WO2021063306A1 - 变速装置及变速模块 - Google Patents

变速装置及变速模块 Download PDF

Info

Publication number
WO2021063306A1
WO2021063306A1 PCT/CN2020/118363 CN2020118363W WO2021063306A1 WO 2021063306 A1 WO2021063306 A1 WO 2021063306A1 CN 2020118363 W CN2020118363 W CN 2020118363W WO 2021063306 A1 WO2021063306 A1 WO 2021063306A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
input
sun gear
torque
transmission
Prior art date
Application number
PCT/CN2020/118363
Other languages
English (en)
French (fr)
Inventor
韩文明
Original Assignee
宁波市北仑旭泰汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波市北仑旭泰汽车零部件有限公司 filed Critical 宁波市北仑旭泰汽车零部件有限公司
Publication of WO2021063306A1 publication Critical patent/WO2021063306A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/70Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/082Planet carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0043Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising four forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0047Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising five forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0056Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising seven forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0078Transmissions for multiple ratios characterised by the number of forward speeds the gear ratio comprising twelve or more forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears

Definitions

  • the present invention relates to a speed change module, and also relates to a speed change device including the speed change module.
  • gear transmissions there are two types of gear transmissions: fixed shaft transmission and planetary gear transmission, in which the planetary mechanism has a ring gear.
  • manual transmissions (MT) and dual-clutch automatic transmissions (DCT) used in vehicles belong to fixed-shaft transmissions
  • most of the torque converter-type automatic transmissions (AT) used in vehicles belong to planetary gears with ring gears.
  • Gear transmission is a type of gear transmission.
  • Chinese invention patent CN102155521B discloses a planetary gear mechanism and a mechanical transmission including the planetary gear mechanism
  • Chinese invention patent CN106594192A discloses a modular combined transmission
  • Chinese invention patent CN108286591A discloses a single input Three-speed powertrain system.
  • a transmission module has only one input sun gear; a transmission module has only one output sun gear; a planetary gear assembly includes two connected, Coaxial synchronously rotating planetary gears; one transmission module provides up to three speed ratios; to achieve more gears, multiple transmission modules need to be connected in series, which will result in larger axial dimensions; transmission modules have no ring gear and gear meshing
  • the methods are all external gears; both fixed shaft and planetary gear transmission modes: when the cage (or planet carrier) is fixed, the aforementioned three transmission devices are fixed shaft transmission, and when When the input or output center sun gear is fixed, the aforementioned three transmissions are planetary gear transmissions. Therefore, the transmission mode of this type of transmission represented by the aforementioned three transmissions is a hybrid transmission mode; the structure is simple and easy to manufacture , Low cost, high cost performance.
  • the inventor expects to provide an improved planetary gear mechanism, which can continue to retain the advantages of no ring gear, simple structure and easy manufacturing in the planetary gear mechanism in the aforementioned patent, and continue to adopt a unique hybrid transmission mode (fixed shaft transmission). It provides more speed ratios on the basis of planetary gear transmission.
  • the purpose of the present invention is to provide a variable speed module that can provide more speed ratios.
  • the present invention provides a transmission module with a transmission frame, including a torque input end, a transmission unit, and a torque output end.
  • the torque of the torque input end is transmitted to the torque output end via a transmission unit.
  • the transmission unit includes a planet carrier, a sun gear set, and at least one Planetary gear assembly.
  • the planet carrier is rotatably arranged on the transmission frame.
  • the sun gear set includes m input sun gears and k output sun gears.
  • the sun gears and the planet carrier in the sun gear set are coaxially arranged and can rotate relative to each other, where m ⁇ 2 and k ⁇ 1.
  • Each planetary gear assembly includes m input planetary gears respectively meshing with the m input sun gears, and k output planetary gears respectively meshing with the k output sun gears.
  • the input planetary gears and the output planetary gears are coaxially connected.
  • Fixedly connected, the planetary gear assembly is rotatably arranged on the planet carrier.
  • At least one input sun gear is equipped with a brake, and each input sun gear is respectively detachably connected to the torque input terminal through a clutch, and the planet carrier is also equipped with a brake.
  • the transmission module is configured to select two elements from m+1 elements composed of m input sun gears and planet carriers, so that the clutch of one element is engaged and the brake of the other element is braking State, or make the clutches of the two elements in the engaged state, thereby forming a power transmission route of the transmission module.
  • the planet carrier is also detachably connected to the torque input end through a clutch.
  • each input sun gear is equipped with a brake.
  • the torque input end includes a torque input shaft
  • each clutch includes an inner hub and an outer drum that are detachably connected; the torque input shaft and at least part of the input sun gears of the m input sun gears, respectively Connect one and the other of the inner hub and outer drum of the corresponding clutch.
  • At least part of the input sun gears of the m input sun gears are connected with a first adapter gear, and the first adapter gear and the second adapter gear are meshed for transmission.
  • the torque input end includes a torque input shaft, the torque input shaft is provided with an input transfer gear, and the input transfer gear meshes with the third transfer gear for transmission.
  • a clutch is provided between the second transfer gear and the third transfer gear, and at least part of the input sun gear can pass through the first transfer gear, the second transfer gear, the clutch, the third transfer gear, and the input transfer gear in sequence. The clutch is connected to the torque input shaft.
  • the speed change module includes more than two planetary gear assemblies, and the two or more planetary gear assemblies are evenly distributed along the circumferential direction of the sun gear set.
  • At least part of the sun gears in the sun gear set are held coaxially and rotatable relative to each other through a pair of tube barrels nested with each other.
  • the transmission frame includes a front axle hole and a rear axle hole that are coaxially arranged side by side; the planet carrier is rotatably supported between the front axle hole and the rear axle hole, and the torque input end is located in front of the front axle hole. On the other side, the torque output terminal is located behind the rear axle hole.
  • At least a part of the input sun gear of the m input sun gears is configured with a brake located on the rear side of the rear axle hole.
  • the present invention also provides a speed change device, including the above two or more speed change modules, and the torque output end of the previous speed change module of the two or more speed change modules is drivingly connected with the torque input end of the next speed change module.
  • the above-mentioned transmission module provides an improved planetary gear mechanism.
  • the planetary gear mechanism has the advantages of no ring gear, simple structure and easy manufacturing. It adopts a unique hybrid transmission mode (fixed shaft transmission and planetary gear transmission are both On the basis of ), many speed ratios can be provided.
  • a speed change module has at least two input sun gears; a speed change module is not limited to only one output sun gear, and can have more than two output sun gears; the number of planet gears included in a planetary gear assembly No less than three.
  • a variable speed module of the present invention can produce four speed ratios at least, and it is possible to produce more speed ratios. For transmissions with the same number of speed ratios, the transmission module required by the present invention is significantly reduced, and the volume is smaller, the weight is lighter, and the cost is lower.
  • Figure 1 is a schematic diagram of a four-speed transmission module with two input sun gears and one output sun gear.
  • Figure 2 is a schematic diagram of a five-speed transmission module with two input sun gears and one output sun gear.
  • Fig. 3 is a schematic diagram of a transmission device formed by connecting two transmission modules of Fig. 1 in series.
  • FIG. 4 is a schematic diagram of a transmission device formed by the transmission module of FIG. 3 and the transmission module of FIG. 1 in series.
  • Figure 5 is a schematic diagram of a seven-speed transmission module with two input sun gears and one output sun gear.
  • Fig. 6 is another layout diagram of a seven-speed transmission module with two input sun gears and one output sun gear.
  • Fig. 7 is a schematic diagram of a 13-speed transmission module with three input sun gears and one output sun gear.
  • Fig. 8 is a schematic diagram of another arrangement of a thirteen-speed transmission module with three input sun gears and one output sun gear.
  • Fig. 9 is a schematic diagram of a thirteen-speed transmission module with two input sun gears and two output sun gears.
  • Fig. 10 is a schematic diagram of a 25-speed transmission module with three input sun gears and two output sun gears.
  • first feature described later in the specification may include an embodiment in which the first and second features are directly connected, or may be included between the first and second features.
  • additional features is formed, so that there may be no direct connection between the first and second features.
  • first element when the first element is described in the manner of being connected or combined with the second element, the description includes the embodiment in which the first and second elements are directly connected or combined with each other, and also includes the use of one or more other intervening elements to add The first and second elements are indirectly connected or combined with each other.
  • the expressions of "more than N", “not less than N" or "at least N” in the text all include N per se, for example, "two or more" includes “two” per se.
  • Fig. 1 shows a shift module 10 according to a first embodiment.
  • the transmission module 10 has a transmission frame BOX.
  • the transmission frame BOX may be a transmission housing, which provides support for the planet carrier 9, the torque input shaft S0, etc., which will be described later.
  • the transmission module 10 includes a torque input terminal IP, a transmission unit 20, and a torque output terminal OP.
  • the torque of the torque input terminal IP is transmitted to the torque output terminal OP via the transmission unit 20.
  • the transmission unit 20 includes a planet carrier 9, a sun gear set 30 and at least one planet gear assembly 8.
  • the planet carrier 9 is rotatably provided in the transmission frame BOX.
  • the transmission frame BOX includes a front axle hole H1 and a rear axle hole H2 that are coaxial (rotation axis X0 in FIG. 1) and arranged side by side.
  • the planet carrier 9 is rotatably supported between the front shaft hole H1 and the rear shaft hole H2, for example, by a rotary bearing.
  • the torque input terminal IP is located on the front side of the front axle hole H1
  • the torque output terminal OP is located on the rear side of the rear axle hole H2.
  • FIG. 1 and subsequent drawings For the convenience of description, the front and rear directions are shown in FIG. 1 and subsequent drawings.
  • the sun gear set 30 includes m input sun gears (for example, in FIG. 1) and k output sun gears, where m ⁇ 2 and k ⁇ 1.
  • the sun gears in the sun gear set 30 (including the input sun gears 1 and 2 and the output sun gear 7) are coaxially arranged with the planet carrier 9 (rotation axis X0 in FIG. 1) and can rotate relative to each other.
  • the k output sun gears can rotate relative to each other (if k>1)
  • the m input sun gears can rotate relative to each other
  • the output sun gear and the input sun gear can rotate relative to each other.
  • Each planetary gear assembly 8 includes m input planetary gears (for example, input planetary gears 81 and 82 in FIG. 1) and k output planetary gears (for example, output planetary gear 87 in FIG. 1).
  • the m input planetary gears mesh with the m input sun gears respectively.
  • the input planetary gear 81 meshes with the input sun gear 1
  • the input planetary gear 82 meshes with the input sun gear 2.
  • the k output planetary gears respectively mesh with the k output sun gears.
  • the output planetary gear 87 meshes with the output sun gear 7.
  • the number of planetary gears included in each planetary gear assembly 8 is the sum of the number of input sun gears and the number of output sun gears, that is, the number of input sun gears m+the number of output sun gears k.
  • the variable speed module 10 may include more than two (for example, two, three, four or more) planetary gear assemblies 8, and the two or more planetary gear assemblies 8 are evenly distributed along the circumferential direction of the sun gear 30.
  • the speed change module 10 includes two planetary gear assemblies 8, and the two planetary gear assemblies 8 are uniformly distributed at 180° with respect to the rotation axis X0 of the input sun gear 1, 2 or the output sun gear 7.
  • the planetary gear assembly 8 is circumferentially arranged relative to the rotation axis X0 of the planet carrier 9, for example, it may be evenly distributed relative to the rotation axis X0 of the planet carrier 9 in the circumferential direction.
  • At least one of the input sun gears is equipped with a brake Bx.
  • Bx in Fig. 1 and subsequent figures represents a brake, and x can be any positive integer such as 1, 2, 3, or 9.
  • the planet carrier 9 is also equipped with a brake B9.
  • the input sun gear 2 located closest to the torque input terminal IP (the frontmost side in FIG. 1) is equipped with a brake B2.
  • the brake Bx can be divided into a rotatable part BR and a non-rotating part BS.
  • the non-rotating part BS of the brake B2 can be directly or indirectly connected with the transmission frame Box, and the brake B2 can be directly or indirectly connected to the transmission frame Box.
  • the rotating part BR directly or indirectly establishes a connection with the input sun gear 2.
  • the brake Bx is in the braking state (or expressed as the brake Bx engaged)
  • the corresponding input sun gear 2 or planet carrier 9 configured with the brake Bx is prevented from rotating, and when the brake Bx is not activated (or expressed as, the brake Bx is disengaged)
  • the corresponding input sun gear 2 or planet carrier 9 equipped with brake Bx is allowed to rotate.
  • the input sun gears 1 and 2 are respectively connected to the torque input terminal IP through a clutch Cx in a clutchable manner.
  • Cx in Figure 1 and subsequent figures represents a clutch, and x can be any positive integer such as 1, 2, 3, or 9.
  • the input sun gear 2 located closest to the torque input terminal IP (the frontmost side in FIG. 1) is equipped with a brake B2.
  • the clutch Cx can be divided into a driving part CA and a driven part CI.
  • the driving part CA of the clutch C2 is directly or indirectly connected with the torque input terminal IP, and the driven part CI of the clutch C2 Establish a connection directly or indirectly with the input sun wheel 2.
  • the planet carrier 9 may also be equipped with a clutch C9.
  • the planet carrier 9 is also detachably connected to the torque input terminal IP through the clutch C9.
  • the clutch Cx When the clutch Cx is in the engaged state (or expressed as the clutch Cx engaged), the torque is transmitted from the torque input terminal IP to the corresponding input sun gear 1, 2 or planet carrier 9 equipped with the clutch Cx, and when the clutch Cx is not activated (or It is expressed that when the clutch Cx is disengaged), the torque transmission to the corresponding input sun gear 2 or planet carrier 9 equipped with the brake Bx is interrupted.
  • the clutch Cx and the brake Bx can constitute a shift actuator.
  • the clutch Cx may be, for example, a multi-plate wet clutch, and the brake B2 may have a structure similar to that of the clutch Cx, for example.
  • the transmission module 10 is configured to select two elements from m+1 (three in Figure 1) elements composed of m input sun gears 1, 2 and planet carrier 9, so that one element of the two elements has a clutch Cx is in the engaged state and the brake Bx of the other element is in the braking state, or the clutches Cx of the two elements are in the engaged state, thereby forming a power transmission route of the transmission module.
  • the torque input end IP includes a torque input shaft S0.
  • Each clutch Cx includes an inner hub and an outer drum that are detachably connected.
  • the active part CA of the clutch C2 includes an inner hub with external splines (in Figure 1, composed of a tube S01), and also includes a first friction element with internal splines, The first friction element can be drivingly connected to the inner hub S01 through the cooperation of the inner spline and the outer spline;
  • the driven part CI of the clutch C2 includes an outer drum with inner splines (in FIG. 1, constituted by the tube 21), It also includes a second friction element with external splines.
  • the second friction element can be drivingly connected to the outer drum 21 through the cooperation of the outer splines and the inner splines; the inner hub S01 and the outer drum 21 are a pair of coaxial tubes.
  • a first friction element with an internal spline and a second friction element with an external spline are arranged between the inner hub S01 and the outer drum 21, and the friction elements are pressed against each other to transfer torque. In this way, the inner hub S01 and the outer drum 21 of the clutch C2 are clutchably connected.
  • the input sun gears 1, 2 and the torque input shaft S0 are respectively connected to one and the other of the inner hub and outer drum of the corresponding clutch. That is, for a clutch, the input sun gear can be connected to the inner hub of the clutch and torque
  • the input shaft S0 is connected to the outer drum of the clutch, or the input sun gear is connected to the inner hub of the clutch and the torque input shaft S0 is connected to the inner hub of the clutch.
  • the input sun gears 1 and 2 are detachably connected to the torque input shaft S0 via the clutches C1 and C2.
  • a clutch C1 is provided between the input sun gear 1 and the torque input shaft S0.
  • Fig. 1 is provided between the input sun gear 1 and the torque input shaft S0.
  • the torque input shaft S0 has a tubular shaft or tube S01 along the rotation axis X0, the tube S01 is connected to or constitutes the outer drum of the clutch C1, and the input sun gear 1 has a tube 11 extending along the rotation axis X0 , The tube 11 is connected to or constitutes the inner hub of the clutch C1.
  • the clutch C1 is composed of a tube S01 of the torque input shaft S0 and a tube 11 of the input sun gear 1, and the tube S01 is sleeved on the tube 11.
  • the input sun gear 1 is connected to the inner hub of the clutch C1
  • the torque input shaft S0 is connected to the outer drum of the clutch C1.
  • a clutch C2 is provided between the input sun gear 2 and the torque input shaft S0.
  • the tube 21 of the input sun gear 2 is sheathed on the tube S01 of the torque input shaft S0.
  • the tube 21 is connected to or constitutes the outer drum of the clutch C2, and the tube S01 is connected or constitutes the inner hub of the clutch C2.
  • the input sun gear 2 is connected to the outer drum of the clutch C2, and the torque input shaft S0 is connected to the inner hub of the clutch C1.
  • the tube constituting the inner hub or outer drum of the clutch is not limited to a hollow tube.
  • the tube 11 may not be a hollow tube as shown in FIG. 1 but may be a solid shaft.
  • the input sun gear 1 and the input sun gear 2 are held in a coaxial line (rotation axis X0) through the tube pair S12 nested with each other and can rotate relative to each other.
  • the input sun gear 1 has a tube 12 in the shape of a solid shaft extending along the axis of rotation X0
  • the input sun gear 2 has a tube 22 extending along the axis of rotation X0
  • the tube 22 of the input sun gear 2 is sheathed on the tube of the input sun wheel 1.
  • a rotary bearing may be provided between the pipe barrel 22 and the pipe barrel 12, for example.
  • the input sun gear 1 and the input sun gear 2 are kept coaxially and can rotate relative to each other.
  • the input sun gear 1 and the output sun gear 3 are also kept coaxially (rotation axis X0) and can rotate relative to each other through the tube pair S17 nested with each other.
  • the output sun gear 3 has a tube 71 extending rearward along the rotation axis X0, and a solid shaft-shaped tube 72 is connected to the rear of the tube 71.
  • the front end of the tube 12 of the input sun gear 1 passes through the tube 22 of the input sun gear 2 and then is connected to the tube 11, and the rear end of the tube 12 of the input sun gear 1 is inserted into the tube 71 of the output sun gear 3.
  • a tube pair S17 is formed therewith.
  • the tubes shown in the figure as solid shafts are all referred to as corresponding sun gears (for example, input sun gear 1, output sun gear 7).
  • the connecting shafts of the hollow cylindrical tube shown in the figure are all referred to as the corresponding sun gear (for example, input sun gear 2, output sun gear 7) Tubular shaft. It may be that part of the sun gears in the sun gear set 30 are kept coaxially and rotatable relative to each other through such a pair of sleeved tubes.
  • each planetary gear assembly 8 includes three planetary gears 81, 82 and 87.
  • the planetary gears 81, 82 and 87 are fixedly connected as a whole, coaxially and synchronously rotating, and can be rotated by a planetary shaft 89 ⁇ mounted on the planet carrier 9.
  • the input sun gears 1 and 2 are arranged side by side with the output sun gear 7 and have the same axis of rotation X0 as the planet carrier 9, wherein the input sun gear 1 is arranged between the input sun gear 2 and the output sun gear 7.
  • the input sun gear 2 is sleeved on the connecting shaft of the input sun gear 1 through its tubular shaft.
  • the connecting shafts (or tubular shafts) of the input sun gears 1 and 2 protrude from the center hole 93 of the planet carrier 9 in the direction of the input sun gear.
  • the central hole 94 of the planet carrier 9 protrudes from the side of the output sun gear 7 that is far from the input sun gear 1 in the axial direction.
  • the input sun gears 1 and 2, the output sun gear 7 and the input sun gear 1 or 2, and the input sun gears 1 and 2 or the output sun gear 7 and the planet carrier 9 can rotate relatively.
  • the input sun gear 1 meshes with the planet gear 81
  • the input sun gear 2 meshes with the planet gear 82
  • the planet gear 87 meshes with the output sun gear 7.
  • a clutch C1 is provided between the input sun gear 1 and the torque input shaft S0
  • a clutch C2 is provided between the input sun gear 2 and the torque input shaft S0.
  • a brake B2 is provided between the input sun gear 2 and the transmission frame Box
  • a brake B9 is provided between the planet carrier 9 and the transmission frame Box.
  • the point of engagement between the sun gear and the corresponding planetary gear is called a node.
  • the pitch radius of the gear pair formed by the input sun gear 1 and the planetary gear 81 is R1
  • the pitch radius of the gear pair formed by the input sun gear 2 and the planetary gear 82 is R2
  • the pitch circle radius of the gear pair formed by the output sun gear 7 and the planetary gear 87 is R7
  • the pitch circle radius center distance*number of teeth/number of teeth sum.
  • R1 ⁇ R2 ⁇ R7 can be set.
  • At least one input sun gear is equipped with a brake Bx.
  • only one input sun gear 2 is equipped with brake B2.
  • each of the m input sun gears can be equipped with a brake Bx.
  • the input sun gear 1 is also provided with a brake B1.
  • This embodiment and subsequent embodiments all use the element numbers and part of the content of the previous embodiments, wherein the same numbers are used to represent the same or similar elements, and the description of the same technical content is selectively omitted. For the description of the omitted parts, reference may be made to the foregoing embodiments, and this embodiment and subsequent embodiments will not be repeated.
  • each planetary gear assembly 8 includes three planetary gears 81, 82, and 87 .
  • the planet gears 81, 82, and 87 are fixedly connected as a whole, coaxially and synchronously rotate, and are rotatably mounted on the planet carrier 9 through a planet shaft 89.
  • the input sun gears 1 and 2 are arranged side by side with the output sun gear 7 and have the same axis of rotation X0 as the planet carrier 9, wherein the input sun gear 1 is arranged between the input sun gear 2 and the output sun gear 7.
  • the input sun gear 2 is sleeved on the connecting shaft of the input sun gear 1 through its tubular shaft.
  • the connecting shafts (or tubular shafts) of the input sun gears 1 and 2 protrude out of the central hole 93 of the planet carrier 9 in the direction of the input sun gear, and the connection axis of the output sun gear 7 is protruded away from the input sun gear 1.
  • the input sun gears 1 and 2, the output sun gear 7 and the input sun gear 1 or 2, and the input sun gears 1 and 2 or the output sun gear 7 and the planet carrier 9 can rotate relatively.
  • the input sun gear 1 meshes with the planet gear 81
  • the input sun gear 2 meshes with the planet gear 82
  • the planet gear 87 meshes with the output sun gear 7.
  • a clutch C1 is provided between the input sun gear 1 and the torque input shaft S0
  • a clutch C2 is provided between the input sun gear 2 and the torque input shaft S0.
  • a brake B2 is provided between the input sun gear 2 and the transmission frame Box
  • a brake B9 is provided between the planet carrier 9 and the transmission frame Box.
  • the brake B1 is located behind the rear axle hole H2.
  • the input sun gear 1 has an extension shaft 13 in the direction of the output sun gear 7, and the output sun gear 7 is sleeved on the extension shaft 13 of the input sun gear 1 through its tubular shaft.
  • the input sun gear 1 and the output sun gear 7 can rotate relative to each other to output the sun.
  • the wheel 7 outputs torque through its tubular shaft.
  • a brake B1 is provided between the extension shaft 13 of the input sun gear 1 and the transmission frame Box, so that it is convenient to arrange the brake B1 between the input sun gear 1 and the transmission frame Box.
  • the input sun gear 1 When the brake B1 is engaged, the input sun gear 1 is braked to prevent its rotation; when the brake B1 is disengaged, the input sun gear 1 and the transmission frame Box can rotate relative to each other.
  • the brakes configured for part of the input sun gears or all of the input sun gears may be located on the rear side of the rear axle hole H2 according to the arrangement requirements.
  • the pitch radius of the gear pair formed by the input sun gear 1 and the planetary gear 81 is R1
  • the pitch radius of the gear pair formed by the input sun gear 2 and the planetary gear 82 is R2
  • the pitch circle radius of the gear pair formed by the output sun gear 7 and the planetary gear 87 is R7.
  • FIG. 3 shows a transmission device 100 in which two four-speed transmission modules 10 of FIG. 1 are connected in series.
  • the torque output terminal OP1 of the previous transmission module 10 is drivingly connected to the torque input terminal IP2 of the subsequent transmission module.
  • the torque input terminals IP1 and IP2 of the transmission module 10 are torque input shafts
  • the torque output terminals OP1 and OP2 are torque output shafts extending from the center of the output sun gear 7 to the rear side.
  • the torque output of the previous transmission module 10 The shaft is connected to the torque input shaft of the latter transmission module.
  • Figure 3 shows the calculation of the number of gears of the transmission device 100 as follows:
  • FIG. 3 shows a case where two transmission modules 10 are connected in series
  • the transmission device may include more than two transmission modules, and the number of gears of the transmission device is the product of the number of gears of the transmission modules included therein.
  • the speed change device may also include different speed change modules.
  • FIG. 4 shows a transmission device 100a in which the four-speed transmission module 10 of FIG. 1 and the five-speed transmission module 10a of FIG. 2 are connected in series.
  • the tubular shaft of the output sun gear of the previous transmission module 10a (or the torque output end OPa of the five-speed transmission module 10a) is connected with a transfer gear D4, which transmits torque outward through the transfer gear D4, and the latter shifts
  • the torque input shaft of the module 10 (or the torque input terminal IP2 of the four-speed transmission module 10) is connected with a transfer gear D1.
  • a transfer intermediate shaft SI is also provided.
  • the transfer intermediate shaft SI is parallel to the torque input shafts of the two transmission modules.
  • the transfer intermediate shaft SI is fixedly connected to the two transfer gears D2 and D3, the transfer gear D1 and the transfer gear D2 When meshing, the transfer gear D3 meshes with the transfer gear D4.
  • this arrangement can facilitate the bypass of the brake B1.
  • the number of gears of the transmission 100a shown in FIG. 4 is calculated as follows:
  • the planet carrier 9 may also be equipped with a clutch.
  • the difference from the second embodiment is at least in that the planet carrier 9 is equipped with a clutch C9.
  • each planetary gear assembly 8 includes three planetary gears 81, 82, and 87 .
  • the planet gears 81, 82, and 87 are fixedly connected as a whole, coaxially and synchronously rotate, and are rotatably mounted on the planet carrier 9 through a planet shaft 89.
  • the input sun gears 1 and 2 are arranged side by side with the output sun gear 7 and have the same axis of rotation X0 as the planet carrier 9, wherein the input sun gear 1 is arranged between the input sun gear 2 and the output sun gear 7.
  • the input sun gear 2 is sleeved on the connecting shaft of the input sun gear 1 through its tubular shaft.
  • the connecting shafts (or tubular shafts) of the input sun gears 1 and 2 protrude from the center hole 93 of the planet carrier 9 in the direction of the input sun gear.
  • the central hole 94 of the planet carrier 9 protrudes from the side of the output sun gear 7 that is far from the input sun gear 1 in the axial direction.
  • the input sun gears 1 and 2, the output sun gear 7 and the input sun gear 1 or 2, and the input sun gears 1 and 2 or the output sun gear 7 and the planet carrier 9 can rotate relatively.
  • the input sun gear 1 meshes with the planet gear 81
  • the input sun gear 2 meshes with the planet gear 82
  • the planet gear 87 meshes with the output sun gear 7.
  • a clutch C1 is provided between the input sun gear 1 and the torque input shaft S0
  • a clutch C2 is provided between the input sun gear 2 and the torque input shaft S0
  • a clutch C9 is provided between the planet carrier 9 and the torque input shaft S0.
  • a brake B1 is provided between the input sun gear 1 and the transmission frame Box
  • a brake B2 is provided between the input sun gear 2 and the transmission frame Box
  • a brake B9 is provided between the planet carrier 9 and the transmission frame Box.
  • the brakes B1, B2, and B9 of the input sun gear 1, the input sun gear 2, and the planet carrier 9 are all located on the front side of the front shaft hole H1.
  • a clutch C9 is provided between the planet carrier 9 and the torque input shaft S0.
  • the torque input shaft S0 includes a tube S02 arranged on the periphery of the tube S01 and coaxial with the tube S02.
  • the tube S02 is the inner hub of the clutch C9.
  • the planet carrier 9 has a tube 91 extending along the rotation axis X0.
  • the tube 91 is the outer drum of the clutch C9.
  • the clutch C9 is composed of the tube S02 of the torque input shaft S0, the tube 91 of the planet carrier 9 and the friction element between the two.
  • the tube 91 is sheathed on the tube S02 and has an inner
  • the friction element of the spline is matched with the outer spline of the tube S02, and the friction element with the outer spline is matched with the inner spline of the tube 91.
  • the friction element with internal splines and the friction element with external splines are arranged between the tube S02 and the tube 91, and the friction elements are pressed against each other to transfer torque.
  • the planet carrier 9 and the input sun gear 2 are held in a coaxial line (rotation axis X0) through the tube pair S29 nested with each other and can rotate relative to each other.
  • the planet carrier 9 has a tube 92 extending along the rotation axis X0.
  • the tube 92 of the planet carrier 9 is sheathed on the tube 22 of the input sun gear 2.
  • a rotating bearing may be provided between the tube 92 and the tube 22. In this way, the planet carrier 9 and the input sun gear 2 are thus kept coaxial with the input sun gear 1 and can rotate relative to each other.
  • the tube 92 of the planet carrier 9 passes through the front shaft hole H1 and is connected to the tube 91.
  • the fourth embodiment shown in FIG. 6 is different from the third embodiment of FIG. 5 in at least one aspect. In the fourth embodiment, the power transmission path from the torque input shaft S0 to the planet carrier 9 is different.
  • the planet carrier 9 is connected with a first adapter gear T91, and the first adapter gear T91 meshes with the second adapter gear T92 for transmission.
  • the torque input shaft S0 is provided with an input transfer gear T0, and the input transfer gear T0 meshes with the third transfer gear T93 for transmission.
  • a clutch C9 is provided between the second transfer gear T92 and the third transfer gear T93.
  • the second transfer gear T92 has a tube S92 extending along its rotation axis X2, the tube S92 is connected to or constitutes the outer drum of the clutch C9, and the third transfer gear T93 has a tube S93 extending along its rotation axis X2, The tube S93 is connected to or constitutes the inner hub of the clutch C9, and the tube S92 is sheathed on the tube S93.
  • a first friction element with an internal spline fits with the external spline of an inner hub formed by the tube S93
  • a second friction element with an external spline fits with the internal spline of the outer drum formed by the tube S92.
  • the first friction element with internal splines and the second friction element with external splines are arranged between the inner hub constituted by the tube S93 and the outer drum constituted by the tube S92, and the friction elements are pressed against each other to transfer torque.
  • the planet carrier 9 is clutchably connected to the torque input shaft S0 through the first transfer gear T91, the second transfer gear T92, the clutch C9, the third transfer gear T93, and the input transfer gear T0 in sequence.
  • a carrier adapter shaft SX2 is provided in parallel with the torque input shaft S0.
  • Adapter gears T92 and T93 are respectively installed on the planet carrier adapter shaft SX2.
  • the transfer gear T93 meshes with the transfer gear T0, and the transfer gear T92 meshes with the transfer gear T91 connected to the planet carrier 9.
  • the clutch C9 is provided between the transfer gear T92 and the transfer gear T93. When the clutch C9 is engaged, torque can be transmitted between the transfer gear T93 and the transfer gear T92; when the clutch C9 is disengaged, the transfer gear T93 and the transfer gear T92 can rotate relative to each other.
  • a brake B9 is provided between the transfer gear T92 and the transmission frame Box.
  • the tube S92 is connected to or constitutes the inner hub of the brake B9, and the outer drum of the brake B9 is connected to the transmission frame Box.
  • the brake B9 is engaged, the transfer gear T92 is braked to prevent its rotation, the transfer gear T91 meshing with the transfer gear T92 is also prevented from rotating, and the planet carrier 9 connected with the transfer gear T91 is also prevented from rotating;
  • the brake B9 is disengaged, the parts that are prevented from rotating can rotate relative to the transmission frame Box.
  • the brakes B2 and B9 of the input sun gear 2 and the planet carrier 9 are located on the front side of the front shaft hole H1, and the brake B1 of the input sun gear 1 is located on the rear side of the rear shaft hole H2.
  • the input sun gear 1 has an extension shaft in the direction of one side of the output sun gear 7, and the output sun gear 7 is sleeved on the extension shaft of the input sun gear 1 through its tubular shaft.
  • the input sun gear 1 and the output sun gear 7 can be Relative rotation.
  • the output sun gear 7 outputs torque through its tubular shaft.
  • a brake B1 is provided between the extension shaft of the input sun gear 1 and the transmission frame Box. When the brake B1 is engaged, the input sun gear 1 is braked to prevent its rotation; when the brake B1 is disengaged, the input sun gear 1 and the transmission frame Box can rotate relatively.
  • FIG. 6 can facilitate the arrangement of the clutch Cx and the brake Bx.
  • each planetary gear assembly 8 includes four planetary gears 81, 82 , 83 and 87.
  • the planetary gears 81, 82, 83, and 87 are fixedly connected as a whole, coaxially and synchronously rotate, and are rotatably mounted on the planet carrier 9 through a planetary shaft 89.
  • the input sun gears 1, 2, 3 and the output sun gear 7 are arranged side by side and have the same axis of rotation X0 as the planet carrier 9.
  • the input sun gear 1 is arranged between the input sun gear 2 and the output sun gear 7, and the input sun gear 3 is arranged on the side of the input sun gear 2 away from the output sun gear 7.
  • the input sun gear 3 is sleeved on the tubular shaft of the input sun gear 2 through its tubular shaft, and the input sun gear 2 is sleeved on the connecting shaft of the input sun gear 1 through its tubular shaft.
  • the input sun gear farthest from the output sun gear passes through its tubular shaft.
  • the shaft is sleeved on the adjacent tubular shaft (or connecting shaft) of the input sun gear that is close to the output sun gear.
  • the tubular shafts (or connecting shafts) of the input sun gears 1, 2, and 3 all protrude from the center hole 93 of the planet carrier 9 in the direction of the input sun gear 3 side.
  • the center hole 94 of the planet carrier 9 protrudes from the side of the output sun gear 7 that is far from the input sun gear 3 in the axial direction.
  • the input sun gear 1, 2, 3, the output sun gear 7 and the input sun gear 1, 2 or 3, and the input sun gear 1, 2, 3 or the output sun gear 7 and the planet carrier 9 can be relatively rotated .
  • the input sun gear 1 meshes with the planet gear 81
  • the input sun gear 2 meshes with the planet gear 82
  • the input sun gear 3 meshes with the planet gear 83
  • the planet gear 87 meshes with the output sun gear 7.
  • a clutch C1 is provided between the input sun gear 1 and the torque input shaft S0
  • a clutch C2 is provided between the input sun gear 2 and the torque input shaft S0
  • a clutch C3 is provided between the input sun gear 3 and the torque input shaft S0
  • a planet carrier A clutch C9 is provided between 9 and the torque input shaft S0.
  • Brake B1 is installed between input sun gear 1 and transmission frame Box
  • brake B2 is installed between input sun gear 2 and transmission frame Box
  • brake B3 is installed between input sun gear 3 and transmission frame Box
  • planet carrier A brake B9 is provided between 9 and the transmission frame Box.
  • the brakes B1, B2, B3, and B9 of the input sun gears 1, 2, 3 and the planet carrier 9 are all located on the front side of the front shaft hole H1.
  • clutches C1, C2, C3, and C9 are provided between the input sun gears 1, 2, 3 and the planet carrier 9 and the torque input shaft S0, respectively, so as to be clutchably connected to the torque input shaft S0.
  • the sixth embodiment shown in Fig. 8 is different from the fifth embodiment of Fig. 7 in at least one aspect.
  • the power transmission path from the torque input shaft S0 to the planet carrier 9 and the input sun gear 3 is different.
  • the power transmission path of the planet carrier 9 in FIG. 8 is similar to that in FIG. 6.
  • the planet carrier 9 is connected with a first transfer gear T91, and the first transfer gear T91 and the second transfer gear T92 mesh for transmission.
  • the torque input shaft S0 is provided with an input transfer gear T0, and the input transfer gear T0 meshes with the third transfer gear T93 for transmission.
  • a clutch C9 is provided between the second transfer gear T92 and the third transfer gear T93.
  • the planet carrier 9 is clutchably connected to the torque input shaft S0 through the first transfer gear T91, the second transfer gear T92, the clutch C9, the third transfer gear T93, and the input transfer gear T0 in sequence.
  • the input sun gear 3 is connected with a first adapter gear T31, and the first adapter gear T31 and the second adapter gear T32 mesh for transmission.
  • the torque input shaft S0 is provided with an input transfer gear T0, and the input transfer gear T0 meshes with the third transfer gear T33 for transmission.
  • a clutch C3 is provided between the second transfer gear T32 and the third transfer gear T33.
  • the second transfer gear T32 has a tube S32 extending along its rotation axis X3, the tube S32 is connected to or constitutes the outer drum of the clutch C3, and the third transfer gear T33 has a tube S33 extending along its rotation axis X3, The tube S33 is connected to or constitutes the inner hub of the clutch C3, and the tube S32 is sleeved on the tube S33.
  • a first friction element with an internal spline is engaged with the external spline of the tube S33 constituting the inner hub of the clutch C3
  • a second friction element with an external spline is engaged with the inner spline of the tube S32 constituting the outer drum of the clutch C3.
  • the first friction element with internal splines and the second friction element with external splines are arranged between the tube S33 and the tube S32, and the friction elements are pressed against each other to transfer torque.
  • the input sun gear 3 is clutchably connected to the torque input shaft S0 through the first transfer gear T31, the second transfer gear T32, the clutch C3, the third transfer gear T33, and the input transfer gear T0 in sequence.
  • the other input sun gears 1 and 2 are not connected to the transfer gear. That is, in FIG. 8, one input sun gear 3 of the three sun gears is connected to the first transfer gear T31, and the power transmission path is formed by the transfer gear. It may be that part of the input sun gears of the m input sun gears are connected with the first adapter gear, as shown in FIG. 8. It may also be that all the input sun gears among the m input sun gears are connected with the first adapter gear. It is also possible that all the input sun gears of the m input sun gears do not receive power through the transfer gear, for example, as shown in FIG. 1, FIG. 2 and FIG. 5.
  • a carrier adapter shaft SX2 is provided in parallel with the torque input shaft S0.
  • Adapter gears T92 and T93 are respectively installed on the planet carrier adapter shaft SX2.
  • the transfer gear T93 meshes with the transfer gear T0, and the transfer gear T92 meshes with the transfer gear T91 connected to the planet carrier 9.
  • the clutch C9 is provided between the transfer gear T92 and the transfer gear T93. When the clutch C9 is engaged, torque can be transmitted between the transfer gear T93 and the transfer gear T92; when the clutch C9 is disengaged, the transfer gear T93 and the transfer gear T92 can rotate relative to each other.
  • a brake B9 is provided between the transfer gear T92 and the transmission frame Box.
  • An input sun gear adapter shaft SX3 is arranged parallel to the torque input shaft S0, and an adapter gear T32 and an adapter gear T33 are respectively mounted on the input sun gear adapter shaft SX3.
  • the transfer gear T33 meshes with the transfer gear T0, and the transfer gear T32 meshes with the transfer gear T31 connected to the input sun gear 3.
  • a clutch C3 is arranged between the transfer gears T33 and T32. When the clutch C3 is engaged, the transfer gear Torque can be transmitted between T33 and T32. When the clutch C3 is disengaged, the transfer gear T33 and the transfer gear T32 can rotate relative to each other.
  • a brake B3 is provided between the transfer gear T32 and the transmission frame Box.
  • the brakes B2, B3, and B9 of the input sun gear 2, 3 and the planet carrier 9 are located in front of the front axle hole H1, and the brake B1 of the input sun gear 1 is located behind the rear axle hole H2 side.
  • the input sun gear 1 has an extension shaft in the direction of one side of the output sun gear 7, and the output sun gear 7 is sleeved on the extension shaft of the input sun gear 1 through its tubular shaft.
  • the input sun gear 1 and the output sun gear 7 can be Relative rotation, wherein the input sun gear 1 is the input sun gear closest to the output sun gear 7.
  • the output sun gear 7 outputs torque through its tubular shaft.
  • a brake B1 is provided between the extension shaft of the input sun gear 1 and the transmission frame Box. When the brake B1 is engaged, the input sun gear 1 is braked to prevent its rotation; when the brake B1 is disengaged, the input sun gear 1 and the transmission frame Box can rotate relatively.
  • FIG. 8 can facilitate the arrangement of the clutch Cx and the brake Bx.
  • the two output sun gears 6, 7 are held coaxially (rotation axis X0) by the tube pair S67 nested with each other and can rotate relative to each other.
  • each planetary gear assembly 8 includes four planetary gears 81, 82, 87 And 86.
  • the planetary gears 81, 82, 87 and 86 are fixedly connected as a whole, coaxially and synchronously rotate, and are rotatably mounted on the planet carrier 9 via a planetary shaft 89.
  • the input sun gears 1 and 2 are arranged side by side with the output sun gears 7 and 6 and have the same axis of rotation X0 as the planet carrier 9, wherein the input sun gear 1 is arranged between the input sun gear 2 and the output sun gear 7.
  • the input sun gear 2 is sleeved on the connecting shaft of the input sun gear 1 through its tubular shaft.
  • the connecting shafts (or tubular shafts) of the input sun gears 1 and 2 protrude from the center hole 93 of the planet carrier 9 toward the input sun gear 2 side.
  • the output sun gear 6 is arranged on the other side of the output sun gear 7 (the side of the output sun gear 7 is the input sun gear 1).
  • the output sun gear 6 is sleeved on the connecting shaft of the output sun gear 7 through its tubular shaft.
  • the input sun gear far away from the output sun gear is sleeved on the connecting shaft of the adjacent input sun gear close to the output sun gear through its tubular shaft
  • the output sun gear far away from the input sun gear is sleeved on the adjacent adjacent shaft through its tubular shaft.
  • the connecting shafts (or tubular shafts) of the output sun gears 7 and 6 protrude from the center hole 94 of the planet carrier 9 to the side away from the input sun gear 1 to form two torque output shafts SP7 and SP6, respectively.
  • the number of output sun gears is the same as the number of torque output shafts.
  • the input sun gears 1 and 2, the output sun gears 7, 6 and the input sun gear 1 or 2, and the input sun gears 1, 2, the output sun gears 7, 6 and the planet carrier 9 can rotate relatively.
  • the input sun gear 1 meshes with the planet gear 81
  • the input sun gear 2 meshes with the planet gear 82
  • the planet gear 87 meshes with the output sun gear 7,
  • the planet gear 86 meshes with the output sun gear 6.
  • a clutch C1 is provided between the input sun gear 1 and the torque input shaft S0
  • a clutch C2 is provided between the input sun gear 2 and the torque input shaft S0
  • a clutch C9 is provided between the planet carrier 9 and the torque input shaft S0.
  • a brake B1 is provided between the input sun gear 1 and the transmission frame Box
  • a brake B2 is provided between the input sun gear 2 and the transmission frame Box
  • a brake B9 is provided between the planet carrier 9 and the transmission frame
  • each planetary gear assembly 8 includes five planetary gears 81, 82 , 83, 87 and 86.
  • the planetary gears 81, 82, 83, 87 and 86 are fixedly connected as a whole, coaxially and synchronously rotate, and are rotatably mounted on the planet carrier 9 via a planetary shaft 89.
  • the input sun gears 1, 2, 3 are arranged side by side with the output sun gears 7, 6 and have the same axis of rotation X0 as the planet carrier 9.
  • the input sun gear 1 is arranged between the input sun gear 2 and the output sun gear 7, and the input
  • the sun gear 3 is arranged on the other side of the input sun gear 2 (the side of the input sun gear 2 is the input sun gear 1).
  • the input sun gear 3 is sleeved on the tubular shaft of the input sun gear 2 through its tubular shaft, and the input sun gear 2 is sleeved on the connecting shaft of the input sun gear 1 through its tubular shaft.
  • the connecting shafts (or tubular shafts) of the input sun gears 1, 2, and 3 all protrude from the center hole 93 of the planet carrier 9 in the direction of the input sun gear 3 side.
  • the output sun gear 6 is arranged on the other side of the output sun gear 7 (the side of the output sun gear 7 is the input sun gear 1), and the output sun gear 6 is sleeved on the connecting shaft of the output sun gear 7 through its tubular shaft.
  • the input sun gear far from the output sun gear is sleeved on the connecting shaft of the adjacent input sun gear close to the output sun gear through its tubular shaft
  • the output sun gear far away from the input sun gear is sleeved on the adjacent input sun gear through its tubular shaft
  • the output of the sun gear is the connecting shaft of the sun gear.
  • the connecting shafts (or tubular shafts) of the output sun gears 7 and 6 protrude from the center hole 94 of the planet carrier 9 to the side away from the input sun gear 1 to form two torque output shafts SP7 and SP6, respectively.
  • the input sun gears 1, 2, 3, the output sun gears 7, 6, the input sun gears 1, 2, 3, the output sun gears 7, 6 and the planet carrier 9 can rotate relatively.
  • the input sun gear 1 meshes with the planet gear 81
  • the input sun gear 2 meshes with the planet gear 82
  • the input sun gear 3 meshes with the planet gear 83
  • the planet gear 87 meshes with the output sun gear 7
  • the planet gear 86 meshes with the output sun gear 6.
  • a clutch C1 is provided between the input sun gear 1 and the torque input shaft S0
  • a clutch C2 is provided between the input sun gear 2 and the torque input shaft S0
  • a clutch C3 is provided between the input sun gear 3 and the torque input shaft S0
  • a planet carrier A clutch C9 is provided between 9 and the torque input shaft S0.
  • Brake B1 is installed between input sun gear 1 and transmission frame Box
  • brake B2 is installed between input sun gear 2 and transmission frame Box
  • brake B3 is installed between input sun gear 3 and transmission frame Box
  • planet carrier A brake B9 is provided between 9 and the transmission frame Box.
  • each input sun gear or planet carrier is connected with a clutch Cx and a brake Bx, wherein the number of output sun gears is k and the number of input sun gears is m.
  • the m input sun gear and planetary frame form selectable m+1 elements.
  • each input sun gear or planet carrier is equipped with clutch Cx and brake Bx, the number of clutch Cx or brake Bx is: m+1
  • the number of gears for a certain output sun gear is calculated as follows: arbitrarily select one of the aforementioned m+1 elements (input sun gear or planet carrier) and the clutch Cx connected to it is engaged (with A possible option), and at the same time select the brake Bx connected to another element other than the aforementioned one to be engaged (the clutch Cx and the brake Bx connected to the same element cannot be engaged at the same time, therefore, there is Possible options).
  • a Cx and a Bx are joined to form a power transmission route, that is, a gear.
  • the transmission ratios of the power transmission routes formed by different Cx or different Bx joints can be made different.
  • the number of choices for the output sun gear is A.
  • the use of the transmission module or the transmission device of the present invention can greatly shorten the axial dimension of the multi-gear transmission. Moreover, the structure is simpler and the weight is lighter. The complicated nesting between the traditional planetary row and the related components of the planetary row is also avoided, thereby eliminating the disadvantages of the complicated structure and difficult processing of the related components of the planetary gear mechanism.
  • the transmission of the present invention can also be called a multi-speed, ring-free planetary gear transmission, and can be applied to vehicles and the like.
  • all the input sun gears and all the output sun gears are arranged side by side and have the same axis of rotation as the planet carrier, and the input sun gear and the output sun gear are adjacent.
  • the torque input shaft has the same axis of rotation as the input sun gear and planet carrier.
  • the input sun gear far away from the output sun gear is sleeved on the connecting shaft (or tubular shaft) of the input sun gear adjacent to the output sun gear through its tubular shaft, and all the connecting shafts (or tubular shafts) of the input sun gear are directed to the input sun
  • the center hole of the planet carrier protrudes from one side of the wheel.
  • the output sun gear far away from the input sun gear is sleeved on the connecting shaft (or tubular shaft) of the output sun gear adjacent to the input sun gear through its tubular shaft, and all the connecting shafts of the output sun gear ( Or tubular shaft) are protruding from the center hole of the planet carrier to the side of the output sun gear.
  • All input sun gears and all output sun gears mesh with all planetary gears one by one.
  • a clutch Cx is provided between each input sun gear and the torque input shaft S0, and a brake Bx is provided between the input sun gear closest to the torque input shaft S0 and the transmission frame Box.
  • a brake B9 is provided between the planet carrier 9 and the transmission frame Box.
  • the clutch Cx includes a driving part and a driven part.
  • the driving part of the clutch Cx is directly or indirectly connected with the torque input shaft S0
  • the driven part of the clutch Cx is directly or indirectly connected with the input sun gear or the planet carrier.
  • the brake Bx includes a rotatable part and a non-rotating part.
  • the non-rotating part of the brake Bx is directly or indirectly connected with the transmission frame Box, and the rotatable part of the brake Bx is directly or indirectly connected with the input sun gear or planet carrier.
  • the speed change device includes two speed change modules.
  • the torque output shaft of the previous speed change module is connected to the torque input shaft of the next speed change module.
  • the number of speed ratio settings for each speed change module is the same.
  • the specific value of the speed ratio Can be different.
  • Each variable speed module is provided with two input sun gears and one output sun gear, and the input sun gear far away from the output sun gear is sleeved on the connecting shaft of the other input sun gear through its tubular shaft.
  • each transmission module is provided with two planetary gear assemblies.
  • the two planetary gear assemblies are evenly distributed at 180° with respect to the rotation axis of the input sun gear.
  • Each planetary gear assembly is provided with three planetary gears, which are connected with two planetary gears respectively.
  • the input sun gear meshes with an output sun gear one by one.
  • a clutch Cx and a brake Bx are arranged on the input sun gear close to the torque input shaft S0, a clutch Cx is arranged on the other input sun gear, and a brake Bx is arranged on the planet carrier.
  • the speed change device includes two speed change modules, the torque input shafts of the two speed change modules are arranged in parallel or coincidentally, and the speed ratio setting of each speed change module is different.
  • Each variable speed module is provided with two input sun gears and one output sun gear, and the input sun gear far away from the output sun gear is sleeved on the connecting shaft of the other input sun gear through its tubular shaft.
  • each transmission module is provided with two planetary gear assemblies, the two planetary gear assemblies are evenly distributed at 180° with respect to the input sun gear rotation axis, and each planetary gear assembly is provided with three planetary gears, which are connected with two planetary gears respectively.
  • the input sun gear meshes with an output sun gear one by one.
  • the two input sun gears of the previous transmission module are equipped with a clutch Cx and a brake Bx, and the planet carrier is equipped with a brake Bx.
  • the input sun gear close to the output sun gear has an extension shaft in the direction of the output sun gear.
  • the output sun gear is sleeved on the extension shaft of the input sun gear through its tubular shaft.
  • the input sun gear and the output sun gear can rotate relative to each other.
  • the brake is arranged on the extension shaft, so that it is convenient to arrange the brake on the input sun gear.
  • An adapter gear D4 is connected to the tubular shaft of the output sun gear, and the torque is transmitted backward through the adapter gear D4.
  • the difference between the latter transmission module and the previous transmission module is that there is no brake Bx on the input sun gear close to the output sun gear, so the input sun gear does not need to extend the shaft toward the output sun gear, and the output sun gear does not need to be provided with a tubular shaft.
  • the rest of the structure is similar to the previous variable speed module.
  • a transfer intermediate shaft is provided.
  • the transfer intermediate shaft is parallel to the torque input shafts of the two transmission modules.
  • Two transfer gears D3 and D2 are fixedly connected to the transfer intermediate shaft, and the torque input shaft S0 of the latter transmission module is connected.
  • There is a transfer gear D1 the transfer gear D4 meshes with the transfer gear D3, and the transfer gear D2 meshes with the transfer gear D1, so that the brake on the extension shaft of the input sun gear can be avoided.
  • each speed change module can be used upside down, and a large speed change device composed of multiple speed change modules can also be used upside down.

Abstract

本发明提供一种变速模块,具有变速器机架,包括扭矩输入端、传动单元和扭矩输出端,传动单元中,行星架可旋转地设置于变速器机架,太阳轮组包括两个以上输入太阳轮和一个以上输出太阳轮,太阳轮组内的各太阳轮与行星架共轴线设置且彼此之间可相对旋转,每个行星轮总成包括与输入太阳轮分别对应啮合的输入行星轮,以及与输出太阳轮分别对应啮合的输出行星轮,输入行星轮和输出行星轮同轴地固连,行星轮总成可旋转地设置于行星架。至少一个输入太阳轮配置有制动器,并且各输入太阳轮分别通过离合器与扭矩输入端可离合地连接,行星架也配置有制动器。本发明还提供包括上述变速模块的变速装置。采用上述变速模块可以提供较多速比。

Description

变速装置及变速模块 技术领域
本发明涉及一种变速模块,还涉及一种包括该变速模块的变速装置。
背景技术
在实际应用中,齿轮变速器有两种类型:定轴式传动和行星齿轮式传动,其中行星机构带有齿圈。例如,车辆上应用的手动变速器(MT)和双离合器自动变速器(DCT)属于定轴式传动,而车辆上应用的液力变矩器型自动变速器(AT)大多数属于带有齿圈的行星齿轮式传动。
在发明人以前的专利中,中国发明专利CN102155521B公开了一种行星齿轮机构和包括该行星齿轮机构的机械变速器,中国发明专利CN106594192A公开了一种模块化组合变速器,中国发明专利CN108286591A公开了单输入三挡动力总成系统。
发明人在此基础上继续研究发现,前述三种变速装置的共同特点是:一个变速模块只有一个输入太阳轮;一个变速模块只有一个输出太阳轮;一个行星齿轮总成包括两个连接在一起、同轴同步旋转的行星齿轮;一个变速模块最多提供三个速比;若要实现更多挡位,需要将多个变速模块串联,将导致轴向尺寸较大;变速模块无齿圈,齿轮啮合方式均为外啮合齿轮;兼有定轴式和行星齿轮式两种传动模式:在保持架(或称之为行星架)固定不动时,前述三种变速装置为定轴式传动,而当输入或输出中心太阳轮固定不动时,前述三种变速装置为行星齿轮式传动,因此,以前述三种变速装置为代表的此类变速装置的传动模式为混合传动模式;结构简单、制造容易、成本低、性价比高。
而发明人期望提供一种改进型的行星齿轮机构,它可以继续保留前述专利中行星齿轮机构中没有齿圈、结构简单和制造容易等优点,在继续采用独特的混合传动模式(定轴式传动和行星齿轮式传动兼而有之)的基础上提供更多的速比。
发明内容
本发明的目的是提供一种变速模块,可以提供更多的速比。
本发明提供一种变速模块,具有变速器机架,包括扭矩输入端、传动单元和 扭矩输出端,扭矩输入端的扭矩经由传动单元传递至扭矩输出端,传动单元包括行星架、太阳轮组以及至少一个行星轮总成。行星架可旋转地设置于变速器机架。太阳轮组包括m个输入太阳轮和k个输出太阳轮,太阳轮组内的各太阳轮与行星架共轴线设置且彼此之间可相对旋转,其中,m≥2,k≥1。每个行星轮总成包括与m个输入太阳轮分别对应啮合的m个输入行星轮,以及与k个输出太阳轮分别对应啮合的k个输出行星轮,输入行星轮和输出行星轮同轴地固连,行星轮总成可旋转地设置于行星架。至少一个输入太阳轮配置有制动器,并且各输入太阳轮分别通过离合器与扭矩输入端可离合地连接,行星架也配置有制动器。变速模块配置成从m个输入太阳轮和行星架所组成的m+1个元件中选定两个元件,使得两个元件中的一个元件的离合器处于接合状态而另一元件的制动器处于制动状态,或者,使得两个元件的离合器处于接合状态,借此形成变速模块的一个动力传动路线。
在一个实施方式中,行星架还通过离合器与扭矩输入端可离合地连接。
在一个实施方式中,每一个输入太阳轮皆配置有制动器。
在一个实施方式中,扭矩输入端包括扭矩输入轴,每个离合器包括可离合地连接的内毂和外鼓;所述扭矩输入轴和所述m个输入太阳轮中的至少部分输入太阳轮分别连接对应离合器的内毂和外鼓中的一方和另一方。
在一个实施方式中,m个输入太阳轮中的至少部分输入太阳轮连接有第一转接齿轮,第一转接齿轮与第二转接齿轮啮合传动。扭矩输入端包括扭矩输入轴,扭矩输入轴设置有输入转接齿轮,输入转接齿轮与第三转接齿轮啮合传动。第二转接齿轮与第三转接齿轮之间设置有离合器,至少部分输入太阳轮依次通过第一转接齿轮、第二转接齿轮、离合器、第三转接齿轮以及输入转接齿轮而可离合地连接到扭矩输入轴。
在一个实施方式中,变速模块包括两个以上行星轮总成,两个以上行星轮总成沿着太阳轮组的圆周方向均匀分布。
在一个实施方式中,太阳轮组中的至少部分太阳轮通过相互套合的管筒对而保持成共轴线且彼此之间可相对旋转。
在一个实施方式中,变速器机架包括共轴线且并排布置的前轴孔和后轴孔;行星架可旋转地支撑于前轴孔和后轴孔之间,扭矩输入端位于前轴孔的前侧,扭 矩输出端位于后轴孔的后侧。
在一个实施方式中,m个输入太阳轮中的至少部分输入太阳轮配置的制动器位于后轴孔的后侧。
本发明还提供一种变速装置,包括上述的两个以上变速模块,两个以上变速模块中的前一变速模块的扭矩输出端与后一变速模块的扭矩输入端传动连接。
上述变速模块提供改进型的行星齿轮机构,其中的行星齿轮机构具有没有齿圈、结构简单和制造容易等优点,在采用独特的混合传动模式(定轴式传动和行星齿轮式传动兼而有之)的基础上,可以提供很多速比。
本发明的变速模块中,一个变速模块至少有二个输入太阳轮;一个变速模块不限于只有一个输出太阳轮,可以有两个以上的输出太阳轮;一个行星齿轮总成所包括的行星齿轮数量不少于三个。本发明的一个变速模块最少能产生四个速比,并且为产生更多速比提供可能。对于速比数量相同的变速器,本发明所需的变速模块显著减少,体积更小、重量更轻、成本更低。
附图概述
本发明的上述及其他特征、性质和优势将通过下面结合附图和实施例的描述而变得更加明显,其中:
图1是具有两个输入太阳轮和一个输出太阳轮的四速变速模块的原理示意图。
图2是具有两个输入太阳轮和一个输出太阳轮的五速变速模块的原理示意图。
图3是由两个图1的变速模块串联而成的变速装置的示意图。
图4是由图3的变速模块和图1的变速模块串联而成的变速装置的示意图。
图5是具有两个输入太阳轮和一个输出太阳轮的七速变速模块的原理示意图。
图6是具有两个输入太阳轮和一个输出太阳轮的七速变速模块的另一布置示意图。
图7是具有三个输入太阳轮和一个输出太阳轮的十三速变速模块的原理示意图。
图8是具有三个输入太阳轮和一个输出太阳轮的十三速变速模块的另一布置 示意图。
图9是具有两个输入太阳轮和两个输出太阳轮的十三速变速模块的原理示意图。
图10是具有三个输入太阳轮和两个输出太阳轮的二十五速变速模块的原理示意图。
本发明的最佳实施方式
下面结合具体实施方式和附图对本发明作进一步说明,在以下的描述中阐述了更多的细节以便于充分理解本发明,但是本发明显然能够以多种不同于此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下根据实际应用情况作类似推广、演绎,因此不应以此具体实施方式的内容限制本发明的保护范围。
例如,在说明书中随后记载的第一特征在第二特征上方或者上面形成,可以包括第一和第二特征通过直接联系的方式形成的实施方式,也可以包括在第一和第二特征之间形成附加特征的实施方式,从而第一和第二特征之间可以不直接联系。进一步,当第一元件是用与第二元件相连或结合的方式描述的,该说明包括第一和第二元件直接相连或彼此结合的实施方式,也包括采用一个或多个其他介入元件加入使第一和第二元件间接地相连或彼此结合。另外,文中有关“N个以上”、“不少于N个”或者“至少N个”的表述皆包括N个本身,例如,“两个以上”包括“两个”本身。
第一实施例(m=2,k=1)
参见图1,图1示出了根据第一实施例的变速模块10。变速模块10具有变速器机架BOX。变速器机架BOX可以是变速器壳体,对后面将会描述的行星架9、扭矩输入轴S0等等提供支撑。
变速模块10包括扭矩输入端IP、传动单元20和扭矩输出端OP,扭矩输入端IP的扭矩经由传动单元20传递至扭矩输出端OP。
传动单元20包括行星架9、太阳轮组30和至少一个行星轮总成8。
行星架9可旋转地设置于变速器机架BOX。图1中,变速器机架BOX包括共轴线(图1中,旋转轴线X0)且并排布置的前轴孔H1和后轴孔H2。行星架9可旋转地支撑于前轴孔H1和后轴孔H2之间,例如,通过旋转轴承。扭矩输入端IP位于前 轴孔H1的前侧,扭矩输出端OP位于后轴孔H2的后侧。为了方便描述,图1以及后续附图中示出了前后方向。
太阳轮组30包括m个输入太阳轮(如,图1中的)和k个输出太阳轮,其中,m≥2,k≥1。图1中,m=2,k=1,m个输入太阳轮也即输入太阳轮1、2,k个输出太阳轮也即输出太阳轮7。太阳轮组30内的各太阳轮(包括输入太阳轮1、2和输出太阳轮7)与行星架9共轴线(图1中,旋转轴线X0)设置且彼此之间可相对旋转。换言之,k个输出太阳轮彼此之间(如果k>1)可相对旋转,m个输入太阳轮彼此之间可相对旋转,并且输出太阳轮与输入太阳轮彼此之间可相对旋转。
每个行星轮总成8包括m个输入行星轮(如,图1中的输入行星轮81、82)和k个输出行星轮(如图1中的输出行星轮87)。m个输入行星轮与m个输入太阳轮分别对应啮合,例如,图1中,输入行星轮81与输入太阳轮1啮合,而输入行星轮82与输入太阳轮2啮合。k个输出行星轮分别与k个输出太阳轮对应啮合,例如,图1中,输出行星轮87与输出太阳轮7啮合。每个行星轮总成8包括的行星轮的数量为输入太阳轮和输出太阳轮的数量总和,也即,输入太阳轮数量m+输出太阳轮数量k。
输入行星轮81、82和输出行星轮87同轴地固连,行星轮总成8(图1中,绕着轴线X1)可旋转地设置于行星架9。变速模块10可以包括两个以上(例如,二、三、四或更多)行星轮总成8,两个以上行星轮总成8沿着太阳轮组30的圆周方向均匀分布。图1中,变速模块10包括两个行星轮总成8,两个行星轮总成8相对于输入太阳轮1、2或者输出太阳轮7的旋转轴线X0呈180°均布。替代地,行星轮总成8相对于行星架9的旋转轴线X0周向布置,例如可以,相对于行星架9的旋转轴线周向X0均布。
m个输入太阳轮中,至少一个输入太阳轮配置有制动器Bx,图1以及后续附图中的Bx表示制动器,x可以是任意正整数如1、2、3或9等。行星架9也配置有制动器B9。图1中,位于最靠近扭矩输入端IP(图1中,最前侧)的输入太阳轮2配置有制动器B2。例如,参见图1,制动器Bx可以分为可转动部分BR和非转动部分BS,以制动器B2为例,制动器B2的非转动部分BS可以与变速器机架Box直接或间接建立连接,制动器B2的可转动部分BR与输入太阳轮2直接或间接建立连接。当制动器Bx处于制动状态(或者表述为,制动器Bx接合)时,配置有制动器Bx的 相应输入太阳轮2或者行星架9被阻止旋转,而当制动器Bx未起动(或者表述为,制动器Bx分离)时,配置有制动器Bx的相应输入太阳轮2或者行星架9被允许旋转。
而且,各输入太阳轮1、2(也即,m个输入太阳轮的每一个)分别通过离合器Cx与扭矩输入端IP可离合地连接。图1以及后续附图中的Cx表示离合器,x可以是任意正整数如1、2、3或9等。图1中,位于最靠近扭矩输入端IP(图1中,最前侧)的输入太阳轮2配置有制动器B2。例如,参见图1,离合器Cx可以分为主动部分CA和从动部分CI,以离合器C2为例,离合器C2的主动部分CA与扭矩输入端IP直接或间接建立连接,离合器C2的从动部分CI与输入太阳轮2直接或间接建立连接。后面的其他实施方式中,行星架9也可以配置有离合器C9,换言之,行星架9还通过离合器C9与扭矩输入端IP可离合地连接。当离合器Cx处于接合状态(或者表述为,离合器Cx接合)时,扭矩从扭矩输入端IP传递到配置有离合器Cx的相应输入太阳轮1、2或行星架9,而当离合器Cx未起动(或者表述为,离合器Cx分离)时,到配置有制动器Bx的相应输入太阳轮2或者行星架9的扭矩传递中断。离合器Cx和制动器Bx可以构成换挡执行机构。离合器Cx例如可以是多片湿式离合器,制动器B2例如可以采用与离合器Cx类似的构造。
变速模块10配置成从m个输入太阳轮1、2和行星架9所组成的m+1(图1中,三)个元件中选定两个元件,使得两个元件中的一个元件的离合器Cx处于接合状态而另一元件的制动器Bx处于制动状态,或者,使得两个元件的离合器Cx处于接合状态,借此形成变速模块的一个动力传动路线。
图1中,扭矩输入端IP包括扭矩输入轴S0。每个离合器Cx包括可离合地连接的内毂和外鼓。以采用多片湿式离合器的离合器C2为例,离合器C2的主动部分CA包括具有外花键的内毂(图1中,由管筒S01构成),还包括具有内花键的第一摩擦元件,第一摩擦元件可以通过内花键和外花键的配合而传动连接到内毂S01;离合器C2的从动部分CI包括具有内花键的外鼓(图1中,由管筒21构成),还包括具有外花键的第二摩擦元件,第二摩擦元件可以通过外花键和内花键的配合而传动连接到外鼓21;内毂S01和外鼓21为同轴的管筒对的形式,具有内花键的第一摩擦元件与具有外花键的第二摩擦元件布置于内毂S01和外鼓21之间,摩擦元件受到压力而相互贴合传递扭矩。以这种方式,离合器C2的内毂S01和外鼓 21可离合地连接。
输入太阳轮1、2和扭矩输入轴S0分别连接对应离合器的内毂和外鼓中的一方和另一方,也即,对于一个离合器而言,可以是,输入太阳轮连接离合器的内毂而扭矩输入轴S0连接离合器的外鼓,也可以是,输入太阳轮连接离合器的内毂而扭矩输入轴S0连接离合器的内毂。以这种方式,输入太阳轮1、2通过离合器C1、C2而可离合地连接扭矩输入轴S0。图1中,输入太阳轮1和扭矩输入轴S0之间设置有离合器C1。图1中,扭矩输入轴S0具有沿着旋转轴线X0的管状轴或者管筒S01,管筒S01连接或者构成离合器C1的外鼓,而输入太阳轮1具有沿着旋转轴线X0延伸的管筒11,管筒11连接或者构成离合器C1的内毂,离合器C1由扭矩输入轴S0的管筒S01和输入太阳轮1的管筒11组成,管筒S01外套于管筒11。对于离合器C1而言,输入太阳轮1连接离合器C1的内毂,而扭矩输入轴S0连接离合器C1的外鼓。类似地,如图1所示,输入太阳轮2和扭矩输入轴S0之间设置有离合器C2,在离合器C2中,输入太阳轮2的管筒21外套于扭矩输入轴S0的管筒S01。管筒21连接或构成离合器C2的外鼓,管筒S01连接或构成离合器C2的内毂。对于离合器C2而言,输入太阳轮2连接离合器C2的外鼓,而扭矩输入轴S0连接离合器C1的内毂。需要理解,构成离合器内毂或外鼓的管筒并不受限于空心筒,例如,管筒11可以并非如图1所示的空心筒而可以是实心轴。
图1中,太阳轮组30中,输入太阳轮1和输入太阳轮2通过相互套合的管筒对S12而保持成共轴线(旋转轴线X0)且彼此之间可相对旋转。输入太阳轮1具有沿旋转轴线X0延伸的实心轴形状的管筒12,输入太阳轮2具有沿旋转轴线X0延伸的管筒22,输入太阳轮2的管筒22外套于输入太阳轮1的管筒12,例如,还可以在管筒22和管筒12之间设置旋转轴承。这样,输入太阳轮1和输入太阳轮2保持成共轴线且彼此之间可相对旋转。输入太阳轮1和输出太阳轮3也通过相互套合的管筒对S17而保持成共轴(旋转轴线X0)且彼此之间可相对旋转。输出太阳轮3具有沿着旋转轴线X0向后侧延伸的管筒71,管筒71后侧连接有实心轴状的管筒72。输入太阳轮1的管筒12的前端穿过输入太阳轮2的管筒22再与管筒11连接,而输入太阳轮1的管筒12的后端又插入输出太阳轮3的管筒71,与之形成管筒对S17。下文,为了更加清楚地描述,图中示出为实心轴状的管筒(例如,管筒12、管筒72等)皆称之为相应太阳轮(例如,输入太阳轮1、输出太阳轮7等)的连接轴,图中示出 为空心筒状的管筒(例如,管筒22,管筒71等)皆称之为相应太阳轮(例如,输入太阳轮2、输出太阳轮7)的管状轴。可以是,太阳轮组30中的部分太阳轮通过这种相互套合的管筒对而保持成共轴线且彼此之间可相对旋转。
图1示出的是m=2、k=1且仅一个输入太阳轮2配置有制动器B2的四速变速模块的原理示意图。
图1的变速模块10中,每个行星轮总成8包括三个行星齿轮81、82和87,行星轮81、82和87固连为一体,同轴、同步旋转,通过行星轴89可旋转地安装于行星架9。
输入太阳轮1、2与输出太阳轮7并排布置且与行星架9具有相同的旋转轴线X0,其中,输入太阳轮1布置于输入太阳轮2和输出太阳轮7之间。输入太阳轮2通过其管状轴套装于输入太阳轮1的连接轴。输入太阳轮1、2的连接轴(或管状轴)均向输入太阳轮一侧的方向探出行星架9的中心孔93。输出太阳轮7的连接轴向远离输入太阳轮1的一侧探出行星架9的中心孔94。输入太阳轮1、2之间,输出太阳轮7与输入太阳轮1或2之间,以及输入太阳轮1、2或输出太阳轮7与行星架9之间可以相对转动。输入太阳轮1与行星轮81啮合,输入太阳轮2与行星轮82啮合,行星轮87与输出太阳轮7啮合。输入太阳轮1与扭矩输入轴S0之间设置有离合器C1,输入太阳轮2与扭矩输入轴S0之间设置有离合器C2。输入太阳轮2与变速器机架Box之间设置有制动器B2,行星架9与变速器机架Box之间设置有制动器B9。
图1的变速模块挡位数计算如下:
C1、B9接合形成一个动力传递路线,为1个挡;
C2、B9接合形成一个动力传递路线,为1个挡;
C1、B2接合形成一个动力传递路线,为1个挡;
C1、C2接合形成一个动力传递路线,传动比为1,为1个挡;
总计挡位数:
n=4
太阳轮与相应行星轮的啮合点称为节点。特别地,图1示出的实施方式中,输入太阳轮1与行星轮81形成的齿轮副的节圆半径为R1,输入太阳轮2与行星轮82形成的齿轮副的节圆半径为R2,输出太阳轮7与行星轮87形成的齿轮副的节圆半 径为R7,节圆半径=中心距*齿数/齿数和。可以设置R1<R2<R7,此时,输入太阳轮1的离合器C1接合,而输入太阳轮2的制动器B2接合,可以形成倒挡。
第二实施例(m=2,k=1)
如前所述,m个输入太阳轮中,至少一个输入太阳轮配置有制动器Bx。在第一实施例中,只有一个输入太阳轮2配置有制动器B2。然而,m个输入太阳轮中的每一个输入太阳轮皆可以配置有制动器Bx。例如,在第二实施例中,输入太阳轮1也配置有制动器B1。
图2示出的是m=2、k=1且输入太阳轮1、2均配置有制动器的五速变速模块10a的原理示意图。本实施例及后续实施例皆沿用其前述实施例的元件标号与部分内容,其中采用相同的标号来表示相同或近似的元件,并且选择性地省略了相同技术内容的说明。关于省略部分的说明可参照其前述实施例,本实施例及后续实施例不再重复赘述。
图2的变速模块10a中,两个行星轮总成8相对于输入太阳轮1或2的旋转轴线X0呈180°均布,每个行星轮总成8包括三个行星齿轮81、82和87。行星轮81、82和87固连为一体,同轴、同步旋转,通过行星轴89可旋转地安装于行星架9。
输入太阳轮1、2与输出太阳轮7并排布置且与行星架9具有相同的旋转轴线X0,其中,输入太阳轮1布置于输入太阳轮2和输出太阳轮7之间。输入太阳轮2通过其管状轴套装于输入太阳轮1的连接轴。输入太阳轮1、2的连接轴(或管状轴)均向输入太阳轮一侧的方向探出行星架9的中心孔93,输出太阳轮7的连接轴向远离输入太阳轮1的一侧探出行星架9的中心孔94。输入太阳轮1、2之间,输出太阳轮7与输入太阳轮1或2之间,以及输入太阳轮1、2或输出太阳轮7与行星架9之间可以相对转动。输入太阳轮1与行星轮81啮合,输入太阳轮2与行星轮82啮合,行星轮87与输出太阳轮7啮合。输入太阳轮1与扭矩输入轴S0之间设置有离合器C1,输入太阳轮2与扭矩输入轴S0之间设置有离合器C2。输入太阳轮2与变速器机架Box之间设置有制动器B2,行星架9与变速器机架Box之间设置有制动器B9。
图2中,制动器B1位于后轴孔H2的后侧。输入太阳轮1向输出太阳轮7的方向有一延伸轴13,输出太阳轮7通过其管状轴套装于输入太阳轮1的延伸轴13,输入 太阳轮1与输出太阳轮7可相对转动,输出太阳轮7通过其管状轴向外输出扭矩。在输入太阳轮1的延伸轴13与变速器机架Box之间设置有制动器B1,这样可以方便输入太阳轮1与变速器机架Box之间布置制动器B1。当制动器B1接合时,输入太阳轮1被制动,阻止其旋转;当制动器B1分离时,输入太阳轮1与变速器机架Box之间则可以相对转动。可以根据布置需要,使得m个输入太阳轮中的部分输入太阳轮或者全部输入太阳轮配置的制动器位于后轴孔H2的后侧。
图2的变速模块挡位数计算如下:
C1、B9接合形成一个动力传递路线,为1个挡;
C2、B9接合形成一个动力传递路线,为1个挡;
C1、B2接合形成一个动力传递路线,为1个挡;
C2、B1接合形成一个动力传递路线,为1个挡;
C1、C2接合形成一个动力传递路线,传动比为1,为1个挡;
总计挡位数:
n=5
特别地,图2示出的实施方式中,输入太阳轮1与行星轮81形成的齿轮副的节圆半径为R1,输入太阳轮2与行星轮82形成的齿轮副的节圆半径为R2,输出太阳轮7与行星轮87形成的齿轮副的节圆半径为R7。可以设置R1<R2<R7。此时,C1、B2接合时,形成倒挡;而C2、B1接合时,形成超速挡。
图3示出的是两个图1的四速变速模块10串联而成的变速装置100。变速装置100中,前一变速模块10的扭矩输出端OP1与后一变速模块的扭矩输入端IP2传动连接。图3中,变速模块10的扭矩输入端IP1、IP2是扭矩输入轴,扭矩输出端OP1、OP2是从输出太阳轮7的中心向后侧延伸的扭矩输出轴,前一变速模块10的扭矩输出轴与后一变速模块的扭矩输入轴连接。
图3示出的变速装置100挡位数的计算如下:
n=4×4=16
虽然图3中示出的是两个变速模块10串联的情况,然而,变速装置可以包括两个以上变速模块,变速装置的挡位数是其中包括的变速模块的挡位数的乘积。
变速装置还可以包括不同的变速模块。图4示出的是图1的四速变速模块10和图2的五速变速模块10a串联而成的变速装置100a。
图4中,前一变速模块10a的输出太阳轮的管状轴(或者,五速变速模块10a的扭矩输出端OPa)连接有转接齿轮D4,通过转接齿轮D4向外传递扭矩,后一变速模块10的扭矩输入轴(或者,四速变速模块10的扭矩输入端IP2)连接有转接齿轮D1。还设置有转接中间轴SI,转接中间轴SI与两个变速模块的扭矩输入轴平行,转接中间轴SI固定连接两个转接齿轮D2和D3,转接齿轮D1与转接齿轮D2啮合,转接齿轮D3与转接齿轮D4啮合。特别是对于制动器B1设置于后轴孔H2的后侧的情况,这种布置可以方便绕开制动器B1。
图4示出的变速装置100a的挡位数计算如下:
n=5×4=20
第三实施例(m=2,k=1)
如前面提及的,行星架9也可以配置有离合器。在第三实施例中,与第二实施例的不同至少有,行星架9配置有离合器C9。
图5示出的是m=2、k=1且输入太阳轮1、2以及行星架9皆配置有制动器和离合器的变速模块10b的原理示意图。
图5的变速模块10b中,两个行星轮总成8相对于输入太阳轮1或2的旋转轴线X0呈180°均布,每个行星轮总成8包括三个行星齿轮81、82和87。行星轮81、82和87固连为一体,同轴、同步旋转,通过行星轴89可旋转地安装于行星架9。
输入太阳轮1、2与输出太阳轮7并排布置且与行星架9具有相同的旋转轴线X0,其中,输入太阳轮1布置于输入太阳轮2和输出太阳轮7之间。输入太阳轮2通过其管状轴套装于输入太阳轮1的连接轴。输入太阳轮1、2的连接轴(或管状轴)均向输入太阳轮一侧的方向探出行星架9的中心孔93。输出太阳轮7的连接轴向远离输入太阳轮1的一侧探出行星架9的中心孔94。输入太阳轮1、2之间,输出太阳轮7与输入太阳轮1或2之间,以及输入太阳轮1、2或输出太阳轮7与行星架9之间可以相对转动。输入太阳轮1与行星轮81啮合,输入太阳轮2与行星轮82啮合,行星轮87与输出太阳轮7啮合。输入太阳轮1与扭矩输入轴S0之间设置有离合器C1,输入太阳轮2与扭矩输入轴S0之间设置有离合器C2,行星架9与扭矩输入轴S0之间设置有离合器C9。输入太阳轮1与变速器机架Box之间设置有制动器B1,输入太阳轮2与变速器机架Box之间设置有制动器B2,行星架9与变速器机架Box之间设置 有制动器B9。
图5中,输入太阳轮1、输入太阳轮2和行星架9的制动器B1、B2、B9都位于前轴孔H1的前侧。
行星架9和扭矩输入轴S0之间设置有离合器C9。图5中,扭矩输入轴S0包括设置于管筒S01外围并且与之同轴的管筒S02,管筒S02是离合器C9的内毂,行星架9具有沿着旋转轴线X0延伸的管筒91,管筒91是离合器C9的外鼓,离合器C9由扭矩输入轴S0的管筒S02和行星架9的管筒91以及两者之间的摩擦元件组成,管筒91外套于管筒S02,具有内花键的摩擦元件与管筒S02的外花键配合,具有外花键的摩擦元件与管筒91的内花键配合。具有内花键的摩擦元件与具有外花键的摩擦元件布置于管筒S02和管筒91之间,摩擦元件受到压力而相互贴合传递扭矩。
行星架9和输入太阳轮2通过相互套合的管筒对S29而保持成共轴线(旋转轴线X0)且彼此之间可相对旋转。行星架9具有沿旋转轴线X0延伸的管筒92,行星架9的管筒92外套于输入太阳轮2的管筒22,例如,还可以在管筒92和管筒22之间设置旋转轴承。这样,行星架9和输入太阳轮2因而与输入太阳轮1一起保持成共轴线且彼此之间可相对旋转。行星架9的管筒92穿出前轴孔H1,与管筒91连接。
第四实施例(m=2,k=1)
图6示出的也是m=2、k=1且输入太阳轮1、2以及行星架9皆配置有制动器和离合器的变速模块10c的原理示意图。图6示出的第四实施例与图5的第三实施例的不同至少有,第四实施例中,从扭矩输入轴S0到行星架9的动力传递路径不同。
行星架9连接有第一转接齿轮T91,第一转接齿轮T91与第二转接齿轮T92啮合传动。扭矩输入轴S0设置有输入转接齿轮T0,输入转接齿轮T0与第三转接齿轮T93啮合传动。
第二转接齿轮T92与第三转接齿轮T93之间设置有离合器C9。第二转接齿轮T92具有沿着其旋转轴线X2延伸的管筒S92,管筒S92连接或构成离合器C9的外鼓,第三转接齿轮T93具有沿着其旋转轴线X2延伸的管筒S93,管筒S93连接或构成离合器C9的内毂,管筒S92外套于管筒S93。例如,具有内花键的第一摩擦元件与管筒S93构成的内毂的外花键配合,具有外花键的第二摩擦元件与管筒S92构成的外鼓的内花键配合。具有内花键的第一摩擦元件与具有外花键的第二摩擦元件 布置于管筒S93构成的内毂和管筒S92构成的外鼓之间,摩擦元件受到压力而相互贴合传递扭矩。
行星架9依次通过第一转接齿轮T91、第二转接齿轮T92、离合器C9、第三转接齿轮T93以及输入转接齿轮T0而可离合地连接到扭矩输入轴S0。
图6的变速模块10c中,与扭矩输入轴S0平行地设置有行星架转接轴SX2。在行星架转接轴SX2上分别安装有转接齿轮T92、T93。转接齿轮T93与转接齿轮T0啮合,转接齿轮T92与连接行星架9的转接齿轮T91啮合。离合器C9设置在转接齿轮T92和转接齿轮T93之间。当离合器C9接合时,转接齿轮T93和转接齿轮T92之间可以传递扭矩;当离合器C9分离时,转接齿轮T93和转接齿轮T92之间可以相对转动。
在转接齿轮T92和变速器机架Box之间设置有制动器B9,管筒S92连接或构成制动器B9的内毂,制动器B9的外鼓连接于变速器机架Box。当制动器B9接合时,转接齿轮T92被制动,阻止其旋转,与转接齿轮T92相啮合的转接齿轮T91也被阻止旋转,与转接齿轮T91连接的行星架9也被阻止旋转;当制动器B9分离时,被阻止旋转的零件与变速器机架Box之间可以相对转动。
还有,第四实施例中,输入太阳轮2和行星架9的制动器B2、B9位于前轴孔H1的前侧,而输入太阳轮1的制动器B1位于后轴孔H2的后侧。
图6中,输入太阳轮1向输出太阳轮7的一侧的方向有一延伸轴,输出太阳轮7通过其管状轴套装于输入太阳轮1的延伸轴,输入太阳轮1与输出太阳轮7可以相对转动。输出太阳轮7通过其管状轴向外输出扭矩。在输入太阳轮1的延伸轴与变速器机架Box之间设置有制动器B1。当制动器B1接合时,输入太阳轮1被制动,阻止其旋转;当制动器B1分离时,输入太阳轮1与变速器机架Box之间可以相对转动。
图6的构造可以方便离合器Cx和制动器Bx的布置。
第五实施例(m=3,k=1)
图7示出的是m=3、k=1且输入太阳轮1、2、3以及行星架9皆配置有制动器和离合器的变速模块10d的原理示意图。
图7的变速模块10d中,两个行星轮总成8相对于输入太阳轮1、2或3的旋转轴 线X0呈180°均布,每个行星轮总成8包括四个行星齿轮81、82、83和87。行星轮81、82、83和87固连为一体,同轴、同步旋转,通过行星轴89可旋转地安装于行星架9。
输入太阳轮1、2、3与输出太阳轮7并排布置且与行星架9具有相同的旋转轴线X0,其中,输入太阳轮1布置于输入太阳轮2和输出太阳轮7之间,输入太阳轮3布置于远离输出太阳轮7的输入太阳轮2的一侧。输入太阳轮3通过其管状轴套装于输入太阳轮2的管状轴,输入太阳轮2通过其管状轴套装于输入太阳轮1的连接轴,其中,最远离输出太阳轮的输入太阳轮通过其管状轴套装于相邻的靠近输出太阳轮的输入太阳轮的管状轴(或连接轴)。输入太阳轮1、2、3的管状轴(或连接轴)均向输入太阳轮3一侧的方向探出行星架9的中心孔93。输出太阳轮7的连接轴向远离输入太阳轮3的一侧探出行星架9的中心孔94。输入太阳轮1、2、3之间,输出太阳轮7与输入太阳轮1、2或3之间,以及输入太阳轮1、2、3或输出太阳轮7与行星架9之间可以相对转动。输入太阳轮1与行星轮81啮合,输入太阳轮2与行星轮82啮合,输入太阳轮3与行星轮83啮合,行星轮87与输出太阳轮7啮合。输入太阳轮1与扭矩输入轴S0之间设置有离合器C1,输入太阳轮2与扭矩输入轴S0之间设置有离合器C2,输入太阳轮3与扭矩输入轴S0之间设置有离合器C3,行星架9与扭矩输入轴S0之间设置有离合器C9。输入太阳轮1与变速器机架Box之间设置有制动器B1,输入太阳轮2与变速器机架Box之间设置有制动器B2,输入太阳轮3与变速器机架Box之间设置有制动器B3,行星架9与变速器机架Box之间设置有制动器B9。
图7中,输入太阳轮1、2、3和行星架9的制动器B1、B2、B3、B9都位于前轴孔H1的前侧。
图7中,输入太阳轮1、2、3和行星架9分别与扭矩输入轴S0之间设置有离合器C1、C2、C3和C9,从而可离合地连接到扭矩输入轴S0。
第六实施例(m=3,k=1)
图8示出的也是m=3、k=1且输入太阳轮1、2、3以及行星架9皆配置有制动器和离合器的变速模块10e的原理示意图。图8示出的第六实施例与图7的第五实施例的不同至少有,第六实施例中,从扭矩输入轴S0到行星架9以及输入太阳轮3的动 力传递路径不同。
图8中的行星架9的动力传递路径与图6中的类似。图8中,行星架9连接有第一转接齿轮T91,第一转接齿轮T91与第二转接齿轮T92啮合传动。扭矩输入轴S0设置有输入转接齿轮T0,输入转接齿轮T0与第三转接齿轮T93啮合传动。第二转接齿轮T92与第三转接齿轮T93之间设置有离合器C9。行星架9依次通过第一转接齿轮T91、第二转接齿轮T92、离合器C9、第三转接齿轮T93以及输入转接齿轮T0而可离合地连接到扭矩输入轴S0。
图8中,输入太阳轮3连接有第一转接齿轮T31,第一转接齿轮T31与第二转接齿轮T32啮合传动。扭矩输入轴S0设置有输入转接齿轮T0,输入转接齿轮T0与第三转接齿轮T33啮合传动。
第二转接齿轮T32与第三转接齿轮T33之间设置有离合器C3。第二转接齿轮T32具有沿着其旋转轴线X3延伸的管筒S32,管筒S32连接或构成离合器C3的外鼓,第三转接齿轮T33具有沿着其旋转轴线X3延伸的管筒S33,管筒S33连接或构成离合器C3的内毂,管筒S32外套于管筒S33。例如,具有内花键的第一摩擦元件与构成离合器C3的内毂的管筒S33的外花键配合,具有外花键的第二摩擦元件与构成离合器C3的外鼓的管筒S32的内花键配合。具有内花键的第一摩擦元件与具有外花键的第二摩擦元件布置于管筒S33和管筒S32之间,摩擦元件受到压力而相互贴合传递扭矩。
输入太阳轮3依次通过第一转接齿轮T31、第二转接齿轮T32、离合器C3、第三转接齿轮T33以及输入转接齿轮T0而可离合地连接到扭矩输入轴S0。
图8中,其他输入太阳轮1、2并未连接转接齿轮。也即,图8中,三个太阳轮中的一个输入太阳轮3连接有第一转接齿轮T31,通过转接齿轮形成动力传递路径。可以是,m个输入太阳轮中的部分输入太阳轮连接有第一转接齿轮,如图8所示。也可以是,m个输入太阳轮中的所有输入太阳轮连接有第一转接齿轮。还可以是,m个输入太阳轮中的全部输入太阳轮都不通过转接齿轮来接收动力,例如,如图1、图2和图5所示。
图8的变速模块10e中,与扭矩输入轴S0平行地设置有行星架转接轴SX2。在行星架转接轴SX2上分别安装有转接齿轮T92和T93。转接齿轮T93与转接齿轮T0啮合,转接齿轮T92与连接行星架9的转接齿轮T91啮合。离合器C9设置在转接齿 轮T92和转接齿轮T93之间。当离合器C9接合时,转接齿轮T93和转接齿轮T92之间可以传递扭矩;当离合器C9分离时,转接齿轮T93和转接齿轮T92之间可以相对转动。在转接齿轮T92和变速器机架Box之间设置有制动器B9。当制动器B9接合时,转接齿轮T92被制动,阻止其旋转,与转接齿轮T92相啮合的转接齿轮T91也被阻止旋转,与转接齿轮T91连接的行星架9也被阻止旋转;当制动器B9分离时,被阻止旋转的零件与变速器机架Box之间可以相对转动。
与扭矩输入轴S0平行地设置有输入太阳轮转接轴SX3,在输入太阳轮转接轴SX3上分别安装有转接齿轮T32和转接齿轮T33。转接齿轮T33与转接齿轮T0啮合,转接齿轮T32与连接输入太阳轮3的转接齿轮T31啮合,转接齿轮T33和T32之间设置有离合器C3,当离合器C3接合时,转接齿轮T33和T32之间可以传递扭矩,当离合器C3分离时,转接齿轮T33和转接齿轮T32之间可以相对转动,在转接齿轮T32和变速器机架Box之间设置有制动器B3,当制动器B3接合时,转接齿轮T32被制动,阻止其旋转,与转接齿轮T32相啮合的转接齿轮T31也被阻止旋转,与转接齿轮T31连接的输入太阳轮3也被阻止旋转;当制动器B3分离时,被阻止旋转的零件与变速器机架Box之间可以相对转动。
还有,第六实施例中,输入太阳轮2、3和行星架9的制动器B2、B3、B9位于前轴孔H1的前侧,而输入太阳轮1的制动器B1位于后轴孔H2的后侧。
图8中,输入太阳轮1向输出太阳轮7的一侧的方向有一延伸轴,输出太阳轮7通过其管状轴套装于输入太阳轮1的延伸轴,输入太阳轮1与输出太阳轮7可以相对转动,其中,输入太阳轮1是最靠近输出太阳轮7的输入太阳轮。输出太阳轮7通过其管状轴向外输出扭矩。在输入太阳轮1的延伸轴与变速器机架Box之间设置有制动器B1。当制动器B1接合时,输入太阳轮1被制动,阻止其旋转;当制动器B1分离时,输入太阳轮1与变速器机架Box之间可以相对转动。
图8的构造可以方便离合器Cx和制动器Bx的布置。
第七实施例(m=2,k=2)
图9示出的是m=2、k=2且输入太阳轮1、2以及行星架9皆配置有制动器和离合器的变速模块10f的原理示意图。图9的第七实施例中,两个输出太阳轮6、7通过互相套合的管筒对S67而保持成共轴线(旋转轴线X0)且彼此之间可相对旋 转。
图9的变速模块10f中,两个行星轮总成8相对于输入太阳轮1或2的旋转轴线X0呈180°均布,每个行星轮总成8包括四个行星齿轮81、82、87和86。行星轮81、82、87和86固连为一体,同轴、同步旋转,通过行星轴89可旋转地安装于行星架9。
输入太阳轮1、2与输出太阳轮7、6并排布置且与行星架9具有相同的旋转轴线X0,其中,输入太阳轮1布置于输入太阳轮2和输出太阳轮7之间。输入太阳轮2通过其管状轴套装于输入太阳轮1的连接轴。输入太阳轮1、2的连接轴(或管状轴)均向输入太阳轮2一侧的方向探出行星架9的中心孔93。输出太阳轮6布置在输出太阳轮7的另一侧(输出太阳轮7的一侧为输入太阳轮1)。输出太阳轮6通过其管状轴套装于输出太阳轮7的连接轴。换言之,远离输出太阳轮的输入太阳轮通过其管状轴套装于相邻的靠近输出太阳轮的输入太阳轮的连接轴,而远离输入太阳轮的输出太阳轮通过其管状轴套装于相邻的靠近输入太阳轮的输出太阳轮的连接轴。输出太阳轮7、6的连接轴(或管状轴)向远离输入太阳轮1的一侧探出行星架9的中心孔94,分别形成两个扭矩输出轴SP7、SP6。输出太阳轮的数量与扭矩输出轴的数量相同。输入太阳轮1、2之间,输出太阳轮7、6与输入太阳轮1或2之间,以及输入太阳轮1、2、输出太阳轮7、6与行星架9之间可以相对转动。输入太阳轮1与行星轮81啮合,输入太阳轮2与行星轮82啮合,行星轮87与输出太阳轮7啮合,行星轮86与输出太阳轮6啮合。输入太阳轮1与扭矩输入轴S0之间设置有离合器C1,输入太阳轮2与扭矩输入轴S0之间设置有离合器C2,行星架9与扭矩输入轴S0之间设置有离合器C9。输入太阳轮1与变速器机架Box之间设置有制动器B1,输入太阳轮2与变速器机架Box之间设置有制动器B2,行星架9与变速器机架Box之间设置有制动器B9。
第八实施例(m=3,k=2)
图10示出的是m=3、k=2且输入太阳轮1、2、3以及行星架9皆配置有制动器和离合器的变速模块10g的原理示意图。
图10的变速模块10g中,两个行星轮总成8相对于输入太阳轮1、2或3的旋转轴线X0呈180°均布,每个行星轮总成8包括五个行星齿轮81、82、83、87和86。 行星轮81、82、83、87和86固连为一体,同轴、同步旋转,通过行星轴89可旋转地安装于行星架9。
输入太阳轮1、2、3与输出太阳轮7、6并排布置且与行星架9具有相同的旋转轴线X0,其中,输入太阳轮1布置于输入太阳轮2和输出太阳轮7之间,输入太阳轮3布置在输入太阳轮2的另一侧(输入太阳轮2的一侧为输入太阳轮1)。输入太阳轮3通过其管状轴套装于输入太阳轮2的管状轴,输入太阳轮2通过其管状轴套装于输入太阳轮1的连接轴。输入太阳轮1、2、3的连接轴(或管状轴)均向输入太阳轮3一侧的方向探出行星架9的中心孔93。输出太阳轮6布置在输出太阳轮7的另一侧(输出太阳轮7的一侧为输入太阳轮1),输出太阳轮6通过其管状轴套装于输出太阳轮7的连接轴。换言之,远离输出太阳轮的输入太阳轮通过其管状轴套装于相邻的靠近输出太阳轮的输入太阳轮的连接轴,远离输入太阳轮的输出太阳轮通过其管状轴套装于相邻的靠近输入太阳轮的输出太阳轮的连接轴。输出太阳轮7、6的连接轴(或管状轴)向远离输入太阳轮1的一侧探出行星架9的中心孔94,分别形成两个扭矩输出轴SP7、SP6。输入太阳轮1、2、3之间,输出太阳轮7、6之间,输入太阳轮1、2、3、输出太阳轮7、6与行星架9之间可以相对转动。输入太阳轮1与行星轮81啮合,输入太阳轮2与行星轮82啮合,输入太阳轮3与行星轮83啮合,行星轮87与输出太阳轮7啮合,行星轮86与输出太阳轮6啮合。输入太阳轮1与扭矩输入轴S0之间设置有离合器C1,输入太阳轮2与扭矩输入轴S0之间设置有离合器C2,输入太阳轮3与扭矩输入轴S0之间设置有离合器C3,行星架9与扭矩输入轴S0之间设置有离合器C9。输入太阳轮1与变速器机架Box之间设置有制动器B1,输入太阳轮2与变速器机架Box之间设置有制动器B2,输入太阳轮3与变速器机架Box之间设置有制动器B3,行星架9与变速器机架Box之间设置有制动器B9。
根据本发明的图5至图10的变速模块中,每个输入太阳轮或行星架皆连接有离合器Cx和制动器Bx,其中,输出太阳轮数为k,输入太阳轮数为m。m个输入太阳轮和行星架构成可选取的m+1个元件。图5至图10的变速模块的挡位形成情况如下:
因为每个输入太阳轮或行星架皆配置有离合器Cx和制动器Bx,所以,离合器Cx或制动器Bx的个数分别为:m+1
针对某一个输出太阳轮的挡位数计算如下:任意选取前述m+1个元件中的一个元件(输入太阳轮或行星架)所连接的离合器Cx接合(有
Figure PCTCN2020118363-appb-000001
个可能的选择),同时选取除此前述一个元件之外的另一元件所连接的制动器Bx接合(同一元件所连接的离合器Cx和制动器Bx不可以同时接合,因此,有
Figure PCTCN2020118363-appb-000002
个可能的选择)。按照上述要求,一个Cx和一个Bx接合,形成一个动力传动路线,即为一个挡位。根据实际需要,可以使得不同的Cx或不同的Bx接合所形成的动力传动路线的传动比不同。
针对输出太阳轮的选择数为
Figure PCTCN2020118363-appb-000003
个。
在所有的输入太阳轮或行星架所连接的离合器Cx中,任意选取两个接合,均形成传动比1。
因此,图5至图10的变速模块的总挡位数可以用下式计算:
Figure PCTCN2020118363-appb-000004
图5或图6的变速模块(其中,m=2,k=1)的挡位数计算如下:
Figure PCTCN2020118363-appb-000005
图7或图8的变速模块(其中,m=3,k=1)的挡位数计算如下:
Figure PCTCN2020118363-appb-000006
图9的变速模块(其中,m=2,k=2)的挡位数计算如下:
Figure PCTCN2020118363-appb-000007
图10的变速模块(其中,m=3,k=2)的挡位数计算如下:
Figure PCTCN2020118363-appb-000008
因此,对于一个六速变速器,只需采用图5或图6的实施例即可获得六个前进挡速比和一个倒挡速比。对于一个十速变速器,只需采用图7或图8的实施例即可获得10个前进挡速比,3个倒挡速比。
因此,采用本发明的变速模块或者变速装置可以使得多挡位的变速器轴向尺寸大大缩短。而且,结构更简单、重量更轻。还避免了传统行星排与行星排相关组件之间复杂的嵌套,由此消除了行星齿轮机构相关组件的复杂结构与加工困难的缺点。
本发明的变速装置也可以称之为多速、无齿圈的行星齿轮变速装置,可以应用于车辆等。
上述实施例中,所有输入太阳轮和所有输出太阳轮并排布置且与行星架具有相同的旋转轴线,输入太阳轮和输出太阳轮相邻。扭矩输入轴与输入太阳轮及行星架具有相同的旋转轴线。远离输出太阳轮的输入太阳轮通过其管状轴套装于相邻的靠近输出太阳轮的输入太阳轮的连接轴(或管状轴),所有输入太阳轮的连接轴(或管状轴)均向输入太阳轮一侧探出行星架的中心孔。
输出太阳轮多于一个时,远离输入太阳轮的输出太阳轮通过其管状轴套装于相邻的靠近输入太阳轮的输出太阳轮的连接轴(或管状轴),所有输出太阳轮的连接轴(或管状轴)均向输出太阳轮一侧探出行星架的中心孔。
所有输入太阳轮、所有输出太阳轮与所有行星轮一一啮合。每个输入太阳轮与扭矩输入轴S0之间设置有离合器Cx,在最靠近扭矩输入轴S0的输入太阳轮与变速器机架Box之间设置有制动器Bx。行星架9与变速器机架Box之间设置有制动器B9。根据在输入太阳轮上增设制动器Bx的不同以及在行星架上增设离合器Cx与否,可以形成不同的实施例。
离合器Cx包括主动部分和从动部分,离合器Cx的主动部分与扭矩输入轴S0直接或间接建立连接,离合器Cx的从动部分与输入太阳轮或行星架直接或间接建立连接。当某个离合器Cx接合时,扭矩就从扭矩输入轴S0传递到对应的输入太阳轮或行星架上;反之,当某个离合器Cx分离时,扭矩就中断传递。每个输入太阳轮、行星架与变速器机架Box之间或设置有制动器Bx。
制动器Bx包括可转动部分和非转动部分,制动器Bx的非转动部分与变速器机架Box直接或间接建立连接,制动器Bx的可转动部分与输入太阳轮或行星架直接或间接建立连接。当某个制动器Bx接合时,对应的的输入太阳轮或行星架被阻止旋转;反之,当某个制动器Bx分离时,对应的输入太阳轮或行星架被允许旋转。
图3中,变速装置包括两个变速模块,前一变速模块的扭矩输出轴与后一变速模块的扭矩输入轴相连,每个变速模块速比设置的个数是相同的,速比的具体数值可以是不同的。每个变速模块皆设置有两个输入太阳轮和一个输出太阳轮,远离输出太阳轮的输入太阳轮通过其管状轴套装于另一输入太阳轮的连接轴。同时每个变速模块设置有两个行星轮总成,两个行星轮总成相对于输入太阳轮的旋转轴线呈180°均布,每个行星轮总成设置有三个行星轮,分别与两个输入太阳 轮和一个输出太阳轮一一啮合。在靠近扭矩输入轴S0的输入太阳轮上设置离合器Cx和制动器Bx,另一输入太阳轮上设置离合器Cx,行星架上设置制动器Bx。
图4中,变速装置包括两个变速模块,两个变速模块的扭矩输入轴平行或重合布置,每个变速模块的速比设置是不同的。每个变速模块皆设置有两个输入太阳轮和一个输出太阳轮,远离输出太阳轮的输入太阳轮通过其管状轴套装于另一输入太阳轮的连接轴。同时,每个变速模块设置有两个行星轮总成,两个行星轮总成相对于输入太阳轮旋转轴线呈180°均布,每个行星轮总成设置有三个行星轮,分别与两个输入太阳轮和一个输出太阳轮一一啮合。前一变速模块的两个输入太阳轮均设置离合器Cx和制动器Bx,行星架上设置制动器Bx。靠近输出太阳轮的输入太阳轮向输出太阳轮的方向有一延伸轴,输出太阳轮通过其管状轴套装于输入太阳轮的延伸轴,输入太阳轮与输出太阳轮可以相对转动,在输入太阳轮的延伸轴上布置制动器,这样可以方便在输入太阳轮上布置制动器。输出太阳轮的管状轴上连接有转接齿轮D4,通过转接齿轮D4向后传递扭矩。后一变速模块与前一变速模块的差别在于:靠近输出太阳轮的输入太阳轮上没有设置制动器Bx,因此该输入太阳轮向输出太阳轮的方向无需延伸轴,输出太阳轮无需设置管状轴。其余的结构设置与前一变速模块类似。设置有一转接中间轴,转接中间轴与两个变速模块的扭矩输入轴平行,转接中间轴上固定连接有两个转接齿轮D3和D2,后一变速模块的扭矩输入轴S0上连接有转接齿轮D1,转接齿轮D4与转接齿轮D3啮合,转接齿轮D2与转接齿轮D1啮合,这样可以避开输入太阳轮延伸轴上的制动器。
实际上,每个变速模块可以前后颠倒使用,由多个变速模块组合的大变速装置也可以前后颠倒使用。
本发明虽然以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改。例如,上述各种不同实施例下的变换方式可以进行适当组合。
凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改、等同变化及修饰,均落入本发明权利要求所界定的保护范围之内。

Claims (10)

  1. 一种变速模块,具有变速器机架,包括扭矩输入端、传动单元和扭矩输出端,所述扭矩输入端的扭矩经由所述传动单元传递至所述扭矩输出端,其特征在于,所述传动单元包括:
    行星架,可旋转地设置于所述变速器机架;
    太阳轮组,包括m个输入太阳轮和k个输出太阳轮,所述太阳轮组内的各太阳轮与所述行星架共轴线设置且彼此之间可相对旋转,其中,m≥2,k≥1;以及
    至少一个行星轮总成,每个所述行星轮总成包括与所述m个输入太阳轮分别对应啮合的m个输入行星轮,以及与所述k个输出太阳轮分别对应啮合的k个输出行星轮,所述输入行星轮和所述输出行星轮同轴地固连,所述行星轮总成可旋转地设置于所述行星架;
    至少一个所述输入太阳轮配置有制动器,并且各所述输入太阳轮分别通过离合器与所述扭矩输入端可离合地连接,所述行星架也配置有制动器;
    所述变速模块配置成从所述m个输入太阳轮和所述行星架所组成的m+1个元件中选定两个元件,使得所述两个元件中的一个元件的离合器处于接合状态而另一元件的制动器处于制动状态,或者,使得所述两个元件的离合器处于接合状态,借此形成所述变速模块的一个动力传动路线。
  2. 如权利要求1所述的变速模块,其特征在于,
    所述行星架还通过离合器与所述扭矩输入端可离合地连接。
  3. 如权利要求1所述的变速模块,其特征在于,
    每一个所述输入太阳轮皆配置有制动器。
  4. 如权利要求1所述的变速模块,其特征在于,
    所述扭矩输入端包括扭矩输入轴,每个离合器包括可离合地连接的内毂和外鼓;
    所述扭矩输入轴和所述m个输入太阳轮中的至少部分输入太阳轮分别连接对应离合器的内毂和外鼓中的一方和另一方。
  5. 如权利要求1所述的变速模块,其特征在于,
    所述m个输入太阳轮中的至少部分输入太阳轮连接有第一转接齿轮,所述第一转接齿轮与第二转接齿轮啮合传动;
    所述扭矩输入端包括扭矩输入轴,所述扭矩输入轴设置有输入转接齿轮,所述输入转接齿轮与第三转接齿轮啮合传动;
    所述第二转接齿轮与所述第三转接齿轮之间设置有离合器,所述至少部分输入太阳轮依次通过第一转接齿轮、第二转接齿轮、离合器、第三转接齿轮以及输入转接齿轮而可离合地连接到所述扭矩输入轴。
  6. 如权利要求1所述的变速模块,其特征在于,
    所述变速模块包括两个以上行星轮总成,所述两个以上行星轮总成沿着所述太阳轮组的圆周方向均匀分布。
  7. 如权利要求1所述的变速模块,其特征在于,
    所述太阳轮组中的至少部分太阳轮通过相互套合的管筒对而保持成共轴线且彼此之间可相对旋转。
  8. 如权利要求1所述的变速模块,其特征在于,
    所述变速器机架包括共轴线且并排布置的前轴孔和后轴孔;
    所述行星架可旋转地支撑于所述前轴孔和所述后轴孔之间,所述扭矩输入端位于所述前轴孔的前侧,所述扭矩输出端位于所述后轴孔的后侧。
  9. 如权利要求8所述的变速模块,其特征在于,
    所述m个输入太阳轮中的至少部分输入太阳轮配置的制动器位于所述后轴孔的后侧。
  10. 一种变速装置,其特征在于,包括如权利要求1至9中任一项所述的两个以上变速模块,所述两个以上变速模块中的前一变速模块的扭矩输出端与后一变速 模块的扭矩输入端传动连接。
PCT/CN2020/118363 2019-09-30 2020-09-28 变速装置及变速模块 WO2021063306A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910937582.9 2019-09-30
CN201910937582.9A CN110529570A (zh) 2019-09-30 2019-09-30 变速装置及变速模块

Publications (1)

Publication Number Publication Date
WO2021063306A1 true WO2021063306A1 (zh) 2021-04-08

Family

ID=68671242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118363 WO2021063306A1 (zh) 2019-09-30 2020-09-28 变速装置及变速模块

Country Status (2)

Country Link
CN (1) CN110529570A (zh)
WO (1) WO2021063306A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110529570A (zh) * 2019-09-30 2019-12-03 宁波市北仑旭泰汽车零部件有限公司 变速装置及变速模块
CN111976861B (zh) * 2020-08-28 2022-04-22 东北林业大学 一种车轮和机械腿关节复用电机传动系统及驱动方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101680518A (zh) * 2007-05-19 2010-03-24 维美德公司 变速器模块及变速器组装方法
CN101769365A (zh) * 2009-10-23 2010-07-07 陈国庆 一种可直接换挡的行星齿轮变速箱
EP2267334A1 (en) * 2009-06-18 2010-12-29 Valtra Oy Ab Vehicle transmissions
CN102155521A (zh) * 2010-02-11 2011-08-17 宁波宏协离合器有限公司 行星齿轮机构和包括该行星齿轮机构的机械变速器
CN203651469U (zh) * 2013-12-10 2014-06-18 郑州宇通客车股份有限公司 电动车辆变速装置及使用该装置的驱动系统和电动车辆
CN110199140A (zh) * 2017-01-27 2019-09-03 伦克股份有限公司 传动装置、具有传动装置的驱动装置和用于操作驱动装置的方法
CN110529570A (zh) * 2019-09-30 2019-12-03 宁波市北仑旭泰汽车零部件有限公司 变速装置及变速模块
CN211039559U (zh) * 2019-09-30 2020-07-17 宁波市北仑旭泰汽车零部件有限公司 变速装置及变速模块

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3077795A (en) * 1960-08-01 1963-02-19 Caterpillar Tractor Co Wide range planetary transmission
US4014223A (en) * 1975-05-22 1977-03-29 Ford Motor Company Multiple ratio hydrokinetic split torque transmission

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101680518A (zh) * 2007-05-19 2010-03-24 维美德公司 变速器模块及变速器组装方法
EP2267334A1 (en) * 2009-06-18 2010-12-29 Valtra Oy Ab Vehicle transmissions
CN101769365A (zh) * 2009-10-23 2010-07-07 陈国庆 一种可直接换挡的行星齿轮变速箱
CN102155521A (zh) * 2010-02-11 2011-08-17 宁波宏协离合器有限公司 行星齿轮机构和包括该行星齿轮机构的机械变速器
CN203651469U (zh) * 2013-12-10 2014-06-18 郑州宇通客车股份有限公司 电动车辆变速装置及使用该装置的驱动系统和电动车辆
CN110199140A (zh) * 2017-01-27 2019-09-03 伦克股份有限公司 传动装置、具有传动装置的驱动装置和用于操作驱动装置的方法
CN110529570A (zh) * 2019-09-30 2019-12-03 宁波市北仑旭泰汽车零部件有限公司 变速装置及变速模块
CN211039559U (zh) * 2019-09-30 2020-07-17 宁波市北仑旭泰汽车零部件有限公司 变速装置及变速模块

Also Published As

Publication number Publication date
CN110529570A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
US8353803B2 (en) Automatic transmission
US8932174B2 (en) Clutch and gear arrangement for a rear wheel drive vehicle
JP4691073B2 (ja) 多速度変速装置
JP5208809B2 (ja) 自動変速機
WO2021063306A1 (zh) 变速装置及变速模块
JP5986248B2 (ja) 多速変速機
JPWO2015108028A1 (ja) 多段変速機
US8852047B2 (en) Automatic transmission
JP2008531954A (ja) 多段変速機
US8668616B2 (en) Nine speed dual clutch transmission
TW202012244A (zh) 用於自行車或電動自行車之行星齒輪結構中的多級傳動裝置
JP2015183855A (ja) 多段変速機
CN105026794B (zh) 行星结构式多级变速器
US9453558B2 (en) Multi-speed dual clutch transmission
WO2015108006A1 (ja) 多段変速機
JPH0788879B2 (ja) 多速パワートランスミッション
CN109764095B (zh) 九挡变速器
JP2015155719A (ja) 多段変速機
CN211039559U (zh) 变速装置及变速模块
JP2015194234A (ja) 多段変速機
CN105008767B (zh) 行星结构式多级变速器
US8968146B2 (en) Multi-speed transmission
JP2004183886A (ja) 車両用自動変速機の6速パワートレイン
JP2015224756A (ja) 多段変速機
JP2015224757A (ja) 多段変速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871611

Country of ref document: EP

Kind code of ref document: A1