance or depth, and may be sensor data itself for calculating the distance or depth, that is, Raw data.
  • the sensor data, that is, Raw data is data output from the sensor included in the light receiving device 200. Raw data can be, for example, luminance data indicating one or more luminances detected by the light receiving device 200.
  • the light emitting device 100 emits a plurality of types of light having different degrees of spread. For example, it is possible to irradiate a light beam or flash light having a relatively large spread toward a scene, or to irradiate a light beam having a small spread toward a specific area in a scene. In other words, the light emitting device 100 can emit a relatively broad first light and a second light that irradiates a range narrower than the irradiation range of the first light.
  • the light emitting device 100 may include a first light source that emits a first light and a second light source that emits a second light. Alternatively, the light emitting device 100 may include one light source capable of emitting both the first light and the second light.
  • the light receiving device 200 detects the reflected light of the light emitted from the light emitting device 100.
  • the light receiving device 200 includes, for example, one or more image sensors.
  • the light receiving device 200 detects the first reflected light generated by the irradiation of the first light and outputs the first detection data.
  • the light receiving device 200 also detects the second reflected light generated by the irradiation of the second light and outputs the second detection data.
  • the light receiving device 200 has a first image sensor that detects the first reflected light and outputs the first detection data, and a second image that detects the second reflected light and outputs the second detection data. It may be provided with a sensor. Alternatively, the light receiving device 200 may include one image sensor capable of detecting the first reflected light and the second reflected light, respectively.
  • the processing circuit 300 is a circuit that controls the light emitting device 100 and the light receiving device 200 and processes the data output from the light receiving device 200.
  • the processing circuit 300 includes one or more processors and one or more recording media. Recording media include, for example, memories such as RAM and ROM.
  • the recording medium can store a computer program executed by the processor and various data generated in the process.
  • the processing circuit 300 may be an aggregate of a plurality of circuits.
  • the processing circuit 300 may include a control circuit for controlling the light emitting device 100 and the light receiving device 200, and a signal processing circuit for processing the signal output from the light receiving device 200.
  • FIG. 2 is a diagram for explaining an outline of the operation of the distance measuring device.
  • FIG. 2 schematically shows an example of a distance measuring device and an example of a distance image that can be generated by the distance measuring device.
  • the light emitting device 100 in this example includes a first light source 110 and a second light source 120.
  • the first light source 110 is configured to emit flash light L1 as the first light.
  • the second light source 120 is configured to emit a light beam L2 having a smaller spread as the second light.
  • the second light source 120 can change the emission direction of the light beam L2.
  • the light receiving device 200 includes an image sensor 210.
  • the image sensor 210 in this example is a TOF image sensor capable of measuring a distance by TOF (Time of Flight).
  • the image sensor 210 can generate a distance image of a scene to be distance-measured by using a technique of direct TOF or indirect TOF.
  • the processing circuit 300 controls the first light source 110, the second light source 120, and the image sensor 210.
  • the processing circuit 300 in the present embodiment emits the flash light L1 to the first light source 110, and causes the image sensor 210 to detect the reflected light. As a result, the image sensor 210 generates and outputs the distance image data of the target scene as the first detection data. The processing circuit 300 determines one or more regions in the scene that require more accurate distance measurement based on the output distance image data. Then, the light beam L2 is emitted from the second light source 120 toward the determined region, and the reflected light is detected by the image sensor 210. At this time, the processing circuit 300 may sequentially change the emission direction of the light beam L2 so that the determined region is scanned by the light beam L2. The plurality of white circles shown on the right side of FIG.
  • the image sensor 210 can generate distance data in these regions.
  • the processing circuit 300 can output distance data to an object existing in a specific region in the scene based on the distance data output from the image sensor 210. By repeating the above operation, the distance data of the target scene, for example, the distance image data is output at a predetermined frame rate.
  • FIG. 3 is a flowchart showing the flow of one distance measuring operation by the distance measuring device.
  • the processing circuit 300 executes the operations of steps S11 to S17 shown in the flowchart of FIG. 3 during the distance measuring operation. The operation of each step will be described below.
  • Step S11 The processing circuit 300 causes the light emitting device 100 to emit a first light that illuminates the first range in the scene.
  • the first light is flash light, a relatively wide range in the scene is irradiated with the flash light.
  • the processing circuit 300 causes the light receiving device 200 to detect the first reflected light generated by the irradiation of the first light and output the first detection data.
  • the first detection data is distance image data showing a distance distribution within the first range.
  • the first detection data may be luminance image data showing the luminance distribution within the first range.
  • the processing circuit 300 determines one or more second ranges narrower than the first range based on the first detection data.
  • the second range for example, in the image shown by the first detection data, a range in which the accuracy of distance measurement is low or a range in which a noteworthy object is presumed to exist can be selected.
  • the first detection data is distance image data and the amount of light received by each pixel referred to when generating the distance image data is small, it is considered that the reliability of the distance calculated for that pixel is low. Therefore, for example, when the pixel value indicating the light receiving amount of each pixel is less than a predetermined threshold value, the range including the pixel can be determined as the second range.
  • the second detection data is obtained by recognizing a specific object (for example, a car, a motorcycle, a bicycle, or a pedestrian) by using a known image recognition technique.
  • a specific object for example, a car, a motorcycle, a bicycle, or a pedestrian
  • the range of may be determined.
  • Step S14 The processing circuit 300 causes the light emitting device 100 to emit a second light that illuminates the second range.
  • the second light is a light beam narrower than the first light, as shown in FIG. Therefore, the second light has a higher energy density than the first light and reaches farther. That is, by irradiating the second light, it is possible to measure a distance farther than when the first light is used. Therefore, even in a region where the distance cannot be measured with sufficient accuracy only by irradiating the first light, the distance can be measured with higher accuracy by irradiating the second light.
  • the processing circuit 300 controls the light emitting device 100 to scan the second range with the second light.
  • the processing circuit 300 causes the light receiving device 200 to detect the second reflected light generated by the irradiation of the second light and output the second detection data.
  • the second detection data may be distance data of a region irradiated with the second light, or may be luminance data.
  • Step S16 The processing circuit 300 generates and outputs distance data indicating the distance to one or more objects existing in the second range based on the second detection data. As a result, it is possible to acquire distance information that cannot be obtained only by irradiating the first light, for example, distance information of a distant object.
  • the processing circuit 300 may integrate the first detection data and the second detection data into one data.
  • the distance image data based on the first detection data and the distance image data based on the second detection data may be integrated to reconstruct one distance image data.
  • one 3D point cloud data may be reconstructed by integrating the 3D point cloud data based on the first detection data and the 3D point cloud data based on the second detection data.
  • the luminance data based on the first detection data and the luminance data based on the second detection data may be integrated to reconstruct one luminance data. Note that this integrated process is not essential, and each distance data may be output individually and sequentially.
  • the flowchart shown in FIG. 3 shows one distance measuring operation, and the operation shown in FIG. 3 can be repeatedly executed in an actual application.
  • the operation shown in FIG. 3 can be repeatedly executed at a rate of about 30 times per second.
  • the first light and the second light are emitted at different timings, but these may be emitted at the same time. In that case, the operation of emitting the first light and the second light at the same time is repeated.
  • the second range illuminated by the second light is determined based on the first detection data obtained by the irradiation of the first light prior to the irradiation of the second light.
  • steps S11 and S12 when the intensity of the reflected light due to the irradiation of the first light is not sufficient, the first detection is performed based on the result of irradiating the first light a plurality of times and integrating the reflected light. Data may be generated.
  • steps S14 and S15 the second light may be irradiated a plurality of times, and the second detection data may be generated based on the result of integrating the reflected light. The number of times the first light and the second light are integrated may be the same or different.
  • the first region in the scene is first irradiated with the relatively wide first light.
  • the first reflected light generated by the irradiation of the first light is detected by the light receiving device 200, and the first detection data is output.
  • a second range narrower than the first range is determined based on the first detection data.
  • the determined second range is illuminated with a second light that is less spread than the first light.
  • the second reflected light generated by the irradiation of the second light is detected by the light receiving device 200, and the second detection data is output. Based on the second detection data, the distance to the object existing in the second range is measured.
  • Such an operation it is possible to measure the distance with higher accuracy even in a region where the distance cannot be measured with sufficient accuracy when only the first light is used. Further, the required distance data can be acquired in a short time as compared with the configuration in which the distance data of the entire scene is acquired by scanning the entire scene with the second light. Therefore, it is possible to acquire highly reliable distance data in a short time.
  • Such a ranging device can be used, for example, as one of the sensors in an automatic driving system. By using the distance measuring device of the present embodiment, it is possible to recognize moving objects (for example, people, automobiles, motorcycles, etc.) necessary for automatic driving with high accuracy and high speed.
  • FIG. 4 is a diagram schematically showing a configuration of a distance measuring device according to an exemplary embodiment 1 of the present disclosure.
  • the ranging device in this embodiment includes a flash light source 111, a scan light source 121, a TOF image sensor 211, and a controller 301.
  • the flash light source 111 corresponds to the above-mentioned "first light source”.
  • the flash light source 111 emits flash light.
  • the scan light source 121 corresponds to the above-mentioned "second light source”.
  • the scan light source 121 emits scan light (hereinafter, also referred to as “scan beam”), which is a light beam that irradiates a part of the range included in the irradiation range of the flash light.
  • scan beam scan light
  • the set of the flash light source 111 and the scan light source 121 corresponds to the above-mentioned "light emitting device”.
  • the TOF image sensor 211 corresponds to the "image sensor” in the above-mentioned “light receiving device”.
  • the TOF image sensor 211 generates distance image data of the target scene by using, for example, direct TOF or indirect TOF technology.
  • the distance image data may be simply referred to as a "distance image”.
  • the controller 301 corresponds to the above-mentioned "processing circuit”.
  • the controller 301 is connected to the flash light source 111, the scan light source 121, and the image sensor 211 to control their operations.
  • the controller 301 includes a processor and a memory 330.
  • the controller 301 in the present embodiment controls the emission timing of the flash light, controls the beam shape, the emission direction, and the emission timing of the scan light, and performs processing based on the data output from the image sensor 211.
  • the controller 301 generates and outputs new distance image data for the target scene based on the distance image data generated by the irradiation of the flash light and the distance data generated by the irradiation of the scan light.
  • the controller 301 may generate luminance image data or three-dimensional point cloud data in place of the distance image data or in addition to the distance image data. The details of the operation by the controller 301 will be described below.
  • FIG. 5 is a flowchart showing one distance measurement operation executed by the controller 301.
  • the controller 301 generates distance measurement data for the scene by executing the operations of steps S101 to S109 shown in FIG. The operation of each step will be described below.
  • Step S101 The controller 301 drives the flash light source 111 to emit the flash light.
  • the flash light illuminates a relatively wide first area of the scene.
  • Distance measurement data is obtained by emitting a pulse of flash light and measuring or calculating the delay time of the reflected light pulse.
  • flash light is used in this embodiment, a relatively wide-angle light beam may be used instead of the flash light.
  • Step S102 The controller 301 causes the image sensor 211 to perform exposure and detect the reflected light of the flash light.
  • the detection of the reflected light is performed for each pixel of the image sensor 211.
  • the distance is calculated for each pixel using the technique of direct TOF or indirect TOF.
  • the signal of each pixel may be accumulated by repeating the irradiation of the flash light and the exposure by the image sensor a plurality of times. By such an operation, the SN (Signal to Noise) ratio can be improved.
  • the image sensor 211 outputs data indicating the value of the distance for each pixel. This data is called "distance image data". A specific example of the operation of the image sensor 211 will be described later.
  • Step S103 The controller 301 acquires the distance image data output from the image sensor 211.
  • FIG. 6A is a diagram showing an example of a distance image. As in this example, an image showing the distance distribution within the first region is generated and stored in the memory 330.
  • the controller 301 specifies an area estimated to have low reliability of distance measurement as a second range based on the distance image data.
  • the second range is determined based on the light intensity data of each pixel used when the image sensor 211 calculates the distance for each pixel, or the value of the distance of each pixel in the generated distance image.
  • a region where the reliability of distance measurement is estimated to be low for example, a region where the value of the light intensity data from which the distance image is generated is smaller than the threshold value, that is, the region where the SN ratio is low can be selected.
  • FIG. 6B is a diagram showing an example of the second range selected.
  • an example of the second range is represented by a rectangular frame. In this way, a part of the area of the distance image is determined as the second range.
  • one rectangular area is determined as the second range, but a plurality of areas may be determined as the second range.
  • Step S105 The controller 301 determines the emission direction of the scan beam.
  • the emission direction is set so that at least a part of the second range is irradiated by the scan beam.
  • the scan light source 121 may be configured so that not only the direction of the beam but also the beam shape or the beam diameter can be changed. In that case, the controller 301 may adjust the beam shape and / or the beam diameter according to the distribution of the second range as well as the direction of the scan beam.
  • Step S106 The controller 301 instructs the scan light source 121 to emit the scan beam in the determined emission direction. As a result, at least a part of the second range is irradiated with the scan beam.
  • the scan beam may be emitted a plurality of times in the same direction and the exposure may be repeated to accumulate the signal.
  • FIG. 6C shows an example of the range in which the scan beam is irradiated. In FIG. 6C, an example of the range to which the scan beam is irradiated is represented by an ellipse.
  • FIG. 6C illustrates two ranges illuminated by two scan beams in different directions.
  • the controller 301 may irradiate the entire second range by changing the direction of the scan beam and irradiating it repeatedly. Alternatively, a plurality of scan beams may be emitted in different directions at the same time.
  • Step S107 The controller 301 causes the image sensor 211 to detect the reflected light of the scan beam and output the distance data in the irradiation range of the scan beam.
  • the exposure is also performed for each emission of the scan beam. In that case, the operations of steps S105 to S107 are repeated until the scan is completed.
  • Step S108 The controller 301 acquires the distance data for the second range generated by the image sensor 211.
  • This distance data is data indicating the value of the distance of a plurality of pixels corresponding to the second range irradiated with the scan beam.
  • Step S109 The controller 301 generates and outputs new distance image data based on the distance image data acquired in step S103 and the distance data acquired in step S108.
  • the distance image data may be data obtained by replacing the data corresponding to the second range of the distance image data acquired in step S103 with the data acquired in step S108.
  • the controller 301 may also output luminance image data acquired from the image sensor 211 or another image sensor (not shown). In this example, the controller 301 integrates and outputs the data by the flash light and the data by the scan light, but may output both as independent data.
  • the controller 301 may convert the value of each distance in the distance image data into a three-dimensional coordinate value and output it as three-dimensional point cloud data. Further, the controller 301 may output the luminance image data detected by the image sensor 211 in steps S102 and S107 together with the additional data necessary for calculating the distance image data from the luminance image data.
  • the additional data is, for example, data indicating the exposure timing and the width of the exposure time window of the image sensor 211 required for the distance calculation by the indirect TOF described later.
  • the above operation it is possible to acquire the distance measurement data even in the area where the distance measurement cannot be performed accurately only by the flash light. Therefore, the amount of distance measurement information that can be acquired can be increased. Further, the required distance data can be acquired in a short time as compared with the configuration in which the entire scene is scanned by the scan beam.
  • FIG. 7 is a flowchart showing an example of operation when the second range is scanned by the scan beam.
  • the operation shown in FIG. 7 is the same as the operation shown in FIG. 5, except that a step for determining whether the scan is completed is added between steps S107 and S108.
  • step S107 it is determined whether or not the scan is completed.
  • the operations of steps S105 to S107 are repeated until it is determined that the scan is completed.
  • step S105 the emission direction of the scan beam is determined so as to irradiate a region of the second range determined in step S104 that has not yet been irradiated more than a predetermined number of times.
  • the predetermined number of times refers to the number of times required for signal storage of the pixels of the image sensor 211, and can be set to an arbitrary number of times of one or more. In some examples, this number may reach 100 or more, and in some cases 1000 or more.
  • the distance measuring operation by the distance measuring device of the present embodiment will be described more specifically.
  • the distance is measured using a technique such as direct TOF or indirect TOF.
  • FIG. 8 is a diagram for explaining an example of a distance measuring method by direct TOF.
  • the direct TOF is a method of measuring the time from the emission of the optical pulse to the return of the optical pulse with the clock of each light receiving element of the image sensor 211.
  • the flight time of light can be measured by generating a gate signal from the timing when the light is emitted to the timing when the reflected light is returned and counting the number of clock pulses in the gate signal.
  • FIG. 8 exemplifies the gate signal and the pulse signal of the clock in the case where the reflected light is returned from a relatively close region and the case where the reflected light is returned from a relatively distant region. Since the reflected light from a distance reaches the image sensor 211 later, the number of clock counts increases.
  • FIG. 9 is a diagram for explaining an example of a distance measuring method by indirect TOF.
  • Indirect TOF is a method of converting the time from the emission of an optical pulse to the return of an optical pulse into light intensity and measuring it.
  • three exposure time windows are provided for each pixel, and the distance is calculated from the light intensity detected in each time window.
  • the time window is set according to the required measurement range. For example, when performing distance measurement in the range of 0 m to 100 m, as shown in FIG. 9, the distance measurement can be performed by preparing three exposure windows of 334 nanoseconds (ns) and setting the time width of the optical pulse to 334 ns. It is possible.
  • ns nanoseconds
  • reflected light pulses from an object closer to 50 m, reflected light pulses from an object located within the range of 50 m to 100 m, and reflected light pulses from an object farther than 100 m are shown. Illustrated. Let the signal value in the first time window be A0, the signal value in the second time window be A1, and the signal value in the second time window be A2. When the reflected light is detected in the first and second time windows and the reflected light is not detected in the third time window, the distance D is 50 m or less and is calculated by the formula (1) shown in FIG. To.
  • the distance D is 50 m or more and 100 m or less, and the formula (2) shown in FIG. ) Is calculated.
  • the distance is not calculated.
  • the time width of the emitted light pulse and the width of each exposure time window are set according to the measurement range of the distance. For example, when distance measurement is performed in a range of up to 50 m, the width is set to about 167 ns. In this distance measuring method, distance measurement can be performed by one pattern of operation without changing the operation mode of each light receiving element of the image sensor 211.
  • the controller 301 is configured to switch between a mode capable of measuring a short distance and a mode capable of measuring a long distance. Specifically, it operates in the short-distance mode when the flash light is emitted, and operates in the long-distance mode when the scan light is emitted.
  • 10A and 10B are diagrams for explaining an example of such a switching operation.
  • FIG. 10A shows an example of an optical pulse and exposure time window in short range mode.
  • FIG. 10B shows an example of an optical pulse and exposure time window in long range mode.
  • the optical pulse width and the exposure time window are set to 167 ns so that the distance can be measured in the range of 0 m to 50 m.
  • FIG. 10A shows an example of an optical pulse and exposure time window in long range mode.
  • the optical pulse width and the exposure time window are set to 334 ns so that the distance can be measured in the range of 0 m to 100 m.
  • the controller 301 can switch the range of measurable distances by changing the time width of the optical pulse and the length of the exposure time window.
  • FIG. 11 is a diagram showing another example of range switching.
  • the controller 301 switches the measurement range by changing the exposure timing with respect to the light emission timing. For example, in the short-distance mode, the exposure is performed at the same timing as the example of FIG. 10A, and in the long-distance mode, the exposure is started at the timing when twice the pulse width elapses from the start timing of the light emission.
  • the time width of the optical pulse and the width of each exposure time window are set to 167 ns, and the short-distance mode capable of measuring the distance in the range of 0 m to 50 m and the distance measured in the range of 50 m to 100 m are possible. Long-distance mode can be switched.
  • the equation (1) shown in FIG. 11 in the short-range mode, when the reflected light is detected in the first time window and the second time window and the reflected light is not detected in the third time window, the equation (1) shown in FIG. The distance D is calculated based on.
  • the distance D is determined based on the equation (2) shown in FIG. It is calculated. In the short range mode, if no reflected light is detected in either the first time window or the second time window, the distance is not calculated.
  • the distance is based on the equation (3) shown in FIG. D is calculated.
  • the distance D is determined based on the equation (4) shown in FIG. It is calculated.
  • the distance is not calculated.
  • the controller 301 may change the output of the emitted light between the short-distance mode and the long-distance mode. Such control can be adjusted so that, for example, exposure saturation does not occur.
  • FIG. 12A is a diagram showing an example of emission timing of flash light and scan beam and exposure timing.
  • the distance measuring device measures a wide range with flash light and then measures a specific area with a scan beam.
  • both the flash light and the scan beam are emitted a plurality of times in succession, and each exit is exposed.
  • one frame of two-dimensional image data is generated by a signal corresponding to the amount of electric charge accumulated by a plurality of exposure operations, and further, distance data is generated based on the two-dimensional image data. , Is output.
  • two-dimensional distance data may be generated and output after calculating the distance for each pixel according to the amount of electric charge.
  • the controller 301 causes the image sensor 211 to repeatedly execute such an exposure operation and a data output operation.
  • frame operation the operation related to the detection of light and the generation of data of one frame.
  • the frame operation is a unit of repeating the exposure operation and the data output operation by the light receiving device, that is, the operation between two consecutive data output operations as shown in FIG. 12A.
  • the flash light emission and exposure period is set in the first half
  • the scan beam emission and exposure period is set in the second half.
  • the exposure of the flash light is performed in the short distance mode and the exposure of the scan beam is performed in the long distance mode.
  • the exposure timing with respect to the light emission timing differs between the flash light and the scan beam. Therefore, a wide range of distance data from a short distance to a long distance can be integrated into one frame.
  • the measurement range when emitting the flash light and the measurement range when emitting the scan light may be the same.
  • the number of times the flash light and the scan beam are emitted for each frame operation may be one.
  • a set of data acquired in one frame operation is referred to as a "frame".
  • the data of one frame may include, for example, luminance image data, distance image data, or three-dimensional point cloud data.
  • FIG. 12B shows an example in which the distance measurement by the flash light and the distance measurement by the scan beam are performed by different frame operations.
  • the short-distance distance data acquired by using the flash light and the long-distance distance data acquired by using the scan beam are output as data of different frames.
  • the controller 301 performs at least one exposure operation and a data output operation of outputting two-dimensional image data according to the amount of electric charges accumulated by the exposure operation to the image sensor 211. Let it run repeatedly.
  • the flash light emission is performed at least once during two consecutive data output operations
  • the scan beam emission is performed at least once during the other two consecutive data output operations.
  • at least one flash light emission and at least one scan beam emission are performed during two consecutive data output operations.
  • the scan beam emitted during two consecutive data output operations may include a plurality of scan beams emitted in different directions. The emission direction of the scan beam is determined based on the data obtained by the irradiation of the flash light emitted before that.
  • the scan light source 121 is a device capable of changing the emission direction of the light beam according to the control of the controller 301.
  • the scan light source 121 can sequentially irradiate a part of the area in the scene to be distance-measured with the light beam.
  • the wavelength of the light beam emitted from the scan light source 121 is not particularly limited, and may be any wavelength included in the visible to infrared regions, for example.
  • FIG. 13 is a diagram showing an example of the scan light source 121.
  • the scan light source 121 includes a light emitting element such as a laser and at least one movable mirror, for example a MEMS mirror.
  • the light emitted from the light emitting element is reflected by the movable mirror and heads for a predetermined region in the target region (displayed as a rectangle in FIG. 13).
  • the controller 301 changes the direction of the emitted light from the scan light source 121 by driving the movable mirror. Thereby, for example, as shown by the dotted arrow in FIG. 13, the target area can be scanned with light.
  • a light source capable of changing the light emission direction by a structure different from that of a light source having a movable mirror may be used.
  • a light emitting device using a reflective waveguide as disclosed in Patent Document 4 may be used.
  • a light emitting device that changes the direction of light in the entire array may be used by adjusting the phase of the light output from each antenna by the antenna array.
  • FIG. 14A is a perspective view schematically showing an example of the scan light source 112.
  • the scan light source 112 includes an optical waveguide array 10A, a phase shifter array 20A, an optical turnout 30, and a substrate 40 on which they are integrated.
  • the optical waveguide array 10A includes a plurality of optical waveguide elements 10 arranged in the Y direction. Each optical waveguide element 10 extends in the X direction.
  • the phase shifter array 20A includes a plurality of phase shifters 20 arranged in the Y direction. Each phase shifter 20 includes an optical waveguide extending in the X direction.
  • the plurality of optical waveguide elements 10 in the optical waveguide array 10A are connected to the plurality of phase shifters 20 in the phase shifter array 20A, respectively.
  • An optical turnout 30 is connected to the phase shifter array 20A.
  • Light L0 emitted from a light emitting element is input to a plurality of phase shifters 20 in the phase shifter array 20A via an optical turnout 30.
  • the light that has passed through the plurality of phase shifters 20 in the phase shifter array 20A is input to the plurality of optical waveguide elements 10 in the optical waveguide array 10A in a state where the phases are shifted by a certain amount in the Y direction.
  • the light input to each of the plurality of optical waveguide elements 10 in the optical waveguide array 10A is emitted as the light beam L2 from the light emitting surface 10s parallel to the XY plane in the direction intersecting the light emitting surface 10s.
  • FIG. 14B is a diagram schematically showing an example of the structure of the optical waveguide element 10.
  • the optical waveguide element 10 applies a driving voltage to the first mirror 11 and the second mirror 12 facing each other, the optical waveguide layer 15 located between the first mirror 11 and the second mirror 12, and the optical waveguide layer 15. Includes a pair of electrodes 13 and 14 for
  • the optical waveguide layer 15 may be made of a material whose refractive index changes with the application of a voltage, such as a liquid crystal material or an electro-optical material.
  • the transmittance of the first mirror 11 is higher than that of the second mirror 12.
  • Each of the first mirror 11 and the second mirror 12 can be formed, for example, from a multilayer reflective film in which a plurality of high refractive index layers and a plurality of low refractive index layers are alternately laminated.
  • the light input to the optical waveguide layer 15 propagates in the optical waveguide layer 15 along the X direction while being reflected by the first mirror 11 and the second mirror 12.
  • the arrows in FIG. 14B schematically represent how light propagates. A part of the light propagating in the optical waveguide layer 15 is emitted to the outside from the first mirror 11.
  • the refractive index of the optical waveguide layer 15 changes, and the direction of light emitted from the optical waveguide element 10 to the outside changes.
  • the direction of the light beam L2 emitted from the optical waveguide array 10A changes according to the change in the drive voltage. Specifically, the emission direction of the light beam L2 shown in FIG. 14A can be changed along the first direction D1 parallel to the X axis.
  • FIG. 14C is a diagram schematically showing an example of the phase shifter 20.
  • the phase shifter 20 is for applying a drive voltage to, for example, a total reflection waveguide 21 containing a thermooptical material whose refractive index changes with heat, a heater 22 that is in thermal contact with the total reflection waveguide 21, and a heater 22. Includes a pair of electrodes 23 and 24.
  • the refractive index of the total reflection waveguide 21 is higher than the refractive index of the heater 22, the substrate 40, and air. Due to the difference in refractive index, the light input to the total reflection waveguide 21 propagates along the X direction while being totally reflected in the total reflection waveguide 21.
  • the total reflection waveguide 21 is heated by the heater 22.
  • the refractive index of the total reflection waveguide 21 changes, and the phase of the light output from the end of the total reflection waveguide 21 shifts.
  • the emission direction of the light beam L2 is set to the second direction D2 parallel to the Y axis. Can be changed along.
  • the scan light source 121 can change the emission direction of the light beam L2 two-dimensionally.
  • Patent Document 4 Details such as the operating principle and operating method of the scanning light source 112 as described above are disclosed in, for example, Patent Document 4.
  • the entire disclosure contents of Patent Document 4 are incorporated herein by reference.
  • the image sensor 211 includes a plurality of light receiving elements arranged two-dimensionally along the light receiving surface.
  • An optical component (not shown) may be provided so as to face the light receiving surface of the image sensor 211.
  • Optical components may include, for example, at least one lens.
  • the optical component may include other optical elements such as prisms or mirrors.
  • the optical component may be designed so that the light diffused from one point of an object in the scene is focused on one point on the light receiving surface of the image sensor 211.
  • the image sensor 211 may be, for example, a CCD (Charge-Coupled Device) sensor, a CMOS (Complementary Metal Oxide Sensor) sensor, or an infrared array sensor.
  • Each light receiving element includes a photoelectric conversion element such as a photodiode and one or more charge storage units. The charge generated by the photoelectric conversion is accumulated in the charge storage portion during the exposure period. The charge accumulated in the charge storage unit is output after the end of the exposure period. In this way, each light receiving element outputs an electric signal according to the amount of light received during the exposure period. This electric signal may be referred to as "light receiving data".
  • the image sensor 211 may be a monochrome type image sensor or a color type image sensor.
  • a color type image sensor having an R / G / B, R / G / B / IR, or R / G / B / W filter may be used.
  • the image sensor 211 is not limited to the visible wavelength range, and may have detection sensitivity in a wavelength range such as ultraviolet, near-infrared, mid-infrared, and far-infrared.
  • the image sensor 211 may be a sensor using SPAD (Single Photon Avalanche Diode).
  • SPAD Single Photon Avalanche Diode
  • the image sensor 211 may include an electronic shutter system that collectively exposes all pixels, that is, a global shutter mechanism.
  • the electronic shutter may be a rolling shutter method that exposes each row, or an area shutter method that exposes only a part of the area according to the irradiation range of the light beam.
  • the electronic shutter is of the global shutter system, two-dimensional information can be acquired at one time by controlling the shutter in synchronization with the flash light.
  • the flash light can be received only by some pixels whose exposure timing is matched, and the exposure timing is not matched. Since the pixels cannot receive light, the amount of information that can be acquired is reduced.
  • this can also be solved by performing signal processing for distance calculation that corrects the deviation of the shutter timing for each pixel.
  • the image sensor 211 may be capable of switching the electronic shutter method. For example, when the distance is measured by the flash light, the exposure by the global shutter method may be performed, and when the distance is measured by the scan beam, the exposure by the rolling shutter method or the area shutter method according to the spot shape of the scan beam may be performed.
  • FIG. 15 is a flowchart showing the operation of the distance measuring device in the modified example of the present embodiment.
  • the controller 301 controls the flash light source 111 and the scan light source 121 so that the flash light and the scan light are emitted at the same time in each frame operation.
  • the controller 301 executes the operations of steps S201 to S209 shown in FIG. The operation of each step will be described below.
  • Step S201 The controller 301 drives the flash light source 111 and the scan light source 121 to emit the flash light and the scan light at the same time.
  • the flash light illuminates a relatively wide first area of the scene.
  • the scan light illuminates a relatively narrow second area of the scene.
  • the emission direction of the scan light in this step is a specific preset direction.
  • Step S202 The controller 301 causes the image sensor 211 to perform exposure and detect each reflected light of the flash light and the scan light. The detection of the reflected light is performed for each pixel of the image sensor 211.
  • the image sensor 211 outputs two-dimensional image data according to the amount of accumulated electric charge.
  • the operation of steps S201 to S202 corresponds to the operation of the first frame.
  • the image sensor 211 generates and outputs distance image data having a distance value for each pixel based on the two-dimensional image data. Alternatively, the distance may be calculated for each pixel from the accumulated charge amount, and two-dimensional distance data may be generated and output based on this.
  • FIG. 16A is a diagram showing an example of a distance image.
  • an example of the region irradiated with the scan light is shown by an ellipse.
  • the irradiation range of the scan light is not limited to an ellipse, and may be another shape such as a circle. If the scan light source 121 is configured so that the beam shape or beam diameter can be changed, the controller 301 may change the beam shape or beam diameter for each emission. In this example, an image showing the distance distribution within the first region is generated and stored in the memory 330.
  • Step S204 Based on the distance image data generated in step S203, the controller 301 specifies an area estimated to have insufficient distance measurement as the second range. Also in this example, the second range can be determined based on the reflected light intensity of each pixel. For example, when it is determined that the intensity of the reflected light of the scan light is sufficiently high, the controller 301 may determine a region where the reflected light intensity is lower than the threshold value and the SN is low as the second range. Further, even if it is determined that the intensity of the reflected light of the scan light is insufficient, the controller 301 may change the emission direction and change the aim to a position where the intensity of the reflected light is further increased. By such control, the amount of distance information obtained can be increased.
  • FIG. 16B shows an example of a second range selected.
  • a range different from the irradiation range shown by the ellipse in FIG. 16A is set as the irradiation range of the scan light emitted in the next frame operation, that is, the second range.
  • Step S205 The controller 301 determines the emission direction of the scan beam in the next frame operation.
  • the emission direction is determined so that at least a part of the second range determined in step S204 is irradiated by the scan beam.
  • steps S206 to S207 corresponding to the second frame operation following the first frame operation are executed.
  • Step S206 The controller 301 drives the flash light source 111 and the scan light source 121 to emit the flash light and the scan beam at the same time.
  • the emission direction of the scan beam is the direction determined in step S205.
  • FIG. 16C shows an example of the range in which the scan beam is irradiated. In FIG. 16C, the area irradiated with the scan beam is indicated by an ellipse.
  • Step S207 The controller 301 causes the image sensor 211 to perform exposure and detect each reflected light of the flash light and the scan light. The detection of the reflected light is performed for each pixel of the image sensor 211.
  • the image sensor 211 generates distance image data indicating a distance value for each pixel and records it on a recording medium.
  • Step S208 The controller 301 acquires the distance image data output in step S207 from the recording medium.
  • Step S209 The controller 301 outputs the distance image data to the recording medium. At this time, the luminance image data acquired from the image sensor 211 or another image sensor (not shown) may also be output.
  • the required distance data can be acquired in a short time as compared with the configuration in which the entire area of the scene is scanned using only the scan light.
  • the emission direction of the scan beam in the second frame operation is determined based on the detection data acquired in the immediately preceding first frame operation, but the frame is further before the first frame operation. It may be determined based on the detection data acquired by the operation.
  • FIG. 15 shows only the operations for two frames, when the distance measurement is continuously performed a plurality of times, the operations shown in steps S204 to S209 shown in FIG. 15 can be repeatedly executed.
  • steps S204 to S209 shown in FIG. 15 can be repeatedly executed.
  • an example in which such a repetitive operation is performed will be described.
  • FIG. 17 is a flowchart showing an example of an operation in which a plurality of frame operations are repeated.
  • distance image data is first generated using only the flash light (steps S101 to S103).
  • the irradiation range of the scan beam is determined, the scan beam and the flash light are emitted at the same time, and distance image data is generated (steps S204 to S209).
  • the controller 301 determines whether or not there is an instruction to end the operation (step S210).
  • the operation end instruction may be input from another device, for example, due to a user operation.
  • step S210 the process returns to step 204, and the irradiation range of the next scan beam is determined based on the distance image data acquired immediately before.
  • the controller 301 repeats the operations of steps S204 to S210 until the operation end instruction is received in step S210.
  • the frequency of this repetition can be arbitrarily set depending on the application. For example, the above operation can be repeated at a frequency of about 30 frames (30 fps) per second. In this example, the operation of one cycle from steps S204 to S210 is referred to as "frame operation".
  • the controller 301 repeatedly outputs distance measurement data in the scene by repeatedly executing a plurality of frame operations. It should be noted that steps S101 to S103 are not always necessary, and steps S204 and subsequent steps may be executed using the distance image data acquired in the previous frame operation.
  • FIG. 18 is a diagram showing an example of the emission timing of the flash light and the scan beam and the exposure timing in this modified example.
  • the controller 301 causes the light emitting device to emit the flash light and the scan beam at the same time, and causes the image sensor 211 to detect the reflected light within the same exposure period. By such an operation, it is possible to measure the distance with high accuracy even in a region where the reflected light is weak and the distance cannot be measured only by the flash light.
  • FIG. 19 is a flowchart showing the operation of the distance measuring device according to another modification.
  • the flowchart shown in FIG. 19 is the same as the flowchart of FIG. 17, except that step S206 is replaced with step S216.
  • the controller 301 repeatedly executes a plurality of frame operations. In each frame operation, the controller 301 causes the scan light source 121 to emit the scan light, and then causes the flash light source 111 to emit the flash light (step S216). The controller 301 detects the reflected light of the scan light and the flash light in the same exposure period (step S207).
  • steps S101 to S103 are not always necessary, and steps S204 and subsequent steps may be executed using the distance image data acquired in the previous frame operation.
  • FIG. 20 is a diagram showing the timing of light emission and light reception in this modified example.
  • the flash light is emitted after a predetermined delay time has elapsed after the scan beam is emitted.
  • the distance in the pixel that receives the reflected light of the scan light is calculated by adding the value of the distance calculated by "delay time" x "speed of light” to the calculation formula of the distance in the pixel that receives the reflected light of the flash light. it can.
  • the pulse width of the flash light is set to 167 ns.
  • Three exposure time windows of 167 ns are provided accordingly.
  • the distance range of the scan light is 20 to 70 m.
  • the delay is set to 330 ns, which is delayed by 50 m, the distance range is 50 m to 100 m.
  • FIG. 21 shows an example of light emission timing and exposure timing when each of the flash light and the scan beam is emitted and exposed a plurality of times during each frame operation.
  • the signal accumulation amount may be increased by repeating light emission and exposure a plurality of times in each frame operation.
  • the data of each pixel is read out and the distance measurement data of the frame is output when the exposure of a predetermined number of times is completed for each frame.
  • FIG. 22 is a diagram showing an example of the timing of light emission and light reception when distance measurement is performed directly by the TOF method in a configuration in which scan light is emitted before flash light.
  • FIG. 22 shows examples of reflected light pulses, gate signals, and clock pulses in the pixel region that receives the reflected light of the flash light and the pixel region that receives the reflected light of the scan light.
  • the flight time can be measured and the distance can be calculated by counting the clock pulse between the time when the flash light is emitted and the time when the reflected light is received. As in this example, distance measurement is possible even when the TOF method is used directly.
  • the distance of the pixel that receives the reflected light of the scan light is calculated by adding the distance calculated by "delay time” x "speed of light” to the calculation formula of the distance of the pixel that receives the reflected light of the flash light. Can be calculated by.
  • the irradiation range of the scan beam is determined based on the luminance image data obtained by the irradiation of the flash light source 111. For example, from the luminance image data, the position of a specific object such as a pedestrian or a vehicle is specified by image recognition, and a scan beam is emitted toward that position. By such an operation, the distance data to the object can be obtained with high accuracy.
  • FIG. 23 is a diagram showing a configuration of a distance measuring device according to the present embodiment.
  • the distance measuring device of the present embodiment further includes an image processing circuit 303 in addition to the components of the first embodiment.
  • the image sensor 211 is configured to output luminance image data in addition to the distance image.
  • the image processing circuit 303 includes a processor for image processing such as a GPU (Graphics Processing Unit).
  • the image processing circuit 303 can recognize a specific object from the image data.
  • the image processing circuit 303 identifies the position of a specific object based on the luminance image, and sends data indicating the position of the object to the controller 301.
  • the controller 301 controls the scan light source 121 so that the scan beam is irradiated to the position.
  • the controller 301 and the image processing circuit 303 may be integrated as one processing circuit.
  • the controller 301 shown in FIG. 23 separately generates and outputs the distance image data and the luminance image data based on the data output from the image sensor 211.
  • the controller 301 also outputs data that identifies an object such as a person or a vehicle, and coordinate data of the object. Data regarding these objects may be output from the image processing circuit 303.
  • the data relating to the object may be output as data separate from the distance image or the luminance image as shown in the figure, or may be integrated and output in the distance image or the luminance image.
  • FIG. 24 is a flowchart showing the flow of one distance measuring operation by the distance measuring device of the present embodiment.
  • the controller 301 and the image processing circuit 303 generate distance measurement data for the scene by executing the operations of steps S301 to S309 shown in FIG. 24. The operation of each step will be described below.
  • Step S301 The controller 301 drives the flash light source 111 to emit the flash light.
  • the flash light illuminates a relatively wide first area of the scene.
  • Step S302 The controller 301 causes the image sensor 211 to perform exposure and detect the reflected light of the flash light. The detection of the reflected light is performed for each pixel of the image sensor 211.
  • the image sensor 211 outputs luminance image data including luminance data indicating the intensity of reflected light for each pixel.
  • the image sensor 211 may also output the distance image data as in the first embodiment. Also in this embodiment, the distance can be calculated for each pixel by using the technique of direct TOF or indirect TOF.
  • the signal of each pixel may be accumulated by repeating the irradiation of the flash light and the exposure by the image sensor a plurality of times. By such an operation, the SN can be improved.
  • Step S303 The controller 301 acquires the luminance image data output from the image sensor 211.
  • FIG. 25A is a diagram showing an example of a luminance image. As in this example, an image showing the luminance distribution in the first region is generated and stored in the memory 330. This luminance image data is sent to the image processing circuit 303.
  • the image processing circuit 303 detects one or more objects to be distance-measured from the luminance image data.
  • the object for example, a person, a car, or an unknown object that cannot be identified may be selected.
  • the image processing circuit 303 can identify a specific object based on the characteristics of the image by using, for example, a known image recognition technique.
  • the luminance image data since the luminance image data is acquired in the state of irradiating the flash light, the image data can be acquired even at night.
  • the flash light source 111 for example, a vehicle headlight can be used. Instead of the headlight, the luminance image data may be acquired by using, for example, a light source that emits near-infrared light.
  • 25B is a diagram showing an example of an area in which a specific object exists in a luminance image. In this figure, areas of a plurality of objects are shown by dashed lines.
  • the image processing circuit 303 identifies the position of one or more objects in the scene and sends data indicating the position coordinates to the controller 301.
  • Step S305 The controller 301 determines the emission direction of the scan beam based on the position data of the object.
  • the emission direction is set so that at least a part of the region (that is, the second range) in which the specified object exists is irradiated with the scan beam.
  • the controller 301 may adjust the beam shape and / or the beam diameter according to the distribution of the second range as well as the direction of the scan beam.
  • Step S306 The controller 301 instructs the scan light source 121 to emit the scan beam in the determined emission direction. As a result, at least a part of the second range is irradiated with the scan beam.
  • the scan beam may be emitted a plurality of times in the same direction and the exposure may be repeated to accumulate the signal.
  • FIG. 25C shows an example of the range in which the scan beam is irradiated. In FIG. 25C, an example of the range to which the scan beam is irradiated is represented by an ellipse. FIG. 25C illustrates two ranges illuminated by two scan beams in different directions.
  • the controller 301 may irradiate the entire second range by changing the direction of the scan beam and irradiating it repeatedly. Alternatively, a plurality of scan beams may be emitted in different directions at the same time.
  • FIG. 25D shows another example of the area where the scan beam is irradiated. In this example, it is shown that the detected object is irradiated with a plurality of scan beams having different beam shapes. As in this example, the beam shape may be changed according to the size or distribution of the second range. For example, since the size of a person and a car are different, the spot size of the beam may be changed according to the size. By performing such control, it is possible to obtain necessary and sufficient distance measurement data of the object. In the examples of FIGS. 25C and 25D, one beam is irradiated to a plurality of objects, but one beam may be emitted for each object.
  • Step S307 The controller 301 causes the image sensor 211 to detect the reflected light of the scan beam and output the distance data in the irradiation range of the scan beam.
  • the exposure is also performed for each emission of the scan beam. In that case, the operations of steps S305 to S307 are repeated until the scan is completed.
  • Step S308 The controller 301 acquires the distance data for the second range generated by the image sensor 211.
  • This distance data is data indicating the value of the distance of a plurality of pixels corresponding to the second range irradiated with the scan beam.
  • Step S309) The controller 301 generates and outputs output data based on the luminance image data acquired in step S303 and the distance data acquired in step S308.
  • This output data may include information about the brightness distribution of the scene and the position and distance of each object.
  • the output data may include data indicating the distance distribution of the scene.
  • the distance image data may be included in the output data.
  • the distance measuring device can output two types of data, distance image data and luminance image data, each time the operation shown in FIG. 24 is repeated.
  • the distance image data and the luminance image data may be output as one frame of data, or may be output as integrated one-frame data.
  • the three-dimensional point cloud data may be included in the output data.
  • the distance data of the specific object recognized from the luminance image can be effectively acquired.
  • a distance measuring device when used as a sensor for automatic driving, it is possible to measure a distance by targeting a moving object such as a person or a vehicle. Movement can also be tracked by aiming the scan light at such a moving object and performing distance measurement. From that movement, the direction in which it is going to move (for example, a velocity vector) can be calculated. Motion can be predicted based on the velocity vector. By making such motion prediction possible, automatic driving can be smoothly performed without decelerating more than necessary. Further, the same technique can be applied when it is desired to investigate the object in more detail. For example, the size or distance of an unknown obstacle falling on the road surface may not be determined from the image alone. Therefore, the size of the outer shape can be calculated by measuring the distance with the scan light and collating it with the result of imaging. This makes it possible to determine whether it is not necessary to avoid it or whether it should be avoided.
  • FIG. 26 is a flowchart showing the operation of the modified example of the present embodiment. This flowchart is the same as the flowchart shown in FIG. 24, except that steps S303 and S304 have been replaced by steps S403 and S404, respectively.
  • steps S303 and S304 have been replaced by steps S403 and S404, respectively.
  • step S403 both the luminance image data and the distance image data are acquired from the image sensor 211.
  • step S304 the image processing circuit 303 identifies an area with insufficient distance measurement from the distance image data, and identifies a specific object from the luminance image data.
  • the method for identifying the area where the distance measurement is insufficient is the same as the method in step S104 of FIG.
  • the image processing circuit 303 sends the position data of the area where the distance measurement is insufficient and the area where the specific object exists to the controller 301.
  • the controller 301 determines the emission direction of the scan beam, the beam shape, the beam size, and the like based on the acquired position data of the area.
  • this modification it is possible to measure a region requiring more detailed distance measurement with higher accuracy based on both the luminance image data and the distance image data. For example, it is possible to perform distance measurement by aiming at a person or a vehicle whose movement should be predicted by tracking or an object whose size needs to be specified, while grasping the whole picture by distance measurement using a flash light. Thereby, for example, when the distance measuring device is used as a sensor for an autonomous driving vehicle, automatic traveling can be smoothly performed without decelerating more than necessary.
  • the operation of the second embodiment may be combined with the scanning operation as shown in FIG. 7, the periodic frame operation as shown in FIG. 17, or the simultaneous irradiation of the flash light and the scanning light.
  • the luminance image and the distance image are acquired by one image sensor 211, but these may be acquired by two image sensors. That is, the distance measuring device may include a first image sensor that generates luminance image data and a second image sensor that generates distance image data.
  • the distance measuring device includes a light emitting device capable of emitting a plurality of types of light having different degrees of spread, and reflected light based on the light emitted from the light emitting device. It is provided with a light receiving device for detecting the above, and a processing circuit for controlling the light emitting device and the light receiving device and processing a signal output from the light receiving device.
  • the processing circuit causes the light emitting device to emit a first light that illuminates the first range in the scene, and causes the light receiving device to detect the first reflected light generated by the irradiation of the first light.
  • the first detection data is output, and based on the first detection data, one or more second ranges narrower than the first range are determined, and the light emitting device is subjected to the second range. A second light having a smaller degree of spread than the first light is emitted, and the light receiving device is made to detect the second reflected light generated by the irradiation of the second light.
  • the detection data of the above is output, and the distance data in the second range is generated and output based on the second detection data.
  • the distance measuring device even in a region where the distance cannot be measured with sufficient accuracy when only the first light is used, the distance can be measured with higher accuracy by using the second light. Can be done. Further, the required distance data can be acquired in a short time as compared with the configuration in which the distance data of the entire scene is acquired by scanning the entire scene with the second light. Therefore, it is possible to acquire highly reliable distance data in a short time.
  • the first light can be, for example, a flash light.
  • the second light may be a light beam that irradiates a range included in the irradiation range of the flash light.
  • the flash light may be, for example, a vehicle headlight. By using the flash light, it is possible to acquire a wide range of first detection data even at night, for example.
  • the light receiving device may include an image sensor that generates at least one of the distance image data in the first range and the luminance image data in the first range as the first detection data.
  • the image sensor may generate distance image data in the first range.
  • the processing circuit may determine the second range based on the distance image data of the first range. Thereby, based on the distance image data of the first range, it is possible to determine the second range that requires more detailed distance measurement. For example, a range in which the distance measurement accuracy is insufficient can be determined as the second range.
  • the processing circuit combines the distance image data of the first range acquired by using the first light and the distance image data of the second range acquired by using the second light.
  • the distance image data of the frame may be integrated and output. As a result, it is possible to acquire integrated distance image data with high accuracy.
  • the image sensor may generate luminance image data in the first range.
  • the processing circuit may determine the second range based on the luminance image data of the first range. Thereby, based on the luminance image data of the first range, it is possible to determine the second range that requires more detailed distance measurement. For example, the range in which the specific object recognized from the luminance image data exists can be determined as the second range.
  • the image sensor may generate both the distance image data in the first range and the luminance image data in the first range.
  • the processing circuit may determine the second range based on the distance image data in the first range and the luminance image data in the first range. As a result, for example, a range in which the distance measurement determined based on the distance image data is insufficient and a range in which a specific object determined based on the luminance image data exists are determined as the second range. Can be done.
  • the processing circuit identifies one or more objects existing in the first range based on the luminance image data in the first range, and the second light is emitted to the one or more objects.
  • the second range may be determined so that it is irradiated.
  • the image sensor may include a global shutter type electronic shutter.
  • the electronic shutter is of the global shutter type, two-dimensional information can be acquired at once by controlling the on and off of the shutter in synchronization with the first light.
  • the processing circuit causes the light emitting device and the light receiving device to emit the first light at least once to detect the first reflected light, and emits the second light at least once.
  • the operation of detecting the second reflected light may be repeatedly executed. As a result, the distance data of the scene can be repeatedly generated.
  • the operation of emitting the second light may include an operation of emitting the second light a plurality of times in different directions. This allows the second area to be scanned by the second light.
  • the processing circuit may cause the light emitting device to emit the first light and the second light a plurality of times at the same time.
  • the determination of the second range can be made based on the first detection data obtained by the previous irradiation of the first light.
  • the processing circuit causes the light emitting device and the light receiving device to emit the second light, then emits the first light, and then the first reflected light and the second reflected light. May be repeatedly executed to detect the light within the same exposure period.
  • the determination of the second range can be made based on the first detection data obtained by the previous irradiation of the first light.
  • the light emitting device may include a first light source that emits the first light and a second light source that emits the second light.
  • a method is a method of causing the light emitting device to emit a first light that illuminates a first range in the scene, and causing the light receiving device to emit the first light.
  • a computer program includes a light emitting device, a light receiving device, and a processing circuit that controls the light emitting device and the light receiving device and processes a signal output from the light receiving device. It is executed by the processing circuit in the system.
  • the computer program causes the processor of the processing circuit to emit a first light that illuminates the light emitting device with a first range in the scene, and the light receiving device is irradiated with the first light.
  • the generated first reflected light is detected to output the first detection data, and one or more second ranges narrower than the first range are determined based on the first detection data.
  • the light emitting device is made to emit a second light having a smaller degree of spread than the first light, which irradiates the second range, and the light receiving device is made to emit the second light.
  • the light receiving device is made to emit the second light.
  • the technology of the present disclosure can be widely used in a device or system for distance measurement.
  • the techniques of the present disclosure can be used as components of a lidar system.
  • Light emitting device 110 1st light source 111 Flash light source 120 2nd light source 121 Scan light source 200

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

測距装置は、発光装置と、受光装置と、前記発光装置および前記受光装置を制御し、前記受光装置から出力された信号を処理する処理回路とを備える。前記処理回路は、前記発光装置に、シーン内の第1の範囲を照射する第1の光を出射させ、前記受光装置に、前記第1の光の照射によって生じた第1の反射光を検出させて第1の検出データを出力させ、前記第1の検出データに基づき、前記第1の範囲よりも狭い1つ以上の第2の範囲を決定し、前記発光装置に、前記第2の範囲を照射する第2の光を出射させ、前記受光装置に、前記第2の光の照射によって生じた第2の反射光を検出させて第2の検出データを出力させ、前記第2の検出データに基づき、前記第2の範囲の距離データを生成して出力する。

Description

測距装置および制御方法
 本開示は、測距装置および制御方法に関する。
 従来、物体に光を照射し、当該物体からの反射光を検出することにより、当該物体の位置または距離に関するデータを取得する種々のデバイスが提案されている。
 例えば特許文献1は、光源を含む投光系と、投光系から投光され物体で反射された光を受光する光検出器を含む受光系と、光検出器の出力信号が入力される信号処理系と、制御系とを備える物体検出装置を開示している。制御系は、投光系の投光範囲内の少なくとも1つの領域を注目領域として設定し、投光系の投光条件または信号処理系の処理条件を、注目領域に投光するときと注目領域以外の領域に投光するときとで異なるように制御する。
 特許文献2は、ライダー(LIDAR:Light Detection and Ranging)装置を開示している。当該ライダー装置は、第1のビームスキャナと、第2のビームスキャナと、コントローラとを備える。第1のビームスキャナは、第1のスキャンパターンの第1のレーザビームで第1の領域をスキャンする。第2のビームスキャナは、第2のスキャンパターンの第2のレーザビームで、第1の領域よりも狭い第2の領域をスキャンする。コントローラは、第1のビームスキャナを駆動して第1の領域をスキャンし、第1のレーザビームによる反射光のデータを取得する。そして、当該データから、1つ以上の対象物を決定し、第2のビームスキャナを駆動して第2の領域内を照射することにより、当該対象物をモニターする。
 特許文献3は、測距撮像装置を開示している。この測距撮像装置は、パッシブ光を検出するイメージセンサから出力された信号に基づき、撮像対象エリア全体の中から測距を必要とする被写体を特定する。そして、当該被写体をレーザ光で照射し、その反射光を検出することで、当該被写体までの距離を計測する。
 特許文献4は、光ビームによって空間を走査し、イメージセンサによって物体からの反射光を受光して距離情報を取得する装置を開示している。
特開2017-173298号公報 米国特許第10061020号明細書 特開2018-185342号公報 米国特許出願公開第2018/0217258号明細書
 本開示は、測距対象シーンにおける特定の領域の距離データを効率的に取得することを可能にする技術を提供する。
 本開示の一態様に係る測距装置は、拡がりの程度の異なる複数種類の光を出射することが可能な発光装置と、前記発光装置から出射された前記光に基づく反射光を検出する受光装置と、前記発光装置および前記受光装置を制御し、前記受光装置から出力された信号を処理する処理回路と、を備える。前記処理回路は、前記発光装置に、シーン内の第1の範囲を照射する第1の光を出射させ、前記受光装置に、前記第1の光の照射によって生じた第1の反射光を検出させて第1の検出データを出力させ、前記第1の検出データに基づき、前記第1の範囲よりも狭い1つ以上の第2の範囲を決定し、前記発光装置に、前記第2の範囲を照射する、前記第1の光よりも拡がりの程度が小さい第2の光を出射させ、前記受光装置に、前記第2の光の照射によって生じた第2の反射光を検出させて第2の検出データを出力させ、前記第2の検出データに基づき、前記第2の範囲の距離データを生成して出力する。
 本開示の包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能な記録ディスク等の記録媒体によって実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意の組み合わせによって実現されてもよい。コンピュータ読み取り可能な記録媒体は、揮発性の記録媒体を含んでいてもよいし、CD-ROM(Compact Disc‐Read Only Memory)等の不揮発性の記録媒体を含んでいてもよい。装置は、1つ以上の装置で構成されてもよい。装置が2つ以上の装置で構成される場合、当該2つ以上の装置は、1つの機器内に配置されてもよく、分離した2つ以上の機器内に分かれて配置されてもよい。本明細書及び特許請求の範囲では、「装置」とは、1つの装置を意味し得るだけでなく、複数の装置からなるシステムも意味し得る。
 本開示の実施形態によれば、測距対象シーンにおける特定の領域の距離データを効率的に取得することが可能になる。
測距装置の基本的な構成を示す図である。 測距装置の動作の概要を説明するための図である。 測距装置による1回の測距動作の流れを示すフローチャートである。 実施形態1における測距装置の構成を模式的に示す図である。 1回の測距動作の例を示すフローチャートである。 距離画像の一例を示す図である。 選択される第2の範囲の例を示す図である。 スキャンビームが照射される範囲の例を示す図である。 1回の測距動作の他の例を示すフローチャートである。 直接TOFによる測距方法の例を説明するための図である。 間接TOFによる測距方法の例を説明するための図である。 近距離モードでの光パルスおよび露光時間窓の例を示す図である。 遠距離モードでの光パルスおよび露光時間窓の例を示す図である。 レンジ切り替えの他の例を示す図である。 フラッシュ光とスキャンビームの発光のタイミングおよび露光のタイミングの例を示す図である。 フラッシュ光による測距とスキャンビームによる測距とを別のフレーム動作で行う例を示す図である。 スキャン光源の一例を模式的に示す図である。 スキャン光源の例を模式的に示す図である。 光導波路素子の構造の一例を模式的に示す図である。 位相シフタの一例を模式的に示す図である。 実施形態1の変形例における測距装置の動作を示すフローチャートである。 距離画像の一例を示す図である。 選択される第2の範囲の例を示す図である。 スキャンビームが照射される範囲の例を示す図である。 実施形態1の変形例における動作を示すフローチャートである。 変形例におけるフラッシュ光およびスキャンビームの発光タイミングと、露光タイミングの例を示す図である。 他の変形例による測距装置の動作を示すフローチャートである。 変形例における発光と受光のタイミングを示す図である。 変形例における発光と受光のタイミングを示す図である。 フラッシュ光よりも先にスキャン光を出射する構成に、直接TOF法を適用した例を示す図である。 実施形態2における測距装置の構成を示す図である。 実施形態2の測距装置による1回の測距動作の流れを示すフローチャートである。 輝度画像の一例を示す図である。 輝度画像中で特定の対象物が存在するエリアの例を示す図である。 スキャンビームが照射される範囲の例を示す図である。 スキャンビームが照射される範囲の他の例を示す図である。 実施形態2の変形例の動作を示すフローチャートである。
 本開示において、回路、ユニット、装置、部材もしくは部の全部または一部、またはブロック図における機能ブロックの全部または一部は、例えば、半導体装置、半導体集積回路(IC)、またはLSI(large scale integration)を含む1つまたは複数の電子回路によって実行され得る。LSIまたはICは、1つのチップに集積されてもよいし、複数のチップを組み合わせて構成されてもよい。例えば、記憶素子以外の機能ブロックは、1つのチップに集積されてもよい。ここでは、LSIまたはICと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(very large scale integration)、もしくはULSI(ultra large scale integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、Field Programmable Gate Array(FPGA)、またはLSI内部の接合関係の再構成またはLSI内部の回路区画のセットアップができるreconfigurable logic deviceも同じ目的で使うことができる。
 さらに、回路、ユニット、装置、部材または部の全部または一部の機能または動作は、ソフトウェア処理によって実行することが可能である。この場合、ソフトウェアは1つまたは複数のROM、光学ディスク、ハードディスクドライブなどの非一時的記録媒体に記録され、ソフトウェアが処理装置(processor)によって実行されたときに、そのソフトウェアで特定された機能が処理装置(processor)および周辺装置によって実行される。システムまたは装置は、ソフトウェアが記録されている1つまたは複数の非一時的記録媒体、処理装置(processor)、および必要とされるハードウェアデバイス、例えばインターフェースを備えていてもよい。
 以下、本開示の例示的な実施形態を説明する。なお、以下で説明する実施形態は、いずれも包括的又は具体的な例を示すものである。以下の実施形態で示される数値、形状、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は模式図であり、必ずしも厳密に図示されたものではない。さらに、各図において、実質的に同一の構成要素に対しては同一の符号を付しており、重複する説明は省略又は簡略化される場合がある。
 図1は、本開示の例示的な実施形態による測距装置の概略的な構成を示すブロック図である。本実施形態における測距装置は、発光装置100と、受光装置200と、処理回路300とを備える。測距装置は、例えば車両に搭載されるライダーシステムの一部として利用され得る。測距装置は、測距対象のシーンを光で照射し、距離データを生成して出力するように構成されている。なお、本開示における「距離データ」とは、シーン中の1つ以上の計測点の基準点からの絶対的な距離、もしくは計測点間の相対的な深度を表す任意の形式のデータ、または上記の距離もしくは深度を算出するための任意の形式のデータを意味する。距離データは、例えば、距離画像データであってもよいし、3次元点群データであってもよい。また、距離データは、直接的に距離または深度を表すデータに限られず、距離または深度を算出するためのセンサデータそのもの、すなわちRawデータであってもよい。センサデータすなわちRawデータは、受光装置200が備えるセンサから出力されるデータである。Rawデータは、例えば受光装置200が検出した1つ以上の輝度を示す輝度データであり得る。
 発光装置100は、拡がりの程度の異なる複数種類の光を出射する。例えば、シーンに向けて相対的に拡がりの大きい光ビームまたはフラッシュ光を照射したり、シーン中の特定の領域に向けて拡がりの小さい光ビームを照射したりすることができる。言い替えれば、発光装置100は、相対的にブロードな第1の光と、第1の光の照射範囲よりも狭い範囲を照射する第2の光を出射することができる。発光装置100は、第1の光を出射する第1の光源と、第2の光を出射する第2の光源とを備えていてもよい。あるいは、発光装置100は、第1の光および第2の光の両方を出射することが可能な1つの光源を備えていてもよい。
 受光装置200は、発光装置100から出射された光の反射光を検出する。受光装置200は、例えば1つ以上のイメージセンサを備える。受光装置200は、第1の光の照射によって生じた第1の反射光を検出して第1の検出データを出力する。受光装置200はまた、第2の光の照射によって生じた第2の反射光を検出して第2の検出データを出力する。受光装置200は、第1の反射光を検出して第1の検出データを出力する第1のイメージセンサと、第2の反射光を検出して第2の検出データを出力する第2のイメージセンサとを備えていてもよい。あるいは、受光装置200は、第1の反射光および第2の反射光をそれぞれ検出することが可能な1つのイメージセンサを備えていてもよい。
 処理回路300は、発光装置100および受光装置200を制御し、受光装置200から出力されたデータを処理する回路である。処理回路300は、1つ以上のプロセッサと、1つ以上の記録媒体とを含む。記録媒体は、例えばRAMおよびROMなどのメモリを含む。記録媒体には、プロセッサによって実行されるコンピュータプログラム、および処理の過程で生じた種々のデータが格納され得る。処理回路300は、複数の回路の集合体であってもよい。例えば、処理回路300は、発光装置100および受光装置200を制御する制御回路と、受光装置200から出力された信号を処理する信号処理回路とを含んでいてもよい。
 図2は、測距装置の動作の概要を説明するための図である。図2には、測距装置の一例と、測距装置によって生成され得る距離画像の一例とが模式的に示されている。この例における発光装置100は、第1の光源110と、第2の光源120とを備える。第1の光源110は、第1の光として、フラッシュ光L1を出射するように構成されている。第2の光源120は、第2の光として、より拡がりの小さい光ビームL2を出射するように構成されている。第2の光源120は、光ビームL2の出射方向を変化させることができる。受光装置200は、イメージセンサ210を備える。この例におけるイメージセンサ210は、TOF(Time of Flight)による測距が可能なTOFイメージセンサである。イメージセンサ210は、直接TOFまたは間接TOFの技術を利用して、測距対象のシーンの距離画像を生成することができる。処理回路300は、第1の光源110、第2の光源120、およびイメージセンサ210を制御する。
 本実施形態における処理回路300は、第1の光源110にフラッシュ光L1を出射させ、その反射光をイメージセンサ210に検出させる。これにより、イメージセンサ210は、第1の検出データとして、対象シーンの距離画像データを生成して出力する。処理回路300は、出力された距離画像データに基づき、シーン中でより高精度の測距が必要な1つ以上の領域を決定する。そして、決定した領域に向けて、第2の光源120に光ビームL2を出射させ、その反射光をイメージセンサ210に検出させる。このとき、処理回路300は、光ビームL2の出射方向を順次変更することで、決定した領域が光ビームL2でスキャンされるようにしてもよい。図2の右図に示す複数の白丸は、光ビームL2で照射される領域の例を示している。これらの領域を光ビームL2でスキャンすることにより、イメージセンサ210は、これらの領域における距離データを生成することができる。処理回路300は、イメージセンサ210から出力される距離データに基づき、シーン中の特定の領域に存在する対象物までの距離データを出力することができる。上記の動作が繰り返されることにより、対象シーンの距離データ、例えば距離画像データが所定のフレームレートで出力される。
 図3は、測距装置による1回の測距動作の流れを示すフローチャートである。処理回路300は、測距動作中、図3のフローチャートに示すステップS11からS17の動作を実行する。以下、各ステップの動作を説明する。
 (ステップS11)
 処理回路300は、発光装置100に、シーン内の第1の範囲を照射する第1の光を出射させる。図2の例では、第1の光はフラッシュ光であるため、シーン内の比較的広い範囲がフラッシュ光で照射される。
 (ステップS12)
 処理回路300は、受光装置200に、第1の光の照射によって生じた第1の反射光を検出させて第1の検出データを出力させる。第1の検出データは、図2の例では、第1の範囲内の距離分布を示す距離画像データである。第1の検出データは、第1の範囲内の輝度分布を示す輝度画像データであってもよい。
 (ステップS13)
 処理回路300は、第1の検出データに基づき、第1の範囲よりも狭い1つ以上の第2の範囲を決定する。この第2の範囲として、第1の検出データが示す画像において、例えば距離計測の精度が低い範囲、または、注目すべき対象物が存在すると推定される範囲が選択され得る。第1の検出データが距離画像データである場合、距離画像データを生成するときに参照された各画素の受光量が少ない場合、その画素について計算された距離の信頼度は低いと考えられる。そこで、例えば、各画素の受光量を示す画素値が所定の閾値を下回る場合、その画素を含む範囲が第2の範囲として決定され得る。一方、第1の検出データが輝度画像データである場合、公知の画像認識技術を利用して特定の対象物(例えば、自動車、二輪車、自転車、または歩行者など)を認識することにより、第2の範囲を決定してもよい。
 (ステップS14)
 処理回路300は、発光装置100に、第2の範囲を照射する第2の光を出射させる。第2の光は、図2に示すように、第1の光よりも狭い光ビームである。このため、第2の光は、第1の光よりもエネルギ密度が高く、より遠方まで到達する。すなわち、第2の光の照射により、第1の光を用いた場合よりも遠方の距離計測が可能である。したがって、第1の光の照射だけでは十分な精度で距離を計測できない領域についても、第2の光の照射によってより高い精度で距離を計測することができる。第2の光のビーム径が、第2の範囲と比較して小さい場合、処理回路300は、第2の光で第2の範囲をスキャンするように発光装置100を制御する。
 (ステップS15)
 処理回路300は、受光装置200に、第2の光の照射によって生じた第2の反射光を検出させて第2の検出データを出力させる。第2の検出データは、第2の光が照射された領域の距離データであってもよいし、輝度データであってもよい。
 (ステップS16)
 処理回路300は、第2の検出データに基づき、第2の範囲に存在する1つ以上の対象物までの距離を示す距離データを生成して出力する。これにより、第1の光の照射だけでは得られない距離情報、例えば、遠方の対象物の距離情報を取得することができる。
 (ステップS17)
 処理回路300は、第1の検出データと、第2の検出データとを、1つのデータに統合してもよい。例えば、第1の検出データに基づく距離画像データと、第2の検出データに基づく距離画像データとを統合し、1つの距離画像データを再構成してもよい。または、第1の検出データに基づく3次元点群データと、第2の検出データに基づく3次元点群データとを統合し、1つの3次元点群データを再構成してもよい。または、第1の検出データに基づく輝度データと、第2の検出データに基づく輝度データとを統合し、1つの輝度データを再構成してもよい。なお、この統合処理は必須では無く、各距離データを個別に順次出力してもよい。
 図3に示すフローチャートは、1回の測距動作を示しており、実際の応用時には、図3に示す動作が繰り返し実行され得る。例えば、1秒間に30回程度のレートで、図3に示す動作が繰り返し実行され得る。図3に示す例では、第1の光と第2の光とが異なるタイミングで出射されるが、これらが同時に出射されてもよい。その場合、第1の光と第2の光とが同時に出射される動作が繰り返される。第2の光によって照射される第2の範囲は、当該第2の光の照射以前の第1の光の照射によって得られた第1の検出データに基づいて決定される。
 なお、ステップS11およびS12において、1回の第1の光の照射による反射光の強度が十分でない場合、第1の光を複数回照射し、その反射光を積算した結果に基づき第1の検出データを生成してもよい。同様に、ステップS14およびS15において、第2の光を複数回照射し、その反射光を積算した結果に基づき第2の検出データを生成してもよい。第1の光と第2の光の積算回数は同一でもよく、異なっていてもよい。
 以上のように、本実施形態によれば、まず相対的に広い第1の光でシーン内の第1の領域が照射される。第1の光の照射によって生じた第1の反射光が受光装置200によって検出され、第1の検出データが出力される。続いて、第1の検出データに基づいて、第1の範囲よりも狭い第2の範囲が決定される。決定された第2の範囲が、第1の光よりも拡がりの程度が小さい第2の光で照射される。第2の光の照射によって生じた第2の反射光が受光装置200によって検出され、第2の検出データが出力される。第2の検出データに基づき、第2の範囲内に存在する対象物までの距離が計測される。
 このような動作により、第1の光のみを用いた場合には十分な精度で距離を計測できない領域についても、より高い精度で距離を計測することができる。さらに、第2の光でシーン全体をスキャンすることでシーン全体の距離データを取得する構成と比較して、短い時間で必要な距離データを取得することができる。このため、信頼性の高い距離データを短時間で取得することが可能である。このような測距装置は、例えば自動運転システムにおけるセンサの一つとして用いられ得る。本実施形態の測距装置を用いることにより、自動運転に必要な可動物体(例えば、人、自動車、二輪車など)の認識を高い精度で高速に行うことが可能になる。
 以下、本開示のより具体的な実施形態を説明する。
 (実施形態1)
 図4は、本開示の例示的な実施形態1における測距装置の構成を模式的に示す図である。本実施形態における測距装置は、フラッシュ光源111と、スキャン光源121と、TOFイメージセンサ211と、コントローラ301とを備える。フラッシュ光源111は、前述の「第1の光源」に該当する。フラッシュ光源111は、フラッシュ光を出射する。スキャン光源121は、前述の「第2の光源」に該当する。スキャン光源121は、フラッシュ光の照射範囲に含まれる一部の範囲を照射する光ビームであるスキャン光(以下、「スキャンビーム」とも称する。)を出射する。フラッシュ光源111とスキャン光源121の集合は、前述の「発光装置」に該当する。TOFイメージセンサ211は、前述の「受光装置」における「イメージセンサ」に該当する。TOFイメージセンサ211は、例えば直接TOFまたは間接TOF技術を利用して、対象シーンの距離画像データを生成する。以下、距離画像データを単に「距離画像」と称することがある。コントローラ301は、前述の「処理回路」に該当する。コントローラ301は、フラッシュ光源111、スキャン光源121、およびイメージセンサ211に接続され、これらの動作を制御する。コントローラ301は、プロセッサと、メモリ330とを備える。
 本実施形態におけるコントローラ301は、フラッシュ光の出射タイミングの制御と、スキャン光のビーム形状、出射方向、および出射タイミングの制御と、イメージセンサ211から出力されたデータに基づく処理とを行う。コントローラ301は、フラッシュ光の照射によって生成された距離画像データと、スキャン光の照射によって生成された距離データとに基づいて、対象シーンについての新たな距離画像データを生成して出力する。なお、コントローラ301は、距離画像データに代えて、または距離画像データに加えて、輝度画像データまたは3次元点群データを生成してもよい。以下、コントローラ301による動作の詳細を説明する。
 図5は、コントローラ301によって実行される1回の測距動作を示すフローチャートである。コントローラ301は、図5に示すステップS101からS109の動作を実行することにより、シーンの測距データを生成する。以下、各ステップの動作を説明する。
 (ステップS101)
 コントローラ301は、フラッシュ光源111を駆動して、フラッシュ光を出射させる。フラッシュ光により、シーン中の比較的広い第1の範囲が照射される。測距データは、フラッシュ光をパルス発光し、その反射光パルスの遅延時間を計測または計算することで得られる。なお、本実施形態ではフラッシュ光が使用されるが、フラッシュ光に代えて、比較的広角の光ビームが使用されてもよい。
 (ステップS102)
 コントローラ301は、イメージセンサ211に露光を実行させ、フラッシュ光の反射光を検出させる。反射光の検出は、イメージセンサ211の画素ごとに行われる。本実施形態では、直接TOFまたは間接TOFの技術を利用して、画素ごとに距離が計算される。フラッシュ光の照射とイメージセンサによる露光を複数回繰り返すことで各画素の信号を蓄積してもよい。そのような動作により、SN(Signal to Noise)比を向上させることができる。イメージセンサ211は、画素ごとの距離の値を示すデータを出力する。このデータを「距離画像データ」と呼ぶ。イメージセンサ211の動作の具体例については後述する。
 (ステップS103)
 コントローラ301は、イメージセンサ211から出力された距離画像データを取得する。図6Aは、距離画像の一例を示す図である。この例のように、第1の領域内の距離分布を示す画像が生成され、メモリ330に格納される。
 (ステップS104)
 コントローラ301は、距離画像データに基づき、測距の信頼度が低いと推定されるエリアを第2の範囲として特定する。例えば、イメージセンサ211が各画素について距離を算出するときに用いた各画素の光強度データ、または生成された距離画像の各画素の距離の値に基づいて、第2の範囲を決定する。測距の信頼度が低いと推定される領域として、例えば、距離画像の生成の元となった光強度データの値が閾値よりも小さい、すなわちSN比が低い領域が選択され得る。図6Bは、選択される第2の範囲の例を示す図である。図6Bにおいて、第2の範囲の例が矩形の枠で表現されている。このように、距離画像の一部のエリアが第2の範囲として決定される。図6Bの例では、1つの矩形のエリアが第2の範囲として決定されているが、複数のエリアが第2の範囲として決定されてもよい。
 (ステップS105)
 コントローラ301は、スキャンビームの出射方向を決定する。出射方向は、第2の範囲の少なくとも一部がスキャンビームで照射される方向に設定される。ここで、スキャン光源121は、ビームの方向だけでなく、ビーム形状またはビーム径を変更できるように構成されていてもよい。その場合には、コントローラ301は、スキャンビームの方向だけでなく、第2の範囲の分布に応じて、ビーム形状および/またはビーム径を調整してもよい。
 (ステップS106)
 コントローラ301は、決定した出射方向にスキャンビームを出射するようにスキャン光源121に指示する。これにより、第2の範囲の少なくとも一部がスキャンビームで照射される。ここで、1回のスキャンビームの出射では光量が不足する場合は、同一の方向に複数回スキャンビームを出射し、露光を繰り返すことで信号を蓄積してもよい。図6Cは、スキャンビームが照射される範囲の例を示している。図6Cには、スキャンビームが照射される範囲の例が楕円で表現されている。図6Cには、方向の異なる2つのスキャンビームによって照射される2つの範囲が例示されている。コントローラ301は、スキャンビームの方向を変更して繰り返し照射することで、第2の範囲の全体が照射されるようにしてもよい。あるいは、複数のスキャンビームを異なる方向に同時に出射してもよい。
 (ステップS107)
 コントローラ301は、イメージセンサ211に、スキャンビームの反射光を検出させ、スキャンビームの照射範囲における距離データを出力させる。ここで、スキャンビームが複数回出射される場合は、露光もスキャンビームの出射ごとに行われる。その場合、ステップS105からS107の動作が、スキャンが完了するまで繰り返される。
 (ステップS108)
 コントローラ301は、イメージセンサ211によって生成された第2の範囲についての距離データを取得する。この距離データは、スキャンビームが照射された第2の範囲に対応する複数の画素の距離の値を示すデータである。
 (ステップS109)
 コントローラ301は、ステップS103で取得した距離画像データと、ステップS108で取得した距離データとに基づいて、新たな距離画像データを生成して出力する。この距離画像データは、ステップS103において取得した距離画像データのうち、第2の範囲に対応するデータを、ステップS108で取得されたデータに置換したデータであり得る。コントローラ301は、当該距離画像データに加えて、イメージセンサ211または図示されていない他のイメージセンサから取得した輝度画像データを併せて出力してもよい。なお、この例では、コントローラ301は、フラッシュ光によるデータとスキャン光によるデータとを統合して出力するが、両者を独立した別のデータとして出力してもよい。
 コントローラ301は、距離画像データにおける各距離の値を3次元の座標値に変換し、3次元点群データとして出力してもよい。また、コントローラ301は、ステップS102およびステップS107においてイメージセンサ211により検出された輝度画像データを、当該輝度画像データから距離画像データを算出するために必要な付加データと併せて出力してもよい。付加データは、例えば、後述する間接TOFによる距離計算に必要なイメージセンサ211の露光タイミングおよび露光時間窓の幅を示すデータである。
 以上の動作により、フラッシュ光だけでは正確に測距できない領域についても、測距データを取得することができる。このため、取得できる測距の情報量を増加させることができる。さらに、スキャンビームでシーンの全体をスキャンする構成と比較して、短い時間で必要な距離データを取得することができる。
 図7は、スキャンビームによって第2の範囲がスキャンされる場合の動作の例を示すフローチャートである。図7に示す動作は、ステップS107とステップS108との間に、スキャンが完了したかを判断するステップが追加されている点を除き、図5に示す動作と同じである。この例では、ステップS107の後、スキャンが完了したか否かが判定される。スキャンが完了したと判定されるまで、ステップS105からS107の動作が繰り返される。この例では、ステップS105において、スキャンビームの出射方向は、ステップS104で決定された第2の範囲のうち、照射がまだ所定の回数以上行われていない領域に照射されるように決定される。ここで所定の回数は、イメージセンサ211の画素の信号蓄積に必要な回数を指し、1回以上の任意の回数に設定され得る。ある例において、この回数は、100回以上、場合によっては1000回以上に達する場合もある。ステップS105からS107の動作を繰り返すことにより、第2の範囲の全体がスキャンビームによってスキャンされる。第2の範囲の全体がスキャンビームによってスキャンされると、スキャンが完了したと判定され、ステップS108に進む。
 次に、本実施形態の測距装置による測距動作をより具体的に説明する。本実施形態では、直接TOFまたは間接TOFなどの技術を利用して、距離が計測される。
 図8は、直接TOFによる測距方法の例を説明するための図である。直接TOFは、光パルスが出射されてから戻ってくるまでの時間を、イメージセンサ211の各受光素子が持つクロックで測定する方法である。光が出射されたタイミングから、反射光が戻ってくるタイミングまでの間、ゲート信号を生成し、そのゲート信号内のクロックパルスの数をカウントすることで、光の飛行時間を計測できる。図8には、相対的に近い領域から反射光が戻ってくる場合と、相対的に遠い領域から反射光が戻ってくる場合のそれぞれにおけるゲート信号およびクロックのパルス信号が例示されている。遠方からの反射光の方がイメージセンサ211に遅く到達するため、クロックのカウント数が多くなる。飛行時間をT[s]とし、光速をc(≒3×10m/s)とすると、距離D[m]を、D=T/2cの演算によって算出することができる。
 図9は、間接TOFによる測距方法の例を説明するための図である。間接TOFは、光パルスが出射されてから戻ってくるまでの時間を光強度に変換して計測する方法である。図9の例では、各画素について3つの露光時間窓が設けられ、それぞれの時間窓で検出された光強度から距離が算出される。時間窓は、必要な測定レンジに合わせて設定される。例えば0mから100mの範囲について測距を行う場合、図9に示すように、334ナノ秒(ns)の露光窓を3つ用意し、光パルスの時間幅も334nsに設定することで測距が可能である。図9には、50mよりも近い距離にある物体からの反射光パルス、50mから100mの範囲内に位置する物体からの反射光パルス、および100mよりも遠い距離にある物体からの反射光パルスが例示されている。第1の時間窓での信号値をA0、第2の時間窓での信号値をA1、第2の時間窓での信号値をA2とする。第1および第2の時間窓で反射光が検出され、第3の時間窓では反射光が検出されなかった場合、距離Dは、50m以下であり、図9に示す式(1)によって計算される。また、第2および第3の時間窓で反射光が検出され、第1の時間窓では反射光が検出されなかった場合、距離Dは、50m以上100m以下であり、図9に示す式(2)によって計算される。一方、第1および第2の時間窓のいずれにおいても反射光が検出されなかった場合、距離は計算されない。出射光パルスの時間幅、および各露光時間窓の幅は、距離の計測範囲に応じて設定される。例えば、50mまでの範囲で測距を行う場合、当該幅は、約167nsに設定される。この測距方法では、イメージセンサ211の各受光素子の動作モードを変えることなく、1パターンの動作で測距が可能である。
 コントローラ301は、近距離の測距が可能なモードと遠距離の測距が可能なモードとを切り替えるように構成される。具体的には、フラッシュ光の発光時には近距離モードで動作し、スキャン光の発光時には遠距離モードで動作する。図10Aおよび図10Bは、そのような切替動作の例を説明するための図である。図10Aは、近距離モードでの光パルスおよび露光時間窓の例を示している。図10Bは、遠距離モードでの光パルスおよび露光時間窓の例を示している。図10Aの例では、0mから50mの範囲で測距できるように、光パルス幅および露光時間窓が167nsに設定されている。図10Bの例では、0mから100mの範囲で測距できるように、光パルス幅および露光時間窓が334nsに設定されている。コントローラ301は、動作中、光パルスの時間幅および露光時間窓の長さを変更して測定可能な距離のレンジを切り替えることができる。
 図11は、レンジ切り替えの他の例を示す図である。この例では、コントローラ301は、発光タイミングに対する露光タイミングを変化させることで測定レンジを切り替える。例えば、近距離モードでは、図10Aの例と同様のタイミングで露光が行われ、遠距離モードでは、発光の開始タイミングから、パルス幅の2倍の時間が経過したタイミングで露光が開始される。図11の例では、光パルスの時間幅、および各露光時間窓の幅は、167nsに設定され、0mから50mのレンジで測距可能な近距離モードと、50mから100mのレンジで測距可能な遠距離モードとが切り替えられる。
 図11の例では、近距離モードにおいて、第1の時間窓および第2の時間窓で反射光が検出され、第3の時間窓では反射光が検出されない場合、図11に示す式(1)に基づいて距離Dが計算される。近距離モードにおいて、第2の時間窓および第3の時間窓で反射光が検出され、第1の時間窓では反射光が検出されない場合、図11に示す式(2)に基づいて距離Dが計算される。近距離モードにおいて、第1の時間窓および第2の時間窓のいずれにおいても反射光が検出されなかった場合、距離は計算されない。一方、遠距離モードにおいて、第1の時間窓および第2の時間窓で反射光が検出され、第3の時間窓では反射光が検出されない場合、図11に示す式(3)に基づいて距離Dが計算される。遠距離モードにおいて、第2の時間窓および第3の時間窓で反射光が検出され、第1の時間窓では反射光が検出されない場合、図11に示す式(4)に基づいて距離Dが計算される。遠距離モードにおいて、第1の時間窓および第2の時間窓のいずれにおいても反射光が検出されなかった場合、距離は計算されない。
 コントローラ301は、近距離モードと遠距離モードとで、出射光の出力を変化させてもよい。そのような制御により、例えば露光の飽和が生じないように調整することができる。
 図12Aは、フラッシュ光とスキャンビームの発光のタイミングおよび露光のタイミングの例を示す図である。測距装置は、フラッシュ光で広範囲を測距した後、スキャンビームで特定領域の測距を行う。この例では、フラッシュ光およびスキャンビームは、ともに複数回連続して出射され、出射ごとに露光が行われる。フラッシュ光およびスキャンビームのそれぞれについて、複数回の露光動作によって蓄積された電荷量に応じた信号によって1フレームの2次元画像データが生成され、さらに当該2次元画像データを基に距離データが生成され、出力される。あるいは、電荷量に応じて画素ごとに距離を計算した後に、2次元距離データを生成し、出力してもよい。コントローラ301は、このような露光動作とデータ出力動作を、イメージセンサ211に繰り返し実行させる。以下、本開示では、光の検出および1フレームのデータの生成に関わる動作を「フレーム動作」と称する。フレーム動作は、受光装置による露光動作とデータ出力動作の繰り返しの単位であり、すなわち図12Aに示すような連続する2回のデータ出力動作の間の動作である。この例では、各フレーム動作において、前半にフラッシュ光の発光および露光の期間が設定され、後半にスキャンビームの発光および露光の期間が設定されている。これにより、フレーム動作ごとに、フラッシュ光による距離データと、スキャンビームによる距離データとが1フレームに統合され、出力される。図12Aの例では、フラッシュ光の露光は近距離モードで行われ、スキャンビームの露光は遠距離モードで行われる。具体的には、フラッシュ光とスキャンビームとで、発光タイミングに対する露光タイミングが異なる。このため、近距離から遠距離までの広いレンジの距離データを1フレームに統合することができる。
 このような例に限らず、フラッシュ光を出射するときの測定レンジと、スキャン光を出射するときの測定レンジとを同一にしてもよい。なお、フレーム動作ごとのフラッシュ光およびスキャンビームのそれぞれの出射回数は1回であってもよい。
 本開示では、1回のフレーム動作で取得されたデータのまとまりを「フレーム」と称する。1フレームのデータには、例えば、輝度画像データ、距離画像データ、または3次元点群データが含まれ得る。
 図12Bは、フラッシュ光による測距とスキャンビームによる測距とを別のフレーム動作で行う場合の例を示している。本例では、フラッシュ光を用いて取得された近距離の距離データと、スキャンビームを用いて取得された遠距離の距離データとが、別のフレームのデータとして出力される。
 このように、本実施形態では、コントローラ301は、イメージセンサ211に、少なくとも1回の露光動作と、当該露光動作によって蓄積された電荷量に応じた2次元画像データを出力するデータ出力動作とを繰り返し実行させる。一例では、フラッシュ光の出射が、連続する2回のデータ出力動作の間に少なくとも1回実行され、スキャンビームの出射が、連続する他の2回のデータ出力動作の間に少なくとも1回実行される。他の例では、連続する2回のデータ出力動作の間に、少なくとも1回のフラッシュ光の出射と、少なくとも1回のスキャンビームの出射との双方が実行される。何れの例においても、連続する2回のデータ出力動作の間に出射されるスキャンビームは、異なる方向に出射される複数のスキャンビームを含んでいてもよい。スキャンビームの出射方向は、それ以前に出射されたフラッシュ光の照射によって得られたデータに基づいて決定される。
 次に、スキャン光源121の構成例を説明する。スキャン光源121は、コントローラ301の制御に応じて光ビームの出射方向を変化させることができるデバイスである。スキャン光源121は、測距対象のシーン内の一部の領域を光ビームで順次照射することができる。スキャン光源121から出射される光ビームの波長は特に限定されず、例えば可視域から赤外域に含まれる任意の波長でよい。
 図13は、スキャン光源121の一例を示す図である。この例では、スキャン光源121は、レーザなどの発光素子と、少なくとも1つの可動ミラー、例えばMEMSミラーとを備える。発光素子から出射された光は、可動ミラーによって反射され、対象領域内(図13において矩形で表示)の所定の領域に向かう。コントローラ301は、可動ミラーを駆動することにより、スキャン光源121からの出射光の方向を変化させる。これにより、例えば図13において点線矢印で示すように、対象領域を光でスキャンすることができる。
 可動ミラーを有する光源とは異なる構造によって光の出射方向を変化させることが可能な光源を用いてもよい。例えば、特許文献4に開示されているような、反射型導波路を利用した発光デバイスを用いてもよい。あるいは、アンテナアレイによって各アンテナから出力される光の位相を調節することで、アレイ全体の光の方向を変化させる発光デバイスを用いてもよい。
 図14Aは、スキャン光源112の例を模式的に示す斜視図である。参考のために、互いに直交するX軸、Y軸、およびZ軸が模式的に示されている。スキャン光源112は、光導波路アレイ10Aと、位相シフタアレイ20Aと、光分岐器30と、それらが集積された基板40とを備える。光導波路アレイ10Aは、Y方向に配列された複数の光導波路素子10を含む。各光導波路素子10はX方向に延びている。位相シフタアレイ20AはY方向に配列された複数の位相シフタ20を含む。各位相シフタ20はX方向に延びた光導波路を備える。光導波路アレイ10Aにおける複数の光導波路素子10は、位相シフタアレイ20Aにおける複数の位相シフタ20にそれぞれ接続されている。位相シフタアレイ20Aには光分岐器30が接続されている。
 不図示の発光素子から発せられた光L0は、光分岐器30を介して位相シフタアレイ20Aにおける複数の位相シフタ20に入力される。位相シフタアレイ20Aにおける複数の位相シフタ20を通過した光は、位相がY方向に一定量ずつシフトした状態で、光導波路アレイ10Aにおける複数の光導波路素子10にそれぞれ入力される。光導波路アレイ10Aにおける複数の光導波路素子10にそれぞれ入力された光は、光ビームL2として、XY平面に平行な光出射面10sから、光出射面10sに交差する方向に出射される。
 図14Bは、光導波路素子10の構造の例を模式的に示す図である。光導波路素子10は、互いに対向する第1ミラー11および第2ミラー12と、第1ミラー11と第2ミラー12との間に位置する光導波層15と、光導波層15に駆動電圧を印加するための一対の電極13および14とを含む。光導波層15は、例えば液晶材料または電気光学材料などの、電圧の印加によって屈折率が変化する材料によって構成され得る。第1ミラー11の透過率は、第2ミラー12の透過率よりも高い。第1ミラー11および第2ミラー12の各々は、例えば、複数の高屈折率層および複数の低屈折率層が交互に積層された多層反射膜から形成され得る。
 光導波層15に入力された光は、光導波層15内を第1ミラー11および第2ミラー12によって反射されながらX方向に沿って伝搬する。図14Bにおける矢印は、光が伝搬する様子を模式的に表している。光導波層15内を伝搬する光の一部は、第1ミラー11から外部に出射される。
 電極13、14に駆動電圧を印加することにより、光導波層15の屈折率が変化し、光導波路素子10から外部に出射される光の方向が変化する。駆動電圧の変化に応じて、光導波路アレイ10Aから出射される光ビームL2の方向が変化する。具体的には、図14Aに示す光ビームL2の出射方向を、X軸に平行な第1の方向D1に沿って変化させることができる。
 図14Cは、位相シフタ20の例を模式的に示す図である。位相シフタ20は、例えば熱によって屈折率が変化する熱光学材料を含む全反射導波路21と、全反射導波路21に熱的に接触するヒータ22と、ヒータ22に駆動電圧を印加するための一対の電極23および24とを含む。全反射導波路21の屈折率は、ヒータ22、基板40および空気の屈折率よりも高い。屈折率差により、全反射導波路21に入力された光は、全反射導波路21内を全反射されながらX方向に沿って伝搬する。
 一対の第2電極23および24に駆動電圧を印加することにより、全反射導波路21がヒータ22によって加熱される。その結果、全反射導波路21の屈折率が変化し、全反射導波路21の端から出力される光の位相がシフトする。図14Aに示す複数の位相シフタ20における隣り合う2つの位相シフタ20から出力される光の位相差を変化させることにより、光ビームL2の出射方向を、Y軸に平行な第2の方向D2に沿って変化させることができる。
 以上の構成により、スキャン光源121は、光ビームL2の出射方向を2次元的に変化させることができる。
 上記のようなスキャン光源112の動作原理、および動作方法などの詳細は、例えば特許文献4に開示されている。特許文献4の開示内容の全体を本明細書に援用する。
 次に、イメージセンサ211の構成例を説明する。イメージセンサ211は、受光面に沿って2次元に配列された複数の受光素子を備える。イメージセンサ211の受光面に対向して、不図示の光学部品が設けられ得る。光学部品は、例えば少なくとも1つのレンズを含み得る。光学部品は、プリズムまたはミラー等の他の光学素子を含んでいてもよい。光学部品は、シーン中の物体の1点から拡散した光がイメージセンサ211の受光面上の1点に集束するように設計され得る。
 イメージセンサ211は、例えばCCD(Charge-Coupled Device)センサ、CMOS(Complementary Metal Oxide Semiconductor)センサ、または赤外線アレイセンサであり得る。各受光素子は、例えばフォトダイオードなどの光電変換素子と、1つ以上の電荷蓄積部とを含む。光電変換によって生じた電荷が、露光期間の間、電荷蓄積部に蓄積される。電荷蓄積部に蓄積された電荷は、露光期間終了後、出力される。このようにして、各受光素子は、露光期間の間に受けた光の量に応じた電気信号を出力する。この電気信号を「受光データ」と称することがある。イメージセンサ211は、モノクロタイプの撮像素子であってもよいし、カラータイプの撮像素子であってもよい。例えば、R/G/B、R/G/B/IR、またはR/G/B/Wのフィルタを有するカラータイプの撮像素子を用いてもよい。イメージセンサ211は、可視の波長範囲に限らず、例えば紫外、近赤外、中赤外、遠赤外などの波長範囲に検出感度を有していてもよい。イメージセンサ211は、SPAD(Single Photon Avalanche Diode)を利用したセンサであってもよい。イメージセンサ211は、全画素の露光を一括で行なう電子シャッタ方式、すなわちグローバルシャッタの機構を備え得る。電子シャッタは、行毎に露光を行うローリングシャッタ方式、または光ビームの照射範囲に合わせた一部のエリアのみ露光を行うエリアシャッタ方式であってもよい。電子シャッタがグローバルシャッタ方式である場合、フラッシュ光と同期してシャッタを制御することで、1度で2次元情報を取得することができる。一方、ローリングシャッタ等のように、一部の画素ごとに露光タイミングを変えていく方式の場合、フラッシュ光の受光は露光タイミングの合った一部の画素でしかできず、露光タイミングが合わなかった画素では受光できないため、取得できる情報量が減る。ただし、これは、画素ごとにシャッタータイミングのずれ分を補正した距離計算の信号処理を行なうことで、解決することも可能である。これに対して、スキャン光の場合、照射する光の範囲が狭いため、一部の画素にしか反射光が戻ってこない。このため、グローバルシャッタ方式よりも、ローリングシャッタ等のように、一部の画素ごとに露光タイミングをスキャン光の出射方向に応じて変えていく方式の方が、効率的に多くの距離情報を取得することができる。ただし、スキャン光で測定すべき情報量がそれほど多くない場合、例えば対象物の数が10個以下程度と少ない場合には、グローバルシャッタ方式と組み合わせても十分な情報量を取得することができる。以上のような特性を考慮して、イメージセンサ211は、電子シャッタの方式を切替え可能であってもよい。例えば、フラッシュ光による測距の際はグローバルシャッタ方式による露光を行い、スキャンビームによる測距の際はスキャンビームのスポット形状に合わせたローリングシャッタ方式、あるいはエリアシャッタ方式による露光を行ってもよい。
 次に、本実施形態の変形例を説明する。
 図15は、本実施形態の変形例における測距装置の動作を示すフローチャートである。本変形例では、コントローラ301は、各フレーム動作において、フラッシュ光とスキャン光とを同時に出射するようにフラッシュ光源111およびスキャン光源121を制御する。コントローラ301は、図15に示すステップS201からS209の動作を実行する。以下、各ステップの動作を説明する。
 (ステップS201)
 コントローラ301は、フラッシュ光源111およびスキャン光源121を駆動して、フラッシュ光とスキャン光とを同時に出射させる。フラッシュ光により、シーン中の比較的広い第1の範囲が照射される。一方、スキャン光により、シーン中の比較的狭い第2の範囲が照射される。このステップにおけるスキャン光の出射方向は、予め設定された特定の方向である。
 (ステップS202)
 コントローラ301は、イメージセンサ211に露光を実行させ、フラッシュ光およびスキャン光のそれぞれの反射光を検出させる。反射光の検出は、イメージセンサ211の画素ごとに行われる。イメージセンサ211は、蓄積された電荷量に応じた2次元画像データを出力する。ステップS201からS202の動作が第1フレーム動作に相当する。イメージセンサ211は、2次元画像データを基に、画素ごとの距離の値を有する距離画像データを生成し、出力する。あるいは、蓄積された電荷量から各画素ごとに距離を計算し、これをもとに2次元距離データを生成、出力しても良い。
 (ステップS203)
 コントローラ301は、イメージセンサ211から出力された距離画像データを取得する。図16Aは、距離画像の一例を示す図である。図16Aにおいて、スキャン光が照射された領域の例が楕円で示されている。なお、スキャン光の照射範囲は楕円に限らず、円などの他の形状でもよい。スキャン光源121がビーム形状またはビーム径を変更できるように構成されている場合、コントローラ301は、出射ごとにビーム形状またはビーム径を変更してもよい。この例では、第1の領域内の距離分布を示す画像が生成され、メモリ330に格納される。
 (ステップS204)
 コントローラ301は、ステップS203で生成された距離画像データに基づき、測距が不十分であると推定されるエリアを第2の範囲として特定する。この例においても、第2の範囲は、各画素の反射光強度に基づいて決定され得る。例えば、スキャン光の反射光の強度が十分に高いと判断した場合、コントローラ301は、反射光強度が閾値よりも低くSNが低い領域を第2の範囲として決定してもよい。また、スキャン光の反射光の強度が不十分と判断した場合も、コントローラ301は、出射方向を変更して反射光の強度がさらに高まる位置に照準を変えてもよい。このような制御により、得られる距離情報の量を増やすことができる。なお、スキャン光の反射光強度が適切なSNで得られている場合は、前フレーム動作で決定された第2の範囲を変更せず、同じ領域を照射してもよい。図16Bは、選択される第2の範囲の例を示している。この例では、図16Aにおいて楕円で示される照射範囲とは異なる範囲が、次のフレーム動作において出射されるスキャン光の照射範囲、すなわち第2の範囲として設定される。
 (ステップS205)
 コントローラ301は、次のフレーム動作におけるスキャンビームの出射方向を決定する。出射方向は、ステップS204で決定された第2の範囲の少なくとも一部がスキャンビームで照射される方向に決定される。
 続いて、第1フレーム動作に続く第2フレーム動作に相当するステップS206からS207の動作が実行される。
 (ステップS206)
 コントローラ301は、フラッシュ光源111およびスキャン光源121を駆動して、フラッシュ光とスキャンビームとを同時に出射させる。スキャンビームの出射方向は、ステップS205で決定された方向である。図16Cは、スキャンビームが照射される範囲の例を示している。図16Cにおいて、スキャンビームが照射される範囲が楕円で示されている。
 (ステップS207)
 コントローラ301は、イメージセンサ211に露光を実行させ、フラッシュ光およびスキャン光のそれぞれの反射光を検出させる。反射光の検出は、イメージセンサ211の画素ごとに行われる。イメージセンサ211は、画素ごとの距離の値を示す距離画像データを生成し、記録媒体に記録する。
 (ステップS208)
 コントローラ301は、ステップS207において出力された距離画像データを記録媒体から取得する。
 (ステップS209)
 コントローラ301は、距離画像データを記録媒体に出力する。このとき、イメージセンサ211または図示されていない他のイメージセンサから取得した輝度画像データを併せて出力してもよい。
 以上の動作によっても、フラッシュ光のみを用いた場合よりも高精度の距離データを取得することができる。また、スキャン光のみを用いてシーンの全域をスキャンする構成と比較して、短時間で必要な距離データを取得することができる。
 図15に示す変形例では、第2フレーム動作におけるスキャンビームの出射方向が、直前の第1フレーム動作で取得された検出データに基づいて決定されるが、第1フレーム動作よりもさらに前のフレーム動作で取得された検出データに基づいて決定されてもよい。
 また、図15は、2フレーム分の動作のみを示しているが、連続的に複数回の測距を行う場合、図15に示すステップS204からS209に示す動作は繰り返し実行され得る。以下、そのような繰り返し動作を行う場合の例を説明する。
 図17は、複数のフレーム動作が繰り返される動作の例を示すフローチャートである。図17に示す例では、図5に示す例と同様、まずフラッシュ光のみを用いて距離画像データが生成される(ステップS101からS103)。次に、図15に示す例と同様、スキャンビームの照射範囲が決定され、スキャンビームとフラッシュ光とが同時に出射され、距離画像データが生成される(ステップS204からS209)。ステップS209の後、コントローラ301は、動作終了の指示の有無を判断する(ステップS210)。動作終了の指示は、例えばユーザの操作に起因して他の装置から入力され得る。動作終了の指示がない場合、ステップ204に戻り、次のスキャンビームの照射範囲が直前に取得された距離画像データに基づいて決定される。ステップS210において動作終了の指示を受けるまで、コントローラ301は、ステップS204からS210の動作を繰り返す。この繰り返しの周波数は、用途に応じて任意に設定され得る。例えば、毎秒30フレーム(30fps)程度の周波数で上記動作を繰り返すことができる。この例では、ステップS204からS210の1サイクルの動作を、「フレーム動作」と称する。コントローラ301は、複数のフレーム動作を繰り返し実行することで、シーン内の測距データを繰り返し出力する。なお、ステップS101からS103は必ずしも必要ではなく、以前のフレーム動作で取得された距離画像データを用いて、ステップS204以降を実行してもよい。
 図18は、本変形例におけるフラッシュ光およびスキャンビームの発光タイミングと、露光タイミングの例を示す図である。各フレーム動作において、コントローラ301は、発光装置に、フラッシュ光とスキャンビームとを同時に出射させ、イメージセンサ211に、それぞれの反射光を同一の露光期間内に検出させる。このような動作により、フラッシュ光だけでは反射光が弱く測距できない領域についても、高精度の測距が可能である。
 図19は、他の変形例による測距装置の動作を示すフローチャートである。図19に示すフローチャートは、ステップS206がステップS216に置き換わった点を除き、図17のフローチャートと同じである。本変形例でも、コントローラ301は、複数のフレーム動作を繰り返し実行する。各フレーム動作において、コントローラ301は、スキャン光源121にスキャン光を出射させ、その後、フラッシュ光源111にフラッシュ光を出射させる(ステップS216)。コントローラ301は、スキャン光およびフラッシュ光のそれぞれの反射光を同一の露光期間に検出させる(ステップS207)。なお、本変形例においてもステップS101からS103は必ずしも必要ではなく、以前のフレーム動作で取得された距離画像データを用いて、ステップS204以降を実行してもよい。
 図20は、本変形例における発光と受光のタイミングを示す図である。図示されるように、スキャンビームが出射された後、所定のディレイ時間が経過した後、フラッシュ光が出射される。これにより、フラッシュ光による測距の測定レンジ外にある遠方の対象物についても同一の露光期間で測距することができる。スキャン光の反射光を受光した画素における距離は、フラッシュ光の反射光を受光した画素における距離の計算式に、「ディレイ時間」×「光速」で計算される距離の値を加算することによって計算できる。この例において、例えば、フラッシュ光による測定レンジを0mから50mとすると、フラッシュ光のパルス幅は167nsに設定される。それに合わせて167nsの露光時間窓が3つ設けられる。フラッシュ光よりも200nsだけ前にパルス幅167nsのスキャン光を出射した場合、スキャン光の距離レンジは20~70mとなる。また、ディレイを50m分遅らせる330nsとした場合には、距離レンジは50m~100mとなる。このような露光動作を、フラッシュ光では正確に測距できない対象物に対して適用することで、フラッシュ光のみを用いた場合と比較して、測距可能な測距レンジを拡大することができる。
 図21は、各フレーム動作中に、フラッシュ光およびスキャンビームのそれぞれを複数回出射して露光する場合の発光タイミングおよび露光タイミングの例を示している。このように、各フレーム動作において、複数回の発光および露光を繰り返すことによって信号蓄積量を増加させてもよい。この例では、フレームごとに、所定回数の露光が終了した時点で、各画素のデータが読み出され、そのフレームの測距データが出力される。
 図22は、フラッシュ光よりも先にスキャン光を出射する構成において、直接TOF法による測距を行う場合の発光と受光のタイミングの例を示す図である。図22には、フラッシュ光の反射光を受ける画素領域と、スキャン光の反射光を受ける画素領域のそれぞれにおける反射光パルス、ゲート信号、およびクロックパルスの例が示されている。フラッシュ光を出射してから反射光を受光するまでの間のクロックパルスをカウントすることにより、飛行時間を計測し、距離を計算できる。この例のように、直接TOF法を用いた場合でも、測距が可能である。この場合においても、スキャン光の反射光を受光する画素の距離は、フラッシュ光の反射光を受光した画素における距離の計算式に「ディレイ時間」×「光速」で計算される距離を加算することによって計算できる。
 (実施形態2)
 次に、本開示の実施形態2を説明する。本実施形態では、実施形態1とは異なり、フラッシュ光源111の照射によって得られた輝度画像データに基づいて、スキャンビームの照射範囲が決定される。例えば、輝度画像データから、画像認識によって歩行者または車両などの特定の対象物の位置を特定し、その位置に向けてスキャンビームが出射される。このような動作により、当該対象物までの距離データを高い精度で得ることができる。
 図23は、本実施形態における測距装置の構成を示す図である。本実施形態の測距装置は、実施形態1の構成要素に加えて、画像処理回路303をさらに備えている。イメージセンサ211は、距離画像に加えて輝度画像のデータを出力するように構成されている。画像処理回路303は、例えばGPU(Graphics Processing Unit)などの画像処理用のプロセッサを含む。画像処理回路303は、画像データから特定の物体を認識することができる。画像処理回路303は、輝度画像に基づいて、特定の対象物の位置を特定し、当該対象物の位置を示すデータをコントローラ301に送る。コントローラ301は、その位置にスキャンビームが照射されるように、スキャン光源121を制御する。なお、コントローラ301と、画像処理回路303は、1つの処理回路として統合されていてもよい。
 図23に示すコントローラ301は、イメージセンサ211から出力されたデータに基づき、距離画像データと輝度画像データとを別々に生成して出力する。コントローラ301はまた、人または車両などの対象物を特定するデータ、および対象物の座標データを出力する。これらの対象物に関するデータは、画像処理回路303から出力されてもよい。対象物に関するデータは、図示されるように距離画像または輝度画像とは別のデータとして出力されていてもよいし、距離画像または輝度画像に統合して出力されてもよい。
 図24は、本実施形態の測距装置による1回の測距動作の流れを示すフローチャートである。コントローラ301および画像処理回路303は、図24に示すステップS301からS309の動作を実行することにより、シーンの測距データを生成する。以下、各ステップの動作を説明する。
 (ステップS301)
 コントローラ301は、フラッシュ光源111を駆動して、フラッシュ光を出射させる。フラッシュ光により、シーン中の比較的広い第1の範囲が照射される。
 (ステップS302)
 コントローラ301は、イメージセンサ211に露光を実行させ、フラッシュ光の反射光を検出させる。反射光の検出は、イメージセンサ211の画素ごとに行われる。イメージセンサ211は、画素ごとの反射光強度を示す輝度データを含む輝度画像データを出力する。イメージセンサ211は、実施形態1と同様に距離画像データを併せて出力してもよい。本実施形態でも、直接TOFまたは間接TOFの技術を利用して、画素ごとに距離を計算することができる。フラッシュ光の照射とイメージセンサによる露光を複数回繰り返すことで各画素の信号を蓄積してもよい。そのような動作により、SNを向上させることができる。
 (ステップS303)
 コントローラ301は、イメージセンサ211から出力された輝度画像データを取得する。図25Aは、輝度画像の一例を示す図である。この例のように、第1の領域内の輝度分布を示す画像が生成され、メモリ330に格納される。この輝度画像データは、画像処理回路303に送られる。
 (ステップS304)
 画像処理回路303は、輝度画像データから、測距すべき1つ以上の対象物を検出する。対象物として、例えば人、車、または特定できない未知の物体が選択され得る。画像処理回路303は、例えば公知の画像認識技術を用いて、画像の特徴に基づき、特定の対象物を特定することができる。本実施形態では、フラッシュ光を照射した状態で輝度画像データが取得されるため、夜間でもイメージデータを取得することができる。フラッシュ光源111として、例えば車両のヘッドライトが用いられ得る。ヘッドライトに代えて、例えば近赤外光を出射する光源を使用して輝度画像データを取得してもよい。図25Bは、輝度画像中で特定の対象物が存在するエリアの例を示す図である。この図において、複数の対象物のエリアが破線枠で示されている。この例のように、画像処理回路303は、シーンの中から1つ以上の対象物の位置を特定し、その位置座標を示すデータをコントローラ301に送る。
 (ステップS305)
 コントローラ301は、対象物の位置データに基づき、スキャンビームの出射方向を決定する。出射方向は、特定された対象物が存在する領域(すなわち第2の範囲)の少なくとも一部がスキャンビームで照射される方向に設定される。コントローラ301は、スキャンビームの方向だけでなく、第2の範囲の分布に応じて、ビーム形状および/またはビーム径を調整してもよい。
 (ステップS306)
 コントローラ301は、決定した出射方向にスキャンビームを出射するようにスキャン光源121に指示する。これにより、第2の範囲の少なくとも一部がスキャンビームで照射される。ここで、1回のスキャンビームの出射では光量が不足する場合は、同一の方向に複数回スキャンビームを出射し、露光を繰り返すことで信号を蓄積してもよい。図25Cは、スキャンビームが照射される範囲の例を示している。図25Cには、スキャンビームが照射される範囲の例が楕円で表現されている。図25Cには、方向の異なる2つのスキャンビームによって照射される2つの範囲が例示されている。コントローラ301は、スキャンビームの方向を変更して繰り返し照射することで、第2の範囲の全体が照射されるようにしてもよい。あるいは、複数のスキャンビームを異なる方向に同時に出射してもよい。図25Dは、スキャンビームが照射される範囲の他の例を示している。この例では、検出された対象物が、ビーム形状の異なる複数のスキャンビームで照射される様子が示されている。この例のように、第2の範囲の大きさまたは分布に応じて、ビーム形状を変更してもよい。例えば、人と自動車とでは大きさが異なるので、その大きさに合わせてビームのスポットサイズを変更してもよい。このような制御を行うことにより、必要十分な対象物の測距データを得ることができる。図25Cおよび図25Dの例では、複数の対象物に1つのビームが照射されているが、対象物ごとに1つのビームを出射してもよい。
 (ステップS307)
 コントローラ301は、イメージセンサ211に、スキャンビームの反射光を検出させ、スキャンビームの照射範囲における距離データを出力させる。ここで、スキャンビームが複数回出射される場合は、露光もスキャンビームの出射ごとに行われる。その場合、ステップS305からS307の動作が、スキャンが完了するまで繰り返される。
 (ステップS308)
 コントローラ301は、イメージセンサ211によって生成された第2の範囲についての距離データを取得する。この距離データは、スキャンビームが照射された第2の範囲に対応する複数の画素の距離の値を示すデータである。
 (ステップS309)
 コントローラ301は、ステップS303で取得した輝度画像データと、ステップS308で取得した距離データとに基づいて、出力用のデータを生成して出力する。この出力データは、シーンの輝度分布、および各対象物の位置および距離の情報を含み得る。出力データには、シーンの距離分布を示すデータが含まれていてもよい。例えば、ステップS303において、イメージセンサ211が輝度画像データに加えて距離画像データを生成するように構成されている場合、その距離画像データを出力データに含めてもよい。
 測距装置は、図24に示す動作を繰り返すごとに、距離画像データと輝度画像データの2種類のデータを出力することができる。ここで、距離画像データと輝度画像データとは、各々が1フレームのデータとして出力されても良いし、統合された1フレームのデータとして出力されてもよい。また、本実施形態においても、3次元点群データが出力データに含まれていてもよい。
 以上の動作により、輝度画像から認識された特定の対象物の距離データを効果的に取得することができる。例えば測距装置が自動運転のためのセンサとして用いられる場合、人または車両などの動く物体をターゲットに、測距することができる。そのような動く対象物にスキャン光の照準を合わせ、測距を行うことで、動きをトラッキングすることもできる。その動きから、移動しようとしている方向(例えば速度ベクトル)を計算することができる。速度ベクトルに基づいて、動きの予測を行うことができる。このような動作予測が可能になることで、必要以上に減速することなく自動走行を円滑に行うことができる。また、より詳細に対象物を調べたい場合にも、同様の技術を適用できる。例えば、路面に落ちている未知の障害物に関しては、そのサイズまたは距離が画像のみからでは判別できない場合がある。そこで、スキャン光で距離を測定し、イメージングの結果と照合することで、外形の大きさを算出できる。これにより、避けなくてもよいのか、避けるべきか、といった判断が可能になる。
 図26は、本実施形態の変形例の動作を示すフローチャートである。このフローチャートは、ステップS303およびS304が、それぞれステップS403およびS404に置き換わった点を除き、図24に示すフローチャートと同じである。本変形例では、ステップS403において、輝度画像データおよび距離画像データの両方をイメージセンサ211から取得する。ステップS304において、画像処理回路303は、距離画像データから測距不十分なエリアを特定し、輝度画像データから特定の対象物を特定する。測距不十分なエリアを特定する方法は、図5のステップS104における方法と同じである。画像処理回路303は、測距不十分なエリアと、特定の対象物が存在するエリアの位置データをコントローラ301に送る。コントローラ301は、ステップS305において、取得した当該エリアの位置データに基づき、スキャンビームの出射方向、ビーム形状、ビームサイズなどを決定する。
 本変形例によれば、輝度画像データおよび距離画像データの両方に基づき、より詳細な測距が必要な領域をより高い精度で測距することができる。例えば、フラッシュ光による測距で全体像を把握しながら、トラッキングして動きを予測すべき人もしくは車、またはサイズの特定が必要な対象物に照準を合わせて測距を行うことができる。これにより、例えば自動運転車用のセンサとして測距装置が利用される場合に、必要以上に減速することなく自動走行を円滑に行うことができる。
 以上の実施形態の構成および動作は、可能な範囲で適宜組み合わせることができる。例えば、実施形態2の動作と、図7に示すようなスキャン動作、図17に示すような周期的なフレーム動作、またはフラッシュ光とスキャン光との同時照射を組み合わせてもよい。
 以上の実施形態において、輝度画像および距離画像は、1つのイメージセンサ211によって取得されるが、これらを2つのイメージセンサが取得するようにしてもよい。すなわち、測距装置は、輝度画像データを生成する第1のイメージセンサと、距離画像データを生成する第2のイメージセンサとを含んでいてもよい。
 以上のように、本開示の一態様に係る測距装置は、拡がりの程度の異なる複数種類の光を出射することが可能な発光装置と、前記発光装置から出射された前記光に基づく反射光を検出する受光装置と、前記発光装置および前記受光装置を制御し、前記受光装置から出力された信号を処理する処理回路と、を備える。前記処理回路は、前記発光装置に、シーン内の第1の範囲を照射する第1の光を出射させ、前記受光装置に、前記第1の光の照射によって生じた第1の反射光を検出させて第1の検出データを出力させ、前記第1の検出データに基づき、前記第1の範囲よりも狭い1つ以上の第2の範囲を決定し、前記発光装置に、前記第2の範囲を照射する、前記第1の光よりも拡がりの程度が小さい第2の光を出射させ、前記受光装置に、前記第2の光の照射によって生じた第2の反射光を検出させて第2の検出データを出力させ、前記第2の検出データに基づき、前記第2の範囲の距離データを生成して出力する。
 上記の測距装置によれば、第1の光のみを用いた場合には十分な精度で距離を計測できない領域についても、第2の光を用いることで、より高い精度で距離を計測することができる。さらに、第2の光でシーン全体をスキャンすることでシーン全体の距離データを取得する構成と比較して、短い時間で必要な距離データを取得することができる。このため、信頼性の高い距離データを短時間で取得することが可能である。
 前記第1の光は、例えばフラッシュ光であり得る。前記第2の光は、前記フラッシュ光の照射範囲に含まれる範囲を照射する光ビームであり得る。前記フラッシュ光は、例えば車両のヘッドライトであってもよい。フラッシュ光を用いることにより、例えば夜間でも広範囲の第1の検出データを取得することができる。
 前記受光装置は、前記第1の範囲の距離画像データ、および前記第1の範囲の輝度画像データの少なくとも一方を、前記第1の検出データとして生成するイメージセンサを備えていてもよい。そのようなイメージセンサを備えた受光装置を用いることにより、第1の範囲の距離画像データまたは輝度画像データに基づいて、より詳細な測距が必要な第2の範囲を決定することができる。
 前記イメージセンサは、前記第1の範囲の距離画像データを生成してもよい。前記処理回路は、前記第1の範囲の距離画像データに基づき、前記第2の範囲を決定してもよい。これにより、第1の範囲の距離画像データに基づいて、より詳細な測距が必要な第2の範囲を決定することができる。例えば、測距の精度が不十分な範囲を第2の範囲として決定することができる。
 前記処理回路は、前記第1の光を用いて取得された前記第1の範囲の距離画像データと、前記第2の光を用いて取得された前記第2の範囲の距離画像データとを1フレームの距離画像データに統合して出力してもよい。これにより、高い精度の統合された距離画像データを取得することができる。
 前記イメージセンサは、前記第1の範囲の輝度画像データを生成してもよい。前記処理回路は、前記第1の範囲の輝度画像データに基づき、前記第2の範囲を決定してもよい。これにより、第1の範囲の輝度画像データに基づいて、より詳細な測距が必要な第2の範囲を決定することができる。例えば、輝度画像データから認識された特定の対象物が存在する範囲を第2の範囲として決定することができる。
 前記イメージセンサは、前記第1の範囲の距離画像データ、および前記第1の範囲の輝度画像データの両方を生成してもよい。前記処理回路は、前記第1の範囲の距離画像データおよび前記第1の範囲の輝度画像データに基づき、前記第2の範囲を決定してもよい。これにより、例えば距離画像データに基づいて決定される測距が不十分な範囲と、輝度画像データに基づいて決定される特定の対象物が存在する範囲とを、第2の範囲として決定することができる。
 前記処理回路は、前記第1の範囲の輝度画像データに基づき、前記第1の範囲内に存在する1つ以上の対象物を特定し、前記1つ以上の対象物に前記第2の光が照射されるように、前記第2の範囲を決定してもよい。
 前記イメージセンサは、グローバルシャッタ方式の電子シャッタを備えていてもよい。電子シャッタがグローバルシャッタ方式である場合、第1の光と同期してシャッタのオンおよびオフを制御することにより、2次元情報を一度に取得することができる。
 前記処理回路は、前記発光装置および前記受光装置に、前記第1の光を少なくとも1回出射させ、前記第1の反射光を検出させる動作と、前記第2の光を少なくとも1回出射させ、前記第2の反射光を検出させる動作とを、繰り返し実行させてもよい。これにより、シーンの距離データを繰り返し生成することができる。
 前記第2の光を出射させる動作は、異なる方向に複数回前記第2の光を出射させる動作を含んでいてもよい。これにより、第2の光によって第2の範囲をスキャンすることができる。
 前記処理回路は、前記発光装置に、前記第1の光および前記第2の光を同時に複数回出射させてもよい。前記第2の範囲の決定は、それ以前の前記第1の光の照射によって取得された前記第1の検出データに基づいて行われ得る。
 前記処理回路は、前記発光装置および前記受光装置に、前記第2の光を出射させ、その後、前記第1の光を出射させ、その後、前記第1の反射光と前記第2の反射光とを同一の露光期間内に検出させる動作を繰り返し実行させてもよい。前記第2の範囲の決定は、それ以前の前記第1の光の照射によって取得された前記第1の検出データに基づいて行われ得る。
 前記発光装置は、前記第1の光を出射する第1の光源と、前記第2の光を出射する第2の光源と、を備えていてもよい。
 本開示の他の態様に係る方法は、発光装置に、シーン内の第1の範囲を照射する第1の光を出射させることと、受光装置に、前記第1の光の照射によって生じた第1の反射光を検出させて第1の検出データを出力させることと、前記第1の検出データに基づき、前記第1の範囲よりも狭い1つ以上の第2の範囲を決定することと、前記発光装置に、前記第2の範囲を照射する、前記第1の光よりも拡がりの程度が小さい第2の光を出射させることと、前記受光装置に、前記第2の光の照射によって生じた第2の反射光を検出させて第2の検出データを出力させることと、前記第2の検出データに基づき、前記第2の範囲の距離データを生成して出力することと、を含む。
 本開示のさらに他の態様に係るコンピュータプログラムは、発光装置と、受光装置と、前記発光装置および前記受光装置を制御し、前記受光装置から出力された信号を処理する処理回路と、を備えたシステムにおける前記処理回路によって実行される。前記コンピュータプログラムは、前記処理回路のプロセッサに、前記発光装置に、シーン内の第1の範囲を照射する第1の光を出射させることと、前記受光装置に、前記第1の光の照射によって生じた第1の反射光を検出させて第1の検出データを出力させることと、前記第1の検出データに基づき、前記第1の範囲よりも狭い1つ以上の第2の範囲を決定することと、前記発光装置に、前記第2の範囲を照射する、前記第1の光よりも拡がりの程度が小さい第2の光を出射させることと、前記受光装置に、前記第2の光の照射によって生じた第2の反射光を検出させて第2の検出データを出力させることと、前記第2の検出データに基づき、前記第2の範囲の距離データを生成して出力することと、を実行させる。
 本開示の技術は、測距を行う装置またはシステムに広く利用可能である。例えば、本開示の技術は、LIDARシステムの構成要素として使用され得る。
 100 発光装置
 110 第1光源
 111 フラッシュ光源
 120 第2光源
 121 スキャン光源
 200 受光装置
 210、211 イメージセンサ
 300 処理回路
 301 コントローラ
 303 画像処理回路
 330 メモリ

Claims (16)

  1.  拡がりの程度の異なる複数種類の光を出射することが可能な発光装置と、
     前記発光装置から出射された前記光に基づく反射光を検出する受光装置と、
     前記発光装置および前記受光装置を制御し、前記受光装置から出力された信号を処理する処理回路と、
    を備え、
     前記処理回路は、
      前記発光装置に、シーン内の第1の範囲を照射する第1の光を出射させ、
      前記受光装置に、前記第1の光の照射によって生じた第1の反射光を検出させて第1の検出データを出力させ、
      前記第1の検出データに基づき、前記第1の範囲よりも狭い1つ以上の第2の範囲を決定し、
      前記発光装置に、前記第2の範囲を照射する、前記第1の光よりも拡がりの程度が小さい第2の光を出射させ、
      前記受光装置に、前記第2の光の照射によって生じた第2の反射光を検出させて第2の検出データを出力させ、
      前記第2の検出データに基づき、前記第2の範囲の距離データを生成して出力する、
     測距装置。
  2.  前記第1の光は、フラッシュ光であり、
     前記第2の光は、前記フラッシュ光の照射範囲に含まれる範囲を照射する光ビームである、
     請求項1に記載の測距装置。
  3.  前記受光装置は、前記第1の範囲の距離画像データ、および前記第1の範囲の輝度画像データの少なくとも一方を、前記第1の検出データとして生成するイメージセンサを備える、請求項1または2に記載の測距装置。
  4.  前記イメージセンサは、前記第1の範囲の距離画像データを生成し、
     前記処理回路は、前記第1の範囲の距離画像データに基づき、前記第2の範囲を決定する、
     請求項3に記載の測距装置。
  5.  前記処理回路は、前記第1の光を用いて取得された前記第1の範囲の距離画像データと、前記第2の光を用いて取得された前記第2の範囲の距離画像データとを1フレームの距離画像データに統合して出力する、
     請求項4に記載の測距装置。
  6.  前記イメージセンサは、前記第1の範囲の輝度画像データを生成し、
     前記処理回路は、前記第1の範囲の輝度画像データに基づき、前記第2の範囲を決定する、
     請求項3に記載の測距装置。
  7.  前記イメージセンサは、前記第1の範囲の距離画像データ、および前記第1の範囲の輝度画像データの両方を生成し、
     前記処理回路は、前記第1の範囲の距離画像データおよび前記第1の範囲の輝度画像データに基づき、前記第2の範囲を決定する、
     請求項3に記載の測距装置。
  8.  前記処理回路は、前記第1の範囲の輝度画像データに基づき、前記第1の範囲内に存在する1つ以上の対象物を特定し、前記1つ以上の対象物に前記第2の光が照射されるように、前記第2の範囲を決定する、請求項6または7に記載の測距装置。
  9.  前記イメージセンサは、グローバルシャッタ方式の電子シャッタを備える、請求項3から8のいずれかに記載の測距装置。
  10.  前記処理回路は、前記発光装置および前記受光装置に、前記第1の光を少なくとも1回出射させ、前記第1の反射光を検出させる動作と、前記第2の光を少なくとも1回出射させ、前記第2の反射光を検出させる動作とを、繰り返し実行させる、
     請求項1から9のいずれかに記載の測距装置。
  11.  前記第2の光を出射させる動作は、異なる方向に複数回前記第2の光を出射させる動作を含む、
     請求項10に記載の測距装置。
  12.  前記処理回路は、前記発光装置に、前記第1の光および前記第2の光を同時に複数回出射させ、
     前記第2の範囲の決定は、それ以前の前記第1の光の照射によって取得された前記第1の検出データに基づいて行われる、
     請求項1から11のいずれかに記載の測距装置。
  13.  前記処理回路は、前記発光装置および前記受光装置に、前記第2の光を出射させ、その後、前記第1の光を出射させ、その後、前記第1の反射光と前記第2の反射光とを同一の露光期間内に検出させる動作を繰り返し実行させ、
     前記第2の範囲の決定は、それ以前の前記第1の光の照射によって取得された前記第1の検出データに基づいて行われる、
     請求項1から11のいずれかに記載の測距装置。
  14.  前記発光装置は、
      前記第1の光を出射する第1の光源と、
      前記第2の光を出射する第2の光源と、
    を備える、請求項1から13のいずれかに記載の測距装置。
  15.  発光装置に、シーン内の第1の範囲を照射する第1の光を出射させることと、
     受光装置に、前記第1の光の照射によって生じた第1の反射光を検出させて第1の検出データを出力させることと、
     前記第1の検出データに基づき、前記第1の範囲よりも狭い1つ以上の第2の範囲を決定することと、
     前記発光装置に、前記第2の範囲を照射する、前記第1の光よりも拡がりの程度が小さい第2の光を出射させることと、
     前記受光装置に、前記第2の光の照射によって生じた第2の反射光を検出させて第2の検出データを出力させることと、
     前記第2の検出データに基づき、前記第2の範囲の距離データを生成して出力することと、
     を含む方法。
  16.  発光装置と、受光装置と、前記発光装置および前記受光装置を制御し、前記受光装置から出力された信号を処理する処理回路と、を備えたシステムにおける前記処理回路によって実行されるコンピュータプログラムであって、前記処理回路のプロセッサに、
     前記発光装置に、シーン内の第1の範囲を照射する第1の光を出射させることと、
     前記受光装置に、前記第1の光の照射によって生じた第1の反射光を検出させて第1の検出データを出力させることと、
     前記第1の検出データに基づき、前記第1の範囲よりも狭い1つ以上の第2の範囲を決定することと、
     前記発光装置に、前記第2の範囲を照射する、前記第1の光よりも拡がりの程度が小さい第2の光を出射させることと、
     前記受光装置に、前記第2の光の照射によって生じた第2の反射光を検出させて第2の検出データを出力させることと、
     前記第2の検出データに基づき、前記第2の範囲の距離データを生成して出力することと、
    を実行させるコンピュータプログラム。
PCT/JP2020/026581 2019-10-01 2020-07-07 測距装置および制御方法 WO2021065138A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080062997.7A CN114341672A (zh) 2019-10-01 2020-07-07 测距装置及控制方法
EP20872538.2A EP4040108A4 (en) 2019-10-01 2020-07-07 DISTANCE MEASURING DEVICE AND CONTROL METHOD
JP2021550350A JPWO2021065138A1 (ja) 2019-10-01 2020-07-07
US17/695,736 US20220206155A1 (en) 2019-10-01 2022-03-15 Ranging apparatus and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-181645 2019-10-01
JP2019181645 2019-10-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/695,736 Continuation US20220206155A1 (en) 2019-10-01 2022-03-15 Ranging apparatus and control method

Publications (1)

Publication Number Publication Date
WO2021065138A1 true WO2021065138A1 (ja) 2021-04-08

Family

ID=75337986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026581 WO2021065138A1 (ja) 2019-10-01 2020-07-07 測距装置および制御方法

Country Status (5)

Country Link
US (1) US20220206155A1 (ja)
EP (1) EP4040108A4 (ja)
JP (1) JPWO2021065138A1 (ja)
CN (1) CN114341672A (ja)
WO (1) WO2021065138A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091426A (ja) * 2008-10-08 2010-04-22 Toyota Central R&D Labs Inc 距離計測装置及びプログラム
WO2017141957A1 (ja) * 2016-02-17 2017-08-24 パナソニックIpマネジメント株式会社 距離測定装置
JP2017173298A (ja) 2016-03-16 2017-09-28 株式会社リコー 物体検出装置及び移動体装置
US20170337702A1 (en) * 2016-05-19 2017-11-23 Wistron Corporation Method and apparatus for measuring depth information
US20180217258A1 (en) 2017-01-31 2018-08-02 Panasonic Intellectual Property Management Co., Ltd. Imaging system
US10061020B2 (en) 2015-09-20 2018-08-28 Qualcomm Incorporated Light detection and ranging (LIDAR) system with dual beam steering
JP2018179876A (ja) * 2017-04-19 2018-11-15 株式会社日立製作所 姿勢推定システム、距離画像カメラ、及び姿勢推定装置
JP2018185342A (ja) 2013-11-20 2018-11-22 パナソニックIpマネジメント株式会社 測距撮像システム
JP2019113530A (ja) * 2017-12-22 2019-07-11 株式会社デンソー 距離測定装置、認識装置、及び距離測定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8736818B2 (en) * 2010-08-16 2014-05-27 Ball Aerospace & Technologies Corp. Electronically steered flash LIDAR
US9294754B2 (en) * 2012-02-03 2016-03-22 Lumentum Operations Llc High dynamic range and depth of field depth camera

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091426A (ja) * 2008-10-08 2010-04-22 Toyota Central R&D Labs Inc 距離計測装置及びプログラム
JP2018185342A (ja) 2013-11-20 2018-11-22 パナソニックIpマネジメント株式会社 測距撮像システム
US10061020B2 (en) 2015-09-20 2018-08-28 Qualcomm Incorporated Light detection and ranging (LIDAR) system with dual beam steering
JP2018529099A (ja) * 2015-09-20 2018-10-04 クアルコム,インコーポレイテッド デュアルビームステアリングを有する光検知測距(lidar)システム
WO2017141957A1 (ja) * 2016-02-17 2017-08-24 パナソニックIpマネジメント株式会社 距離測定装置
JP2017173298A (ja) 2016-03-16 2017-09-28 株式会社リコー 物体検出装置及び移動体装置
US20170337702A1 (en) * 2016-05-19 2017-11-23 Wistron Corporation Method and apparatus for measuring depth information
US20180217258A1 (en) 2017-01-31 2018-08-02 Panasonic Intellectual Property Management Co., Ltd. Imaging system
JP2018179876A (ja) * 2017-04-19 2018-11-15 株式会社日立製作所 姿勢推定システム、距離画像カメラ、及び姿勢推定装置
JP2019113530A (ja) * 2017-12-22 2019-07-11 株式会社デンソー 距離測定装置、認識装置、及び距離測定方法

Also Published As

Publication number Publication date
EP4040108A4 (en) 2022-11-23
CN114341672A (zh) 2022-04-12
EP4040108A1 (en) 2022-08-10
US20220206155A1 (en) 2022-06-30
JPWO2021065138A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
JP7347585B2 (ja) 距離測定装置
AU2019369212B2 (en) Time-of-flight sensor with structured light illuminator
JP7238343B2 (ja) 距離測定装置及び距離測定方法
JP6528447B2 (ja) 視差演算システム及び距離測定装置
ES2512965B2 (es) Sistema y método para escanear una superficie y programa de ordenador que implementa el método
JP7321246B2 (ja) ハイブリッド飛行時間型イメージャモジュール
US20150243017A1 (en) Object recognition apparatus and object recognition method
EP1191306A2 (en) Distance information obtaining apparatus and distance information obtaining method
JP6850173B2 (ja) 電磁波検出装置、プログラム、および電磁波検出システム
JP7550382B2 (ja) センシングデバイスおよび情報処理装置
JP7135081B2 (ja) 装置および方法
JP2021124332A (ja) 測距装置
WO2021065138A1 (ja) 測距装置および制御方法
US20220214434A1 (en) Gating camera
WO2021205787A1 (ja) 測距装置、およびプログラム
WO2021181841A1 (ja) 測距装置
WO2021199888A1 (ja) 測距装置を制御する方法および装置
WO2023224078A1 (ja) 車載センシングシステムおよび縁石の検出方法
JP7372205B2 (ja) 電磁波検出装置および測距装置
JP7483548B2 (ja) 電磁波検出装置
JP7037609B2 (ja) 電磁波検出装置およびプログラム
WO2022163721A1 (ja) ゲーティングカメラ、車両用センシングシステム、車両用灯具
WO2020022150A1 (ja) 電磁波検出装置および情報取得システム
CN115867827A (zh) 电磁波检测装置和测距装置
TW202407380A (zh) 光達系統及其解析度提升方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550350

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020872538

Country of ref document: EP

Effective date: 20220502