WO2021064800A1 - 磁気検出装置、検出方法、及び検出プログラム - Google Patents

磁気検出装置、検出方法、及び検出プログラム Download PDF

Info

Publication number
WO2021064800A1
WO2021064800A1 PCT/JP2019/038538 JP2019038538W WO2021064800A1 WO 2021064800 A1 WO2021064800 A1 WO 2021064800A1 JP 2019038538 W JP2019038538 W JP 2019038538W WO 2021064800 A1 WO2021064800 A1 WO 2021064800A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
component
magnetic field
estimated
field component
Prior art date
Application number
PCT/JP2019/038538
Other languages
English (en)
French (fr)
Inventor
宮崎 秀樹
一也 木村
Original Assignee
フジデノロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フジデノロ株式会社 filed Critical フジデノロ株式会社
Priority to EP19947952.8A priority Critical patent/EP4040148A4/en
Priority to PCT/JP2019/038538 priority patent/WO2021064800A1/ja
Priority to JP2020511551A priority patent/JP6739130B1/ja
Publication of WO2021064800A1 publication Critical patent/WO2021064800A1/ja
Priority to US17/706,986 priority patent/US11946986B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/081Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices the magnetic field is produced by the objects or geological structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0094Sensor arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/022Measuring gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0029Treating the measured signals, e.g. removing offset or noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/063Magneto-impedance sensors; Nanocristallin sensors

Definitions

  • the present invention relates to a magnetic detector, a detection method, and a detection program.
  • Patent Document 1 discloses a security system capable of detecting a weapon based on the magnetic moment of a magnetic material.
  • the security system includes a magnetic sensor that detects the ambient magnetic field.
  • Weapons are often ferromagnets with a large magnetic moment, and the magnetic moment of a weapon is larger than that of daily necessities.
  • the security system issues an alarm signal based on the magnitude of the detected ambient magnetic field.
  • the magnitude of the ambient magnetic field formed by the magnetic moment depends on the distance between the magnetic material and the magnetic sensor, and follows the inverse multiplication rule for the distance between the magnetic material and the magnetic sensor. That is, the measured value of the magnetic sensor can be the same for a ferromagnetic material located at a distance from the magnetic sensor and an object having a small magnetic moment at a distance close to the magnetic sensor.
  • the security system described in Patent Document 1 cannot estimate the position of the magnetic material. Therefore, unless the distance between the magnetic material and the magnetic sensor is limited by a physical obstacle, it is not possible to distinguish between a weapon with a large magnetic moment and a daily necessities with a small magnetic moment.
  • the magnetic field formed by the magnetic moment described here is not necessarily the magnetic field applied by a magnetized magnetic material such as a magnet, but is formed by the magnetic moment in which the soft magnetic material and the ferromagnetic material capture the magnetic field lines of the ambient magnetic field.
  • Magnetic fields can be handled in the same way, and weapons such as guns and knives are mainly ferromagnetic, that is, the latter is mainly composed of iron.
  • An object of the present invention is to provide a magnetic detector, a detection method, and a detection program capable of accurately estimating the magnitude of the magnetic moment of a magnetic material.
  • the magnetic detection device is the magnetometer of a magnetic material that moves in the first direction among the first direction which is a specific direction, the second direction which intersects the first direction, and the third direction.
  • a magnetic detector capable of detecting a magnetic field due to a moment, the first magnetic sensor capable of measuring the first magnetic field component which is the first direction component of the magnetic field, and the first magnetic sensor in close proximity to or integrally with the first magnetic sensor.
  • the possible magnetic field component including at least one of the second magnetic field component which is the component in the second direction of the magnetic field and the third magnetic field component which is the component in the third direction of the magnetic field can be measured.
  • a magnetic sensor, a control unit, and a storage unit that stores a program executed by the control unit are provided, and the control unit executes the program stored in the storage unit in the first direction.
  • the closest detection process that detects the time when the magnetic material that moves to has passed the closest position, which is the position of the magnetic material when it is closest to the first magnetic sensor, and the first magnetic sensor at the time.
  • the closest component acquisition process for acquiring the measured first magnetic field component and the possible magnetic field component measured by the second magnetic sensor, and the magnetism at a predetermined position separated from the position of the first magnetic sensor by a predetermined distance.
  • a distance estimation process for estimating the third direction distance which is the distance between the magnetic material and the first magnetic sensor in the third direction, based on the first magnetic field component, and the third direction estimated by the distance estimation process.
  • the magnetic moment amount estimation process for estimating the magnitude of the magnetic moment is executed based on the distance and at least one of the first magnetic field component and the possible magnetic field component acquired in the closest contact component acquisition process. It is characterized by that. Since the magnetic detector can estimate the distance in the third direction using a sensor capable of measuring the magnetic field, the magnitude of the magnetic moment of the magnetic material can be estimated accurately based on the distance in the third direction.
  • control unit further executes an attitude angle estimation process for estimating the attitude angle of the magnetic moment based on the first magnetic field component and the possible magnetic field component acquired in the closest contact component acquisition process.
  • the magnitude of the magnetic moment may be estimated based on the attitude angle estimated by the attitude angle estimation process.
  • the magnetic detector estimates the magnitude of the magnetic moment based on the estimated attitude angle and the distance in the third direction. Therefore, the magnetic detector can accurately estimate the magnitude of the magnetic moment of the magnetic material.
  • the possible magnetic field component includes the second magnetic field component and the third magnetic field component
  • the control unit acquires the first contact component in the attitude angle estimation process.
  • the first rotation angle which is a component of the attitude angle in the rotation direction about the third direction as an axis
  • the first rotation angle acquired by the closest contact component acquisition process is performed.
  • the second rotation angle which is a component of the attitude angle in the rotation direction about the second direction
  • the attitude angle is estimated.
  • the first magnetic moment component which is a component projected onto a plane including the first direction and the second direction of the magnetic moment, is estimated, and the second rotation angle estimated by the attitude angle estimation process.
  • the magnetic moment of the magnetic moment is based on the third direction distance estimated by the distance estimation process and any of the first magnetic field component and the third magnetic field component acquired by the closest contact component acquisition process.
  • the second magnetic moment component which is a component projected onto a plane including the first direction and the third direction, is estimated, and the magnitude of the magnetic moment is determined based on the first magnetic moment component and the second magnetic moment component. You may estimate.
  • the magnetic detector estimates the first magnetic moment component and the second magnetic moment component regardless of the attitude of the magnetic moment, and determines the magnitude of the magnetic moment in consideration of the attitude of the magnetic moment. Can be estimated. Therefore, the magnetic detector can accurately estimate the magnitude of the magnetic moment of the magnetic material.
  • the control unit determines that the magnetic material is a weapon when the magnitude of the magnetic moment estimated by the magnetic moment amount estimation process is equal to or larger than a predetermined threshold value.
  • the determination process may be further executed.
  • the magnetic detector determines whether the magnetic material is a weapon based on the magnitude of the magnetic moment of the magnetic material estimated with high accuracy. Therefore, the magnetic detector can accurately determine whether the magnetic material is a weapon.
  • the two first magnetic sensors are further provided, the two first magnetic sensors are provided at a predetermined distance from each other in the first direction, and the control unit performs the component acquisition process at the fixed position.
  • the first magnetic field component measured by one of the first magnetic sensors is acquired in the closest contact component acquisition process
  • the first magnetic field component measured by the other first magnetic sensor is placed at the predetermined position. It may be acquired as the first magnetic field component measured by the first magnetic sensor when the magnetic material is present in. In this case, since the magnetic detector determines the predetermined position, the position of the magnetic material can be estimated accurately.
  • a speed estimation unit for estimating the movement speed of the magnetic material in the first direction is further provided, and the control unit is the movement estimated by the speed estimation unit in the fixed position component acquisition process.
  • the predetermined position is determined based on the speed and the first magnetic field component measured by the first magnetic sensor, and the first magnetic field component measured by the first magnetic sensor when the magnetic material is in the predetermined position is determined. You may get it. In this case, since the magnetic detector determines the predetermined position, the position of the magnetic material can be estimated accurately.
  • the detection method according to the second aspect of the present invention includes a magnetic material that moves in the first direction among the first direction that is a specific direction, the second direction that intersects the first direction, and the third direction.
  • the first magnetic sensor can measure the first magnetic field component which is the first direction component of the magnetic field
  • the second magnetic sensor has the second magnetic field component which is the second direction component of the magnetic field and the second magnetic field component.
  • the closest detection step that detects when the magnet has passed the closest position, which is the position of the magnetic material when they are close to each other, the first magnetic field component measured by the first magnetic sensor at the time, and the second magnetism.
  • the magnetic material is in a predetermined position which is a position of the magnetic material which is a predetermined distance in the first direction from the closest contact position in the closest contact component acquisition step of acquiring the possible magnetic field component measured by the sensor.
  • a distance estimation step for estimating the third-direction distance which is the distance between the magnetic material and the first magnetic sensor in the third direction, the third-direction distance estimated in the distance estimation step, and the above-mentioned It is characterized by including a magnetic moment amount estimation step of estimating the magnitude of the magnetic moment based on at least one of the first magnetic field component and the possible magnetic field component acquired in the closest contact component acquisition step.
  • the second aspect further includes an attitude angle estimation step of estimating the attitude angle of the magnetic moment of the magnetic material based on the first magnetic field component and the possible magnetic field component acquired in the closest contact component acquisition step, and further includes the magnetism.
  • the moment amount estimation step the magnitude of the magnetic moment may be estimated based on the posture angle estimated in the attitude angle estimation step.
  • the possible magnetic field component includes the second magnetic field component and the third magnetic field component, and in the attitude angle estimation step, the first magnetic field component and the first magnetic field component acquired in the closest contact component acquisition step.
  • the first rotation angle which is a component in the rotation direction about the third direction of the attitude angle
  • the first magnetic field component and the third magnetic field acquired in the closest contact component acquisition step Based on the components, the second rotation angle, which is a component of the attitude angle in the rotation direction about the second direction, is estimated, and in the magnetic moment amount estimation step, the first estimated in the posture angle estimation step.
  • the magnetic moment is based on the rotation angle, the third direction distance estimated in the distance estimation step, and either the first magnetic field component or the second magnetic field component acquired in the closest contact component acquisition step.
  • the first magnetic moment component which is a component projected onto a plane including the first direction and the second direction, is estimated, and the second rotation angle estimated in the attitude angle estimation step and the distance estimation step are estimated.
  • the first direction and the third direction of the magnetic moment are estimated.
  • the second magnetic moment component which is a component projected onto a plane including the above, may be estimated, and the magnitude of the magnetic moment may be estimated based on the first magnetic moment component and the second magnetic moment component.
  • the weapon determination step of determining that the magnetic material is a weapon is further included. It may be.
  • the first magnetic field component measured by the other first magnetic sensor when the first magnetic field component is acquired, and the first magnetic field component measured by the first magnetic sensor when the magnetic material is in the predetermined position. May be obtained as.
  • the movement speed estimated by the speed estimation unit capable of estimating the movement speed of the magnetic material moving in the first direction and the movement speed estimated by the first magnetic sensor are measured.
  • the predetermined position may be determined based on the first magnetic field component, and the first magnetic field component measured by the first magnetic sensor when the magnetic material is present at the predetermined position may be acquired.
  • the computer executes the detection method according to the second aspect.
  • the magnetic detector 1 is a device capable of estimating the position of the magnetic body 90 and the magnitude of the magnetic moment of the magnetic body 90.
  • the magnetic detector 1 includes a sensor unit 2 and a control unit 3.
  • the control unit 3 has a substantially rectangular parallelepiped shape extending in the horizontal direction.
  • the sensor unit 2 has a substantially rectangular parallelepiped shape extending upward from the upper surface of the control unit 3.
  • the sensor unit 2 includes a plurality of display units 6.
  • the plurality of display units 6 can be lit or blinked, and are provided on the surface of the sensor unit 2 side by side in the vertical direction.
  • the magnetic detector 1 can communicate with a general-purpose personal computer (PC) 20 including a display 21, a warning light 30 that can be lit or blinking, a surveillance camera 40, and the like via a network 99.
  • PC personal computer
  • the sensor unit 2 includes magnetic sensors P (1), P (2) ... P (n) (n is a natural number) (collectively referred to as “magnetic sensor P"), and A magnetic sensor Q (1), Q (2) ... Q (n) (collectively referred to as “magnetic sensor Q”) is provided.
  • the magnetic sensors P and Q are well-known MI sensors that utilize, for example, the magnetic impedance effect (Magneto-Impedance element MI effect) of an amorphous magnetic wire.
  • the magnetic sensors P and Q can selectively measure the magnitude of a component in a specific direction in a magnetic field.
  • the magnetic sensors P and Q are three-axis sensors (three-dimensional sensors) having three sensors in which the directions of the measurable magnetic field components are orthogonal to each other.
  • the directions of the magnetic field components that can be measured by the magnetic sensors P and Q are the X direction, the Y direction, and the Z direction that are orthogonal to each other.
  • the Y direction is parallel to the vertical direction.
  • the X and Z directions are parallel to the horizontal direction.
  • the magnetic body 90 moves along the X direction.
  • the magnetic sensors P and Q output a signal indicating a value indicating the magnitude of the component in each direction of the measured magnetic field (hereinafter, referred to as “measured value”) to the control unit 3.
  • the magnetic sensors P (1), P (2) ... P (n) are arranged at equal intervals in the Y direction.
  • the magnetic sensors Q (1), Q (2) ... Q (n) are arranged at equal intervals in the Y direction.
  • the magnetic sensor P (j) (j is a natural number of 1 or more and n or less) and the magnetic sensor Q (j) are arranged at a predetermined interval in the X direction.
  • the distance between the magnetic sensor P (j) and the magnetic sensor Q (j) is expressed as ⁇ .
  • the control unit 3 includes a CPU 11, a ROM 12, a RAM 13, a storage device 14, a communication interface (communication I / F) 15, and an input / output interface (input / output I / F) 16.
  • the CPU 11, ROM 12, RAM 13, storage device 14, and communication I / F 15 are electrically connected to the input / output I / F 16 via the data bus 17.
  • the CPU 11 controls the magnetic detector 1.
  • the CPU 11 executes the main process (see FIG. 5) based on the program stored in the storage device 14. In the main process, the position of the magnetic body 90 and the magnetic body 90 are based on the measured values indicated by the signals output by the magnetic sensors P and Q (hereinafter, referred to as “measured values detected by the magnetic sensors P and Q”).
  • the ROM 12 stores various parameters such as a threshold value described later.
  • the RAM 13 temporarily stores the calculation result of the CPU 11, the pointer, the counter, the measurement value table described later, and the like.
  • the storage device 14 is non-volatile and stores various programs and the like.
  • the communication I / F 15 is an interface element for communicating with the PC 20, the warning light 30, and the surveillance camera 40 via the network 99.
  • the input / output I / F 16 is electrically connected to the sensor unit 2.
  • the target sensor and compensation are obtained from the magnetic sensors P (1), P (2) ... P (n), and the magnetic sensors Q (1), Q (2) ... Q (n).
  • the sensor is selected.
  • the target sensor is the magnetic sensor having the shortest distance from the magnetic body 90.
  • the compensation sensor is a magnetic sensor that is separated from the target sensor by a distance ⁇ in the X direction.
  • the magnetic detector 1 estimates the position of the magnetic body 90 and the magnitude of the magnetic moment of the magnetic body 90 by using the target sensor and the compensation sensor.
  • the target sensor will be the magnetic sensor P (j)
  • the compensation sensor will be the magnetic sensor Q (j).
  • the origin O of the coordinate system for indicating the position of the magnetic body 90 is the position of the target sensor (magnetic sensor P (j)). It is assumed that the magnetic body 90 is located at coordinates (x, y, z) separated from the origin O by a distance x in the X direction, a distance y in the Y direction, and a distance z in the Z direction.
  • the magnetic body 90 moves in the X direction in a predetermined posture.
  • the magnetic body 90 is inclined at a rotation angle ⁇ about the Y direction and a rotation angle ⁇ about the Z direction.
  • the posture tilted at the rotation angles ⁇ and ⁇ is called the posture angle.
  • the attitude angle of the magnetic moment of the magnetic body 90 is assumed to be substantially equal to the attitude angle of the magnetic body 90.
  • the magnetic moment vector is expressed as m'.
  • the component projected onto the XY plane of the magnetic moment vector m' (hereinafter, referred to as "magnetic moment XY component") is referred to as m 1'.
  • the component projected onto the XZ plane of the magnetic moment vector m'(hereinafter, referred to as "magnetic moment XZ component”) is referred to as m 2'.
  • the magnetic field distribution in the three-dimensional space created by the magnetic moment of the magnetic body 90 is expressed by Eq. (1).
  • the magnetic flux density vector created by the magnetic moment of the magnetic material 90 is referred to as B.
  • the distance vector from the magnetic moment of the magnetic body 90 is expressed as r'.
  • the magnitude of the distance vector r'(hereinafter, referred to as "distance from the magnetic moment of the magnetic body 90") is expressed as r.
  • the origin O of the coordinate system is the position of the target sensor, and the magnetic body 90 is at coordinates (x, y, z) separated from the origin O by a distance x in the X direction, a distance y in the Y direction, and a distance z in the Z direction. ..
  • the distance y 0 between the magnetic material 90 and the target sensor in the Y direction.
  • the magnetic body 90 is at the coordinates (x, 0, z).
  • the size of the component in the X direction and the size of the component in the Y direction are represented by the equations (2) and (3).
  • the Target sensor the size of the X-direction component of the magnetic flux density vector B to be detected is denoted as B X.
  • the magnitude of the component in the Y direction of the magnetic flux density vector B detected by the target sensor is expressed as BY.
  • the magnitude of the magnetic moment XY component m 1 ′ is expressed as m 1.
  • the equation (2), the size of B X in the X direction component of the magnetic flux density vector B is maximized is when the magnetic body 90 is in the closest position (coordinates (0,0, z)).
  • the magnitude of the component in the X direction and the magnitude of the component in the Y direction of the magnetic flux density vector B when the magnetic body 90 is in the closest position are determined by the equations (4) and (5) based on the equations (2) and (3). Indicated by.
  • the magnitude of the component in the X direction of the magnetic flux density vector B detected by the target sensor when the magnetic body 90 is in the closest position is referred to as BX0.
  • the magnitude of the component in the Y direction of the magnetic flux density vector B detected by the target sensor when the magnetic body 90 is in the closest position is referred to as BY0.
  • the position (coordinates ( ⁇ , 0, z)) of the magnetic body 90 separated from the closest position (coordinates (0, 0, z)) by the distance ⁇ in the X direction is called a predetermined position.
  • the component in the X direction of the magnetic flux density vector B when the magnetic body 90 is in a predetermined position is referred to as BX ⁇ .
  • the distance z is expressed by the equation (7) by ignoring the second term on the right side as being extremely smaller than the first term on the right side.
  • the distance z can be obtained by a method other than the calculation of the equation (7). For example, the angle formed by the vector B 0 , which is the magnetic flux density vector when the magnetic body 90 is in the closest position, and the vector B ⁇ , which is the magnetic flux density vector when the magnetic body 90 is in the predetermined position, is calculated, and the triangular method is used. It is also possible to find the distance z.
  • the component B X0 in the X direction of the magnetic flux density vector B when the magnetic material 90 is in the closest position and the magnetic material 90 are at predetermined positions.
  • the distance z can be estimated from the component B X ⁇ in the X direction of the magnetic flux density vector at a certain time. Although the description is omitted, the same result can be obtained from the magnetic flux density vector created by the magnetic moment XZ component m 2 ′ by the same method.
  • the first method is as follows. Two magnetic sensors capable of measuring the X-direction component of the magnetic field are arranged in the X-direction. At this time, the distance between the two magnetic sensors in the X direction is defined as the magnitude of the distance ⁇ .
  • the measured value of one of the magnetic sensors indicates BX0.
  • the magnetic body 90 is in a predetermined position with respect to the other magnetic sensor of the two magnetic sensors.
  • the measured value of the other magnetic sensor is BX ⁇ . Therefore, the distance z can be estimated by the equation (7) or the like.
  • the second method is as follows. Two magnetic sensors capable of measuring the X-direction component of the magnetic field are arranged in the X-direction. The time change of the measured value of each of the two magnetic sensors is stored. The movement of the magnetic material 90 is due to the time difference between when the measured value of one of the two magnetic sensors shows the maximum and when the measured value of the other magnetic sensor of the two magnetic sensors shows the maximum. The speed is estimated. The position of the magnetic body 90 when a predetermined time elapses from the time when the measured value of one of the magnetic sensors shows the maximum is set as the predetermined position, and the distance ⁇ is determined from the moving speed of the magnetic body 90 estimated to be the predetermined time. ..
  • B X0 is the maximum value, based on the time showing a B X0 to the B Xderuta a measure after a predetermined time, the equation (7) or the like, estimates the distance z it can.
  • the third method is as follows. Two photo interrupters are arranged in the X direction around a magnetic sensor capable of measuring the X direction component of the magnetic field.
  • the photo interrupter includes a light emitting unit and a light receiving unit that face each other.
  • the photo interrupter outputs a signal.
  • the moving speed of the magnetic material 90 is estimated from the time difference between when one of the two photo interrupters outputs a signal and when the other of the two photo interrupters outputs a signal.
  • the time change of the measured value of the magnetic sensor is stored.
  • the position of the magnetic body 90 when a predetermined time elapses from the time when the measured value of the magnetic sensor shows the maximum value is set as a predetermined position, and the distance ⁇ is determined from the moving speed of the magnetic body 90 estimated to be the predetermined time. .. Accordingly, the magnetic sensor, and B X0 is the maximum value, based on the time showing a B X0 to the B Xderuta a measure after a predetermined time, the equation (7) or the like, can estimate the distance z.
  • the magnitudes of the X-direction component, the Y-direction component, and the Z-direction component of the magnetic flux density vector B are known from the equation (8), the X-direction component of the magnetic moment vector m'is known. , Y-direction component, and Z-direction component can be estimated.
  • the magnitude of the magnetic moment can be estimated based on the magnitude of the components in each direction of the magnetic moment vector m'. For example, the magnitude of the magnetic moment can be estimated from the square root of the sum of the squares of the magnitudes of the components in each direction of the magnetic moment vector m'.
  • the rotation angle ⁇ which is a component of the posture angle, is represented by the equation (9) from the equations (4) and (5).
  • the rotation angle ⁇ which is a component of the attitude angle, is also estimated in the same manner.
  • the size and magnitude of the Z-direction component of the X-direction component is represented by the formula (10) (11).
  • B Z The magnitude of the component in the Z direction of the magnetic flux density vector B detected by the target sensor.
  • B Z The magnitude of the magnetic moment XZ component m 2 ′ is expressed as m 2.
  • BX is maximized when the magnetic material 90 is in the closest position.
  • the magnitude of the component in the X direction and the magnitude of the component in the Z direction of the magnetic flux density vector B when the magnetic body 90 is in the closest position are determined by the equations (12) and (13) based on the equations (10) and (11). Indicated by.
  • the magnitude of the component in the Z direction of the magnetic flux density vector B detected by the target sensor when the magnetic body 90 is in the closest position is referred to as B Z0 .
  • the magnitude m 1 of the magnetic moment XY component is determined by the equation (15) or the equation (16). Can be estimated.
  • one of the equations (15) and (16) having a better estimation accuracy is used for estimating the magnitude m 1 of the magnetic moment XY component.
  • Equations (15) and (16) differ in that abs (cos ⁇ ) are used or abs (sin ⁇ ) are used. By estimating based on the larger of abs (cos ⁇ ) and abs (sin ⁇ ), the magnitude m 1 of the magnetic moment XY component can be estimated accurately.
  • the magnitude m 2 of the magnetic moment XZ component is estimated by the equation (21) or the equation (22). it can. Similar to the estimation of the magnitude m 1 of the magnetic moment XY component, the magnitude m 2 of the magnetic moment XZ component can be accurately estimated by estimating based on the larger of abs (cos ⁇ ) and abs (sin ⁇ ). ..
  • the magnitude of the magnetic moment is expressed as m.
  • the magnitude m of the magnetic moment is a value obtained by combining the magnitude m 1 of the magnetic moment XY component and the magnitude m 2 of the magnetic moment XZ component.
  • the magnitude m of the magnetic moment is represented by the equation (27).
  • the CPU 11 repeatedly acquires the measured values detected by the magnetic sensors P and Q at predetermined cycles and stores them in the RAM 13 (S1). Each measured value includes a measured value in the X direction, a measured value in the Y direction, and a measured value in the Z direction.
  • the CPU 11 executes noise removal processing on a plurality of measured values stored in the RAM 13 (S2).
  • the noise removal process is a process for removing an environmental magnetic field caused by an object other than the magnetic material 90 included in a plurality of measured values. In this embodiment, a low-pass filter and a high-pass filter are used in the noise removal process, and the environmental magnetic field is removed.
  • the CPU 11 determines whether or not the magnetic body 90 has been detected (S3). In S3, the CPU 11 determines whether any of the plurality of measured values from which the environmental magnetic field has been removed in S2 is equal to or greater than a predetermined threshold value.
  • the plurality of measured values from which the environmental magnetic field has been removed in S2 will be referred to as "plurality of analytical values”.
  • Each analytical value includes an analytical value in the X direction corresponding to the measured value in the X direction, an analytical value in the Y direction corresponding to the measured value in the Y direction, and an analytical value in the Z direction corresponding to the measured value in the Z direction. included.
  • the CPU 11 executes the sensor determination process (S4).
  • S4 the CPU 11 determines the target sensor and the compensation sensor from the magnetic sensors P and Q.
  • the CPU 11 selects the magnetic sensor P having the maximum absolute value of the analysis value in the Y direction from the magnetic sensors P (1), P (2) ... P (n).
  • the magnetic sensor P that maximizes the absolute value of the analysis value in the Y direction is the magnetic sensor P (j)
  • the magnitude of the absolute value of the analysis values of the magnetic sensor P (j) and the magnetic sensor Q (j) in the X direction is large or small.
  • the CPU 11 determines the larger absolute value of the analysis value in the X direction as the target sensor, and determines the smaller absolute value as the compensation sensor.
  • the CPU 11 determines whether the magnetic material 90 has passed the closest position to the target sensor (S5). According to the equations (2) and (10), when the magnetic body 90 is in the closest position, the absolute value of the component in the X direction of the magnetic field created by the magnetic body 90 becomes the maximum. In other words, when the magnetic material 90 is in the closest position, the absolute value of the analysis value in the X direction becomes the maximum.
  • FIG. 6 is a graph showing the time change of the absolute value of the analysis value in the X direction detected by the target sensor. In the graph, the time when the absolute value of the analysis value in the X direction becomes the maximum value is the time t 0 when the magnetic body 90 is located at the closest position.
  • the CPU 11 When there is no maximum value in the time change in the absolute value of the analysis value in the X direction in the target sensor, the CPU 11 returns the process to S1 assuming that the magnetic material 90 has not passed the closest position (S5: NO). When the target sensor has a maximum value in the time change in the absolute value of the analysis value in the X direction, the CPU 11 shifts the process to S6, assuming that the magnetic material 90 has passed the closest position (S5: YES).
  • the CPU 11 executes the closest component acquisition process (S6).
  • the closest contact component acquisition process the analysis value detected by the target sensor when the magnetic material 90 is in the closest contact position with respect to the target sensor (time t 0) is acquired.
  • the CPU 11 shifts the process to S7.
  • the CPU 11 executes the component acquisition process at the fixed position (S7).
  • the analysis value detected by the compensation sensor when the magnetic body 90 is in a predetermined position with respect to the compensation sensor is acquired.
  • the target sensor and the compensation sensor are arranged at a distance ⁇ in the X direction.
  • the target sensor detects the closest component by the first method for determining the distance ⁇ described above, the magnetic body 90 is in a predetermined position with respect to the compensation sensor. That is, in place during component acquiring process (S7), analysis values that compensate the sensor detects the timing t 0 is obtained.
  • the CPU 11 shifts the process to S8.
  • the CPU 11 executes the position estimation process (S8).
  • the analysis value of the closest component in the X direction acquired in S6 the analysis value of the component in the fixed position in the X direction acquired in S7, and the distance ⁇ stored in the ROM 12 are expressed in the equation ( Substituted in 6).
  • the CPU 11 transforms the equation (6) into which each value is assigned to derive the equation (7).
  • the CPU 11 estimates the distance z.
  • the CPU 11 shifts the process to S9. Further, z may use the above-mentioned trigonometry.
  • the CPU 11 executes the attitude angle estimation process (S9).
  • the attitude angle estimation process two of the X-direction analysis value, the Y-direction analysis value, and the Z-direction analysis value of the closest component acquired in S6 are substituted into equations (9) and (14). Will be done.
  • the CPU 11 estimates the rotation angles ⁇ and ⁇ , respectively.
  • the CPU 11 shifts the process to S10.
  • the CPU 11 executes the magnetic moment amount estimation process (S10).
  • the following processing is executed in the magnetic moment amount estimation processing.
  • the X-direction analysis value, the Y-direction analysis value, the distance z estimated in S8, and the rotation angle ⁇ estimated in S9 obtained in S6 are the equations (15) to (18). ) Is substituted.
  • Equations (19) and (20) are derived from the equations (15) to which the respective values are assigned by the equations (18). Based on the rotation angle ⁇ , the magnitude m 1 of the magnetic moment XY component is estimated from one of the equations (19) and (20).
  • the X-direction analysis value, the Z-direction analysis value, the distance z estimated in S8, and the rotation angle ⁇ estimated in S9 obtained in S6 are the equations (21) to (24). ) Is substituted. Equations (25) and (26) are derived from the equations (21) to which the respective values are assigned by the equations (24). Based on the rotation angle ⁇ , the magnitude m 2 of the magnetic moment XZ component is estimated from one of the equations (25) and (26). The estimated magnitude m 1 of the magnetic moment XY component and the magnitude m 2 of the magnetic moment XZ component are substituted into equation (27). As a result, the magnitude m of the magnetic moment is estimated.
  • the CPU 11 determines whether the magnetic body 90 is a weapon based on the estimated magnitude m of the magnetic moment (S11).
  • the strength of the magnetic poles is expressed as q and the distance between the magnetic poles is expressed as d
  • the distance d between the magnetic poles of a weapon is larger than the distance d between the magnetic poles of an object that is not a weapon (for example, a magnet included in daily necessities). Therefore, the magnitude m of the magnetic moment of the weapon is larger than the magnitude m of the magnetic moment of the object that is not the weapon.
  • the CPU 11 When it is determined that the magnetic body 90 is not a weapon (S11: NO), the CPU 11 returns the process to S1.
  • the CPU 11 outputs a warning signal (S12).
  • the warning signal is output to the PC 20, the warning light 30, the surveillance camera 40, etc. via the display unit 6 and the communication I / F15.
  • the display unit 6 lights up or blinks in response to the reception of the warning signal.
  • the PC 20 displays on the display 21 a notification screen notifying, for example, that there is a weapon near the magnetic detector 1.
  • the warning light 30 blinks in response to the reception of the warning signal.
  • the surveillance camera 40 captures, for example, the position estimated in S8 in response to the reception of the warning signal.
  • the CPU 11 returns the process to S1.
  • the CPU 11 repeatedly executes S1 to S12.
  • the magnetic detector 1 includes magnetic sensors P and Q.
  • the magnetic sensors P and Q are three-axis sensors having three sensors, and can selectively measure the magnitudes of the X-direction component, the Y-direction component, and the Z-direction component of the magnetic field, respectively.
  • CPU11 of the magnetic detection device 1 the magnetic body 90 detects the timing t 0 which has passed through the position closest to the target sensor (S5).
  • CPU11 is detected X direction analysis by the subject sensor timing t 0, the analysis value of the Y-direction, and the analytical values of the Z-direction, respectively to obtain (S6).
  • CPU11 acquires the analysis of the detected X-direction by the compensation sensor timing t 0 (S7).
  • the CPU 11 estimates the distance z based on the analysis value in the X direction acquired in S6 and the analysis value in the X direction acquired in S7 (S8).
  • the CPU 11 has a magnetic moment magnitude m based on any of the X-direction analysis value, the Y-direction analysis value, and the Z-direction analysis value acquired in S6, and the distance z estimated in S8. Is estimated (S10). Therefore, the magnetic detector 1 can accurately estimate the magnitude m of the magnetic moment of the magnetic body 90.
  • the CPU 11 estimates the angles of rotation ⁇ and ⁇ , which are the components of the posture angle, based on the analysis value in the X direction, the analysis value in the Y direction, and the analysis value in the Z direction acquired in S6, respectively. (S9).
  • the CPU 11 has any of the X-direction analysis value, the Y-direction analysis value, and the Z-direction analysis value acquired in S6, the distance z estimated in S8, the rotation angle ⁇ estimated in S9, and the rotation angle ⁇ .
  • the magnitude m of the magnetic moment is estimated based on at least one of the rotation angles ⁇ (S10).
  • the magnetic detector 1 estimates the magnitude m of the magnetic moment based on the estimated position and orientation angle of the magnetic body 90. Therefore, the magnetic detector 1 can accurately estimate the magnitude m of the magnetic moment of the magnetic body 90.
  • the CPU 11 estimates the rotation angles ⁇ and ⁇ in S9, respectively.
  • the CPU 11 is based on either the X-direction analysis value or the Y-direction analysis value acquired in S6, the distance z estimated in S8, and the rotation angle ⁇ estimated in S9. , Estimate the magnitude m 1 of the magnetic moment XY component.
  • the CPU 11 is based on either one of the analysis value in the X direction and the analysis value in the Z direction acquired in S6, the distance z estimated in S8, and the rotation angle ⁇ estimated in S9.
  • the magnitude m 2 of the magnetic moment XZ component is estimated.
  • the CPU 11 estimates the magnitude m of the magnetic moment based on the estimated magnitude m 1 of the magnetic moment XY component and the magnitude m 2 of the magnetic moment XZ component.
  • the CPU 11 determines whether the magnetic body 90 is a weapon based on the estimated magnitude m of the magnetic moment (S11). In this case, the magnetic detector 1 determines whether the magnetic body 90 is a weapon based on the magnitude of the magnetic moment of the magnetic body 90 estimated with high accuracy. Therefore, the magnetic detector 1 can accurately determine whether the magnetic body 90 is a weapon.
  • the magnetic sensor P (j) and the magnetic sensor Q (j) are lined up with a predetermined distance ⁇ in the X direction.
  • X CPU 11 the analysis value in the X direction target sensor detects at timing t 0, the analysis value of the Y-direction, and when the analysis value in the Z-direction respectively acquired (S6), the compensating sensor is detected at timing t 0
  • the analysis value of the direction is acquired (S7). In this case, since the predetermined position of the magnetic body 90 with respect to the compensation sensor is determined, the position of the magnetic body 90 can be estimated accurately.
  • the X direction is an example of the "first direction” of the present invention.
  • the Y direction is an example of the “second direction” of the present invention.
  • the Z direction is an example of the "third direction” of the present invention.
  • the sensor capable of measuring the magnitude of the component in the X direction of the magnetic field is an example of the "first magnetic sensor” of the present invention.
  • the two sensors that can measure the magnitudes of the Y-direction component and the Z-direction component of the magnetic field are examples of the "second magnetic sensor" of the present invention. is there.
  • the distance ( ⁇ 2 + z 2 ) 1/2 is an example of the “predetermined distance” of the present invention.
  • the distance z is an example of the "third direction distance” of the present invention.
  • the rotation angle ⁇ is an example of the “first rotation angle” of the present invention.
  • the rotation angle ⁇ is an example of the “second rotation angle” of the present invention.
  • the magnitude m 1 of the magnetic moment XY component is an example of the “first magnetic moment component” of the present invention.
  • the magnitude m 2 of the magnetic moment XZ component is an example of the "second magnetic moment component" of the present invention.
  • S11 executed by the CPU 11 is an example of the "weapon determination process" of the present invention.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the magnetic detector 1 may have a structure in which the sensor unit 2 and the control unit 3 are separate bodies.
  • the control unit 3 may be a computer system such as a PC or a workstation.
  • the number of magnetic sensors P and Q is not limited.
  • the intervals between the magnetic sensors P and Q arranged in the Y direction do not have to be equal.
  • the distance between the magnetic sensor P (j) and the magnetic sensor Q (j) does not have to be a predetermined distance ⁇ .
  • the magnetic sensors P and Q are not limited to MI sensors, and may be other magnetic sensors capable of selectively detecting the magnitude of a component in a specific direction of the magnetic field.
  • the magnetic sensors P and Q may be a two-axis sensor having two sensors instead of a three-axis sensor having three sensors.
  • One of the magnetic sensors P and Q may be capable of measuring only the component of the magnetic field in the X direction.
  • one magnetic sensor capable of measuring only the component in the X direction of the magnetic field may be used as the compensation sensor, and the other magnetic sensor may be used as the target sensor.
  • the analytical values of the magnetic sensors P and Q other than the target sensor and the compensation sensor may be referred to.
  • the magnetic field components P and Q do not have to be orthogonal to each other in the directions of the measurable magnetic field components.
  • the magnitude of the component in each direction of the magnetic field may be detected based on the measured values of a plurality of sensors constituting the magnetic sensors P and Q.
  • the moving direction of the magnetic body 90 is not limited to the direction along the X direction, and may be any direction. In this case, the magnetic detector 1 can estimate the position of the magnetic body 90 and the magnitude m of the magnetic moment of the magnetic body 90 based on the component along the X direction in the moving direction of the magnetic body 90.
  • the program including the command for executing the main process may be stored in the storage device 14 before the CPU 11 executes the program.
  • Each of the program acquisition method, acquisition route, and device for storing the program may be changed as appropriate.
  • the program executed by the CPU 11 may be received from another device via a cable or wireless communication and stored in a storage device such as a non-volatile memory.
  • Other devices include, for example, a server connected via network 99.
  • a part or all of each step of the main process may be executed by another electronic device (for example, ASIC).
  • ASIC application specific integrated circuit
  • Each step of the main process can be reordered, steps omitted, and added as needed.
  • the scope of the present invention also includes a mode in which an operating system (OS) or the like running on the control unit 3 performs a part or all of the main processing by a command from the CPU 11. For example, the following changes may be made to the main process as appropriate.
  • OS operating system
  • S2 may be omitted, and the position of the magnetic body 90 and the magnitude of the magnetic moment of the magnetic body 90 may be estimated from the measured values detected by the magnetic sensors P and Q.
  • S3 and S4 may be omitted.
  • the magnetic sensor having the maximum maximum value is the target sensor.
  • One of the magnetic sensors P and Q may be predetermined as the target sensor and the other as the compensation sensor. In this case, the process in S4 is simplified.
  • the determination as to whether the magnetic material 90 has passed the closest position to the target sensor is not limited to the above embodiment.
  • the magnetic detector 1 may include a camera capable of capturing a moving image. From the locus of movement of the magnetic material 90 in the moving image captured by the camera, it may be determined whether or not the magnetic material 90 has passed the closest position.
  • the fixed position component in S6 may be obtained by another method.
  • a second method or a third method exemplified as a method for determining the distance ⁇ may be used.
  • the moving speed of the magnetic material 90 is estimated, and the predetermined position is determined based on the estimated moving speed.
  • the magnetic detector 1 includes two photo interrupters for estimating the moving speed of the magnetic body 90, and does not have to include one of the magnetic sensors P and Q.
  • the two photo interrupters are an example of the "velocity estimator" of the present invention.
  • a speed measuring instrument using a radar or the like may be used instead of the two photo interrupters in order to estimate the moving speed of the magnetic material 90.
  • the coordinate system is not limited to the above embodiment.
  • the distance x and the distance y may be estimated in addition to the distance z.
  • the distance x may be estimated based on the estimated moving speed of the magnetic material 90, for example, by the second method exemplified as the method for determining the distance ⁇ , or the third method.
  • the height information of each magnetic sensor from the ground may be stored in the ROM 12 in advance.
  • the distance y may be estimated based on the height information of the target sensor from the ground.
  • Information on the distances x, y, and z may be included in the warning signal output in S12. In this case, for example, the information on the position of the magnetic body 90 may be displayed on the display 21 of the PC 20, and the estimated position of the magnetic body 90 may be photographed by the surveillance camera 40.
  • S9 only one of the rotation angles ⁇ and ⁇ may be estimated.
  • S10 only one of the magnitude m 1 of the magnetic moment XY component and the magnitude m 2 of the magnetic moment XZ component may be estimated.
  • the estimation of the magnitude m of the magnetic moment is not limited to the above embodiment.
  • one of the magnitude m 1 of the magnetic moment XY component and the magnitude m 2 of the magnetic moment XZ component may be the magnitude m of the magnetic moment. It may be an arithmetic mean or a geometric mean of the magnitude m 1 of the magnetic moment XY component and the magnitude m 2 of the magnetic moment XZ component.
  • S11 and S12 may be omitted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

磁気検出装置は、磁界のX方向の成分の大きさを測定可能な磁気センサを備える。磁気検出装置は、X方向に移動する磁性体が最近接位置を通過した時機を検出したか判断する(S5)。磁気検出装置は、磁性体が最近接位置を通過した時機に磁気センサが測定した、磁界のX方向の成分、Y方向の成分、及び、Z方向の成分を取得する(S6)。磁気検出装置は、磁性体が所定位置にあるときに磁気センサが測定した、磁界のX方向の成分を取得する(S7)。磁気検出装置は、S6で取得された磁界のX方向の成分、及びS7で取得された磁界のX方向の成分に基づいて、距離zを推定する(S8)。磁気検出装置は、S6で取得された磁界のX方向の成分、Y方向の成分、及び、Z方向の成分の何れか、及び、S8で推定された距離zに基づいて、磁気モーメントの大きさmを推定する(S10)。

Description

磁気検出装置、検出方法、及び検出プログラム
 本発明は、磁気検出装置、検出方法、及び検出プログラムに関する。
 特許文献1は、磁性体の磁気モーメントに基づき武器を検出可能なセキュリティーシステムを開示する。セキュリティーシステムは周囲磁場を検出する磁気センサを備える。武器は磁気モーメントが大きい強磁性体である場合が多く、武器の磁気モーメントは日用品の磁気モーメントと比較して大きい。磁性体による周囲磁場を磁気センサが検出した場合、セキュリティーシステムは検出した周囲磁場の大きさに基づき警報信号を発する。
特表2019-512088号公報
 磁気モーメントが形成する周囲磁場の大きさは磁性体と磁気センサとの距離に依存し、磁性体と磁気センサとの距離に対する逆べき乗則に従う。即ち、磁気センサの測定値は、磁気センサから遠い距離にある強磁性体と、磁気センサから近い距離にある磁気モーメントが小さな物体とで同じになり得る。特許文献1に記載のセキュリティーシステムでは磁性体の位置を推定できない。故に、物理的な障害物により磁性体と磁気センサとの距離を制限しなければ、磁気モーメントが大きい武器か、磁気モーメントが小さい日用品かを区別することができなかった。また磁気モーメントが大きい武器も、距離が離れると磁場が減衰することから、武器としての判定を見逃す事態も容易に想定し得るものである。尚ここで述べる磁気モーメントが形成する磁界とは、必ずしも磁石のような磁化した磁性体が加える磁界だけではなく、軟磁性体、強磁性体が周囲磁界の磁力線を取り込んだ磁気モーメントによって形成される磁界も、同様に取り扱えるものであり、銃やナイフなどの武器類は主に強磁性体、すなわち鉄類で構成されているものは後者が主である。
 本発明の目的は、磁性体の磁気モーメントの大きさを精度よく推定可能な磁気検出装置、検出方法、及び検出プログラムを提供することである。
 本発明の第一態様に係る磁気検出装置は、特定の方向である第一方向、前記第一方向と交差する第二方向及び第三方向のうち、前記第一方向に移動する磁性体の磁気モーメントによる磁界を検出可能な磁気検出装置であって、前記磁界の前記第一方向の成分である第一磁界成分を測定可能な第一磁気センサと、前記第一磁気センサと近接又は一体であって、前記磁界の前記第二方向の成分である第二磁界成分、及び、前記磁界の前記第三方向の成分である第三磁界成分の少なくとも何れか一方を含む可能磁界成分を測定可能な第二磁気センサと、制御部と、前記制御部により実行されるプログラムを記憶した記憶部と、を備え、前記制御部は、前記記憶部に記憶した前記プログラムを実行することにより、前記第一方向に移動する前記磁性体が前記第一磁気センサに最も近接したときの前記磁性体の位置である最近接位置を通過した時機を検出する最近接検知処理と、前記時機に前記第一磁気センサが測定した前記第一磁界成分、及び、前記第二磁気センサが測定した前記可能磁界成分を取得する最近接時成分取得処理と、前記第一磁気センサの位置から所定距離離れた所定位置に前記磁性体があるときに前記第一磁気センサが測定した前記第一磁界成分を取得する定位置時成分取得処理と、前記最近接時成分取得処理及び前記定位置時成分取得処理の夫々で取得した前記第一磁界成分に基づいて、前記磁性体と前記第一磁気センサとの前記第三方向の距離である第三方向距離を推定する距離推定処理と、前記距離推定処理で推定した前記第三方向距離、及び、前記最近接時成分取得処理で取得した前記第一磁界成分及び前記可能磁界成分の少なくとも一方に基づいて、前記磁気モーメントの大きさを推定する磁気モーメント量推定処理と、を実行することを特徴とする。磁気検出装置は、磁界を測定可能なセンサを用いて第三方向距離を推定できるので、第三方向距離に基づき磁性体の磁気モーメントの大きさを精度良く推定できる。
 第一態様において、前記制御部は、前記最近接時成分取得処理で取得した前記第一磁界成分及び前記可能磁界成分に基づき、前記磁気モーメントの姿勢角を推定する姿勢角推定処理を更に実行し、前記磁気モーメント量推定処理において、更に前記姿勢角推定処理で推定した前記姿勢角に基づいて、前記磁気モーメントの大きさを推定してもよい。この場合、磁気検出装置は、推定された姿勢角及び第三方向距離に基づいて磁気モーメントの大きさを推定する。よって、磁気検出装置は、磁性体の磁気モーメントの大きさを精度良く推定できる。
 第一態様において、前記可能磁界成分は、前記第二磁界成分及び前記第三磁界成分を含み、前記制御部は、前記姿勢角推定処理において、前記最近接時成分取得処理で取得した前記第一磁界成分及び前記第二磁界成分に基づいて、前記姿勢角の前記第三方向を軸とした回転方向の成分である第一回転角を推定し、前記最近接時成分取得処理で取得した前記第一磁界成分及び前記第三磁界成分に基づいて、前記姿勢角の前記第二方向を軸とした回転方向の成分である第二回転角を推定し、前記磁気モーメント量推定処理において、前記姿勢角推定処理で推定した前記第一回転角と、前記距離推定処理で推定した前記第三方向距離と、前記最近接時成分取得処理で取得した前記第一磁界成分及び前記第二磁界成分の何れかと、に基づいて、前記磁気モーメントの前記第一方向と前記第二方向とを含む平面に投影した成分である第一磁気モーメント成分を推定し、前記姿勢角推定処理で推定した前記第二回転角と、前記距離推定処理で推定した前記第三方向距離と、前記最近接時成分取得処理で取得した前記第一磁界成分及び前記第三磁界成分の何れかと、に基づいて、前記磁気モーメントの前記第一方向と前記第三方向とを含む平面に投影した成分である第二磁気モーメント成分を推定し、前記第一磁気モーメント成分及び前記第二磁気モーメント成分に基づいて前記磁気モーメントの大きさを推定してもよい。この場合、磁気検出装置は、磁気モーメントがどのような姿勢であっても、第一磁気モーメント成分及び第二磁気モーメント成分を推定することで、磁気モーメントの姿勢を考慮した磁気モーメントの大きさを推定できる。よって、磁気検出装置は、磁性体の磁気モーメントの大きさを精度良く推定できる。
 第一態様において、前記制御部は、前記磁気モーメント量推定処理で推定された前記磁気モーメントの大きさが予め決められた閾値以上の大きさの場合、前記磁性体が武器であると判断する武器判断処理を更に実行してもよい。この場合、磁気検出装置は、精度良く推定した磁性体の磁気モーメントの大きさに基づき、磁性体が武器であるか判断する。よって、磁気検出装置は、磁性体が武器であるかを精度よく判断できる。
 第一態様において、二つの前記第一磁気センサを更に備え、二つの前記第一磁気センサは互いに前記第一方向に前記所定距離離れて設けられ、前記制御部は、前記定位置時成分取得処理において、前記最近接時成分取得処理で一方の前記第一磁気センサが測定した前記第一磁界成分を取得した場合に他方の前記第一磁気センサが測定した前記第一磁界成分を、前記所定位置に前記磁性体があるときに前記第一磁気センサが測定した前記第一磁界成分として取得してもよい。この場合、磁気検出装置は、所定位置が決定されるので、磁性体の位置を精度よく推定できる。
 第一態様において、前記磁性体の前記第一方向の移動速度を推定する速度推定部を更に備え、前記制御部は、前記定位置時成分取得処理において、前記速度推定部により推定された前記移動速度及び前記第一磁気センサが測定した前記第一磁界成分に基づいて前記所定位置を決定し、前記所定位置に前記磁性体があるときに前記第一磁気センサが測定した前記第一磁界成分を取得してもよい。この場合、磁気検出装置は、所定位置が決定されるので、磁性体の位置を精度よく推定できる。
 本発明の第二態様に係る検出方法は、特定の方向である第一方向、前記第一方向と交差する第二方向及び第三方向のうち、前記第一方向に移動する磁性体と、第一磁気センサ及び前記第一磁気センサと近接又は一体である第二磁気センサの少なくとも一方との距離を、前記第一磁気センサ及び前記第二磁気センサを用いて推定する検出方法であって、前記第一磁気センサは、磁界の前記第一方向の成分である第一磁界成分を測定可能であり、前記第二磁気センサは、前記磁界の前記第二方向の成分である第二磁界成分、及び、前記磁界の前記第三方向の成分である第三磁界成分の少なくとも何れか一方を含む可能磁界成分を測定可能であり、前記第一方向に移動する前記磁性体が前記第一磁気センサに最も近接したときの前記磁性体の位置である最近接位置を通過した時機を検出する最近接検知工程と、前記時機に前記第一磁気センサが測定した前記第一磁界成分、及び、前記第二磁気センサが測定した前記可能磁界成分を取得する最近接時成分取得工程と、前記最近接位置から前記第一方向に所定距離離れた前記磁性体の位置である所定位置に前記磁性体があるときに前記第一磁気センサが測定した前記第一磁界成分を取得する定位置時成分取得工程と、前記最近接時成分取得工程及び前記定位置時成分取得工程の夫々で取得した前記第一磁界成分に基づいて、前記磁性体と前記第一磁気センサとの前記第三方向の距離である第三方向距離を推定する距離推定工程と、前記距離推定工程で推定した前記第三方向距離、及び、前記最近接時成分取得工程で取得した前記第一磁界成分及び前記可能磁界成分の少なくとも一方に基づいて、前記磁気モーメントの大きさを推定する磁気モーメント量推定工程と、を含むことを特徴とする。
 第二態様において、前記最近接時成分取得工程で取得した前記第一磁界成分及び前記可能磁界成分に基づき、前記磁性体の磁気モーメントの姿勢角を推定する姿勢角推定工程を更に含み、前記磁気モーメント量推定工程において、更に前記姿勢角推定工程で推定した前記姿勢角に基づいて、前記磁気モーメントの大きさを推定してもよい。
 第二態様において、前記可能磁界成分は、前記第二磁界成分及び前記第三磁界成分を含み、前記姿勢角推定工程において、前記最近接時成分取得工程で取得した前記第一磁界成分及び前記第二磁界成分に基づいて前記姿勢角の前記第三方向を軸とした回転方向の成分である第一回転角と、前記最近接時成分取得工程で取得した前記第一磁界成分及び前記第三磁界成分に基づいて前記姿勢角の前記第二方向を軸とした回転方向の成分である第二回転角とを推定し、前記磁気モーメント量推定工程において、前記姿勢角推定工程で推定した前記第一回転角と、前記距離推定工程で推定した前記第三方向距離と、前記最近接時成分取得工程で取得した前記第一磁界成分及び前記第二磁界成分の何れかと、に基づいて、前記磁気モーメントの前記第一方向と前記第二方向とを含む平面に投影した成分である第一磁気モーメント成分を推定し、前記姿勢角推定工程で推定した前記第二回転角と、前記距離推定工程で推定した前記第三方向距離と、前記最近接時成分取得工程で取得した前記第一磁界成分及び前記第三磁界成分の何れかと、に基づいて、前記磁気モーメントの前記第一方向と前記第三方向とを含む平面に投影した成分である第二磁気モーメント成分を推定し、前記第一磁気モーメント成分及び前記第二磁気モーメント成分に基づいて前記磁気モーメントの大きさを推定してもよい。
 第二態様において、前記磁気モーメント量推定工程で推定された前記磁気モーメントの大きさが予め決められた閾値以上の大きさの場合、前記磁性体が武器であると判断する武器判断工程を更に含んでもよい。
 第二態様において、前記定位置時成分取得工程において、互いに前記所定距離離れた二つの前記第一磁気センサを用いて、前記最近接時成分取得工程で一方の前記第一磁気センサが測定した前記第一磁界成分を取得した場合に他方の前記第一磁気センサが測定した前記第一磁界成分を、前記所定位置に前記磁性体があるときに前記第一磁気センサが測定した前記第一磁界成分として取得してもよい。
 第二態様において、前記定位置時成分取得工程において、前記第一方向に移動する前記磁性体が移動する移動速度を推定可能な速度推定部が推定した前記移動速度及び前記第一磁気センサが測定した前記第一磁界成分に基づいて前記所定位置を決定し、前記所定位置に前記磁性体があるときに前記第一磁気センサが測定した前記第一磁界成分を取得してもよい。
 本発明の第三態様に係る検出プログラムは、第二態様に係る前記検出方法をコンピュータが実行する。
 第二態様及び第三態様によれば、第一態様と同様の効果を奏することができる。
磁気検出装置1の概要を示す図である。 磁気検出装置1の電気的構成を示す図である。 センサ部2と磁性体90の位置の関係を示す図である。 磁性体90の磁気モーメントの姿勢角を示す図である。 メイン処理を示すフローチャートである。 所定周期で取得される磁界のX方向の成分の絶対値における時間変化を示す図である。
<磁気検出装置1の概要>
 本発明に係る磁気検出装置1の一実施形態について、図面を参照して説明する。磁気検出装置1は、磁性体90の位置、及び、磁性体90の磁気モーメントの大きさを推定可能な装置である。図1に示すように、磁気検出装置1は、センサ部2、及び、制御部3を備える。制御部3は水平方向に延びる略直方体形状である。センサ部2は、制御部3上面から上方に延びる略直方体形状である。センサ部2は、複数の表示部6を備える。複数の表示部6は、点灯または点滅可能であり、センサ部2の表面に上下方向に並んで設けてある。磁気検出装置1は、ネットワーク99を介して、ディスプレイ21を備える汎用のパーソナルコンピュータ(PC)20、点灯または点滅可能な警告灯30、監視カメラ40等と通信可能である。
<磁気検出装置1の電気的構成>
 図2に示すように、センサ部2は、磁気センサP(1)、P(2)・・・P(n)(nは自然数)(総称して「磁気センサP」という。)、及び、磁気センサQ(1)、Q(2)・・・Q(n)(総称して「磁気センサQ」という。)を備える。磁気センサP、Qは、例えば、アモルファス磁性ワイヤの磁気インピーダンス効果(Magneto-Impedance element MI効果)を利用した周知のMIセンサである。
 磁気センサP、Qは、磁界における特定の方向の成分の大きさを選択的に測定可能である。磁気センサP、Qは、測定可能な磁界の成分の方向が夫々直交する三つのセンサを有する三軸センサ(三次元センサ)である。本実施形態において、磁気センサP、Qが測定可能な磁界の成分の方向は、相互に直交するX方向、Y方向、Z方向である。Y方向は上下方向と平行である。X方向及びZ方向は、水平方向と平行である。磁性体90は、X方向に沿って移動する。磁気センサP、Qは、測定した磁界の各方向の成分の大きさを示す値(以下、「測定値」という。)を示す信号を、制御部3に出力する。
 磁気センサP(1)、P(2)・・・P(n)は、Y方向に等間隔に並ぶ。磁気センサQ(1)、Q(2)・・・Q(n)は、Y方向に等間隔に並ぶ。磁気センサP(j)(jは1以上、n以下の自然数)と、磁気センサQ(j)とは、X方向に所定の間隔をあけて並ぶ。磁気センサP(j)と、磁気センサQ(j)との距離を、Δと表記する。
 制御部3は、CPU11、ROM12、RAM13、記憶装置14、通信インターフェース(通信I/F)15、及び、入出力インターフェース(入出力I/F)16を備える。CPU11、ROM12、RAM13、記憶装置14、及び、通信I/F15は、データバス17を介して入出力I/F16に電気的に接続する。CPU11は、磁気検出装置1の制御を司る。CPU11は、記憶装置14が記憶するプログラムに基づき、メイン処理(図5参照)を実行する。メイン処理では、磁気センサP、Qが出力する信号が示す測定値(以下、「磁気センサP、Qが検出する測定値」と言い換える。)に基づき、磁性体90の位置、及び、磁性体90の磁気モーメントの大きさを推定する。ROM12は、後述の閾値等の各種パラメータを記憶する。RAM13は、CPU11の演算結果、ポインタ、カウンタ、後述の測定値テーブル等を一時的に記憶する。記憶装置14は不揮発性であり、各種プログラム等を記憶する。通信I/F15は、ネットワーク99を介して、PC20、警告灯30、及び、監視カメラ40と通信する為のインターフェース素子である。入出力I/F16は、センサ部2に電気的に接続する。
<座標系>
 磁気検出装置1において、磁気センサP(1)、P(2)・・・P(n)、及び、磁気センサQ(1)、Q(2)・・・Q(n)から対象センサ及び補償センサが選定される。対象センサは、磁性体90からの距離が最も短い磁気センサである。補償センサは、対象センサからX方向に距離Δ離れた磁気センサである。磁気検出装置1は、対象センサ及び補償センサを用いて、磁性体90の位置、及び、磁性体90の磁気モーメントの大きさを推定する。以下説明では、対象センサを磁気センサP(j)とし、補償センサを磁気センサQ(j)とする。
 図3(A)に示すように、磁性体90の位置を示すための座標系の原点Oは、対象センサ(磁気センサP(j))の位置とする。磁性体90は原点OからX方向に距離x、Y方向に距離y、Z方向に距離z離れた座標(x,y,z)にあるとする。Y方向に並ぶ磁気センサP(1)、P(2)・・・P(n)のうち、磁性体90とのY方向の距離が最も短いのは、磁気センサP(j)である。本実施形態において、距離y=0とする。図3(B)に示すように、X方向に沿って移動する磁性体90が磁気センサP(j)に最も近接したとき、距離x=0となる。距離x=0、距離y=0となる場合の磁性体90の位置を、「最近接位置」という。
<姿勢角>
 磁性体90は、所定の姿勢でX方向に移動する。磁性体90は、Y方向を軸に回転角θ、及び、Z方向を軸に回転角φで傾斜する。回転角θ、φで傾斜した姿勢を姿勢角という。本実施形態において、図4に示すように、磁性体90の磁気モーメントの姿勢角は、磁性体90の姿勢角と略等しいとする。磁気モーメントベクトルを、m´と表記する。磁気モーメントベクトルm´のXY平面に投影した成分(以下、「磁気モーメントXY成分」という。)を、m´と表記する。磁気モーメントベクトルm´のXZ平面に投影した成分(以下、「磁気モーメントXZ成分」という。)を、m´と表記する。
<磁性体90の位置の推定方法>
 磁性体90の位置の推定方法について説明する。磁性体90が持つ磁気モーメントが作る三次元空間の磁場分布は、式(1)で示される。なお、磁性体90が持つ磁気モーメントが作る磁束密度ベクトルを、Bと表記する。磁性体90が持つ磁気モーメントからの距離ベクトルを、r´と表記する。距離ベクトルr´の大きさ(以下、「磁性体90が持つ磁気モーメントからの距離」という。)を、rと表記する。
Figure JPOXMLDOC01-appb-M000001
 座標系の原点Oを対象センサの位置とし、磁性体90は原点OからX方向に距離x、Y方向に距離y、Z方向に距離z離れた座標(x,y,z)にあるとする。上記の通り、磁性体90と対象センサとのY方向の距離y=0である。磁性体90が座標(x,0,z)にある場合を想定する。磁気モーメントXY成分m´が作る三次元空間の磁場分布のうち、X方向の成分の大きさとY方向の成分の大きさは、式(2)(3)で示される。なお、対象センサが検出する磁束密度ベクトルBのX方向の成分の大きさを、Bと表記する。対象センサが検出する磁束密度ベクトルBのY方向の成分の大きさを、Bと表記する。磁気モーメントXY成分m´の大きさを、mと表記する。磁気モーメントXY成分m´は、m´=m(cosθ,sinθ,0)であり、磁性体90が持つ磁気モーメントから対象センサまでの距離rは、r=(x+z1/2である。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 式(2)により、磁束密度ベクトルBのX方向の成分の大きさBが最大となるのは磁性体90が最近接位置にあるとき(座標(0,0,z))である。磁性体90が最近接位置にある場合の磁束密度ベクトルBの、X方向の成分の大きさとY方向の成分の大きさは、式(2)(3)に基づき、式(4)(5)で示される。磁性体90が最近接位置にある場合の対象センサが検出する磁束密度ベクトルBのX方向の成分の大きさを、BX0と表記する。磁性体90が最近接位置にある場合の対象センサが検出する磁束密度ベクトルBのY方向の成分の大きさを、BY0と表記する。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 式(2)(4)により、BをBX0により規格化した場合、式(6)で示される。
Figure JPOXMLDOC01-appb-M000006
 最近接位置(座標(0,0,z))からX方向に距離Δ離れた磁性体90の位置(座標(Δ,0,z))を、所定位置という。所定位置にある磁性体90が持つ磁気モーメントからの距離rは、r=(Δ+z1/2である。磁性体90が所定位置にある場合の磁束密度ベクトルBのX方向の成分を、BXΔと表記する。BXΔをBX0により規格化したBXΔ/BX0を、Rと表記する。式(6)において、右辺第二項が右辺第一項よりも極めて小さいとして無視することによって、距離zは、式(7)で示される。
Figure JPOXMLDOC01-appb-M000007
 また距離zは、式(7)の計算以外の方法で求めることができる。例えば磁性体90が最近接位置にある場合の磁束密度ベクトルであるベクトルBと磁性体90が所定位置にある場合の磁束密度ベクトルであるベクトルBΔとがなす角度を計算し、三角法で距離zを求めることも可能である。
 式(7)等により、距離Δの大きさが既知であれば、磁性体90が最近接位置にあるときの磁束密度ベクトルBのX方向の成分BX0、及び、磁性体90が所定位置にあるときの磁束密度ベクトルのX方向の成分BXΔから、距離zを推定できる。なお、説明は省略するが、同様の方法によって磁気モーメントXZ成分m´が作る磁束密度ベクトルから、同じ結果、式(7)を得ることができる。
<距離Δを決定する為の方法>
 距離Δを決定する為の方法を三つ例示する。第一の方法は次の通りである。磁界のX方向の成分を測定可能な磁気センサがX方向に二つ並べられる。このときの、二つの磁気センサのX方向の間隔を距離Δの大きさとする。磁性体90が二つの磁気センサのうち一方の磁気センサに対する最近接位置にあるとき、一方の磁気センサの測定値はBX0を示す。このとき、磁性体90は、二つの磁気センサのうち他方の磁気センサに対して所定位置にある。他方の磁気センサの測定値はBXΔである。よって、式(7)等により、距離zを推定できる。
 第二の方法は次の通りである。磁界のX方向の成分を測定可能な磁気センサがX方向に二つ並べられる。二つの磁気センサの夫々の測定値の時間変化が記憶される。二つの磁気センサのうち一方の磁気センサの測定値が最大を示したときと、二つの磁気センサのうち他方の磁気センサの測定値が最大を示したときとの時間差から、磁性体90の移動速度が推算される。一方の磁気センサの測定値が最大を示したときから所定時間経過したときの磁性体90の位置が所定位置とされ、所定時間と推算された磁性体90の移動速度から距離Δが決定される。これにより、一方の磁気センサにおける、最大値であるBX0と、BX0を示したときから所定時間経過後の測定値であるBXΔとに基づき、式(7)等により、距離zを推定できる。
 第三の方法は次の通りである。磁界のX方向の成分を測定可能な磁気センサの周囲に、二つのフォトインタラプタがX方向に並べられる。フォトインタラプタは、対向する発光部と受光部とを備える。X方向に移動する磁性体90が発光部と受光部との間を通過すると、フォトインタラプタは信号を出力する。二つのフォトインタラプタのうち一方が信号を出力したときと、二つのフォトインタラプタのうち他方が信号を出力したときとの時間差から、磁性体90の移動速度が推算される。磁気センサの測定値の時間変化が記憶される。磁気センサの測定値が最大値を示したときから所定時間経過したときの磁性体90の位置が所定位置とされ、当該所定時間と推算された磁性体90の移動速度から距離Δが決定される。これにより、磁気センサにおける、最大値であるBX0と、BX0を示したときから所定時間経過後の測定値であるBXΔとに基づき、式(7)等により、距離zを推定できる。
<距離zに基づく磁気モーメントの大きさの推定方法>
 磁気モーメントベクトルm´の大きさの推定方法について説明する。以下、磁気モーメントベクトルm´の大きさを、単に磁気モーメントの大きさという。姿勢角がθ=90度、φ=0度である場合、式(1)により、磁気モーメントベクトルm´と距離ベクトルr´とがなす角が90度であるので、磁束密度ベクトルBは、式(8)で示される。
Figure JPOXMLDOC01-appb-M000008
 式(8)において、磁性体90が最近接位置にある場合、r=zとなる。この場合に、式(8)により、磁束密度ベクトルBのX方向の成分、Y方向の成分、及び、Z方向の成分の夫々の大きさが分かれば、磁気モーメントベクトルm´のX方向の成分、Y方向の成分、及び、Z方向の成分の夫々の大きさを推定できる。磁気モーメントベクトルm´の各方向の成分の大きさに基づいて、磁気モーメントの大きさを推定できる。例えば、磁気モーメントベクトルm´の各方向の成分の大きさを二乗し、足しあわせた和の平方根から、磁気モーメントの大きさを推定できる。
<姿勢角の推定方法>
 式(8)において、θ=90度、φ=0度としているが、磁性体90の磁気モーメントの姿勢角はこれに限定されない。磁気モーメントの姿勢角の推定方法について説明する。磁性体90が最近接位置にあるとき、姿勢角の成分である回転角θは、式(4)(5)より、式(9)で示される。
Figure JPOXMLDOC01-appb-M000009
 姿勢角の成分である回転角φについても同様に推定される。磁性体90の磁気モーメントXZ成分m´が作る三次元空間の磁場分布のうち、X方向の成分の大きさとZ方向の成分の大きさは、式(10)(11)で示される。なお、対象センサが検出する磁束密度ベクトルBのZ方向の成分の大きさを、Bと表記する。磁気モーメントXZ成分m´の大きさを、mと表記する。磁気モーメントXZ成分は、m´=m(cosφ,0,sinφ)である。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 式(10)により、Bが最大となるのは、磁性体90が最近接位置にあるときである。磁性体90が最近接位置にある場合の磁束密度ベクトルBの、X方向の成分の大きさとZ方向の成分の大きさは、式(10)(11)に基づき、式(12)(13)で示される。磁性体90が最近接位置にある場合の対象センサが検出する磁束密度ベクトルBのZ方向の成分の大きさを、BZ0と表記する。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 磁性体90が最近接位置にあるとき、磁性体90が持つ磁気モーメントからの距離rは、r=zである。これにより、姿勢角の成分である回転角φは、式(12)(13)によって、式(14)で示される。
Figure JPOXMLDOC01-appb-M000014
<磁気モーメントXY成分の大きさmの推定方法>
 磁気モーメントXY成分の大きさmの推定方法について説明する。式(4)(5)により、磁性体90が最近接位置にある場合、磁束密度ベクトルBのX方向の成分の大きさBX0、Y方向の成分の大きさBY0の夫々の絶対値は、式(15)(16)で示される。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 a=abs(tanθ)とすると、cosθ及びsinθの夫々の絶対値は、式(17)(18)で示される。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 式(7)等で推定された距離z、及び、式(9)で推定された回転角θに基づいて、式(15)又は式(16)により、磁気モーメントXY成分の大きさmを推定できる。本実施形態において、磁気モーメントXY成分の大きさmの推定には式(15)及び式(16)のうち推定精度が良い一方が用いられる。式(15)(16)は、abs(cosθ)が用いられるか、又はabs(sinθ)が用いられるかという点で異なる。abs(cosθ)及びabs(sinθ)のうち大きい方に基づいて推定されることにより、磁気モーメントXY成分の大きさmを精度よく推定できる。
 abs(sinθ)<abs(cosθ)の場合、式(15)(17)により、磁気モーメントXY成分の大きさmは、式(19)で示される。
Figure JPOXMLDOC01-appb-M000019
 abs(cosθ)<abs(sinθ)の場合、式(16)(18)により、磁気モーメントXY成分の大きさmは、式(20)で示される。
Figure JPOXMLDOC01-appb-M000020
<磁気モーメントXZ成分の大きさmの推定方法>
 磁気モーメントXZ成分の大きさmの推定方法について説明する。式(12)(13)により、磁性体90が最近接位置にある場合、磁束密度ベクトルBのX方向の成分の大きさBX0、Z方向の成分の大きさBZ0の夫々の絶対値は、式(21)(22)で示される。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 b=abs(tanφ)とすると、cosφ及びsinφの夫々の絶対値は、式(23)(24)で示される。
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
 式(7)等で推定された距離z、及び、式(14)で推定された回転角φに基づいて、式(21)又は式(22)により磁気モーメントXZ成分の大きさmを推定できる。磁気モーメントXY成分の大きさmの推定と同様に、abs(cosφ)及びabs(sinφ)のうち大きい方に基づいて推定することにより、磁気モーメントXZ成分の大きさmを精度よく推定できる。
 abs(sinφ)<abs(cosφ)の場合、式(21)(23)により、磁気モーメントXZ成分の大きさmは、式(25)で示される。
Figure JPOXMLDOC01-appb-M000025
 abs(cosφ)<abs(sinφ)の場合、式(22)(24)により、磁気モーメントXZ成分の大きさmは、式(26)で示される。
Figure JPOXMLDOC01-appb-M000026
<姿勢角を考慮した磁気モーメントの大きさの推定方法>
 磁性体90の磁気モーメントの大きさの推定方法について説明する。磁気モーメントの大きさを、mと表記する。磁気モーメントの大きさmは、磁気モーメントXY成分の大きさmと磁気モーメントXZ成分の大きさmとを合成した値である。磁気モーメントの大きさmは、式(27)で示される。
Figure JPOXMLDOC01-appb-M000027
<メイン処理>
 図5を参照し、メイン処理について説明する。メイン処理は、磁性体90の位置、及び、磁性体90の磁気モーメントの大きさの推定を開始するための指示が磁気検出装置1に入力された場合、記憶装置14に記憶されたプログラムをCPU11が実行することによって開始される。
 CPU11は、磁気センサP、Qが夫々検出する測定値を、所定周期で、繰り返し取得し、RAM13に記憶する(S1)。各々の測定値には、X方向の測定値、Y方向の測定値、及び、Z方向の測定値が含まれる。CPU11は、RAM13に記憶された複数の測定値に対してノイズ除去処理を実行する(S2)。ノイズ除去処理は、複数の測定値に含まれる磁性体90以外の物体による環境磁界を除去する為の処理である。本実施形態では、ノイズ除去処理においてローパスフィルタ及びハイパスフィルタが使用され、環境磁界が除去される。
 CPU11は、磁性体90を検知したか判断する(S3)。S3において、CPU11は、S2で環境磁界が除去された複数の測定値の何れかが、予め決められた閾値以上であるか判定する。以下、S2で環境磁界が除去された複数の測定値を、「複数の分析値」という。各分析値には、X方向の測定値に対応するX方向の分析値、Y方向の測定値に対応するY方向の分析値、及び、Z方向の測定値に対応するZ方向の分析値が含まれる。磁気センサP、Qに対応する複数の分析値が全て閾値より小さい場合、CPU11は磁性体90を検知していないとして(S3:NO)、処理をS1に戻す。磁気センサP、Qに対応する複数の分析値の何れかが閾値以上である場合、CPU11は磁性体90を検知したとして(S3:YES)、処理をS4に移行する。
 CPU11は、センサ決定処理を実行する(S4)。S4において、CPU11は、磁気センサP、Qの中から、対象センサと補償センサを決定する。CPU11は、磁気センサP(1)、P(2)・・・P(n)のうちで、Y方向の分析値の絶対値が最大となる磁気センサPを選定する。Y方向の分析値の絶対値が最大となる磁気センサPが磁気センサP(j)である場合、磁気センサP(j)と磁気センサQ(j)のX方向の分析値の絶対値の大小を比較する。CPU11は、X方向の分析値の絶対値の大きい方を対象センサに決定し、小さい方を補償センサに決定する。
 CPU11は、磁性体90が対象センサに対する最近接位置を通過したか判断する(S5)。式(2)(10)により、磁性体90が最近接位置にあるとき、磁性体90が作る磁界のX方向の成分の絶対値が最大となる。換言すると、磁性体90が最近接位置にあるとき、X方向の分析値の絶対値が最大となる。図6は、対象センサが検出したX方向の分析値の絶対値の時間変化を示すグラフである。グラフにおいて、X方向の分析値の絶対値が極大値となる時機が、磁性体90が最近接位置に位置する時機tとされる。対象センサにおいてX方向の分析値の絶対値における時間変化に極大値がない場合、CPU11は磁性体90が最近接位置を通過していないとして(S5:NO)、処理をS1に戻す。対象センサにおいてX方向の分析値の絶対値における時間変化に極大値がある場合、CPU11は磁性体90が最近接位置を通過したとして(S5:YES)、処理をS6に移行する。
 CPU11は、最近接時成分取得処理を実行する(S6)。最近接時成分取得処理において、磁性体90が対象センサに対して最近接位置にあるとき(時機t)に対象センサが検出する分析値が取得される。CPU11は、処理をS7に移行する。
 CPU11は、定位置時成分取得処理を実行する(S7)。定位置時成分取得処理において、磁性体90が補償センサに対して所定位置にあるときに補償センサが検出する分析値が取得される。対象センサと補償センサとは、X方向に距離Δ離れて配置される。上記した距離Δを決定する為の第一の方法により対象センサが最近接時成分を検出したとき、磁性体90は補償センサに対して所定位置にある。即ち、定位置時成分取得処理(S7)において、時機tに補償センサが検出する分析値が取得される。CPU11は、処理をS8に移行する。
 CPU11は、位置推定処理を実行する(S8)。位置推定処理では、S6で取得された最近接時成分のX方向の分析値、S7で取得された定位置時成分のX方向の分析値、及び、ROM12に記憶された距離Δが、式(6)に代入される。CPU11は、各値が代入された式(6)を変形し、式(7)を導出する。これによって、CPU11は距離zを推定する。CPU11は、処理をS9に移行する。またzは前述の三角法を用いてもよい。
 CPU11は、姿勢角推定処理を実行する(S9)。姿勢角推定処理では、S6で取得された最近接時成分のX方向の分析値、Y方向の分析値、及び、Z方向の分析値のうちの二つが、式(9)(14)に代入される。これによって、CPU11は回転角θ、φを夫々推定する。CPU11は、処理をS10に移行する。
 CPU11は、磁気モーメント量推定処理を実行する(S10)。磁気モーメント量推定処理では以下の処理が実行される。S6で取得された最近接時成分のX方向の分析値、Y方向の分析値、S8で推定された距離z、及び、S9で推定された回転角θが、式(15)から式(18)に代入される。各値が代入された式(15)から式(18)により、式(19)(20)が導出される。回転角θに基づき、式(19)(20)の一方から磁気モーメントXY成分の大きさmが推定される。S6で取得された最近接時成分のX方向の分析値、Z方向の分析値、S8で推定された距離z、及び、S9で推定された回転角φが、式(21)から式(24)に代入される。各値が代入された式(21)から式(24)により、式(25)(26)が導出される。回転角φに基づき、式(25)(26)の一方から磁気モーメントXZ成分の大きさmが推定される。推定された磁気モーメントXY成分の大きさm、及び、磁気モーメントXZ成分の大きさmが、式(27)に代入される。これによって、磁気モーメントの大きさmが推定される。
 CPU11は、推定された磁気モーメントの大きさmに基づき、磁性体90が武器であるか判断する(S11)。磁極の強さをq、磁極間距離をdと夫々表記すると、磁気モーメントの大きさmはm=qdとなる。武器の磁極間距離dは、武器ではない物体(例えば、日用品に含まれる磁石等)の磁極間距離dと比して大きい。よって、武器の磁気モーメントの大きさmは、武器ではない物体の磁気モーメントの大きさmと比して大きい。S11において、推定された磁気モーメントの大きさmが予め決められた閾値以上である場合、CPU11は磁性体90が武器であると判断する。S11において、推定された磁気モーメントの大きさmが予め決められた閾値よりも小さい場合、CPU11は磁性体90が武器でないと判断する。
 磁性体90が武器でないと判断された場合(S11:NO)、CPU11は処理をS1に戻す。磁性体90が武器であると判断された場合(S11:YES)、CPU11は警告信号を出力する(S12)。警告信号は表示部6、及び、通信I/F15を介して、PC20、警告灯30、監視カメラ40等に出力される。表示部6は警告信号の受信に応じて、点灯または点滅する。PC20は警告信号の受信に応じて、例えば磁気検出装置1の近くに武器があることを通知する通知画面を、ディスプレイ21に表示する。警告灯30は警告信号の受信に応じて点滅する。監視カメラ40は警告信号の受信に応じて、例えばS8で推定された位置を撮影する。CPU11は処理をS1に戻す。CPU11はS1からS12を繰り返し実行する。
<本実施形態の主たる作用、効果>
 以上のように、磁気検出装置1は磁気センサP、Qを備える。磁気センサP、Qは、三つのセンサを有する三軸センサであり、夫々、磁界のX方向の成分、Y方向の成分、Z方向の成分の夫々の大きさを選択的に測定可能である。磁気検出装置1のCPU11は、磁性体90が対象センサに対する最近接位置を通過した時機tを検出する(S5)。CPU11は、時機tで対象センサにより検出されたX方向の分析値、Y方向の分析値、及び、Z方向の分析値を夫々取得する(S6)。CPU11は、時機tで補償センサにより検出されたX方向の分析値を取得する(S7)。CPU11は、S6で取得されたX方向の分析値、及び、S7で取得されたX方向の分析値に基づいて、距離zを推定する(S8)。CPU11は、S6で取得されたX方向の分析値、Y方向の分析値、及び、Z方向の分析値の何れか、及び、S8で推定された距離zに基づいて、磁気モーメントの大きさmを推定する(S10)。よって、磁気検出装置1は、磁性体90の磁気モーメントの大きさmを精度良く推定できる。
 CPU11は、S6で取得されたX方向の分析値、Y方向の分析値、及び、Z方向の分析値のうちの二つに基づいて、姿勢角の成分である回転角θ、φを夫々推定する(S9)。CPU11は、S6で取得されたX方向の分析値、Y方向の分析値、及び、Z方向の分析値の何れか、S8で推定された距離z、及び、S9で推定された回転角θ及び回転角φの少なくとも一方に基づいて、磁気モーメントの大きさmを推定する(S10)。この場合、磁気検出装置1は、推定された磁性体90の位置及び姿勢角に基づいて磁気モーメントの大きさmを推定する。よって、磁気検出装置1は、磁性体90の磁気モーメントの大きさmを精度良く推定できる。
 CPU11は、S9において、回転角θ、φを夫々推定する。CPU11は、S10において、S6で取得されたX方向の分析値、及び、Y方向の分析値の何れか一方、S8で推定された距離z、及び、S9で推定された回転角θに基づいて、磁気モーメントXY成分の大きさmを推定する。CPU11は、S10において、S6で取得されたX方向の分析値、及びZ方向の分析値の何れか一方、S8で推定された距離z、及び、S9で推定された回転角φに基づいて、磁気モーメントXZ成分の大きさmを推定する。CPU11は、S10において、推定された磁気モーメントXY成分の大きさm、及び磁気モーメントXZ成分の大きさmに基づいて、磁気モーメントの大きさmを推定する。
 CPU11は、推定された磁気モーメントの大きさmに基づいて、磁性体90が武器であるか判断する(S11)。この場合、磁気検出装置1は、精度良く推定した磁性体90の磁気モーメントの大きさに基づき、磁性体90が武器であるか判断する。よって、磁気検出装置1は、磁性体90が武器であるかを精度よく判断できる。
 磁気センサP(j)と磁気センサQ(j)とは、X方向に所定の距離Δをあけて並ぶ。CPU11は、対象センサが時機tで検出したX方向の分析値、Y方向の分析値、及びZ方向の分析値を夫々取得した場合に(S6)、補償センサが時機tで検出したX方向の分析値を取得する(S7)。この場合、磁性体90の補償センサに対する所定位置が決定されるので、磁性体90の位置を精度よく推定できる。
<その他>
 X方向は、本発明の「第一方向」の一例である。Y方向は、本発明の「第二方向」の一例である。Z方向は、本発明の「第三方向」の一例である。磁気センサP、Qが夫々有する三つのセンサのうち、磁界のX方向の成分の大きさを測定可能なセンサは、本発明の「第一磁気センサ」の一例である。磁気センサP、Qが夫々有する三つのセンサのうち、磁界のY方向の成分、Z方向の成分の大きさを夫々測定可能な二つのセンサは、本発明の「第二磁気センサ」の一例である。距離(Δ+z1/2は、本発明の「所定距離」の一例である。距離zは、本発明の「第三方向距離」の一例である。回転角θは、本発明の「第一回転角」の一例である。回転角φは、本発明の「第二回転角」の一例である。磁気モーメントXY成分の大きさmは、本発明の「第一磁気モーメント成分」の一例である。磁気モーメントXZ成分の大きさmは、本発明の「第二磁気モーメント成分」の一例である。CPU11が実行するS11は、本発明の「武器判断処理」の一例である。
<変形例>
 本発明は上記実施形態に限定されず、種々の変更が可能である。磁気検出装置1は、センサ部2と制御部3が別体となった構造を有していてもよい。この場合、制御部3はPCやワークステーション等のコンピュータシステムでもよい。
 磁気センサP、Qの数は限定されない。Y方向に配列される磁気センサP、Qの間隔は等間隔でなくてもよい。磁気センサP(j)と磁気センサQ(j)の間隔は、所定の距離Δでなくてもよい。磁気センサP、Qは、MIセンサに限定されず、磁界の特定方向の成分の大きさを選択的に検出可能な他の磁気センサであってもよい。磁気センサP、Qは、三つのセンサを有する三軸センサではなく、二つのセンサを有する二軸センサであってもよい。磁気センサP、Qのうち一方は、磁界のX方向の成分のみを測定可能であってもよい。この場合、磁界のX方向の成分のみを測定可能な一方の磁気センサを補償センサ、他方の磁気センサを対象センサとしてもよい。磁性体90の位置、及び、磁気モーメントの推定が行われる場合において、対象センサ、補償センサ以外の磁気センサP、Qの分析値が参照されてもよい。
 磁気センサP、Qは、測定可能な磁界の成分の方向が夫々直交しなくてもよい。磁界の各方向の成分の大きさは、磁気センサP、Qを構成する複数のセンサの測定値に基づいて検出されてもよい。磁性体90の移動方向は、X方向に沿った方向に限定されず、任意の方向であってもよい。この場合、磁気検出装置1は、磁性体90の移動方向のうちX方向に沿った成分に基づき、磁性体90の位置、及び、磁性体90の磁気モーメントの大きさmを推定できる。
 メイン処理を実行させる為の指令を含むプログラムは、CPU11がプログラムを実行する前に記憶装置14に記憶すればよい。プログラムの取得方法、取得経路及びプログラムを記憶する機器の各々は、適宜変更されてもよい。CPU11が実行するプログラムは、ケーブル又は無線通信を介して、他の装置から受信され、不揮発性メモリ等の記憶装置に記憶されてもよい。他の装置は、例えば、ネットワーク99を介して接続されるサーバを含む。
 メイン処理の各ステップの一部又は全部は、他の電子機器(例えば、ASIC)が実行してもよい。メイン処理の各ステップは、必要に応じて順序の変更、ステップの省略、及び、追加ができる。制御部3上で稼動しているオペレーティングシステム(OS)等が、CPU11からの指令によりメイン処理の一部又は全部を行う態様も、本発明の範囲に含まれる。例えば、メイン処理に以下の変更が適宜加えられてもよい。
 S2が省略され、磁気センサP、Qにより検出された測定値から磁性体90の位置、及び、磁性体90の磁気モーメントの大きさが推定されてもよい。S3、S4は省略されてもよい。この場合、S5において極大値を示した磁気センサのうちで、極大値が最大となる磁気センサが対象センサとなる。磁気センサP、Qの一方を対象センサ、他方を補償センサと予め決定されてもよい。この場合、S4における処理が簡略化される。
 S5において、磁性体90が対象センサに対する最近接位置を通過したかの判断は、上記実施形態に限定されない。例えば、磁気検出装置1は動画を撮影可能なカメラを備えてもよい。カメラにより撮影された動画における磁性体90の移動の軌跡から、最近接位置を通過したかが判断されてもよい。
 S6での定位置時成分は、別の方法で取得されてもよい。例えば、距離Δを決定する方法として例示された第二の方法、又は第三の方法が用いられてもよい。第二の方法、及び、第三の方法では、磁性体90の移動速度が推定され、推定された移動速度に基づいて所定位置が決定される。第三の方法が用いられる場合、磁気検出装置1は、磁性体90の移動速度を推定する為の二つのフォトインタラプタを備え、磁気センサP、Qの一方を備えなくてもよい。この場合、二つのフォトインタラプタは、本発明の「速度推定部」の一例である。尚、第三の方法が用いられる場合、磁性体90の移動速度を推定する為に、二つのフォトインタラプタではなく、レーダーによる速度計測器等が用いられてもよい。
 座標系は上記実施形態に限定されない。例えば、Y方向において、地面の位置をy=0としてもよい。S8において、距離z以外に距離x、距離yが推定されてもよい。距離xは、例えば距離Δを決定する方法として例示された第二の方法、又は第三の方法で磁性体90の移動速度が推定され、推定された移動速度に基づいて推定されてもよい。例えば磁気検出装置1が地面に設置された場合、夫々の磁気センサの地面からの高さの情報が予めROM12に記憶されてもよい。距離yは、対象センサの地面からの高さの情報に基づいて推定されてもよい。距離x、y、zの情報がS12で出力される警告信号に含められてもよい。この場合、例えば、PC20のディスプレイ21に磁性体90の位置の情報が表示され、推定された磁性体90の位置が監視カメラ40により撮影されてもよい。
 S9において、回転角θ、φの何れか一方のみが推定されてもよい。S10において、磁気モーメントXY成分の大きさm、及び、磁気モーメントXZ成分の大きさmの何れか一方のみが推定されてもよい。また、S10において、磁性体90が最近接位置にある場合(r=z)に取得された最近接時成分に基づき、式(8)により、磁気モーメントの大きさmを推定してもよい。この場合、S9は省略されてもよい。磁気モーメントの大きさmの推定は上記実施形態に限定されない。例えば、磁気モーメントXY成分の大きさm、及び、磁気モーメントXZ成分の大きさmのうち大きい一方が、磁気モーメントの大きさmとされてもよい。磁気モーメントXY成分の大きさmと、磁気モーメントXZ成分の大きさmとの相加平均、又は相乗平均であってもよい。S11、S12は省略されてもよい。
1     :磁気検出装置
4、5   :磁気センサ
11    :CPU

Claims (13)

  1.  特定の方向である第一方向、前記第一方向と交差する第二方向及び第三方向のうち、前記第一方向に移動する磁性体の磁気モーメントによる磁界を検出可能な磁気検出装置であって、
     前記磁界の前記第一方向の成分である第一磁界成分を測定可能な第一磁気センサと、
     前記第一磁気センサと近接又は一体であって、前記磁界の前記第二方向の成分である第二磁界成分、及び、前記磁界の前記第三方向の成分である第三磁界成分の少なくとも何れか一方を含む可能磁界成分を測定可能な第二磁気センサと、
     制御部と、
     前記制御部により実行されるプログラムを記憶した記憶部と、
     を備え、
     前記制御部は、
     前記記憶部に記憶した前記プログラムを実行することにより、
     前記第一方向に移動する前記磁性体が前記第一磁気センサに最も近接したときの前記磁性体の位置である最近接位置を通過した時機を検出する最近接検知処理と、
     前記時機に前記第一磁気センサが測定した前記第一磁界成分、及び、前記第二磁気センサが測定した前記可能磁界成分を取得する最近接時成分取得処理と、
     前記第一磁気センサの位置から所定距離離れた所定位置に前記磁性体があるときに前記第一磁気センサが測定した前記第一磁界成分を取得する定位置時成分取得処理と、
     前記最近接時成分取得処理及び前記定位置時成分取得処理の夫々で取得した前記第一磁界成分に基づいて、前記磁性体と前記第一磁気センサとの前記第三方向の距離である第三方向距離を推定する距離推定処理と、
     前記距離推定処理で推定した前記第三方向距離、及び、前記最近接時成分取得処理で取得した前記第一磁界成分及び前記可能磁界成分の少なくとも一方に基づいて、前記磁気モーメントの大きさを推定する磁気モーメント量推定処理と、
     を実行することを特徴とする磁気検出装置。
  2.  前記制御部は、
     前記最近接時成分取得処理で取得した前記第一磁界成分及び前記可能磁界成分に基づき、前記磁気モーメントの姿勢角を推定する姿勢角推定処理を更に実行し、
     前記磁気モーメント量推定処理において、更に前記姿勢角推定処理で推定した前記姿勢角に基づいて、前記磁気モーメントの大きさを推定する
     ことを特徴とする請求項1に記載の磁気検出装置。
  3.  前記可能磁界成分は、前記第二磁界成分及び前記第三磁界成分を含み、
     前記制御部は、
     前記姿勢角推定処理において、
      前記最近接時成分取得処理で取得した前記第一磁界成分及び前記第二磁界成分に基づいて、前記姿勢角の前記第三方向を軸とした回転方向の成分である第一回転角を推定し、
      前記最近接時成分取得処理で取得した前記第一磁界成分及び前記第三磁界成分に基づいて、前記姿勢角の前記第二方向を軸とした回転方向の成分である第二回転角を推定し、
     前記磁気モーメント量推定処理において、
     前記姿勢角推定処理で推定した前記第一回転角と、前記距離推定処理で推定した前記第三方向距離と、前記最近接時成分取得処理で取得した前記第一磁界成分及び前記第二磁界成分の何れかと、に基づいて、前記磁気モーメントの前記第一方向と前記第二方向とを含む平面に投影した成分である第一磁気モーメント成分を推定し、
      前記姿勢角推定処理で推定した前記第二回転角と、前記距離推定処理で推定した前記第三方向距離と、前記最近接時成分取得処理で取得した前記第一磁界成分及び前記第三磁界成分の何れかと、に基づいて、前記磁気モーメントの前記第一方向と前記第三方向とを含む平面に投影した成分である第二磁気モーメント成分を推定し、
      前記第一磁気モーメント成分及び前記第二磁気モーメント成分に基づいて前記磁気モーメントの大きさを推定する
     ことを特徴とする請求項2に記載の磁気検出装置。
  4.  前記制御部は、
     前記磁気モーメント量推定処理で推定された前記磁気モーメントの大きさが予め決められた閾値以上の大きさの場合、前記磁性体が武器であると判断する武器判断処理を更に実行することを特徴とする請求項1から3の何れかに記載の磁気検出装置。
  5.  二つの前記第一磁気センサを備え、
     二つの前記第一磁気センサは互いに前記第一方向に前記所定距離離れて設けられ、
     前記制御部は、
     前記定位置時成分取得処理において、
     前記最近接時成分取得処理で一方の前記第一磁気センサが測定した前記第一磁界成分を取得した場合に他方の前記第一磁気センサが測定した前記第一磁界成分を、前記所定位置に前記磁性体があるときに前記第一磁気センサが測定した前記第一磁界成分として取得する
     ことを特徴とする請求項1から4の何れかに記載の磁気検出装置。
  6.  前記磁性体の前記第一方向の移動速度を推定する速度推定部を更に備え、
     前記制御部は、
     前記定位置時成分取得処理において、
     前記速度推定部により推定された前記移動速度及び前記第一磁気センサが測定した前記第一磁界成分に基づいて前記所定位置を決定し、前記所定位置に前記磁性体があるときに前記第一磁気センサが測定した前記第一磁界成分を取得する
     ことを特徴とする請求項1から5の何れかに記載の磁気検出装置。
  7.  特定の方向である第一方向、前記第一方向と交差する第二方向及び第三方向のうち、前記第一方向に移動する磁性体と、第一磁気センサ及び前記第一磁気センサと近接又は一体である第二磁気センサの少なくとも一方との距離を、前記第一磁気センサ及び前記第二磁気センサを用いて推定する検出方法であって、
     前記第一磁気センサは、磁界の前記第一方向の成分である第一磁界成分を測定可能であり、
     前記第二磁気センサは、前記磁界の前記第二方向の成分である第二磁界成分、及び、前記磁界の前記第三方向の成分である第三磁界成分の少なくとも何れか一方を含む可能磁界成分を測定可能であり、
     前記第一方向に移動する前記磁性体が前記第一磁気センサに最も近接したときの前記磁性体の位置である最近接位置を通過した時機を検出する最近接検知工程と、
     前記時機に前記第一磁気センサが測定した前記第一磁界成分、及び、前記第二磁気センサが測定した前記可能磁界成分を取得する最近接時成分取得工程と、
     前記最近接位置から前記第一方向に所定距離離れた前記磁性体の位置である所定位置に前記磁性体があるときに前記第一磁気センサが測定した前記第一磁界成分を取得する定位置時成分取得工程と、
     前記最近接時成分取得工程及び前記定位置時成分取得工程の夫々で取得した前記第一磁界成分に基づいて、前記磁性体と前記第一磁気センサとの前記第三方向の距離である第三方向距離を推定する距離推定工程と、
     前記距離推定工程で推定した前記第三方向距離、及び、前記最近接時成分取得工程で取得した前記第一磁界成分及び前記可能磁界成分の少なくとも一方に基づいて、前記磁気モーメントの大きさを推定する磁気モーメント量推定工程と、
     を含むことを特徴とする検出方法。
  8.  前記最近接時成分取得工程で取得した前記第一磁界成分及び前記可能磁界成分に基づき、前記磁性体の磁気モーメントの姿勢角を推定する姿勢角推定工程を更に含み、
     前記磁気モーメント量推定工程において、更に前記姿勢角推定工程で推定した前記姿勢角に基づいて、前記磁気モーメントの大きさを推定する
     ことを特徴とする請求項7に記載の検出方法。
  9.  前記可能磁界成分は、前記第二磁界成分及び前記第三磁界成分を含み、
     前記姿勢角推定工程において、
      前記最近接時成分取得工程で取得した前記第一磁界成分及び前記第二磁界成分に基づいて前記姿勢角の前記第三方向を軸とした回転方向の成分である第一回転角と、
      前記最近接時成分取得工程で取得した前記第一磁界成分及び前記第三磁界成分に基づいて前記姿勢角の前記第二方向を軸とした回転方向の成分である第二回転角とを推定し、
     前記磁気モーメント量推定工程において、
      前記姿勢角推定工程で推定した前記第一回転角と、前記距離推定工程で推定した前記第三方向距離と、前記最近接時成分取得工程で取得した前記第一磁界成分及び前記第二磁界成分の何れかと、に基づいて、前記磁気モーメントの前記第一方向と前記第二方向とを含む平面に投影した成分である第一磁気モーメント成分を推定し、
      前記姿勢角推定工程で推定した前記第二回転角と、前記距離推定工程で推定した前記第三方向距離と、前記最近接時成分取得工程で取得した前記第一磁界成分及び前記第三磁界成分の何れかと、に基づいて、前記磁気モーメントの前記第一方向と前記第三方向とを含む平面に投影した成分である第二磁気モーメント成分を推定し、
      前記第一磁気モーメント成分及び前記第二磁気モーメント成分に基づいて前記磁気モーメントの大きさを推定する
     ことを特徴とする請求項8に記載の検出方法。
  10.  前記磁気モーメント量推定工程で推定された前記磁気モーメントの大きさが予め決められた閾値以上の大きさの場合、前記磁性体が武器であると判断する武器判断工程を更に含んだことを特徴とする請求項7から9の何れかに記載の検出方法。
  11.  前記定位置時成分取得工程において、
     互いに前記所定距離離れた二つの前記第一磁気センサを用いて、
     前記最近接時成分取得工程で一方の前記第一磁気センサが測定した前記第一磁界成分を取得した場合に他方の前記第一磁気センサが測定した前記第一磁界成分を、前記所定位置に前記磁性体があるときに前記第一磁気センサが測定した前記第一磁界成分として取得する
     ことを特徴とする請求項7から10の何れかに記載の検出方法。
  12.  前記定位置時成分取得工程において、
     前記第一方向に移動する前記磁性体が移動する移動速度を推定可能な速度推定部が推定した前記移動速度及び前記第一磁気センサが測定した前記第一磁界成分に基づいて前記所定位置を決定し、前記所定位置に前記磁性体があるときに前記第一磁気センサが測定した前記第一磁界成分を取得する
     ことを特徴とする請求項7から11の何れかに記載の検出方法。
  13.  請求項7から12の何れかに記載の前記検出方法をコンピュータに実行させる為の検出プログラム。
PCT/JP2019/038538 2019-09-30 2019-09-30 磁気検出装置、検出方法、及び検出プログラム WO2021064800A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19947952.8A EP4040148A4 (en) 2019-09-30 2019-09-30 MAGNETIC DETECTION DEVICE, DETECTION METHOD AND DETECTION PROGRAM
PCT/JP2019/038538 WO2021064800A1 (ja) 2019-09-30 2019-09-30 磁気検出装置、検出方法、及び検出プログラム
JP2020511551A JP6739130B1 (ja) 2019-09-30 2019-09-30 磁気検出装置、検出方法、及び検出プログラム
US17/706,986 US11946986B2 (en) 2019-09-30 2022-03-29 Magnetic detector, detection method, and non-transitory computer readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038538 WO2021064800A1 (ja) 2019-09-30 2019-09-30 磁気検出装置、検出方法、及び検出プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/706,986 Continuation US11946986B2 (en) 2019-09-30 2022-03-29 Magnetic detector, detection method, and non-transitory computer readable storage medium

Publications (1)

Publication Number Publication Date
WO2021064800A1 true WO2021064800A1 (ja) 2021-04-08

Family

ID=71949316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038538 WO2021064800A1 (ja) 2019-09-30 2019-09-30 磁気検出装置、検出方法、及び検出プログラム

Country Status (4)

Country Link
US (1) US11946986B2 (ja)
EP (1) EP4040148A4 (ja)
JP (1) JP6739130B1 (ja)
WO (1) WO2021064800A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112344925B (zh) * 2020-10-11 2023-11-21 南京理工大学 基于归一化磁矩的水下目标相关性检测定位方法
CN114814675B (zh) * 2022-03-09 2022-11-25 北京微纳星空科技有限公司 标定磁力矩器磁矩的方法、系统、存储介质和电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020171427A1 (en) * 2001-04-24 2002-11-21 The United States Of America Represented By The Secretary Of The Navy Magnetic anomaly sensing system and methods for maneuverable sensing platforms
JP2002333484A (ja) * 2002-07-03 2002-11-22 Tech Res & Dev Inst Of Japan Def Agency 移動目標の相対位置検出方法
JP2007163469A (ja) * 2005-11-17 2007-06-28 Shimadzu Corp 磁気測定システム
US7342399B1 (en) * 2006-04-17 2008-03-11 The United States Of America As Represented By The Secretary Of The Navy Magnetic anomaly sensing-based system for tracking a moving magnetic target
JP2012202781A (ja) * 2011-03-25 2012-10-22 Universal Tokki Kk 移動体位置推定検出装置及び移動体位置推定検出のプログラム
US8575929B1 (en) * 2011-06-20 2013-11-05 The United States Of America As Represented By The Secretary Of The Navy Magnetic anomaly surveillance system using spherical trilateration
JP2015025692A (ja) * 2013-07-25 2015-02-05 株式会社島津製作所 磁気測定システム
WO2018084278A1 (ja) * 2016-11-04 2018-05-11 フジデノロ株式会社 計測装置
WO2018181836A1 (ja) * 2017-03-30 2018-10-04 フジデノロ株式会社 磁性体検知装置、磁性体検知機能をコンピュータに実現させる為のプログラム、及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2019512088A (ja) 2016-02-15 2019-05-09 メトラセンス リミテッドMetrasens Limited セキュリティー検査装置及びその組み立て方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7652572B2 (en) * 2006-10-09 2010-01-26 Battelle Energy Alliance, Llc Methods, systems and devices for detecting and locating ferromagnetic objects
JP5151540B2 (ja) * 2008-02-21 2013-02-27 株式会社島津製作所 目標体探査器
JP5228555B2 (ja) * 2008-03-19 2013-07-03 株式会社島津製作所 目標体探査装置
FR2988862B1 (fr) * 2012-03-29 2014-03-28 Commissariat Energie Atomique Procede et dispositif de localisation d'un objet magnetique
FR2998380B1 (fr) * 2012-11-20 2016-01-08 Commissariat Energie Atomique Procede de reconnaissance automatique d'un objet magnetique mobile

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020171427A1 (en) * 2001-04-24 2002-11-21 The United States Of America Represented By The Secretary Of The Navy Magnetic anomaly sensing system and methods for maneuverable sensing platforms
JP2002333484A (ja) * 2002-07-03 2002-11-22 Tech Res & Dev Inst Of Japan Def Agency 移動目標の相対位置検出方法
JP2007163469A (ja) * 2005-11-17 2007-06-28 Shimadzu Corp 磁気測定システム
US7342399B1 (en) * 2006-04-17 2008-03-11 The United States Of America As Represented By The Secretary Of The Navy Magnetic anomaly sensing-based system for tracking a moving magnetic target
JP2012202781A (ja) * 2011-03-25 2012-10-22 Universal Tokki Kk 移動体位置推定検出装置及び移動体位置推定検出のプログラム
US8575929B1 (en) * 2011-06-20 2013-11-05 The United States Of America As Represented By The Secretary Of The Navy Magnetic anomaly surveillance system using spherical trilateration
JP2015025692A (ja) * 2013-07-25 2015-02-05 株式会社島津製作所 磁気測定システム
JP2019512088A (ja) 2016-02-15 2019-05-09 メトラセンス リミテッドMetrasens Limited セキュリティー検査装置及びその組み立て方法
WO2018084278A1 (ja) * 2016-11-04 2018-05-11 フジデノロ株式会社 計測装置
WO2018181836A1 (ja) * 2017-03-30 2018-10-04 フジデノロ株式会社 磁性体検知装置、磁性体検知機能をコンピュータに実現させる為のプログラム、及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4040148A4

Also Published As

Publication number Publication date
EP4040148A4 (en) 2023-06-21
JP6739130B1 (ja) 2020-08-12
JPWO2021064800A1 (ja) 2021-10-21
EP4040148A1 (en) 2022-08-10
US20220221529A1 (en) 2022-07-14
US11946986B2 (en) 2024-04-02

Similar Documents

Publication Publication Date Title
US10551916B2 (en) Detecting positions of a device based on magnetic fields generated by magnetic field generators at different positions of the device
Hol et al. Modeling and calibration of inertial and vision sensors
WO2016199605A1 (ja) 画像処理装置および方法、並びにプログラム
US11946986B2 (en) Magnetic detector, detection method, and non-transitory computer readable storage medium
JP2020528553A (ja) 磁力計を較正する方法
CN103874904B (zh) 偏移估计装置、偏移估计方法、偏移估计程序以及信息处理装置
JP2014149211A (ja) オフセット推定装置及びプログラム
JP2004286732A5 (ja)
Ruotsalainen et al. Visual-aided two-dimensional pedestrian indoor navigation with a smartphone
CN104913775B (zh) 无人机对地高度的测量方法、无人机定位方法及装置
KR101503046B1 (ko) 다축 감지 장치 및 이의 교정 방법
EP2972440A1 (en) Magnetic field imaging system
EP3227634B1 (en) Method and system for estimating relative angle between headings
CN109633540B (zh) 一种磁源的实时定位系统及实时定位方法
JP6908066B2 (ja) 信号処理回路、位置検出装置および磁気センサシステム
US20170059324A1 (en) Method for calculating the angle of inclination of magnetic field in a sensor coordination system
JP5109344B2 (ja) 磁気測定システム
US10267649B2 (en) Method and apparatus for calculating azimuth
JP2012189323A (ja) 磁気データ処理装置、磁気データ処理方法及び磁気データ処理プログラム。
CN109633539B (zh) 一种磁源的静态定位装置及静态定位方法
JP6908067B2 (ja) 信号処理回路、位置検出装置および磁気センサシステム
WO2011129288A1 (ja) 地磁気検知装置
JP2011185864A (ja) 磁界検知装置
Klingbeil et al. Magnetic field sensor calibration for attitude determination
JP7249995B2 (ja) 環境及び周囲磁場中を移動する物体の動きを推定する方法、機器、並びに関連するコンピュータプログラム及び格納手段

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020511551

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019947952

Country of ref document: EP

Effective date: 20220502