WO2021063387A1 - 伊马替尼及其衍生物的组合物在制备预防、治疗及防治成瘾复吸药物中的应用 - Google Patents

伊马替尼及其衍生物的组合物在制备预防、治疗及防治成瘾复吸药物中的应用 Download PDF

Info

Publication number
WO2021063387A1
WO2021063387A1 PCT/CN2020/119253 CN2020119253W WO2021063387A1 WO 2021063387 A1 WO2021063387 A1 WO 2021063387A1 CN 2020119253 W CN2020119253 W CN 2020119253W WO 2021063387 A1 WO2021063387 A1 WO 2021063387A1
Authority
WO
WIPO (PCT)
Prior art keywords
imatinib mesylate
morphine
imatinib
addiction
rats
Prior art date
Application number
PCT/CN2020/119253
Other languages
English (en)
French (fr)
Inventor
李艳琴
朱世敏
阮佳伟
张新宇
陈明珠
Original Assignee
武汉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910939707.1A external-priority patent/CN112569238A/zh
Priority claimed from CN201910939113.0A external-priority patent/CN112569237B/zh
Priority claimed from CN201910939100.3A external-priority patent/CN112569355B/zh
Application filed by 武汉大学 filed Critical 武汉大学
Publication of WO2021063387A1 publication Critical patent/WO2021063387A1/zh
Priority to US17/709,358 priority Critical patent/US20220218707A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/32Alcohol-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/36Opioid-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/34Tobacco-abuse

Definitions

  • the invention belongs to the technical field of medicine, and specifically relates to the application of imatinib and its derivatives in combination with addictive substances and addictive behaviors to prepare a compound or a combined preparation in the prevention, treatment of addiction and the prevention and treatment of relapse.
  • the drug problem is an urgently solved public health problem in the world, bringing immeasurable consequences to society and patients.
  • material dependence such as tobacco and alcohol addiction causes an endless stream of major diseases and casualties.
  • Addiction to neuropsychiatric drugs and analgesics limits its application and brings irreversible adverse consequences to society and patients.
  • Behavioral addictions such as Internet addiction, gambling, and game addiction bring more negative consequences to people's lives.
  • Drug addiction can lead to serious consequences, but the trend of drug abuse is still getting worse, and the chief culprit behind this is "addiction.” Once you become addicted to any substance or behavior, it is difficult to quit. So far, the whole world has been helpless, and there is currently a lack of effective drugs.
  • the present invention relates to the research and development of new drugs for the treatment of addiction drugs.
  • the present invention adopts a brand-new concept and discovers that the drug imatinib mesylate, which is specifically and effective in drug detoxification and addiction treatment, is used in combination with addictive substances or addictive behaviors or is prepared into a compound to have good effects in addiction treatment.
  • the addiction treatment that has been helpless and life-long replacement realizes the cure of the treatment program and can prevent relapse, providing a complete and effective drug treatment system for drug rehabilitation and addiction treatment.
  • Imatinib or its derivative Imatinib mesylate also known as Gleevec (Gleevec or STI571)
  • Gleevec Gleevec or STI571
  • CML chronic myeloid leukemia
  • the main target of imatinib is c-Kit, which acts on the proto-oncogenes c-Abl and The effect of platelet-derived growth factor receptor is weak.
  • Tobacco addiction is a chronic and dependent disease. Its main alkaloid component is nicotine, which can enter the brain reward center and highly bind to nicotinic acetylcholine receptors. Stimulate the release of dopamine, make people feel pleasant, and cause nicotine addiction through repeated and continuous smoking behavior.
  • nicotine in the body will be gradually eliminated, acetylcholine receptors will increase, nerve signal transmission will be disordered, and withdrawal reactions such as irritability, nausea, and headache will appear in the body, and smoking will become stronger.
  • the present invention relates to the research and development of new drugs for the treatment of nicotine addiction.
  • imatinib mesylate which is specifically effective for smoking cessation and addiction treatment, is used in combination with nicotine or its analogues or is prepared as a compound preparation in nicotine formation. It has a good effect in the treatment of addiction and can prevent relapse, providing a complete and effective drug treatment system for smoking cessation treatment.
  • analgesics are mainly opioid analgesics represented by morphine, non-steroidal anti-inflammatory analgesics represented by aspirin, and other analgesics. These drugs have passed It acts on the central or peripheral nervous system, and selectively reduces and eliminates various pains such as inflammation of peripheral tissues to achieve analgesic effects.
  • Opioid analgesics mainly exert analgesic effects by stimulating opioid receptors.
  • the distribution density of opioid receptors in the medial thalamus, spinal cord glial area, ventricle and other places is relatively high, and it is related to the afferent pain stimulus, the integration and perception of pain signals.
  • the analgesic sites of mu receptors are the brain, spinal cord and periphery, the analgesic sites of ⁇ receptors are the spinal cord, and the analgesic effects of ⁇ receptors
  • the parts are the spinal cord and the periphery.
  • opioid analgesics such as morphine presents a multi-site feature, while blocking the peripheral pain transmission and central pain perception, resulting in a powerful analgesic effect. Therefore, opioid analgesia itself can be applied to pain caused by various reasons, but it is currently only used for short-term applications when cancer pain and other analgesics are ineffective, mainly because it is easy to cause addiction after repeated applications. And tolerance limits the application of such drugs.
  • Classic opioids are addictive and severely tolerated. They are often only used as analgesics for the treatment of severe cancer pain and sharp pain.
  • Non-steroidal anti-inflammatory analgesics represented by aspirin, whose analgesic effect is mainly in the periphery, and the central analgesic effect is weak, mainly for the pain caused by tissue damage or inflammation, by inhibiting the cyclooxygenase in the peripheral lesions.
  • COX which reduces the synthesis of PGS and relieves pain. It has only moderate analgesic effect and has good analgesic effects, but it is not effective for acute sharp pain, sharp pain caused by severe trauma, smooth muscle colic and other severe pain.
  • analgesics mainly act on other receptors besides opioid receptors, such as NMDA receptors, NK1 receptors, purine and pyrimidine receptors, cannabis receptors and other drugs, and their analgesic effects are not strong, such as Rotundine It has a better effect on chronic persistent dull pain, and its analgesic effect is weaker than pethidine, but stronger than antipyretic analgesic and anti-inflammatory drugs; gaaconitine can be used as an alternative drug for mild to moderate pain, but it cannot meet the current needs The need for treatment of severe pain.
  • one of the objectives of the present invention is to provide a new use of imatinib and its derivatives in the field of addiction treatment, combining imatinib and its derivatives with addictive substances or addictive behaviors Use or combined use as a compound preparation to prevent or reduce addiction and addiction and withdrawal symptoms after cessation of use, and to prevent relapse.
  • the second purpose of the present invention is to provide new uses and preparations of imatinib and its derivatives in the field of nicotine or its analogue addiction treatment.
  • Dosage form Imatinib and its derivatives are used in combination with the addictive substance nicotine or used as a compound preparation to prevent or alleviate addiction and withdrawal symptoms after cessation of use, and prevent relapse.
  • the third purpose of the present invention is to provide new uses of imatinib and its derivatives in the field of analgesic drugs. Combine medication with analgesic drugs in a 2:1 ratio or use as a compound preparation to prevent or reduce addiction and tolerance of analgesic drugs, without affecting the analgesic effect of the drug, and at the same time expand the analgesic adaptation of analgesic drugs Disease range.
  • Imatinib and its derivatives are used in combination with addictive substances or addictive behaviors or compound preparations to prevent or treat addiction and its mechanism, dose effect, and prevention and treatment of relapse after withdrawal.
  • Imatinib and its derivatives are combined with addictive substances (morphine, cocaine, alcohol) (imatinib and its derivatives are administered in different ways with addictive substances every 30 minutes) or compound preparations ( Imatinib and its derivatives mixed with addictive substances can be used to prevent or treat addictive substance alone or addiction during addictive behaviors and have a dose-dependent effect.
  • addictive substances morphine, cocaine, alcohol
  • compound preparations Imatinib and its derivatives mixed with addictive substances can be used to prevent or treat addictive substance alone or addiction during addictive behaviors and have a dose-dependent effect.
  • the present invention is completed by the following experiments.
  • imatinib mesylate was administered in combination with alcohol or a combination of imatinib mesylate and alcohol was administered. Observe different doses of imatinib mesylate The effect of nigra on withdrawal symptoms.
  • Imatinib mesylate has varying degrees of blocking effects on the formation of CPP of morphine and cocaine, after the formation and the effects of memory consolidation. Regardless of the combined administration or the compound preparation, the rats that were not given imatinib mesylate had conditioned place preference and sensitization.
  • the dosage of morphine or cocaine is 3 mg/kg, 20, 30 mg/kg can prevent the drug-seeking behavior and relapse after addiction in rats; the dosage of morphine or cocaine is At 4 mg/kg, 20 and 30 mg/kg imatinib mesylate can only inhibit drug-seeking behavior, but cannot prevent relapse.
  • Imatinib mesylate (10, 15, 20, 30 mg/kg) can inhibit the formation of alcohol and the reconsolidation of memory after formation to varying degrees. Regardless of the combined administration or the compound preparation, the rats that were not given imatinib mesylate had conditioned place preference and sensitization.
  • imatinib mesylate inhibits drug-seeking behavior by blocking c-kit receptors, so as to prevent alcohol addiction and prevent relapse.
  • the combination of imatinib and its derivatives and alcohol dose ratio or compound preparations can prevent and treat alcohol addiction and relapse after withdrawal.
  • imatinib mesylate For addictive behavior, the effect of imatinib mesylate is similar to that of morphine, indicating that c-kit receptors are versatile as addiction treatment targets and therapeutic drugs.
  • the dose for rats is Xmg/kg, converted to the clinical dose for adults:
  • Imatinib mesylate and its derivatives are used in combination with an addictive behavior, that is, (1) Addictive food and imatinib mesylate and its derivatives can be used in combination or in combination. Addiction prevention, treatment and prevention of relapse; (2) Gambling behavior, after the environmental cues are induced, imatinib mesylate and its derivatives are given to improve gambling behavior.
  • the addictive substance refers to (1) narcotic drugs, in which narcotic drugs are further divided into opioids, cocaine, and marijuana.
  • Opioids include opiates from natural sources and the active ingredient morphine extracted from them, and the active ingredients are processed The obtained product is heroin, a synthetic product similar to opioids;
  • Psychotropic drugs and psychotropic drugs are divided into sedative hypnotics and anxiolytics barbiturates, central stimulants amphetamines, hallucinogens ergot diethylamine;
  • Addictive substances such as alcohol, tobacco and volatile organic solvents. When they are used for unconditioned stimulation, the dosage and the dosage for training CPP should be less than or equal to 1:3 dosage.
  • the addictive behaviors refer to (1) addictive foods including delicious foods such as high fat, sweets, chocolates, etc.; (2) all addictive behaviors such as gambling addiction and internet addiction.
  • the content of the imatinib and its derivatives is 100-400 mg/day.
  • Imatinib mesylate used for the treatment and prevention of substance addiction and relapse must be used in combination with addictive substances or compound preparations.
  • Imatinib mesylate used for the treatment and prevention of behavioral addiction and relapse must be combined with the exposure of addictive behavior-related clues or used in compound preparations.
  • the ratio of imatinib mesylate to prevent, treat addiction and prevent relapse is effective when there is a certain ratio of the substance used when the addiction is formed.
  • imatinib mesylate is combined with morphine or cocaine.
  • the dosage must be greater than or equal to 2:1 to be effective, and the alcohol dosage ratio is greater than or equal to 1:50.
  • the prescription of the addictive substance or addictive behavior and imatinib and its derivatives can be prepared into a single-dose compound or a combined preparation within the dosage range.
  • the combination medications and compound preparations refer to opioids that are used in combination with imatinib and its derivatives or made into injections, infusions, pills, subcutaneous implants, tablets, powders, granules, capsules, and powders.
  • One of all dosage forms and specifications such as oral liquids, sustained-release preparations, tinctures, suppositories, patches, etc.
  • the use of combination drugs or compound preparations also refers to the use of all drugs with this ratio for addiction treatment The medicament or combination.
  • Imatinib and its derivatives combined with the addictive substance nicotine or compound preparations to prevent or treat addiction ratio effects and mechanisms.
  • the present invention was completed by the following experiment: pre-peritoneal administration experiment Rats 1, 5, 10, 20, 30mg/kg imatinib mesylate, then subcutaneously injected 0.25, 5mg/kg nicotine, or 1, 5, 10, 20, 30mg/kg imatinib mesylate respectively Nicotine and 0.25, 5mg/kg nicotine were prepared as mixed injections and then administered.
  • the classic rat conditioned place preference model for evaluating addiction was used to determine the dose formulation of imatinib mesylate on the formation of nicotine conditioned place preference in rats.
  • Multicolor immunofluorescence co-labeling determines its downstream activation target molecules, determines the new molecular mechanism of nicotine addiction and the mechanism of action of imatinib mesylate in preventing and treating addiction.
  • imatinib mesylate was administered in combination with nicotine or a combination of imatinib mesylate and nicotine was administered, and different doses of imatinib were observed on the contraceptive regimen. The impact of severe symptoms.
  • the present invention was completed by the following experiment: using a conditional position preference model, large Rats become addicted to nicotine at 0.25, 0.5 mg/kg, and intraperitoneally inject 1, 5, 10, 20, 30 mg/kg imatinib mesylate on the second day, and subcutaneously inject 0.1 mg/kg nicotine 30 minutes later, or 1 , 5, 10, 20, 30 mg/kg imatinib mesylate and 0.15 mg/kg nicotine are prepared as mixed injections and then administered. After 60 minutes, a spontaneous activity box was used to determine the dose effect of imatinib mesylate in the treatment of nicotine withdrawal symptoms based on the changes in spontaneous activity after nicotine withdrawal in rats.
  • the dose ratio of imatinib and its derivatives to nicotine is 100-400 mg/day.
  • the dose ratio of imatinib mesylate and nicotine greater than or equal to 40:1 can prevent and treat nicotine addiction and relapse, and reduce nicotine addiction Withdrawal symptoms.
  • the lowest dose of imatinib mesylate is 10mg/kg.
  • the equivalent dose conversion between humans and animals based on body surface area can refer to "Pharmacological Experiment Methodology" edited by Professor Xu Shuyun:
  • the dose for rats is Xmg/kg, converted to the clinical dose for adults:
  • the drug use mode is the combined use or compound use of imatinib and its derivatives and nicotine or its analogues.
  • Imatinib and its derivatives and nicotine or its analogues are greater than or equal to 40:1 according to their effective component ratio, and the clinical dosage of imatinib and its derivatives is 100-400 mg/day.
  • the ratio of the used dose to the addicted dose should be less than 3:10 according to its effective component ratio, so that imatinib and its derivatives can effectively prevent and treat nicotine addiction and prevent relapse.
  • the drug is suitable for making one of the following dosage forms or specifications: injections, infusions, subcutaneous implants, pills, tablets, powders, granules, capsules, powders, oral liquids, sustained release agents, tinctures, suppositories , Patches.
  • Imatinib and its derivatives combined with morphine or compound preparations to prevent or treat opioid addiction mechanism and dose ratio effects.
  • the present invention was completed by the following experiments: using a pain model, morphine After analgesia, the mice were immediately placed in a conditioned place preference (CPP) training experimental device. First, observe whether morphine analgesia can form a conditioned place preference, which proves that morphine analgesia can cause addiction. At the same time, observe The dose-proportioning effect of imatinib mesylate on the prevention of CPP formation after morphine analgesia.
  • CPP conditioned place preference
  • rats were given 1, 5, 10, 20, 30 mg/kg imatinib mesylate in the intraperitoneal cavity in advance, and then 5, 10 mg/kg morphine was injected subcutaneously , Or use 1, 5, 10, 20, 30 mg/kg imatinib mesylate and 5, 10 mg/kg morphine respectively to prepare mixed injections and then administer them, using the classic rat conditioned place preference model for evaluating addiction,
  • mice can form CPP after morphine analgesia.
  • Different dose ratios of imatinib mesylate and morphine have different degrees of inhibition on the formation of morphine CPP.
  • the rats that are not given imatinib mesylate have a conditioned place preference.
  • the results of immunohistochemistry, western-blot and multicolor immunofluorescence co-labeling showed that the specific activation of the nucleus accumbens is not the c-kit receptor of other brain neurons and multiple signal transduction pathways behind the receptor.
  • PKC, PI3K-AKT, ERK, etc. regulate kinase activity, protein expression, gene expression and regulation to initiate the process of morphine reward, memory and neuroplasticity
  • imatinib mesylate inhibits a variety of signal transduction by blocking c-kit receptors.
  • the pathways such as PKC, PI3K-AKT, ERK, etc. regulate kinase activity, protein expression, gene expression and regulation to initiate the process of morphine reward, memory and neuroplasticity, so as to prevent morphine addiction.
  • Imatinib and its derivatives combined with morphine or compound preparations to prevent or treat opioid addiction mechanism and dose ratio effects.
  • the present invention was completed by the following experiment: using a hot plate pain model , Intraperitoneal administration of 1, 5, 10, 20, 30 mg/kg imatinib mesylate to experimental rats in advance, followed by subcutaneous injection of 5, 10 mg/kg morphine, or 1, 5, 10, 20, 30 mg/kg respectively Imatinib mesylate and 5, 10 mg/kg morphine were prepared as mixed injections and then administered.
  • the dose ratio effect of imatinib mesylate on the formation of morphine tolerance in rats was determined according to the thermal pain threshold.
  • Imatinib and its derivatives are combined with morphine dose ratio or compound preparation to prevent the central analgesic side effects of morphine but does not affect the analgesic effect.
  • the present invention was completed by the following experiment: in the combination experiment, intraperitoneal administration was performed 30 minutes in advance. , 5, 10, 20, 30mg/kg imatinib mesylate, and then subcutaneous injection of 10mg/kg morphine. In the administration experiment of compound preparation, 1, 5, 10, 20, 30 mg/kg imatinib mesylate was mixed with 10 mg/kg morphine, and then injected subcutaneously immediately.
  • the dosage of imatinib and its derivatives and morphine is 100-400 mg/day.
  • the dose ratio of imatinib mesylate and morphine greater than or equal to 2:1 can prevent the expression of morphine tolerance and increase the thermal pain threshold of rats , And the dose ratio of less than 2:1 has no effect.
  • the lowest dose of imatinib mesylate is 10mg/kg; using the pain model, morphine can form CPP after analgesia, and different dose ratios (greater than or equal to 2:1) Imatinib mesylate and morphine have different degrees of inhibitory effect on the expression of morphine tolerance, but there is no effect if the dose ratio is less than 2:1.
  • the lowest dose of imatinib mesylate is 10mg/kg.
  • imatinib mesylate and morphine with a dose ratio greater than or equal to 2:1 can prevent the occurrence of morphine addiction and the occurrence of tolerable side effects.
  • the lowest dose of imatinib mesylate is 10mg/kg.
  • the equivalent dose conversion between humans and animals based on body surface area can refer to "Pharmacological Experiment Methodology" edited by Professor Xu Shuyun:
  • the dose for rats is Xmg/kg, converted to the clinical dose for adults:
  • the application of imatinib and its derivatives and analgesic drugs in the preparation of medicines include: (1) The composition comprising imatinib and its derivatives and analgesic drugs is used in the preparation of drugs for the treatment of pain. (2) Application of a composition containing imatinib and its derivatives and analgesic drugs in the preparation of drugs for the prevention of analgesic tolerance and addictive side effects.
  • composition of imatinib and its derivatives and analgesic drugs is based on the effective component ratio of greater than or equal to 2:1, and the clinical dosage of imatinib and its derivatives is 100- 400mg/day.
  • the analgesic drugs include addictive opioids such as morphine, codeine, pethidine, fentanyl, methadone, oxycodone, and hydromorphone that act on the central analgesic system to produce analgesic effects. , Nalbuphine, marijuana, etc., non-opioids, various addictive compounds or their salts.
  • the pain is an indication suitable for the treatment of the analgesic drug alone and other different types of acute and chronic pain.
  • composition comprising imatinib and its derivatives and analgesic drugs.
  • Imatinib and its derivatives and analgesic drugs can be administered simultaneously, separately or sequentially.
  • the medicine is suitable for making one of the following dosage forms or different specifications: injections, infusions, subcutaneous implants, pills, tablets, powders, granules, capsules, powders, oral liquids, sustained-release preparations, tinctures , Suppositories, patches, etc.
  • imatinib is used in clinically safe doses from the perspectives of dosage ratio, new intervention paradigm and new mechanism of action. Its derivatives and addictive substances are prepared into various compound preparations or combined preparations for addiction treatment, which are better suited to clinical needs, and on this basis, the problem of addiction prevention and treatment has been promoted a big step. From the point of view of molecular structure, imatinib has no interaction group with addictive substances. Therefore, it is feasible to combine imatinib and its derivatives with addictive substances or prepare compound preparations for addiction treatment. It is effective, effective, safe, and clinically manipulable. It is a substantial advancement in the treatment of addiction.
  • the dose of imatinib mesylate (100mg-400mg/day/70kg) used in the present invention rarely has side effects during clinical use, is within the safe dose range for clinical use, and has good clinical effectiveness and safety.
  • the present invention has substantial progress and the differences are as follows:
  • New dose In terms of dose effect, the present invention found that a low dose of 5 mg/kg in rats can be used for treatment and prevention of morphine tolerance, but cannot prevent and treat addiction and relapse after withdrawal.
  • the dose is higher than 10 mg/kg. It can prevent opioid tolerance and addiction, and it can also successfully prevent opioid and other substance addiction and relapse after withdrawal.
  • This typical dose effect has similar examples in the clinical application of antipyretic analgesic aspirin, such as aspirin for low-dose anti-thrombosis, medium-dose for antipyretic and analgesic, high-dose anti-inflammatory and anti-rheumatic, three types of clinical Indications
  • antipyretic analgesic aspirin such as aspirin for low-dose anti-thrombosis, medium-dose for antipyretic and analgesic, high-dose anti-inflammatory and anti-rheumatic, three types of clinical Indications
  • the effects of antithrombotic, antipyretic and analgesic and anti-inflammatory and antirheumatic drugs are completely different and have substantial differences. Therefore, the dose effect of the present invention (rats above 10mg/kg, equivalent doses for other species, clinical doses above 100mg/day) is a substantial new discovery of imatinib mesylate in the field of addiction treatment.
  • Imatinib mesylate and addiction drugs are used in combination or prepared into various compound preparations to prevent addiction and relapse after withdrawal. It is the application of this drug in different dosage ranges for different indications. It is the same as the previous invention Substantially distinguish between applications and progressive inventions.
  • New ratio The present invention has discovered that when imatinib mesylate is used for the prevention and treatment of addiction, it is effective when there is a certain ratio between the dose used for CPP addiction and the dose of morphine or cocaine must be in a ratio of 2:1. Effective, the dose ratio of alcohol is greater than or equal to 1:50; in addition, there is also a dose ratio for unconditionally induced doses, such as the effective ratio of morphine, cocaine, and the amount of alcohol used during CPP training is less than 1:3.
  • New treatment strategy The present invention adopts a new intervention paradigm, namely, non-conditional clues induce intervention after the process of reconsolidation and drug treatment. This kind of intervention is clinically easier to operate, and the treatment effect is more effective.
  • Imatinib mesylate inhibits a variety of signal transduction pathways such as PKC, PI3K-AKT, ERK, etc. by blocking the c-kit receptor to regulate kinase activity, protein Expression, gene expression and regulation initiate the process of morphine reward, memory and neuroplasticity, and block the various effects of morphine, so as to prevent and treat morphine addiction.
  • imatinib and its derivatives of the present invention compared with traditional single-drug use, imatinib and its derivatives at a dose ratio greater than or equal to 40:1
  • Combination medication or compound medication with nicotine can effectively prevent nicotine addiction and relapse, and reduce the withdrawal symptoms after addiction, and effectively solve the problem of nicotine addiction treatment in clinical patients.
  • the dose ratio of imatinib mesylate to nicotine is lower than 40:1, nicotine addiction cannot be prevented.
  • the dose ratio of imatinib mesylate to nicotine is greater than or equal to 40:1, it can be successful. Prevent nicotine addiction and reduce the symptoms of nicotine withdrawal.
  • This typical dosage effect has similar examples in the clinical application of analgesic aspirin, such as aspirin for low-dose antithrombotic, medium-dose for antipyretic and analgesic, high-dose anti-inflammatory and anti-rheumatic, anti-thrombotic, antipyretic
  • analgesic aspirin such as aspirin for low-dose antithrombotic, medium-dose for antipyretic and analgesic, high-dose anti-inflammatory and anti-rheumatic, anti-thrombotic, antipyretic
  • the effects of drugs for analgesia and anti-inflammatory and anti-rheumatic three types of clinical indications are completely different and have substantial differences.
  • the present invention found that when imatinib mesylate is used to treat nicotine addiction and relapse, if the nicotine addiction memory-evoking dose and the nicotine addiction dose are greater than or equal to 3:10, the methanesulfonate to prevent nicotine addiction The dose of imatinib acid cannot prevent and treat the relapse of nicotine addiction; if it is less than 3:10, the dose of imatinib mesylate that prevents nicotine addiction can prevent and treat the relapse of nicotine addiction.
  • the therapeutic dose ratio effect of this imatinib mesylate (the dose ratio of imatinib mesylate and nicotine in rats is more than 40:1, other species use the same dose, and the clinical dose is more than 100mg/day)
  • the dose ratio effect with nicotine memory arousal (the ratio of rat nicotine memory arousal dose to nicotine addiction dose ratio is less than 3:10, other species use the same dose) is the effect of imatinib mesylate in the field of nicotine addiction
  • the combination of imatinib mesylate and nicotine drugs in this dosage ratio range or preparation of various compound preparations to prevent nicotine addiction and relapse after withdrawal is the drug in different dosage ranges Application for different indications within.
  • the present invention has discovered that the effective dosage ratio of imatinib mesylate used to prevent and treat nicotine addiction and relapse needs to be greater than or equal to 40:1, and the memory of nicotine addiction The ratio of arousal dose to nicotine addiction memory forming dose needs to be less than 3:10.
  • Imatinib mesylate inhibits a variety of signal transduction pathways such as PKC and PI3K by blocking c-kit receptors.
  • -AKT, ERK, etc. regulate kinase activity, protein expression, gene expression and regulation to initiate the process of nicotine reward, memory and neuroplasticity, and block the various effects of nicotine, so as to prevent and treat addiction and relapse.
  • the present invention proposes to prepare various compound preparations or combinations of imatinib and its derivatives with the addictive substance nicotine or its analogues from the perspectives of dosage ratio, new intervention paradigm and new mechanism of action.
  • the preparation is used for the treatment of addiction and relapse, and is better adapted to clinical needs.
  • the problem of addiction prevention and treatment has been promoted in a big step.
  • imatinib has no interaction group with nicotine. Therefore, it is proposed to combine imatinib and its derivatives with nicotine or prepare compound preparations for the treatment of nicotine addiction. Effective, effective, safe, and clinically manipulable, it is a substantial advancement in the treatment of nicotine addiction.
  • imatinib and its derivatives in a dose ratio greater than or equal to 2:1 are compared with the imatinib and its derivatives of the present invention.
  • Analgesic combination or compound medication can effectively exert the analgesic effects of analgesics, and at the same time can effectively prevent the occurrence of severe side effects of opioids without affecting the analgesic effects of opioids, effectively solve the clinical pain treatment problems, and effectively prevent side effects , Further expand the clinical indications of addictive analgesics analgesics.
  • a new dosage ratio range that is, the lowest dose for clinical use is 100 mg/day, the highest dose does not exceed 400 mg/day
  • addictive analgesics are used in combination or various new compound preparations (not limited to liquids) are prepared
  • a combination method or various specifications of preparations that have a strong analgesic effect and can prevent addiction and tolerance side effects in the treatment of opioid pain, and are effective for various pains.
  • the dose of imatinib mesylate (100mg-400mg/day/70kg) used in the present invention rarely has side effects during clinical use, is within the safe dose range for clinical use, and has good clinical effectiveness and It is safe and can be widely used in the treatment of various acute and chronic pains in clinical practice, and solves the bottleneck problem faced by clinical analgesia.
  • the present invention found that the low dose of imatinib mesylate, namely 5 mg/kg, can be used for tolerance treatment and prevention, but cannot prevent and treat addiction and relapse after withdrawal.
  • a dose higher than 10 mg/kg can prevent opioid resistance. It can also successfully prevent opioid and other substance addiction and relapse after withdrawal, without affecting the analgesic effect of morphine.
  • the dose ratio of morphine is less than 2:1, opioid addiction and tolerance cannot be prevented.
  • the dose ratio of imatinib mesylate and morphine is greater than Or when it is 2:1, it can successfully prevent opioid addiction and tolerance without affecting the analgesic effect of morphine.
  • This typical dosage effect has similar examples in the clinical application of the second type of analgesic aspirin, such as low-dose aspirin for antithrombotic, medium-dose for antipyretic and analgesic, high-dose anti-inflammatory and anti-rheumatic, anti-thrombotic Antipyretic and analgesic and anti-inflammatory and anti-rheumatic drugs have completely different effects and substantial differences. Therefore, the dosage ratio effect of the present invention (rat imatinib mesylate and opioid dosage ratio range 2:1 or more, other species use the same dosage, the clinical dosage is more than 100mg/day) is methanesulfonic acid Imatinib is a substantial new discovery in analgesia and the prevention of addictive side effects.
  • Imatinib mesylate and opioids are used in combination or prepared into various compound preparations within this dosage ratio to prevent and treat opioid analgesia.
  • the addictive side effect is the application of the drug in different dosage ranges for different indications, and it is an invention that is substantially different from the previous invention in application and progress.
  • Imatinib mesylate inhibits a variety of signal transduction pathways such as PKC and PI3K-AKT by blocking the c-kit receptor. , ERK, etc. regulate kinase activity, protein expression, gene expression and regulation to initiate the process of morphine reward, memory and neuroplasticity, and block the various effects of morphine, so as to prevent and treat addictive analgesic addiction.
  • the present invention proposes to prepare various compound preparations or combination preparations of imatinib and its derivatives and opioids for the prevention and treatment of opioid analgesic addiction and side effects from the perspective of dose ratio and new mechanism of action.
  • imatinib has no interaction group with morphine. Therefore, it is proposed to combine imatinib and its derivatives with morphine or prepare compound preparations for analgesic treatment and prevention of opioids.
  • the side effects of drug addiction and tolerance are proven effective. It does not affect the analgesic effect of opioids and at the same time expands the indications for opioid analgesia.
  • Figure 1 shows the new molecular mechanism of imatinib mesylate in preventing morphine addiction.
  • Figure 2 shows the dose effect of the combined use of imatinib mesylate and morphine on the formation of addiction in rats; where A: morphine and imatinib mesylate are administered in combination to prevent the formation of CPP and train CPP The dose of morphine is 5 mg/kg; B: the combined administration of morphine and imati mesylate is used to prevent the formation of CPP, and the dose of morphine for training CPP is 5 mg/kg; C: the combined administration of morphine and imati mesylate is used To prevent the formation of CPP, the dose of morphine for training CPP is 10 mg/kg; D: the combined administration of morphine and imati mesylate is used to prevent the formation of CPP, the dose of morphine for training CPP is 10 mg/kg.
  • Figure 3 shows the new molecular mechanism of imatinib mesylate to prevent cocaine addiction
  • A immunohistochemistry shows that imatinib mesylate has a significant inhibitory effect on the increase of c-Kit in the nucleus accumbens, while other brain regions have not Significant effects are seen
  • B Seven-color immunofluorescence co-labeling shows that seven key active molecules c-Kit, ERK, AKT, and PKC are co-activated in the nucleus accumbens neurons after acute alcohol administration, and the activity of PDGF does not change significantly.
  • Figure 4 shows the dose effect of the combined use of imatinib mesylate and cocaine on the formation of addiction in rats; among them, A: cocaine and imatinib mesylate are used in combination to prevent the formation of CPP and train CPP Cocaine dose is 5mg/kg; B: Cocaine and imati mesylate are administered in combination to prevent the formation of CPP, and the cocaine dose for training CPP is 5mg/kg; C: cocaine and imati mesylate are administered in combination To prevent the formation of CPP, the cocaine dose for training CPP is 10 mg/kg; D: Cocaine and imati mesylate are administered in combination to prevent the formation of CPP, and the cocaine dose for training CPP is 10 mg/kg.
  • Figure 5 shows the new molecular mechanism of imatinib mesylate in preventing alcohol addiction; among them, A: immunohistochemistry shows that imatinib mesylate has a significant inhibitory effect on the increase of c-Kit in the nucleus accumbens, and other brain regions have not Significant effects are seen; B: Seven-color immunofluorescence co-labeling shows that seven key active molecules c-Kit, ERK, AKT, and PKC are co-activated in the nucleus accumbens neurons after acute alcohol administration, and the activity of PDGF does not change significantly.
  • Figure 6 shows the dose effect of the effect of imatinib mesylate and alcohol on the formation of addiction in rats;
  • A the combined administration of alcohol and imatinib mesylate prevents the formation of CPP and trains CPP Alcohol dosage is 0.5g/kg;
  • B Alcohol and imati mesylate are given in combination to prevent the formation of CPP, and the alcohol dosage for training CPP is 0.5g/kg;
  • C Alcohol and imati mesylate are given in combination
  • the alcohol dose for training CPP is 0.75 g/kg;
  • D the compound administration of alcohol and imati mesylate is used to prevent the formation of CPP, and the alcohol dose for training CPP is 0.75 g/kg.
  • Figure 7 shows the dose effect of imatinib mesylate and morphine on the drug-seeking behavior after the formation of morphine addiction in rats;
  • A the combined administration of morphine and imatinib mesylate inhibits seeking For drug behaviors, the dose of morphine for training CPP is 5 mg/kg;
  • B morphine and imatinib mesylate are combined to suppress drug-seeking behavior, and the dose of morphine for training CPP is 5 mg/kg;
  • C morphine and methanesulfonic acid Imatinib combined administration is used to inhibit drug-seeking behavior, the dose of morphine for training CPP is 10mg/kg;
  • D the combined administration of morphine and imatinib mesylate inhibits drug-seeking behavior, the dose of morphine for training CPP is 10mg /kg.
  • Figure 8 shows the dose effect of imatinib mesylate and cocaine on cocaine-seeking behavior and cocaine addiction in rats after the formation of cocaine addiction;
  • A cocaine and imatinib mesylate can be used in combination to inhibit finding For drug behavior, the cocaine dose for training CPP is 5 mg/kg;
  • C cocaine and methanesulfonic acid Imatinib combined administration is used to inhibit drug-seeking behavior, and the cocaine dose for training CPP is 10mg/kg;
  • D Cocaine and imatinib mesylate compound administration is used to inhibit drug-seeking behavior, and the cocaine dose for training CPP is 10mg /kg.
  • Figure 9 shows the dose effect of imatinib mesylate and alcohol on the drug-seeking behavior after the formation of alcohol addiction in rats;
  • A the combined administration of alcohol and imatinib mesylate inhibits seeking For drug behavior, the alcohol dose for training CPP is 0.5g/kg;
  • B Alcohol and imatinib mesylate compound administration is used to inhibit drug-seeking behavior, the alcohol dose for training CPP is 0.5g/kg;
  • C alcohol Combined administration with imatinib mesylate is used to inhibit drug-seeking behavior, and the alcohol dose for training CPP is 0.75g/kg;
  • D compound administration of alcohol and imatinib mesylate inhibits drug-seeking behavior, training The alcohol dosage of CPP is 0.75g/kg.
  • Figure 10 shows the dose effect of imatinib mesylate and morphine under environmental induction, unconditional stimulation or direct administration on drug-seeking behavior after the formation of morphine addiction and memory consolidation after withdrawal;
  • A unconditioned stimulus, the dose of morphine is 3 mg/kg, the effect of co-administration with imatinib mesylate on drug seeking behavior and relapse, the dose of morphine for training CPP is 10 mg/kg;
  • C unconditioned stimulation, morphine The dose is 5mg/kg, and the effect of co-administration with imatinib mesylate on drug-seeking behavior and relapse, the morphine dose for training CPP is 10mg/kg;
  • D unconditional stimulation, the morphine dose is 5mg/kg
  • Figure 11 shows the dose effect of imatinib mesylate and cocaine in environmental induction, unconditional stimulation or direct administration on drug-seeking behavior after the formation of opioid addiction and memory consolidation after withdrawal in rats;
  • A unconditional stimulation, the cocaine dose is 3 mg/kg, the effect of co-administration with imatinib mesylate on drug seeking behavior and relapse, the cocaine dose for training CPP is 10 mg/kg;
  • C unconditional stimulation, cocaine The dose is 5mg/kg, and the effect of co-administration with imatinib mesylate on drug-seeking behavior and relapse, the cocaine dose for training CPP is 10mg/kg;
  • D unconditional stimulation, the cocaine dose is 5mg/kg , The effect of combined administration with imatinib mesylate on drug-
  • Figure 12 shows the dose effect of imatinib mesylate and alcohol in environmental induction, unconditional stimulation or direct administration on drug-seeking behavior after alcohol addiction and memory consolidation after withdrawal in rats;
  • A unconditional stimulation, the alcohol dose is 0.25g/kg, the effect of co-administration with imatinib mesylate on drug-seeking behavior and relapse, the alcohol dose for training CPP is 0.75g/kg;
  • B Unconditional stimulation, the alcohol dose is 0.25g/kg, the effect of combined administration with imatinib mesylate on drug-seeking behavior and relapse, the alcohol dose for training CPP is 0.75g/kg;
  • C unconditional Sexual stimulation, the alcohol dosage is 0.5g/kg, the effect of co-administration with imatinib mesylate on drug-seeking behavior and relapse, the alcohol dosage for training CPP is 0.75g/kg;
  • D unconditional stimulation, The alcohol dose is 0.5g/kg, the effect of combined administration with imatinib mesylate on drug-seeking
  • Figure 13 shows the effect of the combination of imatinib mesylate and morphine on the addiction and withdrawal response of rats;
  • A the combination of imatinib mesylate and low-dose morphine on withdrawal after the formation of morphine CPP The influence of symptoms (the number of jumps);
  • B the effect of a combination of imatinib mesylate and low-dose morphine on withdrawal symptoms (the number of jumps) after the formation of morphine CPP;
  • C imatinib mesylate and low-dose The effect of combination of morphine on the withdrawal symptoms (weight loss) after the formation of morphine CPP;
  • D The effect of the combination of imatinib mesylate and low-dose morphine on the withdrawal symptoms (weight loss) after the formation of morphine CPP.
  • FIG 14 shows the effect of imatinib mesylate and cocaine on the addiction and withdrawal response of rats;
  • A Imatinib mesylate has an effect on the withdrawal symptoms after the formation of cocaine CPP (in the closed arm) The effect of residence time);
  • B the effect of imatinib mesylate on the withdrawal symptoms (the number of times to enter the closed arm) after the formation of cocaine CPP.
  • Figure 15 shows the effect of imatinib mesylate and alcohol on the addiction and withdrawal response in rats; A: Imatinib mesylate on the withdrawal symptoms after the formation of alcohol CPP (in the closed arm The effect of residence time); B: the effect of imatinib mesylate on withdrawal symptoms (the number of times to enter the closed arm) after the formation of alcohol CPP
  • Figure 16 shows the dose effect of the ratio of imatinib mesylate and opioid addictive substances on the formation and expression of morphine sensitization in rats;
  • A the combination of imatinib mesylate and morphine is sensitive to morphine The effect of morphine formation;
  • B the effect of imatinib mesylate and morphine on the sensitization formation of morphine;
  • C the effect of imatinib mesylate on the sensitization expression of morphine.
  • Figure 17 shows the dose effect of the ratio of imatinib mesylate and opioid addictive substances on the formation and expression of cocaine sensitization in rats; A: the combined administration of imatinib mesylate and cocaine on cocaine The effect of sensitization; B: the effect of imatinib mesylate and cocaine compound administration on the sensitization of cocaine; C: the effect of imatinib mesylate on the expression of cocaine sensitization.
  • Figure 18 shows the dose effect of the ratio of imatinib mesylate and opioid addictive substances on the formation and expression of alcohol sensitization in rats; A: the combined administration of imatinib mesylate and alcohol on alcohol The effect of sensitization; B: the effect of imatinib mesylate and alcohol on the formation of alcohol sensitization; C: the effect of imatinib mesylate on the expression of alcohol sensitization.
  • Figure 19 shows the dose effect of the combination of imatinib mesylate and high-sugar and high-fat foods on the addiction of high-sugar and high-fat foods in rats. From left to right in the histogram, they are: high-sugar and high-fat foods + Normal saline, high-sugar and high-fat food + Imatinib mesylate 1, 5, 10, 20, 30 mg/kg.
  • Figure 20 shows the effect of the combination of imatinib mesylate and high-sugar and high-fat food on foraging and re-consolidation after withdrawal after the formation of high-sugar and high-fat food addiction in rats;
  • A unconditioned stimulus The effect of post-imatinib mesylate on the search and relapse of high-sugar and high-fat foods;
  • B The effect of imatinib mesylate on the search and relapse of high-sugar and high-fat foods stimulated by environmental cues;
  • C Direct The effect of imatinib mesylate on seeking and relapse of high-sugar and high-fat food. From left to right in the histogram: high-sugar and high-fat food + saline, high-sugar and high-fat food + imatinib mesylate 1, 5, 10, 20, 30 mg/kg.
  • Figure 21 shows the dose effect of imatinib mesylate on the gambling task of rats; A: environmental cues induce the effect of imatinib mesylate on gambling behavior; B: direct administration of imatinib mesylate The effect of tinib on gambling behavior.
  • Figure 22 shows the conversion of imatinib mesylate dose to clinical dose.
  • Figure 23 shows the effect of the dose ratio of imatinib mesylate and nicotine on the formation of nicotine addiction in rats;
  • A is the combined administration of imatinib mesylate and 0.25 mg/kg nicotine on nicotine addiction in rats The effect of formation;
  • B is the effect of the combined administration of imatinib mesylate and 0.5mg/kg nicotine on the formation of nicotine addiction in rats;
  • C is the combined administration of imatinib mesylate and 0.25mg/kg nicotine The effect on the formation of nicotine addiction in rats;
  • D is the effect of the compound administration of imatinib mesylate and 0.5mg/kg nicotine on the formation of nicotine addiction in rats.
  • Figure 24 shows the new molecular mechanism of imatinib mesylate to prevent nicotine addiction;
  • A is c-kit immunohistochemical detection and analysis;
  • B is Opal/TSA multi-label staining detection and analysis.
  • Figure 25 shows the effect of imatinib mesylate on the drug-seeking behavior of rats after nicotine addiction induced by unconditioned stimulus and memory re-evoked;
  • A is the combination of imatinib mesylate and nicotine on unconditioned stimuli
  • the effect of nicotine-seeking behavior in induced nicotine addiction rats, the nicotine dose of training CPP is 0.25mg/kg;
  • B is the compound administration of imatinib mesylate and nicotine on the nicotine addiction rats induced by unconditioned stimuli.
  • the effect of drug behavior; the nicotine dose for training CPP is 0.25 mg/kg;
  • C is the effect of the combined administration of imatinib mesylate and nicotine on the drug-seeking behavior of nicotine addictive rats induced by unconditioned stimuli.
  • the nicotine dose is 0.5mg/kg;
  • D is the effect of imatinib mesylate and nicotine compound administration on the drug-seeking behavior of nicotine addiction rats induced by unconditioned stimuli.
  • the nicotine dose for training CPP is
  • Figure 26 shows the effects of imatinib mesylate after unconditional stimulation (combination, compound), environmental cues, and direct administration on the drug-seeking behavior of rats after nicotine addiction and relapse after withdrawal Effect;
  • A is the effect of imatinib mesylate combined with nicotine on the drug-seeking behavior and relapse of nicotine addicted rats induced by unconditioned stimuli.
  • the nicotine dose of training CPP is 0.5mg/kg, and the induced dose is 0.1mg/kg;
  • B is the effect of compound administration of imatinib mesylate and nicotine on drug-seeking behavior and relapse in nicotine addiction rats induced by unconditioned stimuli.
  • the nicotine dose for training CPP is 0.5mg/kg, The induced dose is 0.1mg/kg; C is the effect of the combined administration of imatinib mesylate and nicotine on the drug-seeking behavior and relapse of nicotine addiction rats induced by unconditioned stimuli.
  • the nicotine dose for training CPP is 0.5mg /kg, the inducing dose is 0.15mg/kg; D is the effect of compound administration of imatinib mesylate and nicotine on the drug-seeking behavior and relapse of nicotine addiction rats induced by unconditioned stimulus, and the nicotine dose for training CPP 0.5mg/kg, the induced dose is 0.15mg/kg; E is the effect of imatinib mesylate on the drug-seeking behavior and relapse of nicotine addiction rats induced by environmental stimuli, and the nicotine dose for training CPP is 0.5mg /kg; F is the effect of direct administration of imatinib mesylate on the drug-seeking behavior and relapse of nicotine addicted rats, the nicotine dose for training CPP is 0.5mg/kg; G is imatinib mesylate The effect on nicotine analog-induced drug-seeking behavior and relapse of nicotine addicted rats.
  • the nicotine dose of training CPP is 0.5mg/kg, and the induced dose is equivalent
  • Figure 27 shows the effect of the dose ratio of imatinib mesylate and nicotine on the symptoms of nicotine withdrawal
  • A shows the effect of the combined administration of imatinib mesylate and nicotine on the symptoms of nicotine withdrawal in rats
  • B is Effects of imatinib mesylate and nicotine compound administration on nicotine withdrawal symptoms in rats.
  • Figure 28 shows the conversion of imatinib mesylate dose to clinical dose.
  • Figure 29 shows the effect of imatinib mesylate on smoking cessation.
  • Figure 30 is the effect of the dose ratio of imatinib mesylate and morphine on the formation of morphine addiction in rats;
  • A is the formation of morphine addiction in rats by the combined administration of imatinib mesylate and 5mg/kg morphine
  • B is the effect of combined administration of imatinib mesylate and 10mg/kg morphine on the formation of morphine addiction in rats;
  • C is the combined administration of imatinib mesylate and 5mg/kg morphine on rats The effect of morphine addiction;
  • D is the effect of compound administration of imatinib mesylate and 10mg/kg morphine on the formation of morphine addiction in rats.
  • Figure 31 shows the new molecular mechanism of imatinib mesylate in preventing morphine addiction
  • A is c-kit immunohistochemical detection and analysis
  • B is c-kit immunoblotting detection and analysis
  • C is c-kit and ERK immunofluorescence double-labeling Detection analysis
  • D is c-kit, Akt immunofluorescence double-label detection analysis
  • E is c-kit, PKCzeta immunofluorescence double-label detection analysis
  • F is Opal/TSA multi-label staining detection analysis.
  • Figure 32 shows the effect of morphine in the analgesic process of imatinib mesylate and morphine dose ratio on the formation of addiction
  • A is the compound administration of imatinib mesylate and 10mg/kg morphine on mice The effect of morphine addiction
  • B is the effect of compound administration of imatinib mesylate and 15mg/kg morphine on the formation of morphine addiction in mice.
  • Figure 33 shows the effect of the dose ratio of imatinib mesylate and morphine on morphine tolerance in rats;
  • A is the effect of imatinib mesylate and 5mg/kg morphine combined administration on morphine tolerance in rats ;
  • B is the effect of combined administration of imatinib mesylate and 10mg/kg morphine on morphine tolerance in rats;
  • C is the effect of imatinib mesylate and 5mg/kg morphine combined administration on morphine tolerance in rats The effect of;
  • D is the effect of compound administration of imatinib mesylate and 10mg/kg morphine on morphine tolerance in rats.
  • Figure 34 shows the effect of the dose ratio of imatinib mesylate and morphine on the central analgesic effect of morphine in rats;
  • A shows the effect of the combined administration of imatinib mesylate and morphine on the central analgesic effect of morphine;
  • B The effect of compound administration of imatinib mesylate and morphine on central analgesia;
  • Figure 35 shows the effect of the dose ratio of imatinib mesylate and morphine on the acute visceral analgesia effect of morphine in mice;
  • A is the effect of the combined administration of imatinib mesylate and morphine on the acute visceral analgesia effect ;
  • B is the effect of compound administration of imatinib mesylate and morphine on the effect of acute visceral analgesia;
  • Figure 36 shows the effect of the dose ratio of imatinib mesylate and morphine on the analgesic effect of acute inflammation of morphine in rats;
  • A is the effect of combined administration of imatinib mesylate and morphine on the analgesic effect of acute inflammation ;
  • B is the effect of compound administration of imatinib mesylate and morphine on central analgesia;
  • Figure 37 shows the effect of the dose ratio of imatinib mesylate and morphine on the analgesic effect of chronic inflammation of morphine in rats;
  • A is the effect of the combined administration of imatinib mesylate and morphine on the analgesic effect of chronic inflammation ;
  • B is the effect of compound administration of imatinib mesylate and morphine on the analgesic effect of chronic inflammation;
  • Figure 38 shows the conversion of imatinib mesylate dose to clinical dose.
  • Examples 1 to 18 are directed to the application of the composition of martinib and its derivatives and addictive substances in the field of addiction treatment.
  • the addictive substance used in the following examples is morphine or cocaine. Morphine is widely representative, and those skilled in the art can reproduce similar research results in other addictive substances that have a similar mechanism of action as morphine.
  • the materials, reagents, etc. used in the following examples can be obtained from commercial sources unless otherwise specified.
  • Example 1 The effect of imatinib mesylate dose effect on the formation of morphine addiction in rats and its molecular mechanism
  • Imatinib (30mg/kg) or saline (1mL/kg) was injected intraperitoneally, morphine (10mg/kg) was subcutaneously injected half an hour later, and brain tissue was taken out of the heart after 1 hour.
  • morphine (10mg/kg) was subcutaneously injected half an hour later
  • brain tissue was taken out of the heart after 1 hour.
  • Imatinib mesylate inhibits a variety of signal transduction pathways such as PKC, PI3K-AKT, ERK, etc. by blocking c-kit receptors, regulating kinase activity, protein expression, gene expression and regulation to initiate morphine rewards , Memory and neuroplasticity process, so as to prevent morphine addiction.
  • Drugs Morphine (Morphine, Qinghai Pharmaceutical Factory), Imatinib mesylate (Selleck Chemicals).
  • mice SPF grade SD male rats, weighing 180-220g. Provided by Hunan Slack Jingda Experimental Animal Co., Ltd., the animal certificate number is NO.43004700040706, and the production license number is SCXK (Xiang) 2016-0002.
  • Rat feed purchased from the Experimental Animal Center of Wuhan University. All animals were raised in an SPF environment of the Animal Experiment Center of Wuhan University, with a temperature of 23 ⁇ 2°C, a humidity of 50 ⁇ 5%, and an illumination time of 6:00-18:00, using 12 hours of alternating light and dark, and ensuring large The rats have free access to food and drinking water when they are reared, and they are provided with a week of environmental adaptation before the experiment (the same below).
  • the experiment is automatically controlled by a computer.
  • the device consists of a conditional position preference box consisting of three boxes: two side chambers and a middle chamber. The three compartments are separated by a movable partition, and the inside and outside are all black. Box A and Box B are located on both sides of the middle box and have the same size. On the side wall of Box A, there are 9 squares that can emit yellow light.
  • the bottom plate is stainless steel bars, and the bottom plate of Box B is stainless steel grid.
  • CPP Morphine conditioned place preference
  • Conditional position preference training On days 2-9, the passage between the three boxes is closed. On days 2, 4, 6, and 8, the combination group was injected with different doses of imatinib mesylate (1, 5, 10, 20, 30 mg/kg, ip) 30 minutes in advance, followed by morphine (5 , 10mg/kg, sc), and placed on the side of the drug for 45 minutes; the control group was injected with saline (1mL/kg, ip) + morphine (5, 10mg/kg, sc) at the corresponding time point, and placed in the non-accompanied 45min on the side of medicine.
  • the control group of the drug combination was injected with normal saline (2mL/kg, ip), the administration group was placed on the non-concomitant side, and the control group was placed on the concomitant side, both for 45 minutes.
  • the concomitant side of each rat is fixed.
  • Each group of rats were returned to the cage after the experiment.
  • Morphine CPP test On the 10th day, the CPP test is similar to the basic value test phase. The channel between the three boxes was opened without any injection. The CPP program on the computer was started. The rats were put in the middle chamber and allowed to move freely in the box for 15 minutes. The computer synchronously recorded the time spent in each chamber. The CPP score (CPP score) is the difference between the time on the side with the drug and the time on the side without the drug. The post-measured value of the conditional position preference of the rat in the medicine box is compared with the previous measurement to determine whether the rat has a conditional position preference.
  • the imatinib mesylate administration group has significant differences compared with the control group in a dose-dependent manner.
  • Imatinib mesylate was injected intraperitoneally (10 , 20, 30 mg/kg, ip), the conditioned place preference of rats trained with 5 mg/kg of morphine for CPP cannot be formed, while the conditioned place preference after injection of (1, 5 mg/kg, ip) imatinib mesylate It still exists; after intraperitoneal injection of imatinib mesylate (20, 30 mg/kg, ip), the conditioned place preference of rats trained with 10 mg/kg morphine for CPP cannot be formed, and the injection (1, 5, 10 mg/kg , Ip) After imatinib mesylate, the conditioned place preference still exists in the rats without administration, and the conditioned place preference still exists, indicating that the dose ratio of imatinib mesylate to training morphine is greater than
  • Example 2 The effect of imatinib mesylate dose effect on the formation of cocaine addiction in rats and its molecular mechanism
  • Example 3 The effect of imatinib mesylate dose effect on the formation of alcohol addiction in rats and its molecular mechanism
  • Experiment 3 The alcohol dosage was 0.75 g/kg, and the dosage of imatinib mesylate was 30 mg/kg.
  • the experiment process was the same as that of Example 1 and Experiment 2. Results similar to those of Example 1 and Experiment 2 were obtained ( Figure 5).
  • Example 4 Effect of imatinib mesylate on drug-seeking behavior after unconditional stimulus induced memory and arousal after morphine addiction in rats
  • CPP conditioned place preference
  • Drugs Morphine (Qinghai Pharmaceutical Factory), Imatinib mesylate (Novartis PharmaStein AG).
  • Experimental animals SPF grade SD male rats, weighing 180-220g. Provided by Hunan Slack Jingda Experimental Animal Co., Ltd., the animal certificate number is NO.420110200001490, and the production license number is SCXK (Hunan) 2017-0067. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • Conditional position preference training On days 2-9, the passage between the three boxes is closed. On days 2, 4, 6, and 8, the administration group was injected with morphine (5, 10mg/kg) subcutaneously and placed on the side of the drug for 45 minutes: the control group was injected with saline (1mL/kg) subcutaneously and placed on the side of the non-medicine 45 minutes. On the 3rd, 5th, 7th, and 9th days, rats in the administration group and the control group were injected with saline (1mL/kg), the administration group was placed on the non-concomitant side, and the control group was placed on the concomitant side, both for 45 minutes . The concomitant side of each rat is fixed. Each group of rats was then returned to the breeding cage.
  • the rats were returned to the side of the drug for 15 minutes, and then different doses of imatinib mesylate (1, 5, 10, 20, 30 mg/kg, ip) or normal saline (1 mL/ kg, ip).
  • the first day after the administration of imatinib mesylate is the 12th day, and the 7th day is the 18th day, to test the rat’s preference for the concomitant medicine box for 15 minutes, which is similar to the basic value test phase.
  • the results are shown in Figure 7.
  • the difference between the administration group and the control group is significant.
  • the administration group 5mg/kg morphine or training CPP group
  • imatinib mesylate 1, 5mg/kg imatinib has no obvious effect
  • 10, 20, 30mg/kg Imatinib mesylate can significantly attenuate the conditioned place preference without being ignited and is dose-dependent; the conditioned place preference still exists in the untreated rats.
  • Example 5 Effect of imatinib mesylate on drug-seeking behavior after unconditioned stimulus induced memory and aroused after cocaine addiction in rats
  • Example 6 Effect of imatinib mesylate on drug-seeking behavior after unconditioned stimulus induced memory and aroused after alcohol addiction in rats
  • Example 7 Imatinib mesylate was administered after unconditional stimulation (combination, compound), stimulated by environmental cues, and directly administered to rats after morphine addiction to drug-seeking behavior and recovery after withdrawal Influence of inhalation
  • CPP conditioned place preference
  • Drugs Morphine (Qinghai Pharmaceutical Factory), Imatinib mesylate (Novartis PharmaStein AG).
  • Experimental animals SPF grade SD male rats, weighing 180-220g. Provided by Hunan Slack Jingda Experimental Animal Co., Ltd., the animal certificate number is NO.420110200001750, and the production license number is SCXK (xiang) 2017-0012. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • Conditional position preference training On days 2-9, the passage between the three boxes is closed. On days 2, 4, 6, and 8, the administration group was injected with morphine (10mg/kg) subcutaneously and placed on the side of the drug for 45 minutes: the control group was injected with saline (1mL/kg) subcutaneously and placed on the side of the non-medicine for 45 minutes . On the 3rd, 5th, 7th, and 9th days, rats in the administration group and the control group were injected with saline (1mL/kg), the administration group was placed on the non-concomitant side, and the control group was placed on the concomitant side, both for 45 minutes . The concomitant side of each rat is fixed. Each group of rats was then returned to the breeding cage.
  • the combination group was injected with morphine (2, 3, 4 mg/kg, sc) or saline (1 mL/kg, sc) 30 minutes in advance, and then 30 mg/kg was administered intraperitoneally.
  • kg of imatinib mesylate the compound preparation group was given a mixture of 30 mg/kg imatinib mesylate or morphine (2, 3, 4 mg/kg, ip) or normal saline (1 mL/kg).
  • Rats induced by environmental cues were returned to the side of the drug for 15 minutes, and then injected with imatinib mesylate 30 mg/kg or saline 1 mL/kg intraperitoneally; rats without induction were directly given imatinib mesylate ( 30mg/kg, ip) or normal saline (1mL/kg, ip), and then put the rat back into the cage, and perform the conditional position preference behavior test 24 hours later.
  • the first day after the administration of imatinib mesylate is the 12th day, and the 7th day is the 18th day, to test the rat’s preference for the concomitant medicine box for 15 minutes, which is similar to the basic value test phase.
  • a small dose of morphine 3mg/kg, s.c.
  • the rats were put into the middle box and the CPP value test was started for 15 minutes. No treatment was done to the rats during the non-test period.
  • the results are shown in Figure 10.
  • the difference between the administration group and the control group is significant.
  • the administration of 10, 20, and 30 mg/kg imatinib mesylate can significantly reduce the conditioned position preference for all the administration groups; the conditioned position preference still exists in the untreated rats. It shows that the 2:1 ratio of imatinib mesylate and morphine can block drug-seeking behavior after addiction and suppress psychological craving.
  • the unconditional stimulus induction includes the combined drug and compound preparation group.
  • the induced dose of morphine is 3 mg/kg, rats with doses of 10, 20, and 30 mg/kg (including combined and compound) are used.
  • Example 8 Imatinib mesylate was administered after unconditional stimulation (combination, compound), stimulated by environmental cues, and directly administered to rats after cocaine addiction to drug-seeking behavior and recovery after withdrawal Influence of inhalation
  • Example 9 Imatinib mesylate administration after unconditional stimulation (combination, compound), administration after environmental cues stimulation, direct administration, drug-seeking behavior after alcohol addiction in rats and relapse after withdrawal Impact
  • the dose of alcohol used during CPP training was 0.75g/kg, and the dose of alcohol used during the 19th day challenge was 0.3g/kg.
  • the rest of the process is the same as in Example 5.
  • the results are shown in Figure 12.
  • the difference between the administration group and the control group is significant. 15.
  • the administration of 30 mg/kg imatinib mesylate can significantly reduce the conditional position preference for all the administration groups; for rats without administration, the conditional position preference still exists. It shows that the 1:50 ratio of imatinib mesylate and alcohol can block drug-seeking behavior after addiction and suppress psychological craving.
  • the substance cue induction includes the combined drug and compound preparation group.
  • rats in the 15 and 30 mg/kg groups are both In the environmentally induced group, only the 30 mg/kg imatinib mesylate group was not ignited; while the group directly administered imatinib mesylate was all ignited.
  • Example 10 Effect of imatinib mesylate on withdrawal symptoms after the formation of morphine CPP in mice
  • Drugs Morphine (Qinghai Pharmaceutical Factory), Imatinib mesylate (Selleck Chemicals).
  • mice SPF grade SD male mice, weighing 32-36g. Provided by Hunan Slack Jingda Laboratory Animal Co., Ltd., the animal certificate number is NO.42010200001574, and the production license number is SCXK (Xiang) 2016-0002. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • Experimental instrument 5 liter transparent beaker, stopwatch.
  • the administration group was given different doses of imatinib mesylate (1.5, 7.5, 15, 30, 45 mg/kg, ip), and the mice in the control group were injected with physiological saline (1 mL/kg).
  • mice were injected with a small dose of morphine (5mg/kg, sc), 1h later with naloxone (2mg/kg, sc), and then observe the withdrawal symptoms for half an hour, the observation index is jumping Frequency and weight change; for the compound preparation group, the group was given different doses of imatinib mesylate (1.5, 7.5, 15, 30, 45 mg/kg) or saline (1 mL/kg) and morphine subcutaneously (5mg/kg) of mixed reagents, naloxone (2mg/kg, sc) was given 1 hour later, and then the withdrawal symptoms were observed for half an hour. The observation indicators were the number of jumps and the amount of weight change.
  • Drugs Cocaine (Qinghai Pharmaceutical Factory), Imatinib mesylate (Selleck Chemicals).
  • the cocaine dose used for training is 10 mg/kg, and the process is the same as the training cocaine CPP in Example 5.
  • mice were injected intraperitoneally with 1.5, 7.5, 15, 30, 45 mg/kg imatinib mesylate or 1 mL/kg saline. One hour later, the mice were placed in the center of the elevated maze, and the number of times the mice entered the closed arm was counted And the time spent in the closed arm.
  • Experimental equipment conditional position preference meter, elevated plus maze.
  • the dosage of alcohol used to form CPP is 0.75g/kg.
  • the rest of the process is the same as in Example 6.
  • mice were injected intraperitoneally with 1.5, 7.5, 15, 30, 45 mg/kg imatinib mesylate or 1 mL/kg saline. One hour later, the mice were placed in the center of the elevated maze, and the number of times the mice entered the closed arm was counted And the time spent in the closed arm.
  • Example 13 Dose effect of imatinib mesylate on the formation and expression of morphine sensitization in rats
  • Drugs Morphine (Qinghai Pharmaceutical Factory), Imatinib mesylate (Selleck Chemicals).
  • Experimental animals SPF grade SD male rats, weighing 180-220g. Provided by Hunan Slack Jingda Experimental Animal Co., Ltd., the animal certificate number is NO.4201200001721, and the production license number is SCXK (Xiang) 2017-0012. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • Spontaneous activity detection box developed by the Institute of Pharmaceutical Research, Chinese Academy of Medical Sciences: The experiment is automatically controlled by a computer.
  • the device is composed of four spontaneous activity observation boxes, video synthesizer, video pattern sampling card and analysis software.
  • This system performs video tracking of rat activities, and automatically records the rat's activity trajectory and the number of activities.
  • the evaluation index of spontaneous activity is the total number of activities within a certain period of time (such as 60 minutes), that is, an increase in the total number of times indicates an increase in spontaneous activity.
  • Example 15 Dose effect of imatinib mesylate on the formation and expression of alcohol sensitization in rats
  • the dosage of alcohol used in modeling was 0.75g/kg, and the dosage of imatinib mesylate was 1, 5, 10, 15, 20, 30 mg/kg.
  • Example 16 Dose effect of imatinib mesylate on the formation of food addiction in rats
  • mice SPF grade SD male rats, weighing 220-250g. Provided by Hubei Laboratory Animal Research Center, the animal qualification number is NO.42010200001670, and the production license number is SCXK (E) 2017-0012. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • Conditional position preference training On days 2-9, the passage between the three boxes is closed. On days 2, 4, 6, and 8, the experimental group was injected with different doses of imatinib mesylate (1, 5, 10, 20, 30 mg/kg, ip) 30 minutes in advance, followed by free eating and adding concomitant drugs The control group was injected with normal saline (1 mL/kg, ip) at the corresponding time point, and then freely eaten, and placed on the non-concomitant side for 45 minutes. On the 3rd, 5th, 7th, and 9th days, rats in the experimental group and the control group were injected with saline and given clear water. The administration group was placed on the non-concomitant side and the control group was placed on the concomitant side, both for 45 minutes. The concomitant side of each rat is fixed. Each group of rats were returned to the cage after the experiment.
  • conditional position preference box After the rats are trained, the conditional position preference box is used to detect the addiction of high-sugar and high-fat foods.
  • the Conditional Position Preference Score (CPP Score) reflects the formation of addictive behaviors in rats.
  • the increase in CPP Score indicates the formation of addictive behaviors. .
  • Example 17 Dose effect of imatinib mesylate on the effect of reconsolidation after the formation of high-sugar and high-fat food addiction and relapse after withdrawal
  • Experimental animals SPF grade SD male rats, weighing 220-250g. Provided by Hubei Experimental Animal Research Center, the animal qualification number is NO.42010200001673, and the production license number is SCXK (E) 2017-0012. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • Conditional position preference training On days 2-9, the passage between the three boxes is closed. On days 2, 4, 6, and 8, the experimental group was given free intake of high-sugar and high-fat food and placed it on the side of the drug for 45 minutes; the control group was given water and placed on the side of the non-medicine for 45 minutes. On days 3, 5, 7, and 9, the rats in the experimental group and the control group were given clean water, the experimental group was placed on the non-concomitant side, and the control group was placed on the concomitant side, both for 45 minutes. The concomitant side of each rat is fixed. Each group of rats was then returned to the breeding cage.
  • CPP test The CPP test is performed on the 10th day, which is similar to the basic value test phase. The channel between the three boxes was opened without any treatment. The CPP program on the computer was started. The rats were put in the middle room and allowed to move freely in the three boxes for 15 minutes. The computer synchronously recorded the time spent in each room.
  • the preference score (CPP score) is defined as the difference between the time spent in the concomitant room and the time spent in the non-concomitant room. Compare the measured value of the rat's CPP in the concomitant box with the anterior value to determine whether the rat forms CPP. According to the CPP post-measurement value, the rats that did not form CPP were eliminated, and the animals were matched and grouped.
  • rats induced by substance clues were given a small amount of high-sugar and high-fat food and then injected with different doses of imatinib mesylate (1, 5, 10, 20, 30 mg/kg); for the environment The clue-induced rats were exposed to the dosing box for 15 minutes and then injected with imatinib mesylate (1, 5, 10, 20, 30 mg/kg); for the rats that were directly administered, there was no induction, and the direct administration was different Dose of imatinib (1, 5, 10, 20, 30 mg/kg); then all rats were returned to the cage.
  • the rats' preference for the companion medicine box was tested for 15 minutes, which was similar to the basic value test phase. From the 13th day to the 17th day, the rats were left without any treatment; on the 19th day, a small amount of high-sugar and high-fat food was given to light, and the conditional position preference was tested.
  • conditional position preference box After the rats are trained, the conditional position preference box is used to detect the addiction of high-sugar and high-fat foods.
  • the Conditional Position Preference Score (CPP Score) reflects the formation of addictive behaviors in rats.
  • the increase in CPP Score indicates the formation of addictive behaviors. .
  • Experimental animals SPF grade SD male rats, weighing 275-300g. Provided by Hubei Experimental Animal Research Center, the animal qualification number is NO.42010200001574, and the production license number is SCXK (E) 2017-0012. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • Experimental instrument Five-hole operating room, each operating room is enclosed in a ventilated sound-reducing cabinet. There are 5 arrayed response holes 2 cm above the bottom of each operating room, and a stimulus light is installed behind each hole. The nasal poke response of these small holes can be detected with a horizontal infrared beam. There is a food storehouse in the middle of the opposite wall, there is also an infrared beam and a tray light, and 45 milligrams of sucrose particles can be fed into it through an external particle dispenser. The room can be illuminated with indoor lights and controlled by software written by Med PC by CAW running on an IBM compatible computer.
  • Establish a rat gambling behavior model First, let the animals adapt to the operating room twice a day for 30 minutes each time. During this period, the sucrose particles were placed on the reaction wells and the food bank. After the adaptation is completed, train the animal to poke its nose into a luminous reaction hole within 10 seconds to obtain a reward. The spatial position of the stimulus light will appear in holes 1, 2, 4, and 5 in different experiments. Of different holes. Each stage includes 100 trials and lasts about 30 minutes.
  • the percentage of trials that animals choose a particular option is calculated according to the formula in the reference: the number of choices for a particular option/total number of choices is 100 (DiC P, Manvich D F, Pushparaj A, et al.
  • the rats were given drugs.
  • the rats induced by environmental cues put the rats into the experimental device as in the adaptation period, but did not start the experiment, and then were given imati mesylate Ni (1, 5, 10, 20, 30 mg/kg, ip) or saline (1 mL/kg, ip)
  • the rats in the direct administration group are not put into the experimental device but directly given imatinib to the rats (1, 5, 10, 20, 30 mg/kg, ip) or saline (1 mL/kg, ip)
  • all rats were returned to the cage, and behavioral tests were performed on the first day after administration. On the 7th day after the administration, the behavioral test was performed again.
  • Examples 19 to 23 are directed to the application of matinib and its derivatives and nicotine or its analogues in the field of addiction treatment.
  • the materials, reagents, etc. used in the following examples can be obtained from commercial sources unless otherwise specified.
  • Example 19 The effect of the dose ratio of imatinib mesylate and nicotine on the formation of nicotine addiction in rats and its molecular mechanism
  • Nicotine Nicotine, Apexbio
  • Imatinib mesylate Selleck Chemicals
  • Experimental animals SPF grade SD male rats, weighing 180-220g. Provided by the Experimental Animal Center of Three Gorges University, the animal certificate number is NO.42010200001750, and the production license number is SCXK (E) 2017-0012. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • the experiment is automatically controlled by a computer.
  • the device consists of a conditional position preference box consisting of three boxes: two side chambers and a middle chamber. The three compartments are separated by a movable partition, and the inside and outside are all black. Box A and Box B are located on both sides of the middle box and have the same size. On the side wall of Box A, there are 9 squares that can emit yellow light.
  • the bottom plate is stainless steel bars, and the bottom plate of Box B is stainless steel grid.
  • Nicotine CPP test On the 10th day, the CPP test is similar to the basic value test phase. The channel between the three boxes was opened without any injection. The CPP program on the computer was started. The rats were put in the middle chamber and allowed to move freely in the box for 15 minutes. The computer synchronously recorded the time spent in each chamber. The CPP score (CPP score) is the difference between the time on the side with the drug and the time on the side without the drug. The post-measured value of the conditional position preference of the rat in the medicine box is compared with the previous measurement to determine whether the rat has a conditional position preference.
  • the results are shown in Figure 23A.
  • the conditioned place preference score of the imatinib mesylate + nicotine combined administration group is significantly different from that of the normal saline + nicotine group, and it is dose ratio dependent.
  • the intraperitoneal injection of 10, 20 , 30mg/kg imatinib mesylate can inhibit the formation of 0.25mg/kg nicotine conditioned place preference in rats, while 1,5mg/kg imatinib mesylate has no inhibitory effect; no methanesulfonic acid is given In rats with imatinib, conditioned place preference still exists.
  • Figure 23B shows that intraperitoneal injection of 20, 30 mg/kg imatinib mesylate can inhibit the formation of 0.5 mg/kg nicotine conditioned place preference in rats, while 1, 5, 10 mg/kg imatinib mesylate can inhibit the formation of conditioned place preference in rats. It has no inhibitory effect, indicating that when the dose ratio of imatinib mesylate and nicotine is greater than or equal to 40:1, it can inhibit the formation of nicotine addiction in rats. Similarly, the imatinib mesylate and nicotine compound formulations in Figure 23C and Figure 23D also gave similar results.
  • Nicotine Nicotine, Apexbio
  • Imatinib mesylate Selleck Chemicals
  • Experimental animals SPF grade SD male rats, weighing 180-220g. Provided by the Experimental Animal Center of Three Gorges University, the animal certificate number is NO.42010200001704, and the production license number is SCXK (E) 2017-0012. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • the animals were then divided into normal saline + normal saline group, normal saline + imatinib mesylate group, nicotine + normal saline group, nicotine + imatinib mesylate group, 10 rats in each group, each group of rats Intraperitoneal administration of saline (1mL/kg, ip) or imatinib mesylate (30mg/kg, ip), subcutaneous injection of nicotine (0.5mg/kg, sc) after 30 minutes, and observation of the midbrain edge after 60 minutes
  • the dopamine system includes changes in the c-kit activity of VTA, nucleus accumbens, amygdala, hippocampus, and prefrontal cortex.
  • Multicolor immunofluorescence co-labeling determines its downstream activation target molecules. To determine the new molecular mechanism of nicotine addiction and the mechanism of action of imatinib mesylate in preventing addiction.
  • Example 20 Effect of imatinib mesylate on drug-seeking behavior after unconditional stimulus induced memory and recalled after nicotine addiction in rats
  • Example 19 It can be seen from Example 19 that imatinib and its derivative imatinib mesylate inhibit the formation of nicotine addiction in rats by inhibiting the phosphorylation activity of c-kit in the nucleus accumbens region.
  • This example establishes conditioned An experimental model of location preference to explore the effect of dose ratio of imatinib mesylate and nicotine on nicotine addiction and relapse in rats.
  • Nicotine Nicotine, Apexbio
  • Imatinib mesylate Selleck Chemicals
  • Experimental animals SPF grade SD male rats, weighing 180-220g. Provided by the Experimental Animal Center of Three Gorges University, the animal certificate number is NO.42010200001855, and the production license number is SCXK (E) 2017-0012. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • Conditional position preference training On days 2-9, the channel between the three boxes was closed, and rats were injected subcutaneously with 0.25 and 0.5 mg/kg nicotine and placed on the side of the drug for 45 minutes; on days 3, 5, 7, and 9, each The rats in the group were injected with saline (1mL/kg, sc) subcutaneously and placed on the non-concomitant side for 45 minutes. The concomitant side of each rat is fixed. Each group of rats were returned to the cage after the experiment.
  • Nicotine CPP test same as Example 19
  • Rats were exposed to the drug side or injected subcutaneously with 0.25, 0.5 mg/kg nicotine, 15 minutes later, intraperitoneal injection of different doses of imatinib mesylate (1, 5, 10, 20, 30 mg/kg, ip) or physiological Saline (1mL/kg, ip); or each group of rats were injected subcutaneously with different doses of imatinib mesylate (1, 5, 10, 20, 30 mg/kg, sc) or physiological saline (1mL/ kg, sc) and nicotine (0.25, 0.5 mg/kg, sc) mixed reagent.
  • rats were injected with 0.15 mg/kg nicotine and placed on the side of the drug for 15 minutes, and then given different doses of imatinib mesylate (1, 5, 10, 20, 30 mg/kg, ip ) Or normal saline (1mL/kg, ip); or inject a mixture of nicotine and imatinib mesylate and put it on the side of the drug for 15 minutes.
  • Nicotine CPP retest On the 1st and 7th day after the administration of imatinib mesylate, that is, the 12th and 18th days, the preference degree of the rat companion medicine box is tested, which is similar to the basic value test stage. On the 13th and 17th day in the middle, no treatment was done on the rats.
  • Example 21 Imatinib mesylate administration after unconditional stimulation (combination, compound), administration after stimulation by environmental cues, and direct administration on nicotine addiction and drug-seeking behavior in rats after nicotine addiction and relapse after withdrawal Impact.
  • Nicotine Nicotine, Apexbio
  • Imatinib mesylate Selleck Chemicals
  • Experimental animals SPF grade SD male rats, weighing 180-220g. Provided by the Experimental Animal Center of Three Gorges University, the animal certificate number is NO.42010200001721, and the production license number is SCXK (E) 2017-0012. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • Conditional position preference training On days 2-9, the passage between the three boxes is closed. On days 2, 4, 6, and 8, the administration group was injected with nicotine (0.5 mg/kg) subcutaneously and placed on the drug side for 45 minutes: the control group was injected with saline (1 mL/kg) subcutaneously and placed on the non-medicine side 45 minutes minute. On the 3rd, 5th, 7th, and 9th days, rats in the administration group and the control group were injected with saline (1mL/kg), the administration group was placed on the non-concomitant side, and the control group was placed on the concomitant side, both for 45 minutes . The concomitant side of each rat is fixed. Each group of rats was then returned to the breeding cage.
  • the combination group was injected with monicotine (0.1, 0.15 mg/kg, sc) or saline (1 mL/kg, sc) 30 minutes in advance, and then intraperitoneally administered 20, 30 mg/kg imatinib mesylate, the compound preparation group was given 30 mg/kg imatinib mesylate or a mixture of nicotine (0.1, 0.15 mg/kg, ip) or normal saline (1 mL/kg).
  • Rats induced by environmental cues were placed back on the side of the drug for 15 minutes, and then imatinib mesylate 20 or 30 mg/kg or 1 mL/kg saline was intraperitoneally injected; rats without induction were directly given imatinib mesylate Ni (20, 30 mg/kg, ip) or saline (1 mL/kg, ip), and then put the rat back into the cage, and conduct a conditioned place preference behavior test 24 hours later.
  • the first day after the administration of imatinib mesylate is the 12th day, and the 7th day is the 18th day, to test the rat’s preference for the concomitant medicine box for 15 minutes, which is similar to the basic value test phase.
  • a small dose of nicotine (0.15 mg/kg, s.c.) was used for ignition.
  • the rats were put into the middle box and the CPP value test was started for 15 minutes. No treatment was done to the rats during the non-test period.
  • Fig. 26 The results are shown in Fig. 26, the difference between the administration group and the control group is significant.
  • the administration of 20 or 30 mg/kg imatinib mesylate can significantly reduce the conditioned position preference for all the administration groups; the conditioned position preference still exists in rats with other doses. It shows that the 40:1 ratio of imatinib mesylate and nicotine can block drug-seeking behavior after addiction and suppress psychological craving.
  • unconditional stimulus induction includes combined drug and compound preparation groups.
  • Example 22 The effect of the dose ratio of imatinib mesylate and nicotine on the symptoms of nicotine withdrawal
  • Example 19 It can be seen from Example 19 that imatinib and its derivative imatinib mesylate inhibit the formation of nicotine addiction and relapse in rats by inhibiting the phosphorylation activity of c-kit in the nucleus accumbens region.
  • This example passes Establish a nicotine addiction model to explore the effect of the dose ratio of imatinib mesylate and nicotine on nicotine withdrawal symptoms in rats.
  • Nicotine Nicotine, Apexbio
  • Imatinib mesylate Selleck Chemicals
  • Experimental animals SPF grade SD male rats, weighing 180-220g. Provided by the Experimental Animal Center of Three Gorges University, the animal certificate number is NO.42010200001750, and the production license number is SCXK (E) 2017-0012. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • the experiment is automatically controlled by a computer.
  • the device is composed of four spontaneous activity observation boxes, video synthesizer, video pattern sampling card and analysis software. This system performs video tracking of rat activities, and automatically records the rat's activity trajectory and the number of activities.
  • the evaluation index of spontaneous activity is the total number of activities within a certain period of time (such as 60 minutes), that is, an increase in the total number of times indicates an increase in spontaneous activity.
  • Example 19 rats were addicted to nicotine at 0.25 and 0.5 mg/kg and were divided into three groups (nicotine + saline group, nicotine + mecamine group (0.5 mg/kg), nicotine + methanesulfonic acid Imatinib group, 10 rats in each group), and the normal saline + normal saline group without nicotine treatment at all served as the control group.
  • Nicotine withdrawal model was established: 24 hours later, rats in the nicotine group were injected intraperitoneally with 1, 5, 10, 20, 30 mg/kg imatinib mesylate, and 30 minutes later, 0.15 mg/kg nicotine was injected subcutaneously, or 1, 5. 10, 20, 30 mg/kg imatinib mesylate and 0.15 mg/kg nicotine are prepared as mixed injections and then administered. After 60 minutes, a spontaneous activity box was used to measure the amount of spontaneous activity.
  • FIG 27A The results can be seen in Figure 27A. After the nicotine addicted rats were given mecamin, the withdrawal symptoms were stimulated, and the spontaneous activity level was significantly reduced. After the administration of imatinib mesylate, the levels of 10, 20, and 30 mg/kg, instead of 1, 5mg/kg can attenuate the withdrawal symptoms of 0.25mg/kg nicotine addiction and increase the activity level; Figure 27B shows that 20, 30mg/kg instead of 1, 5, 10mg/kg imatinib mesylate can attenuate the withdrawal symptoms 0.5mg/kg of nicotine withdrawal symptoms and increased spontaneous activity, indicating that the dose ratio of imatinib mesylate to nicotine can attenuate the symptoms of nicotine addiction withdrawal when the dose ratio of imatinib mesylate and nicotine is greater than or equal to 40:1.
  • Example 23 The effect of imatinib mesylate on the addiction of nicotine patients
  • imatinib mesylate inhibits the formation of nicotine addiction and relapse in rats by inhibiting the phosphorylation activity of c-kit in the nucleus accumbens area, and the effective dose is 10-30mg/kg, a safe dose
  • the range correspondence is shown in Figure 28.
  • Imatinib mesylate is a clinically used drug, and there are few side effects when the dosage is below 400mg per day.
  • the ICH-GCP clinical trial (registered batch number: CHICTR1800019507) was approved by the ethics committee to explore the effect of imatinib mesylate on the addiction of nicotine patients.
  • a randomized double-blind control design was used, including a screening period, a treatment period and a 30-day follow-up period.
  • Nicotine-dependent patients undergo a screening period of ⁇ 1 day, and enter a 3-day treatment period after passing the screening. There are 10 cases in each group and receive drug treatment. Take a small amount of cigarettes once a day and then orally administer 3 tablets each time for 3 consecutive days. After the treatment period is over, follow-up calls will be conducted daily within 7 days, and once a week within 30 days. During the entire study period, the withdrawal symptoms and psychological cravings were evaluated before and after the administration and during the follow-up period. The relevant evaluation forms were filled in according to the physical and mental state. During the study period, the patients were hospitalized for observation. Other drug treatment drugs other than those specified in the protocol should not be used, and the doctor's treatment plan was followed. .
  • Imatinib and its derivatives Imatinib mesylate and nicotine or its analogues in a dose ratio greater than or equal to 40:1 can prevent their addiction and relapse, and reduce nicotine addiction Withdrawal symptoms, and this dose is within the safe range of current clinical doses, as shown in Figure 28.
  • imatinib mesylate compared to environmental cues that induce nicotine relapse behavior, imatinib mesylate has a better preventive and therapeutic effect on low-dose nicotine or its analogues that induce relapse behavior, and the nicotine-induced dose is matched with the nicotine addiction dose.
  • the ratio needs to be less than 3:10.
  • the combination of imatinib and its derivatives with nicotine or its analogues or the preparation of compound preparations for the treatment of nicotine addiction and the prevention and treatment of relapse are effective, with good effects, high safety, and clinical controllability. Strong, it is a substantial improvement in the treatment of nicotine addiction and relapse.
  • Examples 24 to 30 are directed to the application of martinib and its derivatives and analgesics in the field of analgesics.
  • the analgesic used in the following examples is morphine, which is widely representative, and those skilled in the art can reproduce similar research results in other opioids that have a similar mechanism of action as morphine.
  • the materials, reagents, etc. used in the following examples can be obtained from commercial sources unless otherwise specified.
  • Example 24 The effect of the dose-proportioning effect of imatinib mesylate and morphine on the formation of morphine addiction in rats and its molecular mechanism
  • Drugs Morphine (Morphine, Qinghai Pharmaceutical Factory), Imatinib mesylate (Selleck Chemicals).
  • Experimental animals SPF grade SD male rats, weighing 180-220g. Provided by Hunan Slack Jingda Experimental Animal Experiment Co., Ltd., the animal certificate number is NO.43004700040706, and the production license number: SCXK (Xiang) 2016-0002. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • the experiment is automatically controlled by a computer.
  • the device consists of a conditional position preference box consisting of three boxes: two side chambers and a middle chamber. The three compartments are separated by a movable partition, and the inside and outside are all black. Box A and Box B are located on both sides of the middle box and have the same size. On the side wall of Box A, there are 9 squares that can emit yellow light.
  • the bottom plate is stainless steel bars, and the bottom plate of Box B is stainless steel grid.
  • Conditional position preference training On days 2-9, the channels between the three boxes were closed, and imatinib mesylate and morphine were administered in combination or compound preparations. On days 2, 4, 6, and 8, each group was intraperitoneally injected with different doses of imatinib mesylate (1, 5, 10, 20, 30 mg/kg, ip) or normal saline (1 mL/kg, ip), 30 Minutes later, subcutaneous injection of morphine (5, 10mg/kg, sc), or each group of rats simultaneously subcutaneous injection of different doses of imatinib mesylate (1, 5, 10, 20, 30mg/kg, sc) Or a mixture of physiological saline (1mL/kg, sc) and morphine (5, 10mg/kg, sc), and put it on the side of the drug for 45 minutes; on the 3rd, 5th, 7th and 9th days, the rats in the morphine group were all intraperitoneally Inject normal saline (1mL
  • Morphine CPP test On the 10th day, the CPP test is similar to the basic value test phase. The channel between the three boxes was opened without any injection. The CPP program on the computer was started. The rats were put in the middle chamber and allowed to move freely in the box for 15 minutes. The computer synchronously recorded the time spent in each chamber. The CPP score (CPP score) is the difference between the time on the side with the drug and the time on the side without the drug. The post-measured value of the conditional position preference of the rat in the medicine box is compared with the previous measurement to determine whether the rat has a conditional position preference.
  • the results are shown in Figure 30A.
  • the conditioned place preference score of the imatinib mesylate + morphine combined administration group is significantly different from that of the saline + morphine group, and it is dose ratio dependent.
  • the intraperitoneal injection of 10, 20 , 30mg/kg imatinib mesylate can inhibit the formation of 5mg/kg morphine conditioned place preference in rats, while 1,5mg/kg imatinib mesylate has no inhibitory effect; no imatinib mesylate is given In martinib rats, conditioned place preference still exists.
  • Figure 30B shows that intraperitoneal injection of 20, 30 mg/kg imatinib mesylate can inhibit the formation of 10 mg/kg morphine conditioned place preference in rats, while 1, 5, 10 mg/kg imatinib mesylate does not It has inhibitory properties, indicating that when the dose ratio of imatinib mesylate and morphine is greater than or equal to 2:1, it can inhibit the formation of morphine addiction in rats.
  • Figure 30C and Figure 30D the imatinib mesylate and morphine compound formulations were administered with similar results.
  • Drugs Morphine (Morphine, Qinghai Pharmaceutical Factory), Imatinib mesylate (Selleck Chemicals).
  • Experimental animals SPF grade SD male rats, weighing 180-220g. Provided by the Experimental Animal Center of Three Gorges University, the animal certificate number is NO.42010200001637, and the production license number is SCXK (E) 2016-0002. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • mice were then divided into normal saline + normal saline group, normal saline + imatinib mesylate group, morphine + normal saline group, morphine + imatinib mesylate group, 10 rats in each group, each group of rats Intraperitoneal administration of saline (1ml/kg, ip) or imatinib mesylate (30mg/kg, ip), 30 minutes later, subcutaneous injection of morphine (10mg/kg, sc), 60 minutes later, observe the midbrain limbic dopamine
  • the system includes the changes of c-kit activity in VTA, nucleus accumbens, amygdala, hippocampus, and prefrontal cortex, immunohistochemistry combined with western-blot to observe the changes of c-kit phosphorylation level, immunofluorescence co-labeling to observe the distribution of activated cells, Multicolor immunofluorescence co-labeling determines its downstream activation target molecules,
  • Imatinib mesylate inhibits a variety of signal transduction pathways such as PKC, PI3K-AKT, ERK, etc. by blocking c-kit receptors, regulating kinase activity, protein expression, gene expression and regulation to initiate morphine rewards , Memory and neuroplasticity process, so as to prevent morphine addiction.
  • Example 25 The effect of morphine in the analgesic process of imatinib mesylate and morphine dose ratio on the formation of addiction
  • imatinib and its derivative imatinib mesylate inhibit the formation of morphine addiction in rats by inhibiting the phosphorylation activity of c-kit in the nucleus accumbens region, and opioids such as morphine are clinical Analgesic drugs are commonly used in the above, and the dosage ratio of the two is greater than or equal to 2:1 to prevent and treat the side effects of morphine addiction.
  • imatinib mesylate and morphine were selected as the analgesia for acute visceral pain caused by acetic acid in mice.
  • Drugs through the establishment of mouse acetic acid-induced pain experimental model and conditioned place preference experimental model, to explore the effect of the dose ratio of imatinib mesylate and morphine on the formation of morphine addiction in mice under acute visceral pain.
  • Drugs Morphine (Morphine, Qinghai Pharmaceutical Factory), Imatinib mesylate (Selleck Chemicals).
  • mice SPF-grade male mice of Kunming strain, weighing 18-22g. Provided by the Experimental Animal Center of Three Gorges University, the animal certificate number is NO.42010200001574, and the production license number is SCXK (E) 2017-0012. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • the experiment is automatically controlled by a computer.
  • the device consists of a conditional position preference box consisting of three boxes: two side chambers and a middle chamber. The three compartments are separated by a movable partition, and the inside and outside are all black. Box A and Box B are located on both sides of the middle box and have the same size. On the side wall of Box A, there are 9 squares that can emit yellow light.
  • the bottom plate is stainless steel bars, and the bottom plate of Box B is stainless steel grid.
  • mice in each group were intraperitoneally injected with 0.6% acetic acid solution (0.2ml, ip), followed by subcutaneous injection of different doses of imatinib mesylate (1.5, 7.5, 15, 30 , 45mg/kg, corresponding to rat equivalent doses of 1, 5, 10, 20, 30mg/kg, sc) or saline (1mL/kg, sc) and morphine (10, 15mg/kg, sc) mixed reagent , And placed on the side of the drug for 45 minutes; on the 3rd, 5th, 7th, and 9th days, rats in each group were injected intraperitoneally with 0.6% acetic acid solution (0.2mL, ip), followed by subcutaneous injection of normal saline (1mL/kg, sc) , And put it on
  • FIG. 32B shows that after subcutaneous injection of 30 and 45 mg/kg imatinib mesylate, mice with 15 mg/kg morphine conditioned place preference cannot be formed, and 1.5, 7.5, 15 mg/kg imatinib mesylate has no inhibitory effect, indicating that imatinib mesylate and morphine are dose-proportioned dependent on inhibiting the formation of morphine addiction during analgesia in mice, and both The dosage ratio must be greater than or equal to 2:1.
  • Example 24 and Example 25 It can be seen from the results of Example 24 and Example 25 that the combination of imatinib mesylate and morphine with a dose ratio greater than or equal to 2:1 can significantly prevent the formation of morphine addiction in rats or mice.
  • This example is selected Imatinib mesylate and morphine are used as analgesic drugs for central pain in rats. Through the establishment of morphine tolerance and hot plate pain models in rats, the combined administration and compound administration of imatinib mesylate and morphine are discussed. The effect of morphine tolerance.
  • Drugs Morphine (Qinghai Pharmaceutical Factory); Imatinib mesylate (Selleck Chemicals).
  • Experimental animals SPF grade SD female rats, weighing 180-220g. Provided by the Experimental Animal Center of Three Gorges University, the animal certificate number is NO.42010200001863, and the production license number is SOCK (E) 2017-0012.
  • Basic pain area determination Use the 50 ⁇ 0.5°C hot plate method to measure the basic pain threshold of the rat after the first licking of the hindfoot. In order to avoid scalding the rat, the measurement time is less than 60 seconds, and the elimination time is greater than 30 seconds. For rats less than 5 seconds, take the average of the two measurements.
  • the rats were divided into 6 groups (morphine + normal saline group, morphine + imatinib mesylate group (1 mg/kg), morphine + imatinib mesylate group (5 mg/kg), Morphine+imatinib mesylate group (10mg/kg), morphine+imatinib mesylate group (20mg/kg), morphine+imatinib mesylate group (30mg/kg)), each Group of 10.
  • 6 groups morphine + normal saline group, morphine + imatinib mesylate group (1 mg/kg), morphine + imatinib mesylate group (5 mg/kg), Morphine+imatinib mesylate group (10mg/kg), morphine+imatinib mesylate group (20mg/kg), morphine+imatinib mesylate group (30mg/kg)), each Group of 10.
  • Each group of rats was intraperitoneally injected with different doses of imatinib mesylate (1, 5, 10, 20, 30 mg/kg, ip) or saline (1 mL/kg, ip) every day, and 30 minutes later, subcutaneous injection of morphine (10 mg /kg, sc); or each group of rats were injected subcutaneously with different doses of imatinib mesylate (1, 5, 10, 20, 30 mg/kg, sc) or normal saline (1 mL/kg, sc) Mix the reagent with morphine (10mg/kg, sc). After 30 minutes, the rat pain threshold was measured. The administration was continued for four days, and the pain threshold was measured after daily administration. On the fifth day, rats in each group were given morphine (10 mg/kg, s.c.) subcutaneously, and the thermal pain threshold was measured.
  • Example 27 The effect of the dose ratio of imatinib mesylate and morphine on the central analgesic effect of morphine in rats
  • imatinib and its derivative imatinib mesylate can prevent the formation of morphine addiction and the expression of tolerance, and opioids such as morphine are clinically Commonly used analgesics, the dosage ratio of the two is greater than or equal to 2:1 to prevent and treat side effects.
  • imatinib mesylate and morphine were selected as the analgesic drugs for the central pain of the hot plate in rats.
  • Drugs Morphine (Qinghai Pharmaceutical Factory); Imatinib mesylate (Selleck Chemicals).
  • Experimental animals SPF grade SD female rats, 180-220g. Provided by Hubei Experimental Animal Research Center, the animal certificate number is NO.42000600025195, and the production license number is SOCK (E) 2015-0018. Rat feed, purchased from the Experimental Animal Center of Wuhan University.
  • Example 26 Determination of basic pain threshold: the same as in Example 26.
  • the rats were randomly divided into 4 groups according to the pain threshold time (imatinib mesylate + morphine, imatinib mesylate + normal saline, normal saline + morphine, normal saline + normal saline), 10 rats in each group .
  • Each group was intraperitoneally injected with different doses of imatinib mesylate (1, 5, 10, 20, 30mg/kg, ip) or saline (1mL/kg, ip), 30 minutes later, subcutaneous injection of morphine (10mg/kg, sc) or normal saline (1mL/kg, sc); or subcutaneous injection of imatinib mesylate (1, 5, 10, 20, 30 mg/kg, sc) or physiological Saline (1mL/kg, sc) and morphine (10mg/kg, sc) or physiological saline (1mL/kg, sc) are mixed reagents.
  • Example 28 The effect of the dose ratio of imatinib mesylate and morphine on the acute visceral analgesic effect of morphine in mice
  • imatinib mesylate has no significant effect on the central analgesic effect of morphine in rats.
  • imatinib mesylate and morphine were selected as the analgesic drugs for acute visceral pain in mice.
  • Drugs Morphine (Qinghai Pharmaceutical Factory); Imatinib mesylate (Selleck Chemicals).
  • mice SPF-grade male mice of Kunming species, 18-22g. Provided by the Experimental Animal Center of Three Gorges University, the animal certificate number is NO.42010200001139, and the license number is SOCK (E) 2015-0012.
  • mice were intraperitoneally injected with different doses of imatinib mesylate ((1.5, 7.5, 15, 30, 45 mg/kg, corresponding to rat equivalent doses of 1, 5, 10, 20, 30 mg/kg, ip ) Or normal saline (1mL/kg, ip), 30 minutes later, subcutaneous injection of morphine (10mg/kg, sc) or normal saline (1mL/kg, sc); or intraperitoneal injection of different doses of imma mesylate in each group of mice Tinib (1.5, 7.5, 15, 30, 45 mg/kg, corresponding to rat equivalent doses of 1, 5, 10, 20, 30 mg/kg, ip) or saline (1 mL/kg, ip).
  • imatinib mesylate (1.5, 7.5, 15, 30, 45 mg/kg, corresponding to rat equivalent doses of 1, 5, 10, 20, 30 mg/kg, ip ) Or saline (1 mL/kg, ip).
  • mice were given 0.2mL 0.6% acetic acid solution in the posterior cavity to observe the incubation period of the writhing reaction in the mouse and the number of writhing within 0-20 minutes.
  • the writhing reaction is defined as the contraction of the mouse's abdomen, the body and hind limbs extension , Buttocks cocked and crawling.
  • Example 29 The effect of dose ratio of imatinib mesylate and morphine on the analgesic effect of acute chemical inflammation of morphine in rats
  • Example 27 From the results of Example 27 and Example 28, it can be seen that imatinib mesylate has no significant effect on the central analgesic effect of morphine in rats and the acute visceral analgesic effect of morphine in mice.
  • imatinib mesylate was selected
  • morphine is used as an analgesic drug for acute inflammation and pain in rats.
  • an experimental model of 5% formalin-induced pain in rats the combined administration and compound administration of imatinib mesylate and morphine are used to investigate the effect of 5% formalin.
  • Drugs and reagents Morphine (Qinghai Pharmaceutical Factory); Imatinib mesylate (Selleck Chemicals).
  • mice SPF grade SD male rats, weighing 180-220g. Provided by Hunan Slack Jingda Laboratory Animal Co., Ltd., the animal certificate number is NO.43004700041685, and the production license number: SOCK (xiang) 2016-0002.
  • Rats in each group were intraperitoneally injected with different doses of imatinib mesylate (1, 5, 10, 20, 30 mg/kg, ip) or saline (1 mL/kg, ip), 30 minutes later, subcutaneous injection of morphine (10 mg/ kg, sc) or normal saline (1mL/kg, sc); or rats in each group were subcutaneously injected with different doses of imatinib mesylate (1, 5, 10, 20, 30 mg/kg, sc) or Physiological saline (1mL/kg, sc) and morphine (10mg/kg, sc) or physiological saline (1mL/kg, sc) are mixed reagents.
  • the formalin-induced pain experiment is divided into two phases, 0-10 minutes is the first phase, which is acute pain, which can be inhibited by central analgesics such as morphine; 10-60 minutes is the inflammation partially mediated by prostaglandin The reaction is acute pathological pain.
  • Example 30 The effect of dose ratio of imatinib mesylate and morphine on the analgesic effect of chronic inflammation of morphine in rats
  • Example 28 and Example 29 it can be seen that imatinib mesylate has no significant effect on the analgesic effect of morphine acute pain in rats and mice.
  • imatinib mesylate was selected As an analgesic drug for chronic inflammatory pain in rats, and morphine are used to establish an experimental model of chronic plantar pain caused by Freund’s complete adjuvant (CFA) to explore the combined administration and compound administration of imatinib mesylate and morphine Effect on chronic inflammation and pain in rats caused by CFA.
  • CFA complete adjuvant
  • Drugs Morphine (Qinghai Pharmaceutical Factory); Imatinib mesylate (Selleck Chemicals).
  • Experimental animals SPF grade SD female rats, weighing 180-220g. Provided by the Experimental Animal Center of Three Gorges University, the animal certificate number is NO.42010200001281, and the production license number is SOCK (E) 2017-0012.
  • CFA model of chronic plantar inflammation Rats in the CFA group used a 1mL syringe to draw 125 ⁇ L of CFA and injected it under the skin of the left hind limb of the rat. After injection, massage the pinhole for a few minutes to promote the diffusion of the drug; the NS group used the same method The normal saline of the same solvent was injected to make a control model.
  • the CFA group rats were randomly divided into the following four groups according to the maximum circumference of the left foot: normal saline + normal saline, normal saline + morphine, imatinib mesylate + normal saline, imatinib mesylate + morphine , 10 in each group;
  • NS group was also randomly divided into the following four groups: normal saline + normal saline, normal saline + morphine, imatinib mesylate + normal saline, imatinib mesylate + morphine, each group 10 pieces.
  • Rats in each group were intraperitoneally injected with different doses of imatinib mesylate (1, 5, 10, 20, 30 mg/kg, ip) or saline (1 mL/kg, ip), 30 minutes later, subcutaneous injection of morphine (10 mg/ kg, sc) or normal saline (1mL/kg, sc); or rats in each group were subcutaneously injected with different doses of imatinib mesylate (1, 5, 10, 20, 30 mg/kg, sc) or Physiological saline (1mL/kg, sc) and morphine (10mg/kg, sc) or physiological saline (1mL/kg, sc) are mixed reagents. After 30 minutes, the rat pain threshold was measured. The administration was continued for three days, and the thermal pain threshold was measured before and after the daily administration. The duration of the entire experiment was one week.
  • Imatinib and its derivatives imatinib mesylate and morphine in a dose ratio greater than or equal to 2:1 can prevent the formation of addiction and the expression of tolerance, and this dose It is within the safe range of the current clinical dosage, as shown in Figure 38.
  • the dosage ratio of imatinib mesylate and opioid analgesics such as morphine is used for acute and chronic pain caused by hot plates, acetic acid, formalin and Freund’s complete adjuvant, and does not affect the effects of morphine. Analgesic effect.
  • imatinib and its derivatives can be used in a dose ratio of opioid analgesics such as morphine to prevent addiction and tolerance side effects in opioid pain treatment; at the same time, there is a formula for preventing and treating side effects.
  • the two are used in a dose ratio greater than or equal to 2:1, which is suitable for various types of pain treatment, and broadens the scope of opioid analgesia indications.

Abstract

伊马替尼及其衍生物与成瘾物质的组合物在制备药物中的应用,所述组合物还包含下述组分中的一种:成瘾物质或镇痛药物。伊马替尼及其衍生物与成瘾物质配比联合用药或复方制剂在预防、治疗成瘾及防治复吸中的应用,可以预防成瘾,防治复吸。伊马替尼及其衍生物与尼古丁或其类似物联合用药或复方制剂在预防和治疗尼古丁成瘾与复吸中的应用。伊马替尼及其衍生物与镇痛药物联合用药或复方制剂在治疗疼痛中的应用,可同时地、分开地或顺序地施用,能有效预防阿片类药物严重副作用产生、不影响阿片类药物镇痛效果。

Description

伊马替尼及其衍生物的组合物在制备预防、治疗及防治成瘾复吸药物中的应用 技术领域
本发明属于医药技术领域,具体涉及伊马替尼及其衍生物联合成瘾物质和成瘾行为制备成复方或联合制剂在预防、治疗成瘾及防治复吸中的应用。
背景技术
毒品问题是全球迫切解决的公共卫生问题,给社会和患者带来不可估量的后果。同样,物质依赖如烟、酒成瘾问题引发的重大疾病和伤亡事件层出不穷,神经精神药物、镇痛药物成瘾限制了其应用,并为社会和患者带来不可逆性不良后果。网瘾、赌博、游戏成瘾等行为成瘾为人们生活带来更多不良后果。药物成瘾可导致严重后果,但药物滥用趋势仍然日趋严峻,这背后的罪堪祸首是“瘾”。任何物质或行为一旦成瘾就很难戒掉,到目前为止全世界对此束手无策,目前缺乏有效药物。
本发明是关于成瘾药物治疗新药的研发。本发明采用全新理念,发现戒毒和成瘾治疗特异有效的药物甲磺酸伊马替尼与成瘾物质或成瘾行为联合使用或制备成复方在成瘾治疗中的很好效果,可望将一直束手无策、终身替代的成瘾治疗实现疗程式治愈,并可预防复吸,为戒毒和成瘾治疗提供了一套完整有效的药物治疗体系。
伊马替尼或衍生物甲磺酸伊马替尼,也称格列卫(Gleevec或STI571),是一种苯氨嘧啶的衍生物,由瑞士诺华公司研制应用于慢性粒细胞性白血病(CML),于2001年美国FDA批准上市,被称为人类第一个分子靶向肿瘤生成机制的抗癌新药,伊马替尼作用靶点主要是c-Kit,作用于原癌基因c-Abl和血小板衍生生长因子受体的效应弱。
另外,吸烟是当今世界最严重的公共卫生问题之一,烟瘾是一种慢性、依赖性疾病,其主要生物碱成分是尼古丁,能进入脑内奖励中心,与烟碱型乙酰胆碱受体高度结合,刺激多巴胺的释放,让人产生愉快的感觉,通过反复持续的吸烟行为,从而导致尼古丁成瘾。但如果吸烟者长时间没有吸烟,体内尼古丁逐渐被清除掉了,乙酰胆碱受体增多,神经信号传递紊乱,身体就出现烦躁、恶心、头痛等戒断反应,吸烟意念随之强烈。
在戒烟过程中,戒断症状重且复吸率极高,一旦成瘾就很难戒掉,虽然目前替代戒烟的方法众多,如电子烟、咀嚼片、尼古丁透皮贴等,还有戒烟药物安非他酮、可乐定、去甲替林等,均可在一定程度改善吸烟患者对烟的依赖,但可持续性差,且易产生副作用,其中安非他酮、去甲替林类药物可能会产生癫痫等精神疾病的困扰,可乐定的使用也会出现明显的镇静、口干等副作用。因此目前对尼古丁成瘾控制和复吸预防仍缺乏有效药物。
本发明是关于尼古丁成瘾药物治疗新药的研发,采用全新理念,发现戒烟和成瘾治疗特异有效的药物甲磺酸伊马替尼与尼古丁或其类似物联合使用或制备成复方制剂在尼古丁成瘾治疗中的很好效果,并可预防复吸,为戒烟治疗提供了一套完整有效的药物治疗体系。
此外,临床上常用的镇痛药物主要为以吗啡为代表的阿片类镇痛药、以阿司匹林为代表的非甾体类抗炎镇痛药和其他镇痛药等三大类药物,这些药物通过作用于中枢或外周神经系统,外周组织炎症等选择性减轻和消除各种疼痛达到镇痛的效果。
阿片类镇痛药主要通过激动阿片受体发挥镇痛作用,阿片受体在丘脑内侧、脊髓胶质区、脑室等部位分布密度较高,与疼痛刺激传入、痛觉信号的整合及感受有关,包括μ、δ、κ三种受体,均属G蛋白偶联受体,μ受体镇痛作用部位为脑、脊髓与外周,δ受体镇痛作用部位为脊髓,κ受体镇痛作用部位为脊髓与外周。因此,吗啡等阿片类镇痛药镇痛效应的发挥呈现多位点特征,同时阻断于外周痛觉传导和中枢痛觉感受,产生强大的镇痛效应。由此,阿片类药物镇痛本身可适用于各种原因引起的疼痛,但目前仅用于癌症剧痛和其他镇痛药无效时的短期应用,主要是由于连续多次应用易产生成瘾性与耐受限制了这类药物的应用。经典阿片类药物成瘾和耐受严重,常只作为严重性癌痛与锐痛治疗的镇痛药物,是癌症三阶梯治疗的重度疼痛治疗药,其镇痛效果好;新型阿片类药物如盐酸氢考酮等,在应用于中重度癌性疼痛和慢性非癌性疼痛过程中均有不同程度的成瘾导致物质滥用,其严重副作用成瘾使临床应用受到极大限制。
以阿司匹林为代表的非甾体类抗炎镇痛药,其镇痛作用部位主要在外周,中枢镇痛作用较弱,主要针对组织损伤或炎症引起的疼痛,通过抑制外周病变部位的环氧酶(COX),使PGS合成减少而减轻疼痛,只有中等程度的镇痛作用,有良好镇痛效果,但对急性锐痛、严重创伤引起的锐痛、平滑肌绞痛等严重疼痛效果欠佳。
其他镇痛药主要有作用于除阿片受体外的其它受体,如NMDA受体、NK1受体、嘌呤与嘧啶受体、大麻受体等药物,其镇痛作用不强,如罗通定对慢性持续性钝痛效果较好,镇痛作用弱于哌替啶,但强于解热镇痛抗炎 药;高乌甲素可作为轻中度疼痛的备选药物,但都不能满足目前重度疼痛的治疗需求。
然而,强烈的疼痛如癌痛、烧伤、刀伤等是由多种因素诱发的疼痛,致痛机制复杂,仅仅使用外周镇痛药无法阻止严重疼痛的产生,必须采用中枢镇痛。吗啡等阿片类镇痛药具有强大的镇痛效果,对各种疼痛均有效,在临床上处于不可取代的地位,但成瘾与耐受等副作用大大限制了其应用。目前,想要通过单一化合物改造解决既具有强效镇痛作用,同时又可防止成瘾和耐受等严重副作用产生,确实还没找到很好的药物或化合物,临床上也没有能够消除阿片成瘾与耐受更好的方法和减轻或延缓药物成瘾与耐受发生的治疗手段,由此针对严重疼痛治疗存在很大困难。另一方面,阿片类药物虽说镇痛作用强,由于其成瘾和耐受等严重副作用的产生,也严重限制了阿片类药物强大镇痛作用的适应症应用范围。因此,寻找镇痛效果好且副作用小的药物或治疗方式成为目前临床疼痛治疗和药学研究上面临的亟须解决的重大问题。
发明内容
针对成瘾治疗存在的问题,本发明目的之一是提供伊马替尼及其衍生物在成瘾治疗领域的新用途,将伊马替尼及其衍生物与成瘾物质或成瘾行为联合使用或合用作复方制剂来预防或减轻成瘾与停止使用后的心瘾及戒断症状,防治复吸。
针对成瘾物质中的尼古丁或其类似物成瘾治疗存在的问题,本发明目的之二是提供伊马替尼及其衍生物在尼古丁或其类似物成瘾治疗领域的新用途和新制剂及剂型,将伊马替尼及其衍生物与成瘾物质尼古丁联合使用或合用作复方制剂来预防或减轻成瘾与停止使用后的心瘾及戒断症状,防治复吸。
针对镇痛药物镇痛中存在的成瘾与耐受副作用问题,本发明目的之三是提供伊马替尼及其衍生物在镇痛药物领域的新用途,将伊马替尼及其衍生物与镇痛药物按照2:1配比进行联合用药或合用作复方制剂来预防或减轻镇痛药物的成瘾与耐受,且对药物的镇痛作用无影响,同时扩展镇痛药物镇痛适应症范围。
为实现本发明的目的之一,主要进行了如下研究:
伊马替尼及其衍生物与成瘾物质或成瘾行为联合用药或复方制剂预防或治疗成瘾及其机制、剂量效应,以及戒断后复吸的防治。
为了证明伊马替尼及其衍生物与成瘾物质(吗啡,可卡因,酒精)联合用药(伊马替尼及其衍生物与成瘾物质隔30分钟以不同的方式给药)或复方制剂(伊马替尼及其衍生物与成瘾物质混合后给药)能预防或治疗成瘾物质单独用药或成瘾行为过程中的成瘾且具有剂量依赖的效应,本发明通过以下实验完成。
(1)采用急性吗啡给药后60min观察对中脑边缘多巴胺系统包括VTA、伏隔核、杏仁体、海马、前额皮层的c-kit活性的变化,免疫组化结合western-blot观察c-kit磷酸化水平的变化,免疫荧光共标观察激活的细胞分布,确定吗啡成瘾分子新机制和甲磺酸伊马替尼防治成瘾的作用机制。进一步运用CPP成瘾模型,观察甲磺酸伊马替尼对成瘾CPP形成的预防、剂量效应及作用机制。预先30mins腹腔给药给予实验大鼠1、5、10、20、30mg/kg的甲磺酸伊马替尼,然后皮下注射5mg/kg、10mg/kg吗啡(即联合用药),或分别采用1、5、10、20、30mg/kg甲磺酸伊马替尼与5mg/kg、10mg/kg吗啡制备成混合注射剂后给药,采用经典评价成瘾的大鼠条件位置偏爱,确定甲磺酸伊马替尼对大鼠吗啡条件位置偏爱形成的影响。
(2)采用急性给药和CPP成瘾模型,观察甲磺酸伊马替尼对可卡因成瘾CPP形成的预防、剂量效应及作用机制。
(3)采用急性给药和CPP成瘾模型,观察甲磺酸伊马替尼对酒精CPP形成的预防、剂量配比及作用机制。酒精剂量为0.5、0.75g/kg;甲磺酸伊马替尼的剂量为1、5、10、15、20、30mg/kg。
(4)运用CPP成瘾模型,观察1、5、10、20、30mg/kg甲磺酸伊马替尼非条件性刺激诱发后对大鼠吗啡成瘾后觅药行为影响的剂量效应。大鼠吗啡CPP形成之后,先将其暴露于CPP箱中,然后腹腔给予1、5、10、20、30mg/kg甲磺酸伊马替尼并于药物干预后第1天测CPP值以观察对觅药行为的影响,药物干预后第7天测CPP值。
(5)运用CPP成瘾模型,观察1、5、10、20、30mg/kg甲磺酸伊马替尼非条件性刺激诱发后对大鼠可卡因成瘾后后觅药行为到的影响的剂量效应。
(6)运用CPP成瘾模型,观察1、5、10、15、20、30mg/kg甲磺酸伊马替尼非条件性刺激诱发后对大鼠酒精成瘾后后觅药行为到的影响的剂量效应。
(7)运用CPP成瘾模型,观察30mg/kg甲磺酸伊马替尼与环境线索联合、非条件性刺激联合(不同剂量)、直接使用对大鼠吗啡成瘾后后觅药行为及复吸的影响,大鼠吗啡CPP形成之后,采用环境线索诱导、非条件性 刺激诱发或无诱导并给予甲磺酸伊马替尼。其中环境线索诱导即将成瘾的大鼠放入CPP箱的伴药侧以诱发成瘾记忆,后给予甲磺酸伊马替尼;非条件性刺激诱发即给予吗啡(3、4mg/kg),也就是吗啡与甲磺酸伊马替尼的联合使用,并分为联合用药和复方制剂两个组;无诱导即不放入CPP箱,也不给予吗啡,而直接用甲磺酸伊马替尼治疗。药物干预后第1天测CPP值以观察对觅药行为的影响,药物干预后第7天测CPP值,干预后第9天给予所有大鼠低剂量(3mg/kg)吗啡激发并观察对复吸的影响。
(8)运用CPP成瘾模型,观察30mg/kg甲磺酸伊马替尼与环境线索联合、物质线索联合(不同剂量可卡因)、直接使用对大鼠可卡因成瘾后觅药行为及复吸的影响。
(9)运用CPP成瘾模型,观察15、30mg/kg甲磺酸伊马替尼与环境线索联合、物质线索联合(不同剂量酒精)、直接使用对大鼠酒精成瘾后觅药行为及复吸的影响。
(10)运用CPP成瘾模型,在CPP形成之后,甲磺酸伊马替尼与吗啡联合给药或甲磺酸伊马替尼与吗啡复方给药,观察不同剂量甲磺酸伊马替尼对戒断症状的影响。
(11)运用CPP成瘾模型,在可卡因CPP形成之后,甲磺酸伊马替尼与可卡因联合给药或甲磺酸伊马替尼与可卡因复方给药,观察不同剂量伊马替尼对戒断症状的影响。
(12)运用CPP成瘾模型,在酒精CPP形成之后,甲磺酸伊马替尼与酒精联合给药或甲磺酸伊马替尼与酒精复方给药,观察不同剂量甲磺酸伊马替尼对戒断症状的影响。
(13)运用敏化模型,探究不同剂量甲磺酸伊马替尼对大鼠吗啡敏化形成和表达的影响。
(14)运用敏化模型,探究不同剂量甲磺酸伊马替尼对大鼠可卡因敏化形成和表达的影响。
(15)运用敏化模型,探究不同剂量甲磺酸伊马替尼对大鼠酒精敏化形成和表达的影响。
(16)运用CPP成瘾模型,探究甲磺酸伊马替尼对大鼠高糖高脂食物条件性位置偏爱的形成的影响的剂量效应。
(17)运用CPP成瘾模型,探究甲磺酸伊马替尼对大鼠高糖高脂食物条件性位置偏爱的形成后再巩固及复吸的影响的剂量效应。
(18)运用大鼠赌博任务探究甲磺酸伊马替尼对赌博行为的影响的剂量效应。
结果显示,急性吗啡或可卡因给药后,免疫组化、western-blot和免疫荧光共标结果显示,特异性激活伏隔核并非其他脑区神经元c-kit受体及受体后ERK、AKT、PKMzeta信号通路;甲磺酸伊马替尼通过阻断c-kit受体及其信号通路抑制觅药行为,从而达到预防吗啡成瘾的作用和防治复吸的效果。同样,伊马替尼及其衍生物与吗啡剂量配比联合用药或复方制剂可预防和治疗吗啡成瘾和戒断后复吸的效果。
甲磺酸伊马替尼对吗啡及可卡因CPP形成,形成后和记忆再巩固的影响均有不同程度的阻断作用。无论联合给药还是复方制剂,未给予甲磺酸伊马替尼的大鼠,条件位置偏爱和敏化形成,而给予甲磺酸伊马替尼后,当甲磺酸伊马替尼剂量在(10-30mg/kg)范围内,且与吗啡或可卡因成瘾时使用剂量之比大于等于2:1时,可预防条件位置偏爱和敏化形成;同时,条件位置偏爱和敏化形成后,当直接给药伊马替尼时,20、30mg/kg可阻止大鼠成瘾后的觅药行为,但依旧能够被点燃,即无法防治复吸;环境线索诱导时20、30mg/kg可阻断大鼠成瘾后的觅药行为,只有30mg/kg可防止复吸;非条件性刺激时,可有效防治复吸,但需吗啡、可卡因用量与训练CPP时用量的有效比例即小于1:3时才能彻底抑制迷药行为不被点燃,当吗啡或可卡因的用量为3mg/kg时,用20、30mg/kg可阻止大鼠成瘾后的觅药行为和复吸;吗啡或可卡因剂量为4mg/kg时,用20、30mg/kg的甲磺酸伊马替尼只能抑制觅药行为,无法阻止复吸。
急性酒精给药后,免疫组化、western-blot和免疫荧光共标结果显示,特异性激活伏隔核并非其他脑区神经元c-kit受体。甲磺酸伊马替尼(10、15、20、30mg/kg)对酒精形成和形成后记忆再巩固有不同程度的抑制作用。无论联合给药还是复方制剂,未给予甲磺酸伊马替尼的大鼠,条件位置偏爱和敏化形成,而给予甲磺酸伊马替尼后,当甲磺酸伊马替尼与酒精剂量大于等于1:50时可预防条件位置偏爱形成;同时,条件位置偏爱形成后,当直接给药伊马替尼时,当甲磺酸伊马替尼与酒精剂量大于等于1:50可阻止大鼠成瘾后的觅药行为,但可被点燃,即无法防治复吸;环境线索诱导时,甲磺酸伊马替尼与酒精剂量大于等于1:50可阻止大鼠成瘾后的觅药行为,但只有30mg/kg剂量可防止复吸;非条件性刺激诱发时,酒精剂量小于等于CPP训练剂量1:3、甲磺酸伊马替尼大于等于酒精CPP训练剂量1:50时,可防治大鼠成瘾后觅药行为和复吸;非条件刺激的酒精剂量为0.5g/kg时,用20、30mg/kg的甲磺酸伊马替尼只能抑制觅药行为,无法阻止复吸。因此,甲磺酸伊马替尼通过阻断c-kit受体抑制觅药行为,从而达到预防酒精成瘾和防治复吸的效果。同样,伊马替尼及其衍生物与酒精剂量配比联合用药或复方制剂可预防和治疗酒精成瘾和戒断后的复吸。
对于成瘾行为,应用甲磺酸伊马替尼的作用效果与应用于吗啡时类似,说明c-kit受体作为成瘾治疗靶标和治疗药物具有通用性。
在临床应用中,人和动物间按体表面积折算的等效剂量换算可参考徐叔云教授主编的《药理实验方法学》:
例如:大鼠的剂量为Xmg/kg,换算成人的临床剂量为:
人的临床剂量=Xmg/kg×0.2kg/0.018=11.1Xmg/天,故大鼠甲磺酸伊马替尼剂量(1、5、10、20、30mg/kg)换算成人的临床剂量分别为11、55、110、220、330mg/天。
按照上市药品格列卫imatinib
Figure PCTCN2020119253-appb-000001
发布的临床试验数据,400mg/天/70kg在临床使用过程中少有副作用发生,因此选择100-400mg/天/70kg作为甲磺酸伊马替尼作为临床用药剂量与成瘾物质进行配比使用,且此剂量在目前临床使用剂量安全范围内(图22)。
基于上述研究内容,本发明提供如下技术方案:
1、甲磺酸伊马替尼及其衍生物与一种成瘾物质配比复方或联合使用的药用制剂,用于各种成瘾的预防、治疗及防复吸。
2、甲磺酸伊马替尼及其衍生物与一种成瘾行为联合使用,即(1)成瘾性食物与甲磺酸伊马替尼及其衍生物复方或联合使用,可用于成瘾预防、治疗及防复吸;(2)赌博性行为,环境线索诱导之后给予甲磺酸伊马替尼及其衍生物,用以改善赌博行为。
3、所述成瘾物质为指(1)麻醉药品,其中麻醉药品又分为阿片类、可卡因类、大麻类,阿片类包含天然来源的阿片及从中提取的有效成分吗啡,以及将有效成分加工得到的产品海洛因,类似阿片作用的人工合成品;(2)精神药物,精神药物分为镇静催眠药及抗焦虑药巴比妥类、中枢兴奋剂苯丙胺类、致幻剂麦角二乙胺;(3)酒精、烟草和挥发性有机溶剂等具有成瘾性的物质。当它们用于非条件性刺激时,用量与训练CPP时用量需低于或等于1:3剂量。
4、所述成瘾行为指(1)成瘾性食物包括高脂、甜食、巧克力等可口食物;(2)赌博成瘾、网瘾等所有成瘾行为。
5、所述伊马替尼及其衍生物为100-400mg/天剂量含量。
6、治疗和预防物质成瘾复吸使用的甲磺酸伊马替尼必须与成瘾物质联用或复方制剂使用。
7、治疗和预防行为成瘾复吸使用的甲磺酸伊马替尼必须与成瘾行为相关线索暴露联用或复方制剂使用。
8、所述配比指甲磺酸伊马替尼预防、治疗成瘾及防治复吸时与成瘾形成时物质使用剂量存在一定配比才有效,其中甲磺酸伊马替尼与吗啡或可卡因剂量必须以大于或等于2:1的比例才有效,与酒精剂量比例为大于或等于1:50。
9、所述成瘾物质或成瘾行为与伊马替尼及其衍生物组方为在所述剂量范围内可制备成复方单剂或联合使用制剂。
10、所述联合用药和复方制剂指阿片类药物配比伊马替尼及其衍生物使用或制成注射剂、输液剂、丸剂、皮下埋植剂、片剂、粉剂、颗粒剂、胶囊、散剂、口服液、缓释剂、酊剂、栓剂、贴剂等所有剂型和规格中的一种;同时,联合用药或复方制剂配比使用也指包含了一切具有此配比使用的用于成瘾治疗的药剂或联用。
为实现本发明的目的之二,主要进行了如下研究:
(1)伊马替尼及其衍生物与成瘾物质尼古丁联合用药或复方制剂预防或治疗成瘾配比剂量效应及其机制。
为了证明伊马替尼及其衍生物与尼古丁联合用药或复方制剂能预防或治疗尼古丁单独用药过程中的成瘾且具有剂量配比依赖的效应,本发明通过以下实验完成:预先腹腔给予实验大鼠1、5、10、20、30mg/kg甲磺酸伊马替尼,然后皮下注射0.25、5mg/kg尼古丁,或分别采用1、5、10、20、30mg/kg甲磺酸伊马替尼与0.25、5mg/kg尼古丁制备成混合注射剂后给药,采用经典评价成瘾的大鼠条件位置偏爱模型,确定甲磺酸伊马替尼对大鼠尼古丁条件位置偏爱形成防治作用的剂量配比效应;进一步采用急性尼古丁给药后60分钟观察对中脑边缘多巴胺系统包括VTA、伏隔核、杏仁体、海马、前额皮层的c-kit活性的变化以及c-kit磷酸化水平的变化,多色免疫荧光共标确定其下游激活靶分子,确定尼古丁成瘾分子新机制和甲磺酸伊马替尼防治成瘾的作用机制。
(2)运用CPP成瘾模型,观察1、5、10、20、30mg/kg甲磺酸伊马替尼非条件性刺激诱发后对大鼠尼古丁成瘾后觅药行为影响的剂量效应。大鼠尼古丁CPP形成之后,给予小剂量尼古丁激发,然后腹腔给予1、5、10、20、30mg/kg甲磺酸伊马替尼(联合给药),或者给予甲磺酸伊马替尼与并于药物干预后第1天测CPP值以观察对觅药行为的影响,药物尼古丁的混合物(复方制剂),并于干预后第7天测CPP值。
(3)运用CPP成瘾模型,观察30mg/kg甲磺酸伊马替尼与环境线索联合、非条件性刺激联合(不同剂量)、 直接使用对大鼠尼古丁成瘾后后觅药行为及复吸的影响,大鼠尼古丁CPP形成之后,采用环境线索诱导、非条件性刺激诱发或无诱导并给予甲磺酸伊马替尼。其中环境线索诱导即将成瘾的大鼠放入CPP箱的伴药侧以诱发成瘾记忆,后给予甲磺酸伊马替尼;非条件性刺激诱发即给予尼古丁(0.1、0.15mg/kg),也就是尼古丁与甲磺酸伊马替尼的联合使用,并分为联合用药和复方制剂两个组;无诱导即不放入CPP箱,不给予尼古丁,而直接用甲磺酸伊马替尼治疗。药物干预后第1天测CPP值以观察对觅药行为的影响,药物干预后第7天测CPP值,干预后第9天给予所有大鼠低剂量(0.1mg/kg)吗啡激发并观察对复吸的影响。
(4)运用CPP成瘾模型,在尼古丁CPP形成之后,甲磺酸伊马替尼与尼古丁联合给药或甲磺酸伊马替尼与尼古丁复方给药,观察不同剂量伊马替尼对戒断症状的影响。
为了证明伊马替尼及其衍生物与成瘾物质尼古丁联合用药或复方制剂可治疗尼古丁戒断症状且具有剂量配比依赖的效应,本发明通过以下实验完成:采用条件性位置偏爱模型,大鼠0.25、0.5mg/kg尼古丁成瘾后,第二天腹腔注射1、5、10、20、30mg/kg甲磺酸伊马替尼,30分钟后皮下注射0.1mg/kg尼古丁,或将1、5、10、20、30mg/kg甲磺酸伊马替尼与0.15mg/kg尼古丁制备成混合注射剂后给药。60分钟后采用自发活动箱,根据大鼠尼古丁戒断后自发活动量变化,确定甲磺酸伊马替尼治疗成瘾物质尼古丁戒断症状的剂量效应。
(5)在临床应用中,伊马替尼及其衍生物与尼古丁剂量配比用量为100-400mg/天。
采用条件性位置偏爱模型,无论是联合给药还是复方给药,甲磺酸伊马替尼与尼古丁大于或等于40:1的剂量配比可防治尼古丁成瘾和复吸,并减弱尼古丁成瘾戒断症状。其中甲磺酸伊马替尼最低剂量为10mg/kg,在临床应用中,人和动物间按体表面积折算的等效剂量换算可参考徐叔云教授主编的《药理实验方法学》:
例如:大鼠的剂量为Xmg/kg,换算成人的临床剂量为:
人的临床剂量=Xmg/kg×0.2kg/0.018=11.1Xmg/天,故大鼠甲磺酸伊马替尼剂量(1、5、10、20、30mg/kg)换算成人的临床剂量分别为11、55、110、220、330mg/天。
按照上市药品格列卫imatinib
Figure PCTCN2020119253-appb-000002
发布的临床试验数据,400mg/天/70kg在临床使用过程中少有副作用发生,因此选择100-400mg/天/70kg作为甲磺酸伊马替尼作为临床用药剂量。
基于上述研究内容,本发明提供如下技术方案:
伊马替尼及其衍生物与尼古丁或其类似物在制备药物中的应用,所述药物包括尼古丁成瘾预防、治疗及防复吸的药物。所述药物使用方式为伊马替尼及其衍生物与尼古丁或其类似物联合使用或复方使用。伊马替尼及其衍生物与尼古丁或其类似物按照其有效成分配比大于或等于40:1,在临床上伊马替尼及其衍生物的用量为100-400mg/天。在尼古丁成瘾记忆唤起时,所用剂量与成瘾使用剂量按照其有效成分配比应小于3:10,伊马替尼及其衍生物才可有效预防、治疗尼古丁成瘾和防治复吸。所述药物适用于制成如下剂型或规格中的一种:注射剂、输液剂、皮下埋植剂、丸剂、片剂、粉剂、颗粒剂、胶囊、散剂、口服液、缓释剂、酊剂、栓剂、贴剂。
为实现本发明的目的之三,主要进行了如下研究:
(1)伊马替尼及其衍生物与吗啡联合用药或复方制剂预防或治疗阿片类药物成瘾机制、剂量配比效应。
为了证明伊马替尼及其衍生物与吗啡联合用药或复方制剂能预防或治疗吗啡单独用药过程中的成瘾且具有剂量配比依赖的效应,本发明通过以下实验完成:运用疼痛模型,吗啡镇痛后,小鼠随即放入条件位置偏爱(conditioned place preference,CPP)训练实验装置内,首先观察吗啡镇痛后是否能形成条件位置偏爱,证明吗啡镇痛过程中可以导致成瘾,同时观察甲磺酸伊马替尼对吗啡镇痛后CPP形成预防的剂量配比效应。甲磺酸伊马替尼与吗啡剂量配比效应实验中,预先腹腔给予实验大鼠1、5、10、20、30mg/kg甲磺酸伊马替尼,然后皮下注射5、10mg/kg吗啡,或分别采用1、5、10、20、30mg/kg甲磺酸伊马替尼与5、10mg/kg吗啡制备成混合注射剂后给药,采用经典评价成瘾的大鼠条件位置偏爱模型,确定甲磺酸伊马替尼对大鼠吗啡条件位置偏爱形成防治作用的剂量配比效应;进一步采用急性吗啡给药后60分钟观察对中脑边缘多巴胺系统包括VTA、伏隔核、杏仁体、海马、前额皮层的c-kit活性的变化,免疫组化结合western-blot观察c-kit磷酸化水平的变化,免疫荧光共标观察激活的细胞分布,多色免疫荧光共标确定其下游激活靶分子,确定吗啡成瘾分子新机制和甲磺酸伊马替尼防治成瘾的作用机制。
结果显示,采用疼痛模型,吗啡镇痛后小鼠都可形成CPP,不同甲磺酸伊马替尼与吗啡剂量配比(大于或等于2:1)对吗啡CPP形成有不同程度的抑制作用。无论联合给药还是混合制剂,未给予甲磺酸伊马替尼的大鼠,条件位置偏爱形成,给予甲磺酸伊马替尼后,10、20、30mg/kg,而不是1、5mg/kg可防止5mg/kg吗啡条件位置偏爱形成;20、30mg/kg,而不是1、5、10mg/kg甲磺酸伊马替尼可防止10mg/kg吗啡条件位置偏爱形成,表明甲磺酸伊马替尼与吗啡的剂量配比在大于或等于2:1时可预防吗啡成瘾。急性吗啡给药后,免疫组化、 western-blot和多色免疫荧光共标结果显示,特异性激活伏隔核并非其他脑区神经元c-kit受体及受体后多种信号转导通路如PKC、PI3K-AKT、ERK等调节激酶活性、蛋白表达、基因表达与调控启动吗啡奖赏、记忆和神经可塑性过程;甲磺酸伊马替尼通过阻断c-kit受体抑制多种信号转导通路如PKC、PI3K-AKT、ERK等调节激酶活性、蛋白表达、基因表达与调控启动吗啡奖赏、记忆和神经可塑性过程,从而达到预防吗啡成瘾的作用。
(2)伊马替尼及其衍生物与吗啡联合用药或复方制剂预防或治疗阿片类药物成瘾机制、剂量配比效应。
为了证明伊马替尼及其衍生物与吗啡联合用药或复方制剂能预防或治疗吗啡单独用药过程中的耐受且具有剂量配比依赖的效应,本发明通过以下实验完成:运用热板疼痛模型,预先腹腔给予实验大鼠1、5、10、20、30mg/kg甲磺酸伊马替尼,然后皮下注射5、10mg/kg吗啡,或分别采用1、5、10、20、30mg/kg甲磺酸伊马替尼与5、10mg/kg吗啡制备成混合注射剂后给药,按照热疼痛阈值确定甲磺酸伊马替尼对大鼠吗啡耐受形成防治作用的剂量配比效应。
结果可见,采用热板疼痛模型,不同剂量配比(大于或等于2:1)的甲磺酸伊马替尼与吗啡对吗啡耐受表达有不同程度的抑制作用。无论联合给药还是混合制剂,未给予甲磺酸伊马替尼的大鼠,吗啡耐受形成,给予甲磺酸伊马替尼后,10、20、30mg/kg,而不是1、5mg/kg可防止5mg/kg吗啡耐受的表达;20、30mg/kg,而不是1、5、10mg/kg甲磺酸伊马替尼可防止10mg/kg吗啡条件位置偏爱形成,表明甲磺酸伊马替尼与吗啡的剂量配比在大于或等于2:1时可预防吗啡成瘾。
(3)伊马替尼及其衍生物与吗啡剂量配比联合用药或复方制剂预防吗啡中枢镇痛副作用但不影响镇痛效果的发挥。
为了证明伊马替尼及其衍生物与吗啡剂量配比联合用药或复方制剂对吗啡镇痛效用的发挥并无影响,本发明则通过以下实验完成:联合用药实验中,提前30分钟腹腔给予1、5、10、20、30mg/kg甲磺酸伊马替尼,然后皮下注射10mg/kg吗啡。复方制剂给药实验中,1、5、10、20、30mg/kg甲磺酸伊马替尼分别与10mg/kg吗啡混合后,立即皮下注射。采用经典的疼痛模型(热板致痛实验、醋酸扭体实验、福尔马林致痛实验及足底CTA慢性致痛实验模型),分别观察甲磺酸伊马替尼与吗啡剂量配比效应联合用药或复方制剂对各检测指标的影响。
结果可见,无论于何种剂量配比,甲磺酸伊马替尼与吗啡联合用药或复方制剂对于各检测指标无显著性影响。
(4)在临床应用中,伊马替尼及其衍生物与吗啡剂量配比用量为100-400mg/天。
采用吗啡耐受模型,无论是联合给药还是复方给药,甲磺酸伊马替尼与吗啡大于或等于2:1的剂量配比可阻止吗啡耐受的表达,并提高大鼠热疼痛阈值,而低于2:1剂量配比则无效果,其中甲磺酸伊马替尼最低剂量为10mg/kg;采用疼痛模型,吗啡镇痛后都可形成CPP,不同剂量配比(大于或等于2:1)的甲磺酸伊马替尼与吗啡对吗啡耐受表达有不同程度的抑制作用,而低于2:1剂量配比则无效果,其中甲磺酸伊马替尼最低剂量为10mg/kg。说明大于或等于2:1剂量配比的甲磺酸伊马替尼与吗啡组合物可预防吗啡成瘾的发生,也可预防耐受副作用的发生,其中甲磺酸伊马替尼最低剂量为10mg/kg。在临床应用中,人和动物间按体表面积折算的等效剂量换算可参考徐叔云教授主编的《药理实验方法学》:
例如:大鼠的剂量为Xmg/kg,换算成人的临床剂量为:
人的临床剂量=Xmg/kg×0.2kg/0.018=11.1Xmg/天,故大鼠甲磺酸伊马替尼剂量(1、5、10、20、30mg/kg)换算成人的临床剂量分别为11、55、110、220、330mg/天。
按照上市药品格列卫imatinib
Figure PCTCN2020119253-appb-000003
发布的临床试验数据,400mg/天/70kg在临床使用过程中少有副作用发生,因此选择100-400mg/天/70kg作为甲磺酸伊马替尼作为临床用药剂量与阿片类镇痛药物进行配比使用。
基于上述研究内容,本发明提供如下技术方案:
伊马替尼及其衍生物与镇痛药物在制备药物中的应用,所述的应用包括:(1)包含伊马替尼及其衍生物与镇痛药物的组合物在制备治疗疼痛的药物中的应用;(2)包含伊马替尼及其衍生物与镇痛药物的组合物在制备预防镇痛药耐受和成瘾副作用的药物中的应用。
所述的应用中,伊马替尼及其衍生物与镇痛药物的组合物按照其有效成分配比大于或等于2:1,在临床上伊马替尼及其衍生物的用量为100-400mg/天。
所述的镇痛药物包括作用于中枢镇痛系统产生镇痛效应的,具有成瘾性的阿片类如吗啡、可待因、哌替啶、芬太尼、美沙酮、羟考酮、氢吗啡酮、纳布啡和大麻成分等,非阿片类各种具有成瘾性化合物或它们的盐。
所述的疼痛为适用于所述镇痛药物单独用药治疗的适应症和其他不同类型的急、慢性疼痛。
所述的包含伊马替尼及其衍生物与镇痛药物的组合物,伊马替尼及其衍生物和镇痛药物可同时地、分开地 或顺序地施用。
所述的药物适用于制成如下剂型或不同规格中的一种:注射剂、输液剂、皮下埋植剂、丸剂、片剂、粉剂、颗粒剂、胶囊、散剂、口服液、缓释剂、酊剂、栓剂、贴剂等。
本发明的有益效果是:
其一,针对本发明伊马替尼及其衍生物与成瘾物质的组合物,第一次以临床安全剂量,从剂量配比、新干预范式和新作用机制的角度,将伊马替尼及其衍生物与成瘾物质制备成各种复方制剂或联用制剂用于成瘾治疗,更好的适用于临床需求,在此基础上将成瘾防治问题推进了一大步。从分子结构来看,伊马替尼与成瘾物质并无相互作用的基团,因此,伊马替尼及其衍生物与成瘾物质联合用药或制备复方制剂来进行成瘾治疗是行之有效的,效果好,安全性高,临床可操控性强,是成瘾治疗的实质性进步。本发明中使用的甲磺酸伊马替尼剂量(100mg-400mg/天/70kg)在临床使用过程中少有副作用发生,处于临床使用安全剂量范围内,具有很好的临床有效性与安全性,可广泛应用于临床各类急慢性患者合并成瘾的治疗,解决目前临床成瘾面临的瓶颈问题。针对现有研究基础,本发明具有实质性进步和区别有以下几点:
新剂量:在剂量效应上,本发明发现大鼠低剂量即5mg/kg可用于吗啡耐受治疗和预防,但不能预防和治疗成瘾与戒断后的复吸,高于10mg/kg的剂量可防治阿片耐受与成瘾,同时也能成功预防阿片和其他物质成瘾与戒断后的复吸。此种典型的剂量效应在解热镇痛药阿司匹林的临床应用中具有类似的例子,如阿司匹林小剂量用于抗血栓、中剂量用于解热镇痛、高剂量抗炎抗风湿,三类临床适应证抗血栓、解热镇痛和抗炎抗风湿的药物作用效果完全不同,具有实质性区别。因此,本发明此剂量效应(大鼠10mg/kg以上,其他种属使用等同剂量,临床剂量100mg/天以上)是甲磺酸伊马替尼在成瘾治疗领域实质性新发现,此剂量范围内甲磺酸伊马替尼和成瘾类药物联合用药或制备成各种复方制剂,防治成瘾与戒断后复吸,是本药物在不同剂量范围内不同适应症应用,是与前期发明实质性区别应用和进步的发明。
新配比:本发明发现了甲磺酸伊马替尼用于预防和治疗成瘾时与CPP成瘾时使用剂量存在一定配比才有效,其中吗啡或可卡因剂量必须以2:1的比例才有效,酒精的剂量比例为大于等于1:50;另外,非条件性诱导的剂量同样存在剂量配比,如吗啡、可卡因、酒精用量与训练CPP时用量的有效比例即小于1:3。
新治疗策略:本发明采用新干预范式即非条件线索诱导再巩固过程后干预的行药物治疗。此种干预方式临床更易操作,治疗效果更加有效。
新机制:本发明在作用机制上有显著性区别,甲磺酸伊马替尼通过阻断c-kit受体抑制多种信号转导通路如PKC、PI3K-AKT、ERK等调节激酶活性、蛋白表达、基因表达与调控启动吗啡奖赏、记忆和神经可塑性过程,阻断吗啡产生的多种效应,从而达到预防和治疗吗啡成瘾的作用。
其二,针对本发明伊马替尼及其衍生物与尼古丁或其类似物的组合物,传统单药使用相比,在大于或等于40:1剂量配比的伊马替尼及其衍生物与尼古丁联合用药或复方用药可有效防治尼古丁成瘾和复吸,并减弱成瘾后戒断症状,有效解决临床患者尼古丁成瘾治疗问题。同时发现甲磺酸伊马替尼与尼古丁剂量配比低于40:1时,无法防治尼古丁成瘾,当甲磺酸伊马替尼与尼古丁剂量配比大于或者等于40:1时,可成功预防尼古丁成瘾,并减轻尼古丁戒断症状。此种典型的剂量效应在镇痛药阿司匹林的临床应用中具有类似的例子,如阿司匹林小剂量用于抗血栓、中剂量用于解热镇痛、高剂量抗炎抗风湿,抗血栓、解热镇痛和抗炎抗风湿三类临床适应证的药物作用效果完全不同,具有实质性区别。此外,本发明发现甲磺酸伊马替尼在治疗尼古丁成瘾复吸时,若尼古丁成瘾记忆唤起剂量与尼古丁成瘾剂量之间大于或等于3:10,则预防尼古丁成瘾的甲磺酸伊马替尼剂量无法预防和治疗尼古丁成瘾的复吸;若低于3:10,则预防尼古丁成瘾的甲磺酸伊马替尼剂量可预防和治疗尼古丁成瘾的复吸。因此,此甲磺酸伊马替尼治疗剂量配比效应(大鼠甲磺酸伊马替尼与尼古丁剂量配比范围40:1以上,其他种属使用等同剂量,临床剂量100mg/天以上)与尼古丁记忆唤起的剂量配比效应(大鼠尼古丁记忆唤起剂量与尼古丁成瘾剂量配比范围3:10以下,其他种属使用等同剂量)是甲磺酸伊马替尼在尼古丁成瘾领域的实质性新发现,此剂量配比范围内甲磺酸伊马替尼和尼古丁药物联合用药或制备成各种复方制剂,防治尼古丁成瘾和戒断后的复吸,是本药物在不同剂量范围内不同适应症应用。
1)剂量上的实质性进步,本发明发现了甲磺酸伊马替尼用于预防和治疗尼古丁成瘾与复吸时的有效剂量配比需要大于或等于40:1,并且尼古丁成瘾记忆唤起剂量与尼古丁成瘾记忆形成剂量配比需要低于3:10。
2)在治疗策略上将伊马替尼及其衍生物和尼古丁或其类似物配比联合使用或复方后,治疗模式和机制完全不同,使治疗效果更加有效,且使操作范式和服药程序简便易行,避免病人用药的不便,应用性更好。
3)跟现有治疗尼古丁成瘾药物相比,本发明在作用机制上也有显著性区别,甲磺酸伊马替尼通过阻断c-kit 受体抑制多种信号转导通路如PKC、PI3K-AKT、ERK等调节激酶活性、蛋白表达、基因表达与调控启动尼古丁奖赏、记忆和神经可塑性过程,阻断尼古丁产生的多种效应,从而达到预防和治疗成瘾与复吸的作用。
本发明第一次从剂量配比、新干预范式和新作用机制的角度,提出将伊马替尼及其衍生物与成瘾物质尼古丁或其类似物配比制备成各种复方制剂或联用制剂用于成瘾与复吸治疗,更好的适用于临床需求,在此基础上将成瘾防治问题推进了一大步。从分子结构来看,伊马替尼与尼古丁并无相互作用的基团,因此,提出本发明伊马替尼及其衍生物与尼古丁联合用药或制备复方制剂来进行尼古丁成瘾治疗是行之有效的,效果好,安全性高,临床可操控性强,是尼古丁成瘾治疗的实质性进步。
其三,针对本发明伊马替尼及其衍生物与在镇痛药物的组合物,传统单药使用相比,在大于或等于2:1剂量配比的伊马替尼及其衍生物与镇痛药联合用药或复方用药可有效发挥镇痛药的镇痛效果,同时又能有效预防阿片类药物严重副作用产生、不影响阿片类药物镇痛效果,有效解决临床疼痛治疗问题,有效预防副作用,进一步可扩大成瘾性镇痛药物镇痛药的临床适应症。即采用新剂量配比范围(即临床使用剂量最低剂量100mg/天,最高剂量不超过400mg/天)与成瘾性镇痛药配比联合用药或制备各种新复方制剂(不限于流质)的方式,提供既具有强大镇痛效果又可预防阿片类药物疼痛治疗中成瘾与耐受副作用,且对各种疼痛均有效的配比联合用药方式或各种规格的制剂。而且,本发明中使用的甲磺酸伊马替尼剂量(100mg-400mg/天/70kg)在临床使用过程中少有副作用发生,处于临床使用安全剂量范围内,具有很好的临床有效性与安全性,可广泛应用于临床各类急慢性疼痛的治疗,解决目前临床镇痛面临的瓶颈问题。
本发明发现甲磺酸伊马替尼低剂量即5mg/kg可用于耐受治疗和预防,但不能预防和治疗成瘾与戒断后的复吸,高于10mg/kg的剂量可防治阿片耐受与成瘾,同时也能成功预防阿片和其他物质成瘾与戒断后的复吸,不影响吗啡的镇痛作用。而且在临床剂量100mg-400mg/天/70kg剂量范围内,与吗啡剂量配比低于2:1时,无法防治阿片成瘾与耐受,当甲磺酸伊马替尼与吗啡剂量配比大于或者等于2:1时,可成功预防阿片成瘾与耐受,不影响吗啡的镇痛作用。此种典型的剂量效应在第二类镇痛药阿司匹林的临床应用中具有类似的例子,如阿司匹林小剂量用于抗血栓、中剂量用于解热镇痛、高剂量抗炎抗风湿,抗血栓、解热镇痛和抗炎抗风湿三类临床适应证的药物作用效果完全不同,具有实质性区别。因此,本发明此剂量配比效应(大鼠甲磺酸伊马替尼与阿片类药物剂量配比范围2:1以上,其他种属使用等同剂量,临床剂量100mg/天以上)是甲磺酸伊马替尼在镇痛与成瘾副作用预防的实质性新发现,此剂量配比范围内甲磺酸伊马替尼和阿片类药物联合用药或制备成各种复方制剂,防治阿片镇痛应用中成瘾副作用,是本药物在不同剂量范围内不同适应症应用,是与前期发明实质性区别应用和进步的发明。
跟现有治疗成瘾的药物相比,本发明在作用机制上也有显著性区别,甲磺酸伊马替尼通过阻断c-kit受体抑制多种信号转导通路如PKC、PI3K-AKT、ERK等调节激酶活性、蛋白表达、基因表达与调控启动吗啡奖赏、记忆和神经可塑性过程,阻断吗啡产生的多种效应,从而达到预防和治疗成瘾性镇痛药成瘾的作用。
本发明第一次从剂量配比角度和新作用机制过程,提出将伊马替尼及其衍生物与阿片药物制备各种复方制剂或联用制剂用于阿片类镇痛药物成瘾副作用的防治,更好的适用于临床需求,避免不必要的由滥用引发的灾难发生,在此基础上将镇痛药应用安全性防治问题推进了一大步。从分子结构来看,伊马替尼与吗啡并无相互作用的基团,因此,提出本发明伊马替尼及其衍生物与吗啡联合用药或制备复方制剂来进行镇痛治疗和预防阿片类药物成瘾与耐受的副作用是行之有效的,不影响阿片类药物镇痛效果的同时还可扩展了阿片类药物镇痛的适应症。
附图说明
图1为甲磺酸伊马替尼预防吗啡成瘾分子新机制。
图2为甲磺酸伊马替尼与吗啡配比使用对大鼠成瘾形成影响的剂量效应;其中,A:吗啡与甲磺酸伊马替联合给药用预防CPP的形成,训练CPP的吗啡剂量为5mg/kg;B:吗啡与甲磺酸伊马替复方给药用预防CPP的形成,训练CPP的吗啡剂量为5mg/kg;C:吗啡与甲磺酸伊马替联合给药用预防CPP的形成,训练CPP的吗啡剂量为10mg/kg;D:吗啡与甲磺酸伊马替复方给药用预防CPP的形成,训练CPP的吗啡剂量为10mg/kg。
图3为甲磺酸伊马替尼预防可卡因成瘾分子新机制;其中,A:免疫组化显示甲磺酸伊马替尼对伏隔核c-Kit增高有明显抑制现象,其他脑区未见显著影响;B:七色免疫荧光共标显示急性酒精给药后七种关键活性分子c-Kit与ERK、AKT、PKC共激活于伏隔核神经元内,PDGF活性变化不明显。
图4为甲磺酸伊马替尼与可卡因配比使用对大鼠成瘾形成影响的剂量效应;其中,A:可卡因与甲磺酸伊马替联合给药用预防CPP的形成,训练CPP的可卡因剂量为5mg/kg;B:可卡因与甲磺酸伊马替复方给药用预防CPP的形成,训练CPP的可卡因剂量为5mg/kg;C:可卡因与甲磺酸伊马替联合给药用预防CPP的形成,训练 CPP的可卡因剂量为10mg/kg;D:可卡因与甲磺酸伊马替复方给药用预防CPP的形成,训练CPP的可卡因剂量为10mg/kg。
图5为甲磺酸伊马替尼预防酒精成瘾分子新机制;其中,A:免疫组化显示甲磺酸伊马替尼对伏隔核c-Kit增高有明显抑制现象,其他脑区未见显著影响;B:七色免疫荧光共标显示急性酒精给药后七种关键活性分子c-Kit与ERK、AKT、PKC共激活于伏隔核神经元内,PDGF活性变化不明显。
图6为甲磺酸伊马替尼与酒精配比使用对大鼠成瘾形成影响的剂量效应;其中,A:酒精与甲磺酸伊马替联合给药用预防CPP的形成,训练CPP的酒精剂量为0.5g/kg;B:酒精与甲磺酸伊马替复方给药用预防CPP的形成,训练CPP的酒精剂量为0.5g/kg;C:酒精与甲磺酸伊马替联合给药用预防CPP的形成,训练CPP的酒精剂量为0.75g/kg;D:酒精与甲磺酸伊马替复方给药用预防CPP的形成,训练CPP的酒精剂量为0.75g/kg。
图7为甲磺酸伊马替尼与吗啡配比使用对大鼠吗啡成瘾形成后觅药行为和的剂量效应;其中,A:吗啡与甲磺酸伊马替尼联合给药用抑制觅药行为,训练CPP的吗啡剂量为5mg/kg;B:吗啡与甲磺酸伊马替尼复方给药用抑制觅药行为,训练CPP的吗啡剂量为5mg/kg;C:吗啡与甲磺酸伊马替尼联合给药用抑制觅药行为,训练CPP的吗啡剂量为10mg/kg;D:吗啡与甲磺酸伊马替尼复方给药用抑制觅药行为,训练CPP的吗啡剂量为10mg/kg。
图8为甲磺酸伊马替尼与可卡因配比使用对大鼠可卡因成瘾形成后觅药行为和的剂量效应;其中,A:可卡因与甲磺酸伊马替尼联合给药用抑制觅药行为,训练CPP的可卡因剂量为5mg/kg;B:可卡因与甲磺酸伊马替尼复方给药用抑制觅药行为,训练CPP的可卡因剂量为5mg/kg;C:可卡因与甲磺酸伊马替尼联合给药用抑制觅药行为,训练CPP的可卡因剂量为10mg/kg;D:可卡因与甲磺酸伊马替尼复方给药用抑制觅药行为,训练CPP的可卡因剂量为10mg/kg。
图9为甲磺酸伊马替尼与酒精配比使用对大鼠酒精成瘾形成后觅药行为和的剂量效应;其中,A:酒精与甲磺酸伊马替尼联合给药用抑制觅药行为,训练CPP的可酒精剂量为0.5g/kg;B:酒精与甲磺酸伊马替尼复方给药用抑制觅药行为,训练CPP的可酒精剂量为0.5g/kg;C:酒精与甲磺酸伊马替尼联合给药用抑制觅药行为,训练CPP的可酒精剂量为0.75g/kg;D:酒精与甲磺酸伊马替尼复方给药用抑制觅药行为,训练CPP的可酒精剂量为0.75g/kg。
图10为甲磺酸伊马替尼与吗啡于环境诱导、非条件性刺激配比使用或直接给药对大鼠吗啡成瘾形成后觅药行为和戒断后记忆再巩固影响的剂量效应;其中,A:非条件性刺激,吗啡剂量为3mg/kg,与甲磺酸伊马替尼联合给药对觅药行为及复吸的影响,训练CPP的吗啡剂量为10mg/kg;B:非条件性刺激,吗啡剂量为3mg/kg,与甲磺酸伊马替尼联合给药对觅药行为及复吸的影响,训练CPP的吗啡剂量为10mg/kg;C:非条件性刺激,吗啡剂量为5mg/kg,与甲磺酸伊马替尼联合给药对觅药行为及复吸的影响,训练CPP的吗啡剂量为10mg/kg;D:非条件性刺激,吗啡剂量为5mg/kg,与甲磺酸伊马替尼复方给药对觅药行为及复吸的影响,训练CPP的吗啡剂量为10mg/kg;E:环境刺激后甲磺酸伊马替尼对觅药行为及复吸的影响,训练CPP的吗啡剂量为10mg/kg;F:直接给药甲磺酸伊马替尼对觅药行为及复吸的影响,训练CPP的吗啡剂量为10mg/kg。
图11为甲磺酸伊马替尼与可卡因于环境诱导、非条件性刺激配比使用或直接给药对大鼠阿片成瘾形成后觅药行为和戒断后记忆再巩固影响的剂量效应;其中,A:非条件性刺激,可卡因剂量为3mg/kg,与甲磺酸伊马替尼联合给药对觅药行为及复吸的影响,训练CPP的可卡因剂量为10mg/kg;B:非条件性刺激,可卡因剂量为3mg/kg,与甲磺酸伊马替尼复方给药对觅药行为及复吸的影响,训练CPP的可卡因剂量为10mg/kg;C:非条件性刺激,可卡因剂量为5mg/kg,与甲磺酸伊马替尼联合给药对觅药行为及复吸的影响,训练CPP的可卡因剂量为10mg/kg;D:非条件性刺激,可卡因剂量为5mg/kg,与甲磺酸伊马替尼复方给药对觅药行为及复吸的影响,训练CPP的可卡因剂量为10mg/kg;E:环境刺激后甲磺酸伊马替尼对觅药行为及复吸的影响,训练CPP的可卡因剂量为10mg/kg;F:直接给药甲磺酸伊马替尼对觅药行为及复吸的影响,训练CPP的可卡因剂量为10mg/kg。
图12为甲磺酸伊马替尼与酒精于环境诱导、非条件性刺激配比使用或直接给药对大鼠酒精成瘾形成后觅药行为和戒断后记忆再巩固影响的剂量效应;其中,A:非条件性刺激,酒精剂量为0.25g/kg,与甲磺酸伊马替尼联合给药对觅药行为及复吸的影响,训练CPP的酒精剂量为0.75g/kg;B:非条件性刺激,酒精剂量为0.25g/kg,与甲磺酸伊马替尼复方给药对觅药行为及复吸的影响,训练CPP的酒精剂量为0.75g/kg;C:非条件性刺激,酒精剂量为0.5g/kg,与甲磺酸伊马替尼联合给药对觅药行为及复吸的影响,训练CPP的酒精剂量为0.75g/kg;D:非条件性刺激,酒精剂量为0.5g/kg,与甲磺酸伊马替尼复方给药对觅药行为及复吸的影响,训练CPP的酒精剂量为0.75g/kg;E:环境刺激后甲磺酸伊马替尼对觅药行为及复吸的影响,训练CPP的酒精剂量为0.75g/kg;F: 直接给药甲磺酸伊马替尼对觅药行为及复吸的影响,训练CPP的酒精剂量为0.75g/kg。
图13为甲磺酸伊马替尼与吗啡配比使用对大鼠成瘾戒断反应的影响;其中,A:甲磺酸伊马替尼与小剂量吗啡联合用药对吗啡CPP形成后戒断症状(跳跃次数)的影响;B:甲磺酸伊马替尼与小剂量吗啡复方用药对吗啡CPP形成后戒断症状(跳跃次数)的影响;C:甲磺酸伊马替尼与小剂量吗啡联合用药对吗啡CPP形成后戒断症状(体重减轻)的影响;D:甲磺酸伊马替尼与小剂量吗啡复方用药对吗啡CPP形成后戒断症状(体重减轻)的影响。
图14为甲磺酸伊马替尼与可卡因配比使用对大鼠成瘾戒断反应的影响;其中,A:甲磺酸伊马替尼对可卡因CPP形成后戒断症状(闭合臂中的停留时间)的影响;B:甲磺酸伊马替尼对可卡因CPP形成后戒断症状(进入闭合臂的次数)的影响。
图15为甲磺酸伊马替尼与酒精配比使用对大鼠成瘾戒断反应的影响;其中,A:甲磺酸伊马替尼对酒精CPP形成后戒断症状(闭合臂中的停留时间)的影响;B:甲磺酸伊马替尼对酒精CPP形成后戒断症状(进入闭合臂的次数)的影响
图16为甲磺酸伊马替尼与阿片成瘾物质配比对大鼠吗啡敏化形成和表达的影响的剂量效应;其中,A:甲磺酸伊马替尼与吗啡联合用药对吗啡敏化形成的影响;B:甲磺酸伊马替尼与吗啡复方用药对吗啡敏化形成的影响;C:甲磺酸伊马替尼对吗啡敏化表达的影响。
图17为甲磺酸伊马替尼与阿片成瘾物质配比对大鼠可卡因敏化形成和表达的影响的剂量效应;其中,A:甲磺酸伊马替尼与可卡因联合给药对可卡因敏化形成的影响;B:甲磺酸伊马替尼与可卡因复方给药对可卡因敏化形成的影响;C:甲磺酸伊马替尼对对可卡因敏化表达的影响。
图18为甲磺酸伊马替尼与阿片成瘾物质配比对大鼠酒精敏化形成和表达的影响的剂量效应;其中,A:甲磺酸伊马替尼与酒精联合给药对酒精敏化形成的影响;B:甲磺酸伊马替尼与酒精复方给药对酒精敏化形成的影响;C:甲磺酸伊马替尼对酒精敏化表达的影响。
图19为甲磺酸伊马替尼与高糖高脂食物配比使用对大鼠高糖高脂食物成瘾的影响的剂量效应,柱状图中从左至右依次为:高糖高脂食物+生理盐水,高糖高脂食物+甲磺酸伊马替尼1、5、10、20、30mg/kg。
图20为甲磺酸伊马替尼与高糖高脂食物配比使用对大鼠高糖高脂食物成瘾形成后觅食和戒断后再巩固的影响;其中,A:非条件性刺激后甲磺酸伊马替尼对高糖高脂食物寻觅及复吸的影响;B:环境线索刺激后甲磺酸伊马替尼对高糖高脂食物寻觅及复吸的影响;C:直接给药甲磺酸伊马替尼对高糖高脂食物寻觅及复吸的影响。柱状图中从左至右依次为:高糖高脂食物+生理盐水,高糖高脂食物+甲磺酸伊马替尼1、5、10、20、30mg/kg。
图21为甲磺酸伊马替尼对大鼠赌博任务影响的剂量效应;其中,A:环境线索诱导甲磺酸伊马替尼对赌博行为的影响;B:直接给药甲磺酸伊马替尼对赌博行为的影响。
图22为甲磺酸伊马替尼使用剂量与临床使用剂量的换算。
图23为甲磺酸伊马替尼与尼古丁剂量配比效应对大鼠尼古丁成瘾形成的影响;A为甲磺酸伊马替尼与0.25mg/kg尼古丁联合给药对大鼠尼古丁成瘾形成的影响;B为甲磺酸伊马替尼与0.5mg/kg尼古丁联合给药对大鼠尼古丁成瘾形成的影响;C为甲磺酸伊马替尼与0.25mg/kg尼古丁复方给药对大鼠尼古丁成瘾形成的影响;D为甲磺酸伊马替尼与0.5mg/kg尼古丁复方给药对大鼠尼古丁成瘾形成的影响。
图24为甲磺酸伊马替尼预防尼古丁成瘾分子新机制;A为c-kit免疫组化检测分析;B为Opal/TSA多标记染色检测分析。
图25为甲磺酸伊马替尼对大鼠尼古丁成瘾后非条件性刺激诱导记忆再唤起后觅药行为的影响;A为甲磺酸伊马替尼与尼古丁联合给药对非条件刺激诱发的尼古丁成瘾大鼠觅药行为的影响,训练CPP的尼古丁剂量为0.25mg/kg;B为甲磺酸伊马替尼与尼古丁复方给药对非条件刺激诱发的尼古丁成瘾大鼠觅药行为的影响;训练CPP的尼古丁剂量为0.25mg/kg;C为甲磺酸伊马替尼与尼古丁联合给药对非条件刺激诱发的尼古丁成瘾大鼠觅药行为的影响,训练CPP的尼古丁剂量为0.5mg/kg;D为甲磺酸伊马替尼与尼古丁复方给药对非条件刺激诱发的尼古丁成瘾大鼠觅药行为的影响,训练CPP的尼古丁剂量为0.5mg/kg;
图26为甲磺酸伊马替尼非条件性刺激后给药(联合、复方)、环境线索刺激后给药、直接给药对大鼠尼古丁成瘾后觅药行为及戒断后复吸的影响;A为甲磺酸伊马替尼与尼古丁联合给药对非条件刺激诱发的尼古丁成瘾大鼠觅药行为及复吸的影响,训练CPP的尼古丁剂量为0.5mg/kg,诱发剂量为0.1mg/kg;B为甲磺酸伊马替尼与尼古丁复方给药对非条件刺激诱发的尼古丁成瘾大鼠觅药行为及复吸的影响,训练CPP的尼古丁剂量为0.5mg/kg,诱发剂量为0.1mg/kg;C为甲磺酸伊马替尼与尼古丁联合给药对非条件刺激诱发的尼古丁成瘾大鼠觅 药行为及复吸的影响,训练CPP的尼古丁剂量为0.5mg/kg,诱发剂量为0.15mg/kg;D为甲磺酸伊马替尼与尼古丁复方给药对非条件刺激诱发的尼古丁成瘾大鼠觅药行为及复吸的影响,训练CPP的尼古丁剂量为0.5mg/kg,诱发剂量为0.15mg/kg;E为甲磺酸伊马替尼对环境刺激诱发的尼古丁成瘾大鼠觅药行为及复吸的影响,训练CPP的尼古丁剂量为0.5mg/kg;F为甲磺酸伊马替尼直接给药对尼古丁成瘾大鼠觅药行为及复吸的影响,训练CPP的尼古丁剂量为0.5mg/kg;G为甲磺酸伊马替尼对尼古丁类似物诱发的尼古丁成瘾大鼠觅药行为及复吸的影响训练CPP的尼古丁剂量为0.5mg/kg,诱发剂量为相当于0.15mg/kg。
图27为甲磺酸伊马替尼与尼古丁剂量配比效应对尼古丁戒断症状的影响;A为甲磺酸伊马替尼与尼古丁联合给药对大鼠尼古丁戒断症状的影响;B为甲磺酸伊马替尼与尼古丁复方给药对大鼠尼古丁戒断症状的影响。
图28为甲磺酸伊马替尼使用剂量与临床使用剂量的换算。
图29为甲磺酸伊马替尼戒烟效果图。
图30为甲磺酸伊马替尼与吗啡剂量配比效应对大鼠吗啡成瘾形成的影响;A为甲磺酸伊马替尼与5mg/kg吗啡联合给药对大鼠吗啡成瘾形成的影响;B为甲磺酸伊马替尼与10mg/kg吗啡联合给药对大鼠吗啡成瘾形成的影响;C为甲磺酸伊马替尼与5mg/kg吗啡复方给药对大鼠吗啡成瘾形成的影响;D为甲磺酸伊马替尼与10mg/kg吗啡复方给药对大鼠吗啡成瘾形成的影响。
图31为甲磺酸伊马替尼预防吗啡成瘾分子新机制;A为c-kit免疫组化检测分析;B为c-kit免疫印迹检测分析;C为c-kit、ERK免疫荧光双标检测分析;D为c-kit、Akt免疫荧光双标检测分析;E为c-kit、PKCzeta免疫荧光双标检测分析;F为Opal/TSA多标记染色检测分析。
图32为吗啡在镇痛过程中甲磺酸伊马替尼与吗啡剂量配比效应对其成瘾形成的影响;A为甲磺酸伊马替尼与10mg/kg吗啡复方给药对小鼠吗啡成瘾形成的影响;B为甲磺酸伊马替尼与15mg/kg吗啡复方给药对小鼠吗啡成瘾形成的影响。
图33为甲磺酸伊马替尼与吗啡剂量配比效应对大鼠吗啡耐受的影响;A为甲磺酸伊马替尼与5mg/kg吗啡联合给药对大鼠吗啡耐受的影响;B为甲磺酸伊马替尼与10mg/kg吗啡联合给药对大鼠吗啡耐受的影响;C为甲磺酸伊马替尼与5mg/kg吗啡复方给药对大鼠吗啡耐受的影响;D为甲磺酸伊马替尼与10mg/kg吗啡复方给药对大鼠吗啡耐受的影响。
图34为甲磺酸伊马替尼与吗啡剂量配比效应对大鼠吗啡中枢镇痛效果的影响;A为甲磺酸伊马替尼与吗啡联合给药对中枢镇痛效果的影响;B为甲磺酸伊马替尼与吗啡复方给药对中枢镇痛效果的影响;
图35为甲磺酸伊马替尼与吗啡剂量配比效应对小鼠吗啡急性内脏镇痛效果的影响;A为甲磺酸伊马替尼与吗啡联合给药对急性内脏镇痛效果的影响;B为甲磺酸伊马替尼与吗啡复方给药对急性内脏镇痛效果的影响;
图36为甲磺酸伊马替尼与吗啡剂量配比效应对大鼠吗啡急性炎症镇痛效果的影响;A为甲磺酸伊马替尼与吗啡联合给药对急性炎症镇痛效果的影响;B为甲磺酸伊马替尼与吗啡复方给药对中枢镇痛效果的影响;
图37为甲磺酸伊马替尼与吗啡剂量配比效应对大鼠吗啡慢性炎症镇痛效果的影响;A为甲磺酸伊马替尼与吗啡联合给药对慢性炎症镇痛效果的影响;B为甲磺酸伊马替尼与吗啡复方给药对慢性炎症镇痛效果的影响;
图38为甲磺酸伊马替尼使用剂量与临床使用剂量的换算。
具体实施方式
下面结合实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例1至实施例18是针对马替尼及其衍生物和成瘾物质的组合物在成瘾治疗领域的应用。
下述实施例所采用的成瘾物质为吗啡或可卡因,吗啡具有广泛的代表性,所属领域技术人员可以在与吗啡具有相似的作用机制的其他成瘾物质中重现类似的研究结果。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1:甲磺酸伊马替尼剂量效应对大鼠吗啡成瘾形成的影响及分子机制
实验1:甲磺酸伊马替尼预防吗啡成瘾分子新机制
急性吗啡给药。
动物分组及处理:实验大鼠随机分为四组,分别为生理盐水+生理盐水,生理盐水+磺酸伊马替尼给药组,吗啡+生理盐水组、吗啡+甲磺酸伊马替尼(n=10)。
腹腔注射伊马替尼(30mg/kg)或生理盐水(1mL/kg),半小时后皮下注射吗啡(10mg/kg),1小时后心脏灌流取脑组织。观察中脑边缘多巴胺系统包括VTA、伏隔核、杏仁体、海马、前额皮层的c-kit活性的变化,免 疫组化结合western-blot观察c-kit磷酸化水平的变化,免疫荧光共标观察激活的细胞分布,多色免疫荧光共标确定其下游激活靶分子,确定吗啡成瘾分子新机制和甲磺酸伊马替尼防治成瘾的作用机制。
结果见图1,急性吗啡给药后,免疫组化、western-blot和多色免疫荧光共标结果显示,特异性激活伏隔核并非其他脑区神经元c-kit受体及受体后多种信号转导通路如PKC、PI3K-AKT、ERK等调节激酶活性、蛋白表达、基因表达与调控启动吗啡奖赏、记忆和神经可塑性过程,说明伏隔核c-kit受体是吗啡急性给药激活特异性脑区;甲磺酸伊马替尼通过阻断c-kit受体抑制多种信号转导通路如PKC、PI3K-AKT、ERK等调节激酶活性、蛋白表达、基因表达与调控启动吗啡奖赏、记忆和神经可塑性过程,从而达到预防吗啡成瘾的作用。
实验2:甲磺酸伊马替尼剂量效应对大鼠吗啡成瘾形成的影响
一、材料
药品:吗啡(Morphine,青海制药厂),甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级SD雄性大鼠,体重180-220g。湖南斯莱克景达实验动物有限公司提供,动物合格证号为NO.43004700040706,生产许可证号:SCXK(湘)2016-0002。鼠饲料,购于武汉大学实验动物中心。所有动物均在武汉大学动物实验中心SPF级环境中进行饲养,温度为23±2℃,湿度为50±5%,光照时间为6:00-18:00,采用12小时明暗交替,并确保大鼠在饲养时能够自由获取食物与饮用水,实验前均提供一周时间环境适应(下同)。
实验仪器:条件性位置偏爱仪(中国医学科学院药物研宄所研制):实验采用计算机自动控制。装置由三箱构成的条件性位置偏爱箱:两个侧室和一个中间室。三室由可移动的隔板分开,内外均为黑色。其中A箱和B箱位于中间箱的两侧,大小相同,A箱侧壁上有9盏能发出黄光二极管构成的正方形,底板为不锈钢钢条,B箱底板为不锈钢网格。大鼠在各箱的停留时间和出入次数可通过数据传送到计算机,自动收集记录行为学资料。
二、实验方法
吗啡条件位置偏爱(conditioned place preference,CPP)模型建立。
基础值测试:第1天,拿掉隔板,开放三箱的通道,启动计算机上CPP程序,大鼠由中间室放入,任其在三箱中自由活动15分钟,电脑同步记录其在各室中停留的时间。根据测试结果进行淘汰,分组,并区分各大鼠的伴药侧与非伴药侧。
基础值测试完后,根据得分将大鼠分成24组(n=10):
Figure PCTCN2020119253-appb-000004
条件性位置偏爱训练:第2至9天,封闭三箱间通道。第2、4、6、8天,联合用药的给药组提前30分钟注射不同剂量甲磺酸伊马替尼(1、5、10、20、30mg/kg,i.p.),后注射吗啡(5、10mg/kg,s.c.),并放入伴药侧45min;对照组在相应的时间点注射生理盐水(1mL/kg,i.p.)+吗啡(5、10mg/kg,s.c.),并放入非伴药侧45min。复方制剂的给药物将不同剂量甲磺酸伊马替尼与吗啡混合和注射并放入伴药侧45min;对照组混合注射生理盐水(1mL/kg)和吗啡(5、10mg/kg,s.c.),并放入非伴药侧45min。第3、5、7、9天,联合给药的给药组及对照组大鼠均注射生理盐水(1mL/kg,i.p.)+生理盐水(1mL/kg,s.c.),复方给药组的给药组合对照组均注射生理盐水(2mL/kg,i.p.),给药组放入非伴药侧,对照组放入伴药侧,均为45min。每只大鼠的伴药侧是固定的。每组大鼠实验完后放回饲养笼。
吗啡CPP测试:第10天,CPP测试,与基础值测试阶段相似。开放三箱间的通道,不予任何注射,启动计算机上CPP程序,大鼠由中间室放入,任其在箱中自由活动15分钟,电脑同步记录其在各室中停留的时间。CPP分值(CPP score)为伴药侧时间与非伴药侧时间的差值。将大鼠在伴药箱中条件位置偏爱后测值与前测值比较确定大鼠是否形成条件位置偏爱。
三、实验结果
结果见图2,无论是联合给药还是复方制剂,甲磺酸伊马替尼给药组与对照组相比差异具有显著性,呈剂量依赖性,腹腔注射甲磺酸伊马替尼(10、20、30mg/kg,i.p.)后,用5mg/kg吗啡训练CPP的大鼠条件性位置偏爱不能形成,而注射(1、5mg/kg,i.p.)甲磺酸伊马替尼后条件位置偏爱仍然存在;腹腔注射甲磺酸伊马替尼(20、 30mg/kg,i.p.)后,用10mg/kg吗啡训练CPP的大鼠条件性位置偏爱不能形成,而注射(1、5、10mg/kg,i.p.)甲磺酸伊马替尼后条件位置偏爱仍然存在未给药的大鼠,条件性位置偏爱依然存在,说明甲磺酸伊马替尼与训练吗啡时的剂量配比大于2:1时才可以抑制大鼠吗啡成瘾的形成。
实施例2:甲磺酸伊马替尼剂量效应对大鼠可卡因成瘾形成的影响及分子机制
参照实施例1的实验1、2,将成瘾药物吗啡换成可卡因,得到相似的结果(图3、4)。
实施例3:甲磺酸伊马替尼剂量效应对大鼠酒精成瘾形成的影响及分子机制
实验3:酒精剂量为0.75g/kg,甲磺酸伊马替尼剂量为30mg/kg,实验过程与实施例1实验2相同。得到与实施例1实验2相似的结果(图5)。
实验4:酒精的剂量为0.5、0.75g/kg,甲磺酸伊马替尼的剂量为1、5、10、15、20、30mg/kg;实验过程与实施例1实验1一致。
结果见图6,当训练CPP所用酒精剂量为0.5g/kg时,1、5mg/kg甲磺酸伊马替尼对CPP的形成没有显著影响;而10、15、20、30mg/kg甲磺酸伊马替尼可显著减弱CPP且呈剂量效应;未给药组CPP可以形成;当训练CPP所用酒精剂量为0.75g/kg时,1、5、10mg/kg甲磺酸伊马替尼对CPP的形成没有显著影响;而15、20、30mg/kg甲磺酸伊马替尼可显著减弱CPP且呈剂量效应;未给药组CPP可以形成。说明当甲磺酸伊马替尼与训练CPP时所用酒精剂量的比值大于1:50时可以预防酒精成瘾的形成。
实施例4:甲磺酸伊马替尼对大鼠吗啡成瘾后非条件性刺激诱导记忆再唤起后觅药行为的影响
通过建立吗啡条件位置偏爱(conditioned place preference,CPP)模型,研究不同剂量(1、5、10、20、30mg/kg,i.p.)甲磺酸伊马替尼对吗啡依赖后觅药行为的影响。
一、材料
药品:吗啡(青海制药厂),甲磺酸伊马替尼(Novartis PharmaStein AG)。
实验动物:SPF级SD雄性大鼠,体重180-220g。湖南斯莱克景达实验动物有限公司提供,动物合格证号为NO.420110200001490,生产许可证号:SCXK(湘)2017-0067。鼠饲料,购于武汉大学实验动物中心。
实验仪器:同实施例1。
二、实验方法
(1)吗啡CPP模型的建立
基础值测试:第1天,开放三箱间通道,启动计算机上CPP程序,大鼠由中间室放入,任其在三箱中自由活动15分钟,电脑同步记录其在各室中停留的时间。
基础值测试完后,根据CPP得分,将大鼠分为12个组(n=10):
Figure PCTCN2020119253-appb-000005
条件性位置偏爱训练:第2至9天,封闭三箱间通道。第2、4、6、8天,给药组皮下注射吗啡(5、10mg/kg)并放入伴药侧45分钟:对照组皮下注射生理盐水(1mL/kg)并放入非伴药侧45分钟。第3、5、7、9天,给药组及对照组大鼠均注射生理盐水(1mL/kg),给药组放入非伴药侧,对照组放入伴药侧,均为45分钟。每只大鼠的伴药侧是固定的。每组大鼠之后被放回饲养笼。
吗啡CPP测试:同实施例1。
(2)甲磺酸伊马替尼对觅药行为作用检测
在实验的第11天,将大鼠放回伴药侧15分钟,然后给予不同剂量甲磺酸伊马替尼(1、5、10、20、30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.)。
(3)吗啡CPP重新测试
甲磺酸伊马替尼给药后第1天即第12天,第7天即第18天,测试大鼠对伴药箱的偏爱程度,15分钟,与基础值测试阶段相似。
三、实验结果
结果见图7,给药组与对照组相比差异具有显著性。对于给药组来说,用5mg/kg吗啡或训练CPP的组,甲磺酸伊马替尼给药后,1、5mg/kg伊马替尼未见明显效果,10、20、30mg/kg甲磺酸伊马替尼可显著减弱条件位 置偏爱且不被点燃并呈剂量依赖性;未给药的大鼠,条件位置偏爱依然存在。用10mg/kg吗啡或训练CPP的组,甲磺酸伊马替尼给药后,1、5、10mg/kg伊马替尼未见明显效果,20、30mg/kg甲磺酸伊马替尼可显著减弱条件位置偏爱且不被点燃并呈剂量依赖性;未给药的大鼠,条件位置偏爱依然存在。说明甲磺酸伊马替尼与吗啡配比大于等于2:1时可阻断成瘾后的觅药行为,抑制心理渴求,防治复燃行为。
实施例5:甲磺酸伊马替尼对大鼠可卡因成瘾后非条件性刺激诱导记忆再唤起后觅药行为的影响
参照实施例4,将成瘾药物吗啡换成可卡因,得到相似的结果(图8)。
实施例6:甲磺酸伊马替尼对大鼠酒精成瘾后非条件性刺激诱导记忆再唤起后觅药行为的影响
分组:共分为14个组(n=10)。
Figure PCTCN2020119253-appb-000006
其余过程与实施例3一样。
结果见图9,给药组与对照组相比差异具有显著性。对于给药组来说,用0.5g/kg酒精训练CPP的组,甲磺酸伊马替尼给药后,1、5mg/kg伊马替尼未见明显效果,10、15、20、30mg/kg甲磺酸伊马替尼可显著减弱条件位置偏爱且不被点燃并呈剂量依赖性;未给药的大鼠,条件位置偏爱依然存在。用0.75g/kg酒精或训练CPP的组,甲磺酸伊马替尼给药后,1、5、10mg/kg伊马替尼未见明显效果,15、20、30mg/kg甲磺酸伊马替尼可显著减弱条件位置偏爱且不被点燃并呈剂量依赖性;未给药的大鼠,条件位置偏爱依然存在。说明甲磺酸伊马替尼与酒精配比大于等于1:50时可阻断成瘾后的觅药行为,抑制心理渴求,防治复燃。
实施例7:甲磺酸伊马替尼非条件性刺激刺激后给药(联合、复方)、环境线索刺激后给药、直接给药对大鼠吗啡成瘾后觅药行为及戒断后复吸的影响
通过建立吗啡条件位置偏爱(conditioned place preference,CPP)模型,研究30mg/kg甲磺酸伊马替尼直接给药、非条件性刺激刺激后给药(联合、复方)、以及环境线索诱导后给药对吗啡依赖后觅药行为及戒断后复吸的影响。
一、材料
药品:吗啡(青海制药厂),甲磺酸伊马替尼(Novartis PharmaStein AG)。
实验动物:SPF级SD雄性大鼠,体重180-220g。湖南斯莱克景达实验动物有限公司提供,动物合格证号为NO.420110200001750,生产许可证号:SCXK(湘)2017-0012。鼠饲料,购于武汉大学实验动物中心。
实验仪器:同实施例1。
二、实验方法
(1)吗啡CPP模型的建立
基础值测试:第1天,开放三箱间通道,启动计算机上CPP程序,大鼠由中间室放入,任其在三箱中自由活动15分钟,电脑同步记录其在各室中停留的时间。
基础值测试完后,根据CPP得分,将大鼠分为24个组(n=10):
Figure PCTCN2020119253-appb-000007
条件性位置偏爱训练:第2至9天,封闭三箱间通道。第2、4、6、8天,给药组皮下注射吗啡(10mg/kg)并放入伴药侧45分钟:对照组皮下注射生理盐水(1mL/kg)并放入非伴药侧45分钟。第3、5、7、9天,给药组及对照组大鼠均注射生理盐水(1mL/kg),给药组放入非伴药侧,对照组放入伴药侧,均为45分钟。每只大鼠的伴药侧是固定的。每组大鼠之后被放回饲养笼。
吗啡CPP测试:同实施例1。
(2)甲磺酸伊马替尼对觅药行为作用检测
在实验的第11天,对于物质线索诱导的大鼠,联合用药组提前30分钟注射吗啡(2、3、4mg/kg,s.c.)或生理盐水(1mL/kg,s.c.),然后腹腔给予30mg/kg甲磺酸伊马替尼,复方制剂给药组给予30mg/kg甲磺酸伊马替尼或吗啡(2、3、4mg/kg,i.p.)或生理盐水(1mL/kg)的混合物。环境线索诱导的大鼠放回伴药侧15分钟,然后腹腔注射甲磺酸伊马替尼30mg/kg或生理盐水1mL/kg;无诱导的大鼠则直接给予甲磺酸伊马替尼(30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.),然后将大鼠放回饲养笼,于24小时后进行条件位置偏爱行为学的测试。
(3)吗啡CPP重新测试
甲磺酸伊马替尼给药后第1天即第12天,第7天即第18天,测试大鼠对伴药箱的偏爱程度,15分钟,与基础值测试阶段相似。第19天,利用小剂量的吗啡(3mg/kg,s.c.)进行点燃。吗啡注射后将大鼠放入中间箱,开始15分钟的CPP值测试。非检测期间对大鼠不做任何处理。
三、实验结果
结果见图10,给药组与对照组相比差异具有显著性。10、20、30mg/kg甲磺酸伊马替尼给药,对所有给药组来说,可显著减弱条件位置偏爱;未给药的大鼠,条件位置偏爱依然存在。说明甲磺酸伊马替尼与吗啡以2:1配比给药可阻断成瘾后的觅药行为,抑制心理渴求。而用小剂量吗啡激发后,非条件性刺激诱导包括联合给药物和复方制剂组,诱导剂量的吗啡为3mg/kg时,用10、20、30mg/kg剂量大鼠(包括联合和复方)均未被点燃;环境诱导只有使用20、30mg/kg甲磺酸伊马替尼组未被点燃;而直接给药伊马替尼的组,全部被点燃。说明当用非条件刺激后给药(联合和复方)可以防止复吸,且只有当甲磺酸伊马替尼所用剂量与训练时用的吗啡剂量配比大于等于2:1,且非条件性刺激时吗啡剂量与训练时吗啡剂量比例小于等于1:3时,所有剂量均抑制觅药行为且不被点燃,很好的防治复燃;而用环境线索刺激后给药(联合和复方)只能部分阻止觅药行为,防止复燃效果弱;直接给药甲磺酸伊马替尼,只有甲磺酸伊马替尼的用量达到30mg/kg才能起到阻止觅药行为的作用,且防止复燃效果很弱。
实施例8:甲磺酸伊马替尼非条件性刺激刺激后给药(联合、复方)、环境线索刺激后给药、直接给药对大鼠可卡因成瘾后觅药行为及戒断后复吸的影响
参照实施例7,将成瘾药物吗啡换成可卡因,得到相似的结果(图11)。
实施例9:甲磺酸伊马替尼非条件性刺激后给药(联合、复方)、环境线索刺激后给药、直接给药对大鼠酒精成瘾后觅药行为及戒断后复吸的影响
分组:
Figure PCTCN2020119253-appb-000008
训练CPP时所用酒精剂量为0.75g/kg,第19天激发时所用酒精剂量为0.3g/kg。其余过程与实施例5一致。
结果见图12,给药组与对照组相比差异具有显著性。15、30mg/kg甲磺酸伊马替尼给药,对所有给药组来说,可显著减弱条件位置偏爱;未给药的大鼠,条件位置偏爱依然存在。说明甲磺酸伊马替尼与酒精以1:50配比给药可阻断成瘾后的觅药行为,抑制心理渴求。而用小剂量酒精激发后,物质线索诱导的包括联合给药物和复方制剂组,酒精诱导剂量的为0.25g/kg时,用15、30mg/kg的组的大鼠(包括联合和复方)都未被点燃;而环境诱导的组,只有使用30mg/kg甲磺酸伊马替尼的组未被点燃;而直接给药甲磺酸伊马替尼的组,全部被点燃。说明当用非条件刺激后给药(联合和复方)可以防止复吸,且只有当甲磺酸伊马替尼所用剂量与训练时用的酒精剂量配比大于等于1:50且非条件性刺激时用到的酒精剂量与训练时用到的酒精剂量比小于等于1:3时吗啡时有此效果;而用环境刺激后给药(联合和复方)的方式只能阻止觅药行为而无法防止复吸;直接给药甲磺酸伊马替尼,只有甲磺酸伊马替尼的用量达到30mg/kg才能起到阻止觅药行为的作用,且无法防止复吸。
实施例10:甲磺酸伊马替尼对小鼠吗啡CPP形成后戒断症状的影响
一、材料
药品:吗啡(青海制药厂),甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级SD雄性小鼠,体重32-36g。湖南斯莱克景达实验动物有限公司提供,动物合格证号为NO.42010200001574,生产许可证号:SCXK(湘)2016-0002。鼠饲料,购于武汉大学实验动物中心。
实验仪器:5升透明烧杯,秒表。
二、实验方法
(1)训吗啡CPP
测基线值。
动物分组与处理:基线值测完后,将小鼠分为12组(n=10),分别为:
Figure PCTCN2020119253-appb-000009
其余过程与实施例5相似。
(2)观察戒断症状
实验当天,对于联合给药组,给药组给予不同剂量的甲磺酸伊马替尼(1.5、7.5、15、30、45mg/kg,i.p.),对照组小鼠注射生理盐水(1mL/kg,i.p.),0.5h后,所有小鼠注射小剂量吗啡(5mg/kg,s.c.),1h后注射纳洛酮(2mg/kg,s.c.),然后观察半个小时戒断症状,观察指标为跳跃次数和体重变化量;对于复方制剂给药组,给药组皮下给予不同剂量甲磺酸伊马替尼(1.5、7.5、15、30、45mg/kg)或生理盐水(1mL/kg)与吗啡(5mg/kg)的混合试剂,1h后给予纳洛酮(2mg/kg,s.c.),然后观察半个小时戒断症状,观察指标为跳跃次数和体重变化量。
三、实验结果
结果见图13,与对照组相比,不管是联合给药还是复方给药,15、30、45mg/kg甲磺酸伊马替尼都可以减轻小鼠的戒断症状。
实施例11:甲磺酸伊马替尼对小鼠可卡因CPP形成后戒断症状的影响
一、材料
药品:可卡因(青海制药厂),甲磺酸伊马替尼(Selleck Chemicals)。
实验仪器:条件位置偏爱仪、高架十字迷宫
二、实验方法:
(1)训可卡因CPP
测基线,基线值测完后,将大鼠分为12组(n=10),分别为:
Figure PCTCN2020119253-appb-000010
训练所用的可卡因剂量为10mg/kg,过程与实施例5中训练可卡因CPP一致。
(2)高架十字迷宫
CPP形成之后,停药72小时,随后进行高架十字迷宫实验。
将小鼠腹腔注射1.5、7.5、15、30、45mg/kg甲磺酸伊马替尼或者1mL/kg生理盐水,1小时后将小鼠放在高架迷宫中央,统计小鼠进入闭合臂的次数和在闭合臂中停留的时间。
三、试验结果
结果见图14,与对照组相比,给药组具有明显的差异,给药30mg/kg的大鼠在闭合臂中停留的时间和进入闭合臂的次数都显著低于其他组,说明当甲磺酸伊马替尼与训练可卡因CPP的可卡因剂量大于等于2:1是可以抑制可卡因成瘾后戒断症状。
实施例12:甲磺酸伊马替尼对小鼠酒精CPP形成后戒断症状的影响
一、实验仪器:条件位置偏爱仪、高架十字迷宫。
二、实验方法
(1)酒精CPP形成
测基线,基线测完后,将大鼠分,14个组:
Figure PCTCN2020119253-appb-000011
CPP形成所用酒精剂量为0.75g/kg。其余过程与实施例6一样。
(2)高架十字迷宫
CPP形成之后,停药72小时,随后进行高架十字迷宫实验。
将小鼠腹腔注射1.5、7.5、15、30、45mg/kg甲磺酸伊马替尼或者1mL/kg生理盐水,1小时后将小鼠放在高架迷宫中央,统计小鼠进入闭合臂的次数和在闭合臂中停留的时间。
三、实验结果
结果见图15,与对照组相比,不管是联合给药还是复方给药,15、30、45mg/kg甲磺酸伊马替尼都可以减轻小鼠的戒断症状。
实施例13:甲磺酸伊马替尼对大鼠吗啡敏化形成和表达的影响的剂量效应
由实施例1、4和7的结果甲磺酸伊马替尼及其与阿片类药物剂量配比使用可抑制大鼠阿片类药物成瘾和戒断后复吸。本实验通过建立大鼠吗啡敏化模型,探讨甲磺酸伊马替尼与阿片类药物配比使用对吗啡所致的大鼠高发性自发活动的改善作用,旨在选择一种疗效确切、毒性小的抗吗啡成瘾高发性自发活动的药物。
一、材料
药品:吗啡(青海制药厂),甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级SD雄性大鼠,体重180-220g。湖南斯莱克景达实验动物有限公司提供,动物合格证号为NO.4201200001721,生产许可证号:SCXK(湘)2017-0012。鼠饲料,购于武汉大学实验动物中心。
实验仪器:自发活动检测箱(中国医学科学院药物研宄所研制):实验采用计算机自动控制。装置由四个自发活动观察箱、视频合成器、视频图样采样卡和分析软件等组成。本系统对大鼠活动进行视频跟踪,自动记录大鼠活动轨迹及活动次数。自发活动评价指标是大鼠一定时间内(如60分钟)的活动总次数,即总次数增多显示自发活动增加。
二、实验方法
动物造模:实验前一天(第0天),对实验大鼠进行活动量基线测定,根据测定结果随机分为14个组(n=10):
Figure PCTCN2020119253-appb-000012
对形成的影响:实验第1至5天,提前30分钟腹腔给药生理盐水(1mL/kg)或甲磺酸伊马替尼(1、5、10、20、30mg/kg),然后皮下注射吗啡(10mg/kg);或皮下给予甲磺酸伊马替尼或者生理盐水与吗啡的混合物。如此实验重复5天。
对表达的影响:实验第1至5天,皮下注射吗啡(10mg/kg)或生理盐水(1mL/kg),如此实验重复5天。然后戒断5天,于实验第11天,先注射甲磺酸伊马替尼(1、5、10、20、30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.),然后以小剂量吗啡(5mg/kg)皮下注射激发,检测各组自发活动行为60分钟,观察自发活动行为的变化。
三、实验结果:
结果见图16,对于形成的影响:大鼠经过5天吗啡连续给药后,给予30mg/kg剂量甲磺酸伊马替尼的大鼠与给予生理盐水干预的大鼠相比具有显著性差异,可以抑制大鼠吗啡敏化的形成。
对于表达的影响:在第11天皮下注射吗啡后,可观察到给予30mg/kg剂量甲磺酸伊马替尼的大鼠与给予生理盐水干预的大鼠相比具有显著性差异,可以抑制大鼠吗啡敏化的表达。
实施例14:甲磺酸伊马替尼对大鼠可卡因敏化形成和表达的影响的剂量效应
参照实施例13,将成瘾药物吗啡换成可卡因,得到相似的结果(图17)。
实施例15:甲磺酸伊马替尼对大鼠酒精敏化形成和表达的影响的剂量效应
造模时酒精所用剂量为0.75g/kg,甲磺酸伊马替尼的剂量为1、5、10、15、20、30mg/kg。
其余过程与实施例13一致。
结果见图18,对于形成的影响:大鼠经过5天酒精连续给药后,给予15、20、30mg/kg剂量甲磺酸伊马替尼的大鼠与给予生理盐水干预的大鼠相比具有显著性差异,可以抑制大鼠酒精敏化的形成。
对于表达的影响:在第11天皮下注射酒精后,可观察到给予中15、20、30mg/kg剂量甲磺酸伊马替尼的大鼠与给予生理盐水干预的大鼠相比具有显著性差异,可以抑制大鼠酒精敏化的表达。
实施例16:甲磺酸伊马替尼对大鼠食物成瘾的形成的影响的剂量效应
一、材料
药品及试剂:自制高糖高脂食物(蔗糖含量10%,脂类含量30%);甲磺酸伊马替尼(Novartis PharmaStein AG)。
实验动物:SPF级SD雄性大鼠,体重220-250g。湖北省实验动物研究中心提供,动物合格证号为NO.42010200001670,生产许可证号:SCXK(鄂)2017-0012。鼠饲料,购于武汉大学实验动物中心。
实验仪器:同实施例1。
二、实验方法
高糖高脂食物CPP模型的建立
基础值测试:第1天,开放三箱间通道,启动计算机上CPP程序,大鼠由中间室放入,任其在三箱中自由活动15分钟,电脑同步记录其在各室中停留的时间。
实验动物分组:根据测定的基础值,将大鼠分为12个组(n=8):
Figure PCTCN2020119253-appb-000013
条件性位置偏爱训练:第2至9天,封闭三箱间通道。第2、4、6、8天,实验组提前30分钟注射不同剂量甲磺酸伊马替尼(1、5、10、20、30mg/kg,i.p.),后自由进食,并放入伴药侧45min;对照组在相应的时间点注射生理盐水(1mL/kg,i.p.),后自由进食,并放入非伴药侧45min。第3、5、7、9天,实验组及对照组大鼠均注射生理盐水,并给予清水,给药组放入非伴药侧,对照组放入伴药侧,均为45min。每只大鼠的伴药侧是固定的。每组大鼠实验完后放回饲养笼。
CPP测试:同实施例1。
检测指标:大鼠训练后,采用条件位置偏爱箱检测高糖高脂食物成瘾情况,条件位置偏爱评分(CPP Score)即反应大鼠成瘾行为的形成情况,CPP Score增高,成瘾行为形成。
三、实验结果
结果见图19,甲磺酸伊马替尼对于高糖高脂食物成瘾形成的影响呈剂量效应;1、5、10mg/kg甲磺酸伊马替尼对高糖高脂食物成瘾无显著性影响,而20、30mg/kg剂量甲磺酸伊马替尼可显著抑制大鼠高糖高脂食物成瘾的形成。
实施例17:甲磺酸伊马替尼对于高糖高脂食物成瘾形成后再巩固及戒断后复吸的影响的剂量效应
一、材料
药品及试剂:自制高糖高脂食物(蔗糖含量10%,脂类含量30%);甲磺酸伊马替尼(Novartis PharmaStein AG)。
实验动物:SPF级SD雄性大鼠,体重220-250g。湖北省实验动物研究中心提供,动物合格证号为NO.42010200001673,生产许可证号:SCXK(鄂)2017-0012。鼠饲料,购于武汉大学实验动物中心。
实验仪器:同实施例1。
二、实验方法
(1)高糖高脂食物CPP模型的建立
基础值测试:第1天,开放三箱间通道,启动计算机上CPP程序,大鼠由中间室放入,任其在三箱中自由活动15分钟,电脑同步记录其在各室中停留的时间。
根据基线测试结果,将大鼠分为18个组(n=8):
Figure PCTCN2020119253-appb-000014
Figure PCTCN2020119253-appb-000015
条件性位置偏爱训练:第2至9天,封闭三箱间通道。第2、4、6、8天,实验组自由进食高糖高脂食物放入伴药侧45分钟;对照组给于清水并放入非伴药侧45分钟。第3、5、7、9天,实验组及对照组大鼠均给予清水,实验组放入非伴药侧,对照组放入伴药侧,均为45分钟。每只大鼠的伴药侧是固定的。每组大鼠之后被放回饲养笼。
CPP测试:第10天进行CPP测试,与基础值测试阶段相似。开放三箱间通道,不予任何处理,启动计算机上CPP程序,大鼠由中间室放入,任其在三箱中自由活动15分钟,电脑同步记录其在各室中停留的时间。偏爱分数(CPP score)被定义为伴药室所呆时间与非伴药室所呆时间的差值。将大鼠在伴药箱中CPP后测值与前侧值比较确定大鼠是否形成CPP。并根据CPP后测值剔除未形成CPP的大鼠,将动物进行匹配分组。
(2)环境线索或非条件性再暴露后诱发觅药行为模型的建立
在实验的第11天,对于物质线索诱导的大鼠,给予少量高糖高脂食物后注射不同剂量的甲磺酸伊马替尼(1、5、10、20、30mg/kg);对于环境线索诱导的大鼠暴露于给药箱15min后注射甲磺酸伊马替尼(1、5、10、20、30mg/kg);对于直接给药的大鼠,无任何诱导,直接给药不同剂量伊马替尼(1、5、10、20、30mg/kg);然后将所有大鼠放回饲养笼中。
(3)CPP重新测试
甲磺酸伊马替尼给药后第1天和第7天,即实验的第12和18天,测试大鼠对伴药箱的偏爱程度,15分钟,与基础值测试阶段相似。中间第13天到第17天,对大鼠不做任何处理;第19天,给予少量高糖高脂食物点燃,并测试条件位置偏爱程度。
检测指标:大鼠训练后,采用条件位置偏爱箱检测高糖高脂食物成瘾情况,条件位置偏爱评分(CPP Score)即反应大鼠成瘾行为的形成情况,CPP Score增高,成瘾行为形成。
三、实验结果
结果见图20,对于物质线索和环境线索诱导以及无诱导直接给药的大鼠来说,未给药的大鼠,条件位置偏爱依然存在;给予10、20、30mg/kg甲磺酸伊马替尼处理后可抑制觅食行为;但是且1周后,对于环境诱导的大鼠,只有30mg/kg甲磺酸伊马替尼不被点燃,对于物质诱导的大鼠,使用10、20、30mg/kg剂量的甲磺酸伊马替尼均不被点燃;而直接给药的大鼠,无论使用何种剂量甲磺酸伊马替尼,均可以被点燃。说明物质线索诱导后再给予甲磺酸伊马替尼比环境诱导后给予或直接给予更为有效。
实施例18:大鼠赌博任务条件下甲磺酸伊马替尼对大鼠赌博行为的影响的剂量影响
一、材料
实验动物:SPF级SD雄性大鼠,体重275-300g。湖北省实验动物研究中心提供,动物合格证号为NO.42010200001574,生产许可证号:SCXK(鄂)2017-0012。鼠饲料,购于武汉大学实验动物中心。
实验仪器:五孔操作室,每个操作室都被封闭在一个通风的减声柜中。每个操作室底部上方2厘米处设置了5个排列的响应孔,每个孔的后面都设置了一个刺激灯,用水平红外光束可以探测到这些小孔的鼻戳反应。对面的墙中间有一个食品库,也有一个红外光束和一个托盘灯,可以通过一个外部的颗粒分配器将45毫克的蔗糖颗粒送入其中。房间可以用室内灯光照明,并由运行在IBM兼容计算机上的CAW用Med PC编写的软件控制。
二、实验方法:
实验动物分组:共6个组(n=10),即生理盐水组,甲磺酸伊马替尼1、5、10、20、30mg/kg共6个组。建立大鼠赌博行为模型:首先让动物每天两次,每次30分钟适应操作室,在此期间,蔗糖颗粒被放置在反应孔和食物库上。适应完成后,对动物进行训练,使其在10秒内将鼻子戳入一个发光的反应孔中以获得奖励,刺激光的空间位置在不同的实验中会出现在1、2、4和5孔的不同的孔。每一阶段包括100次试验,持续约30分钟。然后,对动物进行7次强制选择的rGT(或对照组的rGT变体)训练,然后再进行完全自由选择任务。这就确保了所有动物在四种强化条件下都有相同的经验,并旨在防止对特定洞产生简单的偏见。动物选择某一特定选项的试验百分比是根据参考文献中公式计算的:某一特定选项的选择数/总选择数为100(Di C P,Manvich D F,Pushparaj A,et al.Effects of disulfiram on choice behavior in a rodent gambling task:association with catecholamine levels[J].Psychopharmacology,2018,235(1):23-35),每次实验持续30分钟,实验对象在被照明的食物库上做一个 鼻子戳的回应,这一反应熄灭了托盘灯,并触发了5秒试验间隔(ITI)的启动。在ITI结束时,第1、2、4和5个孔被照亮10秒(在训练中使用的任务的强制选择版本中,只有一个孔被照亮)。如果动物在10秒内没有反应,试验就会被记为遗漏,这时托盘灯就会被重新点亮,动物就可以开始新的试验。
选项1 选项2 选项3 选项4
1粒蔗糖,p=0.9 2粒蔗糖,p=0.8 3粒蔗糖,p=0.5 4粒蔗糖,p=0.4
5s惩罚时间,p=0.1 10s惩罚时间,p=0.2 30s惩罚时间,p=0.5 40s惩罚时间,p=0.6
对上表的解释:实验仪器中的四个孔分别设置了不同的奖赏概率和惩罚概率,以及相应的奖赏蔗糖数量和惩罚时间,在惩罚时间内没有任何食物奖励,这就表明了在30分钟内,完成一系列选择后,如果只选择选项2将会得到最佳的收益。
训练到大鼠的基线稳定为止,且rGT组的大鼠始终表现为偏向于两粒蔗糖的选择,即最佳收益选择;总体倾向为P2>P4>P1>P3,但事实上,最佳的选择排名为P2>P1>P3>P4。
训练后,大鼠服用药物,基线稳定之后的第一天,环境线索诱导的大鼠,将大鼠像适应期时一样放入实验装置中,但不启动实验,然后给予甲磺酸伊马替尼(1、5、10、20、30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.),直接给药组的大鼠即不放入实验装置中而直接给予大鼠伊马替尼(1、5、10、20、30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.),然后将所有大鼠放回笼中,给药后第1天,进行行为测试。给药后第7天,再次进行行为测试。
三、实验结果
结果见图21:对于暴露于环境的大鼠,甲磺酸伊马替尼给药后的,相比对照组,10、20、30mg/kg甲磺酸伊马替尼显著增加了rGT中的最优选择即P2,减少了P4的选择;但对于直接给药的大鼠,任何剂量的甲磺酸伊马替尼均没有产生显著性的作用。结果证明,对于大鼠的赌博任务,基线稳定之后,给药之前将动物给予环境线索诱导比起直接给药可增强改善效果。
结论:以上实施例结果显示,成瘾物质特异性激活伏隔核并非其他脑区神经元c-kit受体及受体后ERK、AKT、PKMzeta信号通路;甲磺酸伊马替尼通过阻断c-kit受体及其信号通路抑制心理渴求行为,从而达到预防成瘾物质和成瘾行为的作用和防治复吸的效果。同样,伊马替尼及其衍生物与成瘾物质或成瘾行为相关线索配比联合用药或复方制剂可预防和治疗成瘾和戒断后复吸。
实施例19至实施例23是针对马替尼及其衍生物和尼古丁或其类似物在成瘾治疗领域的应用。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例19:甲磺酸伊马替尼与尼古丁剂量配比效应对大鼠尼古丁成瘾形成的影响及分子机制
实验19:甲磺酸伊马替尼与尼古丁剂量配比效应对大鼠尼古丁成瘾形成的影响
一、材料
药品:尼古丁(Nicotine,Apexbio),甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级SD雄性大鼠,体重180-220g。三峡大学实验动物中心提供,动物合格证号为NO.42010200001750,生产许可证号:SCXK(鄂)2017-0012。鼠饲料,购于武汉大学实验动物中心。
实验仪器:条件性位置偏爱仪(中国医学科学院药物研宄所研制):实验采用计算机自动控制。装置由三箱构成的条件性位置偏爱箱:两个侧室和一个中间室。三室由可移动的隔板分开,内外均为黑色。其中A箱和B箱位于中间箱的两侧,大小相同,A箱侧壁上有9盏能发出黄光二极管构成的正方形,底板为不锈钢钢条,B箱底板为不锈钢网格。大鼠在各箱的停留时间和出入次数可通过数据传送到计算机,自动收集记录行为学资料。
二、实验方法
基础值测试:第1天,拿掉隔板,开放三箱的通道,启动计算机上CPP程序,大鼠由中间室放入,任其在三箱中自由活动15分钟,电脑同步记录其在各室中停留的时间。根据测试结果进行淘汰,分为6组(尼古丁+生理盐水组、尼古丁+甲磺酸伊马替尼组(1mg/kg)、尼古丁+甲磺酸伊马替尼组(5mg/kg)、尼古丁+甲磺酸伊马替尼组(10mg/kg)、尼古丁+甲磺酸伊马替尼组(20mg/kg)、尼古丁+甲磺酸伊马替尼组(30mg/kg)),每组10只,并区分各大鼠的伴药侧与非伴药侧。
条件性位置偏爱训练:第2至9天,封闭三箱间通道,其中甲磺酸伊马替尼和尼古丁采用联合给药方式或复方制剂给药方式。第2、4、6、8天,各组腹腔注射不同剂量甲磺酸伊马替尼(1、5、10、20、30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.),30分钟后皮下注射尼古丁(0.25、0.5mg/kg,s.c.),或每组大鼠同时皮下注射不同剂量配比的甲磺酸伊马替尼(1、5、10、20、30mg/kg,s.c.)或生理盐水(1mL/kg,s.c.)和尼古丁(0.25、0.5mg/kg,s.c.)混合试剂,并放入伴药侧45分钟;第3、5、7、9天,尼古丁组大鼠均腹腔注射生理盐水(1mL/kg,i.p.), 30分钟后皮下注射生理盐水(1mL/kg,s.c.),或每组大鼠皮下注射生理盐水(1mL/kg,s.c.),并放入非伴药侧45分钟。每只大鼠的伴药侧是固定的。每组大鼠实验完后放回饲养笼。
尼古丁CPP测试:第10天,CPP测试,与基础值测试阶段相似。开放三箱间的通道,不予任何注射,启动计算机上CPP程序,大鼠由中间室放入,任其在箱中自由活动15分钟,电脑同步记录其在各室中停留的时间。CPP分值(CPP score)为伴药侧时间与非伴药侧时间的差值。将大鼠在伴药箱中条件位置偏爱后测值与前测值比较确定大鼠是否形成条件位置偏爱。
三、实验结果
结果见图23A,甲磺酸伊马替尼+尼古丁联合给药组的条件位置偏爱分值和生理盐水+尼古丁组相比差异具有显著性,并呈剂量配比依赖性,腹腔注射10、20、30mg/kg甲磺酸伊马替尼可抑制大鼠0.25mg/kg尼古丁条件性位置偏爱的形成,而1、5mg/kg甲磺酸伊马替尼不具有抑制性;未给予甲磺酸伊马替尼的大鼠,条件性位置偏爱依然存在。图23B显示,腹腔注射20、30mg/kg甲磺酸伊马替尼可抑制大鼠0.5mg/kg尼古丁条件性位置偏爱的形成,而1、5、10mg/kg甲磺酸伊马替尼则不具有抑制性,说明甲磺酸伊马替尼与尼古丁呈剂量配比大于或等于40:1时可抑制大鼠尼古丁成瘾的形成。同样,图23C、图23D中甲磺酸伊马替尼和尼古丁复方制剂给药也得到相似结果。
实验20:甲磺酸伊马替尼预防尼古丁成瘾分子新机制
由实验19的结果可知,无论联合给药还是混合制剂,甲磺酸伊马替尼(10-30mg/kg)对尼古丁CPP形成有不同程度的抑制作用。本实验采用免疫组化和多色免疫荧光分子实验检测药物奖赏脑区c-kit磷酸化水平的变化及其下游激活靶分子,确定尼古丁成瘾分子新机制和甲磺酸伊马替尼防治成瘾的作用机制。
一、材料
药品:尼古丁(Nicotine,Apexbio),甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级SD雄性大鼠,体重180-220g。三峡大学实验动物中心提供,动物合格证号为NO.42010200001704,生产许可证号:SCXK(鄂)2017-0012。鼠饲料,购于武汉大学实验动物中心。
二、实验方法
随即将动物分为生理盐水+生理盐水组、生理盐水+甲磺酸伊马替尼组、尼古丁+生理盐水组、尼古丁+甲磺酸伊马替尼组,每组10只,各组大鼠腹腔给予生理盐水(1mL/kg,i.p.)或甲磺酸伊马替尼(30mg/kg,i.p.),30分钟后皮下注射尼古丁(0.5mg/kg,s.c.),60分钟后观察对中脑边缘多巴胺系统包括VTA、伏隔核、杏仁体、海马、前额皮层的c-kit活性的变化,免疫组化观察c-kit磷酸化水平的变化,多色免疫荧光共标确定其下游激活靶分子,确定尼古丁成瘾分子新机制和甲磺酸伊马替尼防治成瘾的作用机制。
三、实验结果
结果见图24,急性尼古丁给药后,免疫组化和多色免疫荧光共标结果显示,特异性激活伏隔核并非其他脑区神经元c-kit受体及受体后多种信号转导通路如PKC、PI3K-AKT、ERK等调节激酶活性、蛋白表达、基因表达与调控启动尼古丁奖赏、记忆和神经可塑性过程,说明伏隔核c-kit受体是尼古丁急性给药激活特异性脑区;甲磺酸伊马替尼通过阻断c-kit受体抑制多种信号转导通路如PKC、PI3K-AKT、ERK等调节激酶活性、蛋白表达、基因表达与调控启动尼古丁奖赏、记忆和神经可塑性过程,从而达到预防尼古丁成瘾的作用。
实施例20:甲磺酸伊马替尼对大鼠尼古丁成瘾后非条件性刺激诱导记忆再唤起后觅药行为的影响
由实施例19可知,伊马替尼及其衍生物甲磺酸伊马替尼通过抑制伏隔核区域c-kit磷酸化活性来抑制大鼠尼古丁成瘾的形成,本实施例通过建立条件性位置偏爱实验模型,探讨甲磺酸伊马替尼与尼古丁剂量配比效应对大鼠尼古丁成瘾复吸的影响。
一、材料
药品:尼古丁(Nicotine,Apexbio),甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级SD雄性大鼠,体重180-220g。三峡大学实验动物中心提供,动物合格证号为NO.42010200001855,生产许可证号:SCXK(鄂)2017-0012。鼠饲料,购于武汉大学实验动物中心。
实验仪器:同实施例19
二、实验方法
基础值测试:同实施例19
条件性位置偏爱训练:第2至9天,封闭三箱间通道,大鼠皮下注射0.25、0.5mg/kg尼古丁,并放入伴药侧45分钟;第3、5、7、9天,各组大鼠均皮下注射生理盐水(1mL/kg,s.c.),并放入非伴药侧45分钟。每只 大鼠的伴药侧是固定的。每组大鼠实验完后放回饲养笼。
尼古丁CPP测试:同实施例19
模型建立:第11天,将大鼠按照CPP分值分为12组
Figure PCTCN2020119253-appb-000016
大鼠暴露于伴药侧或皮下注射0.25、0.5mg/kg尼古丁,15分钟后,腹腔注射不同剂量甲磺酸伊马替尼(1、5、10、20、30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.);或者每组大鼠同时皮下注射不同剂量配比的甲磺酸伊马替尼(1、5、10、20、30mg/kg,s.c.)或生理盐水(1mL/kg,s.c.)和尼古丁(0.25、0.5mg/kg,s.c.)混合试剂。
在实验的第11天,将大鼠注射0.15mg/kg尼古丁后放入伴药侧15分钟,然后给予不同剂量甲磺酸伊马替尼(1、5、10、20、30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.);或注射尼古丁与甲磺酸伊马替尼的混合物后放入伴药侧15分钟。
尼古丁CPP重新测试:甲磺酸伊马替尼给药后第1天和第7天,即第12天和第18天,测试大鼠伴药箱的偏爱程度,与基础值测试阶段相似。中间第13天和第17天,对大鼠不做任何处理。
三、实验结果
结果可见图25A、图25B,不管是联合给药还是反复给药,对于0.25mg/kg尼古丁训练CPP的大鼠来说,10、20、30mg/kg甲磺酸伊马替尼对条件性线索暴露引起的尼古丁觅药行为有不同程度的抑制作用;图25C、图25D显示,对于0.5mg/kg尼古丁训练的大鼠来说,不管是联合给药还是反复给药,20、30mg/kg甲磺酸伊马替尼对其觅药行为有明显的抑制。表明非条件性线索引起的尼古丁成瘾的觅药行为可被得到有效治疗,其中训练尼古丁CPP的剂量与甲磺酸伊马替尼剂量配比需小于1:40,无论是联合给药还是混合制剂均有此效果。
实施例21:甲磺酸伊马替尼非条件性刺激后给药(联合、复方)、环境线索刺激后给药、直接给药对大鼠尼古丁成瘾后觅药行为及戒断后复吸的影响。
一、材料
药品:尼古丁(Nicotine,Apexbio),甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级SD雄性大鼠,体重180-220g。三峡大学实验动物中心提供,动物合格证号为NO.42010200001721,生产许可证号:SCXK(鄂)2017-0012。鼠饲料,购于武汉大学实验动物中心。
实验仪器:同实施例19
分组:
Figure PCTCN2020119253-appb-000017
条件性位置偏爱训练:第2至9天,封闭三箱间通道。第2、4、6、8天,给药组皮下注射尼古丁(0.5mg/kg)并放入伴药侧45分钟:对照组皮下注射生理盐水(1mL/kg)并放入非伴药侧45分钟。第3、5、7、9天,给药组及对照组大鼠均注射生理盐水(1mL/kg),给药组放入非伴药侧,对照组放入伴药侧,均为45分钟。每只大鼠的伴药侧是固定的。每组大鼠之后被放回饲养笼。
吗啡CPP测试:同实施例19。
(2)甲磺酸伊马替尼对觅药行为作用检测
在实验的第11天,对于物质线索诱导的大鼠,联合用药组提前30分钟注射吗尼古丁(0.1、0.15mg/kg,s.c.)或生理盐水(1mL/kg,s.c.),然后腹腔给予20、30mg/kg甲磺酸伊马替尼,复方制剂给药组给予30mg/kg甲磺酸伊马替尼或尼古丁(0.1、0.15mg/kg,i.p.)或生理盐水(1mL/kg)的混合物。环境线索诱导的大鼠放回伴药侧 15分钟,然后腹腔注射甲磺酸伊马替尼20、30mg/kg或生理盐水1mL/kg;无诱导的大鼠则直接给予甲磺酸伊马替尼(20、30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.),然后将大鼠放回饲养笼,于24小时后进行条件位置偏爱行为学的测试。
(3)吗啡CPP重新测试
甲磺酸伊马替尼给药后第1天即第12天,第7天即第18天,测试大鼠对伴药箱的偏爱程度,15分钟,与基础值测试阶段相似。第19天,利用小剂量的尼古丁(0.15mg/kg,s.c.)进行点燃。吗啡注射后将大鼠放入中间箱,开始15分钟的CPP值测试。非检测期间对大鼠不做任何处理。
三、实验结果
结果见图26,给药组与对照组相比差异具有显著性。20、30mg/kg甲磺酸伊马替尼给药,对所有给药组来说,可显著减弱条件位置偏爱;其他给药剂量的大鼠的大鼠,条件位置偏爱依然存在。说明甲磺酸伊马替尼与尼古丁以40:1配比给药可阻断成瘾后的觅药行为,抑制心理渴求。而用小剂量尼古丁或其类似物激发后,非条件性刺激诱导包括联合给药物和复方制剂组,诱导剂量的尼古丁为0.1mg/kg时,用20、30mg/kg剂量大鼠(包括联合和复方)均未被点燃;环境诱导只有使用30mg/kg甲磺酸伊马替尼组未被点燃;而直接给药伊马替尼的组,全部被点燃。说明当用非条件刺激后给药(联合和复方)可以防止复吸,且只有当甲磺酸伊马替尼所用剂量与训练时用的尼古丁剂量配比大于等于40:1,且非条件性刺激时尼古丁剂量与训练时尼古丁剂量比例小于等于3:10时,所有剂量均抑制觅药行为且不被点燃,很好的防治复燃;而用环境线索刺激后给药(联合和复方)只能部分阻止觅药行为,防止复燃效果弱;直接给药甲磺酸伊马替尼,只有甲磺酸伊马替尼的用量达到30mg/kg才能起到阻止觅药行为的作用,且防止复燃效果很弱。
实施例22:甲磺酸伊马替尼与尼古丁剂量配比效应对尼古丁戒断症状的影响
由实施例19可知,伊马替尼及其衍生物甲磺酸伊马替尼通过抑制伏隔核区域c-kit磷酸化活性来抑制大鼠尼古丁成瘾的形成以及复吸,本实施例通过建立尼古丁成瘾模型,探讨甲磺酸伊马替尼与尼古丁剂量配比效应对大鼠尼古丁戒断症状的影响。
一、材料
药品:尼古丁(Nicotine,Apexbio),甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级SD雄性大鼠,体重180-220g。三峡大学实验动物中心提供,动物合格证号为NO.42010200001750,生产许可证号:SCXK(鄂)2017-0012。鼠饲料,购于武汉大学实验动物中心。
实验仪器:条件性位置偏爱仪(同实施例19);自发活动检测箱(中国医学科学院药物研宄所研制):实验采用计算机自动控制。装置由四个自发活动观察箱、视频合成器、视频图样采样卡和分析软件等组成。本系统对大鼠活动进行视频跟踪,自动记录大鼠活动轨迹及活动次数。自发活动评价指标是大鼠一定时间内(如60分钟)的活动总次数,即总次数增多显示自发活动增加。
二、实验方法
尼古丁成瘾模型建立:实施例19大鼠0.25、0.5mg/kg尼古丁成瘾后,分为三组(尼古丁+生理盐水组、尼古丁+美加明组(0.5mg/kg)、尼古丁+甲磺酸伊马替尼组,每组10只),另外完全未经尼古丁处理的生理盐水+生理盐水组作为对照组。
尼古丁戒断模型建立:24小时后,尼古丁组大鼠腹腔注射1、5、10、20、30mg/kg甲磺酸伊马替尼,30分钟后皮下注射0.15mg/kg尼古丁,或将1、5、10、20、30mg/kg甲磺酸伊马替尼与0.15mg/kg尼古丁制备成混合注射剂后给药。60分钟后采用自发活动箱,测定其自发活动量。
三、实验结果
结果可见图27A显示,尼古丁成瘾大鼠给予美加明后,戒断症状得到激发,自发活动量明显下降,给予甲磺酸伊马替尼后,10、20、30mg/kg,而不是1、5mg/kg可不同程度减弱0.25mg/kg尼古丁成瘾戒断症状,提高活动量;图27B显示,20、30mg/kg,而不是1、5、10mg/kg甲磺酸伊马替尼可减弱0.5mg/kg尼古丁戒断症状,提高自发活动量,表明甲磺酸伊马替尼与尼古丁的剂量配比在大于或等于40:1时可减弱尼古丁成瘾戒断症状。
实施例23:甲磺酸伊马替尼对尼古丁患者烟瘾的影响
由以上施例可知,甲磺酸伊马替尼通过抑制伏隔核区域c-kit磷酸化活性来抑制大鼠尼古丁成瘾的形成以及复吸,且有效剂量在10-30mg/kg,安全剂量范围对应关系如图28所示,甲磺酸伊马替尼是临床使用的药物,使用剂量在每天400mg以下很少有副作用。基于以上有效性和安全性,通过伦理委员会批准,申请ICH-GCP临床试验(注册批号:CHICTR1800019507),探讨甲磺酸伊马替尼对尼古丁患者烟瘾的影响。
一、药品:甲磺酸伊马替尼(100mg/片,诺华公司产品)。
研究目的:评估甲磺酸伊马替尼片治疗物质成瘾患者的疗效。
评价指标:
1)评价服药后患者戒断症状的变化;
2)评价服药后患者心理渴求变化;
3)生命体征(包括心率、体温、呼吸、血压)、体格检查等。
二、试验设计
采用随机双盲对照设计,包括筛选期、治疗期和30天随访期。
入选标准:
·符合DSM-V-TR物质依赖诊断标准的自愿脱瘾患者;
·18-60岁(包括两端),无其他精神心理和躯体疾病,男女不限;
·BMI:19-35kg/㎡(包括两端);
·阿片依赖患者戒断后1-180天内,尼古丁和酒精戒断后1-3天的患者;
·能够理解本研究的程序和方法,愿意严格遵守临床试验方案完成本试验,并自愿签署知情同意书。
排除标准:
·血液系统疾病;
·酒精或碘伏过敏史;
·胃肠道疾病者;
·接受过输血或献血者;
·妊娠或哺乳期女性,或具有生育能力的男性或女性不愿意在试验期间避孕者;
·心脑血管疾病和代谢性疾病等;
·活动性感染者;
·研究者认为患者具有任何可能影响本研究的疗效或安全性评价的其他因素存在。
三、安全性评价
任何不良事件(尤其关注尿潴留、全身浮肿、粒细胞上升等不良事件)、生命体征、体格检查、心电图等检查结果均作为安全性评价指标。
四、试验方案
尼古丁依赖自愿受试患者经过≤1天的筛选期,筛选合格后进入为期3天的治疗期,每组10例,接受药物治疗。每天一次早晨抽少量烟后口服给药,每次3片,连续给药3天,治疗期结束后7天内每日进行电话随访,30天内一周一次电话随访。整个研究期间分别在给药前后和随访期分别进行戒断症状与心理渴求评价,按照身心状态填写相关评价表,在研究期间住院观察,不能使用方案规定以外的其他戒毒药品,遵循医生治疗方案管理。
五、实验结果
临床戒烟受试者研究结果显示给药3天,给药第1、7、30天随访,可控制烟瘾80-90%以上,完全可以戒掉烟瘾,效果很好,如图29所示,此结果为药物有效性和安全性研究和申报新药奠定了坚实的基础,有望应用到临床医药市场,改变目前无药可治的现状。
结论:伊马替尼及其衍生物甲磺酸伊马替尼与尼古丁或其类似物以大于或等于40:1的剂量配比使用可防治其成瘾形成与复吸,并减弱尼古丁成瘾戒断症状,且此剂量在目前临床使用剂量安全范围内,如图28所示。此外,相比于环境线索诱发尼古丁复吸行为,甲磺酸伊马替尼对小剂量尼古丁或其类似物诱发复吸行为有更好预防和治疗效果,并且尼古丁诱发剂量与尼古丁成瘾剂量配比需小于3:10。由此,伊马替尼及其衍生物与尼古丁或其类似物联合用药或制备复方制剂来进行尼古丁成瘾治疗和防治复吸是行之有效的,效果好,安全性高,临床可操控性强,是尼古丁成瘾与复吸治疗实质性进步。
实施例24至实施例30是针对马替尼及其衍生物和镇痛药物在镇痛药物领域的应用。
下述实施例所采用的镇痛药为吗啡,吗啡具有广泛的代表性,所属领域技术人员可以在其他与吗啡具有相似的作用机制的阿片类药物中重现类似的研究结果。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例24:甲磺酸伊马替尼与吗啡剂量配比效应对大鼠吗啡成瘾形成的影响及分子机制
实验24:甲磺酸伊马替尼与吗啡剂量配比效应对大鼠吗啡成瘾形成的影响
一、材料
药品:吗啡(Morphine,青海制药厂),甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级SD雄性大鼠,体重180-220g。湖南斯莱克景达实验动物实验有限公司提供,动物合格证号为NO.43004700040706,生产许可证号:SCXK(湘)2016-0002。鼠饲料,购于武汉大学实验动物中心。
实验仪器:条件性位置偏爱仪(中国医学科学院药物研宄所研制):实验采用计算机自动控制。装置由三箱构成的条件性位置偏爱箱:两个侧室和一个中间室。三室由可移动的隔板分开,内外均为黑色。其中A箱和B箱位于中间箱的两侧,大小相同,A箱侧壁上有9盏能发出黄光二极管构成的正方形,底板为不锈钢钢条,B箱底板为不锈钢网格。大鼠在各箱的停留时间和出入次数可通过数据传送到计算机,自动收集记录行为学资料。
二、实验方法
基础值测试:第1天,拿掉隔板,开放三箱的通道,启动计算机上CPP程序,大鼠由中间室放入,任其在三箱中自由活动15分钟,电脑同步记录其在各室中停留的时间。根据测试结果进行淘汰,分为6组(吗啡+生理盐水组、吗啡+甲磺酸伊马替尼组(1mg/kg)、吗啡+甲磺酸伊马替尼组(5mg/kg)、吗啡+甲磺酸伊马替尼组(10mg/kg)、吗啡+甲磺酸伊马替尼组(20mg/kg)、吗啡+甲磺酸伊马替尼组(30mg/kg)),每组10只,并区分各大鼠的伴药侧与非伴药侧。
条件性位置偏爱训练:第2至9天,封闭三箱间通道,其中甲磺酸伊马替尼和吗啡采用联合给药方式或复方制剂给药方式。第2、4、6、8天,各组腹腔注射不同剂量甲磺酸伊马替尼(1、5、10、20、30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.),30分钟后皮下注射吗啡(5、10mg/kg,s.c.),或每组大鼠同时皮下注射不同剂量配比的甲磺酸伊马替尼(1、5、10、20、30mg/kg,s.c.)或生理盐水(1mL/kg,s.c.)和吗啡(5、10mg/kg,s.c.)混合试剂,并放入伴药侧45分钟;第3、5、7、9天,吗啡组组大鼠均腹腔注射生理盐水(1mL/kg,i.p.),30分钟后皮下注射生理盐水(1mL/kg,s.c.),或每组大鼠皮下注射生理盐水(1mL/kg,s.c.),并放入非伴药侧45分钟。每只大鼠的伴药侧是固定的。每组大鼠实验完后放回饲养笼。
吗啡CPP测试:第10天,CPP测试,与基础值测试阶段相似。开放三箱间的通道,不予任何注射,启动计算机上CPP程序,大鼠由中间室放入,任其在箱中自由活动15分钟,电脑同步记录其在各室中停留的时间。CPP分值(CPP score)为伴药侧时间与非伴药侧时间的差值。将大鼠在伴药箱中条件位置偏爱后测值与前测值比较确定大鼠是否形成条件位置偏爱。
三、实验结果
结果见图30A,甲磺酸伊马替尼+吗啡联合给药组的条件位置偏爱分值和生理盐水+吗啡组相比差异具有显著性,并呈剂量配比依赖性,腹腔注射10、20、30mg/kg甲磺酸伊马替尼可抑制大鼠5mg/kg吗啡条件性位置偏爱的形成,而1、5mg/kg甲磺酸伊马替尼不具有抑制性;未给予甲磺酸伊马替尼的大鼠,条件性位置偏爱依然存在。图30B显示,腹腔注射20、30mg/kg甲磺酸伊马替尼可抑制大鼠10mg/kg吗啡条件性位置偏爱的形成,而1、5、10mg/kg甲磺酸伊马替尼则不具有抑制性,说明甲磺酸伊马替尼与吗啡呈剂量配比大于或等于2:1时可抑制大鼠吗啡成瘾的形成。同样,图30C、图30D中甲磺酸伊马替尼和吗啡复方制剂给药也得到相似结果。
实验25:甲磺酸伊马替尼预防吗啡成瘾分子新机制
由实验24的结果可知,无论联合给药还是混合制剂,甲磺酸伊马替尼(10-30mg/kg)对吗啡CPP形成有不同程度的抑制作用。本实验采用免疫组化、western-blot和多色免疫荧光分子实验检测药物奖赏脑区c-kit磷酸化水平的变化及其下游激活靶分子,确定吗啡成瘾分子新机制和甲磺酸伊马替尼防治成瘾的作用机制。
一、材料
药品:吗啡(Morphine,青海制药厂),甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级SD雄性大鼠,体重180-220g。三峡大学实验动物中心提供,动物合格证号为NO.42010200001637,生产许可证号:SCXK(鄂)2016-0002。鼠饲料,购于武汉大学实验动物中心。
二、实验方法
随即将动物分为生理盐水+生理盐水组、生理盐水+甲磺酸伊马替尼组、吗啡+生理盐水组、吗啡+甲磺酸伊马替尼组,每组10只,各组大鼠腹腔给予生理盐水(1ml/kg,i.p.)或甲磺酸伊马替尼(30mg/kg,i.p.),30分钟后皮下注射吗啡(10mg/kg,s.c.),60分钟后观察对中脑边缘多巴胺系统包括VTA、伏隔核、杏仁体、海马、前额皮层的c-kit活性的变化,免疫组化结合western-blot观察c-kit磷酸化水平的变化,免疫荧光共标观察激活的细胞分布,多色免疫荧光共标确定其下游激活靶分子,确定吗啡成瘾分子新机制和甲磺酸伊马替尼防治成瘾的作用机制。
三、实验结果
结果见图31,急性吗啡给药后,免疫组化、western-blot和多色免疫荧光共标结果显示,特异性激活伏隔核并非其他脑区神经元c-kit受体及受体后多种信号转导通路如PKC、PI3K-AKT、ERK等调节激酶活性、蛋白表达、基因表达与调控启动吗啡奖赏、记忆和神经可塑性过程,说明伏隔核c-kit受体是吗啡急性给药激活特异性脑区;甲磺酸伊马替尼通过阻断c-kit受体抑制多种信号转导通路如PKC、PI3K-AKT、ERK等调节激酶活性、蛋白表达、基因表达与调控启动吗啡奖赏、记忆和神经可塑性过程,从而达到预防吗啡成瘾的作用。
实施例25:吗啡在镇痛过程中甲磺酸伊马替尼与吗啡剂量配比效应对其成瘾形成的影响
由实施例24可知,伊马替尼及其衍生物甲磺酸伊马替尼通过抑制伏隔核区域c-kit磷酸化活性来抑制大鼠吗啡成瘾的形成,吗啡等阿片类药物是临床上常用镇痛药物,两者剂量配比大于或等于2:1使用可防治吗啡成瘾副作用,本实施例选择甲磺酸伊马替尼和吗啡作为小鼠醋酸所致急性内脏疼痛的镇痛药物,通过建立小鼠醋酸致痛实验模型与条件性位置偏爱实验模型,探讨甲磺酸伊马替尼与吗啡剂量配比效应对急性内脏疼痛状态下小鼠吗啡成瘾形成的影响。
一、材料
药品:吗啡(Morphine,青海制药厂),甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级昆明品系雄性小鼠,体重18-22g。三峡大学实验动物中心提供,动物合格证号为NO.42010200001574,生产许可证号:SCXK(鄂)2017-0012。鼠饲料,购于武汉大学实验动物中心。
实验仪器:条件性位置偏爱仪(中国医学科学院药物研宄所研制):实验采用计算机自动控制。装置由三箱构成的条件性位置偏爱箱:两个侧室和一个中间室。三室由可移动的隔板分开,内外均为黑色。其中A箱和B箱位于中间箱的两侧,大小相同,A箱侧壁上有9盏能发出黄光二极管构成的正方形,底板为不锈钢钢条,B箱底板为不锈钢网格。小鼠在各箱的停留时间和出入次数可通过数据传送到计算机,自动收集记录行为学资料。
二、实验方法
基础值测试:同实施例24。
条件性位置偏爱训练:第2至9天,封闭三箱间通道,其中甲磺酸伊马替尼和吗啡采用复方制剂给药方式。第2、4、6、8天,各组小鼠腹腔注射0.6%醋酸溶液(0.2ml,i.p.),随后皮下注射不同剂量配比的甲磺酸伊马替尼(1.5、7.5、15、30、45mg/kg,分别对应大鼠等效剂量为1、5、10、20、30mg/kg,s.c.)或生理盐水(1mL/kg,s.c.)和吗啡(10、15mg/kg,s.c.)混合试剂,并放入伴药侧45分钟;第3、5、7、9天,各组大鼠均腹腔注射0.6%醋酸溶液(0.2mL,i.p.),随后皮下注射生理盐水(1mL/kg,s.c.),并放入非伴药侧45分钟。每只小鼠的伴药侧是固定的。每组小鼠实验完后放回饲养笼。
吗啡CPP测试:同实施例24。
三、实验结果
结果见图32A,吗啡在镇痛过程中,吗啡+甲磺酸伊马替尼复方给药组与吗啡+生理盐水组相比差异依然具有显著性,并呈剂量配比依赖性,皮下注射30、45mg/kg甲磺酸伊马替尼后,小鼠10mg/kg吗啡条件性位置偏爱不能形成,而1.5、7.5、15mg/kg甲磺酸伊马替尼不具有抑制性,未给予甲磺酸伊马替尼的小鼠,条件性位置偏爱依然存在;图32B显示,皮下注射30、45mg/kg甲磺酸伊马替尼后,小鼠15mg/kg吗啡条件性位置偏爱不能形成,而1.5、7.5、15mg/kg甲磺酸伊马替尼不具有抑制性,说明甲磺酸伊马替尼与吗啡呈剂量配比依赖性抑制小鼠吗啡在镇痛时成瘾的形成,且两者剂量配比需大于或等于2:1。
实施例26:甲磺酸伊马替尼对大鼠吗啡耐受的影响
由实施例24和实施例25结果可知,大于或等于2:1剂量配比的甲磺酸伊马替尼与吗啡组合物可明显防止大鼠或小鼠吗啡成瘾的形成,本实施例选择甲磺酸伊马替尼和吗啡作为大鼠中枢疼痛的镇痛药物,通过建立大鼠吗啡耐受及热板疼痛模型,探讨甲磺酸伊马替尼与吗啡联合给药和复方给药对吗啡耐受的影响。
一、材料
药品:吗啡(青海制药厂);甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级SD雌性大鼠,体重180-220g。三峡大学实验动物中心提供,动物合格证号为NO.42010200001863,生产许可证号:SOCK(鄂)2017-0012。
二、实验方法
基础痛域测定:用50±0.5℃热板法以大鼠第一次出现舔后足的时间测大鼠的基础痛阈,为避免烫伤大鼠测量时间低于60秒,剔除时间大于30秒小于5秒的大鼠,测两次取平均值。按照基础疼痛阈值将大鼠分为6组(吗 啡+生理盐水组、吗啡+甲磺酸伊马替尼组(1mg/kg)、吗啡+甲磺酸伊马替尼组(5mg/kg)、吗啡+甲磺酸伊马替尼组(10mg/kg)、吗啡+甲磺酸伊马替尼组(20mg/kg)、吗啡+甲磺酸伊马替尼组(30mg/kg)),每组10只。
每组大鼠每天腹腔注射不同剂量甲磺酸伊马替尼(1、5、10、20、30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.),30分钟后皮下注射吗啡(10mg/kg,s.c.);或各组大鼠皮下注射不同剂量配比的甲磺酸伊马替尼(1、5、10、20、30mg/kg,s.c.)或生理盐水(1mL/kg,s.c.)和吗啡(10mg/kg,s.c.)混合试剂。30分钟后测定大鼠疼痛阈值。连续给药四天,且每日给药后要测定疼痛阈值。在第五天,皮下给予各组大鼠吗啡(10mg/kg,s.c.),并测定热疼痛阈值。
三、实验结果
结果见图33A,甲磺酸伊马替尼+吗啡联合给药组大鼠热疼痛阈值和生理盐水+吗啡组相比差异具有显著性,并呈剂量配比依赖性,腹腔注射20、30mg/kg甲磺酸伊马替尼可显著减轻吗啡所致的大鼠耐受表达,而1、5、10mg/kg甲磺酸伊马替尼不具有抑制性,未给予甲磺酸伊马替尼的大鼠,大鼠吗啡耐受依然存在,说明甲磺酸伊马替尼与吗啡呈剂量配比依赖性抑制大鼠吗啡耐受的形成,且两者剂量配比需大于或等于2:1。同样,图33B中甲磺酸伊马替尼和吗啡复方制剂给药也得到相似结果。
实施例27:甲磺酸伊马替尼与吗啡剂量配比效应对大鼠吗啡中枢镇痛效果的影响
由实施例24、实施例25、实施例26结果可知,伊马替尼及其衍生物甲磺酸伊马替尼可预防吗啡成瘾形成与耐受的表达,吗啡等阿片类药物是临床上常用镇痛药物,两者剂量配比大于或等于2:1使用后可防治副作用,本实施例选择甲磺酸伊马替尼和吗啡作为大鼠热板中枢疼痛的镇痛药物,通过建立大鼠热板法致痛实验模型,探讨甲磺酸伊马替尼与吗啡联合给药和复方给药对热板所致大鼠中枢疼痛吗啡镇痛效果的影响。
一、材料
药品:吗啡(青海制药厂);甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级SD雌性大鼠,180-220g。湖北省实验动物研究中心提供,动物合格证号为NO.42000600025195,生产许可证号:SOCK(鄂)2015-0018。鼠饲料,购于武汉大学实验动物中心。
二、实验方法
基础痛阈测定:同实施例26。按照痛阈时间随机将大鼠分为4组(甲磺酸伊马替尼+吗啡、甲磺酸伊马替尼+生理盐水、生理盐水+吗啡、生理盐水+生理盐水),每组10只。
各组腹腔注射不同剂量甲磺酸伊马替尼(1、5、10、20、30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.),30分钟后皮下注射吗啡(10mg/kg,s.c.)或生理盐水(1mL/kg,s.c.);或对四组大鼠皮下注射不同剂量配比的甲磺酸伊马替尼(1、5、10、20、30mg/kg,s.c.)或生理盐水(1mL/kg,s.c.)和吗啡(10mg/kg,s.c.)或生理盐水(1mL/kg,s.c.)混合试剂。30分钟后,将大鼠轻放在50±0.5℃热板上,记录大鼠第一次出现舔后足的时间,若大鼠60秒后未出现舔足,将大鼠拿出,痛阈时间按照60秒计算。观察大鼠给药前后的表现,并仔细记录观察结果。
三、实验结果
结果见图34A,甲磺酸伊马替尼+吗啡联合给药组与吗啡+生理盐水组相比,大鼠热疼痛阈值无明显变化;甲磺酸伊马替尼+生理盐水组与生理盐水+生理盐水组相比,大鼠HPPT也无明显变化。表明在热板致痛实验中,甲磺酸伊马替尼与吗啡无论以何种剂量配比进行联合用药均不会削弱吗啡的中枢镇痛作用。同样,图34B中甲磺酸伊马替尼和吗啡复方制剂给药也得到相似结果。
实施例28:甲磺酸伊马替尼与吗啡剂量配比效应对小鼠吗啡急性内脏镇痛效果的影响
由实施例27结果可知,甲磺酸伊马替尼对大鼠吗啡中枢镇痛效果无明显影响,本实施例选择甲磺酸伊马替尼和吗啡作为小鼠急性内脏疼痛的镇痛药物,通过建立小鼠醋酸扭体致痛实验模型,探讨甲磺酸伊马替尼与吗啡联合给药和复方给药对醋酸扭体所致的小鼠内脏疼痛吗啡镇痛效果的影响。
一、材料
药品:吗啡(青海制药厂);甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级昆明种雄性小鼠,18-22g。三峡大学实验动物中心提供,动物合格证号为NO.42010200001139,许可证号:SOCK(鄂)2015-0012。
二、实验方法
随机分为四组,生理盐水+生理盐水、生理盐水+吗啡、甲磺酸伊马替尼+生理盐水、甲磺酸伊马替尼+吗啡组,每组10只。各组小鼠腹腔注射不同剂量甲磺酸伊马替尼((1.5、7.5、15、30、45mg/kg,分别对应大鼠等效 剂量为1、5、10、20、30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.),30分钟后皮下注射吗啡(10mg/kg,s.c.)或生理盐水(1mL/kg,s.c.);或各组小鼠腹腔注射不同剂量甲磺酸伊马替尼(1.5、7.5、15、30、45mg/kg,分别对应大鼠等效剂量为1、5、10、20、30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.)。30分钟后腹腔给予小鼠0.2mL0.6%醋酸溶液,观察从小鼠出现扭体反应的潜伏期及0-20分钟内出现的扭体次数。扭体反应定义为小鼠腹部收缩内凹、身体与后肢伸张、臀部翘起及蠕行。
三、实验结果
结果见图35A,甲磺酸伊马替尼+吗啡组与吗啡+生理盐水组相比,小鼠的扭体次数并未有明显改变;甲磺酸伊马替尼+生理盐水组与生理盐水+生理盐水组相比,小鼠扭体次数也无明显变化。表明在醋酸扭体实验中,甲磺酸伊马替尼与吗啡无论以何种剂量配比进行联合给药对小鼠的吗啡急性内脏镇痛作用均无显著影响。同样,图35B中甲磺酸伊马替尼和吗啡复方制剂给药也得到相似结果。
实施例29:甲磺酸伊马替尼与吗啡剂量配比效应对大鼠吗啡急性化学性炎症镇痛效果的影响
由实施例27、实施例28结果可知,甲磺酸伊马替尼对大鼠吗啡中枢镇痛效果及小鼠吗啡急性内脏镇痛效果无明显影响,本实施例选择甲磺酸伊马替尼和吗啡作为大鼠急性炎症疼痛的镇痛药物,通过建立大鼠5%福尔马林致痛实验模型,探讨甲磺酸伊马替尼与吗啡联合给药和复方给药对5%福尔马林所致的大鼠急性炎症疼痛吗啡镇痛效果的影响。
一、材料
药品及试剂:吗啡(青海制药厂);甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级SD雄性大鼠,体重180-220g。湖南省斯莱克景达实验动物有限公司提供,动物合格证号为NO.43004700041685,生产许可证号:SOCK(湘)2016-0002。
二、实验方法
随机分为四组,生理盐水+生理盐水、生理盐水+吗啡、甲磺酸伊马替尼+生理盐水、甲磺酸伊马替尼+吗啡组,每组10只。各组大鼠腹腔注射不同剂量甲磺酸伊马替尼(1、5、10、20、30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.),30分钟后皮下注射吗啡(10mg/kg,s.c.)或生理盐水(1mL/kg,s.c.);或各组大鼠皮下注射不同剂量配比的甲磺酸伊马替尼(1、5、10、20、30mg/kg,s.c.)或生理盐水(1mL/kg,s.c.)和吗啡(10mg/kg,s.c.)或生理盐水(1mL/kg,s.c.)混合试剂。30分钟后,对大鼠左后爪表面给予50μL的5%福尔马林溶液,并每隔五分钟观察记录一次大鼠舔红肿左后爪的总时间,观察时间持续一小时。福尔马林致痛实验分为两时相,0-10分钟为第一时相,为急性疼痛,可被中枢性镇痛药物如吗啡抑制;10-60分钟为前列腺素部分介导的炎症反应,属于急性病理疼痛。
三、实验结果
结果见图36A,甲磺酸伊马替尼+吗啡组与吗啡+生理盐水组相比,大鼠舔后足的时间无明显改变;甲磺酸伊马替尼+生理盐水组与生理盐水+生理盐水组相比,大鼠舔后足时间也无明显变化。表明在福尔马林致痛实验中,甲磺酸伊马替尼与吗啡无论以何种剂量配比进行联合用药对吗啡的镇痛作用亦无影响。同样,图36B中甲磺酸伊马替尼和吗啡复方制剂给药也得到相似结果。
实施例30:甲磺酸伊马替尼与吗啡剂量配比效应对大鼠吗啡慢性炎症镇痛效果的影响
由实施例27、实施例28和实施例29结果可知,甲磺酸伊马替尼对大鼠及小鼠吗啡急性疼痛的镇痛效果无明显影响,本实施例选择甲磺酸伊马替尼和吗啡作为大鼠慢性炎症疼痛的镇痛药物,通过建立大鼠弗氏完全佐剂(CFA)慢性足底致痛实验模型,探讨甲磺酸伊马替尼与吗啡联合给药和复方给药对CFA所致的大鼠慢性炎症疼痛的影响。
一、材料
药品:吗啡(青海制药厂);甲磺酸伊马替尼(Selleck Chemicals)。
实验动物:SPF级SD雌性大鼠,体重180-220g。三峡大学实验动物中心提供,动物合格证号为NO.42010200001281,生产许可证号:SOCK(鄂)2017-0012。
二、实验方法
基础痛域测定:同实施例26。
慢性炎症疼痛模型的制备:测定基础伤害阈后,选取阈值正常的大鼠,随机分为CFA组(40只)和NS组(40只,生理盐水)。CFA慢性足底炎症造模:CFA组大鼠用1mL注射器抽取125μL CFA,注射至大鼠左侧后肢足底皮下,注射后按住针孔按摩数分钟,以促进药物扩散;NS组以同等方法注射相同溶剂的生理盐水,制成 对照模型。制模后每天称量大鼠体重变化并观察大鼠的左足变化(如红肿、足底注射部位是否有渗出液或感染)、测量左足最高处的周长(并测量其右足相同部位进行对比)。
于制模成功后第三天给药,给药前用热板仪测定大鼠的疼痛阈值。随后按照左足最高处周长对CFA组大鼠随机分为以下四组:生理盐水+生理盐水、生理盐水+吗啡、甲磺酸伊马替尼+生理盐水、甲磺酸伊马替尼+吗啡,每组10只;NS组也随机分为以下四组:生理盐水+生理盐水、生理盐水+吗啡、甲磺酸伊马替尼+生理盐水、甲磺酸伊马替尼+吗啡,每组10只。各组大鼠腹腔注射不同剂量甲磺酸伊马替尼(1、5、10、20、30mg/kg,i.p.)或生理盐水(1mL/kg,i.p.),30分钟后皮下注射吗啡(10mg/kg,s.c.)或生理盐水(1mL/kg,s.c.);或各组大鼠皮下注射不同剂量配比的甲磺酸伊马替尼(1、5、10、20、30mg/kg,s.c.)或生理盐水(1mL/kg,s.c.)和吗啡(10mg/kg,s.c.)或生理盐水(1mL/kg,s.c.)混合试剂。30分钟后测定大鼠疼痛阈值。连续给药三天,且每日给药前后要测定热疼痛阈值,整个实验持续时间为一周。
三、实验结果
结果见图37A,造模后,第四天和第五天甲磺酸伊马替尼+吗啡联合给药组与吗啡+生理盐水组相比,大鼠热疼痛阈值未明显改变,而造模后第六天,大鼠出现吗啡耐受,20、30mg/kg甲磺酸伊马替尼可明显防止吗啡耐受,提高热疼痛阈值,1、5、10mg/kg甲磺酸姨妈替尼则无此作用,表明在弗氏完全佐剂性致足底炎症慢性疼痛实验中,甲磺酸伊马替尼在吗啡发挥镇痛作用中,不会对其产生影响,并在耐受后以与吗啡大于或等于2:1的剂量配比防止吗啡耐受的表达。同样,图37B中甲磺酸伊马替尼和吗啡复方制剂给药也得到相似结果。
上述实施例结论:伊马替尼及其衍生物甲磺酸伊马替尼与吗啡以大于或等于2:1的剂量配比使用可防治其成瘾的形成与耐受的表达,且此剂量在目前临床使用剂量安全范围内,如图38所示。此外,甲磺酸伊马替尼与吗啡等阿片类镇痛药物剂量配比使用,应用于热板、醋酸、福尔马林及弗氏完全佐剂等引起的急慢性疼痛,不影响吗啡的镇痛效果。由此,伊马替尼及其衍生物可与吗啡等阿片类镇痛药物剂量配比使用来预防阿片类药物疼痛治疗中的成瘾与耐受副作用的产生;同时,有了防治副作用的配方,两者按照大于或等于2:1的剂量配比使用适用于各种类型的疼痛治疗,拓宽阿片类药镇痛适应症的范围。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (24)

  1. 伊马替尼及其衍生物的组合物在制备药物中的应用,其特征在于:所述组合物还包含下述组分中的一种:
    成瘾物质;
    镇痛药物;
    所述的药物包括各种成瘾预防、治疗及防复吸的药物;所述成瘾物质包括:(1)麻醉药品,(2)精神药物,(3)酒精、烟草和挥发性有机溶剂等能导致机体成瘾的物质以及其类似物,(4)尼古丁或其类似物。
  2. 根据权利要求1所述的应用,其特征在于:所述组合物包含伊马替尼及其衍生物和成瘾物质,其在制备药物中的应用为制备预防、治疗成瘾及防治复吸的药物。
  3. 根据权利要求2所述的应用,其特征在于:所述药物使用方式为伊马替尼及其衍生物与成瘾物质配比联合使用或复方使用。
  4. 伊马替尼及其衍生物与成瘾食品在制备药物中的应用,其特征在于:所述药物包括食品成瘾预防、治疗及防复吸的药物;所述的成瘾食品包括高脂、甜食、巧克力等可口食品。
  5. 根据权利要求4所述的应用,其特征在于:所述药物的使用方式为伊马替尼及其衍生物与成瘾食品配比联合使用或复方使用。
  6. 伊马替尼及其衍生物与成瘾行为在制备药物中的应用,其特征在于:所述药物包括成瘾行为预防、治疗及防复发的药物;所述成瘾行为包括赌博成瘾和网瘾等能导致机体成瘾的行为。
  7. 根据权利要求6所述的应用,其特征在于:所述药物的使用方式为成瘾行为线索诱导之后给予伊马替尼及其衍生物。
  8. 根据权利要求2-7任一项所述的应用,其特征在于:伊马替尼及其衍生物的使用剂量为100-400mg/天剂量。
  9. 根据权利要求2所述的应用,其特征在于:所述成瘾物质为吗啡或可卡因时,伊马替尼及其衍生物与成瘾物质的剂量比大于或等于2:1;所述成瘾物质为酒精时,伊马替尼及其衍生物与成瘾物质的剂量比大于或等于1:50。
  10. 根据权利要求2所述的应用,其特征在于:所述成瘾物质在预防、治疗和复吸治疗时剂量与成瘾使用用量需低于或等于1:3剂量。
  11. 根据权利要求2-7任一项所述的应用,其特征在于:所述的药物适用于制成如下剂型或规格中的一种:注射剂、输液剂、丸剂、片剂、粉剂、颗粒剂、胶囊、散剂、口服液、缓释剂、酊剂、栓剂、贴剂。
  12. 根据权利要求2所述的应用,其特征在于:所述成瘾物质为尼古丁或其类似物。
  13. 根据权利要求12所述的应用,其特征在于:所述伊马替尼及其衍生物与尼古丁或其类似物在制备药物中的应用,所述药物包括尼古丁成瘾预防、治疗及防复吸的药物。
  14. 根据权利要求13所述的应用,其特征在于:所述药物使用方式为伊马替尼及其衍生物与尼古丁或其类似物联合使用或复方使用。
  15. 根据权利要求13所述的应用,其特征在于:伊马替尼及其衍生物与尼古丁或其类似物按照其有效成分配比大于或等于40:1,在临床上伊马替尼及其衍生物的用量为100-400mg/天。
  16. 根据权利要求13所述的应用,其特征在于:在尼古丁成瘾记忆唤起时,所用剂量与成瘾使用剂量按照其有效成分配比应小于3:10,伊马替尼及其衍生物才可有效预防、治疗尼古丁成瘾和防治复吸。
  17. 根据权利要求13所述的应用,其特征在于:所述的药物适用于制成如下剂型或规格中的一种:注射剂、输液剂、皮下埋植剂、丸剂、片剂、粉剂、颗粒剂、胶囊、散剂、口服液、缓释剂、酊剂、栓剂、贴剂。
  18. 根据权利要求1所述的应用,其特征在于:所述组合物包含伊马替尼及其衍生物和镇痛药物,其在制备药物中的应用为制备治疗疼痛的药物。
  19. 根据权利要求18所述的应用,其特征在于,所述的应用包括:
    (1)包含伊马替尼及其衍生物与镇痛药物的组合物在制备治疗疼痛的药物中的应用;
    (2)包含伊马替尼及其衍生物与镇痛药物的组合物在制备预防镇痛药耐受和成瘾副作用的药物中的应用。
  20. 根据权利要求19所述的应用,其特征在于:伊马替尼及其衍生物与镇痛药物的组合物按照其有效成分配比大于或等于2:1,在临床上伊马替尼及其衍生物的用量为100-400mg/天。
  21. 根据权利要求19所述的应用,其特征在于:所述的镇痛药物包括作用于中枢镇痛系统产生镇痛效应的,具有成瘾性的阿片类如吗啡、可待因、哌替啶、芬太尼、美沙酮、羟考酮、氢吗啡酮、纳布啡和大麻成分等,非阿片类各种具有成瘾性化合物或它们的盐。
  22. 根据权利要求19所述的应用,其特征在于:所述的疼痛为适用于所述镇痛药物单独用药治疗的适应症和其他不同类型的急、慢性疼痛。
  23. 根据权利要求19所述的应用,其特征在于:所述的包含伊马替尼及其衍生物与镇痛药物的组合物,伊马替尼及其衍生物和镇痛药物可同时地、分开地或顺序地施用。
  24. 根据权利要求19所述的应用,其特征在于:所述的药物适用于制成如下剂型或不同规格中的一种:注射剂、输液剂、皮下埋植剂、丸剂、片剂、粉剂、颗粒剂、胶囊、散剂、口服液、缓释剂、酊剂、栓剂、贴剂。
PCT/CN2020/119253 2019-09-30 2020-09-30 伊马替尼及其衍生物的组合物在制备预防、治疗及防治成瘾复吸药物中的应用 WO2021063387A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/709,358 US20220218707A1 (en) 2019-09-30 2022-03-30 Use of composition of imatinib or derivative thereof in preparation of drug for preventing, treating, and controlling addiction relapse

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910939707.1 2019-09-30
CN201910939100.3 2019-09-30
CN201910939707.1A CN112569238A (zh) 2019-09-30 2019-09-30 伊马替尼及其衍生物与镇痛药联合用药或复方制剂在治疗疼痛中的应用
CN201910939113.0A CN112569237B (zh) 2019-09-30 2019-09-30 伊马替尼及其衍生物与尼古丁或其类似物联用或复方在防治尼古丁成瘾与复吸中的应用
CN201910939113.0 2019-09-30
CN201910939100.3A CN112569355B (zh) 2019-09-30 2019-09-30 伊马替尼及其衍生物与成瘾物质联合用药或复方制剂在预防、治疗成瘾及防治复吸中的应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/709,358 Continuation-In-Part US20220218707A1 (en) 2019-09-30 2022-03-30 Use of composition of imatinib or derivative thereof in preparation of drug for preventing, treating, and controlling addiction relapse

Publications (1)

Publication Number Publication Date
WO2021063387A1 true WO2021063387A1 (zh) 2021-04-08

Family

ID=75336532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119253 WO2021063387A1 (zh) 2019-09-30 2020-09-30 伊马替尼及其衍生物的组合物在制备预防、治疗及防治成瘾复吸药物中的应用

Country Status (2)

Country Link
US (1) US20220218707A1 (zh)
WO (1) WO2021063387A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106074555A (zh) * 2016-06-16 2016-11-09 武汉大学 伊马替尼及其衍生物在制备治疗药物成瘾的药物中的新用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106074555A (zh) * 2016-06-16 2016-11-09 武汉大学 伊马替尼及其衍生物在制备治疗药物成瘾的药物中的新用途

Also Published As

Publication number Publication date
US20220218707A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
KR100891568B1 (ko) 나트륨 채널 차단 화합물인 테트로도톡신의 무통 제공 방법
Callahan Irritable bowel syndrome neuropharmacology: a review of approved and investigational compounds
JP6137833B2 (ja) 脱髄性および他の神経系疾患を患っている患者における神経認知的および/または神経精神医学的障害を改善するための4−アミノピリジンの使用
CA2978537C (en) Therapeutic uses of ibogaine and related compounds
JP2008507577A (ja) 中枢神経系の障害を治療するための医薬
D’Souza et al. Metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl) pyridine (MPEP) microinfusions into the nucleus accumbens shell or ventral tegmental area attenuate the reinforcing effects of nicotine in rats
Rezvani et al. Nicotine–alcohol interactions and cognitive function in rats
AU2020267217A1 (en) Therapeutic methods employing noribogaine and related compounds
PL196334B1 (pl) Zastosowanie agonistów receptorów GABA B i ich farmaceutycznie dopuszczalnych pochodnych w terapii abstynencji nikotynowej u uzależnionych od nikotyny pacjentów
JPS59501459A (ja) カフェインを含んで成る改良された鎮痛及び抗炎症組成物並びにその使用方法
US20060084659A1 (en) Augmentation of psychotherapy with cannabinoid reuptake inhibitors
Yonghui et al. Opposite effects of MK-801 on the expression of food and morphine-induced conditioned place preference in rats
Khatri et al. Xylazine suppresses fentanyl consumption during self-administration and induces a unique sex-specific withdrawal syndrome that is not altered by naloxone in rats.
CN112569237B (zh) 伊马替尼及其衍生物与尼古丁或其类似物联用或复方在防治尼古丁成瘾与复吸中的应用
WO2021063387A1 (zh) 伊马替尼及其衍生物的组合物在制备预防、治疗及防治成瘾复吸药物中的应用
US20150110865A1 (en) Cns stimulant and opioid receptor antagonist combination as a non-addictive, non-aversive and synergistic anti-obesity treatment
CN112569355B (zh) 伊马替尼及其衍生物与成瘾物质联合用药或复方制剂在预防、治疗成瘾及防治复吸中的应用
CN107613966A (zh) 阿片类物质和n‑酰基乙醇胺的组合
US8258185B2 (en) Use of neboglamine in the treatment of toxicodependency
CN112569352B (zh) c-Kit作为行为成瘾治疗靶点的应用
CN112569238A (zh) 伊马替尼及其衍生物与镇痛药联合用药或复方制剂在治疗疼痛中的应用
US20110034442A1 (en) Use and Methods of Use for an Antagonist of the Serotin3 Receptor (5-HT3) and a Selective Modulator of Chloride Channels for the Treatment of Addiction to or Dependence on Medicines/Drugs or Nervous System Disorders
Arcangeli Role of Neuropeptide FF Analong in Reversing Opiate Dependence and Withdrawal
Athanasos Opioid maintained subjects and the effects of high dose morphine and adjuvant analgesics.
Craig Analgesics and Sports Medicine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872590

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20872590

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.10.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20872590

Country of ref document: EP

Kind code of ref document: A1