WO2021065019A1 - 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ - Google Patents

磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ Download PDF

Info

Publication number
WO2021065019A1
WO2021065019A1 PCT/JP2019/042753 JP2019042753W WO2021065019A1 WO 2021065019 A1 WO2021065019 A1 WO 2021065019A1 JP 2019042753 W JP2019042753 W JP 2019042753W WO 2021065019 A1 WO2021065019 A1 WO 2021065019A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
recording medium
less
magnetic recording
magnetic layer
Prior art date
Application number
PCT/JP2019/042753
Other languages
English (en)
French (fr)
Inventor
潤 寺川
山鹿 実
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US17/637,549 priority Critical patent/US11830532B2/en
Publication of WO2021065019A1 publication Critical patent/WO2021065019A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/02Containers; Storing means both adapted to cooperate with the recording or reproducing means
    • G11B23/04Magazines; Cassettes for webs or filaments
    • G11B23/08Magazines; Cassettes for webs or filaments for housing webs or filaments having two distinct ends
    • G11B23/107Magazines; Cassettes for webs or filaments for housing webs or filaments having two distinct ends using one reel or core, one end of the record carrier coming out of the magazine or cassette
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B25/00Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus
    • G11B25/06Apparatus characterised by the shape of record carrier employed but not specific to the method of recording or reproducing, e.g. dictating apparatus; Combinations of such apparatus using web-form record carriers, e.g. tape
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/008Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires
    • G11B5/00813Recording on, or reproducing or erasing from, magnetic tapes, sheets, e.g. cards, or wires magnetic tapes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B15/00Driving, starting or stopping record carriers of filamentary or web form; Driving both such record carriers and heads; Guiding such record carriers or containers therefor; Control thereof; Control of operating function
    • G11B15/60Guiding record carrier

Definitions

  • the present disclosure relates to a magnetic recording medium, a magnetic recording / playback device using the magnetic recording medium, and a magnetic recording medium cartridge.
  • a tape-shaped magnetic recording medium having a magnetic layer is widely used for storing electronic data.
  • the magnetic layer of the magnetic recording medium is provided with a data band including a plurality of recording tracks, and data is recorded on the recording tracks. Further, the magnetic layer is provided with a servo band at a position adjacent to the data band in the width direction, and a servo signal is recorded in this servo band.
  • the magnetic head reads the servo signal recorded in the servo band to align the magnetic head with respect to the recording track.
  • the data recording method on the magnetic recording medium includes a horizontal magnetic recording method in which the magnetic particles in the magnetic layer are magnetized in the horizontal direction to record the data, and a horizontal magnetic recording method in which the magnetic particles in the magnetic layer are magnetized in the vertical direction to collect the data.
  • a vertical magnetic recording method for recording is known.
  • the perpendicular magnetic recording method can record data at a higher density than the horizontal magnetic recording method.
  • the applicant discloses a technique for obtaining a reproduced waveform of a servo signal having good symmetry when the magnetization direction of the servo signal includes a component in the vertical direction (see, for example, Patent Document 1).
  • the magnetic recording medium as one embodiment of the present disclosure is a tape-shaped magnetic recording medium, which comprises a substrate containing polyester as a main component, a substrate provided on the substrate, a plurality of magnetic powders, and recording of a data signal. It has a possible magnetic layer.
  • the arithmetic mean roughness Ra of the surface of the magnetic layer is 2.5 nm or less.
  • the PSD (Power Spectrum Density) up to a spatial wavelength of 5 ⁇ m is 2.5 ⁇ m or less.
  • the average thickness of the magnetic layer is 90 nm or less.
  • the average aspect ratio of the magnetic powder is 1.0 or more and 3.0 or less.
  • the coercive force in the vertical direction is 3000 Oersted or less.
  • the ratio of the coercive force in the longitudinal direction to the coercive force in the vertical direction is 0.8 or less.
  • the half width of the isolated waveform in the reproduced waveform of the data signal is 200 nm or less.
  • the magnetic recording / reproducing device includes a sending unit capable of sequentially delivering the above-mentioned magnetic recording medium, a winding unit capable of winding the magnetic recording medium delivered from the sending unit, and a winding unit. It is provided with a magnetic head capable of writing information to the magnetic recording medium and reading information from the magnetic recording medium while contacting the magnetic recording medium traveling from the sending unit to the winding unit.
  • the magnetic recording medium cartridge as an embodiment of the present disclosure includes the above-mentioned magnetic recording medium and a housing for accommodating the magnetic recording medium.
  • the magnetic recording medium, the magnetic recording / playback device, and the magnetic recording medium cartridge as one embodiment of the present disclosure have the above-mentioned configurations, they are advantageous for high-density recording of data.
  • FIG. 1 It is the schematic of the servo signal recording apparatus for recording a servo signal on the magnetic recording medium shown in FIG. 1. It is a schematic diagram showing the configuration of the main part of the servo signal recording apparatus shown in FIG. 8 in an enlarged manner. It is a schematic diagram which shows the direction of magnetization of the magnetic recording medium degaussed in the servo signal recording apparatus shown in FIG. It is explanatory drawing which shows the relationship between the magnetization direction of the magnetic recording medium written in the servo signal recording apparatus shown in FIG. 8 and the reproduction waveform of a servo signal. It is a figure for demonstrating the half width in an isolated waveform.
  • Embodiment 1-1 Configuration of magnetic recording medium 1-2. Manufacturing method of magnetic recording medium 1-3. Configuration of recording / playback device 1-4. Effect 2. Modification example
  • FIG. 1 shows a cross-sectional configuration example of the magnetic recording medium 10 according to the embodiment of the present disclosure.
  • the magnetic recording medium 10 has a laminated structure in which a plurality of layers are laminated.
  • the magnetic recording medium 10 includes a long tape-shaped substrate 11, a base layer 12 provided on one main surface 11A of the base 11, and a magnetic layer provided on the base layer 12. 13 and a back layer 14 provided on the other main surface 11B of the substrate 11.
  • the surface 13S of the magnetic layer 13 is a surface on which the magnetic head travels while being in contact with the magnetic head.
  • the base layer 12 and the back layer 14 are provided as needed, and may be omitted.
  • the average thickness of the magnetic recording medium 10 is preferably, for example, 5.6 ⁇ m or less.
  • the magnetic recording medium 10 has a long tape shape, and travels along its own longitudinal direction during the recording operation and the reproduction operation.
  • the magnetic recording medium 10 is preferably used in a recording / reproducing device including, for example, a ring-shaped head as a recording head.
  • the base 11 is a non-magnetic support that supports the base layer 12 and the magnetic layer 13.
  • the substrate 11 is in the form of a long film.
  • the upper limit of the average thickness of the substrate 11 is preferably 4.2 ⁇ m or less, more preferably 4.0 ⁇ m or less. When the upper limit of the average thickness of the substrate 11 is 4.2 ⁇ m or less, the recording capacity that can be recorded in one data cartridge can be increased as compared with a general magnetic recording medium.
  • the lower limit of the average thickness of the substrate 11 is preferably 3 ⁇ m or more, more preferably 3.2 ⁇ m or more. When the lower limit of the average thickness of the substrate 11 is 3 ⁇ m or more, the decrease in strength of the substrate 11 can be suppressed.
  • the average thickness of the substrate 11 is obtained as follows. First, a magnetic recording medium 10 having a width of 1/2 inch is prepared, and the magnetic recording medium 10 is cut out to a length of 250 mm to prepare a sample. Subsequently, the layers other than the substrate 11 of the sample, that is, the base layer 12, the magnetic layer 13, and the back layer 14 are removed with a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid. Next, using a laser holo gauge (LGH-110C) manufactured by Mitutoyo Co., Ltd. as a measuring device, the thickness of the sample substrate 11 is measured at positions of 5 points or more. Then, the measured values are simply averaged (arithmetic mean) to calculate the average thickness of the substrate 11. The measurement position shall be randomly selected from the sample.
  • a laser holo gauge LGH-110C
  • the substrate 11 contains, for example, polyesters as a main component.
  • the substrate 11 may contain at least one of polyolefins, cellulose derivatives, vinyl resins, and other polymer resins in addition to polyesters.
  • the substrate 11 contains two or more of the above materials, the two or more materials may be mixed, copolymerized, or laminated.
  • the polyesters contained in the substrate 11 include, for example, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PBT (polybutylene terephthalate), PBN (polybutylene naphthalate), PCT (polycyclohexylene dimethylene terephthalate), PEB (Polyethylene-p-oxybenzoate) and at least one of polyethylene bisphenoxycarboxylate.
  • the polyolefins contained in the substrate 11 include, for example, at least one of PE (polyethylene) and PP (polypropylene).
  • Cellulose derivatives include, for example, at least one of cellulose diacetate, cellulose triacetate, CAB (cellulose acetate butyrate) and CAP (cellulose acetate propionate).
  • the vinyl resin contains, for example, at least one of PVC (polyvinyl chloride) and PVDC (polyvinylidene chloride).
  • polymer resins contained in the substrate 11 include, for example, PA (polyamide, nylon), aromatic PA (aromatic polyamide, aramid), PI (polyimide), aromatic PI (aromatic polyimide), PAI (polyamideimide). ), Aromatic PAI (Aromatic Polyamideimide), PBO (Polybenzoxazole, eg Zyrone®), Polyether, PEK (Polyetherketone), Polyetherester, PES (Polyethersulfone), PEI ( It contains at least one of polyetherimide), PSF (polysulphon), PPS (polyphenylene sulfide), PC (polyamide), PAR (polyamide) and PU (polyamide).
  • PA polyamide, nylon
  • aromatic PA aromatic polyamide, aramid
  • PI polyimide
  • PAI polyamideimide
  • Aromatic PAI Aromatic PAI
  • PBO Polybenzoxazole, eg Zyrone®
  • Polyether Polyetherketone
  • the magnetic layer 13 is a recording layer for recording a signal.
  • the magnetic layer 13 contains, for example, a magnetic powder, a binder and a lubricant.
  • the magnetic layer 13 may further contain additives such as conductive particles, an abrasive, and a rust preventive, if necessary.
  • the magnetic layer 13 has a surface 13S provided with a large number of holes. Lubricant is stored in these many holes. It is preferable that a large number of holes extend in the direction perpendicular to the surface of the magnetic layer 13. This is because the supply of the lubricant to the surface 13S of the magnetic layer 13 can be improved. It should be noted that a part of a large number of holes may be extended in the vertical direction.
  • the arithmetic mean roughness Ra of the surface 13S of the magnetic layer 13 is 2.5 nm or less, preferably 2.2 nm or less, and more preferably 1.9 nm or less. When the arithmetic average roughness Ra is 2.5 nm or less, excellent electromagnetic conversion characteristics can be obtained.
  • the lower limit of the arithmetic mean roughness Ra of the surface 13S of the magnetic layer 13 is preferably 1.0 nm or more, more preferably 1.2 nm or more, and even more preferably 1.4 nm or more. When the lower limit of the arithmetic mean roughness Ra of the surface 13S of the magnetic layer 13 is 1.0 nm or more, it is possible to suppress a decrease in runnability due to an increase in friction.
  • the deviation Z "(i) (
  • the image processing the data that has been filtered by Flatten order2 and planefit order3XY is used as the data.
  • the PSD Power Spectrum Density
  • a spatial wavelength of 5 ⁇ m is, for example, 2.5 ⁇ m or less.
  • the PSD is measured as follows. First, the surface of the magnetic tape is observed with an atomic force microscope (AFM) to obtain two-dimensional (2D) surface profile data.
  • the AFM suitable for measurement is shown below.
  • Digital Instruments Dimension 3100 Cantilever: NanoWorld NCH-10T The AFM measurement conditions are shown below.
  • Measurement area 30 ⁇ m x 30 ⁇ m Resolution: 512 x 512
  • AFM probe scan direction MD direction (longitudinal direction) of magnetic tape Measurement mode: tapping mode scan ratio: 1Hz
  • FFT Fast Fourier Transform
  • PSD PSD (k) MD
  • PSDMD PSD (k) MD
  • the upper limit of the average thickness of the magnetic layer 13 is preferably 90 nm or less, particularly preferably 80 nm or less, more preferably 70 nm or less, and even more preferably 50 nm or less.
  • the upper limit of the average thickness of the magnetic layer 13 is 90 nm or less, when a ring-shaped head is used as the recording head, the magnetization can be uniformly recorded in the thickness direction of the magnetic layer 13, so that the electromagnetic conversion characteristics are improved. be able to.
  • the upper limit of the average thickness of the magnetic layer 13 is 90 nm or less, the half width of the isolated waveform in the reproduced waveform of the data signal is narrowed (for example, 200 nm or less), and the peak of the reproduced waveform of the data signal is sharpened. be able to. As a result, the reading accuracy of the data signal is improved, so that the number of recording tracks can be increased and the data recording density can be improved.
  • the lower limit of the average thickness of the magnetic layer 13 is preferably 35 nm or more.
  • the output can be secured when the MR type head is used as the reproduction head, so that the electromagnetic conversion characteristics can be improved.
  • the average thickness of the magnetic layer 13 is obtained as follows. First, a carbon film is formed on the surface 13S of the magnetic layer 13 of the magnetic recording medium 10 and the surface 14S of the back layer 14 by a vapor deposition method, and then a tungsten thin film is deposited on the carbon film covering the surface 13S of the magnetic layer 13 by a vapor deposition method. Further form. These carbon film and tungsten film protect the sample in the flaking treatment described later.
  • the magnetic recording medium 10 is processed by the FIB (Focused Ion Beam) method or the like to thin it.
  • a carbon film and a tungsten thin film are formed as a protective film as a pretreatment for observing a TEM image of a cross section described later.
  • the carbon film is formed on the magnetic layer side surface and the back layer side surface of the magnetic recording medium 10 by a vapor deposition method, and the tungsten thin film is further formed on the magnetic layer side surface by a vapor deposition method or a sputtering method.
  • the thinning is performed along the length direction (longitudinal direction) of the magnetic recording medium 10.
  • the thinning forms a cross section parallel to both the longitudinal direction and the thickness direction of the magnetic recording medium 10.
  • the cross section of the obtained sliced sample is observed with a transmission electron microscope (TEM) under the following conditions to obtain a TEM image.
  • TEM transmission electron microscope
  • the magnification and the acceleration voltage may be appropriately adjusted according to the type of the device.
  • the thickness of the magnetic layer 13 is measured at at least 10 points or more in the longitudinal direction of the magnetic recording medium 10.
  • the average value obtained by simply averaging (arithmetic mean) the obtained measured values is defined as the average thickness of the magnetic layer 13.
  • the position where the measurement is performed shall be randomly selected from the test pieces.
  • the magnetic powder contains, for example, powder of nanoparticles containing ⁇ -iron oxide (hereinafter referred to as “ ⁇ -iron oxide particles”). High coercive force can be obtained even with fine particles of ⁇ iron oxide particles. It is preferable that the ⁇ -iron oxide contained in the ⁇ -iron oxide particles is preferentially crystal-oriented in the thickness direction (vertical direction) of the magnetic recording medium 10.
  • FIG. 2 is a cross-sectional view schematically showing an example of the cross-sectional structure of the ⁇ -iron oxide particles 20 contained in the magnetic layer 13.
  • the ⁇ -iron oxide particles 20 have a spherical or substantially spherical shape, or have a cubic shape or a substantially cubic shape. Since the ⁇ -iron oxide particles 20 have the above-mentioned shape, when the ⁇ -iron oxide particles 20 are used as the magnetic particles, they are more magnetic than when the hexagonal plate-shaped barium ferrite particles are used as the magnetic particles. It is possible to reduce the contact area between the particles in the thickness direction of the recording medium 10 and suppress the aggregation of the particles. Therefore, it is possible to improve the dispersibility of the magnetic powder and obtain a better SNR (Signal-to-Noise Ratio).
  • the ⁇ iron oxide particles 20 have, for example, a core-shell type structure. Specifically, as shown in FIG. 2, the ⁇ -iron oxide particles 20 include a core portion 21 and a shell portion 22 having a two-layer structure provided around the core portion 21.
  • the shell portion 22 having a two-layer structure has a first shell portion 22a provided on the core portion 21 and a second shell portion 22b provided on the first shell portion 22a.
  • the core portion 21 of the ⁇ -iron oxide particles 20 contains ⁇ -iron oxide.
  • the iron oxide contained in the core portion 21 preferably has ⁇ -Fe 2 O 3 crystals as the main phase, and more preferably composed of single-phase ⁇ -Fe 2 O 3.
  • the first shell portion 22a covers at least a part of the periphery of the core portion 21. Specifically, the first shell portion 22a may partially cover the periphery of the core portion 21, or may cover the entire periphery of the core portion 21. From the viewpoint of making the exchange coupling between the core portion 21 and the first shell portion 22a sufficient and improving the magnetic characteristics, it is preferable to cover the entire surface of the core portion 21.
  • the first shell portion 22a is a so-called soft magnetic layer, and contains, for example, a soft magnetic material such as ⁇ -Fe, Ni—Fe alloy or Fe—Si—Al alloy.
  • ⁇ -Fe may be obtained by reducing ⁇ -iron oxide contained in the core portion 21.
  • the second shell portion 22b is an oxide film as an antioxidant layer.
  • the second shell portion 22b contains ⁇ -iron oxide, aluminum oxide or silicon oxide.
  • the ⁇ -iron oxide contains, for example, at least one iron oxide of Fe 3 O 4 , Fe 2 O 3 and Fe O.
  • the ⁇ -iron oxide may be obtained by oxidizing ⁇ -Fe contained in the first shell portion 22a.
  • the ⁇ iron oxide particles 20 have the first shell portion 22a as described above, the ⁇ iron oxide particles (core shell) keep the coercive force Hc of the core portion 21 alone at a large value in order to ensure thermal stability.
  • the coercive force Hc of the particle) 20 as a whole can be adjusted to a coercive force Hc suitable for recording.
  • the ⁇ -iron oxide particles 20 have the second shell portion 22b as described above, the ⁇ -iron oxide particles 20 are exposed to the air in the manufacturing process of the magnetic recording medium 10 and before the process, and the particle surface. It is possible to suppress deterioration of the characteristics of the ⁇ iron oxide particles 20 due to the occurrence of rust or the like. Therefore, by covering the first shell portion 22a with the second shell portion 22b, deterioration of the characteristics of the magnetic recording medium 10 can be suppressed.
  • the average particle size (average maximum particle size) of the magnetic powder is preferably 25 nm or less, more preferably 8 nm or more and 22 nm or less, and even more preferably 12 nm or more and 22 nm or less.
  • a region having a size of 1/2 of the recording wavelength is the actual magnetization region. Therefore, good S / N can be obtained by setting the average particle size of the magnetic powder to half or less of the shortest recording wavelength. Therefore, when the average particle size of the magnetic powder is 22 nm or less, good electromagnetic waves are obtained in a magnetic recording medium 10 having a high recording density (for example, a magnetic recording medium 10 configured to be able to record a signal at the shortest recording wavelength of 50 nm or less).
  • Conversion characteristics eg SNR
  • the average particle size of the magnetic powder is 8 nm or more, the dispersibility of the magnetic powder is further improved, and more excellent electromagnetic conversion characteristics (for example, SNR) can be obtained.
  • the average aspect ratio of the magnetic powder is preferably 1.0 or more and 3.0 or less, more preferably 1.0 or more and 2.8 or less, and even more preferably 1.0 or more and 2.0 or less.
  • the average aspect ratio of the magnetic powder is in the range of 1 or more and 3.0 or less, aggregation of the magnetic powder can be suppressed, and when the magnetic powder is vertically aligned in the process of forming the magnetic layer 13, the magnetic powder can be vertically oriented. The resistance applied to the can be suppressed. Therefore, the vertical orientation of the magnetic powder can be improved.
  • the average particle size and average aspect ratio of the above magnetic powder are obtained as follows.
  • the magnetic recording medium 10 to be measured is processed by the FIB (Focused Ion Beam) method or the like to thin it. Slicing is performed along the length direction (longitudinal direction) of the magnetic tape. That is, this thinning forms a cross section parallel to both the longitudinal direction and the thickness direction of the magnetic recording medium 10.
  • the obtained flaky sample contains the entire magnetic layer 13 with respect to the thickness direction of the magnetic layer 13 at an acceleration voltage of 200 kV and a total magnification of 500,000 times using a transmission electron microscope (H-9500 manufactured by Hitachi High-Technologies). Observe the cross section and take a TEM photograph.
  • the major axis length DL means the maximum distance (so-called maximum ferret diameter) between two parallel lines drawn from all angles so as to be in contact with the contour of each particle.
  • the minor axis length DS means the maximum length of the particles in the direction orthogonal to the major axis length DL of the particles.
  • the major axis length DLs of the measured 50 particles are simply averaged (arithmetic mean) to obtain the average major axis length DLave.
  • the average major axis length DLave thus obtained is taken as the average particle size of the magnetic powder.
  • the average minor axis length DSave of the measured 50 particles is simply averaged (arithmetic mean) to obtain the average minor axis length DSave.
  • the average aspect ratio (DLave / DSave) of the particles is obtained from the average major axis length DLave and the average minor axis length DSave.
  • the average particle volume of the magnetic powder is preferably 2300 nm 3 or less, more preferably 2200nm3 less, more preferably 2100nm3 less, more preferably 1950 nm 3 or less, more preferably 1600 nm 3 or less, still more preferably 1300 nm 3 or less.
  • the average particle volume of the magnetic powder is 2300 nm 3 or less, the half width of the isolated waveform in the reproduced waveform of the data signal can be narrowed (200 nm or less), and the peak of the reproduced waveform of the data signal can be sharpened.
  • the reading accuracy of the data signal is improved, so that the number of recording tracks can be increased and the data recording density can be improved (details will be described later).
  • the lower limit of the volume is not particularly limited, but for example, the lower limit is 800 nm 3 or more.
  • Binder a resin having a structure in which a cross-linking reaction is applied to a polyurethane-based resin, a vinyl chloride-based resin, or the like is preferable.
  • the binder is not limited to these, and other resins may be appropriately blended depending on the physical characteristics required for the magnetic recording medium 10.
  • the resin to be blended is not particularly limited as long as it is a resin generally used in the coating type magnetic recording medium 10.
  • polyvinyl chloride polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylic acid ester-acrylonitrile copolymer, acrylic acid ester-chloride.
  • thermosetting resins or reactive resins examples include phenol resins, epoxy resins, urea resins, melamine resins, alkyd resins, silicone resins, polyamine resins, urea formaldehyde resins and the like.
  • M in the above chemical formula is a hydrogen atom or an alkali metal such as lithium, potassium, or sodium.
  • polar functional group -NR1R2, -NR1R2R3 + X - as the side chain type having an end group of,> NR1R2 + X - include those of the main chain type.
  • R1, R2, and R3 in the above formula are hydrogen atoms or hydrocarbon groups
  • X - is a halogen element ion such as fluorine, chlorine, bromine, or iodine, or an inorganic or organic ion.
  • polar functional group -OH, -SH, -CN, an epoxy group and the like can also be mentioned.
  • the lubricant contained in the magnetic layer 13 contains, for example, a fatty acid and a fatty acid ester.
  • the fatty acid contained in the lubricant preferably contains, for example, at least one of a compound represented by the following general formula ⁇ 1> and a compound represented by the general formula ⁇ 2>.
  • the fatty acid ester contained in the lubricant preferably contains at least one of the compound represented by the following general formula ⁇ 3> and the compound represented by the general formula ⁇ 4>.
  • the compound represented by the general formula ⁇ 2> and the compound represented by the general formula ⁇ 3> By including two kinds of the compound represented by the general formula ⁇ 1> and the compound represented by the general formula ⁇ 4>, the compound represented by the general formula ⁇ 2> and the compound represented by the general formula ⁇ 4> By including two kinds of the compounds represented by, the compound represented by the general formula ⁇ 1>, the compound represented by the general formula ⁇ 2>, and the compound represented by the general formula ⁇ 3> are generally included.
  • the compound represented by the general formula ⁇ 4> By containing three kinds of the compounds, or represented by the compound represented by the general formula ⁇ 1>, the compound represented by the general formula ⁇ 2>, the compound represented by the general formula ⁇ 3>, and the compound represented by the general formula ⁇ 4>.
  • CH 3 (CH 2 ) k COOH ⁇ ⁇ ⁇ ⁇ 1> (However, in the general formula ⁇ 1>, k is an integer selected from the range of 14 or more and 22 or less, more preferably 14 or more and 18 or less.)
  • CH 3 (CH 2 ) n CH CH (CH 2 ) m COOH ⁇ ⁇ ⁇ ⁇ 2> (However, in the general formula ⁇ 2>, the sum of n and m is an integer selected from the range of 12 or more and 20 or less, more preferably 14 or more and 18 or less.)
  • CH 3 (CH 2 ) p COO (CH 2 ) q CH 3 ⁇ ⁇ ⁇ ⁇ 3> (However, in the general formula ⁇ 3>, p is an integer selected from the range of 14 or more and 22 or
  • the magnetic layer 13 includes aluminum oxide ( ⁇ , ⁇ or ⁇ alumina), chromium oxide, silicon oxide, diamond, garnet, emery, boron nitride, titanium carbide, silicon carbide, titanium carbide, and titanium oxide (titanium carbide). It may further contain rutile-type or anatase-type titanium oxide) and the like.
  • the base layer 12 is a non-magnetic layer containing a non-magnetic powder and a binder.
  • the base layer 12 may further contain at least one additive such as a lubricant, conductive particles, a curing agent, and a rust preventive, if necessary.
  • the base layer 12 may have a multi-layer structure in which a plurality of layers are laminated.
  • the average thickness of the base layer 12 is preferably 0.4 ⁇ m or more and 1.4 ⁇ m or less, and more preferably 0.6 ⁇ m or more and 1.2 ⁇ m or less.
  • the average thickness of the base layer 12 is calculated as follows, for example. First, a magnetic recording medium 10 having a width of 1/2 inch is prepared, and the magnetic recording medium 10 is cut out to a length of 250 mm to prepare a sample. Subsequently, with respect to the magnetic recording medium 10 of the sample, the base layer 12 and the magnetic layer 13 are peeled off from the substrate 11. Next, using a laser holo gauge (LGH-110C) manufactured by Mitutoyo Co., Ltd. as a measuring device, the thickness of the laminate of the base layer 12 and the magnetic layer 13 peeled off from the base 11 is measured at five or more points. To do.
  • LGH-110C laser holo gauge
  • the measured values are simply averaged (arithmetic mean) to calculate the average thickness of the laminate of the base layer 12 and the magnetic layer 13.
  • the measurement position shall be randomly selected from the sample.
  • the average thickness of the base layer 12 is obtained by subtracting the average thickness of the magnetic layer 13 measured by using TEM as described above from the average thickness of the laminated body.
  • the base layer 12 may have pores, that is, the base layer 12 may be provided with a large number of pores.
  • the pores of the base layer 12 may be formed, for example, by forming pores (pores) in the magnetic layer 13, and in particular, a large number of pores provided on the surface 14S of the back layer 14 of the magnetic recording medium 10. It can be formed by pressing the protrusion against the surface on the magnetic layer side. That is, by forming the recess corresponding to the shape of the protrusion on the surface 13S of the magnetic layer 13, pores can be formed in the magnetic layer 13 and the base layer 12, respectively. Further, pores may be formed as the solvent volatilizes in the drying step of the paint for forming the magnetic layer.
  • the solvent in the paint for forming the magnetic layer forms the base layer 12 when the lower layer is applied and dried. It can penetrate through the pores and into the underlying layer 12.
  • the solvent that has permeated into the base layer 12 volatilizes in the drying step of the magnetic layer 13
  • the solvent that has permeated into the base layer 12 moves from the base layer 12 to the surface 13S of the magnetic layer 13 to become finer. Holes may be formed.
  • the pores formed in this way may be, for example, those in which the magnetic layer 13 and the base layer 12 are communicated with each other.
  • the average diameter of the pores can be adjusted by changing the type of solid content or solvent of the paint for forming a magnetic layer and / or the drying conditions of the paint for forming a magnetic layer.
  • an amount of a lubricant particularly suitable for good running stability appears on the magnetic layer side surface, and dynamic friction due to repeated recording or reproduction occurs.
  • the increase in the coefficient can be further suppressed.
  • the pores of the base layer 12 and the pores of the magnetic layer 13 are connected.
  • the fact that the holes of the base layer 12 and the holes of the magnetic layer 13 are connected means that some of the holes of the base layer 12 and the holes of the magnetic layer 13 are connected. It shall include the state where some of them are connected.
  • the large number of holes include those extending in the direction perpendicular to the surface 13S of the magnetic layer 13. .. Further, from the viewpoint of improving the supply of the lubricant to the surface 13S of the magnetic layer 13, the holes of the base layer 12 extending in the direction perpendicular to the surface 13S of the magnetic layer 13 and the surface of the magnetic layer 13 It is preferable that the holes of the magnetic layer 13 extending in the direction perpendicular to the 13S are connected to each other.
  • the non-magnetic powder includes, for example, at least one of inorganic particle powder and organic particle powder. Further, the non-magnetic powder may contain carbon powder such as carbon black. In addition, one kind of non-magnetic powder may be used alone, or two or more kinds of non-magnetic powder may be used in combination.
  • Inorganic particles include, for example, metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, metal sulfides and the like.
  • Examples of the shape of the non-magnetic powder include, but are not limited to, various shapes such as a needle shape, a spherical shape, a cube shape, and a plate shape.
  • the binder in the base layer 12 is the same as that in the magnetic layer 13 described above.
  • the back layer 14 contains, for example, a binder and a non-magnetic powder.
  • the back layer 14 may further contain at least one additive such as a lubricant, a curing agent and an antistatic agent, if necessary.
  • the binder and non-magnetic powder in the back layer 14 are the same as the binder and non-magnetic powder in the base layer 12 described above.
  • the average particle size of the non-magnetic powder in the back layer 14 is preferably 10 nm or more and 150 nm or less, and more preferably 15 nm or more and 110 nm or less.
  • the average particle size of the non-magnetic powder in the back layer 14 is obtained in the same manner as the average particle size of the magnetic powder in the magnetic layer 13 described above.
  • the non-magnetic powder may contain one having a particle size distribution of 2 or more.
  • the upper limit of the average thickness of the back layer 14 is preferably 0.6 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less.
  • the thickness of the base layer 12 and the base 11 can be kept thick even when the average thickness of the magnetic recording medium 10 is 5.6 ⁇ m or less. , The running stability of the magnetic recording medium 10 in the recording / reproducing device can be maintained.
  • the lower limit of the average thickness of the back layer 14 is not particularly limited, but is, for example, 0.2 ⁇ m or more, and particularly preferably 0.3 ⁇ m or more.
  • the average thickness of the back layer 14 is obtained as follows. First, a magnetic recording medium 10 having a width of 1/2 inch is prepared, and the magnetic recording medium 10 is cut out to a length of 250 mm to prepare a sample. Next, using a laser holo gauge (LGH-110C) manufactured by Mitutoyo Co., Ltd. as a measuring device, the thickness of the sample magnetic recording medium 10 is measured at 5 points or more, and the measured values are simply averaged ( The average thickness t T [ ⁇ m] of the magnetic recording medium 10 is calculated by performing arithmetic average). The measurement position shall be randomly selected from the sample.
  • LGH-110C laser holo gauge
  • the back layer 14 is removed from the magnetic recording medium 10 of the sample with a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid.
  • a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid.
  • the thickness of the sample from which the back layer 14 is removed from the magnetic recording medium 10 is measured at 5 points or more, and the measured values are simply averaged (arithmetic mean) to back layer.
  • the average thickness t B [ ⁇ m] of the magnetic recording medium 10 from which 14 has been removed is calculated.
  • the measurement position shall be randomly selected from the sample.
  • the average thickness t b [ ⁇ m] of the back layer 14 is obtained from the following formula.
  • t b [ ⁇ m] t T [ ⁇ m] -t B [ ⁇ m]
  • the back layer 14 has a surface provided with a large number of protrusions.
  • the large number of protrusions is for forming a large number of holes on the surface of the magnetic layer 13 in a state where the magnetic recording medium 10 is wound in a roll shape.
  • the large number of pores is composed of, for example, a large number of non-magnetic particles protruding from the surface of the back layer 14.
  • a large number of protrusions provided on the surface of the back layer 14 are transferred to the surface of the magnetic layer 13 to form a large number of holes on the surface of the magnetic layer 13, but a large number of holes have been described.
  • the method of forming the portion is not limited to this.
  • a large number of holes may be formed on the surface of the magnetic layer 13 by adjusting the type of solvent contained in the paint for forming the magnetic layer, the drying conditions of the paint for forming the magnetic layer, and the like.
  • the upper limit of the average thickness (average total thickness) of the magnetic recording medium 10 is preferably 5.6 ⁇ m or less, more preferably 5.0 ⁇ m or less, particularly preferably 4.6 ⁇ m or less, and even more preferably 4.4 ⁇ m or less. ..
  • the lower limit of the average thickness of the magnetic recording medium 10 is not particularly limited, but is, for example, 3.5 ⁇ m or more.
  • the average thickness tT of the magnetic recording medium 10 is obtained as follows. First, a magnetic recording medium 10 having a width of 1/2 inch is prepared, and the magnetic recording medium 10 is cut out to a length of 250 mm to prepare a sample. Next, using a laser holo gauge (LGH-110C) manufactured by Mitutoyo as a measuring device, the thickness of the sample is measured at 5 or more points, and the measured values are simply averaged (arithmetic mean) and averaged. The value tT [ ⁇ m] is calculated. The measurement position shall be randomly selected from the sample.
  • LGH-110C laser holo gauge manufactured by Mitutoyo
  • the upper limit of the coercive force Hc1 in the vertical direction is 3000 Oe (Oersted) or less, more preferably 2900 Oe or less, and even more preferably 2850 Oe or less.
  • a large coercive force Hc1 is preferable because it is less susceptible to thermal disturbance and demagnetic field.
  • the coercive force Hc1 exceeds 3000 Oe, saturation recording with the recording head becomes difficult, and as a result, there is a part that cannot be recorded and noise increases, and as a result, the electromagnetic conversion characteristics (for example, C / N) may deteriorate. There is.
  • the lower limit of the coercive force Hc1 in the vertical direction is preferably 2200 Oe or more, more preferably 2400 Oe or more, and even more preferably 2600 Oe or more.
  • the coercive force Hc1 is 2200 Oe or more, it is possible to suppress a decrease in electromagnetic conversion characteristics (for example, C / N) in a high temperature environment due to the influence of thermal disturbance and the influence of a demagnetic field.
  • the above coercive force Hc1 is obtained as follows.
  • a measurement sample is prepared by stacking three magnetic recording media 10 on top of each other, adhering them with double-sided tape, and then punching them with a punch having a diameter of 6.39 mm.
  • marking is performed with an arbitrary non-magnetic ink so that the longitudinal direction (traveling direction) of the magnetic recording medium can be recognized.
  • VSM vibrating sample magnetometer
  • the coating film (base layer 12, magnetic layer 13, back layer 14, etc.) is wiped off with acetone, ethanol, or the like, leaving only the substrate 11. Then, three of the obtained substrates 11 are laminated and adhered with double-sided tape, and then punched out with a punch having a diameter of 6.39 mm to obtain a sample for background correction (hereinafter, simply referred to as a correction sample). Then, the MH loop of the correction sample (base 11) corresponding to the vertical direction of the base 11 (thickness direction of the magnetic recording medium 10) is measured using VSM.
  • the measurement conditions are: measurement mode: full loop, maximum magnetic field: 15 kOe, magnetic field step: 40 bits, Time constant of Locking amp: 0.3 sec, Waiting time: 1 sec, MH average number: 20.
  • the background correction is performed by subtracting the MH loop of the correction sample (base 11) from the MH loop of the measurement sample (entire magnetic recording medium 10). , The MH loop after background correction is obtained.
  • the measurement / analysis program attached to the "VSMP7-15 type" is used for the calculation of this background correction.
  • the coercive force Hc1 is obtained from the obtained MH loop after background correction.
  • the measurement / analysis program attached to the "VSM-P7-15 type" is used for this calculation. It is assumed that all the above-mentioned measurements of the MH loop are performed at 25 ° C. Further, it is assumed that "demagnetic field correction" is not performed when the MH loop is measured in the vertical direction of the magnetic recording medium 10.
  • the upper limit of the coercive force Hc2 in the longitudinal direction of the magnetic recording medium 10 is preferably 2000 Oe or less, more preferably 1900 Oe or less, and even more preferably 1800 Oe or less.
  • the coercive force Hc2 in the longitudinal direction is 2000 Oe or less, the magnetization reacts sensitively with the magnetic field in the vertical direction from the recording head, so that a good recording pattern can be formed.
  • the lower limit of the coercive force Hc2 measured in the longitudinal direction of the magnetic recording medium 10 is preferably 1000 Oe or more.
  • the lower limit of the coercive force Hc in the longitudinal direction is 1000 Oe or more, demagnetization due to leakage flux from the recording head can be suppressed.
  • the above coercive force Hc2 measures the coercive force in the vertical direction except that the entire measurement sample and the MH loop of the sample for background correction are measured in the direction corresponding to the longitudinal direction (traveling direction) of the magnetic recording medium 10. It is obtained in the same manner as Hc1.
  • the ratio Hc2 / Hc1 representing the ratio of the coercive force Hc2 in the longitudinal direction to the coercive force Hc1 in the vertical direction is Hc2 / Hc1 ⁇ 0.8, preferably Hc2 / Hc1 ⁇ 0.75, more preferably Hc2 / Hc1 ⁇ 0. 7, even more preferably, the relationship of Hc2 / Hc1 ⁇ 0.65, particularly preferably Hc2 / Hc1 ⁇ 0.6 is satisfied.
  • the coercive forces Hc1 and Hc2 satisfy the relationship of Hc2 / Hc1 ⁇ 0.8, the degree of vertical orientation of the magnetic powder can be increased.
  • the magnetization transition width can be reduced and a high-output signal can be obtained during signal reproduction, so that the electromagnetic conversion characteristics (for example, C / N) can be improved.
  • the magnetization reacts with high sensitivity by the magnetic field in the vertical direction from the recording head, so that a good recording pattern can be formed.
  • the ratio Hc2 / Hc1 is Hc2 / Hc1 ⁇ 0.8
  • it is particularly effective that the average thickness of the magnetic layer 13 is 90 nm or less. If the average thickness of the magnetic layer 13 exceeds 90 nm, the lower region (region on the base layer 12 side) of the magnetic layer 13 is magnetized in the longitudinal direction when a ring-shaped head is used as the recording head, and the magnetic layer 13 is magnetized. May not be able to be magnetized uniformly in the thickness direction. Therefore, even if the ratio Hc2 / Hc1 is set to Hc2 / Hc1 ⁇ 0.8 (that is, even if the vertical orientation of the magnetic powder is increased), the electromagnetic conversion characteristics (for example, C / N) may not be improved. ..
  • the lower limit of Hc2 / Hc1 is not particularly limited, but is, for example, 0.5 ⁇ Hc2 / Hc1.
  • Hc2 / Hc1 represents the vertical orientation of the magnetic powder, and the smaller the Hc2 / Hc1, the higher the vertical orientation of the magnetic powder.
  • Hc2 / Hc1 is used as an index indicating the degree of vertical orientation of the magnetic powder in the present embodiment.
  • the index of square ratio SQ is not suitable as an index showing the degree of vertical orientation of magnetic powder for the following reasons.
  • the square ratio SQ varies depending on the value of the coercive force Hc of the magnetic powder. For example, as shown in FIG. 5, when the coercive force Hc of the magnetic powder increases, the square ratio SQ also apparently increases.
  • the square ratio SQ is affected by the distortion of the MH loop due to overdispersion.
  • Hc2 / Hc1 is used as an index indicating the degree of orientation of the magnetic powder more appropriately. Since the coercive forces Hc1 and Hc2 simply change depending on the orientation direction of the magnetic powder, Hc2 / Hc1 is more appropriate as an index indicating the degree of orientation of the magnetic powder.
  • the square ratio S1 of the magnetic recording medium 10 in the vertical direction (thickness direction) is, for example, 65% or more, preferably 70% or more, more preferably 75% or more, still more preferably 80% or more, and particularly preferably 85%. That is all.
  • the square ratio S1 is 65% or more, the vertical orientation of the magnetic powder becomes sufficiently high, so that a more excellent SNR can be obtained.
  • the square ratio S1 is obtained as follows.
  • a measurement sample is prepared by stacking three magnetic recording media 10 and adhering them with double-sided tape, and then punching them with a punch having a diameter of 6.39 mm.
  • marking is performed with an arbitrary non-magnetic ink so that the longitudinal direction (traveling direction) of the magnetic recording medium can be recognized.
  • VSM vibrating sample magnetometer
  • the MH loop of the measurement sample (entire magnetic recording medium 10) corresponding to the longitudinal direction of the magnetic recording medium 10 (traveling direction of the magnetic recording medium 10).
  • the coating film base layer 12, magnetic layer 13, back layer 14, etc.
  • acetone, ethanol, or the like leaving only the substrate 11.
  • a correction sample three of the obtained substrates 11 are laminated and adhered with double-sided tape, and then punched out with a punch having a diameter of 6.39 mm to obtain a sample for background correction (hereinafter, simply referred to as a correction sample). Then, the MH loop of the correction sample (base 11) corresponding to the longitudinal direction of the base 11 (traveling direction of the magnetic recording medium 10) is measured using VSM.
  • the measurement conditions are: measurement mode: full loop, maximum magnetic field: 15 kOe, magnetic field step: 40 bits, Time constant of Locking amp: 0.3 sec, Waiting time: 1 sec, MH average number: 20.
  • the background correction is performed by subtracting the MH loop of the correction sample (base 11) from the MH loop of the measurement sample (entire magnetic recording medium 10). , The MH loop after background correction is obtained.
  • the measurement / analysis program attached to the "VSMP7-15 type" is used for the calculation of this background correction.
  • the square ratio S2 in the longitudinal direction (traveling direction) of the magnetic recording medium 10 is preferably 35% or less, more preferably 30% or less, even more preferably 25% or less, particularly preferably 20% or less, and most preferably 15%. It is as follows. When the square ratio S2 is 35% or less, the vertical orientation of the magnetic powder becomes sufficiently high, so that a more excellent SNR can be obtained.
  • the square ratio S2 is obtained in the same manner as the square ratio S1 except that the MH loop is measured in the longitudinal direction (traveling direction) of the magnetic recording medium 10 and the substrate 11.
  • the peak ratio X / Y of the main peak height X and the sub-peak height Y near zero magnetic field is preferably 3.0 or more, more preferably 3.0 or more. It is 5.0 or more, even more preferably 7.0 or more, particularly preferably 10.0 or more, and most preferably 20.0 or more (see FIG. 3).
  • the peak ratio X / Y is 3.0 or more, in addition to the ⁇ -iron oxide particles 20 that contribute to actual recording, low coercive force components peculiar to ⁇ -iron oxide (for example, soft magnetic particles and superparamagnetic particles) are magnetic. It can be suppressed that it is contained in a large amount in the powder.
  • the upper limit of the peak ratio X / Y is not particularly limited, but is, for example, 100 or less.
  • the above peak ratio X / Y is obtained as follows. First, the MH loop after background correction is obtained in the same manner as the above-mentioned method for measuring the coercive force Hc. Next, the SFD curve is calculated from the obtained MH loop. A program attached to the measuring machine may be used for calculating the SFD curve, or another program may be used. Let "Y" be the absolute value of the point where the calculated SFD curve crosses the Y axis (dM / dH), and let "X" be the height of the main peak seen near the coercive force Hc in the MH loop. Calculate the peak ratio X / Y. The measurement of the MH loop shall be performed at 25 ° C.
  • the MH loop may be measured by stacking a plurality of samples to be measured according to the sensitivity of the VSM to be used.
  • Activation volume Vact is preferably 8000 nm 3 or less, more preferably 6000 nm 3 or less, still more preferably 5000 nm 3 or less, particularly preferably 4000 nm 3 or less, most preferably 3000 nm 3 or less.
  • the activated volume Vact is 8000 nm 3 or less, the dispersed state of the magnetic powder becomes good, so that the bit inversion region can be steep, and the magnetization recorded on the adjacent track due to the leakage magnetic field from the recording head. It is possible to suppress the deterioration of the signal. Therefore, a better SNR can be obtained.
  • Vact (nm 3 ) kB ⁇ T ⁇ ⁇ irr / ( ⁇ 0 ⁇ Ms ⁇ S) (However, kB: Boltzmann constant (1.38 ⁇ 10 -23 J / K), T: temperature (K), ⁇ irr: lossy magnetic susceptibility, ⁇ 0: vacuum magnetic permeability, S: magnetic viscosity coefficient, Ms: saturation Magnetism (emu / cm 3 ))
  • the lossy magnetic susceptibility ⁇ irr, the saturation magnetization Ms, and the magnetic viscosity coefficient S substituted in the above equation are obtained as follows using VSM.
  • the measurement sample used for VSM is produced by stacking three magnetic recording media 10 with double-sided tape and punching them with a punch having a diameter of 6.39 mm. At this time, marking is performed with an arbitrary non-magnetic ink so that the longitudinal direction (traveling direction) of the magnetic recording medium 10 can be recognized.
  • the measurement direction by VSM is the thickness direction (vertical direction) of the magnetic recording medium 10. Further, the measurement by VSM shall be performed at 25 ° C. for the measurement sample cut out from the long magnetic recording medium 10.
  • the lossy magnetic susceptibility ⁇ irr is defined as the slope near the residual coercive force Hr in the slope of the residual magnetization curve (DCD curve).
  • a magnetic field of -1193 kA / m (15 kOe) is applied to the entire magnetic recording medium 10, and the magnetic field is returned to zero to bring it into a residual magnetization state.
  • a magnetic field of about 15.9 kA / m (200 Oe) is applied in the opposite direction to return it to zero again, and the residual magnetization amount is measured.
  • the measurement of applying a magnetic field 15.9 kA / m larger than the applied magnetic field to return it to zero is repeated, and the residual magnetization amount is plotted against the applied magnetic field to measure the DCD curve.
  • the point where the amount of magnetization becomes zero is defined as the residual coercive force Hr, and the DCD curve is further differentiated to obtain the slope of the DCD curve in each magnetic field.
  • the slope near the residual coercive force Hr is ⁇ irr.
  • the MH loop after background correction is obtained in the same manner as the above-mentioned method for measuring the coercive force Hc.
  • Ms (emu / cm 3 ) is calculated from the value of the saturation magnetization Ms (emu) of the obtained MH loop and the volume (cm 3) of the magnetic layer 13 in the measurement sample.
  • the volume of the magnetic layer 13 is obtained by multiplying the area of the measurement sample by the average thickness of the magnetic layer 13.
  • the method for calculating the average thickness of the magnetic layer 13 required for calculating the volume of the magnetic layer 13 is as described above.
  • Magnetic Viscosity Coefficient S First, a magnetic field of -1193 kA / m (15 kOe) is applied to the entire magnetic recording medium 10 (measurement sample), and the magnetic field is returned to zero to be in a residual magnetization state. Then, in the opposite direction, a magnetic field equivalent to the value of the residual coercive force Hr obtained from the DCD curve is applied. The amount of magnetization is continuously measured at regular time intervals for 1000 seconds while a magnetic field is applied. The magnetic viscosity coefficient S is calculated by comparing the relationship between the time t and the amount of magnetization M (t) thus obtained with the following equation.
  • M (t) M0 + S ⁇ ln (t) (However, M (t): magnetization amount at time t, M0: initial magnetization amount, S: magnetic viscosity coefficient, ln (t): natural logarithm of time)
  • FIG. 4 is a schematic view of the magnetic recording medium 10 as viewed from above.
  • the magnetic layer 13 includes a plurality of data band DBs extending in the longitudinal direction (X-axis direction) of the magnetic recording medium 10 (in FIG. 4, data bands DB0 to DB3 are shown) and magnetic recording. It has a plurality of extending servo bands SB (in FIG. 4, the servo bands SB0 to SB4 are shown) extending in the longitudinal direction (X-axis direction) of the medium 10.
  • a data signal is written to each of the plurality of data band DBs, and a servo signal for controlling tracking of the magnetic head is written to each of the plurality of servo bands SB.
  • each data band DB is arranged so as to be sandwiched by a plurality of servo bands SB adjacent to each other in the width direction (Y-axis direction).
  • the lower limit of the ratio R S of the total area S SB of the servo band SB to the surface area S of the magnetic layer 13 is preferably 0.8% or more from the viewpoint of securing a servo track of 5 or more.
  • Ratio R S of the total area S SB servo bands SB to the area S of the surface 13S of the magnetic layer 13, for example, a magnetic recording medium 10, ferrimagnetic colloidal developer (Sigma Corporation High Chemical Co., Sigma - car Q) a It can be measured by observing the developed magnetic recording medium 10 with an optical microscope. The number of servo band width W SB and servo band SB is measured from the observation image of the optical microscope. Next, the ratio R S is calculated from the following formula. Ratio RS [%] (((servo band width W SB ) x (number of servo bands)) / (width of magnetic recording medium 10)) x 100
  • the number of servo band SBs is preferably 5 or more, more preferably 5 + 4n (where n is a positive integer) or more.
  • n is a positive integer
  • the upper limit of the servo bandwidth W SB is preferably 95 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 30 ⁇ m or less from the viewpoint of ensuring a high recording capacity.
  • the lower limit of the servo bandwidth W SB is preferably 10 ⁇ m or more from the viewpoint of manufacturing a recording head.
  • Servo bandwidth W SB width is obtained as follows. First, the magnetic recording medium 10 is developed using a ferricolloid developer (Sigma-Car Q, manufactured by Sigma High Chemical Co., Ltd.). Next, the width of the servo bandwidth W SB can be measured by observing the developed magnetic recording medium 10 with an optical microscope.
  • the data band DB can form a plurality of recording tracks 5 that extend along the X-axis direction and are arranged so as to be adjacent to each other in the Y-axis direction.
  • the data signal is recorded in the recording track 5 along the recording track 5.
  • the 1-bit length (distance between magnetization reversals) in the longitudinal direction of the data signal recorded in the data band DB is typically 48 nm or less.
  • the servo band SB includes a servo signal recording pattern 6 of a predetermined pattern in which a servo signal is recorded by a servo signal recording device (not shown).
  • FIG. 5 is an enlarged view showing the recording track 5 in the data band DB.
  • each recording track 5 has a predetermined recording track width Wd in the Y-axis direction.
  • the recording track width Wd is typically 3.0 ⁇ m or less.
  • Such a recording track width Wd is measured, for example, by developing the magnetic recording medium 10 with a developing solution such as a ferricolloid developer, and then observing the developed magnetic recording medium 10 with an optical microscope. be able to.
  • the number of recording tracks 5 included in one data band DB is, for example, about 1000 to 2000.
  • FIG. 6 is an enlarged view showing the servo signal recording pattern 6 in the servo band SB.
  • the servo signal recording pattern 6 includes a plurality of stripes 7 that are inclined with a predetermined azimuth angle ⁇ with respect to the width direction (Y-axis direction).
  • the plurality of stripes 7 are classified into a first stripe group 8 that is inclined clockwise with respect to the width direction (Y-axis direction) and a second stripe group 9 that is inclined counterclockwise with respect to the width direction. Will be done.
  • the shape of the stripes 7 and the like can be determined by, for example, developing the magnetic recording medium 10 with a developing solution such as a ferricolloid developer, and then observing the developed magnetic recording medium 10 with an optical microscope. Can be measured.
  • the servo trace line T which is a line traced by the servo lead head on the servo signal recording pattern 6, is shown by a broken line.
  • the servo trace line T is set along the longitudinal direction (X-axis direction), and is set with a predetermined interval Ps in the width direction.
  • the number of servo trace lines T per servo band SB is, for example, about 30 to 60.
  • the distance Ps between two adjacent servo trace lines T is the same as the value of the recording track width Wd, and is, for example, 2.0 ⁇ m or less.
  • the distance Ps between two adjacent servo trace lines T is a value that determines the recording track width Wd. That is, when the interval Ps of the servo trace lines T is narrowed, the recording track width Wd becomes smaller and the number of recording tracks 5 included in one data band DB increases. As a result, the data recording capacity is increased (or vice versa when the interval Ps is widened).
  • the full width at half maximum PW50 of the isolated waveform in the reproduced waveform of the data signal recorded on the recording track 5 of the magnetic recording medium 10 is, for example, 200 nm or less, preferably 175 nm or less, more preferably 170 nm or less, and more preferably 165 nm. It is even more preferable that:
  • the full width at half maximum PW50 of the isolated waveform can be obtained, for example, as follows. First, using a digital storage oscilloscope, for example, averaging of a plurality of isolated waveforms (synchronous addition averaging) is performed under the conditions of sampling: 500 Ms / s (2 nsec / point) and sampling number: 50,000 points. Then, the half width of the isolated waveform is calculated from the obtained isolated reproduced waveform. In the synchronous addition, the alignment is performed at the peak position in the waveform.
  • a TMR head including a TMR element (TMR: Tunnel Magneto Resistive) is used as a servo reed head for reading a servo signal.
  • the reproduction track width of the servo signal in the TMR head (Y-axis direction: width direction of the magnetic recording medium 10) is 48 nm.
  • the spacing between the two shields in the TMR head used here (X-axis direction: transport direction of the magnetic recording medium 10) is 40 nm, and the bias current in the TMR head is less than 2 mA.
  • the transport speed of the magnetic recording medium 10 is 2 m / s.
  • a coating material for forming an underlayer is prepared by kneading and dispersing a non-magnetic powder, a binder, a lubricant and the like in a solvent.
  • a paint for forming a magnetic layer is prepared by kneading and dispersing a magnetic powder, a binder, a lubricant and the like in a solvent.
  • a coating material for forming a back layer is prepared by kneading and dispersing a binder, a non-magnetic powder and the like in a solvent.
  • the paint for forming the base layer, and the paint for forming the back layer for example, the following solvent, dispersion device, and kneading device can be used.
  • Examples of the solvent used for preparing the above-mentioned paint include a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, an alcohol solvent such as methanol, ethanol and propanol, methyl acetate, ethyl acetate, butyl acetate and propyl acetate.
  • a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • an alcohol solvent such as methanol, ethanol and propanol, methyl acetate, ethyl acetate, butyl acetate and propyl acetate.
  • Ester solvents such as ethyl lactate and ethylene glycol acetate, ether solvents such as diethylene glycol dimethyl ether, 2-ethoxyethanol, tetrahydrofuran and dioxane, aromatic hydrocarbon solvents such as benzene, toluene and xylene, methylene chloride, ethylene chloride, Examples thereof include halogenated hydrocarbon solvents such as carbon tetrachloride, chloroform and chlorobenzene. These may be used alone or may be mixed appropriately.
  • a continuous twin-screw kneader for example, a continuous twin-screw kneader, a continuous twin-screw kneader that can be diluted in multiple stages, a kneader, a pressure kneader, a roll kneader, or the like can be used.
  • the device is not limited to these devices.
  • disperser used for the above-mentioned paint preparation for example, a roll mill, a ball mill, a horizontal sand mill, a vertical sand mill, a spike mill, a pin mill, a tower mill, a pearl mill (for example, "DCP mill” manufactured by Eirich), a homogenizer, and an ultrasonic mill Dispersing devices such as a sound wave disperser can be used, but the device is not particularly limited to these devices.
  • the base layer 12 is formed by applying the base layer forming paint to one main surface 11A of the base 11 and drying it.
  • the magnetic layer forming paint is applied onto the base layer 12 and dried to form the magnetic layer 13 on the base layer 12.
  • the magnetic powder is magnetically oriented in the thickness direction of the substrate 11 by, for example, a solenoid coil.
  • the magnetic powder may be magnetically oriented in the traveling direction (longitudinal direction) of the substrate 11 by, for example, a solenoid coil, and then magnetically oriented in the thickness direction of the substrate 11.
  • the degree of vertical orientation of the magnetic powder that is, the square ratio S1
  • the back layer forming paint is applied to the other main surface 11B of the substrate 11 and dried to form the back layer 14. As a result, the magnetic recording medium 10 is obtained.
  • the square ratios S1 and S2 and the ratios Hc2 / Hc1 are, for example, the strength of the magnetic field applied to the coating film of the magnetic layer forming paint, the concentration of solid content in the magnetic layer forming paint, and the coating film of the magnetic layer forming paint.
  • the desired value is set by adjusting the drying conditions (drying temperature and drying time) of.
  • the strength of the magnetic field applied to the coating film is preferably twice or more the coercive force of the magnetic powder.
  • the square ratio S1 it is also effective to magnetize the magnetic powder before the paint for forming the magnetic layer enters the alignment device for magnetically aligning the magnetic powder.
  • the above-mentioned methods for adjusting the square ratios S1 and S2 may be used alone or in combination of two or more.
  • the obtained magnetic recording medium 10 is subjected to calendar processing to smooth the surface 13S of the magnetic layer 13.
  • the magnetic recording medium 10 subjected to the calendar processing is wound into a roll shape, and then the magnetic recording medium 10 is heat-treated in this state to magnetically magnetize a large number of protrusions of the surface 14S of the back layer 14. Transfer to the surface 13S of layer 13. As a result, a large number of holes are formed on the surface 13S of the magnetic layer 13.
  • the temperature of the heat treatment is preferably 50 ° C. or higher and 80 ° C. or lower.
  • the temperature of the heat treatment is 50 ° C. or higher, good transferability can be obtained.
  • the temperature of the heat treatment is 80 ° C. or lower, the amount of pores becomes too large, and the amount of lubricant on the surface 13S of the magnetic layer 13 may become excessive.
  • the temperature of the heat treatment is the temperature of the atmosphere that holds the magnetic recording medium 10.
  • the heat treatment time is preferably 15 hours or more and 40 hours or less.
  • the heat treatment time is 15 hours or more, good transferability can be obtained.
  • the heat treatment time is 40 hours or less, the decrease in productivity can be suppressed.
  • the range of pressure applied to the magnetic recording medium 10 during the heat treatment is preferably 150 kg / cm or more and 400 kg / cm or less.
  • the magnetic recording medium 10 is cut into a predetermined width (for example, 1/2 inch width). From the above, the target magnetic recording medium 10 can be obtained.
  • the recording / reproducing device 30 has a configuration in which the tension applied in the longitudinal direction of the magnetic recording medium 10 can be adjusted. Further, the recording / reproducing device 30 has a configuration in which the magnetic recording medium cartridge 10A can be loaded. Here, for the sake of simplicity, a case where the recording / reproducing device 30 has a configuration in which one magnetic recording medium cartridge 10A can be loaded will be described. However, in the present disclosure, the recording / reproducing device 30 may have a configuration in which a plurality of magnetic recording medium cartridges 10A can be loaded. As described above, the magnetic recording medium 10 is in the form of a tape, and may be, for example, a long magnetic recording tape.
  • the magnetic recording medium 10 may be housed in the housing in a state of being wound around a reel inside the magnetic recording medium cartridge 10A, for example.
  • the magnetic recording medium 10 is adapted to travel in the longitudinal direction during recording and reproduction.
  • the magnetic recording medium 10 may be configured to be capable of recording a signal at the shortest recording wavelength of preferably 100 nm or less, more preferably 75 nm or less, even more preferably 60 nm or less, and particularly preferably 50 nm or less, for example, the shortest recording. It can be used for a recording / reproducing device 30 whose wavelength is within the above range.
  • the recording track width can be, for example, 2 ⁇ m or less.
  • the recording / playback device 30 is connected to information processing devices such as a server 41 and a personal computer (hereinafter referred to as “PC”) 42 via a network 43, and magnetically records data supplied from these information processing devices. It is configured to be recordable on the medium cartridge 10A.
  • information processing devices such as a server 41 and a personal computer (hereinafter referred to as “PC”) 42 via a network 43, and magnetically records data supplied from these information processing devices. It is configured to be recordable on the medium cartridge 10A.
  • the recording / playback device 30 includes a spindle 31, a reel 32, a drive device 33, a drive device 34, a plurality of guide rollers 35, a head unit 36, and a communication interface (hereinafter, I). (Indicated as / F) 37 and a control device 38 are provided.
  • the spindle 31 is configured so that the magnetic recording medium cartridge 10A can be mounted.
  • the magnetic recording medium cartridge 10A conforms to the LTO (Linear Tape Open) standard, and rotatably accommodates a single reel 10C in which the magnetic recording medium 10 is wound in a cartridge case 10B.
  • a V-shaped servo pattern is pre-recorded on the magnetic recording medium 10 as a servo signal.
  • the reel 32 is configured so that the tip of the magnetic recording medium 10 drawn from the magnetic recording medium cartridge 10A can be fixed.
  • the drive device 33 is a device that rotationally drives the spindle 31.
  • the drive device 34 is a device that rotationally drives the reel 32.
  • the drive device 33 and the drive device 34 rotate the spindle 31 and the reel 32, respectively, to drive the magnetic recording medium 10.
  • the guide roller 35 is a roller for guiding the traveling of the magnetic recording medium 10.
  • the head unit 36 includes a plurality of recording heads for recording a data signal on the magnetic recording medium 10 and a plurality of reproduction heads for reproducing the data signal recorded on the magnetic recording medium 10.
  • a ring-type head can be used as the recording head, and a magnetoresistive magnetic head can be used as the playback head, but the types of the recording head and the playback head are not limited to this.
  • the I / F 37 is for communicating with information processing devices such as the server 41 and the PC 42, and is connected to the network 43.
  • the control device 38 controls the entire recording / playback device 30.
  • the control device 38 records the data signal supplied from the information processing device on the magnetic recording medium 10 by the head unit 36 in response to the request of the information processing device such as the server 41 and the PC 42. Further, the control device 38 reproduces the data signal recorded on the magnetic recording medium 10 by the head unit 36 and supplies the data signal to the information processing device in response to the request of the information processing device such as the server 41 and the PC 42.
  • FIG. 8 is a front view showing the overall configuration of the servo signal recording device 100.
  • FIG. 9 is a schematic diagram showing an enlarged configuration of a main part of the servo signal recording device 100.
  • the servo signal recording device 100 includes a feeding roller 51, a preprocessing unit 52, a servo signal recording head 53, and a servo signal recording head 53 in this order from upstream to downstream in the transport direction of the magnetic recording medium 10.
  • a servo signal reproduction head 54 and a take-up roller 55 are provided.
  • the back layer 14 of the magnetic recording medium 10 is omitted.
  • the servo signal recording device 100 stores a control unit that comprehensively controls each unit of the servo signal recording device 100, a recording unit that stores various programs and data necessary for processing of the control unit, and further data. It may have a display unit or the like to be displayed.
  • the delivery roller 51 is capable of rotatably supporting the magnetic recording medium 10 (before recording the servo signal recording pattern 6), which is a roll-shaped magnetic tape.
  • the feeding roller 51 is rotated according to the drive of a drive source such as a motor, and the magnetic recording medium 10 is fed downstream in accordance with the rotation.
  • the take-up roller 55 is capable of rotatably supporting the magnetic recording medium 10 after recording the servo signal recording pattern 6.
  • the take-up roller 55 rotates in synchronization with the delivery roller 51 in response to the drive of a drive source such as a motor, and winds up the magnetic recording medium 10 on which the servo signal recording pattern 6 is recorded in accordance with the rotation. It has become.
  • the feeding roller 51 and the winding roller 55 are capable of moving the magnetic recording medium 10 at a constant speed in the transport path.
  • the preprocessing unit 52 is arranged, for example, upstream of the servo signal recording head 53 and below the magnetic recording medium 10 (position opposite to the surface of the magnetic layer 13). However, the pretreatment unit 52 may be arranged above the magnetic recording medium 10 (position facing the surface of the magnetic layer 13).
  • the pretreatment unit 52 includes a permanent magnet 52A that can rotate about a rotation axis along the Y-axis direction, that is, the width direction of the magnetic recording medium 10.
  • the shape of the permanent magnet 52A is, for example, a cylindrical shape or a polygonal prism shape, but is not limited thereto.
  • the permanent magnet 52A Before the servo signal recording pattern 6 is recorded by the servo signal recording head 53, the permanent magnet 52A applies a magnetic field to the entire magnetic layer 13 by a DC magnetic field to degauss the entire magnetic layer 13. ing. As a result, the permanent magnet 52A can magnetize the magnetic layer 13 in advance in the second direction opposite to the magnetization direction of the servo signal recording pattern 6 (see the white arrow in FIG. 9). By making the two magnetization directions opposite to each other in this way, the reproduction waveform of the servo signal recording pattern 6 when the servo signal recording pattern 6 is read can be made symmetrical in the vertical direction ( ⁇ ) (described later). See FIG. 11).
  • the servo signal recording head 53 is arranged, for example, above the magnetic recording medium 10 (position facing the surface of the magnetic layer 13).
  • the servo signal recording head 53 may be arranged below the magnetic recording medium 10 (opposite the surface of the magnetic layer 13).
  • the servo signal recording head 53 generates a magnetic field at a predetermined timing in response to a rectangular wave pulse signal, and applies the magnetic field to a part of the magnetic layer 13 (after pretreatment) of the magnetic recording medium 10. ing.
  • the servo signal recording head 53 magnetizes a part of the magnetic layer 13 in the first direction and records the servo signal recording pattern 6 on the magnetic layer 13 (see the black arrow in FIG. 9).
  • the servo signal recording head 53 is capable of recording the servo signal recording pattern 6 for each of the five servo bands SB0 to SB4 when the magnetic layer 13 passes below the servo signal recording head 53. ..
  • the first direction which is the magnetization direction of the servo signal recording pattern 6, includes a component in the vertical direction perpendicular to the upper surface of the magnetic layer 13. That is, in the present embodiment, since the vertically oriented or non-oriented magnetic powder is contained in the magnetic layer 13, the servo signal recording pattern 6 recorded on the magnetic layer 13 includes a magnetization component in the vertical direction.
  • FIG. 10 is a diagram showing the direction of magnetization of the magnetic recording medium 10.
  • the direction of magnetization is based on the angle (0 °) when the direction of magnetization faces the transport direction of the magnetic recording medium 10, and the clockwise direction is an angle. Will increase.
  • the magnetization direction of the servo signal recording pattern 6 is shown in FIG. 10, the same applies to the magnetization direction of the magnetization after the pretreatment by the pretreatment unit 52 and the magnetization direction of the entire magnetic layer 13.
  • the magnetization direction (first direction) of the servo signal recording pattern 6 differs depending on the square ratio of the magnetic layer 13.
  • vertically oriented barium ferrites, non-oriented barium ferrites, and vertically oriented needle-like metals typically have different square ratios.
  • the magnetization directions (first directions) of the servo signal recording patterns 6 are different from each other.
  • the square ratio is the same and the conditions of the servo signal recording head 53 are the same, the first direction is the same even if the types of the magnetic recording media 10 are different.
  • the magnetization direction (first direction) of the servo signal recording pattern 6 differs depending on the square ratio of the magnetic layer 13. Therefore, in order to match the magnetization direction of the servo signal recording pattern 6, it is necessary to make the magnetization direction (second direction) of the preprocessing in the preprocessing unit 52 different.
  • the permanent magnet 52A is rotatable as the center of the rotation axis along the Y-axis direction.
  • the magnetization direction (second direction) by the pretreatment can be appropriately adjusted according to the type of the magnetic recording medium 10.
  • the angle of the permanent magnet 52A there is an appropriate angle range depending on the type of the magnetic recording medium 10.
  • the angle of the permanent magnet 52A is based on the angle (0 °) when the north pole of the permanent magnet 52A faces the transport direction of the magnetic recording medium 10, and the clockwise direction is the angle. The direction is to increase.
  • the servo signal recording head 53 overwrites the servo signal recording pattern 6 on the magnetic layer 13 in which the magnetic layer 13 is magnetized in the second direction by the permanent magnet 52A.
  • the first direction which is the magnetization direction of the servo signal recording pattern 6, is constant regardless of the second direction as long as the square ratio of the magnetic layer 13 is the same.
  • the servo signal reproduction head 54 is located downstream of the servo signal recording head 53 and above the magnetic recording medium 10 (position facing the magnetic layer 13).
  • the servo signal reproduction head 54 reads the servo signal recording pattern 6 from the magnetic layer 13 of the magnetic recording medium 10 which has been preprocessed by the preprocessing unit 52 and has the servo signal recording pattern 6 recorded by the servo signal recording head 53. ..
  • the reproduced waveform of the servo signal recording pattern 6 read by the servo signal reproduction head 54 is displayed on the screen of the display unit.
  • the servo signal reproduction head 54 detects the magnetic flux generated from the surface of the servo band SB when the magnetic layer 13 passes below the servo signal reproduction head 54.
  • the magnetic flux detected at this time becomes the reproduced waveform of the servo signal recording pattern 6.
  • FIG. 11 is a diagram showing the relationship between the magnetization direction and the reproduced waveform of the servo signal recording pattern 6.
  • the magnetization direction of the servo signal recording pattern 6 and the magnetization direction by the preprocessing are opposite to each other, so that the servo when the servo signal recording pattern 6 is read is used.
  • the reproduced waveform of the signal recording pattern 6 can be made symmetrical in the vertical direction ( ⁇ ).
  • the reproduced waveform becomes asymmetric in the vertical direction ( ⁇ ) because the servo signal recording pattern 6 contains a magnetization component in the vertical direction.
  • the amount of magnetic flux generated in the vicinity of the surface of the magnetic layer 13 can be increased as compared with the case where the servo signal recording pattern 6 is recorded without performing the preprocessing. As a result, a high-output reproduced waveform can be obtained even when the thickness of the magnetic layer 13 is thin.
  • the magnetization direction (first direction) of the servo signal recording pattern 6 and the magnetization direction (second direction) by the pretreatment do not have to be exactly opposite directions, and may be substantially opposite directions. Just do it. This is related to the symmetry of the reproduced waveform of the servo signal recording pattern 6.
  • the magnetization direction of the servo signal recording pattern 6 and the magnetization direction by the pretreatment are not exactly opposite directions but are slightly deviated from each other.
  • the magnetization direction of the servo signal recording pattern 6 is ⁇ 120 ° and the magnetization direction by preprocessing is 50 ° (see FIG. 10).
  • the reproduced waveform of the servo signal recording pattern 6 has symmetry to the extent that the servo signal recording pattern 6 can be appropriately read.
  • the fact that the reproduced waveform of the servo signal recording pattern 6 has symmetry means that the magnetization direction (first direction) of the servo signal recording pattern 6 and the magnetization direction (second direction) due to preprocessing are different. It indicates that it is facing in the opposite direction.
  • the determination of whether the reproduced waveform of the servo signal recording pattern 6 has symmetry or the reproduced waveform is asymmetric will be described. For example, if the difference between the maximum voltage value Vmax of the reproduction waveform and the minimum voltage value Vmin (absolute value) is within the allowable range (about 5% to 10%) with respect to the amplitude of the reproduction waveform, the reproduction waveform is It is judged to have symmetry.
  • the magnetic recording medium 10 of the present embodiment is a tape-shaped member in which the substrate 11, the base layer 12, and the magnetic layer 13 are laminated in this order, and each of the following configurations (1) to (9). It is designed to meet the requirements.
  • the substrate 11 contains polyester as a main component.
  • the magnetic layer 13 is provided on the substrate 11, contains a plurality of magnetic powders, and can record a data signal.
  • the arithmetic mean roughness Ra of the surface of the magnetic layer is 2.5 nm or less.
  • the PSD up to a spatial wavelength of 5 ⁇ m is 2.5 ⁇ m or less.
  • the average thickness of the magnetic layer 13 is 90 nm or less.
  • the average aspect ratio of the magnetic powder in the magnetic layer 13 is 1.0 or more and 3.0 or less.
  • the coercive force Hc1 in the vertical direction is 3000 oersted or less.
  • the ratio of the coercive force Hc2 in the longitudinal direction to the coercive force Hc1 in the vertical direction Hc2 / Hc1 is 0.8 or less.
  • the full width at half maximum PW50 of the isolated waveform in the reproduced waveform of the data signal is 200 nm or less.
  • the magnetic recording medium 10 of the present embodiment can secure good electromagnetic conversion characteristics (for example, C / N) while making the magnetization transition width steep. Therefore, a configuration advantageous for high-density recording can be realized.
  • the reproduced waveform when the data signal is read protrudes to the plus side and the minus side.
  • An isolated waveform basically refers to one of the waveforms.
  • FIG. 12 is a diagram for explaining the full width at half maximum PW50 in the isolated waveform.
  • the vertical axis is the strength (arbitrary unit), and the horizontal axis is the length along the traveling direction.
  • the full width at half maximum PW50 is the width of the waveform at a height of half (50%) of the maximum value (100%) in the reproduced waveform of the data signal.
  • This half-value width PW50 is a value indicating the sharpness of the peak in the reproduced waveform of the data signal. That is, as the half-value width PW50 becomes narrower, the sharpness of the peak in the reproduced waveform increases, and conversely, as the half-value width PW50 becomes wider, the sharpness of the peak in the reproduced waveform becomes dull.
  • FIG. 13 is a diagram for explaining the basic concept of the present technology, and is a diagram showing two stripes 7 in the servo signal recording pattern 6.
  • any stripe 7 is designated as the first stripe 7a.
  • any stripe 7 is designated as the second stripe 7b.
  • any servo trace line T among the plurality of servo trace lines T is designated as the first servo trace line T1.
  • the servo trace line T adjacent to the first servo trace line T1 is referred to as the second servo trace line T2.
  • P1 be the intersection of the first stripe 7a and the first servo trace line T1.
  • any point on the first stripe 7a may be designated as P1.
  • P2 be the intersection of the first stripe 7a and the second servo trace line T2.
  • a point on the first stripe 7a located at a position separated from P1 by the interval Ps (that is, the recording track width Wd) in the width direction (Y-axis direction) may be P2. ..
  • the distance in the longitudinal direction (X-axis direction) in P1 and P2 is defined as the distance D.
  • the distance D corresponds to the amount of deviation in the longitudinal direction from the adjacent track.
  • the intersection of the second stripe 7b and the first servo trace line T1 is P3
  • the intersection of the second stripe 7b and the second servo trace line T2 is P4.
  • the first servo trace line T1 When the first servo trace line T1 is being traced, it is necessary to determine the difference between the time when the reproduction waveform is detected in P1 and the time when the reproduction waveform is detected in P3. This difference is defined as the first period. Similarly, when the second trace line T is being traced, it is necessary to determine the difference between the time when the reproduction waveform is detected in P2 and the time when the reproduction waveform is detected in P4. This difference is referred to as the second period.
  • the interval Ps of the servo trace line T and the recording track width Wd are both 1.56 ⁇ m, and the azimuth angle ⁇ is 12 degrees.
  • the distance D is 1.56 ⁇ tan 12 °, so it is 0.33 ⁇ m.
  • the difference between the distance between P1 and P3 and the distance between P2 and P4 is 0.66 ⁇ m because it is twice the distance D.
  • the traveling speed of the magnetic recording medium 1 is 5 m / s, it is 0.66 / 5000000, which is 0.13 ⁇ s. This is the difference between the first period and the second period.
  • the vertical orientation of the magnetic layer 13 is set to a certain value or more, so that the half width of the isolated waveform in the reproduced waveform of the data signal is set to a certain value or less. As a result, the peak in the reproduced waveform of the data signal becomes sharp.
  • the half width of the isolated waveform can be set to 200 nm or less.
  • the peak in the reproduction waveform of the data signal can be sharpened to such an extent that the above-mentioned minute difference (for example, 0.13 ⁇ s) can be discriminated (see each embodiment described later).
  • the PSD up to a spatial wavelength of 5 ⁇ m is set to a certain value or less, for example, 2.5 ⁇ m or less.
  • the recording / reproducing device 30 when the recording / reproducing device 30 stores predetermined data in the magnetic recording medium 10 (for example, after storage for a certain period of time), the recording / reproducing device 30 reproduces the data recorded in the magnetic recording medium 10. To do. In such a case, if the width of the magnetic recording medium 10 at the time of data reproduction fluctuates even slightly as compared with the width at the time of data recording of the magnetic recording medium 10, the off-track (data reproduction head in the head unit 36) It may be located on the wrong recording track 5). Therefore, the data recorded on the magnetic recording medium 10 cannot be accurately reproduced, and an error may occur.
  • Examples of causes of fluctuations in the width of the magnetic recording medium 10 include fluctuations in temperature and fluctuations in humidity.
  • a method of dealing with fluctuations in the width of the magnetic recording medium 10 is used by designing the magnetic recording medium 10 so that the magnetic recording medium 10 does not expand or contract.
  • the magnetic recording medium 10 is not made difficult to expand / contract, but conversely, the magnetic recording medium 10 is made easy to expand / contract to some extent, and the tension (X-axis) of the magnetic recording medium 10 in the recording / reproducing device 30 Direction: A method of controlling (increasing or decreasing) the tension in the transport direction of the magnetic recording medium 10 is used.
  • the recording / playback device 30 tensions the magnetic recording medium 10 in the longitudinal direction (X-axis direction) as necessary (when the width of the magnetic recording medium 10 is widened) during playback of the data signal.
  • the width (Y-axis direction) of the magnetic recording medium 10 is reduced by increasing the value.
  • the recording / reproducing device 30 reduces the tension in the longitudinal direction of the magnetic recording medium 10 as necessary (when the width of the magnetic recording medium 10 is narrowed) at the time of reproducing the data signal, thereby reducing the tension of the magnetic recording medium 10 in the longitudinal direction. Increase the width of 10.
  • the recording / reproducing device 30 may control the tension in the longitudinal direction of the magnetic recording medium 10 not only at the time of reproducing the data signal but also at the time of recording the data signal.
  • the width of the magnetic recording medium 10 when the width of the magnetic recording medium 10 fluctuates due to temperature or the like, the width of the magnetic recording medium 10 can be adjusted by adjusting the width of the magnetic recording medium 10 as necessary. It becomes possible to make it constant. Therefore, it is considered that off-tracking can be prevented and the data recorded on the magnetic recording medium 10 can be accurately reproduced.
  • Modification example 1 Modification example 1
  • the ⁇ -iron oxide particles 20 (FIG. 2) having the shell portion 22 having a two-layer structure have been illustrated and described, but the magnetic recording medium of the present technology is, for example, as shown in FIG. , ⁇ Iron oxide particles 20A having a single-layered shell portion 23 may be included.
  • the shell portion 23 of the ⁇ iron oxide particles 20A has a structure similar to that of, for example, the first shell portion 22a.
  • the ⁇ -iron oxide particles 20 having the shell portion 22 having the two-layer structure described in the above embodiment are preferable to the ⁇ -iron oxide particles 20A of the first modification.
  • the ⁇ -iron oxide particles 20 having a core-shell structure have been illustrated and described, but the ⁇ -iron oxide particles may contain an additive instead of the core-shell structure. It has a core-shell structure and may contain additives. In this case, a part of Fe of the ⁇ iron oxide particles is replaced with an additive. Even when the ⁇ -iron oxide particles contain an additive, the coercive force Hc of the ⁇ -iron oxide particles as a whole can be adjusted to a coercive force Hc suitable for recording, so that the ease of recording can be improved.
  • the additive is a metal element other than iron, preferably a trivalent metal element, more preferably at least one of Al (aluminum), Ga (gallium) and In (indium), and even more preferably Al and Ga. At least one of them.
  • the ⁇ -iron oxide containing the additive is an ⁇ -Fe 2- xMxO 3 crystal (where M is a metal element other than iron, preferably a trivalent metal element, more preferably Al, Ga and In. At least one of them, and even more preferably at least one of Al and Ga.
  • X is, for example, 0 ⁇ x ⁇ 1).
  • the magnetic powder of the present disclosure may contain a powder of nanoparticles containing hexagonal ferrite (hereinafter referred to as “hexagonal ferrite particle”) instead of the powder of ⁇ -iron oxide particles.
  • the hexagonal ferrite particles have, for example, a hexagonal plate shape or a substantially hexagonal plate shape.
  • Hexagonal ferrite preferably contains at least one of Ba (barium), Sr (strontium), Pb (lead) and Ca (calcium), and more preferably at least one of Ba and Sr.
  • the hexagonal ferrite may be, for example, barium ferrite or strontium ferrite.
  • the barium ferrite may further contain at least one of Sr, Pb and Ca in addition to Ba.
  • the strontium ferrite may further contain at least one of Ba, Pb and Ca in addition to Sr.
  • hexagonal ferrite has an average composition represented by the general formula MFe 12 O 19.
  • M is, for example, at least one metal among Ba, Sr, Pb and Ca, preferably at least one metal among Ba and Sr.
  • M may be a combination of Ba and one or more metals selected from the group consisting of Sr, Pb and Ca. Further, M may be a combination of Sr and one or more metals selected from the group consisting of Ba, Pb and Ca.
  • a part of Fe may be replaced with another metal element.
  • the average particle size of the magnetic powder is preferably 50 nm or less, more preferably 40 nm or less, and even more preferably 30 nm or less.
  • the average particle size of the magnetic powder is preferably 25 nm or less, 22 nm or less, 21 nm or less, or 20 nm or less.
  • the average particle size of the magnetic powder is, for example, 10 nm or more, preferably 12 nm or more, and more preferably 15 nm or more.
  • the average particle size of the magnetic powder containing the hexagonal ferrite particle powder can be, for example, 10 nm or more and 50 nm or less, 10 nm or more and 40 nm or less, 12 nm or more and 30 nm or less, 12 nm or more and 25 nm or less, or 15 nm or more and 22 nm or less.
  • the average particle size of the magnetic powder is not more than the above upper limit value (for example, 50 nm or less, particularly 30 nm or less)
  • good electromagnetic conversion characteristics for example, SNR
  • the average particle size of the magnetic powder is not less than the above lower limit value (for example, when it is 10 nm or more, preferably 12 nm or more), the dispersibility of the magnetic powder is further improved and more excellent electromagnetic conversion characteristics (for example, SNR) are obtained. be able to.
  • the average aspect ratio of the magnetic powder is preferably 1 or more and 3.5 or less, more preferably 1 or more and 3.1 or less, or 2 or more and 3.1 or less, and even more. It can be preferably 2 or more and 3 or less.
  • the average aspect ratio of the magnetic powder is within the above numerical range, aggregation of the magnetic powder can be suppressed, and further, resistance applied to the magnetic powder when the magnetic powder is vertically aligned in the process of forming the magnetic layer 13. Can be suppressed. This can result in improved vertical orientation of the magnetic powder.
  • the average particle size and average aspect ratio of the magnetic powder containing the hexagonal ferrite particle powder are obtained as follows.
  • the magnetic recording medium 10 to be measured is processed by the FIB (Focused Ion Beam) method or the like to thin it. Slicing is performed along the length direction (longitudinal direction) of the magnetic tape.
  • a transmission electron microscope H-9500 manufactured by Hitachi High-Technologies Corporation
  • 50 particles whose sides are oriented toward the observation surface are selected from the photographed TEM photograph, and the maximum plate thickness DA of each particle is measured.
  • the maximum plate thickness DA obtained in this way is simply averaged (arithmetic mean) to obtain the average maximum plate thickness DAave.
  • the plate diameter DB of each magnetic powder is measured.
  • the plate diameter DB means the maximum distance (so-called maximum ferret diameter) between two parallel lines drawn from all angles so as to be in contact with the contour of the magnetic powder.
  • the measured plate diameter DB is simply averaged (arithmetic mean) to obtain the average plate diameter DBave.
  • the average aspect ratio (DBave / DAave) of the particles is obtained from the average maximum plate thickness DAave and the average plate diameter DBave.
  • average particle volume of the magnetic powder is preferably 5900Nm 3 or less, more preferably 500 nm 3 or more 3400 nm 3 or less, still more preferably 1000 nm 3 or more 2500 nm 3 or less.
  • average particle volume of the magnetic powder is 5900 nm 3 or less, the same effect as when the average particle size of the magnetic powder is 30 nm or less can be obtained.
  • average particle volume of the magnetic powder is 500 nm 3 or more, the same effect as when the average particle size of the magnetic powder is 12 nm or more can be obtained.
  • the average particle volume of the magnetic powder is obtained as follows. First, the average maximum plate thickness DAave and the average maximum plate diameter DBave are obtained by the above-mentioned method for calculating the average particle size of the magnetic powder. Next, the average volume V of the ⁇ iron oxide particles is obtained by the following equation (2).
  • the magnetic powder may be barium ferrite magnetic powder or strontium ferrite magnetic powder, and more preferably barium ferrite magnetic powder.
  • the barium ferrite magnetic powder contains magnetic particles of iron oxide having barium ferrite as the main phase (hereinafter referred to as "barium ferrite particles").
  • the barium ferrite magnetic powder has high reliability of data recording, for example, the coercive force does not decrease even in a high temperature and high humidity environment. From this point of view, the barium ferrite magnetic powder is preferable as the magnetic powder.
  • the average particle size of the barium ferrite magnetic powder is 50 nm or less, more preferably 10 nm or more and 40 nm or less, and even more preferably 12 nm or more and 25 nm or less.
  • the average thickness tm [nm] of the magnetic layer 13 is preferably 35 nm ⁇ tm ⁇ 100 nm, and particularly preferably 80 nm or less.
  • the coercive force Hc measured in the thickness direction (vertical direction) of the magnetic recording medium 10 is preferably 160 kA / m or more and 280 kA / m or less, more preferably 165 kA / m or more and 275 kA / m or less, and even more preferably 170 kA / m. It is m or more and 270 kA / m or less.
  • the magnetic powder may contain powder of nanoparticles containing Co-containing spinel ferrite (hereinafter referred to as “cobalt ferrite particles”) instead of the powder of ⁇ -iron oxide particles.
  • the cobalt ferrite particles preferably have uniaxial anisotropy.
  • the cobalt ferrite particles have, for example, a cubic shape or a substantially cubic shape.
  • the Co-containing spinel ferrite may further contain at least one of Ni, Mn, Al, Cu and Zn in addition to Co.
  • the Co-containing spinel ferrite has, for example, an average composition represented by the following formula.
  • Co x M y Fe 2 O Z (However, in the formula (1), M is, for example, at least one metal of Ni, Mn, Al, Cu and Zn.
  • X is within the range of 0.4 ⁇ x ⁇ 1.0.
  • the value y is a value within the range of 0 ⁇ y ⁇ 0.3. However, x and y satisfy the relationship of (x + y) ⁇ 1.0.
  • Z is within the range of 3 ⁇ z ⁇ 4. It is a value of. A part of Fe may be replaced with another metal element.)
  • the average particle size of the magnetic powder is preferably 25 nm or less, more preferably 10 nm or more and 23 nm or less.
  • the average particle size of the magnetic powder is 25 nm or less, good electromagnetic conversion characteristics (for example, SNR) can be obtained in the magnetic recording medium 10 having a high recording density.
  • the average particle size of the magnetic powder is 10 nm or more, the dispersibility of the magnetic powder is further improved, and more excellent electromagnetic conversion characteristics (for example, SNR) can be obtained.
  • the average aspect ratio of the magnetic powder is the same as that of the above-described embodiment. Further, the average particle size and the average aspect ratio of the magnetic powder are also obtained in the same manner as the calculation method of the above-described embodiment.
  • the average particle volume of the magnetic powder is preferably 15000 nm 3 or less, more preferably 1000 nm 3 or more 12000 nm 3 or less.
  • the average particle volume of the magnetic powder is a method for calculating the average particle volume of the magnetic powder in the above-described embodiment (method for calculating the average particle volume when the ⁇ iron oxide particles have a cubic shape or a substantially cubic shape). ) Is the same.
  • the coercive force Hc of the cobalt ferrite magnetic powder is preferably 2500 Oe or more, more preferably 2600 Oe or more and 3500 Oe or less.
  • the magnetic recording medium 10 may further include a barrier layer 15 provided on at least one surface of the substrate 11, as shown in FIG. 15, for example.
  • the barrier layer 15 is a layer for suppressing the dimensional change of the substrate 11 according to the environment. For example, as an example of the cause of causing the dimensional change, there is hygroscopicity of the substrate 11, but by providing the barrier layer 15, the rate of moisture invasion into the substrate 11 can be reduced.
  • the barrier layer 15 contains, for example, a metal or a metal oxide. Examples of the metal referred to here include Al, Cu, Co, Mg, Si, Ti, V, Cr, Mn, Fe, Ni, Zn, Ga, Ge, Y, Zr, Mo, Ru, Pd, Ag, Ba.
  • the metal oxide for example, a metal oxide containing one or more of the above metals can be used. More specifically, for example, at least one of Al 2 O 3 , CuO, CoO, SiO 2 , Cr 2 O 3 , TiO 2 , Ta 2 O 5 and Zr O 2 can be used. Further, the barrier layer 15 may include diamond-like carbon (DLC), diamond, or the like.
  • DLC diamond-like carbon
  • the average thickness of the barrier layer 15 is preferably 20 nm or more and 1000 nm or less, and more preferably 50 nm or more and 1000 nm or less.
  • the average thickness of the barrier layer 15 is obtained in the same manner as the average thickness of the magnetic layer 13. However, the magnification of the TEM image is appropriately adjusted according to the thickness of the barrier layer 15.
  • a large number of protrusions 14A provided on the surface 14S of the back layer 14 are transferred to the surface 13S of the magnetic layer 13 to form a large number of holes on the surface 13S of the magnetic layer 13.
  • the method of forming a large number of holes is not limited to this.
  • a large number of holes may be formed on the surface 13S of the magnetic layer 13 by adjusting the type of solvent contained in the paint for forming the magnetic layer, the drying conditions of the paint for forming the magnetic layer, and the like.
  • the magnetic recording medium 10 according to the above-described embodiment may be used for the library device.
  • the library device may include a plurality of recording / reproducing devices 30 according to the above-described embodiment.
  • the magnetic recording medium of the present disclosure is housed in the magnetic recording medium cartridge 10A in the recording / reproducing device 30 shown in FIG. 7, for example, in a state of being wound on a reel 32.
  • (the width of the servo track inside the winding of the magnetic recording medium)-(the width of the servo track outside the winding of the magnetic recording medium) is also referred to as "the difference between the widths of the servo tracks inside and outside the winding".
  • the difference in servo track width between the inside and outside of the winding is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, and even more preferably 0.05 ⁇ m or more.
  • the difference in servo track width between the inside and outside of the winding may be, for example, 0.10 ⁇ m or more, 0.15 ⁇ m or more, or 0.20 ⁇ m or more.
  • the difference in servo track width between the inside and outside of the winding may be, for example, 2.5 ⁇ m or less, preferably 1.8 ⁇ m or less, more preferably 1.5 ⁇ m or less, 1.0 ⁇ m or less, 0.8 or less, or 0. It may be 5.5 ⁇ m or less.
  • the difference between the servo track widths inside and outside the winding is not more than the above upper limit value, it is possible to more easily keep the width of the magnetic recording medium constant by adjusting the tension.
  • the method for measuring the difference and the method for measuring the deviation amount of the servo track width used for calculating the difference will be described below.
  • the difference in servo track width between the inside and outside of the winding is more than 0 ⁇ m, preferably 0.0 m or more, more preferably 0.02 ⁇ m or more, and even more preferably 0.05 ⁇ m or more.
  • the difference in servo track width between the inside and outside of the winding is, for example, 0.10 ⁇ m or more, 0. It may be ⁇ m or more, or 0.20 ⁇ m or more. As a result, it is possible to prevent the magnetic recording medium wound on the reel in the cartridge from being wrinkled.
  • the difference in servo track width between the inside and outside of the winding may be, for example, 2.5 ⁇ m or less, preferably 1.8 ⁇ m or less, more preferably 1.5 ⁇ m or less, 1.0 ⁇ m or less, 0.8 or less, or 0. It may be 5.5 ⁇ m or less.
  • the deviation amount TinW of the servo track width inside the winding of the magnetic recording medium and the deviation amount ToutW of the servo track width outside the winding are measured, respectively.
  • the measurement is performed in an environment with a temperature of 23 ⁇ 3 ° C. and a relative humidity of 50% ⁇ 5%.
  • Each of these deviation amounts represents how large or small the servo track width is with respect to the standard servo track width. The method of measuring these deviation amounts will be described separately below.
  • the winding inside means the end (hereinafter, “inner end") attached to the reel (reel on which the magnetic recording medium is wound) in the magnetic recording cartridge, out of the two ends of the magnetic recording medium. It refers to a region from the position 50 m from the position (also referred to as) to a position 10 m ahead from the position in the direction opposite to the inner end portion (hereinafter, also referred to as “outer end portion”).
  • the unwound outer is a position starting from a position of 50 m from the outer end of the two ends of the magnetic recording medium and extending 10 m from the position toward the inner end. Refers to the area.
  • FIG. 16 shows a state in which the inner end portion E1 of the magnetic recording medium 10 is attached to the reel 32 of the magnetic recording medium cartridge 10A mounted on the recording / playback device 30.
  • the area between the position A 50 m ahead of the inner end E1 and the position B 10 m ahead of the outer end E2 from that position A is the inner winding.
  • the region between the position C that advances 50 m from the outer end E2 to the inner end E1 and the position D that advances 10 m further from the position C to the inner end E1 is the outer winding.
  • the magnetic recording medium 10 housed in the magnetic recording medium cartridge 10A is traveled so as to be wound around the recording / playback device 30 (so-called forward traveling). While) is done.
  • the tension applied to the magnetic recording medium 10 is 0.55 N, and the traveling speed is 3 to 6 m / s.
  • the average value of the deviation amount of the servo track width measured over the region of 10 m inside the winding is used as the deviation amount in W of the servo track width inside the winding to obtain the difference.
  • the average value is calculated by a simple average.
  • the deviation amount TowW of the servo track width on the outer side of the winding is also measured while traveling in the forward direction in the same manner as on the inner side of the winding.
  • the average value of the deviation amount of the servo track width measured over the region of 10 m on the outer winding side is used as the deviation amount TowW of the outer winding servo track width for obtaining the difference.
  • the average value is also calculated by a simple average.
  • FIG. 17A is a schematic view of a data band and a servo band formed on the magnetic layer of the magnetic recording medium.
  • the magnetic layer has four data bands d0 to d3.
  • the magnetic layer has a total of five servo bands S0 to S4 so that each data band is sandwiched between two servo bands.
  • each servo band has five servo signals S5a inclined at a predetermined angle ⁇ 1 and five servo signals S5b inclined at the same angle in the direction opposite to the signal.
  • the angle ⁇ 1 can be, for example, 5 ° to 25 °, particularly 11 ° to 20 °.
  • the amount of deviation of the servo track width measured by the measurement method is the standard servo track of the servo track width between the two servo tracks S1 and S2 sandwiching the second data band d1 from the top in FIG. 17 (a). The amount of deviation with respect to the width.
  • a waveform as shown in FIG. 17 (c) can be obtained for each servo track by a digital oscilloscope (WAVEPRO 960 of Lecroy).
  • the time between the timing signals is obtained from the waveform obtained by the reproduction of the servo track S1, and from the time and the tape running speed, between the head magnetic stripe of the A burst and the head magnetic stripe of the B burst in the servo track S1.
  • the distance is calculated. For example, as shown in FIG. 17B, the leading magnetic stripe of the A burst S5a-1 (the leftmost magnetic stripe of the five magnetic stripes) and the leading magnetic stripe of the B burst S5b-1 (of the five magnetic stripes).
  • the distance L1 from the leftmost magnetic stripe is calculated.
  • the time between the timing signals is obtained from the waveform obtained by the reproduction of the servo track S2, and the head magnetic stripe of the A burst and the head magnetic stripe of the B burst in the servo track S2 are obtained from the time and the tape running speed. The distance between them is calculated. For example, as shown in FIG. 17B, the distance L2 between the leading magnetic stripe of the A burst S5a-2 and the leading magnetic stripe of the B burst S5b-2 is calculated. For example, when the magnetic recording tape spreads in the width direction, the time between the timing signals obtained by, for example, reproducing the servo track S1 becomes long, and as a result, the calculated distance L1 can also become large.
  • the amount of deviation of the servo track width can be obtained by using the distance L1 and the distance L2 and the azimuth angle.
  • L1 and L2 are the distances L1 and L2 described above
  • ⁇ 1 is the tilt angle ⁇ 1 described above, and is also referred to as an azimuth angle.
  • ⁇ 1 is obtained by developing a magnetic recording medium taken out from a cartridge with a ferricolloid developer and using a universal tool microscope (TOPCON TUM-220ES) and a data processing device (TOPCON CA-1B).
  • the amount of deviation of the servo track width is the amount of change with respect to the standard servo track width.
  • the standard servo track width may be the same width as the servo lead head width of the magnetic recording / reproducing device, and may be determined according to the type of the magnetic recording medium 10 such as the standard to which the magnetic recording medium 10 conforms.
  • the servo track width can be adjusted as follows, for example.
  • the take-up tension may be lowered in the drying step and / or the calendar step (heating region) of the magnetic recording medium 10.
  • it may be stored at a temperature of 55 ° C. or higher for a long time. By relaxing the strain in this way, the servo track width can be adjusted.
  • the average aspect ratio of the magnetic powder in the vertical direction the average particle size of the magnetic powder, the average particle volume of the magnetic powder, the average thickness of the base layer, and the average thickness of the entire magnetic recording medium (tape average). Thickness), the average thickness of the magnetic layer, the coercive force Hc1, the coercive force Hc2, the ratio Hc2 / Hc1, the arithmetic average roughness of the surface of the magnetic layer (magnetic layer Ra), the magnetic layer PSD ( ⁇ 0.5 ⁇ m), and the isolated waveform.
  • the half price width PW50 is a value obtained by the measuring method described in the above-described embodiment.
  • Example 1 The magnetic recording medium as Example 1 was obtained as follows.
  • the paint for forming the magnetic layer was prepared as follows. First, the first composition having the following composition was kneaded with an extruder. Next, the kneaded first composition and the second composition having the following composition were added to a stirring tank equipped with a disper and premixed. Subsequently, sand mill mixing was further performed and filtering was performed to prepare a coating material for forming a magnetic layer.
  • Each component and weight in the first composition is as follows.
  • Aluminum oxide powder ( ⁇ -Al 2 O 3 , average particle size 0.2 ⁇ m): 5 parts by mass ⁇ Carbon black (manufactured by Tokai Carbon Co., Ltd., trade name: Seest TA): 2 parts by mass
  • -Vinyl chloride resin 20 parts by mass (including cyclohexanone solution) (Resin solution: resin content 30% by mass, cyclohexanone 70% by mass)
  • Polyisocyanate (trade name: Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.): 4 parts by mass and stearic acid: 2 parts by mass as fatty acids were added to the paint for forming a magnetic layer prepared as described above.
  • the paint for forming the base layer was prepared as follows. First, the third composition having the following composition was kneaded with an extruder. Next, the kneaded third composition and the fourth composition having the following composition were added to a stirring tank equipped with a disper and premixed. Subsequently, sand mill mixing was further performed and filtering was performed to prepare a coating material for forming a base layer.
  • Each component and weight in the third composition is as follows.
  • -Needle iron oxide powder ⁇ -Fe 2 O 3 , average major axis length 0.15 ⁇ m
  • 100 parts by mass-Vinyl chloride resin resin solution: resin content 30% by mass, cyclohexanone 70% by mass
  • Carbon black average particle size 20 nm
  • Each component and weight in the fourth composition is as follows.
  • -Polyurethane resin UR8200 manufactured by Toyo Spinning Co., Ltd.
  • 18.5 parts by mass-n-butyl stearate as fatty acid ester 2 parts by mass-Methyl ethyl ketone: 108.2 parts by mass-Toluene: 108.2 parts by mass-Cyclohexanone: 18. 5 parts by mass
  • Polyisocyanate (trade name: Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.): 4 parts by mass and stearic acid: 2 parts by mass as fatty acids were added to the base layer forming paint prepared as described above.
  • the paint for forming the back layer was prepared as follows. The following raw materials were mixed in a stirring tank equipped with a disper and filtered to prepare a coating material for forming a back layer.
  • -Small particle size carbon black powder (average particle size (D50) 20 nm): 90 parts by mass-Large particle size carbon black powder (average particle size (D50) 270 nm): 10 parts by mass-Polyester polyurethane (Nippon Polyurethane) Made by the company, trade name: N-2304): 100 parts by mass, methyl ethyl ketone: 500 parts by mass, toluene: 400 parts by mass, cyclohexanone: 100 parts by mass
  • the average thickness 1 is placed on one main surface of a long polyester film having an average thickness of 4.0 ⁇ m, which is a non-magnetic support.
  • a 1 ⁇ m base layer and a magnetic layer having an average thickness of 80 nm were formed as follows. First, a base layer forming paint was applied on one main surface of the polyester film and dried to form a base layer. Next, the magnetic layer was formed by applying a paint for forming a magnetic layer on the base layer and drying it. When the paint for forming the magnetic layer was dried, the magnetic powder was magnetically oriented in the thickness direction of the film by a solenoid coil.
  • drying conditions drying temperature and drying time
  • the coercive force Hc1 in the thickness direction (vertical direction) of the magnetic recording medium and the coercive force Hc2 in the longitudinal direction are shown in Table 1 below. Set to a value.
  • a paint for forming a back layer was applied onto the other main surface of the polyester film and dried to form a back layer having an average thickness of 0.3 ⁇ m.
  • ⁇ Calendar process and transfer process> Subsequently, a calendar process was performed to smooth the surface of the magnetic layer. Next, a magnetic recording medium having a smoothed surface of the magnetic layer was wound into a roll, and then the magnetic recording medium was heat-treated at 60 ° C. for 10 hours in that state. Then, after rewinding the magnetic recording medium into a roll shape so that the end located on the inner peripheral side is located on the outer peripheral side, the magnetic recording medium is heated at 60 ° C. for 10 hours in that state. The process was performed again. As a result, a large number of protrusions on the surface of the back layer were transferred to the surface of the magnetic layer, and a large number of holes were formed on the surface of the magnetic layer.
  • the magnetic recording medium obtained as described above was cut to a width of 1/2 inch (12.65 mm). As a result, the desired long magnetic recording medium (average thickness 5.6 ⁇ m) was obtained.
  • This magnetic recording medium has a four-layer structure as shown in Table 2 below, and has an overall average thickness (tape average thickness) of 5.6 ⁇ m, a number of servo tracks of 5, and a substrate (base film). The average thickness is 4.0 ⁇ m.
  • W is 2.9 ⁇ m and L is 0.052 ⁇ m.
  • the above configuration is referred to as media configuration 1. Further, W represents the recording track width, and L represents the distance between magnetization reversals (bit length) of the portion recorded at the shortest wavelength.
  • the magnetic layer Ra of the obtained magnetic recording medium was 1.9 nm
  • the magnetic layer PSD was 2.1 ⁇ m
  • the half width PW50 of the isolated waveform in the reproduced waveform was 175 nm.
  • Example 2 In the process of preparing the paint for forming a magnetic layer, the average powder aspect ratio of the barium ferrite (BaFe 12 O 19 ) particles in the first composition was 2.6, the average particle size was 18.6 nm, and the average particle volume was 1600 nm 3 . did. Further, in the coating step, the average thickness of the magnetic layer was set to 60 nm, the coercive force Hc1 was set to 2920 Oe, and the coercive force Hc2 was set to 1920 Oe. Except for the above points, a magnetic recording medium as Example 2 was obtained in the same manner as in Example 1 above. The magnetic layer Ra of the obtained magnetic recording medium was 1.85 nm, the magnetic layer PSD was 2.0 ⁇ m, and the half width PW50 of the isolated waveform in the reproduced waveform was 170 nm.
  • the magnetic layer Ra of the obtained magnetic recording medium was 1.85 nm
  • the magnetic layer PSD was 2.0 ⁇ m
  • Example 3 In the process of preparing the paint for forming a magnetic layer, the average powder aspect ratio of the barium ferrite (BaFe 12 O 19 ) particles in the first composition was 3.0, the average particle size was 21.3 nm, and the average particle volume was 2100 nm 3 . did. Except for the above points, a magnetic recording medium as Example 3 was obtained in the same manner as in Example 1 above. The magnetic layer Ra of the obtained magnetic recording medium was 1.9 nm, the magnetic layer PSD was 2.1 ⁇ m, and the half width PW50 of the isolated waveform in the reproduced waveform was 177 nm.
  • the magnetic layer Ra of the obtained magnetic recording medium was 1.9 nm
  • the magnetic layer PSD was 2.1 ⁇ m
  • the half width PW50 of the isolated waveform in the reproduced waveform was 177 nm.
  • Example 4 In the coating step, a magnetic recording medium as Example 4 was obtained in the same manner as in Example 1 except that the average thickness of the magnetic layer was 90 nm.
  • the magnetic layer Ra of the obtained magnetic recording medium was 1.9 nm
  • the magnetic layer PSD was 2.1 ⁇ m
  • the half width PW50 of the isolated waveform in the reproduced waveform was 175 nm.
  • Example 5 In the process of preparing the paint for forming a magnetic layer , the average particle aspect ratio of the barium ferrite (BaFe 12 O 19 ) particles in the first composition was 2.9, the average particle size was 20.9 nm, and the average particle volume was 2050 nm 3 . did. Further, in the coating step, the coercive force Hc1 was set to 2980 Oe. Except for the above points, a magnetic recording medium as Example 5 was obtained in the same manner as in Example 1 above. The magnetic layer Ra of the obtained magnetic recording medium was 1.9 nm, the magnetic layer PSD was 2.1 ⁇ m, and the half width PW50 of the isolated waveform in the reproduced waveform was 177 nm.
  • the magnetic layer Ra of the obtained magnetic recording medium was 1.9 nm
  • the magnetic layer PSD was 2.1 ⁇ m
  • the half width PW50 of the isolated waveform in the reproduced waveform was 177 nm.
  • Example 6 In the step of preparing the coating material for forming the magnetic layer, powder of ⁇ -iron oxide particles (spherical, average aspect ratio 1.3, average particle size 15.7 nm, particle volume 2050 nm 3 ) was used as the magnetic powder. Further, in the coating step, the coercive force Hc1 was set to 2850 Oe and the coercive force Hc2 was set to 2020 Oe. Except for the above points, a magnetic recording medium as Example 6 was obtained in the same manner as in Example 1 above. The magnetic layer Ra of the obtained magnetic recording medium was 2 nm, the magnetic layer PSD was 2.1 ⁇ m, and the half width PW50 of the isolated waveform in the reproduced waveform was 177 nm.
  • Example 7 In the step of preparing the coating material for forming a magnetic layer, a cobalt ferrite powder (cube-shaped, average aspect ratio 1.1, average particle size 12.6 nm, particle volume 2030 nm 3 ) was used as the magnetic powder. Further, in the coating step, the coercive force Hc1 was set to 2800 Oe and the coercive force Hc2 was set to 2020 Oe. Except for the above points, a magnetic recording medium as Example 7 was obtained in the same manner as in Example 1 above. The magnetic layer Ra of the obtained magnetic recording medium was 2 nm, the magnetic layer PSD was 2.1 ⁇ m, and the half width PW50 of the isolated waveform in the reproduced waveform was 177 nm.
  • Example 8 In the step of preparing the coating material for forming the magnetic layer , the powder average aspect ratio of the barium ferrite (BaFe 12 O 19 ) particles in the first composition was set to 2.3, the average particle size was set to 17 nm, and the average particle volume was set to 1400 nm 3 . Further, in the coating step, the average thickness of the magnetic layer was set to 60 nm, the coercive force Hc1 was set to 2550 Oe, and the coercive force Hc2 was set to 1820 Oe. Except for the above points, a magnetic recording medium as Example 8 was obtained in the same manner as in Example 1 above. The magnetic layer Ra of the obtained magnetic recording medium was 1.8 nm, the magnetic layer PSD was 1.9 ⁇ m, and the half width PW50 of the isolated waveform in the reproduced waveform was 170 nm.
  • the magnetic layer Ra of the obtained magnetic recording medium was 1.8 nm
  • the magnetic layer PSD was 1.9 ⁇ m
  • Example 9 In the step of preparing the coating material for forming the magnetic layer , the powder average aspect ratio of the barium ferrite (BaFe 12 O 19 ) particles in the first composition was 2.0, the average particle size was 15 nm, and the average particle volume was 1100 nm 3 . Further, in the coating step, the average thickness of the magnetic layer was set to 60 nm, the coercive force Hc1 was set to 2500 Oe, and the coercive force Hc2 was set to 1840 Oe. Except for the above points, a magnetic recording medium as Example 9 was obtained in the same manner as in Example 1 above. The magnetic layer Ra of the obtained magnetic recording medium was 1.75 nm, the magnetic layer PSD was 1.8 ⁇ m, and the half width PW50 of the isolated waveform in the reproduced waveform was 160 nm.
  • the magnetic layer Ra of the obtained magnetic recording medium was 1.75 nm
  • the magnetic layer PSD was 1.8 ⁇ m
  • Example 10 A magnetic recording medium as Example 10 was obtained in the same manner as in Example 1 except that the media configuration was set to 2 (Table 2).
  • the magnetic layer Ra of the obtained magnetic recording medium was 1.9 nm
  • the magnetic layer PSD was 2.1 ⁇ m
  • the half width PW50 of the isolated waveform in the reproduced waveform was 175 nm.
  • Example 11 The media composition was set to 3 (Table 2).
  • the average powder aspect ratio of the barium ferrite (BaFe 12 O 19 ) particles in the first composition was 2.6
  • the average particle size was 18.6 nm
  • the average particle volume was 1600 nm 3 .
  • the average thickness of the magnetic layer was set to 60 nm
  • the coercive force Hc1 was set to 2920 Oe
  • the coercive force Hc2 was set to 1920 Oe.
  • the average tape thickness was set to 5.2 ⁇ m.
  • a magnetic recording medium as Example 11 was obtained in the same manner as in Example 1 above.
  • the magnetic layer Ra of the obtained magnetic recording medium was 1.85 nm
  • the magnetic layer PSD was 2.0 ⁇ m
  • the half width PW50 of the isolated waveform in the reproduced waveform was 168 nm.
  • the media composition was set to 4 (Table 2).
  • the powder average aspect ratio of the barium ferrite (BaFe 12 O 19 ) particles in the first composition was set to 2.3
  • the average particle size was set to 17 nm
  • the average particle volume was set to 1400 nm 3 .
  • the average thickness of the magnetic layer was set to 60 nm
  • the coercive force Hc1 was set to 2550 Oe
  • the coercive force Hc2 was set to 1820 Oe.
  • the average tape thickness was set to 5.2 ⁇ m.
  • Example 12 a magnetic recording medium as Example 12 was obtained in the same manner as in Example 1 above.
  • the magnetic layer Ra of the obtained magnetic recording medium was 1.8 nm
  • the magnetic layer PSD was 1.9 ⁇ m
  • the half width PW50 of the isolated waveform in the reproduced waveform was 166 nm.
  • the media composition was set to 5 (Table 2).
  • the powder average aspect ratio of the barium ferrite (BaFe 12 O 19 ) particles in the first composition was set to 2.3
  • the average particle size was set to 17 nm
  • the average particle volume was set to 1400 nm 3 .
  • the average thickness of the magnetic layer was set to 60 nm
  • the coercive force Hc1 was set to 2550 Oe
  • the coercive force Hc2 was set to 1820 Oe.
  • the average tape thickness was set to 4.5 ⁇ m.
  • Example 13 a magnetic recording medium as Example 13 was obtained in the same manner as in Example 1 above.
  • the magnetic layer Ra of the obtained magnetic recording medium was 1.8 nm
  • the magnetic layer PSD was 1.9 ⁇ m
  • the half width PW50 of the isolated waveform in the reproduced waveform was 166 nm.
  • Example 14 The media composition was set to 6 (Table 2).
  • the powder average aspect ratio of the barium ferrite (BaFe 12 O 19 ) particles in the first composition was 2.0, the average particle size was 15 nm, and the average particle volume was 1100 nm 3 .
  • the average thickness of the magnetic layer was set to 60 nm, the coercive force Hc1 was set to 2500 Oe, and the coercive force Hc2 was set to 1840 Oe. Further, the average tape thickness was set to 4.5 ⁇ m.
  • a magnetic recording medium as Example 14 was obtained in the same manner as in Example 1 above.
  • the magnetic layer Ra of the obtained magnetic recording medium was 1.75 nm
  • the magnetic layer PSD was 1.8 ⁇ m
  • the half width PW50 of the isolated waveform in the reproduced waveform was 155 nm.
  • Example 15 In the coating step, the average thickness of the magnetic layer was 90 nm, the coercive force Hc1 was 2990 Oe, and the coercive force Hc2 was 1500 Oe. Except for the above points, a magnetic recording medium as Example 15 was obtained in the same manner as in Example 1 above. The magnetic layer Ra of the obtained magnetic recording medium was 1.85 nm, the magnetic layer PSD was 2.0 ⁇ m, and the half width PW50 of the isolated waveform in the reproduced waveform was 175 nm.
  • Example 16 In the coating step, the coercive force Hc1 was set to 2690 Oe and the coercive force Hc2 was set to 2150 Oe. Except for the above points, a magnetic recording medium as Example 16 was obtained in the same manner as in Example 1 above.
  • the magnetic layer Ra of the obtained magnetic recording medium was 1.85 nm
  • the magnetic layer PSD was 2.0 ⁇ m
  • the half width PW50 of the isolated waveform in the reproduced waveform was 180 nm.
  • Example 17 In the step of preparing the coating material for forming the magnetic layer, powder of ⁇ -iron oxide particles (spherical, average aspect ratio 1.3, average particle size 15.7 nm, particle volume 2050 nm 3 ) was used as the magnetic powder. Further, in the coating step, the average thickness of the magnetic layer was 90 nm, the coercive force Hc1 was 2900 Oe, and the coercive force Hc2 was 1950 Oe. Except for the above points, a magnetic recording medium as Example 17 was obtained in the same manner as in Example 1 above. The magnetic layer Ra of the obtained magnetic recording medium was 2 nm, the magnetic layer PSD was 2.1 ⁇ m, and the half width PW50 of the isolated waveform in the reproduced waveform was 175 nm.
  • Example 18 By changing the conditions of the calendering process, the magnetic layer Ra of the obtained magnetic recording medium was set to 1.6 nm, and the magnetic layer PSD was set to 1.7 ⁇ m. The full width at half maximum PW50 of the isolated waveform in the reproduced waveform was 175 nm.
  • Example 19 By changing the conditions of the calendering process, the magnetic layer Ra of the obtained magnetic recording medium was set to 2.4 nm, and the magnetic layer PSD was set to 2.5 ⁇ m. The full width at half maximum PW50 of the isolated waveform in the reproduced waveform was 175 nm.
  • the average thickness of the magnetic layer was set to 100 nm. Except for the above points, a magnetic recording medium as Comparative Example 2 was obtained in the same manner as in Example 1 above.
  • the magnetic layer Ra of the obtained magnetic recording medium was 1.9 nm
  • the magnetic layer PSD was 2.1 ⁇ m
  • the half width PW50 of the isolated waveform in the reproduced waveform was 202 nm.
  • the average thickness of the magnetic layer was 85 nm
  • the coercive force Hc1 was 2500 Oe
  • the coercive force Hc2 was 2100 Oe.
  • a magnetic recording medium as Comparative Example 3 was obtained in the same manner as in Example 1 above.
  • the magnetic layer Ra of the obtained magnetic recording medium was 1.9 nm
  • the magnetic layer PSD was 2.1 ⁇ m
  • the half width PW50 of the isolated waveform in the reproduced waveform was 180 nm.
  • a cobalt ferrite powder (cube-shaped, average aspect ratio 1.1, average particle size 12.6 nm, particle volume 2030 nm 3 ) was used as the magnetic powder. Further, in the coating step, the coercive force Hc1 was set to 2450 Oe and the coercive force Hc2 was set to 2080 Oe. Except for the above points, a magnetic recording medium as Comparative Example 6 was obtained in the same manner as in Example 1 above. The magnetic layer Ra of the obtained magnetic recording medium was 1.9 nm, the magnetic layer PSD was 2.1 ⁇ m, and the half width PW50 of the isolated waveform in the reproduced waveform was 179 nm.
  • the magnetic layer Ra of the obtained magnetic recording medium was set to 2.55 nm, and the magnetic layer PSD was set to 3.2 ⁇ m.
  • the full width at half maximum PW50 of the isolated waveform in the reproduced waveform was 205 nm.
  • the magnetic layer Ra of the obtained magnetic recording medium was set to 1.66 nm, and the magnetic layer PSD was set to 1.7 ⁇ m.
  • the full width at half maximum PW50 of the isolated waveform in the reproduced waveform was 173 nm.
  • the reproduced signal was taken in by a spectrum analyzer (spectrum analyzer), the reproduced output value of 10 MHz and the average value of noise of 10 MHz ⁇ 1 MHz were measured, and the difference between them was defined as C / N.
  • the results are shown in Table 1 as relative values with the C / N of Comparative Example 1 as 0 dB. When the C / N is 1.5 dB or more, it is possible to realize a medium that can withstand a short wavelength and a narrow track density.
  • Table 1 shows the magnetic characteristics and evaluation results of each magnetic recording medium in Examples 1 to 19 and Comparative Examples 1 to 8.
  • Table 2 shows the media configurations adopted in the magnetic recording media of Examples 1 to 19 and Comparative Examples 1 to 8.
  • the arithmetic mean roughness Ra of the surface of the magnetic layer is 2.5 nm or less, and the PSD up to the spatial wavelength of 5 ⁇ m is 2.5 ⁇ m or less.
  • the average thickness of the magnetic layer is 90 nm or less, the average aspect ratio of the magnetic powder is 1.0 or more and 3.0 or less, the coercive force Hc1 in the vertical direction is 3000 Oe or less, and Hc2 / Hc1 is 0.8 or less.
  • the half-value width PW50 of the isolated waveform in the reproduced waveform of the data signal is 200 nm or less. Therefore, good electromagnetic conversion characteristics (C / N) can be ensured while making the magnetization transition width steep. Therefore, a configuration advantageous for high-density recording can be realized.
  • Comparative Example 1 since the average aspect ratio of the magnetic powder exceeded 3.0, stacking of the magnetic tape occurred and the electromagnetic conversion characteristics deteriorated.
  • the configurations, methods, processes, shapes, materials, numerical values, etc. given in the above-described embodiments and modifications thereof are merely examples, and different configurations, methods, processes, shapes, materials, and numerical values are required as necessary.
  • Etc. may be used.
  • the magnetic recording medium of the present disclosure may include components other than the substrate, the base layer, the magnetic layer, the back layer, and the barrier layer.
  • the chemical formulas of the compounds and the like are typical, and the general names of the same compounds are not limited to the stated valences and the like.
  • the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step.
  • the materials exemplified in the present specification may be used alone or in combination of two or more.
  • a tape-shaped magnetic recording medium A substrate containing polyester as the main component, It is provided on the substrate, contains a plurality of magnetic powders, and has a magnetic layer capable of recording a data signal.
  • the arithmetic mean roughness Ra of the surface of the magnetic layer is 2.5 nm or less.
  • PSD Power Spectrum Density
  • up to a spatial wavelength of 5 ⁇ m is 2.5 ⁇ m or less.
  • the average thickness of the magnetic layer is 90 nm or less.
  • the average aspect ratio of the magnetic powder is 1.0 or more and 3.0 or less.
  • the coercive force in the vertical direction is 3000 Oersted or less,
  • the ratio of the coercive force in the longitudinal direction to the coercive force in the vertical direction is 0.8 or less.
  • (3) The magnetic recording medium according to (1) above, wherein the half width of the isolated waveform in the reproduced waveform of the data signal is 170 nm or less.
  • the magnetic recording medium according to (1) above wherein the half width of the isolated waveform in the reproduced waveform of the data signal is 165 nm or less.
  • the magnetic layer has a plurality of servo bands capable of recording a plurality of servo signals, respectively.
  • the magnetic layer can form a plurality of recording tracks, and can form a plurality of recording tracks.
  • the coercive force in the longitudinal direction is 2000 Oe or less.
  • the magnetic powder is hexagonal ferrite containing at least one of Ba (barium) and Sr (strontium), ⁇ -iron oxide containing at least one of Al (aluminum) and Ga (gallium), or The magnetic recording medium according to any one of (1) to (14) above, which contains a Co (cobalt) -containing spinel-type ferrite.
  • the magnetic recording medium according to any one of (1) to (15) above, wherein the average thickness of the magnetic layer is 80 nm or less.
  • the magnetic recording medium is A substrate containing polyester as the main component, It is provided on the substrate, contains a plurality of magnetic powders, and has a magnetic layer capable of recording a data signal.
  • the arithmetic mean roughness Ra of the surface of the magnetic layer is 2.5 nm or less.
  • PSD Power Spectrum Density
  • up to a spatial wavelength of 5 ⁇ m is 2.5 ⁇ m or less.
  • the average thickness of the magnetic layer is 90 nm or less.
  • the average aspect ratio of the magnetic powder is 1.0 or more and 3.0 or less.
  • the coercive force in the vertical direction is 3000 Oersted or less,
  • the ratio of the coercive force in the longitudinal direction to the coercive force in the vertical direction is 0.8 or less.
  • a magnetic recording / reproducing device having a half-value width of an isolated waveform in a reproduction waveform of the data signal of 200 nm or less.
  • a housing for accommodating the magnetic recording medium is provided.
  • the magnetic recording medium is A substrate containing polyester as the main component, It is provided on the substrate, contains a plurality of magnetic powders, and has a magnetic layer capable of recording a data signal.
  • the arithmetic mean roughness Ra of the surface of the magnetic layer is 2.5 nm or less.
  • PSD Power Spectrum Density up to a spatial wavelength of 5 ⁇ m is 2.5 ⁇ m or less.
  • the average thickness of the magnetic layer is 90 nm or less.
  • the average aspect ratio of the magnetic powder is 1.0 or more and 3.0 or less.
  • the coercive force in the vertical direction is 3000 Oersted or less, The ratio of the coercive force in the longitudinal direction to the coercive force in the vertical direction is 0.8 or less.
  • a magnetic recording medium cartridge having a half-value width of an isolated waveform in the reproduced waveform of the data signal of 200 nm or less.

Landscapes

  • Magnetic Record Carriers (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

さらなる高密度記録の実現が可能な磁気記録媒体を提供する。この磁気記録媒体は、テープ状の磁気記録媒体であって、ポリエステルを主たる成分として含む基体と、その基体上に設けられ、磁性粉を複数含み、データ信号の記録が可能な磁性層とを有する。磁性層の表面の算術平均粗さRaは、2.5nm以下であり、空間波長5μmまでのPSDが2.5μm以下であり、磁性層の平均厚みは、90nm以下であり、磁性粉の平均アスペクト比は、1.0以上3.0以下であり、垂直方向における保磁力は、3000エルステッド以下であり、垂直方向における保磁力に対する長手方向における保磁力の割合は、0.8以下であり、データ信号の再生波形における孤立波形の半値幅は、200nm以下である。

Description

磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
 本開示は、磁気記録媒体、ならびにそれを用いた磁気記録再生装置および磁気記録媒体カートリッジに関する。
 電子データの保存のために、磁性層を有するテープ状の磁気記録媒体が幅広く利用されている。磁気記録媒体の磁性層には、複数の記録トラックを含むデータバンドが設けられており、この記録トラックに対してデータが記録される。また、磁性層には、幅方向においてデータバンドと隣り合う位置にサーボバンドが設けられており、このサーボバンドにサーボ信号が記録される。磁気ヘッドがサーボバンドに記録されたサーボ信号を読み取ることにより、記録トラックに対する磁気ヘッドの位置合わせが行われる。
 磁気記録媒体へのデータの記録方式としては、磁性層内の磁性粒子を水平方向に磁化させてデータを記録する水平磁気記録方式と、磁性層内の磁性粒子を垂直方向に磁化させてデータを記録する垂直磁気記録方式とが知られている。一般に、垂直磁気記録方式は、水平磁気記録方式と比較して高密度にデータを記録することができる。本出願人は、サーボ信号の磁化方向が垂直方向の成分を含む場合に、良好な対称性を有するサーボ信号の再生波形を得る技術を開示している(例えば特許文献1参照)。
特開2014-199706号公報
 近年、記録すべきデータ量の増加に伴い、さらなる高密度記録化が要請されている。したがって、さらなる高密度記録の実現が可能な磁気記録媒体が望まれる。
 本開示の一実施形態としての磁気記録媒体は、テープ状の磁気記録媒体であって、ポリエステルを主たる成分として含む基体と、その基体上に設けられ、磁性粉を複数含み、データ信号の記録が可能な磁性層とを有する。ここで、磁性層の表面の算術平均粗さRaは、2.5nm以下である。空間波長5μmまでのPSD (Power Spectrum Density)は2.5μm以下である。磁性層の平均厚みは、90nm以下である。磁性粉の平均アスペクト比は、1.0以上3.0以下である。垂直方向における保磁力は、3000エルステッド以下である。垂直方向における保磁力に対する長手方向における保磁力の割合は、0.8以下である。データ信号の再生波形における孤立波形の半値幅は、200nm以下である。
 本開示の一実施形態としての磁気記録再生装置は、上述の磁気記録媒体を順次送り出すことのできる送り出し部と、その送り出し部から送り出された磁気記録媒体を巻き取ることのできる巻き取り部と、送り出し部から巻き取り部へ向けて走行する磁気記録媒体と接触しつつ、磁気記録媒体への情報書き込み、および磁気記録媒体からの情報読み出しを行うことのできる磁気ヘッドとを備える。
 本開示の一実施形態としての磁気記録媒体カートリッジは、上述の磁気記録媒体と、その磁気記録媒体を収容する筐体とを備える。
 本開示の一実施形態としての磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジでは、上述の構成を有するようにしたので、データの高密度記録に有利である。
本開示の一実施の形態に係る磁気記録媒体の断面図である。 図1に示した磁性層に含まれるε酸化鉄粒子の断面構造を模式的に表す断面図である。 図1に示した磁気記録媒体のSFD曲線の一例を示すグラフである。 図1に示した磁気記録媒体におけるデータバンドおよびサーボバンドのレイアウトを表す概略説明図である。 図4に示したデータバンドを拡大して表す概略説明図である。 図4に示したサーボバンドにおけるサーボ信号記録パターンを拡大して表す概略説明図である。 図1に示した磁気記録媒体を用いる記録再生装置の概略図である。 図1に示した磁気記録媒体にサーボ信号の記録を行うためのサーボ信号記録装置の概略図である。 図8に示したサーボ信号記録装置の要部の構成を拡大して表す模式図である。 図8に示したサーボ信号記録装置において消磁される磁気記録媒体の磁化の方向を示す模式図である。 図8に示したサーボ信号記録装置において書き込まれた磁気記録媒体の磁化方向と、サーボ信号の再生波形との関係を示す説明図である。 孤立波形における半値幅を説明するための図である。 本技術の基本的な考え方を説明するための図であり、サーボ信号記録パターンにおける2つのストライプを示す図である。 変形例1としてのε酸化鉄粒子の断面構造を模式的に表す断面図である。 変形例5としての磁気記録媒体の断面図である。 磁気記録媒体カートリッジのリールに、磁気記録媒体の内側端部が取り付けられている様子を表す模式図である。 サーボトラック幅のずれ量の測定方法を説明するための、データバンド及びサーボバンドの模式図である。
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.一実施の形態
 1-1.磁気記録媒体の構成
 1-2.磁気記録媒体の製造方法
 1-3.記録再生装置の構成
 1-4.効果
2.変形例
<1.一実施の形態>
[1-1 磁気記録媒体10の構成]
 図1は、本開示の一実施の形態に係る磁気記録媒体10の断面構成例を表している。図1に示したように、磁気記録媒体10は複数層が積層された積層構造を有する。具体的には、磁気記録媒体10は、長尺のテープ状の基体11と、基体11の一方の主面11A上に設けられた下地層12と、下地層12の上に設けられた磁性層13と、基体11の他方の主面11B上に設けられたバック層14とを備える。磁性層13の表面13Sが、磁気ヘッドが当接しつつ走行することとなる表面となる。なお、下地層12およびバック層14は、必要に応じて備えられるものであり、無くてもよい。なお、磁気記録媒体10の平均厚みは、例えば5.6μm以下であるとよい。
 磁気記録媒体10は長尺のテープ状をなし、記録動作および再生動作の際には、自らの長手方向に沿って走行することとなる。磁気記録媒体10は、例えば記録用ヘッドとしてリング型ヘッドを備える記録再生装置に用いられるものであることが好ましい。
(基体11)
 基体11は、下地層12および磁性層13を支持する非磁性支持体である。基体11は、長尺のフィルム状をなしている。基体11の平均厚みの上限値は、好ましくは4.2μm以下、より好ましくは4.0μm以下である。基体11の平均厚みの上限値が4.2μm以下であると、1データカートリッジ内に記録できる記録容量を一般的な磁気記録媒体よりも高めることができる。基体11の平均厚みの下限値は、好ましくは3μm以上、より好ましくは3.2μm以上である。基体11の平均厚みの下限値が3μm以上であると、基体11の強度低下を抑制することができる。
 基体11の平均厚みは以下のようにして求められる。まず、1/2インチ幅の磁気記録媒体10を準備し、それを250mmの長さに切り出し、サンプルを作製する。続いて、サンプルの基体11以外の層、すなわち下地層12、磁性層13およびバック層14をMEK(メチルエチルケトン)または希塩酸等の溶剤で除去する。次に、測定装置としてミツトヨ(Mitutoyo)社製レーザーホロゲージ(LGH-110C)を用いて、サンプルである基体11の厚みを5点以上の位置で測定する。その後、それらの測定値を単純に平均(算術平均)して、基体11の平均厚みを算出する。なお、測定位置は、サンプルから無作為に選ばれるものとする。
 基体11は、例えば、ポリエステル類を主たる成分として含んでいる。基体11は、ポリエステル類に加えて、ポリオレフィン類、セルロース誘導体、ビニル系樹脂、およびその他の高分子樹脂のうちの少なくとも1種を含んでいてもよい。基体11が上記材料のうちの2種以上を含む場合、それらの2種以上の材料は混合されていてもよいし、共重合されていてもよいし、積層されていてもよい。
 基体11に含まれるポリエステル類は、例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PBT(ポリブチレンテレフタレート)、PBN(ポリブチレンナフタレート)、PCT(ポリシクロヘキシレンジメチレンテレフタレート)、PEB(ポリエチレン-p-オキシベンゾエート)およびポリエチレンビスフェノキシカルボキシレートのうちの少なくとも1種を含む。
 基体11に含まれるポリオレフィン類は、例えば、PE(ポリエチレン)およびPP(ポリプロピレン)のうちの少なくとも1種を含む。セルロース誘導体は、例えば、セルロースジアセテート、セルローストリアセテート、CAB(セルロースアセテートブチレート)およびCAP(セルロースアセテートプロピオネート)のうちの少なくとも1種を含む。ビニル系樹脂は、例えば、PVC(ポリ塩化ビニル)およびPVDC(ポリ塩化ビニリデン)のうちの少なくとも1種を含む。
 基体11に含まれるその他の高分子樹脂は、例えば、PA(ポリアミド、ナイロン)、芳香族PA(芳香族ポリアミド、アラミド)、PI(ポリイミド)、芳香族PI(芳香族ポリイミド)、PAI(ポリアミドイミド)、芳香族PAI(芳香族ポリアミドイミド)、PBO(ポリベンゾオキサゾール、例えばザイロン(登録商標))、ポリエーテル、PEK(ポリエーテルケトン)、ポリエーテルエステル、PES(ポリエーテルサルフォン)、PEI(ポリエーテルイミド)、PSF(ポリスルフォン)、PPS(ポリフェニレンスルフィド)、PC(ポリカーボネート)、PAR(ポリアリレート)およびPU(ポリウレタン)のうちの少なくとも1種を含む。
(磁性層13)
 磁性層13は、信号を記録するための記録層である。磁性層13は、例えば、磁性粉、結着剤および潤滑剤を含む。磁性層13が、必要に応じて、導電性粒子、研磨剤、防錆剤等の添加剤をさらに含んでいてもよい。
 磁性層13は、多数の孔部が設けられた表面13Sを有している。これらの多数の孔部には、潤滑剤が蓄えられている。多数の孔部は、磁性層13の表面に対して垂直方向に延設されていることが好ましい。磁性層13の表面13Sに対する潤滑剤の供給性を向上することができるからである。なお、多数の孔部の一部が垂直方向に延設されていてもよい。
 磁性層13の表面13Sの算術平均粗さRaは、2.5nm以下、好ましくは2.2nm以下、より好ましくは1.9nm以下である。算術平均粗さRaが2.5nm以下であると、優れた電磁変換特性を得ることができる。磁性層13の表面13Sの算術平均粗さRaの下限値は、好ましくは1.0nm以上、より好ましくは1.2nm以上、さらにより好ましくは1.4nm以上である。磁性層13の表面13Sの算術平均粗さRaの下限値が1.0nm以上であると、摩擦の増大による走行性の低下を抑制することができる。
 表面13Sの算術平均粗さRaは以下のようにして求められる。まず、磁性層13の表面をAFM(Atomic Force Microscope)により観察し、40μm×40μmのAFM像を得る。AFMとしてはDigital Instruments社製、Nano Scope IIIa D3100を用い、カンチレバーとしてはシリコン単結晶製のものを用い、タッピング周波数として200Hz~400Hzのチューニングにて測定を行う。カンチレバーは、例えばNano World社製の「SPMプローブ NCH ノーマルタイプ PointProbe L(カンチレバー長)=125um」を用いることができる。次に、AFM像を512×512(=262,144)個の測定点に分割し、各測定点にて高さZ(i)(i:測定点番号、i=1~262,144)を測定し、測定した各測定点の高さZ(i)を単純に平均(算術平均)して平均高さ(平均面)Zave(=(Z(1)+Z(2)+・・・+Z(262,144))/262,144)を求める。続いて、各測定点での平均中心線からの偏差Z”(i)(=|Z(i)-Zave|)を求め、算術平均粗さRa[nm](=(Z”(1)+Z”(2)+・・・+Z”( 262,144))/262,144)を算出する。この際には、画像処理として、Flatten order2、ならびに、planefit order 3 XYによりフィルタリング処理を行ったものをデータとして用いる。
 また、磁性層13において、空間波長5μmまでのPSD (Power Spectrum Density)が例えば2.5μm以下であることが望ましい。PSDを一定値以下に抑えることにより、記録再生を行う際の記録/再生ヘッドとテープのスペーシングを小さくすることができ、高記録密度に適した媒体とすることができる。PSDの測定は以下のように行う。
 まず、磁気テープの表面を原子間力顕微鏡(Atomic Force Microscope:AFM)で観察し、2次元(2D)表面プロファイルデータを得る。
 以下に、測定に好適なAFMを示す。
  Digital Instruments社製 Dimension 3100
  カンチレバー:NanoWorld社 NCH-10T
 以下に、AFMの測定条件について示す。
  測定エリア:30μm×30μm
  分解能:512×512
  AFMのブローブのscan方向:磁気テープのMD方向(長手方向)
  測定mode:タッピングモード
  scan ratio:1Hz
 次に、AFMにより得られる2D表面プロファイルデータに対して、下記のフィルタ処理を施す。
  Flatten:3次
  Planefit:MD方向のみ3次
 次に、フィルタ処理後の2D表面プロファイルデータのMD方向に高速フーリエ変換(Fast Fourier Transform:FFT)を512lineそれぞれで施し、512本のパワースペクトル密度(Power Spectrum Density:PSD)を取得する。次に、取得したMD方向の512本のPSDを波長ごとに平均化し、MD方向の1本の平均化されたPSD(以下「PSDMD」または「PSD(k)MD」という。)を得る。なお、MD方向におけるPSDの平均化には、以下の式(1)を用いる。
Figure JPOXMLDOC01-appb-M000001
 PSD:パワースペクトル密度(nm3
 z(n):n番目の点での表面プロファイルデータ
(nm)
 d:分解能(nm) =L/N
 L:X軸方向(もしくはY軸方向)における測定範囲(30μm)
 N:X軸方向におけるポイント数(512ポイント)
 i:虚数単位
 e:ネイピア数
 Average:Y軸方向(もしくはX軸方向)における平均化操作
 n:変数(0からN-1まで)
 k:波数(0からN-1まで)
 なお、X軸方向がMD方向(長手方向)に対応する。
ここまでで得られた各波長におけるPSDの値のうち、波長5μm以下のPSD値を積算したものを採用する。
 磁性層13の平均厚みの上限値は、好ましくは90nm以下、特に好ましくは80nm以下、より好ましくは70nm以下、さらにより好ましくは50nm以下である。磁性層13の平均厚みの上限値が90nm以下であると、記録ヘッドとしてはリング型ヘッドを用いた場合に、磁性層13の厚み方向に均一に磁化を記録できるため、電磁変換特性を向上することができる。また、磁性層13の平均厚みの上限値が90nm以下であると、データ信号の再生波形における孤立波形の半値幅を狭くして(例えば200nm以下として)、データ信号の再生波形のピークを鋭くすることができる。これにより、データ信号の読み取り精度が向上するので、記録トラック数を増加させてデータの記録密度を向上させることができる。
 磁性層13の平均厚みの下限値は、好ましくは35nm以上である。磁性層13の平均厚みの上限値が35nm以上であると、再生ヘッドとしてはMR型ヘッドを用いた場合に、出力を確保できるため、電磁変換特性を向上することができる。
 磁性層13の平均厚みは以下のようにして求められる。まず、磁気記録媒体10の磁性層13の表面13Sおよびバック層14の表面14Sにカーボン膜を蒸着法により形成したのち、磁性層13の表面13Sを覆うカーボン膜の上にタングステン薄膜を蒸着法によりさらに形成する。これらのカーボン膜およびタングステン膜は、後述の薄片化処理においてサンプルを保護するものである。
 次に、磁気記録媒体10をFIB(Focused Ion Beam)法等により加工して薄片化を行う。FIB法を使用する場合には、後述の断面のTEM像を観察する前処理として、保護膜としてカーボン膜及びタングステン薄膜を形成する。当該カーボン膜は蒸着法により磁気記録媒体10の磁性層側表面及びバック層側表面に形成され、そして、当該タングステン薄膜は蒸着法又はスパッタリング法により磁性層側表面にさらに形成される。当該薄片化は磁気記録媒体10の長さ方向(長手方向)に沿って行われる。すなわち、当該薄片化によって、磁気記録媒体10の長手方向及び厚み方向の両方に平行な断面が形成される。得られた薄片化サンプルの前記断面を、透過型電子顕微鏡(Transmission Electron Microscope:TEM)により、下記の条件で観察し、TEM像を得る。なお、装置の種類に応じて、倍率及び加速電圧は適宜調整されてよい。
装置:TEM(日立製作所製H9000NAR)
加速電圧:300kV
倍率:100,000倍
 次に、得られたTEM像を用い、磁気記録媒体10の長手方向の少なくとも10点以上の位置で磁性層13の厚みを測定する。得られた測定値を単純に平均(算術平均)した平均値を磁性層13の平均厚みとする。なお、前記測定が行われる位置は、試験片から無作為に選ばれるものとする。
(磁性粉)
 磁性粉は、例えば、ε酸化鉄を含有するナノ粒子(以下「ε酸化鉄粒子」という。)の粉末を含んでいる。ε酸化鉄粒子は微粒子でも高保磁力を得ることができる。ε酸化鉄粒子に含まれるε酸化鉄は、磁気記録媒体10の厚み方向(垂直方向)に優先的に結晶配向していることが好ましい。
 図2は、磁性層13に含まれるε酸化鉄粒子20の断面構造の一例を模式的に表す断面図である。図2に示したように、ε酸化鉄粒子20は、球状もしくはほぼ球状を有しているか、または立方体状もしくはほぼ立方体状を有している。ε酸化鉄粒子20が上記のような形状を有しているので、磁性粒子としてε酸化鉄粒子20を用いた場合、磁性粒子として六角板状のバリウムフェライト粒子を用いた場合に比べて、磁気記録媒体10の厚み方向における粒子同士の接触面積を低減し、粒子同士の凝集を抑制することができる。したがって、磁性粉の分散性を高め、より良好なSNR(Signal-to-Noise Ratio)を得ることができる。
 ε酸化鉄粒子20は、例えばコアシェル型構造を有する。具体的には、ε酸化鉄粒子20は、図2に示したように、コア部21と、このコア部21の周囲に設けられた2層構造のシェル部22とを備える。2層構造のシェル部22は、コア部21上に設けられた第1シェル部22aと、第1シェル部22a上に設けられた第2シェル部22bとを有する。
 ε酸化鉄粒子20におけるコア部21は、ε酸化鉄を含んでいる。コア部21に含まれるε酸化鉄は、ε-Fe23結晶を主相とするものが好ましく、単相のε-Fe23からなるものがより好ましい。
 第1シェル部22aは、コア部21の周囲のうちの少なくとも一部を覆っている。具体的には、第1シェル部22aは、コア部21の周囲を部分的に覆っていてもよいし、コア部21の周囲全体を覆っていてもよい。コア部21と第1シェル部22aの交換結合を十分なものとし、磁気特性を向上する観点からすると、コア部21の表面全体を覆っていることが好ましい。
 第1シェル部22aは、いわゆる軟磁性層であり、例えば、α-Fe、Ni-Fe合金またはFe-Si-Al合金等の軟磁性体を含む。α-Feは、コア部21に含まれるε酸化鉄を還元することにより得られるものであってもよい。
 第2シェル部22bは、酸化防止層としての酸化被膜である。第2シェル部22bは、α酸化鉄、酸化アルミニウムまたは酸化ケイ素を含む。α酸化鉄は、例えばFe34、Fe23およびFeOのうちの少なくとも1種の酸化鉄を含んでいる。第1シェル部22aがα-Fe(軟磁性体)を含む場合には、α酸化鉄は、第1シェル部22aに含まれるα-Feを酸化することにより得られるものであってもよい。
 ε酸化鉄粒子20が、上述のように第1シェル部22aを有することで、熱安定性を確保するためにコア部21単体の保磁力Hcを大きな値に保ちつつ、ε酸化鉄粒子(コアシェル粒子)20全体としての保磁力Hcを記録に適した保磁力Hcに調整できる。また、ε酸化鉄粒子20が、上述のように第2シェル部22bを有することで、磁気記録媒体10の製造工程およびその工程前において、ε酸化鉄粒子20が空気中に暴露されて粒子表面に錆び等が発生することによりε酸化鉄粒子20の特性が低下するのを抑制することができる。したがって、第1シェル部22aを第2シェル部22bにより覆うことで、磁気記録媒体10の特性劣化を抑制することができる。
 磁性粉の平均粒子サイズ(平均最大粒子サイズ)は、好ましくは25nm以下、より好ましくは8nm以上22nm以下、さらにより好ましくは12nm以上22nm以下である。磁気記録媒体10では、記録波長の1/2のサイズの領域が実際の磁化領域となる。このため、磁性粉の平均粒子サイズを最短記録波長の半分以下に設定することで、良好なS/Nを得ることができる。したがって、磁性粉の平均粒子サイズが22nm以下であると、高記録密度の磁気記録媒体10(例えば50nm以下の最短記録波長で信号を記録可能に構成された磁気記録媒体10)において、良好な電磁変換特性(例えばSNR)を得ることができる。一方、磁性粉の平均粒子サイズが8nm以上であると、磁性粉の分散性がより向上し、より優れた電磁変換特性(例えばSNR)を得ることができる。
 磁性粉の平均アスペクト比は、好ましくは1.0以上3.0以下、より好ましくは1.0以上2.8以下、さらにより好ましくは1.0以上2.0以下である。磁性粉の平均アスペクト比が1以上3.0以下の範囲内であると、磁性粉の凝集を抑制することができると共に、磁性層13の形成工程において磁性粉を垂直配向させる際に、磁性粉に加わる抵抗を抑制することができる。したがって、磁性粉の垂直配向性を向上することができる。
 上記の磁性粉の平均粒子サイズおよび平均アスペクト比は、以下のようにして求められる。まず、測定対象となる磁気記録媒体10をFIB(Focused Ion Beam)法等により加工して薄片化を行う。薄片化は磁気テープの長さ方向(長手方向)に沿うかたちで行う。すなわち、この薄片化によって、磁気記録媒体10の長手方向および厚み方向の双方に平行な断面が形成される。得られた薄片サンプルについて、透過電子顕微鏡(日立ハイテクノロジーズ製 H-9500)を用いて、加速電圧:200kV、総合倍率500,000倍で磁性層13の厚み方向に対して磁性層13全体が含まれるように断面観察を行い、TEM写真を撮影する。次に、撮影したTEM写真から50個の粒子を無作為に選び出し、各粒子の長軸長DLと短軸長DSとを測定する。ここで、長軸長DLとは、各粒子の輪郭に接するように、あらゆる角度から引いた2本の平行線間の距離のうち最大のもの(いわゆる最大フェレ径)を意味する。一方、短軸長DSとは、粒子の長軸長DLと直交する方向における粒子の長さのうち最大のものを意味する。
 続いて、測定した50個の粒子の長軸長DLを単純に平均(算術平均)して平均長軸長DLaveを求める。このようにして求めた平均長軸長DLaveを磁性粉の平均粒子サイズとする。また、測定した50個の粒子の短軸長DSを単純に平均(算術平均)して平均短軸長DSaveを求める。そして、平均長軸長DLaveおよび平均短軸長DSaveから粒子の平均アスペクト比(DLave/DSave)を求める。
 磁性粉の平均粒子体積は、好ましくは2300nm3以下、より好ましくは2200nm3以下、より好ましくは2100nm3以下、より好ましくは1950nm3以下、より好ましくは1600nm3以下、さらにより好ましくは1300nm3以下である。磁性粉の平均粒子体積が2300nm3以下であると、データ信号の再生波形における孤立波形の半値幅を狭くして(200nm以下)、データ信号の再生波形のピークを鋭くすることができる。これにより、データ信号の読み取り精度が向上するため、記録トラック数を増加させてデータの記録密度を向上させることができる(詳細は後述)。なお、磁性粉の平均粒子体積は、小さければ小さいほど良いので、体積の下限値については特に限定されないが、例えば、下限値は、800nm3以上とされる。
 ε酸化鉄粒子20が球状またはほぼ球状を有している場合には、磁性粉の平均粒子体積は以下のようにして求められる。まず、上記の磁性粉の平均粒子サイズの算出方法と同様にして、平均長軸長DLaveを求める。次に、以下の式により、磁性粉の平均体積Vを求める。
V=(π/6)×(DLave)3
(結着剤)
 結着剤としては、ポリウレタン系樹脂、塩化ビニル系樹脂等に架橋反応を付与した構造の樹脂が好ましい。しかしながら結着剤はこれらに限定されるものではなく、磁気記録媒体10に対して要求される物性等に応じて、その他の樹脂を適宜配合してもよい。配合する樹脂としては、通常、塗布型の磁気記録媒体10において一般的に用いられる樹脂であれば、特に限定されない。
 例えば、ポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニル共重合体、メタクリル酸エステル-エチレン共重合体、ポリ弗化ビニル、塩化ビニリデン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン共重合体、ポリアミド樹脂、ポリビニルブチラール、セルロース誘導体(セルロースアセテートブチレート、セルロースダイアセテート、セルローストリアセテート、セルロースプロピオネート、ニトロセルロース)、スチレンブタジエン共重合体、ポリエステル樹脂、アミノ樹脂、合成ゴム等が挙げられる。
 また、熱硬化性樹脂、または反応型樹脂の例としては、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、シリコーン樹脂、ポリアミン樹脂、尿素ホルムアルデヒド樹脂等が挙げられる。
 また、上述した各結着剤には、磁性粉の分散性を向上させる目的で、-SO3M、-OSO3M、-COOM、P=O(OM)2等の極性官能基が導入されていてもよい。ここで、上記化学式中のMは、水素原子、またはリチウム、カリウム、ナトリウム等のアルカリ金属である。
 さらに、極性官能基としては、-NR1R2、-NR1R2R3+-の末端基を有する側鎖型のもの、>NR1R2+-の主鎖型のものが挙げられる。ここで、上記式中のR1、R2、R3は、水素原子、または炭化水素基であり、X-は弗素、塩素、臭素、ヨウ素等のハロゲン元素イオン、または無機もしくは有機イオンである。また、極性官能基としては、-OH、-SH、-CN、エポキシ基等も挙げられる。
(潤滑剤)
 磁性層13に含まれる潤滑剤は、例えば脂肪酸および脂肪酸エステルを含有している。潤滑剤に含有される脂肪酸は、例えば下記の一般式<1>により示される化合物および一般式<2>により示される化合物のうちの少なくとも一方を含むことが好ましい。また、潤滑剤に含有される脂肪酸エステルは、下記の一般式<3>により示される化合物および一般式<4>により示される化合物のうちの少なくとも一方を含むことが好ましい。潤滑剤が、一般式<1>により示される化合物および一般式<3>により示される化合物の2種を含むことにより、一般式<2>により示される化合物および一般式<3>により示される化合物の2種を含むことにより、一般式<1>により示される化合物および一般式<4>により示される化合物の2種を含むことにより、一般式<2>により示される化合物および一般式<4>により示される化合物の2種を含むことにより、一般式<1>により示される化合物、一般式<2>により示される化合物および一般式<3>により示される化合物の3種を含むことにより、一般式<1>により示される化合物、一般式<2>により示される化合物および一般式<4>により示される化合物の3種を含むことにより、一般式<1>により示される化合物、一般式<3>により示される化合物および一般式<4>により示される化合物の3種を含むことにより、一般式<2>により示される化合物、一般式<3>により示される化合物および一般式<4>により示される化合物の3種を含むことにより、または、一般式<1>により示される化合物、一般式<2>により示される化合物、一般式<3>により示される化合物および一般式<4>により示される化合物の4種を含むことにより、磁気記録媒体10における繰り返しの記録又は再生による動摩擦係数の増加を抑制することができる。その結果、磁気記録媒体10の走行性をさらに向上させることができる。
CH3(CH2kCOOH ・・・<1>
(但し、一般式<1>において、kは14以上22以下の範囲、より好ましくは14以上18以下の範囲から選ばれる整数である。)
CH3(CH2nCH=CH(CH2mCOOH ・・・<2>
(但し、一般式<2>において、nとmとの和は12以上20以下の範囲、より好ましくは14以上18以下の範囲から選ばれる整数である。)
CH3(CH2pCOO(CH2qCH3 ・・・<3>
(但し、一般式<3>において、pは14以上22以下、より好ましくは14以上18以下の範囲から選ばれる整数であり、且つ、qは2以上5以下の範囲、より好ましくは2以上4以下の範囲から選ばれる整数である。)
CH3(CH2pCOO-(CH2qCH(CH32…<4>
(但し、前記一般式<2>において、pは14以上22以下の範囲から選ばれる整数であり、qは1以上3以下の範囲から選ばれる整数である。)
(添加剤)
 磁性層13は、非磁性補強粒子として、酸化アルミニウム(α、βまたはγアルミナ)、酸化クロム、酸化珪素、ダイヤモンド、ガーネット、エメリー、窒化ホウ素、チタンカーバイト、炭化珪素、炭化チタン、酸化チタン(ルチル型またはアナターゼ型の酸化チタン)等をさらに含んでいてもよい。
(下地層12)
 下地層12は、非磁性粉および結着剤を含む非磁性層である。下地層12が、必要に応じて、潤滑剤、導電性粒子、硬化剤および防錆剤等のうちの少なくとも1種の添加剤をさらに含んでいてもよい。また、下地層12は、複数層が積層されてなる多層構造を有していてもよい。下地層12の平均厚みは、好ましくは0.4μm以上1.4μm以下、より好ましくは0.6μm以上1.2μm以下である。
 なお、下地層12の平均厚みは、例えば次のように求められる。まず、1/2インチ幅の磁気記録媒体10を準備し、それを250mmの長さに切り出し、サンプルを作製する。続いて、サンプルの磁気記録媒体10について、下地層12および磁性層13を基体11から剥がす。次に、測定装置としてミツトヨ(Mitutoyo)社製レーザーホロゲージ(LGH-110C)を用い、基体11から剥がした下地層12と磁性層13との積層体の厚みを、5点以上の位置で測定する。そののち、それらの測定値を単純平均(算術平均)し、下地層12と磁性層13との積層体の平均厚みを算出する。なお、測定位置は、サンプルから無作為に選ばれるものとする。最後に、その積層体の平均厚みから、上述のようにTEMを用いて測定した磁性層13の平均厚みを差し引くことにより、下地層12の平均厚みを求める。
 下地層12は、細孔を有していてよく、すなわち、下地層12は、多数の細孔が設けられていてもよい。下地層12の細孔は、例えば磁性層13に細孔(孔部)を形成することに伴い形成されてよく、特には、磁気記録媒体10のバック層14の表面14Sに設けられた多数の突部を磁性層側表面に押し当てることによって形成されうる。すなわち、突部の形に対応する凹部が磁性層13の表面13Sに形成されることによって、磁性層13および下地層12に細孔がそれぞれ形成されうる。また、磁性層形成用塗料の乾燥工程で溶剤が揮発することに伴い細孔が形成されてもよい。また、磁性層13を形成するために磁性層形成用塗料を下地層12の表面に塗布した際に磁性層形成用塗料中の溶剤が下層を塗布乾燥させた際に形成された下地層12の細孔を通り、下地層12内に浸透しうる。そののち磁性層13の乾燥工程において下地層12内に浸透した溶剤が揮発する際に、下地層12内に浸透した溶剤が下地層12から磁性層13の表面13Sへ移動していくことによって細孔が形成されてもよい。このように形成された細孔は、例えば磁性層13と下地層12とを連通しているものでありうる。磁性層形成用塗料の固形分若しくは溶剤の種類及び/又は磁性層形成用塗料の乾燥条件を変更することによって、細孔の平均直径を調整することが出来る。磁性層13および下地層12の両方に細孔が形成されていることによって、良好な走行安定性のために特に適した量の潤滑剤が磁性層側表面に現れ、繰り返しの記録又は再生による動摩擦係数の増加をさらに抑制することができる。
 繰り返し記録または再生後における動摩擦係数の低下を抑制する観点からすると、下地層12の孔部と磁性層13の孔部とがつながっていることが好ましい。ここで、下地層12の孔部と磁性層13の孔部とがつながっているとは、下地層12の多数の孔部のうちの一部のものと、磁性層13の多数の孔部のうちの一部のものとがつながっている状態を含むものとする。
 磁性層13の表面13Sに対する潤滑剤の供給性を向上する観点からすると、多数の孔部は、磁性層13の表面13Sに対して垂直方向に延設されているものを含んでいることが好ましい。また、磁性層13の表面13Sに対する潤滑剤の供給性を向上する観点からすると、磁性層13の表面13Sに対して垂直方向に延設された下地層12の孔部と、磁性層13の表面13Sに対して垂直方向に延設された磁性層13の孔部とがつながっていることが好ましい。
(下地層12の非磁性粉)
 非磁性粉は、例えば無機粒子粉または有機粒子粉の少なくとも1種を含む。また、非磁性粉は、カーボンブラック等の炭素粉を含んでいてもよい。なお、1種の非磁性粉を単独で用いてもよいし、2種以上の非磁性粉を組み合わせて用いてもよい。無機粒子は、例えば、金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物または金属硫化物等を含む。非磁性粉の形状としては、例えば、針状、球状、立方体状、板状等の各種形状が挙げられるが、これに限定されるものではない。
(下地層12の結着剤)
 下地層12における結着剤は、上述の磁性層13と同様である。
(バック層14)
 バック層14は、例えば結着剤および非磁性粉を含んでいる。バック層14が、必要に応じて潤滑剤、硬化剤および帯電防止剤等のうちの少なくとも1種の添加剤をさらに含んでいてもよい。バック層14における結着剤および非磁性粉は、上述の下地層12における結着剤および非磁性粉と同様である。
 バック層14における非磁性粉の平均粒子サイズは、好ましくは10nm以上150nm以下、より好ましくは15nm以上110nm以下である。バック層14の非磁性粉の平均粒子サイズは、上記の磁性層13における磁性粉の平均粒子サイズと同様にして求められる。非磁性粉が、2以上の粒度分布を有するものを含んでいてもよい。
 バック層14の平均厚みの上限値は、好ましくは0.6μm以下であり、特に好ましくは0.5μm以下である。バック層14の平均厚みの上限値が0.6μm以下であると、磁気記録媒体10の平均厚みが5.6μm以下である場合でも、下地層12や基体11の厚みを厚く保つことができるので、磁気記録媒体10の記録再生装置内での走行安定性を保つことができる。バック層14の平均厚みの下限値は特に限定されるものではないが、例えば0.2μm以上であり、特に好ましくは0.3μm以上である。
 バック層14の平均厚みは以下のようにして求められる。まず、1/2インチ幅の磁気記録媒体10を準備し、それを250mmの長さに切り出し、サンプルを作製する。次に、測定装置としてミツトヨ(Mitutoyo)社製レーザーホロゲージ(LGH-110C)を用いて、サンプルである磁気記録媒体10の厚みを5点以上で測定し、それらの測定値を単純に平均(算術平均)して、磁気記録媒体10の平均厚みtT[μm]を算出する。なお、測定位置は、サンプルから無作為に選ばれるものとする。続いて、サンプルの磁気記録媒体10からバック層14をMEK(メチルエチルケトン)または希塩酸等の溶剤で除去する。そののち、再び上記のレーザーホロゲージを用い、磁気記録媒体10からバック層14を除去したサンプルの厚みを5点以上で測定し、それらの測定値を単純に平均(算術平均)してバック層14を除去した磁気記録媒体10の平均厚みtB[μm]を算出する。なお、測定位置は、サンプルから無作為に選ばれるものとする。最後に、以下の式よりバック層14の平均厚みtb[μm]を求める。
b[μm]=tT[μm]-tB[μm]
 バック層14は、多数の突部が設けられた表面を有している。多数の突部は、磁気記録媒体10をロール状に巻き取った状態において、磁性層13の表面に多数の孔部を形成するためのものである。多数の孔部は、例えば、バック層14の表面から突出された多数の非磁性粒子により構成されている。
 ここでは、バック層14の表面に設けられた多数の突部を、磁性層13の表面に転写することにより磁性層13の表面に多数の孔部を形成する場合について説明したが、多数の孔部の形成方法はこれに限定されるものではない。例えば、磁性層形成用塗料に含まれる溶剤の種類および磁性層形成用塗料の乾燥条件等を調整することで、磁性層13の表面に多数の孔部を形成するようにしてもよい。
[磁気記録媒体の平均厚み]
 磁気記録媒体10の平均厚み(平均全厚)の上限値は、好ましくは5.6μm以下、より好ましくは5.0μm以下、特に好ましくは4.6μm以下、さらにより好ましくは4.4μm以下である。磁気記録媒体10の平均厚みが5.6μm以下であると、1データカートリッジ内に記録できる記録容量を一般的な磁気記録媒体よりも高めることができる。磁気記録媒体10の平均厚みの下限値は特に限定されるものではないが、例えば3.5μm以上である。
 磁気記録媒体10の平均厚みtTは以下のようにして求められる。まず、1/2インチ幅の磁気記録媒体10を準備し、それを250mmの長さに切り出し、サンプルを作製する。次に、測定装置としてMitutoyo社製レーザーホロゲージ(LGH-110C)を用いて、サンプルの厚みを5点以上の位置で測定し、それらの測定値を単純に平均(算術平均)して、平均値tT[μm]を算出する。なお、測定位置は、サンプルから無作為に選ばれるものとする。
(垂直方向における保磁力Hc1)
 垂直方向における保磁力Hc1の上限値が、3000Oe(エルステッド)以下、より好ましくは2900Oe以下、さらにより好ましくは2850Oe以下である。保磁力Hc1が大きいことは、熱擾乱および反磁界の影響を受けにくくなり好ましい。ただし、保磁力Hc1が3000Oeを超えると記録ヘッドでの飽和記録が困難となり、それによって記録できない部分が存在しノイズが増加し、結果として電磁変換特性(例えばC/N)が悪化してしまうおそれがある。
 垂直方向における保磁力Hc1の下限値が、好ましくは2200Oe以上、より好ましくは2400Oe以上、さらにより好ましくは2600Oe以上である。保磁力Hc1が2200Oe以上であると、熱擾乱の影響および反磁界の影響による、高温環境下における電磁変換特性(例えばC/N)の低下を抑制することができる。
 上記の保磁力Hc1は以下のようにして求められる。磁気記録媒体10を3枚重ね合わせて両面テープで接着したのち、φ6.39mmのパンチで打ち抜くことにより測定サンプルを作成する。この際に、磁気記録媒体の長手方向(走行方向)が認識できるように、磁性を持たない任意のインクでマーキングを行う。そして、振動試料型磁力計(Vibrating Sample Magnetometer:VSM)を用いて磁気記録媒体10の長手方向(磁気記録媒体
10の走行方向)に対応する測定サンプル(磁気記録媒体10全体)のM-Hループを測定する。次に、アセトンまたはエタノール等を用いて塗膜(下地層12、磁性層13およびバック層14等)を払拭し、基体11のみを残す。そして、得られた基体11を両面テープで3枚重ね合わせて接着したのち、φ6.39mmのパンチで打ち抜くことによりバックグラウンド補正用のサンプル(以下、単に補正用サンプルという。)を得る。そののち、VSMを用いて基体11の垂直方向(磁気記録媒体10の厚み方向)に対応する補正用サンプル(基体11)のM-Hループを測定する。
 測定サンプル(磁気記録媒体10全体)のM-Hループおよび補正用サンプル(基体11)のM-Hループの測定においては、例えば東英工業製の好感度振動試料型磁力計「VSM-P7-15型」が用いられる。測定条件は、測定モード:フルループ、最大磁界:15kOe、磁界ステップ:40bit、Time constant of Locking amp:0.3sec、Waiting time:1sec、MH平均数:20とする。
 2つのM-Hループを得たのち、測定サンプル(磁気記録媒体10全体)のM-Hループから補正用サンプル(基体11)のM-Hループが差し引かれることで、バックグラウンド補正が行われ、バックグラウンド補正後のM-Hループが得られる。このバックグラウンド補正の計算には、「VSMP7-15型」に付属されている測定・解析プログラム
が用いられる。
 得られたバックグラウンド補正後のM-Hループから保磁力Hc1が求められる。なお、この計算には、「VSM-P7-15型」に付属されている測定・解析プログラムが用いられる。なお、上記のM-Hループの測定はいずれも、25℃にて行われるものとする。また、M-Hループを磁気記録媒体10の垂直方向に測定する際の"反磁界補正"は行わないものとする。
(長手方向における保磁力Hc2)
 磁気記録媒体10の長手方向における保磁力Hc2の上限値は、好ましくは2000Oe以下、より好ましくは1900Oe以下、さらにより好ましくは1800Oe以下である。長手方向における保磁力Hc2が2000Oe以下であると、記録ヘッドからの垂直方向の磁界により感度良く磁化が反応するため、良好な記録パターンを形成することができる。
 磁気記録媒体10の長手方向に測定した保磁力Hc2の下限値は、好ましくは1000Oe以上である。長手方向にける保磁力Hcの下限値が1000Oe以上であると、記録ヘッドからの漏れ磁束による減磁を抑制することができる。
 上記の保磁力Hc2は、測定サンプル全体およびバックグラウンド補正用のサンプルのM-Hループを磁気記録媒体10の長手方向(走行方向)に対応する方向に測定すること以外は、垂直方向における保磁力Hc1と同様にして求められる。
(Hc2/Hc1)
 垂直方向における保磁力Hc1に対する長手方向における保磁力Hc2の割合を表す比Hc2/Hc1が、Hc2/Hc1≦0.8、好ましくはHc2/Hc1≦0.75、より好ましくはHc2/Hc1≦0.7、さらにより好ましくはHc2/Hc1≦0.65、特に好ましくはHc2/Hc1≦0.6の関係を満たす。保磁力Hc1、Hc2がHc2/Hc1≦0.8の関係を満たすことで、磁性粉の垂直配向度を高めることができる。したがって、磁化遷移幅を低減し、かつ信号再生時に高出力の信号を得ることができるので、電磁変換特性(例えばC/N)を向上することができる。なお、上述したように、Hc2が小さいと、記録ヘッドからの垂直方向の磁界により感度良く磁化が反応するため、良好な記録パターンを形成することができる。
 比Hc2/Hc1がHc2/Hc1≦0.8である場合、磁性層13の平均厚みが90nm以下であることが特に有効である。磁性層13の平均厚みが90nmを超えると、記録ヘッドとしてリング型ヘッドを用いた場合に、磁性層13の下部領域(下地層12側の領域)が長手方向に磁化されてしまい、磁性層13を厚み方向に均一に磁化することができなくなるおそれがある。したがって、比Hc2/Hc1をHc2/Hc1≦0.8としても(すなわち、磁性粉の垂直配向度を高めても)、電磁変換特性(例えばC/N)を向上することができなくなるおそれがある。
 Hc2/Hc1の下限値は特に限定されるものではないが、例えば0.5≦Hc2/Hc1である。
 なお、Hc2/Hc1は磁性粉の垂直配向度を表しており、Hc2/Hc1が小さいほど磁性粉の垂直配向度が高くなる。以下に、本実施形態において、磁性粉の垂直配向度を示す指標としてHc2/Hc1を用いる理由について説明する。
 従来、一般的には磁性粉の垂直配向度を示す指標(パラメータ)としては、角形比SQ(=(Mr/Ms)×100、但し、Mr(emu):残留磁化、Ms(emu):飽和磁化)が用いられてきた。しかしながら、本発明者らの知見によれば、角形比SQという指標は、以下の理由により磁性粉の垂直配向度を示す指標としては適当でない。
(1)角形比SQは、磁性粉の保磁力Hcの値により変動してしまう。例えば、図5に示すように、磁性粉の保磁力Hcが大きくなると、見かけ上、角形比SQも大きい値となる。
(2)角形比SQは、過分散によるM-Hループの歪みの影響を受ける。
 そこで、本実施形態においては、より適切に磁性粉の配向度を示す指標として、Hc2/Hc1を用いる。保磁力Hc1、Hc2は磁性粉の配向方向によって単純に変化するため、Hc2/Hc1が磁性粉の配向度を示す指標としてより適切である。
(角形比)
 磁気記録媒体10の垂直方向(厚み方向)における角形比S1は、例えば65%以上であり、好ましくは70%以上、より好ましくは75%以上、さらにより好ましくは80%以上、特に好ましくは85%以上である。角形比S1が65%以上であると、磁性粉の垂直配向性が十分に高くなるため、より優れたSNRを得ることができる。
 角形比S1は以下のようにして求められる。磁気記録媒体10を3枚重ね合わせて両面テープで接着したのち、φ6.39mmのパンチで打ち抜くことにより測定サンプルを作成する。この際に、磁気記録媒体の長手方向(走行方向)が認識できるように、磁性を持たない任意のインクでマーキングを行う。そして、振動試料型磁力計(Vibrating Sample Magnetometer:VSM)を用いて磁気記録媒体10の長手方向(磁気記録媒体10の走行方向)に対応する測定サンプル(磁気記録媒体10全体)のM-Hループを測定する。次に、アセトンまたはエタノール等を用いて塗膜(下地層12、磁性層13およびバック層14等)を払拭し、基体11のみを残す。そして、得られた基体11を両面テープで3枚重ね合わせて接着したのち、φ6.39mmのパンチで打ち抜くことによりバックグラウンド補正用のサンプル(以下、単に補正用サンプルという。)を得る。そののち、VSMを用いて基体11の長手方向(磁気記録媒体10の走行方向)に対応する補正用サンプル(基体11)のM-Hループを測定する。
 測定サンプル(磁気記録媒体10全体)のM-Hループおよび補正用サンプル(基体11)のM-Hループの測定においては、例えば東英工業製の好感度振動試料型磁力計「VSM-P7-15型」が用いられる。測定条件は、測定モード:フルループ、最大磁界:15kOe、磁界ステップ:40bit、Time constant of Locking amp:0.3sec、Waiting time:1sec、MH平均数:20とする。
 2つのM-Hループを得たのち、測定サンプル(磁気記録媒体10全体)のM-Hループから補正用サンプル(基体11)のM-Hループが差し引かれることで、バックグラウンド補正が行われ、バックグラウンド補正後のM-Hループが得られる。このバックグラウンド補正の計算には、「VSMP7-15型」に付属されている測定・解析プログラムが用いられる。
 得られたバックグラウンド補正後のM-Hループの飽和磁化Ms(emu)および残留磁化Mr(emu)を以下の式に代入して、角形比S1(%)を計算する。
角形比S1(%)=(Mr/Ms)×100
なお、上記のM-Hループの測定はいずれも、25℃にて行われるものとする。また、M-Hループを磁気記録媒体10の垂直方向に測定する際の“反磁界補正”は行わないものとする。
 磁気記録媒体10の長手方向(走行方向)における角形比S2は、好ましくは35%以下、より好ましくは30%以下、さらにより好ましくは25%以下、特に好ましくは20%以下、最も好ましくは15%以下である。角形比S2が35%以下であると、磁性粉の垂直配向性が十分に高くなるため、より優れたSNRを得ることができる。
 角形比S2は、M-Hループを磁気記録媒体10および基体11の長手方向(走行方向)に測定すること以外は角形比S1と同様にして求められる。
(SFD)
 磁気記録媒体10のSFD(Switching Field Distribution)曲線において、メインピーク高さXと磁場ゼロ付近のサブピークの高さYとのピーク比X/Yは、好ましくは3.0以上であり、より好ましくは5.0以上、さらにより好ましくは7.0以上、特に好ましくは10.0以上、最も好ましくは20.0以上である(図3参照)。ピーク比X/Yが3.0以上であると、実際の記録に寄与するε酸化鉄粒子20の他にε酸化鉄特有の低保磁力成分(例えば軟磁性粒子や超常磁性粒子等)が磁性粉中に多く含まれることを抑制できる。したがって、記録ヘッドからの漏れ磁界により、隣接するトラックに記録された磁化信号が劣化することを抑制できるので、より優れたSNRを得ることができる。ピーク比X/Yの上限値は特に限定されるものではないが、例えば100以下である。
 上記のピーク比X/Yは、以下のようにして求められる。まず、上記の保磁力Hcの測定方法と同様にして、バックグラウンド補正後のM-Hループを得る。次に、得られたM-HループからSFDカーブを算出する。SFDカーブの算出には測定機に付属のプログラムを用いてもよいし、その他のプログラムを用いてもよい。算出したSFDカーブがY軸(dM/dH)を横切る点の絶対値を「Y」とし、M-Hループで言うところの保磁力Hc近傍に見られるメインピークの高さを「X」として、ピーク比X/Yを算出する。なお、M-Hループの測定は、上記の保磁力Hcの測定方法と同様に25℃にて行われるものとする。また、M-Hループを磁気記録媒体10の厚み方向(垂直方向)に測定する際の“反磁界補正”は行わないものとする。また、使用するVSMの感度に合わせて、測定するサンプルを複数枚重ねてM-Hループを測定してもよい。
(活性化体積Vact)
 活性化体積Vactが、好ましくは8000nm3以下、より好ましくは6000nm3以下、さらにより好ましくは5000nm3以下、特に好ましくは4000nm3以下、最も好ましくは3000nm3以下である。活性化体積Vactが8000nm3以下であると、磁性粉の分散状態が良好になるため、ビット反転領域を急峻にすることができ、記録ヘッドからの漏れ磁界により、隣接するトラックに記録された磁化信号が劣化することを抑制できる。したがって、より優れたSNRが得られる。
 上記の活性化体積Vactは、Street&Woolleyにより導出された下記の式により求められる。
Vact(nm3)=kB×T×Χirr/(μ0×Ms×S)
(但し、kB:ボルツマン定数(1.38×10-23J/K)、T:温度(K)、Χirr:非可逆磁化率、μ0:真空の透磁率、S:磁気粘性係数、Ms:飽和磁化(emu/cm3))
 上記式に代入される非可逆磁化率Χirr、飽和磁化Msおよび磁気粘性係数Sは、VSMを用いて以下のようにして求められる。VSMに用いる測定サンプルは、磁気記録媒体10を両面テープで3枚重ね合わされたものをφ6.39mmのパンチで打ち抜くことにより作製される。この際に、磁気記録媒体10の長手方向(走行方向)が認識できるように、磁性を持たない任意のインクでマーキングを行う。なお、VSMによる測定方向は、磁気記録媒体10の厚み方向(垂直方向)とする。また、VSMによる測定は、長尺状の磁気記録媒体10から切り出された測定サンプルに対して25℃にて行われるものとする。また、M-Hループを磁気記録媒体10の厚み方向(垂直方向)に測定する際の“反磁界補正”は行わないものとする。さらに、測定サンプル(磁気記録媒体10の全体)のM-Hループ、補正用サンプル(基体11)のM-Hループの測定においては、東英工業社製の高感度振動試料型磁力計「VSM-P7-15型」が用いられる。測定条件は、測定モード:フルループ、最大磁界:15kOe、磁界ステップ:40bit、Time constant of Locking amp:0.3sec、Waiting time:1sec、MH平均数:20とされる。
(非可逆磁化率Χirr)
 非可逆磁化率Χirrは、残留磁化曲線(DCD曲線)の傾きにおいて、残留保磁力Hr付近における傾きと定義される。まず、磁気記録媒体10全体に-1193kA/m(15kOe)の磁界を印加し、磁界をゼロに戻し残留磁化状態とする。その後、反対方向に約15.9kA/m(200Oe)の磁界を印加し再びゼロに戻し残留磁化量を測定する。その後も同様に、先ほどの印加磁界よりもさらに15.9kA/m大きい磁界を印加しゼロに戻す測定を繰り返し行い、印加磁界に対して残留磁化量をプロットしDCD曲線を測定する。得られたDCD曲線から、磁化量ゼロとなる点を残留保磁力Hrとし、さらにDCD曲線を微分し、各磁界におけるDCD曲線の傾きを求める。このDCD曲線の傾きにおいて、残留保磁力Hr付近の傾きがΧirrとなる。
(飽和磁化Ms)
 まず、上記の保磁力Hcの測定方法と同様にして、バックグラウンド補正後のM-Hループを得る。次に、得られたM-Hループの飽和磁化Ms(emu)の値と、測定サンプル中の磁性層13の体積(cm3)から、Ms(emu/cm3)を算出する。なお、磁性層13の体積は測定サンプルの面積に磁性層13の平均厚みを乗ずることにより求められる。磁性層13の体積の算出に必要な磁性層13の平均厚みの算出方法は、上述した通りである。
(磁気粘性係数S)
 まず、磁気記録媒体10(測定サンプル)全体に-1193kA/m(15kOe)の磁界を印加し、磁界をゼロに戻し残留磁化状態とする。そののち、反対方向に、DCD曲線より得られた残留保磁力Hrの値と同等の磁界を印加する。磁界を印加した状態で1000秒間、磁化量を一定の時間間隔で継続的に測定する。このようにして得られた、時間tと磁化量M(t)との関係を以下の式に照らし合わせて磁気粘性係数Sを算出する。
M(t)=M0+S×ln(t)
(但し、M(t):時間tの磁化量、M0:初期の磁化量、S:磁気粘性係数、ln(t):時間の自然対数)
(データバンドおよびサーボバンド)
 図4は、磁気記録媒体10を上方から見た模式図である。図4に示したように、磁性層13は、磁気記録媒体10の長手方向(X軸方向)に延在する複数のデータバンドDB(図4ではデータバンドDB0~DB3を示す)と、磁気記録媒体10の長手方向(X軸方向)に延在する延在する複数のサーボバンドSB(図4ではサーボバンドSB0~SB4を示す)とを有している。複数のデータバンドDBには、それぞれデータ信号が書き込まれるようになっており、複数のサーボバンドSBには、磁気ヘッドのトラッキング制御をするためのサーボ信号がそれぞれ書き込まれるようになっている。また、各データバンドDBは、幅方向(Y軸方向)において隣り合う複数のサーボバンドSBによって挟み込まれるように配置されている。
 磁性層13の表面13Sの面積Sに対するサーボバンドSの総面積SSBの割合RS(=(SSB/S)×100)の上限値は、高記録容量を確保する観点から、好ましくは4.0%以下、より好ましくは3.0%以下、さらにより好ましくは2.0%以下である。一方、磁性層13の表面の面積Sに対するサーボバンドSBの総面積SSBの割合RSの下限値は、5以上のサーボトラックを確保する観点から、好ましくは0.8%以上である。
 磁性層13の表面13Sの面積Sに対するサーボバンドSBの総面積SSBの割合RSは、例えば、磁気記録媒体10を、フェリコロイド現像液(株式会社シグマハイケミカル製、シグマ―カーQ)を用いて現像し、その後、現像した磁気記録媒体10を光学顕微鏡で観察することで測定することができる。光学顕微鏡の観察像から、サーボバンド幅WSBおよびサーボバンドSBの本数を測定する。次に、以下の式から割合RSを求める。
割合RS[%]=(((サーボバンド幅WSB)×(サーボバンド本数))/(磁気記録媒体10の幅))×100
 サーボバンドSBの数は、好ましくは5以上、より好ましくは5+4n(但し、nは正の整数である。)以上である。サーボバンドSBの数が5以上であると、磁気記録媒体10の幅方向の寸法変化によるサーボ信号への影響を抑制し、オフトラックが少ない安定した記録再生特性を確保できる。
 サーボバンド幅WSBの上限値は、高記録容量を確保する観点から、好ましくは95μm以下、より好ましくは60μm以下、さらにより好ましくは30μm以下である。サーボバンド幅WSBの下限値は、記録ヘッド製造の観点から、好ましくは10μm以上である。サーボバンド幅WSBの幅は以下のようにして求められる。まず、磁気記録媒体10を、フェリコロイド現像液(株式会社シグマハイケミカル製、シグマ―カーQ)を用いて現像する。次に、現像した磁気記録媒体10を光学顕微鏡で観察することでサーボバンド幅WSBの幅を測定することができる。
 図4に示したように、データバンドDBは、X軸方向に沿ってそれぞれ延在すると共にY軸方向において隣り合うように整列された複数の記録トラック5を形成可能である。データ信号は、この記録トラック5に沿って、記録トラック5内に記録される。なお、本技術において、データバンドDBに記録されるデータ信号における長手方向の1ビット長(磁化反転間距離)は、典型的には48nm以下とされる。サーボバンドSBは、サーボ信号記録装置(不図示)によってサーボ信号が記録された所定パターンのサーボ信号記録パターン6を含んでいる。
 図5は、データバンドDBにおける記録トラック5を示す拡大図である。図5に示したように、各記録トラック5は、Y軸方向において所定の記録トラック幅Wdを有している。記録トラック幅Wdは、典型的には、3.0μm以下とされる。なお、このような記録トラック幅Wdは、例えば、磁気記録媒体10を、フェリコロイド現像液等の現像液を用いて現像したのち、現像した磁気記録媒体10を光学顕微鏡で観察することで測定することができる。
 1本のデータバンドDBに含まれる記録トラック5の本数は、例えば、1000本から2000本程度とされる。
 図6は、サーボバンドSBにおけるサーボ信号記録パターン6を示す拡大図である。図6に示すように、サーボ信号記録パターン6は、幅方向(Y軸方向)に対して所定のアジマス角αを持って傾斜する複数のストライプ7を含む。この複数のストライプ7は、幅方向(Y軸方向)に対して時計回りに傾斜する第1のストライプ群8と、幅方向に対して反時計回りに傾斜する第2のストライプ群9とに分類される。なお、このようなストライプ7の形状などは、例えば、磁気記録媒体10を、フェリコロイド現像液等の現像液を用いて現像し、その後、現像した磁気記録媒体10を光学顕微鏡で観察することで測定することができる。
 図6には、サーボ信号記録パターン6上をサーボリードヘッドによってトレースされるラインであるサーボトレースラインTが破線により示されている。サーボトレースラインTは、長手方向(X軸方向)に沿って設定され、また、幅方向に所定の間隔Psを開けて設定される。
 1本のサーボバンドSBあたりのサーボトレースラインTの本数は、例えば、30本から60本程度とされる。
 隣接する2つのサーボトレースラインTの間隔Psは、記録トラック幅Wdの値と同じであり、例えば、2.0μm以下とされる。ここで、隣接する2つのサーボトレースラインTの間隔Psは、記録トラック幅Wdを決定付ける値とされている。つまり、サーボトレースラインTの間隔Psが狭められると、記録トラック幅Wdが小さくなり、1本のデータバンドDBに含まれる記録トラック5の本数が増える。結果として、データの記録容量が増えることになる(間隔Psが広くなる場合は、その逆)。したがって、記録容量の増加を図るには記録トラック幅Wdを小さくする必要があるが、サーボトレースラインTの間隔Psも狭められることになる結果、隣接するサーボトレースラインを正確にトレースすることが困難になる。そこで本実施形態では、後述するように、再生信号幅すなわちデータ信号の再生波形における孤立波形の半値幅を狭くすることで、記録トラック幅Wdの狭小化にも対応可能としている。
 磁気記録媒体10の記録トラック5に記録されたデータ信号の再生波形における孤立波形の半値幅PW50は、例えば200nm以下であり、175nm以下であることが好ましく、170nm以下であることがより好ましく、165nm以下であることがよりいっそう好ましい。
 なお、孤立波形の半値幅PW50は、例えば、以下のようにして求めることができる。まず、デジタル・ストレージ・オシロスコープを用いて、例えば、サンプリング:500Ms/s(2nsec/point)、サンプリング数:50000ポイントの条件で、複数の孤立波形の平均化(同期加算平均)を行う。そして、得られた孤立再生波形から孤立波形の半値幅を算出する。なお、同期加算は、波形におけるピーク位置において位置合わせが行われる。
 また、サーボ信号を読み取るサーボリードヘッドとして、TMR素子(TMR:Tunnel Magneto Resistive)を含むTMRヘッドが用いられる。このTMRヘッドにおけるサーボ信号の再生トラック幅(Y軸方向:磁気記録媒体10の幅方向)は、48nmである。また、ここで使用したTMRヘッドにおける2つのシールド間のスペーシング(X軸方向:磁気記録媒体10の搬送方向)は40nmとし、TMRヘッドにおけるバイアス電流は2mA未満とする。また、磁気記録媒体10の搬送速度は2m/sとする。
[1-2 磁気記録媒体10の製造方法]
 次に、上述の構成を有する磁気記録媒体10の製造方法について説明する。まず、非磁性粉、結着剤および潤滑剤等を溶剤に混練、分散させることにより、下地層形成用塗料を調製する。次に、磁性粉、結着剤および潤滑剤等を溶剤に混練、分散させることにより、磁性層形成用塗料を調製する。次に、結着剤および非磁性粉等を溶剤に混練、分散させることにより、バック層形成用塗料を調製する。磁性層形成用塗料、下地層形成用塗料およびバック層形成用塗料の調製には、例えば、以下の溶剤、分散装置および混練装置を用いることができる。
 上述の塗料調製に用いられる溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、乳酸エチル、エチレングリコールアセテート等のエステル系溶媒、ジエチレングリコールジメチルエーテル、2-エトキシエタノール、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、メチレンクロライド、エチレンクロライド、四塩化炭素、クロロホルム、クロロベンゼン等のハロゲン化炭化水素系溶媒等が挙げられる。これらは単独で用いてもよく、適宜混合して用いてもよい。
 上述の塗料調製に用いられる混練装置としては、例えば、連続二軸混練機、多段階で希釈可能な連続二軸混練機、ニーダー、加圧ニーダー、ロールニーダー等の混練装置を用いることができるが、特にこれらの装置に限定されるものではない。また、上述の塗料調製に用いられる分散装置としては、例えば、ロールミル、ボールミル、横型サンドミル、縦型サンドミル、スパイクミル、ピンミル、タワーミル、パールミル(例えばアイリッヒ社製「DCPミル」等)、ホモジナイザー、超音波分散機等の分散装置を用いることができるが、特にこれらの装置に限定されるものではない。
 次に、下地層形成用塗料を基体11の一方の主面11Aに塗布して乾燥させることにより、下地層12を形成する。続いて、この下地層12上に磁性層形成用塗料を塗布して乾燥させることにより、磁性層13を下地層12上に形成する。なお、乾燥の際に、例えばソレノイドコイルにより、磁性粉を基体11の厚み方向に磁場配向させることが好ましい。また、乾燥の際に、例えばソレノイドコイルにより、磁性粉を基体11の走行方向(長手方向)に磁場配向させたのちに、基体11の厚み方向に磁場配向させるようにしてもよい。このような磁場配向処理をすることで、磁性粉の垂直配向度(すなわち角形比S1)を向上することができる。磁性層13の形成後、バック層形成用塗料を基体11の他方の主面11Bに塗布して乾燥させることにより、バック層14を形成する。これにより、磁気記録媒体10が得られる。
 角形比S1、S2や比Hc2/Hc1は、例えば、磁性層形成用塗料の塗膜に印加される磁場の強度、磁性層形成用塗料中における固形分の濃度、磁性層形成用塗料の塗膜の乾燥条件(乾燥温度および乾燥時間)を調整することにより所望の値に設定される。塗膜に印加される磁場の強度は、磁性粉の保磁力の2倍以上であることが好ましい。角形比S1をさらに高めるためには(すなわち角形比S2をさらに低めるためには)、磁性層形成用塗料中における磁性粉の分散状態を向上させることが好ましい。また、角形比S1をさらに高めるためには、磁性粉を磁場配向させるための配向装置に磁性層形成用塗料が入る前の段階で、磁性粉を磁化させておくことも有効である。なお、上記の角形比S1、S2の調整方法は単独で使用されてもよいし、2以上組み合わされて使用されてもよい。
 その後、得られた磁気記録媒体10にカレンダー処理を行い、磁性層13の表面13Sを平滑化する。次に、カレンダー処理が施された磁気記録媒体10をロール状に巻き取ったのち、この状態で磁気記録媒体10に加熱処理を行うことにより、バック層14の表面14Sの多数の突部を磁性層13の表面13Sに転写する。これにより、磁性層13の表面13Sに多数の孔部が形成される。
 加熱処理の温度は、50℃以上80℃以下であることが好ましい。加熱処理の温度が50℃以上であると、良好な転写性を得ることができる。一方、加熱処理の温度が80℃以下であると、細孔量が多くなりすぎ、磁性層13の表面13Sの潤滑剤が過多になってしまうおそれがある。ここで、加熱処理の温度は、磁気記録媒体10を保持する雰囲気の温度である。
 加熱処理の時間は、15時間以上40時間以下であることが好ましい。加熱処理の時間が15時間以上であると、良好な転写性を得ることができる。一方、加熱処理の時間が40時間以下であると、生産性の低下を抑制することができる。
 また、加熱処理の際に磁気記録媒体10に対して付与する圧力の範囲は150kg/cm以上400kg/cm以下であるとよい。
  最後に、磁気記録媒体10を所定の幅(例えば1/2インチ幅)に裁断する。以上により、目的とする磁気記録媒体10が得られる。
[1-3 記録再生装置30の構成]
 次に、図7を参照して、上述の磁気記録媒体10への情報の記録、および上述の磁気記録媒体10からの情報の再生を行う記録再生装置30の構成について説明する。
 記録再生装置30は、磁気記録媒体10の長手方向に加わるテンションを調整可能な構成を有している。また、記録再生装置30は、磁気記録媒体カートリッジ10Aを装填可能な構成を有している。ここでは、説明を容易とするために、記録再生装置30が1つの磁気記録媒体カートリッジ10Aを装填可能な構成を有している場合について説明する。但し、本開示では、記録再生装置30が、複数の磁気記録媒体カートリッジ10Aを装填可能な構成を有していてもよい。先に述べたように、磁気記録媒体10はテープ状であり、例えば長尺状の磁気記録テープであってもよい。磁気記録媒体10は、例えば磁気記録媒体カートリッジ10Aの内部のリールに巻き付けられた状態で筐体に収容されていてよい。磁気記録媒体10は、記録再生の際に長手方向に走行されるようになっている。また、磁気記録媒体10は、好ましくは100nm以下、より好ましくは75nm以下、さらにより好ましくは60nm以下、特に好ましくは50nm以下の最短記録波長で信号を記録可能に構成されていてよく、例えば最短記録波長が上記範囲内にある記録再生装置30に用いられうる。記録トラック幅は、例えば2μm以下でありうる。
 記録再生装置30は、例えばネットワーク43を介してサーバ41およびパーソナルコンピュータ(以下「PC」という。)42等の情報処理装置に接続されており、これらの情報処理装置から供給されたデータを磁気記録媒体カートリッジ10Aに記録可能に構成されている。
 記録再生装置30は、図7に示したように、スピンドル31と、リール32と、駆動装置33と、駆動装置34と、複数のガイドローラ35と、ヘッドユニット36と、通信インターフェース(以下、I/Fと記す)37と、制御装置38とを備える。
 スピンドル31は、磁気記録媒体カートリッジ10Aを装着可能に構成されている。磁気記録媒体カートリッジ10Aは、LTO(Linear Tape Open)規格に準拠しており、カートリッジケース10Bに磁気記録媒体10を巻装した単一のリール10Cを回転可能に収容している。磁気記録媒体10には、サーボ信号としてハの字状のサーボパターンが予め記録されている。リール32は、磁気記録媒体カートリッジ10Aから引き出された磁気記録媒体10の先端を固定可能に構成されている。
 駆動装置33は、スピンドル31を回転駆動させる装置である。駆動装置34は、リール32を回転駆動させる装置である。磁気記録媒体10に対してデータの記録または再生を行う際には、駆動装置33と駆動装置34とが、スピンドル31とリール32とをそれぞれ回転駆動させることによって、磁気記録媒体10を走行させる。ガイドローラ35は、磁気記録媒体10の走行をガイドするためのローラである。
 ヘッドユニット36は、磁気記録媒体10にデータ信号を記録するための複数の記録ヘッドと、磁気記録媒体10に記録されているデータ信号を再生するための複数の再生ヘッドとを備えている。記録ヘッドとしては例えばリング型ヘッドを用いることができ、再生ヘッドとしては例えば磁気抵抗効果型磁気ヘッドを用いることができるが、記録ヘッドおよび再生ヘッドの種類はこれに限定されるものではない。
 I/F37は、サーバ41およびPC42等の情報処理装置と通信するためのものであり、ネットワーク43に対して接続される。
 制御装置38は、記録再生装置30の全体を制御する。例えば、制御装置38は、サーバ41およびPC42等の情報処理装置の要求に応じて、情報処理装置から供給されるデータ信号をヘッドユニット36により磁気記録媒体10に記録する。また、制御装置38は、サーバ41およびPC42等の情報処理装置の要求に応じて、ヘッドユニット36により、磁気記録媒体10に記録されたデータ信号を再生し、情報処理装置に供給する。
 図8は、サーボ信号記録装置100の全体構成を表す正面図である。図9は、サーボ信号記録装置100の要部の構成を拡大して表す模式図である。図8に示したように、サーボ信号記録装置100は、磁気記録媒体10の搬送方向において、上流から下流へ向かって順に、送り出しローラ51と、前処理部52と、サーボ信号記録ヘッド53と、サーボ信号再生ヘッド54と、巻き取りローラ55とを備える。なお、図8では、磁気記録媒体10のバック層14を省略している。また、サーボ信号記録装置100は、サーボ信号記録装置100の各部を統括的に制御する制御部や、その制御部の処理に必要な各種のプログラムやデータが記憶された記録部、さらにはデータを表示させる表示部などを有していてもよい。
 送り出しローラ51は、ロール状の磁気テープである磁気記録媒体10(サーボ信号記録パターン6記録前)を回転可能に支持することが可能とされている。送り出しローラ51は、モータなどの駆動源の駆動に応じて回転され、回転に応じて磁気記録媒体10を下流に向けて送り出すようになっている。
 巻き取りローラ55は、サーボ信号記録パターン6記録後の磁気記録媒体10を回転可能に支持することが可能とされている。巻き取りローラ55は、モータなどの駆動源の駆動に応じて送り出しローラ51と同調して回転し、サーボ信号記録パターン6が記録された磁気記録媒体10を回転に応じて巻き取っていくようになっている。送り出しローラ51および巻き取りローラ55は、搬送路において磁気記録媒体10を一定の速度で移動させることが可能とされている。
 前処理部52は、例えば、サーボ信号記録ヘッド53の上流であって磁気記録媒体10の下方(磁性層13の表面と反対側の位置)に配置される。ただし、前処理部52は、磁気記録媒体10の上方(磁性層13の表面と対向する位置)に配置されてもよい。前処理部52は、Y軸方向、すなわち磁気記録媒体10の幅方向に沿った回転軸を中心として回転可能な永久磁石52Aを含んでいる。永久磁石52Aの形状は、例えば、円柱形状や、多角柱形状とされるが、これらに限られない。
 永久磁石52Aは、サーボ信号記録ヘッド53によってサーボ信号記録パターン6が記録される前に、直流磁界によって磁性層13の全体に対して磁場を印加して、磁性層13全体を消磁するようになっている。これにより、永久磁石52Aは、サーボ信号記録パターン6の磁化方向とは反対方向の第2の方向に予め磁性層13を磁化させることができる(図9中、白の矢印参照)。このように、2つの磁化方向をそれぞれ反対方向にさせることで、サーボ信号記録パターン6を読み取ったときのサーボ信号記録パターン6の再生波形を上下方向(±)で対称とすることができる(後述の図11参照)。
 サーボ信号記録ヘッド53は、例えば、磁気記録媒体10の上方(磁性層13の表面と対向する位置)に配置される。なお、サーボ信号記録ヘッド53は、磁気記録媒体10の下方(磁性層13の表面と反対)に配置されてもよい。サーボ信号記録ヘッド53は、矩形波のパルス信号に応じて所定のタイミングで磁界を発生し、磁気記録媒体10の磁性層13(前処理後)の一部に対して磁場を印加するようになっている。
 これにより、サーボ信号記録ヘッド53は、第1の方向に磁性層13の一部を磁化させて磁性層13にサーボ信号記録パターン6を記録する(図9中、黒の矢印参照)。サーボ信号記録ヘッド53は、サーボ信号記録ヘッド53の下方を磁性層13が通過するときに、5つのサーボバンドSB0~SB4に対してそれぞれサーボ信号記録パターン6を記録することが可能とされている。
 サーボ信号記録パターン6の磁化方向である第1の方向は、磁性層13の上面に垂直な垂直方向の成分を含む。すなわち、本実施形態では、垂直配向もしくは無配向の磁性粉が磁性層13に含まれるので、磁性層13に記録されるサーボ信号記録パターン6は、垂直方向の磁化成分を含む。
 図10は、磁気記録媒体10の磁化の方向を示す図である。図10に示したように、本明細書中においては、磁化の方向は、磁化の方向が磁気記録媒体10の搬送方向を向くときの角度を基準(0°)とし、時計回りの方向を角度の増える方向とする。図10では、サーボ信号記録パターン6の磁化方向が示されているが、前処理部52による前処理後における磁化の磁化方向や、磁性層13全体の磁化方向についても同様である。
 サーボ信号記録パターン6の磁化方向(第1の方向)は、磁性層13の角形比に応じて異なる。例えば、垂直配向のバリウムフェライト、無配向のバリウムフェライト、垂直配向の針状メタルは、典型的には、角形比がそれぞれ異なる。このような場合、サーボ信号記録部13において同一条件により磁界が印加されたとしても、それぞれ、サーボ信号記録パターン6の磁化方向(第1の方向)が異なる。逆に言うと、角形比が同じであり、かつ、サーボ信号記録ヘッド53の条件が同じであれば、磁気記録媒体10の種類が異なっていても第1の方向は同じである。
 サーボ信号記録パターン6の磁化方向(第1の方向)は、磁性層13の角形比に応じて異なる。よって、サーボ信号記録パターン6の磁化方向に合わせるためには、前処理部52における前処理の磁化方向(第2の方向)も異ならせる必要がある。
 本実施形態では、永久磁石52AがY軸方向に沿った回転軸の中心として回転可能とされている。これにより、磁気記録媒体10の種類に応じて、前処理による磁化方向(第2の方向)を適切に調整することができる。
 永久磁石52Aの角度については、磁気記録媒体10の種類に応じて適切な角度範囲が存在する。なお、本明細書中においては、永久磁石52Aの角度は、永久磁石52AのN極が磁気記録媒体10の搬送方向を向くときの角度を基準(0°)とし、時計回りの方向が角度の増える方向とする。
 ここで、サーボ信号記録ヘッド53は、永久磁石52Aによって磁性層13が第2の方向に磁化された磁性層13に対して、サーボ信号記録パターン6を上書きする。しかし、サーボ信号記録パターン6の磁化方向である第1の方向は、磁性層13の角形比が同じであれば、第2の方向に関係なく一定である。
 サーボ信号再生ヘッド54は、サーボ信号記録ヘッド53の下流であって、磁気記録媒体10の上方(磁性層13と対向する位置)に配置される。サーボ信号再生ヘッド54は、前処理部52によって前処理され、かつ、サーボ信号記録ヘッド53によってサーボ信号記録パターン6が記録された磁気記録媒体10の磁性層13から上記サーボ信号記録パターン6を読み取る。サーボ信号再生ヘッド54によって読み取られたサーボ信号記録パターン6の再生波形は、表示部の画面上に表示される。
 典型的には、サーボ信号再生ヘッド54は、サーボ信号再生ヘッド54の下方を磁性層13が通過するときに、サーボバンドSBの表面から発生する磁束を検出する。このとき検出された磁束がサーボ信号記録パターン6の再生波形となる。
 図11は、磁化方向と、サーボ信号記録パターン6の再生波形との関係を示す図である。
 図11に示したように、本実施形態では、サーボ信号記録パターン6の磁化方向と、前処理による磁化方向とがそれぞれ反対方向とされているため、サーボ信号記録パターン6を読み取ったときのサーボ信号記録パターン6の再生波形を上下方向(±)で対称とすることができる。なお、前処理を行なわずにサーボ信号記録パターン6を記録した場合、サーボ信号記録パターン6が垂直方向の磁化成分を含むため再生波形が上下方向(±)で非対称となる。
 さらに、本実施形態では、前処理を行なわずにサーボ信号記録パターン6を記録した場合に比べて、磁性層13の表面の近傍に発生する磁束の量を増やすことができる。これにより、磁性層13の厚みが薄いような場合にも高出力の再生波形を得ることができる。
 ここで、サーボ信号記録パターン6の磁化方向(第1の方向)と、前処理による磁化方向(第2の方向)とは、厳密に反対方向である必要はなく、実質的に反対方向であればよい。これは、サーボ信号記録パターン6の再生波形の対称性と関係がある。
 サーボ信号記録パターン6の磁化方向と、前処理による磁化方向とが正確に反対方向でなく、少しずれていた場合を想定する。例えば、サーボ信号記録パターン6の磁化方向が-120°であり、前処理による磁化方向が50°であったとする(図10参照)。このような場合でも、サーボ信号記録パターン6を適切に読み取ることができる程度にサーボ信号記録パターン6の再生波形が対称性を有していればよい。サーボ信号記録パターン6の再生波形が対称性を有していることは、すなわち、サーボ信号記録パターン6の磁化方向(第1の方向)と、前処理による磁化方向(第2の方向)とが反対方向を向いていることを示している。
 サーボ信号記録パターン6の再生波形が対称性を有しているか、あるいは、再生波形が非対称であるかの判断について説明する。例えば、再生波形の最大電圧値Vmaxと、最低電圧値Vmin(絶対値)との差が、再生波形の振幅に対して、許容範囲(5%~10%程度)内であれば、再生波形が対称性を有していると判断される。
[1-4 効果]
 このように、本実施の形態の磁気記録媒体10は、基体11と下地層12と磁性層13とが順に積層されたテープ状の部材であり、以下の(1)から(9)の各構成要件を満たすようにしたものである。
(1)基体11は、ポリエステルを主たる成分として含む。
(2)磁性層13は、基体11上に設けられ、磁性粉を複数含み、データ信号の記録が可能なものである。
(3)磁性層の表面の算術平均粗さRaは、2.5nm以下である。
(4)空間波長5μmまでのPSDが2.5μm以下である。
(5)磁性層13の平均厚みは、90nm以下である。
(6)磁性層13における磁性粉の平均アスペクト比は、1.0以上3.0以下である。(7)垂直方向における保磁力Hc1は、3000エルステッド以下である。
(8)垂直方向における保磁力Hc1に対する長手方向における保磁力Hc2の割合Hc2/Hc1は、0.8以下である。
(9)データ信号の再生波形における孤立波形の半値幅PW50は、200nm以下である。
 本実施の形態の磁気記録媒体10は、このような構成を有することにより、磁化遷移幅を急峻としつつ、良好な電磁変換特性(例えばC/N)を確保することができる。したがって、高密度記録に有利な構成を実現することができる。
(本技術の基本的な考え方)
 ここで、本技術の基本的な考え方について説明する。本技術においては、データ信号の再生波形における孤立波形の半値幅PW50に着目している。よって、この孤立波形の半値幅PW50について説明する。
 先に挙げた図11に示したように、データ信号を読み取ったときの再生波形は、プラス側およびマイナス側に突出する。孤立波形は、基本的にいずれかの波形を指す。
 図12は、孤立波形における半値幅PW50を説明するための図である。図12において、縦軸は強度(任意単位)、横軸は走行方向に沿った長さである。図12に示したように、半値幅PW50は、データ信号の再生波形における最大値(100%)の半分(50%)の高さにおける波形の幅である。
 この半値幅PW50は、データ信号の再生波形におけるピークの鋭さを示す値である。つまり、半値幅PW50が狭くなるほど、再生波形におけるピークの鋭さが増し、逆に、半値幅PW50が広くなるほど、再生波形におけるピークの鋭さが鈍くなる。
 図13は、本技術の基本的な考え方を説明するための図であり、サーボ信号記録パターン6における2つのストライプ7を示す図である。
 図13に示したように、サーボ信号記録パターン6の第1のストライプ群8に含まれる複数のストライプ7のうち、任意のストライプ7を第1のストライプ7aとする。また、サーボ信号記録パターン6の第2のストライプ群9に含まれる複数のストライプ7のうち、任意のストライプ7を第2のストライプ7bとする。また、複数のサーボトレースラインTのうち任意のサーボトレースラインTを第1のサーボトレースラインT1とする。また、第1のサーボトレースラインT1に隣接するサーボトレースラインTを第2のサーボトレースラインT2とする。
 また、第1のストライプ7aと、第1のサーボトレースラインT1との交点をP1とする。なお、このP1について、第1のストライプ7a上において、任意の点をP1としてもよい。
 また、第1のストライプ7aと、第2のサーボトレースラインT2との交点をP2とする。なお、このP2について、P1に対して、幅方向(Y軸方向)で間隔Ps分(つまり、記録トラック幅Wd分)、離れた位置にある第1のストライプ7a上の点をP2としてもよい。
 また、P1およびP2における長手方向(X軸方向)での距離を距離Dとする。距離Dは、隣接するトラックとの長手方向のずれ量に相当する。また、第2のストライプ7bと、第1のサーボトレースラインT1との交点をP3とし、第2のストライプ7bと、第2のサーボトレースラインT2との交点をP4とする。
 第1のサーボトレースラインT1がトレースされているとき、P1において再生波形が検出された時刻と、P3において再生波形が検出された時刻との差を判断する必要がある。この差を第1の期間とする。同様に、第2のトレースラインTがトレースされているとき、P2において再生波形が検出された時刻と、P4において再生波形が検出された時刻との差を判断する必要がある。この差を第2の期間とする。
 次に、第1の期間と、第2の期間との差を考える。ここで、サーボトレースラインTの間隔Psおよび記録トラック幅Wdがいずれも1.56μmであるとし、アジマス角αが12度であるとする。この場合、距離Dは、1.56×tan12°であるから0.33μmとなる。P1とP3との距離と、P2とP4との距離との差は、距離Dの2倍なので、0.66μmである。
 このとき、磁気記録媒体1の走行速度が5m/sであるとすると、0.66/5000000で、0.13μsとなる。これが、第1の期間と、第2の期間との差である。
 つまり、第1のサーボトレースラインT1及び第2のサーボトレースラインT2を正確にトレースするためには、0.13μsの微小な差を正確に判断する必要があるこれができないと、隣の記録トラック5にデータ信号が記録されてしまうからである。
 しかしながら、データ信号の再生波形(図11)におけるピークの鋭さが鈍い場合、このような微小な差を正確に判断することはできない。特に、記録トラック5の本数を増やすために、記録トラック幅Wdを小さくし、サーボトレースラインTの間隔Psを小さくすると、距離Dがさらに狭まり、第1の期間と第2の期間との差がさらに小さくなる。
 そこで、本技術においては、磁性層13の垂直配向度を一定の値以上とすることで、データ信号の再生波形における孤立波形の半値幅を一定の値以下としている。これにより、データ信号の再生波形におけるピークが鋭くなる。
 より具体的には、磁性層13の磁性粉における垂直配向度の指標である比Hc2/Hc1を0.8以下とすることで、孤立波形の半値幅を200nm以下とすることができる。これにより、上記のような微小な差(例えば、0.13μs)を識別可能な程度に、データ信号の再生波形におけるピークを鋭くすることができる(後述の各実施例参照)。
 さらに、本技術では、磁性層13において、空間波長5μmまでのPSDを一定値以下、例えば2.5μm以下としている。PSDを一定値以下に抑えることにより、記録再生を行う際の記録/再生ヘッドとテープのスペーシングを小さくすることができ、高記録密度により適した媒体とすることができる。
(磁気記録媒体10の伸縮性およびテンションコントロール)
 次に、磁気記録媒体10の伸縮性および記録再生装置30による磁気記録媒体10のテンションコントロールについて説明する。LTO規格では、データの高密度記録化の要請により、記録トラック数が急激に増加している。このような場合、記録トラック幅が狭くなってしまい、磁気記録媒体10の幅(Y軸方向)のわずかな変動が問題となる場合がある。
 例えば、記録再生装置30によって、磁気記録媒体10に所定のデータが記憶され、その後(例えば、一定期間保管後)、記録再生装置30により、磁気記録媒体10に記録されたデータが再生されるとする。このような場合、データ再生時の磁気記録媒体10の幅が、磁気記録媒体10のデータ記録時の幅に比べてわずかにでも変動してしまうと、オフトラック(ヘッドユニット36におけるデータ再生ヘッドが誤った記録トラック5上に位置してしまうこと)が発生してしまう場合がある。このため、磁気記録媒体10に記録されたデータが正確に再生できずにエラーが発生してしまう可能性がある。
 磁気記録媒体10の幅の変動の原因としては、例えば、温度の変動、湿度の変動等が挙げられる。一般的には、磁気記録媒体10を伸縮しないように磁気記録媒体10を設計することで、磁気記録媒体10の幅の変動に対応するといった手法が用いられる。しかしながら、磁気記録媒体10を全く伸縮しないようにすることは現実的には不可能である。
 そこで、本実施形態では、磁気記録媒体10を伸縮し難くするのではなく、逆に、ある程度磁気記録媒体10を伸縮しやすくし、また、記録再生装置30において磁気記録媒体10のテンション(X軸方向:磁気記録媒体10の搬送方向のテンション)をコントロールする(増減させる)といった手法が用いられる。
 具体的には、記録再生装置30は、データ信号の再生時において、必要に応じて(磁気記録媒体10の幅が広がっている場合)、磁気記録媒体10の長手方向(X軸方向)のテンションを高くすることで磁気記録媒体10の幅(Y軸方向)を小さくする。また、記録再生装置30は、データ信号の再生時において、必要に応じて(磁気記録媒体10の幅が狭まっている場合)、磁気記録媒体10の長手方向のテンションを低くすることで磁気記録媒体10の幅を大きくする。なお、記録再生装置30は、データ信号の再生時だけでなく、データ信号の記録時においても磁気記録媒体10の長手方向のテンションをコントロールしてもよい。
 このような方法によれば、例えば、温度等により磁気記録媒体10の幅が変動したしまったときに、必要に応じて磁気記録媒体10の幅を調整することで、磁気記録媒体10の幅を一定にすることが可能となる。従って、オフトラックを防止することができ、磁気記録媒体10に記録されたデータを正確に再生することが可能であると考えられる。
<2.変形例>
(変形例1)
 上記の一実施の形態では、2層構造のシェル部22を有するε酸化鉄粒子20(図2)を例示して説明したが、本技術の磁気記録媒体は、例えば図14に示したように、単層構造のシェル部23を有するε酸化鉄粒子20Aを含むようにしてもよい。ε酸化鉄粒子20Aにおけるシェル部23は、例えば第1シェル部22aと同様の構成を有する。但し、特性劣化を抑制する観点においては、変形例1のε酸化鉄粒子20Aよりも上記の一実施の形態で説明した2層構造のシェル部22を有するε酸化鉄粒子20が好ましい。
(変形例2)
 上記一実施の形態の磁気記録媒体10では、コアシェル構造を有するε酸化鉄粒子20を例示して説明したが、ε酸化鉄粒子が、コアシェル構造に代えて添加剤を含んでいてもよいし、コアシェル構造を有すると共に添加剤を含んでいてもよい。この場合、ε酸化鉄粒子のFeの一部が添加剤で置換される。ε酸化鉄粒子が添加剤を含むことによっても、ε酸化鉄粒子全体としての保磁力Hcを記録に適した保磁力Hcに調整できるため、記録容易性を向上することができる。添加剤は、鉄以外の金属元素、好ましくは3価の金属元素、より好ましくはAl(アルミニウム)、Ga(ガリウム)およびIn(インジウム)のうちの少なくとも1種、さらにより好ましくはAlおよびGaのうちの少なくとも1種である。
 具体的には、添加剤を含むε酸化鉄は、ε-Fe2-xMxO3結晶(但し、Mは鉄以外の金属元素、好ましくは3価の金属元素、より好ましくはAl、GaおよびInのうちの少なくとも1種、さらにより好ましくはAlおよびGaのうちの少なくとも1種である。xは、例えば0<x<1である。)である。
(変形例3)
 本開示の磁性粉は、ε酸化鉄粒子の粉末に代えて、六方晶フェライトを含有するナノ粒子(以下「六方晶フェライト粒子」という。)の粉末を含むようにしてもよい。六方晶フェライト粒子は、例えば、六角板状またはほぼ六角板状を有する。六方晶フェライトは、好ましくはBa(バリウム)、Sr(ストロンチウム)、Pb(鉛)およびCa(カルシウム)のうちの少なくとも1種、より好ましくはBaおよびSrのうちの少なくとも1種を含む。六方晶フェライトは、具体的には例えばバリウムフェライトまたはストロンチウムフェライトであってもよい。バリウムフェライトは、Ba以外にSr、PbおよびCaのうちの少なくとも1種をさらに含んでいてもよい。ストロンチウムフェライトは、Sr以外にBa、PbおよびCaのうちの少なくとも1種をさらに含んでいてもよい。
 より具体的には、六方晶フェライトは、一般式MFe1219で表される平均組成を有する。但し、Mは、例えばBa、Sr、PbおよびCaのうちの少なくとも1種の金属、好ましくはBaおよびSrのうちの少なくとも1種の金属である。Mが、Baと、Sr、PbおよびCaからなる群より選ばれる1種以上の金属との組み合わせであってもよい。また、Mが、Srと、Ba、PbおよびCaからなる群より選ばれる1種以上の金属との組み合わせであってもよい。上記一般式においてFeの一部が他の金属元素で置換されていてもよい。
 磁性粉が六方晶フェライト粒子の粉末を含む場合、磁性粉の平均粒子サイズは、好ましくは50nm以下、より好ましくは40nm以下、さらにより好ましくは30nm以下である。磁性粉の平均粒子サイズは、25nm以下、22nm以下、21nm以下、もしくは20nm以下であるとなおよい。また、磁性粉の平均粒子サイズは、例えば10nm以上であり、好ましくは12nm以上、より好ましくは15nm以上であるとよい。したがって、六方晶フェライト粒子の粉末を含む磁性粉の平均粒子サイズは、例えば10nm以上50nm以下、10nm以上40nm以下、12nm以上30nm以下、12nm以上25nm以下、または15nm以上22nm以下とすることができる。磁性粉の平均粒子サイズが上記上限値以下である場合(例えば50nm以下、特には30nm以下である場合)、高記録密度の磁気記録媒体10において、良好な電磁変換特性(例えばSNR)を得ることができる。磁性粉の平均粒子サイズが上記下限値以上である場合(例えば10nm以上、好ましくは12nm以上である場合)、磁性粉の分散性がより向上し、より優れた電磁変換特性(例えばSNR)を得ることができる。
 磁性粉が六方晶フェライト粒子の粉末を含む場合、磁性粉の平均アスペクト比は、好ましくは1以上3.5以下、より好ましくは1以上3.1以下、又は2以上3.1以下、さらにより好ましくは2以上3以下でありうる。磁性粉の平均アスペクト比が上記数値範囲内にあることによって、磁性粉の凝集を抑制することができ、さらに、磁性層13の形成工程において磁性粉を垂直配向させる際に、磁性粉に加わる抵抗を抑制することができる。これは、磁性粉の垂直配向性の向上をもたらしうる。
 なお、六方晶フェライト粒子の粉末を含む磁性粉の平均粒子サイズおよび平均アスペクト比は以下のようにして求められる。まず、測定対象となる磁気記録媒体10をFIB(Focused Ion Beam)法等により加工して薄片化を行う。薄片化は磁気テープの長さ方向(長手方向)に沿うかたちで行う。得られた薄片サンプルについて、透過電子顕微鏡(日立ハイテクノロジーズ製 H-9500)を用いて、加速電圧:200kV、総合倍率500,000倍で記録層の厚み方向に対して記録層全体が含まれるように断面観察を行う。次に、撮影したTEM写真から観察面の方向に側面を向けている粒子を50個選び出し、各粒子の最大板厚DAを測定する。このようにして求めた最大板厚DAを単純に平均(算術平均)して平均最大板厚DAaveを求める。続いて、各磁性粉の板径DBを測定する。ここで、板径DBとは、磁性粉の輪郭に接するように、あらゆる角度から引いた2本の平行線間の距離のうち最大のもの(いわゆる最大フェレ径)を意味する。続いて、測定した板径DBを単純平均(算術平均)して平均板径DBaveを求める。そして、平均最大板厚DAaveおよび平均板径DBaveから粒子の平均アスペクト比(DBave/DAave)を求める。
 磁性粉が六方晶フェライト粒子の粉末を含む場合、磁性粉の平均粒子体積は、好ましくは5900nm3以下、より好ましくは500nm3以上3400nm3以下、さらにより好ましくは1000nm3以上2500nm3以下である。磁性粉の平均粒子体積が5900nm3以下であると、磁性粉の平均粒子サイズを30nm以下とする場合と同様の効果が得られる。一方、磁性粉の平均粒子体積が500nm3以上であると、磁性粉の平均粒子サイズを12nm以上とする場合と同様の効果が得られる。
 なお、磁性粉の平均粒子体積は以下のようにして求められる。まず、上記の磁性粉の平均粒子サイズの算出方法により、平均最大板厚DAaveおよび平均最大板径DBaveを求める。次に、以下の式(2)により、ε酸化鉄粒子の平均体積Vを求める。
Figure JPOXMLDOC01-appb-M000002
 本技術の特に好ましい実施態様に従い、磁性粉は、バリウムフェライト磁性粉またはストロンチウムフェライト磁性粉であり、より好ましくはバリウムフェライト磁性粉でありうる。バリウムフェライト磁性粉は、バリウムフェライトを主相とする鉄酸化物の磁性粒子(以下「バリウムフェライト粒子」という。)を含む。バリウムフェライト磁性粉は、例えば高温多湿環境でも抗磁力が落ちないなど、データ記録の信頼性が高い。このような観点から、バリウムフェライト磁性粉は、磁性粉として好ましい。
 バリウムフェライト磁性粉の平均粒子サイズは、50nm以下、より好ましくは10nm以上40nm以下、さらにより好ましくは12nm以上25nm以下である。
 磁性層13が磁性粉としてバリウムフェライト磁性粉を含む場合、磁性層13の平均厚みtm[nm]が、35nm≦tm≦100nmであることが好ましく、特に好ましくは80nm以下である。また、磁気記録媒体10の厚み方向(垂直方向)に測定した保磁力Hcが、好ましくは160kA/m以上280kA/m以下、より好ましくは165kA/m以上275kA/m以下、更により好ましくは170kA/m以上270kA/m以下である。
(変形例4)
 磁性粉は、ε酸化鉄粒子の粉末に代えて、Co含有スピネルフェライトを含有するナノ粒子(以下「コバルトフェライト粒子」という。)の粉末を含むようにしてもよい。コバルトフェライト粒子は、一軸異方性を有することが好ましい。コバルトフェライト粒子は、例えば、立方体状またはほぼ立方体状を有している。Co含有スピネルフェライトが、Co以外にNi、Mn、Al、CuおよびZnのうちの少なくとも1種をさらに含んでいてもよい。
 Co含有スピネルフェライトは、例えば以下の式で表される平均組成を有する。
CoxyFe2Z
(但し、式(1)中、Mは、例えば、Ni、Mn、Al、CuおよびZnのうちの少なくとも1種の金属である。xは、0.4≦x≦1.0の範囲内の値である。yは、0≦y≦0.3の範囲内の値である。但し、x、yは(x+y)≦1.0の関係を満たす。zは3≦z≦4の範囲内の値である。Feの一部が他の金属元素で置換されていてもよい。)
 磁性粉がコバルトフェライト粒子の粉末を含む場合、磁性粉の平均粒子サイズは、好ましくは25nm以下、より好ましくは10nm以上23nm以下である。磁性粉の平均粒子サイズが25nm以下であると、高記録密度の磁気記録媒体10において、良好な電磁変換特性(例えばSNR)を得ることができる。一方、磁性粉の平均粒子サイズが10nm以上であると、磁性粉の分散性がより向上し、より優れた電磁変換特性(例えばSNR)を得ることができる。磁性粉がコバルトフェライト粒子の粉末を含む場合、磁性粉の平均アスペクト比は上述の一実施形態と同様である。また、磁性粉の平均粒子サイズおよび平均アスペクト比も上述の一実施形態の算出方法と同様にして求められる。
 磁性粉の平均粒子体積は、好ましくは15000nm3以下、より好ましくは1000nm3以上12000nm3以下である。磁性粉の平均粒子体積が15000nm3以下であると、磁性粉の平均粒子サイズを25nm以下とする場合と同様の効果が得られる。一方、磁性粉の平均粒子体積が1000nm3以上であると、磁性粉の平均粒子サイズを10nm以上とする場合と同様の効果が得られる。なお、磁性粉の平均粒子体積は、上述の一実施形態における磁性粉の平均粒子体積の算出方法(ε酸化鉄粒子が立方体状またはほぼ立方体状を有している場合の平均粒子体積の算出方法)と同様である。
 コバルトフェライト磁性粉の保磁力Hcは、好ましくは2500Oe以上、より好ましくは2600Oe以上3500Oe以下である。
(変形例5)
 磁気記録媒体10は、例えば図15に示したように、基体11の少なくとも一方の表面に設けられたバリア層15をさらに備えるようにしてもよい。バリア層15は、基体11が有する環境に応じた寸法変化を抑制するための層である。例えば、その寸法変化を及ぼす原因の一例として、基体11の吸湿性があるが、バリア層15を設けることにより基体11への水分の侵入速度を低減することができる。バリア層15は、例えば、金属または金属酸化物を含む。ここでいう金属としては、例えば、Al、Cu、Co、Mg、Si、Ti、V、Cr、Mn、Fe、Ni、Zn、Ga、Ge、Y、Zr、Mo、Ru、Pd、Ag、Ba、Pt、AuおよびTaのうちの少なくとも1種を用いることができる。金属酸化物としては、例えば、上記金属を1種または2種以上含む金属酸化物を用いることができる。より具体的には例えば、Al23、CuO、CoO、SiO2、Cr23、TiO2、Ta25およびZrO2のうちの少なくとも1種を用いることができる。また、バリア層15が、ダイヤモンド状炭素(Diamond-Like Carbon:DLC)またはダイヤモンド等を含むようにしてもよい。
 バリア層15の平均厚みは、好ましくは20nm以上1000nm以下、より好ましくは50nm以上1000nm以下である。バリア層15の平均厚みは、磁性層13の平均厚みと同様にして求められる。但し、TEM像の倍率は、バリア層15の厚みに応じて適宜調整される。
(変形例6)
 上記の一実施の形態では、バック層14の表面14Sに設けられた多数の突部14Aを、磁性層13の表面13Sに転写することにより、磁性層13の表面13Sに多数の孔部を形成する場合について説明したが、多数の孔部の形成方法はこれに限定されるものではない。例えば、磁性層形成用塗料に含まれる溶剤の種類および磁性層形成用塗料の乾燥条件等を調整することで、磁性層13の表面13Sに多数の孔部を形成するようにしてもよい。
(変形例7)
 上述の一実施形態に係る磁気記録媒体10をライブラリ装置に用いるようにしてもよい。この場合、ライブラリ装置は、上述の一実施形態における記録再生装置30を複数備えるものであってもよい。
(変形例8)
 本開示の磁気記録媒体は、上述したように、例えば図7に示した記録再生装置30における磁気記録媒体カートリッジ10Aに、リール32に巻き取られた状態で収容される。その場合、(当該磁気記録媒体の巻内側のサーボトラック幅)-(当該磁気記録媒体の巻外側のサーボトラック幅)>0μmであるとよい。本変形例では、(当該磁気記録媒体の巻内側のサーボトラック幅)-(当該磁気記録媒体の巻外側のサーボトラック幅)を、「巻内側及び巻外側のサーボトラック幅の差」ともいう。巻内側及び巻外側のサーボトラック幅の差は、好ましくは0.01μm以上、より好ましくは0.02μm以上、さらにより好ましくは0.05μm以上である。巻内側及び巻外側のサーボトラック幅の差は、例えば、0.10μm以上、0.15μm以上、又は0.20μm以上であってもよい。巻内側及び巻外側のサーボトラック幅の差が上記数値範囲内にあることによって、カートリッジ内のリールに巻き取られた磁気記録媒体(特には当該磁気記録媒体のうちリールにより近い部分)にしわが発生することを防ぐことができる。当該しわは、例えば巻ずれ又は走行時のトラックずれなどをもたらしうるところ、当該しわに起因するこれらの現象の発生も本技術により防ぐことができる。巻内側及び巻外側のサーボトラック幅の差は、例えば2.5μm以下であってよく、好ましくは1.8μm以下、より好ましくは1.5μm以下、1.0μm以下、0.8以下、又は0.5μm以下であってよい。巻内側及び巻外側のサーボトラック幅の差が上記上限値以下であることによって、テンション調整により磁気記録媒体の幅を一定に保つことを、より容易に行うことができる。当該差の測定方法及び当該差を算出するために用いられるサーボトラック幅のずれ量の測定方法について、以下説明する。
((巻内側のサーボトラック幅)-(巻外側のサーボトラック幅)
 巻内側及び巻外側のサーボトラック幅の差は、0μm超であり、好ましくは0.0m以上、より好ましくは0.02μm以上、さらにより好ましくは0.05μm以上である。巻内側及び巻外側のサーボトラック幅の差は、例えば、0.10μm以上、0.μm以上、又は0.20μm以上であってもよい。これにより、カートリッジ内のリールに巻き取られた磁気記録媒体にしわが発生することを防ぐことができる。巻内側及び巻外側のサーボトラック幅の差は、例えば2.5μm以下であってよく、好ましくは1.8μm以下、より好ましくは1.5μm以下、1.0μm以下、0.8以下、又は0.5μm以下であってよい。
 巻内側及び巻外側のサーボトラック幅の差を求めるために、磁気記録媒体の巻内側のサーボトラック幅のずれ量TinW及び巻外側のサーボトラック幅のずれ量ToutWがそれぞれ測定される。当該測定は、温度23±3℃及び相対湿度50%±5%の環境下で行われる。これらのずれ量はいずれも、標準サーボトラック幅に対して、サーボトラック幅がどれだけ大きいか又は小さいかを表す。これらのずれ量の測定方法は以下で別途説明する。本明細書内において、巻内側とは、磁気記録媒体の2つの端部のうち、磁気記録カートリッジ内のリール(磁気記録媒体が巻き取られるリール)に取り付けられる端部(以下「内側端部」ともいう)から50mの位置を起点として、当該位置から、当該内側端部と反対側の端部(以下「外側端部」ともいう)の方向へ10m進んだ位置までの領域をいう。本明細書内において、巻外側とは、磁気記録媒体の2つの端部のうち、当該外側端部から50mの位置を起点として、当該位置から当該内側端部の方向へ10m進んだ位置までの領域をいう。
 図16を参照して巻内側及び巻外側についてより具体的に説明する。図16は、記録再生装置30に搭載される磁気記録媒体カートリッジ10Aのリール32に、磁気記録媒体10の内側端部E1が取り付けられている様子を表している。内側端部E1から50m進んだ位置Aと、その位置Aから外側端部E2へ10m進んだ位置Bとの間の領域が、巻内側である。外側端部E2から50mだけ内側端部E1へ進んだ位置Cと位置Cからさらに内側端部E1へ10m進んだ位置Dとの間の領域が巻外側である。巻内側のサーボトラック幅のずれ量TinWの測定は、磁気記録媒体カートリッジ10A内に収容されている磁気記録媒体10を、記録再生装置30へと巻き込むように走行させながら(いわゆる順方向に走行させながら)行われる。当該測定において、磁気記録媒体10にかかるテンションは0.55Nであり、且つ、走行速度は3~6m/sである。前記巻内側の10mの領域にわたって測定されるサーボトラック幅のずれ量の平均値が、前記差を求めるための巻内側サーボトラック幅のずれ量inWとして用いられる。当該平均値は、単純平均により算出される。
 巻外側のサーボトラック幅のずれ量ToutWの測定も、巻内側と同様に、順方向に走行させながら行われる。前記巻外側の10mの領域にわたって測定されるサーボトラック幅のずれ量の平均値が、前記差を求めるための巻外側サーボトラック幅のずれ量ToutWとして用いられる。当該平均値も、単純平均により算出される。
以上のとおりにして得られた巻内側のサーボトラック幅のずれ量TinWから、巻外側のサーボトラック幅のずれ量ToutWを差し引くことで、差(TinW-ToutW)が求められ、当該差が、(巻内側のサーボトラック幅)-(巻外側のサーボトラック幅)である。
(サーボトラック幅のずれ量)
 サーボトラック幅のずれ量の測定方法を、図17を参照しながら説明する。図17(a)は、磁気記録媒体の磁性層に形成されるデータバンド及びサーボバンドの模式図である。図17(a)に示したように、前記磁性層は4つのデータバンドd0~d3を有する。前記磁性層は、各データバンドを2つのサーボバンドで挟むように、合計で5つのサーボバンドS0~S4を有する。図17(b)に示したように、各サーボバンドは、所定角度θ1で傾斜する5本のサーボ信号S5aと、この信号と逆方向に同じ角度で傾斜する5本のサーボ信号S5bと、所定角度θ1で傾斜する4本のサーボ信号S4aと、この信号と逆方向に同じ角度で傾斜する4本のサーボ信号S4bと、からなるフレーム単位を繰り返し有する。前記角度θ1は、例えば5°~25°であり、特には11°~20°でありうる。
 前記測定方法において測定されるサーボトラック幅のずれ量は、図17(a)の上から2つ目のデータバンドd1を挟む2つのサーボトラックS1及びS2の間のサーボトラック幅の、標準サーボトラック幅に対するずれ量である。ドライブ走行時に、データバンド
d1を挟む2つのサーボトラックS1及びS2を再生した場合、デジタルオシロスコープ(Lecroy社WAVEPRO 960)によってサーボトラックごとに図17(c)に示されるような波形が得られる。サーボトラックS1の再生により得られた波形からタイミング信号間の時間が得られ、当該時間とテープ走行速度とから、サーボトラックS1におけるAバーストの先頭磁気ストライプとBバーストの先頭磁気ストライプとの間の距離が算出される。例えば、図17(b)に示されるとおり、AバーストS5a-1の先頭磁気ストライプ(5つの磁気ストライプのうち最も左の磁気ストライプ)とBバーストS5b-1の先頭磁気ストライプ(5つの磁気ストライプのうち最も左の磁気ストライプ)との間の距離L1が算出される。同様に、サーボトラックS2の再生により得られた波形からタイミング信号間の時間が得られ、当該時間とテープ走行速度とから、サーボトラックS2におけるAバーストの先頭磁気ストライプとBバーストの先頭磁気ストライプとの間の距離が算出される。例えば、図17(b)に示したように、AバーストS5a-2の先頭磁気ストライプとBバーストS5b-2先頭磁気ストライプとの間の距離L2が算出される。例えば、磁気記録テープが幅方向に広がった場合、例えばサーボトラックS1の再生により得られるタイミング信号間の時間が長くなり、その結果、算出される距離L1も大きくなりうる。磁気記録テープが幅方向において縮んだ場合は、反対に、算出される距離L1は小さくなりうる。そのため、距離L1及び距離L2とアジマス角を用いることで、サーボトラック幅のずれ量を求めることができる。サーボトラック幅のずれ量は、以下の式から求められる。
(サーボトラック幅のずれ量)={(L1-L2)/2}×tan(90°-θ1)
 この式において、L1及びL2は、上記で述べた距離L1及びL2であり、θ1は、上記で述べた傾斜角度θ1であり、アジマス角とも言われる。θ1は、カートリッジより取り出した磁気記録媒体をフェリコロイド現像液で現像し、万能工具顕微鏡(TOPCON TUM-220ES)及びデータ処理装置(TOPCON CA-1B)を用いて求められる。
 サーボトラック幅のずれ量は、標準サーボトラック幅に対する変化量である。標準サーボトラック幅は、磁気記録再生装置が有するサーボリードヘッド幅と同じ幅であってよく、例えば磁気記録媒体10が準拠する規格など磁気記録媒体10の種類に応じて決定されてよい。
 なお、サーボトラック幅は、例えば以下のとおりに調整することができる。磁気記録媒体10に生じたひずみを緩和するために、磁気記録媒体10の乾燥工程及び/又はカレンダー工程(加温領域)において巻き取り張力を低くすることが行われてもよい。また、裁断後のパンケーキ状態及び/又はカートリッジ状態においてひずみを緩和するために、55℃以上の温度で長時間保管することが行われてもよい。このようにひずみを緩和することで、サーボトラック幅を調整することができる。
 本変形例のように、(当該磁気記録媒体の巻内側のサーボトラック幅)-(当該磁気記録媒体の巻外側のサーボトラック幅)>0を満たすことにより、カートリッジ内における巻内側におけるしわの発生を抑制することができる。
 以下、実施例により本開示を具体的に説明するが、本開示はこれらの実施例のみに限定されるものではない。
 以下の実施例および比較例において、垂直方向における磁性粉の平均アスペクト比、磁性粉の平均粒子サイズ、磁性粉の平均粒子体積、下地層の平均厚み、磁気記録媒体の全体の平均厚み(テープ平均厚み)、磁性層の平均厚み、保磁力Hc1、保磁力Hc2、比Hc2/Hc1、磁性層の表面の算術平均粗さ(磁性層Ra)、磁性層PSD(≦0.5μm)、および孤立波形の半値幅PW50、上述の一実施形態にて説明した測定方法により求められた値である。
[実施例1]
 実施例1としての磁気記録媒体を以下のようにして得た。
<磁性層形成用塗料の調製工程>
 磁性層形成用塗料を以下のようにして調製した。まず、下記配合の第1組成物をエクストルーダで混練した。次に、ディスパーを備えた攪拌タンクに、混練した第1組成物と、下記配合の第2組成物を加えて予備混合を行った。続いて、さらにサンドミル混合を行い、フィルタ処理を行い、磁性層形成用塗料を調製した。
(第1組成物)
 第1組成物における各構成要素および重量は以下の通りである。
・バリウムフェライト(BaFe1219)粒子の粉末(六角板状、平均アスペクト比2.8、平均粒子サイズ20.3nm、平均粒子体積1950nm3):100質量部
・塩化ビニル系樹脂(シクロヘキサノン溶液30質量%):40質量部(シクロヘキサノン溶液を含む)
(重合度300、Mn=10000、極性基としてOSO3K=0.07mmol/g、2級OH=0.3mmol/gを含有する。)
・酸化アルミニウム粉末(α-Al23、平均粒径0.2μm):5質量部
・カーボンブラック(東海カーボン社製、商品名:シーストTA):2質量部
(第2組成物)
 第2組成物における各構成要素および重量は以下の通りである。
・塩化ビニル系樹脂:20質量部(シクロヘキサノン溶液を含む)
(樹脂溶液:樹脂分30質量%、シクロヘキサノン70質量%)
・脂肪酸エステルとしてn-ブチルステアレート:2質量部
・メチルエチルケトン:121.3質量部
・トルエン:121.3質量部
・シクロヘキサノン:60.7質量部
 上述のようにして調製した磁性層形成用塗料に、硬化剤としてポリイソシアネート(商品名:コロネートL、日本ポリウレタン社製):4質量部と、脂肪酸としてステアリン酸:2質量部とを添加した。
<下地層形成用塗料の調製工程>
 下地層形成用塗料を以下のようにして調製した。まず、下記配合の第3組成物をエクストルーダで混練した。次に、ディスパーを備えた攪拌タンクに、混練した第3組成物と、下記配合の第4組成物を加えて予備混合を行った。続いて、さらにサンドミル混合を行い、フィルタ処理を行い、下地層形成用塗料を調製した。
(第3組成物)
 第3組成物における各構成要素および重量は以下の通りである。
・針状酸化鉄粉末(α-Fe23、平均長軸長0.15μm):100質量部
・塩化ビニル系樹脂(樹脂溶液:樹脂分30質量%、シクロヘキサノン70質量%):55.6質量部
・カーボンブラック(平均粒径20nm):10質量部
(第4組成物)
 第4組成物における各構成要素および重量は以下の通りである。
・ポリウレタン系樹脂UR8200(東洋紡績製):18.5質量部
・脂肪酸エステルとしてn-ブチルステアレート:2質量部
・メチルエチルケトン:108.2質量部
・トルエン:108.2質量部
・シクロヘキサノン:18.5質量部
 上述のようにして調製した下地層形成用塗料に、硬化剤としてポリイソシアネート(商品名:コロネートL、日本ポリウレタン社製):4質量部と、脂肪酸としてステアリン酸:2質量部とを添加した。
<バック層形成用塗料の調製工程>
 バック層形成用塗料を以下のようにして調製した。下記原料を、ディスパーを備えた攪拌タンクで混合を行い、フィルタ処理を行うことで、バック層形成用塗料を調製した。
・小粒径のカーボンブラックの粉末(平均粒径(D50)20nm):90質量部
・大粒径のカーボンブラックの粉末(平均粒径(D50)270nm):10質量部
・ポリエステルポリウレタン(日本ポリウレタン社製、商品名:N-2304):100質量部
・メチルエチルケトン:500質量部
・トルエン:400質量部
・シクロヘキサノン:100質量部
<塗布工程>
 上述のようにして調製した磁性層形成用塗料および下地層形成用塗料を用いて、非磁性支持体である、平均厚み4.0μmの長尺のポリエステルフィルムの一方の主面上に平均厚み1.1μmの下地層、および平均厚み80nmの磁性層を以下のようにして形成した。まず、ポリエステルフィルムの一方の主面上に下地層形成用塗料を塗布、乾燥させることにより、下地層を形成した。次に、下地層上に磁性層形成用塗料を塗布、乾燥させることにより、磁性層を形成した。なお、磁性層形成用塗料の乾燥の際に、ソレノイドコイルにより、磁性粉をフィルムの厚み方向に磁場配向させた。また、磁性層形成用塗料の乾燥条件(乾燥温度および乾燥時間)を調整し、磁気記録媒体の厚み方向(垂直方向)における保磁力Hc1および長手方向における保磁力Hc2を後出の表1に示す値に設定した。続いて、ポリエステルフィルムの他方の主面上にバック層形成用塗料を塗布、乾燥させることにより、平均厚み0.3μmのバック層を形成した。
<カレンダー工程および転写工程>
 続いて、カレンダー処理を行い、磁性層の表面を平滑化した。次に、磁性層の表面が平滑化された磁気記録媒体をロール状に巻き取ったのち、その状態のまま磁気記録媒体に60℃、10時間の加熱処理を行った。そして、内周側に位置している端部が反対に外周側に位置するように、磁気記録媒体をロール状に巻き直したのち、その状態のまま磁気記録媒体に60℃、10時間の加熱処理を再度行った。これにより、バック層の表面の多数の突部が磁性層の表面に転写され、磁性層の表面に多数の孔部が形成された。
<裁断工程>
 上述のようにして得られた磁気記録媒体を1/2インチ(12.65mm)幅に裁断した。これにより、目的とする長尺状の磁気記録媒体(平均厚み5.6μm)が得られた。この磁気記録媒体は、後出の表2に示したように4層構造を有し、全体の平均厚み(テープ平均厚み)が5.6μm、サーボトラックの数が5、基体(ベースフィルム)の平均厚みが4.0μmのものである。またWは2.9μmであり、Lは0.052μmである。以上の構成をメディア構成1とする。また、Wは記録トラック幅を表し、Lは最短波長で記録されている部位の磁化反転間距離(ビット長)を表している。なお、得られた磁気記録媒体の磁性層Raは1.9nm、磁性層PSDは2.1μm、再生波形における孤立波形の半値幅PW50は175nmであった。
[実施例2]
 磁性層形成用塗料の調製工程において、第1組成物におけるバリウムフェライト(BaFe1219)粒子について、粉末平均アスペクト比を2.6、平均粒子サイズを18.6nm、平均粒子体積を1600nm3とした。また、塗布工程において、磁性層の平均厚みを60nmとし、保磁力Hc1を2920Oeとし、保磁力Hc2を1920Oeとした。上記の点を除き、他は上記実施例1と同様にして実施例2としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.85nm、磁性層PSDは2.0μm、再生波形における孤立波形の半値幅PW50は170nmであった。
[実施例3]
 磁性層形成用塗料の調製工程において、第1組成物におけるバリウムフェライト(BaFe1219)粒子について、粉末平均アスペクト比を3.0、平均粒子サイズを21.3nm、平均粒子体積を2100nm3とした。上記の点を除き、他は上記実施例1と同様にして実施例3としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.9nm、磁性層PSDは2.1μm、再生波形における孤立波形の半値幅PW50は177nmであった。
[実施例4]
 塗布工程において、磁性層の平均厚みを90nmとした点を除き、他は上記実施例1と同様にして実施例4としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.9nm、磁性層PSDは2.1μm、再生波形における孤立波形の半値幅PW50は175nmであった。
[実施例5]
 磁性層形成用塗料の調製工程において、第1組成物におけるバリウムフェライト(BaFe1219)粒子について、粉末平均アスペクト比を2.9、平均粒子サイズを20.9nm、平均粒子体積を2050nm3とした。また、塗布工程において、保磁力Hc1を2980Oeとした。上記の点を除き、他は上記実施例1と同様にして実施例5としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.9nm、磁性層PSDは2.1μm、再生波形における孤立波形の半値幅PW50は177nmであった。
[実施例6]
 磁性層形成用塗料の調製工程において、磁性粉としてε酸化鉄粒子の粉末(球状、平均アスペクト比1.3、平均粒子サイズ15.7nm、粒子体積2050nm3)を用いた。また、塗布工程において、保磁力Hc1を2850Oeとし、保磁力Hc2を2020Oeとした。上記の点を除き、他は上記実施例1と同様にして実施例6としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは2nm、磁性層PSDは2.1μm、再生波形における孤立波形の半値幅PW50は177nmであった。
[実施例7]
 磁性層形成用塗料の調製工程において、磁性粉としてコバルトフェライトの粉末(立方体状、平均アスペクト比1.1、平均粒子サイズ12.6nm、粒子体積2030nm3)を用いた。また、塗布工程において、保磁力Hc1を2800Oeとし、保磁力Hc2を2020Oeとした。上記の点を除き、他は上記実施例1と同様にして実施例7としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは2nm、磁性層PSDは2.1μm、再生波形における孤立波形の半値幅PW50は177nmであった。
[実施例8]
 磁性層形成用塗料の調製工程において、第1組成物におけるバリウムフェライト(BaFe1219)粒子について、粉末平均アスペクト比を2.3、平均粒子サイズを17nm、平均粒子体積を1400nm3とした。また、塗布工程において、磁性層の平均厚みを60nmとし、保磁力Hc1を2550Oeとし、保磁力Hc2を1820Oeとした。上記の点を除き、他は上記実施例1と同様にして実施例8としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.8nm、磁性層PSDは1.9μm、再生波形における孤立波形の半値幅PW50は170nmであった。
[実施例9]
 磁性層形成用塗料の調製工程において、第1組成物におけるバリウムフェライト(BaFe1219)粒子について、粉末平均アスペクト比を2.0、平均粒子サイズを15nm、平均粒子体積を1100nm3とした。また、塗布工程において、磁性層の平均厚みを60nmとし、保磁力Hc1を2500Oeとし、保磁力Hc2を1840Oeとした。上記の点を除き、他は上記実施例1と同様にして実施例9としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.75nm、磁性層PSDは1.8μm、再生波形における孤立波形の半値幅PW50は160nmであった。
[実施例10]
 メディア構成を2とした(表2)ことを除き、他は上記実施例1と同様にして実施例10としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.9nm、磁性層PSDは2.1μm、再生波形における孤立波形の半値幅PW50は175nmであった。
[実施例11]
 メディア構成を3とした(表2)。磁性層形成用塗料の調製工程において、第1組成物におけるバリウムフェライト(BaFe1219)粒子について、粉末平均アスペクト比を2.6、平均粒子サイズを18.6nm、平均粒子体積を1600nm3とした。また、塗布工程において、磁性層の平均厚みを60nmとし、保磁力Hc1を2920Oeとし、保磁力Hc2を1920Oeとした。さらに、テープ平均厚みを5.2μmとした。上記の点を除き、他は上記実施例1と同様にして実施例11としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.85nm、磁性層PSDは2.0μm、再生波形における孤立波形の半値幅PW50は168nmであった。
[実施例12]
 メディア構成を4とした(表2)。磁性層形成用塗料の調製工程において、第1組成物におけるバリウムフェライト(BaFe1219)粒子について、粉末平均アスペクト比を2.3、平均粒子サイズを17nm、平均粒子体積を1400nm3とした。また、塗布工程において、磁性層の平均厚みを60nmとし、保磁力Hc1を2550Oeとし、保磁力Hc2を1820Oeとした。さらに、テープ平均厚みを5.2μmとした。上記の点を除き、他は上記実施例1と同様にして実施例12としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.8nm、磁性層PSDは1.9μm、再生波形における孤立波形の半値幅PW50は166nmであった。
[実施例13]
 メディア構成を5とした(表2)。磁性層形成用塗料の調製工程において、第1組成物におけるバリウムフェライト(BaFe1219)粒子について、粉末平均アスペクト比を2.3、平均粒子サイズを17nm、平均粒子体積を1400nm3とした。また、塗布工程において、磁性層の平均厚みを60nmとし、保磁力Hc1を2550Oeとし、保磁力Hc2を1820Oeとした。さらに、テープ平均厚みを4.5μmとした。上記の点を除き、他は上記実施例1と同様にして実施例13としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.8nm、磁性層PSDは1.9μm、再生波形における孤立波形の半値幅PW50は166nmであった。
[実施例14]
 メディア構成を6とした(表2)。磁性層形成用塗料の調製工程において、第1組成物におけるバリウムフェライト(BaFe1219)粒子について、粉末平均アスペクト比を2.0、平均粒子サイズを15nm、平均粒子体積を1100nm3とした。また、塗布工程において、磁性層の平均厚みを60nmとし、保磁力Hc1を2500Oeとし、保磁力Hc2を1840Oeとした。さらに、テープ平均厚みを4.5μmとした。上記の点を除き、他は上記実施例1と同様にして実施例14としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.75nm、磁性層PSDは1.8μm、再生波形における孤立波形の半値幅PW50は155nmであった。
[実施例15]
 塗布工程において、磁性層の平均厚みを90nmとし、保磁力Hc1を2990Oeとし、保磁力Hc2を1500Oeとした。上記の点を除き、他は上記実施例1と同様にして実施例15としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.85nm、磁性層PSDは2.0μm、再生波形における孤立波形の半値幅PW50は175nmであった。
[実施例16]
 塗布工程において、保磁力Hc1を2690Oeとし、保磁力Hc2を2150Oeとした。上記の点を除き、他は上記実施例1と同様にして実施例16としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.85nm、磁性層PSDは2.0μm、再生波形における孤立波形の半値幅PW50は180nmであった。
[実施例17]
 磁性層形成用塗料の調製工程において、磁性粉としてε酸化鉄粒子の粉末(球状、平均アスペクト比1.3、平均粒子サイズ15.7nm、粒子体積2050nm3)を用いた。また、塗布工程において、磁性層の平均厚みを90nmとし、保磁力Hc1を2900Oeとし、保磁力Hc2を1950Oeとした。上記の点を除き、他は上記実施例1と同様にして実施例17としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは2nm、磁性層PSDは2.1μm、再生波形における孤立波形の半値幅PW50は175nmであった。
[実施例18]
 カレンダー処理の条件を変更することにより、得られた磁気記録媒体の磁性層Raを1.6nm、磁性層PSDを1.7μmとした。なお、再生波形における孤立波形の半値幅PW50は175nmであった。
[実施例19]
 カレンダー処理の条件を変更することにより、得られた磁気記録媒体の磁性層Raを2.4nm、磁性層PSDを2.5μmとした。なお、再生波形における孤立波形の半値幅PW50は175nmであった。
[比較例1]
 磁性層形成用塗料の調製工程において、第1組成物におけるバリウムフェライト(BaFe1219)粒子について、粉末平均アスペクト比を3.5、平均粒子サイズを23.6nm、平均粒子体積を2450nm3とした。また、塗布工程において、磁性層の平均厚みを85nmとし、保磁力Hc1を2820Oeとした。上記の点を除き、他は上記実施例1と同様にして比較例1としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.9nm、磁性層PSDは2.1μm、再生波形における孤立波形の半値幅PW50は205nmであった。
[比較例2]
 塗布工程において、磁性層の平均厚みを100nmとした。上記の点を除き、他は上記実施例1と同様にして比較例2としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.9nm、磁性層PSDは2.1μm、再生波形における孤立波形の半値幅PW50は202nmであった。
[比較例3]
 塗布工程において、磁性層の平均厚みを85nmとし、保磁力Hc1を2500Oeとし、保磁力Hc2を2100Oeとした。上記の点を除き、他は上記実施例1と同様にして比較例3としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.9nm、磁性層PSDは2.1μm、再生波形における孤立波形の半値幅PW50は180nmであった。
[比較例4]
 磁性層形成用塗料の調製工程において、第1組成物におけるバリウムフェライト(BaFe1219)粒子について、粉末平均アスペクト比を3.0、平均粒子サイズを21.3nm、平均粒子体積を2090nm3とした。また、塗布工程において、保磁力Hc1を3100Oeとした。上記の点を除き、他は上記実施例1と同様にして比較例4としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.9nm、磁性層PSDは2.1μm、再生波形における孤立波形の半値幅PW50は190nmであった。
[比較例5]
 磁性層形成用塗料の調製工程において、磁性粉としてε酸化鉄粒子の粉末(球状、平均アスペクト比1.3、平均粒子サイズ15.7nm、粒子体積2050nm3)を用いた。また、塗布工程において、保磁力Hc1を2550Oeとし、保磁力Hc2を2080Oeとした。上記の点を除き、他は上記実施例1と同様にして比較例5としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.9nm、磁性層PSDは2.1μm、再生波形における孤立波形の半値幅PW50は180nmであった。
[比較例6]
 磁性層形成用塗料の調製工程において、磁性粉としてコバルトフェライトの粉末(立方体状、平均アスペクト比1.1、平均粒子サイズ12.6nm、粒子体積2030nm3)を用いた。また、塗布工程において、保磁力Hc1を2450Oeとし、保磁力Hc2を2080Oeとした。上記の点を除き、他は上記実施例1と同様にして比較例6としての磁気記録媒体を得た。なお、得られた磁気記録媒体の磁性層Raは1.9nm、磁性層PSDは2.1μm、再生波形における孤立波形の半値幅PW50は179nmであった。
[比較例7]
 磁性層の添加剤を調整することにより、得られた磁気記録媒体の磁性層Raを2.55nm、磁性層PSDを3.2μmとした。なお、再生波形における孤立波形の半値幅PW50は205nmであった。
[比較例8]
 磁性層の添加剤を調整することにより、得られた磁気記録媒体の磁性層Raを1.66nm、磁性層PSDを1.7μmとした。なお、再生波形における孤立波形の半値幅PW50は173nmであった。
[評価]
 上述のようにして得られた実施例1~19および比較例1~8の磁気記録媒体について以下の評価を行った。
(C/N)
 まず、ループテスター(Microphysics社製)を用いて、磁気記録媒体の再生信号を取得した。以下に、再生信号の取得条件について示す。
ヘッド:GMRヘッド
速度:2m/s
再生信号:単一記録周波数(10MHz)
記録電流:最適記録電流
 次に、再生信号をスペクトラムアナライザ(spectrum analyze)により取り込み、10MHzの再生出力値と、10MHz±1MHzのノイズの平均値を計測し、それらの差をC/Nとした。その結果を、比較例1のC/Nを0dBとする相対値で表1に示した。なお、C/Nが1.5dB以上であると、短波長・狭トラック密度にも耐えうるメディアを実現できる。
Figure JPOXMLDOC01-appb-T000003
 表1は、実施例1~19および比較例1~8における各磁気記録媒体の磁気特性および評価結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表2は、実施例1~19および比較例1~8の磁気記録媒体で採用したメディア構成を示す。
 表1~表2に示したように、実施例1~19では、磁性層の表面の算術平均粗さRaが2.5nm以下であり、空間波長5μmまでのPSDが2.5μm以下であり、磁性層の平均厚みが90nm以下であり、磁性粉の平均アスペクト比が1.0以上3.0以下であり、垂直方向における保磁力Hc1が3000Oe以下であり、Hc2/Hc1が0.8以下であり、データ信号の再生波形における孤立波形の半値幅PW50が200nm以下である。このため、磁化遷移幅を急峻としつつ、良好な電磁変換特性(C/N)を確保することができる。したがって、高密度記録に有利な構成を実現することができる。
 また、実施例1,2,4,8-15,17-19では、半値幅PW50が175nm以下であるので、優れた電磁変換特性(C/N)が得られた。
 特に実施例2,8,9,11-14では半値幅PW50が170nm以下であるので、より優れた電磁変換特性(C/N)が得られた。
 比較例1では、磁性粉の平均アスペクト比が3.0を上回ったので、磁気テープのスタッキングが生じ、電磁変換特性が劣化した。
 比較例2では、磁性層の平均厚みが大きく、短波長での電磁変換特性が劣化した。
 比較例3では、垂直配向度が低く、電磁変換特性が劣化した。
 比較例4では、垂直方向の保磁力Hc1が大きすぎるので、未飽和領域の発生が生じ、電磁変換特性が劣化した。
 比較例5,6では、垂直配向度が低く、電磁変換特性が劣化した。
 比較例7では、磁性層の表面粗さRaが大きすぎ、電磁変換特性が劣化した。また、表面性の悪化により、磁性層表面と磁気ヘッドとの隙間が生じ、半値幅PW50も劣化した。
 比較例8では、電磁変換特性は向上したが、磁性層表面の摩擦力の上昇により、磁気記録媒体の走行が不能となった。
 以上、実施の形態およびその変形例を挙げて本開示を具体的に説明したが、本開示は上記実施の形態等に限定されるものではなく、種々の変形が可能である。
 例えば、上述の実施形態およびその変形例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。具体的には、本開示の磁気記録媒体は、基体、下地層、磁性層、バック層およびバリア層以外の構成要素を含んでいてもよい。また、化合物等の化学式は代表的なものであって、同じ化合物の一般名称であれば、記載された価数等に限定されない。
 また、上述の実施形態およびその変形例の構成、方法、工程、形状、材料および数値等は、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、本明細書において段階的に記載された数値範囲において、ある段階の数値範囲の上限値または下限値は、他の段階の数値範囲の上限値または下限値に置き換えてもよい。本明細書に例示した材料は、特に断らない限り、1種を単独で用いることができるし、2種以上を組み合わせて用いることもできる。
 以上説明したように、本開示の一実施形態としての磁気記録媒体によれば、さらなる高密度記録の実現が可能である。
 なお、本開示の効果はこれに限定されるものではなく、本明細書に記載のいずれの効果であってもよい。また、本技術は以下のような構成を取り得るものである。
(1)
 テープ状の磁気記録媒体であって、
 ポリエステルを主たる成分として含む基体と、
 前記基体上に設けられ、磁性粉を複数含み、データ信号の記録が可能な磁性層と
 を有し、
 前記磁性層の表面の算術平均粗さRaは、2.5nm以下であり、
 空間波長5μmまでのPSD (Power Spectrum Density)が2.5μm以下であり、
 前記磁性層の平均厚みは、90nm以下であり、
 前記磁性粉の平均アスペクト比は、1.0以上3.0以下であり、
 垂直方向における保磁力は、3000エルステッド以下であり、
 垂直方向における保磁力に対する長手方向における保磁力の割合は、0.8以下であり、
 前記データ信号の再生波形における孤立波形の半値幅は、200nm以下である
 磁気記録媒体。
(2)
 前記データ信号の再生波形における孤立波形の半値幅が175nm以下である
 上記(1)記載の磁気記録媒体。
(3)
 前記データ信号の再生波形における孤立波形の半値幅が170nm以下である
 上記(1)記載の磁気記録媒体。
(4)
 前記データ信号の再生波形における孤立波形の半値幅が165nm以下である
 上記(1)記載の磁気記録媒体。
(5)
 複数の前記磁性粉の平均粒子径は8nm以上22nm以下である
 上記(1)から(4)のいずれか1つに記載の磁気記録媒体。
(6)
 複数の前記磁性粉の平均粒子体積は2300nm3以下である
 上記(1)から(5)のいずれか1つに記載の磁気記録媒体。
(7)
 前記磁性層は、複数のサーボ信号の記録がそれぞれ可能な複数のサーボバンドを有し、
 前記磁性層の表面の面積に対する前記複数のサーボバンドの総面積の割合が4.0%以下である
 上記(1)から(6)のいずれか1つに記載の磁気記録媒体。
(8)
 前記複数のサーボバンドの数は、5以上である
 上記(1)から(7)のいずれか1つに記載の磁気記録媒体。
(9)
 前記サーボバンドの幅は、95nm以下である
 上記(1)から(8)のいずれか1つに記載の磁気記録媒体。
(10)
 前記磁性層は、複数の記録トラックを形成可能であり、
 前記記録トラックの幅は、3.0μm以下である
 上記(1)から(9)のいずれか1つに記載の磁気記録媒体。
(11)
 前記磁性層は、磁化反転間距離の最小値が48nm以下となるように、データを記録可能に構成されている
 上記(1)から(10)のいずれか1つに記載の磁気記録媒体。
(12)
 前記長手方向における保磁力が2000Oe以下である
 上記(1)から(11)のいずれか1つに記載の磁気記録媒体。
(13)
 5.6μm以下の平均厚みを有する
 上記(1)から(12)のいずれか1つに記載の磁気記録媒体。
(14)
 前記基体は、4.2μm以下の平均厚みを有する
 上記(1)から(13)のいずれか1つに記載の磁気記録媒体。
(15)
 前記磁性粉は、Ba(バリウム)およびSr(ストロンチウム)のうちの少なくとも1種を含有する六方晶フェライト、Al(アルミニウム)およびGa(ガリウム)のうちの少なくとも1種を含有するε酸化鉄、またはCo(コバルト)含有スピネル型フェライトを含む
 上記(1)から(14)のいずれか1つに記載の磁気記録媒体。
(16)
 前記磁性層の平均厚みは、80nm以下である
 上記(1)から(15)のいずれか1つに記載の磁気記録媒体。
(17)
 前記磁性層の平均厚みは、70nm以下である
 上記(1)から(16)のいずれか1つに記載の磁気記録媒体。
(18)
 前記垂直方向における保磁力をHc1とし、長手方向における保磁力をHc2とするとき、下記の条件式<1>を満たす
Hc2/Hc1≦0.7 ……<1>
 上記(1)から(17)のいずれか1つに記載の磁気記録媒体。
(19)
 前記垂直方向における保磁力は、2900Oe以上である
 上記(1)から(18)のいずれか1つに記載の磁気記録媒体。
(20)
 テープ状の磁気記録媒体を順次送り出すことのできる送り出し部と、
 前記送り出し部から送り出された前記磁気記録媒体を巻き取ることのできる巻き取り部と、
 前記送り出し部から前記巻き取り部へ向けて走行する前記磁気記録媒体と接触しつつ、前記磁気記録媒体への情報書き込み、および前記磁気記録媒体からの情報読み出しを行うことのできる磁気ヘッドと
 を備え、
 前記磁気記録媒体は、
 ポリエステルを主たる成分として含む基体と、
 前記基体上に設けられ、磁性粉を複数含み、データ信号の記録が可能な磁性層と
 を有し、
 前記磁性層の表面の算術平均粗さRaは、2.5nm以下であり、
 空間波長5μmまでのPSD (Power Spectrum Density)が2.5μm以下であり、
 前記磁性層の平均厚みは、90nm以下であり、
 前記磁性粉の平均アスペクト比は、1.0以上3.0以下であり、
 垂直方向における保磁力は、3000エルステッド以下であり、
 垂直方向における保磁力に対する長手方向における保磁力の割合は、0.8以下であり、
 前記データ信号の再生波形における孤立波形の半値幅は、200nm以下である
 磁気記録再生装置。
(21)
 テープ状の磁気記録媒体と、
 前記磁気記録媒体を収容する筐体と
 を備え、
 前記磁気記録媒体は、
 ポリエステルを主たる成分として含む基体と、
 前記基体上に設けられ、磁性粉を複数含み、データ信号の記録が可能な磁性層と
 を有し、
 前記磁性層の表面の算術平均粗さRaは、2.5nm以下であり、
 空間波長5μmまでのPSD (Power Spectrum Density)が2.5μm以下であり、
 前記磁性層の平均厚みは、90nm以下であり、
 前記磁性粉の平均アスペクト比は、1.0以上3.0以下であり、
 垂直方向における保磁力は、3000エルステッド以下であり、
 垂直方向における保磁力に対する長手方向における保磁力の割合は、0.8以下であり、
 前記データ信号の再生波形における孤立波形の半値幅は、200nm以下である
 磁気記録媒体カートリッジ。
 本出願は、日本国特許庁において2019年10月1日に出願された日本特許出願番号2019-181511号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (21)

  1.  テープ状の磁気記録媒体であって、
     ポリエステルを主たる成分として含む基体と、
     前記基体上に設けられ、磁性粉を複数含み、データ信号の記録が可能な磁性層と
     を有し、
     前記磁性層の表面の算術平均粗さRaは、2.5nm以下であり、
     空間波長5μmまでのPSD (Power Spectrum Density)が2.5μm以下であり、
     前記磁性層の平均厚みは、90nm以下であり、
     前記磁性粉の平均アスペクト比は、1.0以上3.0以下であり、
     垂直方向における保磁力は、3000エルステッド以下であり、
     垂直方向における保磁力に対する長手方向における保磁力の割合は、0.8以下であり、
     前記データ信号の再生波形における孤立波形の半値幅は、200nm以下である
     磁気記録媒体。
  2.  前記データ信号の再生波形における孤立波形の半値幅が175nm以下である
     請求項1記載の磁気記録媒体。
  3.  前記データ信号の再生波形における孤立波形の半値幅が170nm以下である
     請求項1記載の磁気記録媒体。
  4.  前記データ信号の再生波形における孤立波形の半値幅が165nm以下である
     請求項1記載の磁気記録媒体。
  5.  複数の前記磁性粉の平均粒子径は8nm以上22nm以下である
     請求項1記載の磁気記録媒体。
  6.  複数の前記磁性粉の平均粒子体積は2300nm3以下である
     請求項1記載の磁気記録媒体。
  7.  前記磁性層は、複数のサーボ信号の記録がそれぞれ可能な複数のサーボバンドを有し、
     前記磁性層の表面の面積に対する前記複数のサーボバンドの総面積の割合が4.0%以下である
     請求項1記載の磁気記録媒体。
  8.  前記複数のサーボバンドの数は、5以上である
     請求項7記載の磁気記録媒体。
  9.  前記サーボバンドの幅は、95nm以下である
     請求項7記載の磁気記録媒体。
  10.  前記磁性層は、複数の記録トラックを形成可能であり、
     前記記録トラックの幅は、3.0μm以下である
     請求項1に記載の磁気記録媒体。
  11.  前記磁性層は、磁化反転間距離の最小値が48nm以下となるように、データを記録可能に構成されている
     請求項1に記載の磁気記録媒体。
  12.  前記長手方向における保磁力が2000Oe以下である
     請求項1に記載の磁気記録媒体。
  13.  5.6μm以下の平均厚みを有する
     請求項1に記載の磁気記録媒体。
  14.  前記基体は、4.2μm以下の平均厚みを有する
     請求項1に記載の磁気記録媒体。
  15.  前記磁性粉は、Ba(バリウム)およびSr(ストロンチウム)のうちの少なくとも1種を含有する六方晶フェライト、Al(アルミニウム)およびGa(ガリウム)のうちの少なくとも1種を含有するε酸化鉄、またはCo(コバルト)含有スピネル型フェライトを含む
     請求項1に記載の磁気記録媒体。
  16.  前記磁性層の平均厚みは、80nm以下である
     請求項1に記載の磁気記録媒体。
  17.  前記磁性層の平均厚みは、70nm以下である
     請求項1に記載の磁気記録媒体。
  18.  前記垂直方向における保磁力をHc1とし、長手方向における保磁力をHc2とするとき、下記の条件式(1)を満たす
    Hc2/Hc1≦0.7 ……(1)
     請求項1に記載の磁気記録媒体。
  19.  前記垂直方向における保磁力は、2900Oe以上である
     請求項1に記載の磁気記録媒体。
  20.  テープ状の磁気記録媒体を順次送り出すことのできる送り出し部と、
     前記送り出し部から送り出された前記磁気記録媒体を巻き取ることのできる巻き取り部と、
     前記送り出し部から前記巻き取り部へ向けて走行する前記磁気記録媒体と接触しつつ、前記磁気記録媒体への情報書き込み、および前記磁気記録媒体からの情報読み出しを行うことのできる磁気ヘッドと
     を備え、
     前記磁気記録媒体は、
     ポリエステルを主たる成分として含む基体と、
     前記基体上に設けられ、磁性粉を複数含み、データ信号の記録が可能な磁性層と
     を有し、
     前記磁性層の表面の算術平均粗さRaは、2.5nm以下であり、
     空間波長5μmまでのPSD (Power Spectrum Density)が2.5μm以下であり、
     前記磁性層の平均厚みは、90nm以下であり、
     前記磁性粉の平均アスペクト比は、1.0以上3.0以下であり、
     垂直方向における保磁力は、3000エルステッド以下であり、
     垂直方向における保磁力に対する長手方向における保磁力の割合は、0.8以下であり、
     前記データ信号の再生波形における孤立波形の半値幅は、200nm以下である
     磁気記録再生装置。
  21.  テープ状の磁気記録媒体と、
     前記磁気記録媒体を収容する筐体と
     を備え、
     前記磁気記録媒体は、
     ポリエステルを主たる成分として含む基体と、
     前記基体上に設けられ、磁性粉を複数含み、データ信号の記録が可能な磁性層と
     を有し、
     前記磁性層の表面の算術平均粗さRaは、2.5nm以下であり、
     空間波長5μmまでのPSD (Power Spectrum Density)が2.5μm以下であり、
     前記磁性層の平均厚みは、90nm以下であり、
     前記磁性粉の平均アスペクト比は、1.0以上3.0以下であり、
     垂直方向における保磁力は、3000エルステッド以下であり、
     垂直方向における保磁力に対する長手方向における保磁力の割合は、0.8以下であり、
     前記データ信号の再生波形における孤立波形の半値幅は、200nm以下である
     磁気記録媒体カートリッジ。
PCT/JP2019/042753 2019-10-01 2019-10-31 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ WO2021065019A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/637,549 US11830532B2 (en) 2019-10-01 2019-10-31 Magnetic recording medium including magnetic layer having magnetic powder, magnetic recording/reproducing device, and magnetic recording medium cartridge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-181511 2019-10-01
JP2019181511A JP6813069B1 (ja) 2019-10-01 2019-10-01 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ

Publications (1)

Publication Number Publication Date
WO2021065019A1 true WO2021065019A1 (ja) 2021-04-08

Family

ID=74096349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042753 WO2021065019A1 (ja) 2019-10-01 2019-10-31 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ

Country Status (3)

Country Link
US (1) US11830532B2 (ja)
JP (1) JP6813069B1 (ja)
WO (1) WO2021065019A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189347A1 (ja) * 2022-03-30 2023-10-05 ソニーグループ株式会社 磁気記録媒体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149680A1 (ja) * 2020-01-21 2021-07-29 ソニーグループ株式会社 磁気記録媒体およびカートリッジ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320031A (ja) * 1996-05-30 1997-12-12 Kao Corp 磁気記録媒体
JP2001067640A (ja) * 1999-06-24 2001-03-16 Fuji Photo Film Co Ltd 磁気記録媒体
JP2001067639A (ja) * 1999-06-24 2001-03-16 Fuji Photo Film Co Ltd 磁気記録媒体
JP2001341265A (ja) * 2000-06-06 2001-12-11 Teijin Ltd 積層二軸配向ポリエステルフィルム
JP2007073086A (ja) * 2005-09-02 2007-03-22 Tdk Corp 磁気記録媒体の製造方法
JP2007294087A (ja) * 2006-03-31 2007-11-08 Fujifilm Corp 磁気記録媒体、磁気信号再生システムおよび磁気信号再生方法
JP2009032385A (ja) * 2007-07-03 2009-02-12 Hitachi Maxell Ltd 磁気記録媒体
JP2015130214A (ja) * 2014-01-07 2015-07-16 ソニー株式会社 磁気記録媒体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7016138B2 (en) * 2003-09-12 2006-03-21 Quantum Corporation Tension feedback system for a tape drive
JP2005166163A (ja) * 2003-12-02 2005-06-23 Fuji Photo Film Co Ltd 磁気テープ、磁気テープカートリッジ、磁気テープドライブ、及び磁気テープへのデータ記録方法
US7325763B1 (en) * 2006-09-21 2008-02-05 International Business Machines Corporation Magnetic tape guiding system guide roller with single flange oriented at lower debris tape edge
JP6206252B2 (ja) 2013-03-15 2017-10-04 ソニー株式会社 磁気記録媒体、サーボ信号記録装置及び磁気記録媒体の製造方法
US10255942B2 (en) * 2016-08-23 2019-04-09 International Business Machines Corporation Tape transport control with feedback of velocity and tension

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320031A (ja) * 1996-05-30 1997-12-12 Kao Corp 磁気記録媒体
JP2001067640A (ja) * 1999-06-24 2001-03-16 Fuji Photo Film Co Ltd 磁気記録媒体
JP2001067639A (ja) * 1999-06-24 2001-03-16 Fuji Photo Film Co Ltd 磁気記録媒体
JP2001341265A (ja) * 2000-06-06 2001-12-11 Teijin Ltd 積層二軸配向ポリエステルフィルム
JP2007073086A (ja) * 2005-09-02 2007-03-22 Tdk Corp 磁気記録媒体の製造方法
JP2007294087A (ja) * 2006-03-31 2007-11-08 Fujifilm Corp 磁気記録媒体、磁気信号再生システムおよび磁気信号再生方法
JP2009032385A (ja) * 2007-07-03 2009-02-12 Hitachi Maxell Ltd 磁気記録媒体
JP2015130214A (ja) * 2014-01-07 2015-07-16 ソニー株式会社 磁気記録媒体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189347A1 (ja) * 2022-03-30 2023-10-05 ソニーグループ株式会社 磁気記録媒体

Also Published As

Publication number Publication date
US20220284924A1 (en) 2022-09-08
JP6813069B1 (ja) 2021-01-13
JP2021057095A (ja) 2021-04-08
US11830532B2 (en) 2023-11-28

Similar Documents

Publication Publication Date Title
JP6717444B2 (ja) 磁気記録媒体及びカートリッジ
WO2021033332A1 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP6635216B1 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP6635215B1 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP6635218B1 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2023175039A (ja) 磁気記録媒体
JP7063411B2 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP6813069B1 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP6838633B1 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2021034101A (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP7563148B2 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP7359168B2 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP6777217B1 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP6777218B1 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2021034118A (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2021034102A (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2021034103A (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2020166925A (ja) 磁気記録媒体
JP2021034105A (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2021034104A (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP2020166921A (ja) 磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947882

Country of ref document: EP

Kind code of ref document: A1