WO2021063179A1 - 天线装置及电子设备 - Google Patents

天线装置及电子设备 Download PDF

Info

Publication number
WO2021063179A1
WO2021063179A1 PCT/CN2020/115516 CN2020115516W WO2021063179A1 WO 2021063179 A1 WO2021063179 A1 WO 2021063179A1 CN 2020115516 W CN2020115516 W CN 2020115516W WO 2021063179 A1 WO2021063179 A1 WO 2021063179A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant
frequency band
unit
radio frequency
layer
Prior art date
Application number
PCT/CN2020/115516
Other languages
English (en)
French (fr)
Inventor
贾玉虎
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20872662.0A priority Critical patent/EP3993160A4/en
Publication of WO2021063179A1 publication Critical patent/WO2021063179A1/zh
Priority to US17/577,980 priority patent/US11901625B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/0026Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices having a stacked geometry or having multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0093Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices having a fractal shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/425Housings not intimately mechanically associated with radiating elements, e.g. radome comprising a metallic grid

Definitions

  • This application relates to the field of electronic equipment, and in particular to an antenna device and electronic equipment.
  • the fifth-generation (5th-Generation, 5G) mobile communication is favored by users due to its high communication speed.
  • 5G mobile communication when using 5G mobile communication to transmit data, the transmission speed is hundreds of times faster than that of 4G mobile communication.
  • Millimeter wave signals are the main means to realize 5G mobile communication.
  • millimeter wave antennas when millimeter wave antennas are used in electronic equipment, millimeter wave antennas are usually installed in the containment space inside the electronic equipment, and the millimeter wave signal antennas radiate through the electronic equipment.
  • the transmittance is low, which does not meet the requirements of antenna radiation performance. Or, the transmittance of the external millimeter wave signal through the electronic device is low. It can be seen that in the prior art, the communication performance of 5G millimeter wave signals is poor.
  • the present application provides an antenna device, and the antenna device includes:
  • Antenna module the antenna module is used to transmit and receive radio frequency signals of a preset frequency band in a preset direction range;
  • a radome, the radome and the antenna module are spaced apart, and the radome is located within the preset direction range, the radome includes a substrate and a resonant structure carried on the substrate;
  • the substrate is used to pass the radio frequency signal of the first frequency band in the preset frequency band, and the resonant structure is used to adjust the passband width of the substrate for the radio frequency signal of the preset frequency band, so that the radome can pass through the preset frequency band.
  • the radio frequency signal in the second frequency band in the frequency band wherein the bandwidth of the second frequency band is greater than the bandwidth of the first frequency band, and the radio frequency signal in the second frequency band includes the radio frequency signal in the first frequency band.
  • the present application also provides an antenna device, which includes:
  • An antenna module the antenna module being used to transmit and receive radio frequency signals of a predetermined frequency band within a range of a predetermined direction;
  • a radome, the radome and the antenna module are spaced apart, and the radome is located within the preset direction range, the radome includes a substrate and a resonant structure carried on the substrate, the radome The difference between the reflected phase and the incident phase of the radio frequency signal of the preset frequency band increases as the frequency increases, and the radio frequency signal of the preset frequency band can pass through the radome.
  • the present application also provides an electronic device.
  • the electronic device includes a controller and an antenna device, the antenna device is electrically connected to the controller, and the antenna module in the antenna device is used to transmit under the control of the controller.
  • the radio frequency signal is sent and received through the radome in the antenna device.
  • the antenna device provided in the present application is provided with a resonant structure carried on a substrate, and the bandwidth of the radome to the radio frequency signal of the preset frequency band is increased through the action of the resonant structure, and the influence of the presence of the substrate on the preset frequency band is reduced.
  • the influence of the radiation performance of the radio frequency signal can improve the communication performance of the electronic device when the antenna device is applied to an electronic device.
  • FIG. 1 is a schematic diagram of an antenna device provided by the first embodiment of this application.
  • FIG. 2 is a schematic diagram of the antenna device provided by the second embodiment of this application.
  • FIG. 3 is a schematic diagram of the antenna device provided by the third embodiment of this application.
  • FIG. 4 is a schematic diagram of the antenna device provided by the fourth embodiment of this application.
  • FIG. 5 is a schematic diagram of the antenna device provided by the fifth embodiment of this application.
  • FIG. 6 is a schematic diagram of the resonant structure provided by the first embodiment of this application.
  • FIG. 7 is a schematic diagram of the resonant structure provided by the second embodiment of this application.
  • FIG. 8 is a schematic diagram of the resonant structure provided by the third embodiment of this application.
  • FIG. 9 is a schematic diagram of the resonant structure provided by the fourth embodiment of this application.
  • FIG. 10 is a top view of the first resonant unit provided by the first embodiment of this application.
  • FIG. 11 is a bottom view of the second resonance unit provided by the first embodiment of this application.
  • Fig. 12 is a cross-sectional view taken along the line I-I in Fig. 10;
  • FIG. 13 is a top view of the first resonant unit provided by the second embodiment of this application.
  • FIG. 14 is a bottom view of the second resonance unit provided by the second embodiment of this application.
  • Fig. 15 is a cross-sectional view taken along line II-II in Fig. 13.
  • FIG. 16 is a top view of the first resonant unit provided by the third embodiment of this application.
  • FIG. 17 is a bottom view of the second resonance unit provided by the third embodiment of this application.
  • Fig. 18 is a cross-sectional view taken along line III-III in Fig. 16.
  • FIG. 19 is a schematic diagram of the antenna device provided by the sixth embodiment of this application.
  • FIG. 20 is a schematic diagram of a resonant structure provided in the fifth embodiment of this application.
  • FIG. 21 is a schematic diagram of the resonant structure provided by the sixth embodiment of this application.
  • FIG. 22 is a schematic diagram of the resonant structure provided by the seventh embodiment of this application.
  • 23-30 are schematic diagrams of the structure of the resonant unit in the resonant structure.
  • FIG. 31 is a schematic diagram of the antenna device provided by the seventh embodiment of this application.
  • Fig. 32 shows the reflection coefficient S11 curves corresponding to substrates with different dielectric constants.
  • FIG. 33 is a curve of reflection phase corresponding to substrates with different dielectric constants.
  • FIG. 34 is a schematic diagram of the amplitude of the reflection coefficient S11 of the radome provided by this application.
  • FIG. 35 is a schematic diagram of the phase curve of the reflection phase S11 of the radome provided by this application.
  • FIG. 36 is a circuit block diagram of an electronic device according to an embodiment of the application.
  • FIG. 37 is a schematic structural diagram of an electronic device provided by an embodiment of this application.
  • FIG. 38 is a schematic structural diagram of an electronic device provided by another embodiment of this application.
  • the present application provides an antenna device, the antenna device including:
  • Antenna module the antenna module is used to transmit and receive radio frequency signals of a preset frequency band in a preset direction range;
  • a radome, the radome and the antenna module are spaced apart, and the radome is located within the preset direction range, the radome includes a substrate and a resonant structure carried on the substrate;
  • the substrate is used to pass the radio frequency signal of the first frequency band in the preset frequency band, and the resonant structure is used to adjust the passband width of the substrate for the radio frequency signal of the preset frequency band, so that the radome can pass through the preset frequency band.
  • the radio frequency signal in the second frequency band in the frequency band wherein the bandwidth of the second frequency band is greater than the bandwidth of the first frequency band, and the radio frequency signal in the second frequency band includes the radio frequency signal in the first frequency band.
  • the resonant structure includes a first resonant layer and a second resonant layer that are stacked, and the first resonant layer is farther away from the antenna module than the second resonant layer, and the resonance of the first resonant layer is The frequency is a first frequency, the frequency of the second resonance layer is a second frequency, and the first frequency is greater than the second frequency.
  • the first resonant layer includes a plurality of first resonant units periodically arranged
  • the second resonant layer includes a plurality of second resonant units periodically arranged
  • the first resonant unit and the first resonant unit The two resonant units are conductive patches
  • the side length of the first resonant unit is L1
  • the side length of the second resonant unit is L2, L1 ⁇ L2 ⁇ P
  • P is the first resonant unit and the second The arrangement period of the resonant unit.
  • the first resonant layer includes a plurality of first resonant units arranged periodically
  • the second resonant layer includes a plurality of second resonant units arranged periodically
  • the first resonant unit is a conductive patch
  • the second resonant unit is a conductive patch and the second resonant unit has a hollow structure
  • the hollow structure penetrates two opposite surfaces of the second resonant unit
  • the side length of the first resonant unit is L1
  • the side length of the second resonance is L2
  • P>L1 ⁇ L2 where P is the arrangement period of the first resonant unit and the second resonant unit, and the larger the area of the hollow structure, L1 and The greater the difference in L2.
  • the first resonant layer includes a plurality of first resonant units arranged periodically
  • the second resonant layer includes a plurality of second resonant units arranged periodically
  • the first resonant unit is a conductive patch
  • the first resonant unit has a first hollow structure, the first hollow structure penetrates two opposite surfaces of the first resonant unit, the second resonant unit is a conductive patch, and the second resonant unit
  • the length is L1, the side length of the second resonant unit is L2, P>L1 ⁇ L2, and the area of the first hollow structure is smaller than the area of the second hollow structure.
  • first resonant layer and the second resonant layer are insulated.
  • first resonant layer and the second resonant layer are electrically connected through a connector.
  • the resonant structure includes a plurality of first conductive lines arranged at intervals, and a plurality of second conductive lines arranged at intervals, the plurality of first conductive lines and the plurality of second conductive lines are arranged crosswise, and The plurality of first conductive lines and the plurality of second conductive lines are electrically connected at intersections.
  • the resonant structure includes a plurality of conductive grids arranged in an array, each of the conductive grids is surrounded by at least one conductive line, and two adjacent conductive grids at least partially multiplex the conductive line.
  • h is the length between the center line from the radiation surface of the antenna module to the surface of the resonant structure facing the antenna module, and the center line is perpendicular to the radiation surface of the antenna module Straight line
  • c is the speed of light
  • f is the frequency of the radio frequency signal.
  • the maximum value D max of the directivity coefficient of the antenna module satisfies among them,
  • S11 represents the amplitude of the reflection coefficient of the radome to the radio frequency signal.
  • the preset frequency band includes at least 3GPP millimeter wave full frequency band.
  • the present application provides an antenna device, and the antenna device includes:
  • An antenna module the antenna module being used to transmit and receive radio frequency signals of a predetermined frequency band within a range of a predetermined direction;
  • a radome, the radome and the antenna module are spaced apart, and the radome is located within the preset direction range, the radome includes a substrate and a resonant structure carried on the substrate, the radome The difference between the reflected phase and the incident phase of the radio frequency signal of the preset frequency band increases as the frequency increases, and the radio frequency signal of the preset frequency band can pass through the radome.
  • the difference between the reflection phase and the incident phase of the substrate to the radio frequency signal of the preset frequency band decreases as the frequency increases; the difference between the reflection phase and the incident phase of the resonant structure to the radio frequency signal of the preset frequency band varies with Increase as the frequency increases.
  • the resonant structure includes a first resonant layer and a second resonant layer that are stacked, and the first resonant layer is farther away from the antenna module than the second resonant layer, and the resonance of the first resonant layer is The frequency is a first frequency, the frequency of the second resonance layer is a second frequency, and the first frequency is greater than the second frequency.
  • the first resonant layer includes a plurality of first resonant units periodically arranged
  • the second resonant layer includes a plurality of second resonant units periodically arranged
  • the first resonant unit and the first resonant unit The two resonant units are conductive patches
  • the side length of the first resonant unit is L1
  • the side length of the second resonant unit is L2, L1 ⁇ L2 ⁇ P
  • P is the first resonant unit and the second The arrangement period of the resonant unit.
  • h is the length between the center line from the radiation surface of the antenna module to the surface of the resonant structure facing the antenna module, and the center line is perpendicular to the radiation surface of the antenna module Straight line
  • c is the speed of light
  • f is the frequency of the radio frequency signal.
  • the maximum value D max of the directivity coefficient of the antenna module satisfies among them,
  • S11 represents the amplitude of the reflection coefficient of the radome to the radio frequency signal.
  • the present application provides an electronic device that includes a controller and any one of the first aspect and any one of the implementation manners of the first aspect, the second aspect, and any one of the second aspect
  • the antenna device is electrically connected to the controller, and the antenna module in the antenna device is used to transmit and receive radio frequency signals through the radome in the antenna device under the control of the controller.
  • the electronic device includes a battery cover
  • the substrate includes at least the battery cover
  • the battery cover is located within a preset direction range for the antenna to transmit and receive radio frequency signals of a preset frequency band
  • the resonant structure is located on the battery The cover faces the side of the antenna module.
  • the battery cover includes a back plate and a frame connected to the periphery of the back plate, and the back plate is located within the preset direction range.
  • the electronic device further includes a screen
  • the substrate includes at least the screen
  • the screen includes a cover plate and a display module stacked on the cover plate
  • the resonant structure is located between the cover plate and the cover plate. Between display modules.
  • FIG. 1 is a schematic diagram of the antenna device provided by the first embodiment of this application.
  • the antenna device 10 includes an antenna module 100 and a radome 200.
  • the antenna module 100 is used to transmit and receive radio frequency signals of a predetermined frequency band in a predetermined direction range.
  • the radome 200 and the antenna module 100 are spaced apart, and the radome 200 is located within the predetermined direction range.
  • the radome 200 includes a substrate 210 and a resonant structure 230 carried on the substrate 210.
  • the substrate 210 is used to pass the radio frequency signal of the first frequency band in the preset frequency band, and the resonant structure 230 is used to adjust the passband width of the substrate 210 for the radio frequency signal of the preset frequency band, so that the radome 200 can pass the radio frequency signal of the second frequency band in the preset frequency band, wherein the bandwidth of the second frequency band is greater than the bandwidth of the first frequency band, and the radio frequency signal of the second frequency band includes the radio frequency signal of the first frequency band.
  • the substrate 210 is used to pass radio frequency signals in the f1 frequency band in the preset frequency band
  • the radome 200 is used to pass radio frequency signals in the f1 frequency band, the f2 frequency band, the f3 frequency band, and the f4 frequency band in the preset frequency bands.
  • the bandwidth of the radio frequency signal in the f1 frequency band is the first bandwidth F1.
  • the bandwidths of the radio frequency signals in the f1, f2, f3, and f4 frequency bands are the second bandwidth F2, then the second bandwidth F2 is greater than the first bandwidth F1, and the radio frequency signal of the second bandwidth F2 includes the radio frequency of the first bandwidth F1 signal.
  • the radio frequency signal may be, but is not limited to, a radio frequency signal in the millimeter wave frequency band or a radio frequency signal in the terahertz frequency band.
  • 5G new radio mainly uses two frequency bands: FR1 frequency band and FR2 frequency band.
  • the frequency range of the FR1 frequency band is 450MHz to 6GHz, which is also called the sub-6GHz frequency band;
  • the frequency range of the FR2 frequency band is 24.25GHz to 52.6GHz, which belongs to the millimeter wave (mm Wave) frequency band.
  • 3GPP Release 15 standardizes the current 5G millimeter wave frequency bands including: n257 (26.5-29.5GHz), n258 (24.25-27.5GHz), n261 (27.5-28.35GHz) and n260 (37-40GHz).
  • the resonant structure 230 is carried on the entire area of the substrate 210; in other embodiments, the resonant structure 230 is carried on a partial area of the substrate 210. In FIG. 1, the entire area of the resonant structure 230 carried on the substrate 210 is taken as an example for illustration. In this embodiment, the resonant structure 230 is carried on the substrate 210 as follows: the resonant structure 230 is directly disposed on the surface of the substrate 210 facing the antenna module 100. Understandably, the resonant structure 230 may be integrated or non-integrated.
  • the antenna device 10 provided by the present application is provided with a resonant structure 230 carried on the substrate 210, and the resonant structure 230 increases the bandwidth of the radome 200 for radio frequency signals of a preset frequency band, and reduces the frequency of the substrate 210. There is an impact on the radiation performance of the radio frequency signal of the preset frequency band.
  • the antenna device 10 is applied to the electronic device 1, the communication performance of the electronic device 1 can be improved.
  • FIG. 2 is a schematic diagram of the antenna device provided by the second embodiment of this application.
  • the antenna device 10 includes an antenna module 100 and a radome 200.
  • the antenna module 100 is used to transmit and receive radio frequency signals of a predetermined frequency band in a predetermined direction range.
  • the radome 200 and the antenna module 100 are spaced apart, and the radome 200 is located within the predetermined direction range.
  • the radome 200 includes a substrate 210 and a resonant structure 230 carried on the substrate 210.
  • the substrate 210 is used to pass the radio frequency signal of the first frequency band in the preset frequency band
  • the resonant structure 230 is used to adjust the passband width of the substrate 210 for the radio frequency signal of the preset frequency band, so that the radome 200 can pass the radio frequency signal of the second frequency band in the preset frequency band, wherein the bandwidth of the second frequency band is greater than the bandwidth of the first frequency band, and the radio frequency signal of the second frequency band includes the radio frequency signal of the first frequency band.
  • the resonant structure 230 when the resonant structure 230 is carried on the substrate 210, the resonant structure 230 is disposed on the surface of the substrate 210 away from the antenna module 100.
  • the antenna device 10 includes an antenna module 100 and a radome 200.
  • the antenna module 100 is used to transmit and receive radio frequency signals of a predetermined frequency band in a predetermined direction range.
  • the radome 200 and the antenna module 100 are spaced apart, and the radome 200 is located within the predetermined direction range.
  • the radome 200 includes a substrate 210 and a resonant structure 230 carried on the substrate 210.
  • the substrate 210 is used to pass the radio frequency signal of the first frequency band in the preset frequency band
  • the resonant structure 230 is used to adjust the passband width of the substrate 210 for the radio frequency signal of the preset frequency band, so that the radome 200 can pass the radio frequency signal of the second frequency band in the preset frequency band, wherein the bandwidth of the second frequency band is greater than the bandwidth of the first frequency band, and the radio frequency signal of the second frequency band includes the radio frequency signal of the first frequency band.
  • the resonant structure 230 is carried on the substrate 210, the resonant structure 230 is embedded in the substrate 210.
  • the antenna device 10 includes an antenna module 100 and a radome 200.
  • the antenna module 100 is used to transmit and receive radio frequency signals of a predetermined frequency band in a predetermined direction range.
  • the radome 200 and the antenna module 100 are spaced apart, and the radome 200 is located within the predetermined direction range.
  • the radome 200 includes a substrate 210 and a resonant structure 230 carried on the substrate 210.
  • the substrate 210 is used to pass the radio frequency signal of the first frequency band in the preset frequency band
  • the resonant structure 230 is used to adjust the passband width of the substrate 210 for the radio frequency signal of the preset frequency band, so that the radome 200 can pass the radio frequency signal of the second frequency band in the preset frequency band, wherein the bandwidth of the second frequency band is greater than the bandwidth of the first frequency band, and the radio frequency signal of the second frequency band includes the radio frequency signal of the first frequency band.
  • the resonant structure 230 is carried on the substrate 210, the resonant structure 230 is attached to the carrier film 220 and attached to the surface of the substrate 210 through the carrier film 220.
  • the carrier film 220 may be, but is not limited to, a plastic (Polyethylene terephthalate, PET) film, a flexible circuit board, a printed circuit board, or the like.
  • the PET film can be, but is not limited to, a color film, an explosion-proof film, and the like.
  • the resonant structure 230 is carried on the surface of the substrate 210 facing the antenna module 100 as an example for illustration. In other embodiments, the resonant structure 230 is attached via a carrier film 220. The surface of the substrate 210 away from the antenna module 100.
  • FIG. 5 is a schematic diagram of an antenna device provided by a fifth embodiment of this application.
  • part of the resonant structure 230 is disposed on the surface of the substrate 210 away from the antenna module 100, and the remaining part of the resonant structure 230 is embedded in the substrate 210.
  • the resonant structure 230 is disposed on the surface of the substrate 210 adjacent to the antenna module 100, and the remaining part of the resonant structure 230 is embedded in the substrate 210.
  • the above is a partial implementation of the resonant structure 230 carried on the substrate 210. It should be understood that this application does not limit the specific form of the resonant structure 230 carried on the substrate 210, as long as it satisfies the requirement that the resonant structure 230 is arranged on the substrate 210.
  • the substrate 210 is sufficient.
  • FIG. 6 is a schematic diagram of the resonant structure provided by the first embodiment of this application.
  • the resonant structure 230 includes one or more resonant layers 230a.
  • the resonant structure 230 controls the multi-layer resonant layer 230a
  • the multi-layer resonant layer 230 is stacked in a predetermined direction and arranged at intervals.
  • the resonant structure 230 includes multiple resonant layers 230a, a dielectric layer 210a is provided between adjacent resonant layers 230a, and the outermost resonant layer 230a may also be covered with the dielectric layer 210a, or the outermost resonant layer 230a The layer 230a may not cover the dielectric layer 210a, and all the dielectric layers 210a constitute the substrate 210.
  • the resonant structure 230 includes three resonant layers 230a as an example for illustration.
  • the preset direction is parallel to the main lobe direction of the radio frequency signal.
  • the so-called main lobe refers to the beam with the highest radiation intensity in the radio frequency signal.
  • the multilayer resonant layers 230a are stacked in the preset direction, which can maximize the transmission of the radio frequency signal through the radome 200 bandwidth.
  • the material of the resonance structure 230 is a metal material, or the material of the resonance structure 230 is a non-metal conductive material.
  • the resonant structure 230 may be a transparent non-metallic conductive material, such as indium tin oxide.
  • the material of the substrate 210 is at least one or a combination of plastic, glass, sapphire, and ceramic.
  • FIG. 7 is a schematic diagram of the resonant structure provided by the second embodiment of this application.
  • the resonant structure 230 provided in this embodiment can be incorporated into the antenna device 10 provided in any of the foregoing embodiments.
  • the resonant structure 230 includes a plurality of resonant units 231, and the resonant units 231 are periodically arranged.
  • the periodic arrangement of the resonant units 230b can make the resonant structure 230 easier to prepare during preparation.
  • FIG. 8 is a schematic diagram of the resonant structure provided by the third embodiment of this application.
  • the resonant structure 230 provided in this embodiment can be incorporated into the antenna device 10 provided in any of the foregoing embodiments.
  • the resonant structure 230 includes a plurality of resonant units 231, and the resonant units 231 are arranged aperiodically.
  • FIG. 9 is a schematic diagram of the resonant structure provided by the fourth embodiment of this application.
  • the resonant structure 230 provided in this embodiment can be incorporated into the antenna device 10 provided in any of the foregoing embodiments.
  • the resonant structure 230 includes a first resonant layer 235 and a second resonant layer 236 that are stacked.
  • the first resonant layer 235 is away from the antenna module 100 compared to the second resonant layer 236, the resonant frequency of the first resonant layer 235 is a first frequency, and the frequency of the second resonant layer 236 is The second frequency, the first frequency is greater than the second frequency.
  • the resonant frequency of the first resonant layer 235 being the first frequency means that when the radio frequency signal emitted by the antenna module 100 passes through the first resonant layer 235, the first resonant layer 235 resonates at the first frequency.
  • the resonant frequency of the second resonant layer 236 being the second frequency means that when the radio frequency signal emitted by the antenna module 100 passes through the second resonant layer 236, the resonance of the second resonant layer 236 is at the second resonant frequency. Two frequency.
  • the bandwidth of the radio frequency signal that the radome 200 can pass is increased compared to the bandwidth of the radio frequency signal that the substrate 210 can pass.
  • the resonant layers for example, the first resonant layer 235 and the second resonant layer 236) in the resonant structure 230 are all conductive patches
  • the resonant layer when the resonant frequency of the resonant layer is higher, the resonant layer The smaller the size of the layer.
  • the first resonant layer 235 and the second resonant layer 236 are both conductive patches, since the first frequency is greater than the second frequency, the size of the first resonant layer 235 is smaller than the The size of the second resonance layer 236.
  • the first resonant layer 235 is arranged away from the antenna module 100 compared to the second resonant layer 236, so that the smaller-sized first resonant layer 235 will not resonate to the larger-sized second
  • the second frequency at which the resonant layer 236 resonates causes shielding, thereby helping to improve the communication effect of the antenna device 10.
  • FIG. 10 is a top view of the first resonant unit provided by the first embodiment of this application
  • FIG. 11 is a bottom view of the second resonant unit provided by the first embodiment of this application
  • Fig. 12 is a cross-sectional view taken along line II in Fig. 10.
  • the first resonance layer 235 includes a plurality of first resonance units 2351 arranged periodically
  • the second resonance layer 236 includes a plurality of second resonance units 2361 arranged periodically. Both the first resonant unit 2351 and the second resonant unit 2361 are conductive patches.
  • the side length of the first resonant unit 2351 is L1
  • the side length of the second resonant unit 2361 is L2, L1 ⁇ L2 ⁇ P, where P is the arrangement of the first resonant unit 2351 and the second resonant unit 2361 cycle.
  • the structure of the first resonant unit 2351 and the second resonant unit 2361 can make the resonant frequency of the first resonant layer 235 greater than the resonant frequency of the second resonant layer 236.
  • first resonant unit 2351 is shown in the first resonant layer 235
  • second resonant unit 2361 is shown in the second resonant layer 236.
  • the resonant frequency of the first resonant unit 2351 follows the edge of the first resonant unit 2351.
  • the length increases and decreases; accordingly, when the second resonant unit 2361 is a conductive patch, and the conductive patch does not include a hollow or hollow structure, the resonant frequency of the second resonant unit 2361 As the side length of the second resonance unit 2361 increases, it decreases. Therefore, when the side length of the first resonant unit 2351 is smaller than the side length of the second resonant unit 2361.
  • the shape of the first resonant unit 2351 is the same as the shape of the second resonant unit 2361, and the first resonant unit 2351 and the second resonant unit 2361 are square as an example. Understandably, the shape of the first resonance unit 2351 and the shape of the second resonance unit 2361 may also be different.
  • the side length of the first resonant unit 2351 can also be understood as the perimeter of the first resonant unit 2351 That is, the circumference of the first resonant unit 2351 is smaller than the circumference of the second resonant unit 2361, and the diameter of the second resonant unit 2361 is smaller than that of the first resonant unit 2351 and the second resonant unit 2351.
  • the arrangement cycle of 2361 is not limited to the first resonant unit 2351.
  • FIG. 13 is a top view of the first resonant unit provided by the second embodiment of this application
  • FIG. 14 is a bottom view of the second resonant unit provided by the second embodiment of this application
  • Fig. 15 is a cross-sectional view taken along line II-II in Fig. 13.
  • the first resonance layer 235 includes a plurality of first resonance units 2351 arranged periodically
  • the second resonance layer 236 includes a plurality of second resonance units 2361 arranged periodically.
  • the first resonant unit 2351 is a conductive patch
  • the second resonant unit 2361 is a conductive patch
  • the second resonant unit 2361 has a hollow structure 2362 on it.
  • the hollow structure 2362 penetrates the opposite of the second resonant unit 2361. Two surfaces.
  • the side length of the first resonant unit 2351 is L1
  • the side length of the second resonant structure 230 is L2, P>L1 ⁇ L2, where P is the arrangement of the first resonant unit 2351 and the second resonant unit 2361 Period, and the larger the area of the hollow structure 2362, the larger the difference between L1 and L2.
  • the structure of the first resonant unit 2351 and the second resonant unit 2361 can make the resonant frequency of the first resonant layer 235 greater than the resonant frequency of the second resonant layer 236.
  • first resonant unit 2351 is shown in the first resonant layer 235, and only one second resonant unit 2361 is shown in the second resonant layer 236.
  • side length L1 of the first resonant unit 2351 is greater than the side length L2 of the second resonant unit 2361.
  • a hollow structure 2362 is formed on the second resonant unit 2361, so that the size of the second resonant unit 2361 can be reduced, which is beneficial to all.
  • the miniaturization of the second resonant unit 2361 further facilitates the miniaturization of the resonant structure 230.
  • FIG. 16 is a top view of the first resonant unit provided by the third embodiment of this application
  • FIG. 17 is a bottom view of the second resonant unit provided by the third embodiment of this application
  • Fig. 18 is a cross-sectional view taken along line III-III in Fig. 16.
  • the first resonance layer 235 includes a plurality of first resonance units 2351 arranged periodically
  • the second resonance layer 236 includes a plurality of second resonance units 2361 arranged periodically.
  • the first resonant unit 2351 is a conductive patch.
  • the first resonant unit 2351 has a first hollow structure 2353.
  • the first hollow structure 2353 penetrates two opposite surfaces of the first resonant unit 2351.
  • the resonant unit 2361 is a conductive patch, and the second resonant unit 2361 has a second hollow structure 2363 on it, and the second hollow structure 2363 penetrates two opposite surfaces of the second resonant unit 2361.
  • the side length of the first resonant unit 2351 is L1
  • the side length of the second resonant unit 2361 is L2, P>L1 ⁇ L2
  • the area of the first hollow structure 2353 is smaller than the area of the second hollow structure 2363.
  • the structure of the first resonant unit 2351 and the second resonant unit 2361 can make the resonant frequency of the first resonant layer 235 greater than the resonant frequency of the second resonant layer 236.
  • the first hollow structure 2353 is provided on the first resonant unit 2351, so that the first resonant unit 2351 can be reduced.
  • the size of ⁇ is conducive to the miniaturization of the first resonant unit 2351, which in turn is conducive to the miniaturization of the resonant structure 230.
  • the second hollow structure 2363 is formed on the second resonant unit 2361, so that the size of the second resonant unit 2361 can be reduced. , which is beneficial to the miniaturization of the second resonant unit 2361, which in turn is beneficial to the miniaturization of the resonant structure 230.
  • the first resonant layer 235 and the second resonant layer 236 are insulated as an example for illustration.
  • first resonant layer 235 and the second resonant layer 236 are insulated, there is no electrical connection between the first resonant layer 235 and the second resonant layer 236.
  • the first resonant layer 235 and the second resonant layer are not electrically connected. Layer 236 connection. At this time, the resonant structure 230 can be easily processed.
  • FIG. 19 is a schematic diagram of the antenna device provided by the sixth embodiment of this application.
  • the antenna device 10 of this embodiment is combined with the first resonant unit 2351 and the second resonant unit 2361 provided in the first embodiment for illustration.
  • the first resonant layer 235 and the second resonant layer 236 are electrically connected by a connecting member 2352.
  • the first resonant layer 235 and the second resonant layer 236 are electrically connected by a connecting member 2352, so that the surface of the antenna device 10 forms a high impedance, and the radio frequency signal cannot travel along the radome 200.
  • the surface propagation can further increase the gain and bandwidth of the radio frequency signal, reduce the backlobe, and further improve the communication quality of the antenna device 10 when the radio frequency signal is used for communication.
  • the center of the first resonant layer 235 is electrically connected to the center of the second resonant layer 236, which can further increase the gain and bandwidth of the radio frequency signal, reduce the backlobe, and further improve the utilization of the antenna device 10 The communication quality of the radio frequency signal during communication.
  • FIG. 20 is a schematic diagram of a resonant structure provided in the fifth embodiment of this application.
  • the resonant structure 230 includes a plurality of first conductive lines 232 arranged at intervals, and a plurality of second conductive lines 233 arranged at intervals, and the plurality of first conductive lines 232 and the plurality of second conductive lines 233 are arranged to cross each other , And the plurality of first conductive circuits 232 and the plurality of second conductive circuits 233 are electrically connected at intersections. Two adjacent first conductive lines 232 and two adjacent second conductive lines 233 cross to form a resonance unit 231.
  • the plurality of first conductive lines 232 extend along the first direction and are arranged at intervals along the second direction; the plurality of second conductive lines 233 extend along the second direction and are arranged along the first direction. They are arranged at intervals in one direction, and the first direction is perpendicular to the second direction.
  • the plurality of first conductive circuits 232 and the plurality of second conductive circuits 233 perpendicularly cross, and are electrically connected at the intersections.
  • the distance between any two adjacent first conductive lines 232 may be equal or unequal.
  • the distance between any two adjacent second conductive lines 233 may be equal or unequal. In the schematic diagram of this embodiment, it is taken as an example that the distance between two adjacent first conductive lines 232 is equal and the distance between two adjacent second conductive lines 233 is equal.
  • the resonant unit 231 in this embodiment includes a portion where two adjacent first conductive lines 232 and two adjacent second conductive lines 233 cross, and a hollow is formed between the crossed portions.
  • the size of the resonant unit 231 of the present application is smaller for radio frequency signals of a preset frequency band, which is beneficial to the integration and integration of the antenna device 10 miniaturization.
  • FIG. 21 is a schematic diagram of a resonant structure provided by a sixth embodiment of this application.
  • the resonant structure 230 includes a plurality of conductive grids 234 arranged in an array, each of the conductive grids 234 is surrounded by at least one conductive line 237, and two adjacent conductive grids 234 are at least partially multiplexed. Conductive lines 237.
  • the conductive grids 234 distributed in an array constitute the resonant unit 231.
  • the shape of the conductive mesh 234 can be, but is not limited to, any one of a circle, a rectangle, a triangle, a polygon, and an ellipse.
  • the shape of the conductive mesh 234 is a polygon
  • the number of sides of the grid 234 is a positive integer greater than 3.
  • the shape of the conductive mesh 234 is a triangle as an example for illustration.
  • the resonant structure 230 includes conductive grids 234 arranged in an array, compared to the resonant unit 231 that is a conductive patch and does not include a hollow structure, for a radio frequency signal of a preset frequency band, the resonant unit 231 of the present application
  • the size is small, which facilitates the integration and miniaturization of the antenna device 10.
  • two adjacent conductive grids 234 at least partially multiplex the conductive circuit 237, for the radio frequency signal of the preset frequency band, thereby further reducing the size of the resonant unit 231.
  • FIG. 22 is a schematic diagram of a resonant structure provided by a seventh embodiment of this application.
  • the shape of the conductive grid 234 is a regular hexagon as an example for illustration.
  • FIGS. 23-30 are structural schematic diagrams of the resonant unit in the resonant structure.
  • the resonant unit 231 illustrated in FIG. 23 is a circular patch, the resonant unit 231 does not include a hollow structure, the resonant unit 231 illustrated in FIG. 24 is a regular hexagon patch, and the resonant unit 231 illustrated in FIG. 25 is a circular patch.
  • the resonant unit 231 shown in Fig. 26 is a rectangular patch and has a rectangular hollow structure; the resonant unit 231 shown in Fig. 27 has a cross shape; the resonant unit 231 shown in Fig. 28 and the resonance shown in Fig.
  • the shape of the unit 231 is similar, being a Jerusalem cross;
  • the resonant unit 231 illustrated in FIG. 29 is a regular hexagon and has a hollow structure of a regular hexagon;
  • the resonant unit 231 illustrated in FIG. 30 includes a plurality of surrounding branches, which can also be regarded as including Hollow structure.
  • the resonant unit 231 including the hollow structure may be the aforementioned first resonant unit 2351 including the first hollow structure 2353, or the second resonant unit 2361 including the second hollow structure 2363.
  • h is the length between the center line from the radiation surface of the antenna module 100 to the surface of the resonant structure 230 facing the antenna module 100, and the center line is perpendicular to the antenna module 100
  • the straight line of the radiating surface c is the speed of light
  • f is the frequency of the radio frequency signal, where N is a positive integer.
  • the difference between the reflected phase and the incident phase of the resonant structure 230 to the radio frequency signal of the preset frequency band satisfies the above relationship, it can be seen that the difference ⁇ R between the reflected phase and the incident phase increases with the frequency of the radio frequency signal.
  • the bandwidth of the radio frequency signal passing through the radome 200 can be increased, that is, the bandwidth of the radio frequency signal can be expanded.
  • the conditions for the radome 200 to achieve resonance are:
  • h is the length of the line segment from the radiation surface of the radiation surface of the antenna module 100 to the surface of the resonant structure 230 facing the antenna module 100, and the center line is perpendicular to the antenna
  • the straight line of the radiation surface of the module 100 ⁇ R is the difference between the reflected phase and the incident phase of the RF signal by the resonant structure 230
  • is the wavelength of the first RF signal in the air
  • N is positive Integer.
  • the thickness of the electronic device 1 can be made smaller.
  • the selection of h can enhance the directivity and gain of the radio frequency signal beam, that is, the resonant structure 230 can compensate for the loss of the radio frequency signal during transmission, so that the first radio frequency signal can have a higher
  • the long transmission distance improves the overall performance of the antenna device 10. Therefore, the antenna device 10 of the present application is beneficial to improve the communication performance of the electronic device 1 to which the antenna device 10 is applied.
  • the radome 200 in the antenna device 10 of the present case has a simpler structure, a smaller footprint, and a low cost, which is beneficial to increase the competitiveness of the product.
  • the maximum value of the directivity coefficient of the radio frequency signal transmitted through the radome 200 is:
  • D max is the directivity coefficient of the first radio frequency signal
  • S 11 represents the amplitude of the reflection coefficient of the radome 200 to the radio frequency signal.
  • the preset frequency band includes at least the 3GPP millimeter wave full frequency band.
  • the preset frequency band including the 3GPP millimeter wave full frequency band can improve the communication effect of the antenna device 10.
  • FIG. 31 is a schematic diagram of an antenna device provided by a seventh embodiment of this application.
  • the antenna device 10 includes an antenna module 100 and a radome 200.
  • the antenna module 100 is used to transmit and receive radio frequency signals of a predetermined frequency band in a predetermined direction range.
  • the radome 200 and the antenna module 100 are spaced apart, and the radome 200 is located within the preset direction range.
  • the radome 200 includes a substrate 210 and a resonant structure 230 carried on the substrate 210, The difference between the reflected phase and the incident phase of the radome 200 to the radio frequency signal of the preset frequency band increases as the frequency increases, and the radio frequency signal of the predetermined frequency band can pass through the radome 200.
  • the difference between the reflected phase and the incident phase of the substrate 210 to the radio frequency signal of the preset frequency band decreases as the frequency increases. That is, the difference between the reflected phase and the incident phase of the substrate 210 to the radio frequency signal of the preset frequency band presents a negative phase gradient as the frequency changes.
  • the difference between the reflected phase and the incident phase of the substrate 210 to the RF signal of the preset frequency band becomes smaller as the frequency increases, the bandwidth of the RF signal passed by the substrate 210 is smaller.
  • the resonant structure 230 is added.
  • the difference between the reflected phase and the incident phase of the resonant structure 230 to the radio frequency signal of the preset frequency band increases with the increase in frequency, so that the resonant structure 230 is included.
  • the difference ⁇ R between the reflected phase and the incident phase of the radome 200 to the preset frequency band presents a positive phase gradient as the frequency changes.
  • the difference between the reflected phase and the incident phase of the substrate 210 to the RF signal of the preset frequency band increases with the increase of the frequency, that is, the substrate 210 affects the preset frequency band.
  • the difference between the reflected phase and the incident phase of is a positive phase gradient with the change of frequency.
  • the bandwidth of the radio frequency signal that the radome 200 can pass through can be further expanded.
  • the resonant structure 230 includes a first resonant layer 235 and a second resonant layer 236 that are stacked, and the first resonant layer 235 is away from the antenna module 100 compared to the second resonant layer 236,
  • the resonant frequency of the first resonant layer 235 is a first frequency
  • the frequency of the second resonant layer 236 is a second frequency
  • the first frequency is greater than the second frequency.
  • FIG. 9 illustrates that the first resonant layer 235 and the second resonant layer 236 are disposed on two opposite surfaces of the substrate 210. It is understandable that the structure of the resonant structure 230 is not limited to the structure in FIG. 9, as long as the first resonant layer 235 and the second resonant layer 236 are stacked.
  • the first resonance layer 235 includes a plurality of first resonance units 2351 arranged periodically
  • the second resonance layer 236 includes a plurality of second resonance units arranged periodically.
  • the resonant unit 2361, the first resonant unit 2351 and the second resonant unit 2361 are conductive patches
  • the side length of the first resonant unit 2351 is L1
  • the side length of the second resonant unit 2361 is L2, L1 ⁇ L2 ⁇ P, where P is the arrangement period of the first resonant unit 2351 and the second resonant unit 2361.
  • the difference ⁇ R between the reflected phase and the incident phase of the resonant structure 230 to the radio frequency signal of the preset frequency band satisfies:
  • h is the length between the center line from the radiation surface of the antenna module 100 to the surface of the resonant structure 230 facing the antenna module 100, and the center line is perpendicular to the antenna module 100
  • the straight line of the radiating surface c is the speed of light
  • f is the frequency of the radio frequency signal
  • N is a positive integer.
  • the maximum value D max of the directivity coefficient of the antenna module 100 satisfies among them, wherein, S11 represents the amplitude of the reflection coefficient of the radome 200 to the radio frequency signal.
  • the maximum D max of the directivity coefficient of the antenna module 100 satisfies
  • FIG. 32 shows the reflection coefficient S11 curves corresponding to substrates with different dielectric constants.
  • the simulation is performed by taking the thickness of the substrate 210 of 0.55 mm as an example.
  • the horizontal axis represents frequency in GHz
  • the vertical axis represents reflection coefficient in dB.
  • curve 1 is the change curve of reflection coefficient S11 with frequency when the dielectric constant of substrate 210 is 3.5
  • curve 2 is the change curve of reflection coefficient S11 with frequency when the dielectric constant of substrate 210 is 6.8.
  • FIG. 33 is a curve of reflection phase corresponding to substrates with different dielectric constants.
  • the simulation is performed by taking the thickness of the substrate 210 of 0.55 mm as an example.
  • the horizontal axis represents frequency in GHz
  • the vertical axis represents phase in deg.
  • curve 1 is the change curve of the reflection phase with frequency when the dielectric constant of the substrate 210 is 3.5
  • curve 2 is the change curve of the reflection phase with frequency when the dielectric constant of the substrate 210 is 6.8
  • curve 3 is The change curve of the reflection phase with frequency when the dielectric constant of the substrate 210 is 10.9.
  • the reflection phase of the substrate 210 decreases as the frequency increases. That is, the difference between the reflected phase and the incident phase of the substrate 210 to the radio frequency signal of the preset frequency band presents a negative phase gradient as the frequency changes.
  • FIG. 34 is a schematic diagram of the amplitude of the reflection coefficient S11 of the radome provided by this application.
  • the radome 200 includes a first resonant layer 235 and a second resonant layer 236 that are stacked. Both the first resonant layer 235 and the second resonant layer 236 include square conductive patches.
  • the layer 235 is simulated compared to the structure of the second resonant layer 236 away from the antenna module 100.
  • the horizontal axis represents frequency in GHz
  • the vertical axis represents reflection coefficient in dB.
  • the curve 1 shows that the side length of the first resonant layer 235 is 1.5 mm, the side length of the second resonant layer 236 is 1.8 mm, and the periods of the first resonant layer 235 and the second resonant layer 236 are 2.2mm simulation curve;
  • curve 2 is that the side length of the first resonant layer 235 is 1.5, the side length of the second resonant layer 236 is 1.8, and the period of the first resonant layer 235 and the second resonant layer 236 is 2mm
  • the curve 3 is that the side length of the first resonant layer 235 is 1.6mm, the side length of the second resonant layer 236 is 1.9mm, and the period of the first resonant layer 235 and the second resonant layer 236 is 2.2mm Simulation curve.
  • the resonant structure 230 has a relatively large reflection coefficient to the radio frequency signal of each frequency band. Since the reflection coefficient of the resonant structure 230 to the radio frequency signal of each frequency band is larger, the directivity coefficient of the radio frequency signal is larger, and the directivity of the radio frequency signal is better. It can be seen that the radio frequency signal has better directivity after passing through the radome 200 of the present application.
  • the antenna device 10 is integrated in the electronic device 1, it is beneficial to improve the communication effect of the electronic device 1.
  • FIG. 35 is a schematic diagram of the phase curve of the reflection phase S11 of the radome provided by this application.
  • the radome 200 includes a first resonant layer 235 and a second resonant layer 236 that are stacked. Both the first resonant layer 235 and the second resonant layer 236 include square conductive patches.
  • the layer 235 is simulated compared to the structure of the second resonant layer 236 away from the antenna module 100.
  • the horizontal axis represents frequency, in GHz
  • the vertical axis represents gain, in dB.
  • the curve 1 shows that the side length of the first resonant layer 235 is 1.5 mm, the side length of the second resonant layer 236 is 1.8 mm, and the periods of the first resonant layer 235 and the second resonant layer 236 are 2.2mm simulation curve;
  • curve 2 is that the side length of the first resonant layer 235 is 1.5, the side length of the second resonant layer 236 is 1.8, and the period of the first resonant layer 235 and the second resonant layer 236 is 2mm
  • the curve 3 is that the side length of the first resonant layer 235 is 1.6mm, the side length of the second resonant layer 236 is 1.9mm, and the period of the first resonant layer 235 and the second resonant layer 236 is 2.2mm Simulation curve.
  • the present application also provides an electronic device 1.
  • the electronic device 1 provided by the present application will be introduced below in conjunction with the antenna device 10 described above. Please refer to FIG. 36, which is a circuit block diagram of an electronic device according to an embodiment of the application.
  • the electronic device 1 includes a controller 30 and the antenna device 10 described in any one of the preceding embodiments.
  • the antenna device 10 is electrically connected to the controller 30, and the antenna module 100 in the antenna device 10 is used in the Under the control of the controller 30, radio frequency signals are sent and received through the radome 200 in the antenna device 10.
  • FIG. 37 is a schematic structural diagram of an electronic device according to an embodiment of the application.
  • the electronic device 1 includes a battery cover 50, the substrate 210 includes at least the battery cover 50, and the battery cover 50 is located within a preset direction range where the antenna transmits and receives radio frequency signals of a preset frequency band.
  • the resonant structure 230 is directly prepared on the outer surface of the battery cover 50.
  • the resonant structure 230 is directly prepared on the surface of the battery cover 50 away from the antenna module 100. Since the outer surface of the battery cover 50 is relatively flat, preparing the resonant structure 230 directly on the outer surface of the battery cover 50 can reduce the difficulty of preparing the resonant structure 230.
  • the resonant structure 230 is directly prepared on the inner surface of the battery cover 50.
  • the resonant structure 230 is directly prepared on the surface of the battery cover 50 facing the antenna module 100.
  • the resonant structure 230 is directly prepared on the inner surface of the battery cover 50, and the battery cover 50 can form a protective layer of the resonant structure 230, reducing or avoiding the abrasion of the resonant structure 230 by external objects.
  • the resonant structure 230 is attached to the carrier film 220 and attached to the inner surface or the outer surface of the battery cover 50 through the carrier film 220.
  • the carrier film 220 please refer to the description when the antenna device 10 is introduced, and will not be repeated here.
  • the resonant structure 230 When the resonant structure 230 is attached to the carrier film 220 and then attached to the inner or outer surface of the battery cover 50 through the carrier film 220, the difficulty of installing the resonant structure 230 on the battery cover 50 can be reduced.
  • the resonant structure 230 is located on the side of the battery cover 50 facing the antenna module 100, and the resonant structure 230 is directly disposed on the battery cover 50 facing the antenna module.
  • the surface of the group 100 is illustrated as an example.
  • the resonant structure 230 corresponds to a partial arrangement of the battery cover 50 or corresponds to the entire battery cover 50.
  • the resonant structure 230 may be integrated or non-integrated.
  • the battery cover 50 includes a back plate 510 and a frame 520 connected to the periphery of the back plate 510.
  • the back plate 510 is located within the predetermined direction range.
  • the substrate 210 at least includes the back plate 510, and the resonant structure 230 is carried on the back plate 510.
  • the area of the back plate 510 is generally larger than the area of the frame 520, and the resonant structure 230 is carried on the back plate 510 to facilitate the placement of the resonant structure 230.
  • the resonant structure 230 is corresponding to a part of the battery cover 50 and the resonant structure 230 is disposed on the inner surface of the battery cover 50 as an example for illustration.
  • the electronic device 1 further includes a screen 70.
  • the screen 70 is disposed at the opening of the battery cover 50.
  • the screen 70 is used to display text, images, videos, and the like.
  • FIG. 38 is a schematic structural diagram of an electronic device according to another embodiment of this application.
  • the electronic device 1 includes a screen 70, the substrate 210 includes at least the screen 70, the screen 70 includes a cover plate 710 and a display module 730 laminated with the cover plate 710, and the resonant structure 230 is located at the Between the cover plate 710 and the display module 730.
  • the display module 730 can be, but is not limited to, a liquid crystal display module 730, or an organic light emitting diode display module 730.
  • the screen 70 can be, but is not limited to, a liquid crystal display or an organic light emitting diode display. .
  • the resonant structure 230 may be directly disposed on the surface of the cover plate 710 facing the display module 730, or may be attached to the surface of the cover plate 710 through a carrier film. The inner surface. In another embodiment, the resonant structure 230 can be directly disposed on the display module 730, or can be attached to the display module 730 through a carrier film. The resonant structure 230 may be provided corresponding to a part of the cover plate 710, or may be provided corresponding to the entire cover plate 710. The resonant structure 230 may be integrated or non-integrated. In order not to affect the light transmittance of the screen 70, the resonant structure 230 is transparent.
  • the resonant structure 230 is directly disposed on the surface of the cover plate 710 facing the display module 730, and the local configuration of the resonant structure 230 corresponding to the change 710 is taken as an example for illustration. .
  • the electronic device 1 further includes a battery cover 50, and the screen 70 is disposed at the opening of the battery cover 50.
  • the battery cover 50 generally includes a back plate 510 and a frame 520 connected to the periphery of the back plate 510 by bending.
  • the resonant structure 230 is located on the surface of the cover plate 710 facing the display module 730.
  • the resonant structure 230 located on the surface of the cover plate 710 facing the display module 730 can reduce the formation of the resonant structure 230 compared to the resonant structure 230 disposed in the display module 730. Due to the difficulty of the cover 710.
  • the resonant structure 230 may be provided corresponding to a part of the cover plate 710, or may be provided corresponding to the entire cover plate 710.
  • the resonant structure 230 may be integrated or non-integrated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种天线装置及电子设备。天线装置包括天线模组及天线罩。天线模组用于朝预设方向范围收发预设频段的射频信号。天线罩与天线模组间隔设置,且天线罩位于预设方向范围内。天线罩包括基板和承载于基板的谐振结构。基板用于通过预设频段中第一频段的射频信号,谐振结构用于调节所述基板对于所述预设频段的射频信号的通带宽度,以使天线罩可通过预设频段中第二频段的射频信号,其中,第二频段的带宽大于第一频段的带宽,且第二频段的射频信号包括第一频段的射频信号。本申请提供的天线装置具有较大的带宽,应用天线装置的电子设备的通信性能较好。

Description

天线装置及电子设备 技术领域
本申请涉及电子设备领域,尤其涉及一种天线装置及电子设备。
背景技术
随着移动通信技术的发展,传统的第四代(4th-Generation,4G)移动通信已经不能够满足人们的要求。第五代(5th-Generation,5G)移动通信由于具有较高的通信速度,可而备受用户青睐。比如,利用5G移动通信传输数据时的传输速度比4G移动通信传输数据的速度快数百倍。毫米波信号是实现5G移动通信的主要手段,然而,当毫米波天线应用于电子设备时,毫米波天线通常设置于电子设备内部的收容空间中,毫米波信号天线透过电子设备而辐射出去的透过率较低,达不到天线辐射性能的要求。或者,外部的毫米波信号穿透电子设备的透过率较低。由此可见,现有技术中,5G毫米波信号的通信性能较差。
发明内容
本申请提供一种天线装置,所述天线装置包括:
天线模组,所述天线模组用于朝预设方向范围收发预设频段的射频信号;
天线罩,所述天线罩与所述天线模组间隔设置,且所述天线罩位于所述预设方向范围内,所述天线罩包括基板和承载于所述基板的谐振结构;
所述基板用于通过预设频段中第一频段的射频信号,所述谐振结构用于调节所述基板对于所述预设频段的射频信号的通带宽度,以使所述天线罩可通过预设频段中第二频段的射频信号,其中,所述第二频段的带宽大于所述第一频段的带宽,且第二频段的射频信号包括所述第一频段的射频信号。
本申请还提供一种天线装置,所述天线装置包括:
天线模组,所述天线模组用于朝向预设方向范围内收发预设频段的射频信号;
天线罩,所述天线罩与所述天线模组间隔设置,且所述天线罩位于所述预设方向范围内,所述天线罩包括基板和承载于所述基板的谐振结构,所述天线罩对所述预设频段的射频信号的反射相位与入射相位的差值随着频率的增加而增加,所述预设频段的射频信号可通过所述天线罩。
本申请还提供一种电子设备,所述电子设备包括控制器和天线装置,所述天线装置与所述控制器电连接,天线装置中的天线模组用于在所述控制器的控制下透过天线装置中的天线罩收发射频信号。
相较于现有技术,本申请提供的天线装置中设置承载于基板的谐振结构,通过谐振结构的作用提升天线罩对预设频段的射频信号的带宽,降低了基板的存在对预设频段的射频信号的辐射性能的影响,当所述天线装置应用于电子设备时,可提升所述电子设备的通信性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请第一实施方式提供的天线装置的示意图。
图2为本申请第二实施方式提供的天线装置的示意图。
图3为本申请第三实施方式提供的天线装置的示意图。
图4为本申请第四实施方式提供的天线装置的示意图。
图5为本申请第五实施方式提供的天线装置的示意图。
图6为本申请第一实施方式提供的谐振结构的示意图。
图7为本申请第二实施方式提供的谐振结构的示意图。
图8为本申请第三实施方式提供的谐振结构的示意图。
图9为本申请第四实施方式提供的谐振结构的示意图。
图10为本申请第一实施方式提供的第一谐振单元的俯视图。
图11为本申请第一实施方式提供的第二谐振单元的仰视图。
图12为图10中沿I-I线的剖视图。
图13为本申请第二实施方式提供的第一谐振单元的俯视图。
图14为本申请第二实施方式提供的第二谐振单元的仰视图。
图15为图13中沿II-II线的剖视图。
图16为本申请第三实施方式提供的第一谐振单元的俯视图。
图17为本申请第三实施方式提供的第二谐振单元的仰视图。
图18为图16中沿III-III线的剖视图。
图19为本申请第六实施方式提供的天线装置的示意图。
图20为本申请第五实施方式提供谐振结构的示意图。
图21为本申请第六实施方式提供的谐振结构的示意图。
图22为本申请第七实施方式提供的谐振结构的示意图。
图23-图30为谐振结构中的谐振单元的结构示意图。
图31为本申请第七实施方式提供的天线装置的示意图。
图32为不同介电常数的基板对应的反射系数S11曲线。
图33为不同介电常数的基板对应的反射相位的曲线。
图34为本申请提供的天线罩的反射系数S11的幅度的曲线示意图。
图35为本申请提供的天线罩的反射相位S11的相位的曲线示意图。
图36为本申请一实施方式提供的电子设备电路框图。
图37为本申请一实施方式提供的电子设备的结构示意图。
图38为本申请另一实施方式提供的电子设备的结构示意图。
具体实施方式
第一方面,本申请提供了一种天线装置,所述天线装置包括:
天线模组,所述天线模组用于朝预设方向范围收发预设频段的射频信号;
天线罩,所述天线罩与所述天线模组间隔设置,且所述天线罩位于所述预设方向范围内,所述天线罩包括基板和承载于所述基板的谐振结构;
所述基板用于通过预设频段中第一频段的射频信号,所述谐振结构用于调节所述基板对于所述预设频段的射频信号的通带宽度,以使所述天线罩可通过预设频段中第二频段的射频信号,其中,所述第二频段的带宽大于所述第一频段的带宽,且第二频段的射频信号包括所述第一频段的射频信号。
其中,所述谐振结构包括层叠设置的第一谐振层及第二谐振层,所述第一谐振层相较于所述第二谐振层背离所述天线模组,所述第一谐振层的谐振频率为第一频率,所述第二谐振层的频率为第二频率,所述第一频率大于所述第二频率。
其中,所述第一谐振层包括周期性排布的多个第一谐振单元,所述第二谐振层包括周期性排布的多个第二谐振单元,所述第一谐振单元及所述第二谐振单元均为导电贴片,第一谐振单元的边长为L1,所述第二谐振单元的边长为L2,L1<L2<P,其中,P为第一谐振单元和所述第二谐振单元的排布周期。
其中,所述第一谐振层包括周期性排布的多个第一谐振单元,所述第二谐振层包括周期性排布的多个第二谐振单元,所述第一谐振单元为导电贴片,所述第二谐振单元为导电贴片且所述第二谐振单元上具有镂空结构,所述镂空结构贯穿所述第二谐振单元相对的两个表面,所述第一谐振单元的边长为L1,所述第二谐振大纳言的边长为L2,P>L1≥L2,其中,P为第一谐振单元和第二谐振单元的排布周期,且镂空结构的面积越大,L1与L2的差值越大。
其中,所述第一谐振层包括周期性排布的多个第一谐振单元,所述第二谐振层包括周期性排布的多个第二谐振单元,所述第一谐振单元为导电贴片,所述第一谐振单元上具有第一镂空结构,所述第一镂空结构贯穿所述第一谐振单元相对的两个表面,所述第二谐振单元为导电贴片,所述第二谐振单元上具有第二镂空结构,所述第二镂空结构贯穿所述第二谐振单元相对的两个表面,第一谐振单元和第二谐振单元的排布周期为P,所述第一谐振单元的边长为L1,所述第二谐振单元的边长为L2,P>L1≥L2,且第一镂空结构的面积小于第二镂空结构的面积。
其中,所述第一谐振层及所述第二谐振层绝缘设置。
其中,所述第一谐振层与所述第二谐振层通过连接件电连接。
其中,谐振结构包括多条间隔排布的第一导电线路,以及多条间隔排布的第二导电线路,所述多条第一导电线路与所述多条第二导电线路交叉设置,且所述多条第一导电线路与所述多条第二导电线路在交叉处电连接。
其中,所述谐振结构包括多个阵列设置的导电网格,每个所述导电网格由至少一条导电线路围成,相邻的两个所述导电网格至少部分复用所述导电线路。
其中,所述谐振结构对预设频段的射频信号的反射相位与入射相位之间的差值φR满足:
Figure PCTCN2020115516-appb-000001
其中,h为中心线从所述天线模组的辐射面到所述谐振结构面对所述天线模组的表面之间的长度,所述中心线为垂直于所述天线模组的辐射面的直线,c为光速,f为射频信号的频率。
其中,所述天线模组的方向性系数的最大值D max满足
Figure PCTCN2020115516-appb-000002
其中,
Figure PCTCN2020115516-appb-000003
其中,S11表征所述天线罩对所述射频信号的反射系数幅值。
其中,所述预设频段至少包括3GPP毫米波全频段。
第二方面,本申请提供一种天线装置,所述天线装置包括:
天线模组,所述天线模组用于朝向预设方向范围内收发预设频段的射频信号;
天线罩,所述天线罩与所述天线模组间隔设置,且所述天线罩位于所述预设方向范围内,所述天线罩包括基板和承载于所述基板的谐振结构,所述天线罩对所述预设频段的射频信号的反射相位与入射相位的差值随着频率的增加而增加,所述预设频段的射频信号可通过所述天线罩。
其中,所述基板对预设频段的射频信号的反射相位与入射相位的差值随着频率的增加而减少;所述谐振结构对预设频段的射频信号的反射相位与入射相位的差值随着频率的增加而增加。
其中,所述谐振结构包括层叠设置的第一谐振层及第二谐振层,所述第一谐振层相较于所述第二谐振层背离所述天线模组,所述第一谐振层的谐振频率为第一频率,所述第二谐振层的频率为第二频率,所述第一频率大于所述第二频率。
其中,所述第一谐振层包括周期性排布的多个第一谐振单元,所述第二谐振层包括周期性排布的多个第二谐振单元,所述第一谐振单元及所述第二谐振单元均为导电贴片,第一谐振单元的边长为L1,所述第二谐振单元的边长为L2,L1<L2<P,其中,P为第一谐振单元和所述第二谐振单元的排布周期。
其中,所述谐振结构对预设频段的射频信号的反射相位与入射相位之间的差值φR满足:
Figure PCTCN2020115516-appb-000004
其中,h为中心线从所述天线模组的辐射面到所述谐振结构面对所述天线模组的表面之间的长度,所述中心线为垂直于所述天线模组的辐射面的直线,c为光速,f为射频信号的频率。
其中,所述天线模组的方向性系数的最大值D max满足
Figure PCTCN2020115516-appb-000005
其中,
Figure PCTCN2020115516-appb-000006
其中,S11表征所述天线罩对所述射频信号的反射系数幅值。
第三方面,本申请提供一种电子设备,所述电子设备包括控制器和如第一方面及第一方面任意一种实施方式、第二方面、及第二方面任意一种实施方式中任意一项所述的天线装置,所述天线装置与所述控制器电连接,天线装置中的天线模组用于在所述控制器的控制下透过天线装置中的天线罩收发射频信号。
其中,所述电子设备包括电池盖,所述基板至少包括所述电池盖,所述电池盖位于所述天线收发预设频段的射频信号的预设方向范围内,所述谐振结构位于所述电池盖面对所述天线模组的一侧。
其中,所述电池盖包括背板及与所述背板周缘连接的边框,所述背板位于所述预设方向范围内。
其中,所述电子设备还包括屏幕,所述基板至少包括所述屏幕,所述屏幕包括盖板及与所述盖板层叠设置的显示模组,所述谐振结构位于所述盖板与所述显示模组之间。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1为本申请第一实施方式提供的天线装置的示意图。所述天线装置10包括:天线模组100及天线罩200。所述天线模组100用于朝预设方向范围收发预设频段的射频信号。所述天线罩200与所述天线模组100间隔设置,且所述天线罩200位于所述预设方向范围内,所述天线罩200包括基板210和承载于所述基板210的谐振结构230。所述基板210用于通过预设频段中第一频段的射频信号,所述谐振结构230用于调节所述基板210对于所述预设频段的射频信号的通带宽度,以使得所述天线罩200可通过预设频段中第二频段的射频信号,其中,所述第二频段的带宽大于所述第一频段的带宽,且第二频段的射频信号包括所述第一频段的射频信号。
举例而言,所述基板210用于通过预设频段中f1频段的射频信号,所述天线罩200用于通过预设频段中f1频段、f2频段、f3频段、及f4频段的射频信号。f1频段射频信号的带宽为第一带宽F1。f1频段、f2频段、f3频段、及f4频段的射频信号的带宽为第二带宽F2,那么,第二带宽F2大于第一带宽F1,且第二带宽F2的射频信号包括第一带宽F1的射频信号。
所述射频信号可以为但不仅限于为毫米波频段的射频信号或者太赫兹频段的射频信号。目前,在第五代移动通信技术(5th generation wireless systems,5G)中,根据3GPP TS 38.101协议的规定,5G新空口(new radio,NR)主要使用两段频率:FR1频段和FR2频段。其中,FR1频段的频率范围是450MHz~6GHz,又叫sub-6GHz频段;FR2频段的频率范围是24.25GHz~52.6GHz,属于毫米波(mm Wave)频段。3GPP Release 15版本规范了目前5G毫米波频段包括:n257(26.5~29.5GHz),n258(24.25~27.5GHz),n261(27.5~28.35GHz)和n260(37~40GHz)。
在一实施方式中,所述谐振结构230承载于所述基板210的全部区域;在其他实施方式中,所述谐振结构230承载于所述基板210的部分区域。在图1中以所述谐振结构230承载于所述基板210的全部区域为例进行示意。在本实施方式中,所述谐振结构230承载于所述基板210为:所述谐振结构230直接设置于所述基板210面对所述天线模组100的表面上。可以理解地,所述谐振结构230可以为一体化,也可以为非一体化的。
相较于现有技术,本申请提供的天线装置10通过设置承载于基板210的谐振结构230,通过谐振结构230的作用提升天线罩200对预设频段的射频信号的带宽,降低了基板210的存在对预设频段的射频 信号的辐射性能的影响,当所述天线装置10应用于电子设备1时,可提升所述电子设备1的通信性能。
请参阅图2,图2为本申请第二实施方式提供的天线装置的示意图。所述天线装置10包括:天线模组100及天线罩200。所述天线模组100用于朝预设方向范围收发预设频段的射频信号。所述天线罩200与所述天线模组100间隔设置,且所述天线罩200位于所述预设方向范围内,所述天线罩200包括基板210和承载于所述基板210的谐振结构230。所述基板210用于通过预设频段中第一频段的射频信号,所述谐振结构230用于调节所述基板210对于所述预设频段的射频信号的通带宽度,以使得所述天线罩200可通过预设频段中第二频段的射频信号,其中,所述第二频段的带宽大于所述第一频段的带宽,且第二频段的射频信号包括所述第一频段的射频信号。进一步地,在本实施方式中,当所述谐振结构230承载于所述基板210时,所述谐振结构230设置于所述基板210背离所述天线模组100的表面。
参阅图3,图3为本申请第三实施方式提供的天线装置的示意图。所述天线装置10包括:天线模组100及天线罩200。所述天线模组100用于朝预设方向范围收发预设频段的射频信号。所述天线罩200与所述天线模组100间隔设置,且所述天线罩200位于所述预设方向范围内,所述天线罩200包括基板210和承载于所述基板210的谐振结构230。所述基板210用于通过预设频段中第一频段的射频信号,所述谐振结构230用于调节所述基板210对于所述预设频段的射频信号的通带宽度,以使得所述天线罩200可通过预设频段中第二频段的射频信号,其中,所述第二频段的带宽大于所述第一频段的带宽,且第二频段的射频信号包括所述第一频段的射频信号。进一步地,当所述谐振结构230承载于所述基板210时,所述谐振结构230内嵌在所述基板210内。
参阅图4,图4为本申请第四实施方式提供的天线装置的示意图。所述天线装置10包括:天线模组100及天线罩200。所述天线模组100用于朝预设方向范围收发预设频段的射频信号。所述天线罩200与所述天线模组100间隔设置,且所述天线罩200位于所述预设方向范围内,所述天线罩200包括基板210和承载于所述基板210的谐振结构230。所述基板210用于通过预设频段中第一频段的射频信号,所述谐振结构230用于调节所述基板210对于所述预设频段的射频信号的通带宽度,以使得所述天线罩200可通过预设频段中第二频段的射频信号,其中,所述第二频段的带宽大于所述第一频段的带宽,且第二频段的射频信号包括所述第一频段的射频信号。进一步地,当所述谐振结构230承载于所述基板210时,所述谐振结构230贴附于承载膜220上,并通过承载膜220贴附于所述基板210的表面。所述承载膜220可以为但不仅限于为塑料(Polyethylene terephthalate,PET)薄膜、柔性电路板、印刷电路板等。所述PET薄膜可以为但不仅限于为彩色膜、防爆膜等。在本实施方式示意图中以所述谐振结构230承载于所述基板210面对所述天线模组100的表面为例进行示意,在其他实施方式中,所述谐振结构230通过承载膜220贴合于所述基板210背离所述天线模组100的表面。
请参阅图5,图5为本申请第五实施方式提供的天线装置的示意图。在本实施方式中,部分谐振结构230设置于所述基板210背离所述天线模组100的表面,剩余的部分谐振结构230内嵌于所述基板210。可以理解地,在其他实施方式中,所述谐振结构230设置于所述基板210邻近所述天线模组100的表面,剩余的部分谐振结构230内嵌于所述基板210中。
以上是谐振结构230承载于所述基板210的部分实施方式,可以理解地,本申请对所述谐振结构230承载于所述基板210的具体形式不做限定,只要满足谐振结构230设置于所述基板210即可。
请参阅图6,图6为本申请第一实施方式提供的谐振结构的示意图。所述谐振结构230包括一层或多层谐振层230a。当所述谐振结构230把控多层谐振层230a时,所述多层谐振层230在预设方向上层叠且间隔设置。当所述谐振结构230包括多层谐振层230a时,相邻的谐振层230a之间设置有介质层210a,最外层的谐振层230a也可覆盖有介质层210a,或者,最外层的谐振层230a也可不覆盖介质层210a,所有的介质层210a构成所述基板210。在本实施方式的示意图中以所述谐振结构230包括三层谐振层230a为例进行示意。可选地,所述预设方向与所述射频信号的主瓣方向平行。所谓主瓣,是指射频信号中辐射强度最大的波束。当所述预设方向与所述射频信号的主瓣方向平行时,所述多层谐振层230a在预设方向上层叠设置,可最大限度地提升所述射频信号透过所述天线罩200的带宽。
结合前述任意实施方式提供的天线装置10,所述谐振结构230的材质为金属材质,或者,所述谐振 结构230的材质为非金属导电材质。当所述谐振结构230的材质为非金属导电材质时,所述谐振结构230可以为透明的非金属导电材质,比如氧化铟锡等。
结合前述任意实施方式提供的天线装置10,所述基板210的材质为塑料、玻璃、蓝宝石、陶瓷的至少一种或者多种组合。
请参阅图7,图7为本申请第二实施方式提供的谐振结构的示意图。本实施方式提供的谐振结构230可结合到前述任意实施方式提供的天线装置10中。所述谐振结构230包括多个谐振单元231,所述谐振单元231周期性排布。所述谐振单元230b周期性排布可使得所述谐振结构230在制备时更加容易制备出来。
请参阅图8,图8为本申请第三实施方式提供的谐振结构的示意图。本实施方式提供的谐振结构230可结合到前述任意实施方式提供的天线装置10中。所述谐振结构230包括多个谐振单元231,所述谐振单元231非周期性排布。
请参阅图9,图9为本申请第四实施方式提供的谐振结构的示意图。本实施方式提供的谐振结构230可结合到前述任意实施方式提供的天线装置10中。所述谐振结构230包括层叠设置的第一谐振层235及第二谐振层236。所述第一谐振层235相较于所述第二谐振层236背离所述天线模组100,所述第一谐振层235的谐振频率为第一频率,所述第二谐振层236的频率为第二频率,所述第一频率大于所述第二频率。
第一谐振层235的谐振频率为第一频率是指,当所述天线模组100发射的射频信号穿过所述第一谐振层235时,所述第一谐振层235谐振在第一频率。所述第二谐振层236的谐振频率为第二频率是指,当所述天线模组100发射的射频信号穿过所述第二谐振层236时,所述第二谐振层236的谐振在第二频率。当所述第一谐振层235相较于所述第二谐振层236背离所述天线模组100时,且所述第一谐振层235的谐振频率大于所述第二谐振层236的谐振频率时,经过模拟仿真可见,所述天线罩200可通过的射频信号的带宽相较于所述基板210可通过的射频信号的带宽增加。
通常而言,当所述谐振结构230中的谐振层(比如,第一谐振层235、第二谐振层236)均为导电贴片时,所述谐振层的谐振频率较高时,所述谐振层的尺寸越小。当所述第一谐振层235及所述第二谐振层236均为导电贴片时,由于所述第一频率大于所述第二频率,那么,所述第一谐振层235的尺寸小于所述第二谐振层236的尺寸。将所述第一谐振层235相较于所述第二谐振层236背离所述天线模组100设置,从而使得尺寸较小的所述第一谐振层235谐振不会对尺寸较大的第二谐振层236谐振的第二频率造成屏蔽,从而有利于提升所述天线装置10的通信效果。
请一并参阅图10、图11及图12,图10为本申请第一实施方式提供的第一谐振单元的俯视图;图11为本申请第一实施方式提供的第二谐振单元的仰视图;图12为图10中沿I-I线的剖视图。在本实施方式中,所述第一谐振层235包括周期性排布的多个第一谐振单元2351,所述第二谐振层236包括周期性排布的多个第二谐振单元2361,所述第一谐振单元2351及所述第二谐振单元2361均为导电贴片。第一谐振单元2351的边长为L1,所述第二谐振单元2361的边长为L2,L1<L2<P,其中,P为第一谐振单元2351和所述第二谐振单元2361的排布周期。所述第一谐振单元2351及所述第二谐振单元2361的此种结构可使得第一谐振层235的谐振频率大于所述第二谐振层236的谐振频率。
在本实施方式的示意图中,所述第一谐振层235中仅仅示意出了一个第一谐振单元2351,所述第二谐振层236中仅仅示意出来了一个第二谐振单元2361。
当所述第一谐振单元2351为导电贴片,且所述导电贴片中不包括镂空或者挖空结构时,所述第一谐振单元2351的谐振频率随着所述第一谐振单元2351的边长的增大而减小;相应地,当所述第二谐振单元2361为导电贴片,且所述导电贴片中不包括镂空或者挖空结构时,所述第二谐振单元2361的谐振频率随着所述第二谐振单元2361的边长的增大而减小。因此,当所述第一谐振单元2351的边长小于所述第二谐振单元2361的边长。在本实施方式的示意图中以所述第一谐振单元2351的形状与所述第二谐振单元2361的形状相同且所述第一谐振单元2351及第二谐振单元2361均为正方形为例进行示意,可以理解地,所述第一谐振单元2351的形状与所述第二谐振单元2361的形状也可以不同。可以理解地, 当所述第一谐振单元2351及所述第二谐振单元2361为圆饼形时,所述第一谐振单元2351的边长也可以理解为所述第一谐振单元2351的周长,即,所述第一谐振单元2351的周长小于所述第二谐振单元2361的周长,且所述第二谐振单元2361的直径小于所述第一谐振单元2351及所述第二谐振单元2361的排布周期。
请一并参阅图13、图14及图15,图13为本申请第二实施方式提供的第一谐振单元的俯视图;图14为本申请第二实施方式提供的第二谐振单元的仰视图;图15为图13中沿II-II线的剖视图。在本实施方式中,所述第一谐振层235包括周期性排布的多个第一谐振单元2351,所述第二谐振层236包括周期性排布的多个第二谐振单元2361,所述第一谐振单元2351为导电贴片,所述第二谐振单元2361为导电贴片且所述第二谐振单元2361上具有镂空结构2362,所述镂空结构2362贯穿所述第二谐振单元2361相对的两个表面。所述第一谐振单元2351的边长为L1,所述第二谐振结构230的边长为L2,P>L1≥L2,其中,P为第一谐振单元2351和第二谐振单元2361的排布周期,且镂空结构2362的面积越大,L1与L2的差值越大。所述第一谐振单元2351及所述第二谐振单元2361的此种结构可使得第一谐振层235的谐振频率大于所述第二谐振层236的谐振频率。
在本实施方式的示意图中,所述第一谐振层235中仅仅示意出了一个第一谐振单元2351,所述第二谐振层236中仅仅示意出来了一个第二谐振单元2361。在本实施方式中,以所述第一谐振单元2351的边长L1大于所述第二谐振单元2361的边长L2为例进行示意。
相较于不具有镂空结构的第二谐振单元2361而言,本实施方式通过在所述第二谐振单元2361上开设镂空结构2362,可减小所述第二谐振单元2361的尺寸,有利于所述第二谐振单元2361的小型化,进而有利于所述谐振结构230的小型化。
请一并参阅图16、图17及图18,图16为本申请第三实施方式提供的第一谐振单元的俯视图;图17为本申请第三实施方式提供的第二谐振单元的仰视图;图18为图16中沿III-III线的剖视图。在本实施方式中,所述第一谐振层235包括周期性排布的多个第一谐振单元2351,所述第二谐振层236包括周期性排布的多个第二谐振单元2361,所述第一谐振单元2351为导电贴片,所述第一谐振单元2351上具有第一镂空结构2353,所述第一镂空结构2353贯穿所述第一谐振单元2351相对的两个表面,所述第二谐振单元2361为导电贴片,所述第二谐振单元2361上具有第二镂空结构2363,所述第二镂空结构2363贯穿所述第二谐振单元2361相对的两个表面。所述第一谐振单元2351的边长为L1,所述第二谐振单元2361的边长为L2,P>L1≥L2,且第一镂空结构2353的面积小于第二镂空结构2363的面积。所述第一谐振单元2351及所述第二谐振单元2361的此种结构可使得第一谐振层235的谐振频率大于所述第二谐振层236的谐振频率。
相较于不具有第一镂空结构2353的第一谐振单元2351而言,本实施方式通过在所述第一谐振单元2351上开设有第一镂空结构2353,可减小所述第一谐振单元2351的尺寸,有利于所述第一谐振单元2351的小型化,进而有利于所述谐振结构230的小型化。
相较于不具有第二镂空结构的第二谐振单元2361而言,本实施方式通过在所述第二谐振单元2361上开设第二镂空结构2363,可减小所述第二谐振单元2361的尺寸,有利于所述第二谐振单元2361的小型化,进而有利于所述谐振结构230的小型化。上述实施方式示意的示意图中以所述第一谐振层235及所述第二谐振层236绝缘设置为例进行示意。
当所述第一谐振层235及所述第二谐振层236绝缘设置时,所述第一谐振层235及所述第二谐振层236之间不存在电连接第一谐振层235及第二谐振层236的连接件。此时,可使得所述谐振结构230易于加工。
请参阅图19,图19为本申请第六实施方式提供的天线装置的示意图。本实施方式的天线装置10结合到第一实施方式提供的第一谐振单元2351及第二谐振单元2361中进行示意。所述第一谐振层235与所述第二谐振层236通过连接件2352电连接。本实施方式中第一谐振层235与所述第二谐振层236通过连接件2352电连接,从而使得所述天线装置10的表面形成高阻抗,所述射频信号不能沿着所述天线罩200的表面传播,进而可以提升所述射频信号的增益、带宽、降低背瓣,进而提升所述天线装置10 利用所述射频信号进行通信时的通信质量。进一步地,所述第一谐振层235的中心与所述第二谐振层236的中心电连接,可进一步高所述射频信号的增益、带宽、降低背瓣,以及进一步提升所述天线装置10利用所述射频信号进行通信时的通信质量。
请参阅图20,图20为本申请第五实施方式提供谐振结构的示意图。谐振结构230包括多条间隔排布的第一导电线路232,以及多条间隔排布的第二导电线路233,所述多条第一导电线路232与所述多条第二导电线路233交叉设置,且所述多条第一导电线路232与所述多条第二导电线路233在交叉处电连接。相邻的两条第一导电线路232及相邻的两条第二导电线路233交叉形成一个谐振单元231。可选地,所述多条第一导电线路232沿着第一方向延伸,且沿着第二方向间隔排布;所述多条第二导电线路233沿着第二方向延伸,且沿着第一方向间隔排布,所述第一方向垂直于第二方向。换句话说,所述多条第一导电线路232与所述多条第二导电线路233垂直交叉,且在交叉处电连接。可选地,任意相邻的两条第一导电线路232之间的距离可以相等,也可以不相等。任意相邻的两条第二导电线路233之间的距离可以相等也可以不相等。在本实施方式的示意图中,以相邻的两条第一导电线路232之间的距离相等且相邻的两条第二导电线路233之间的距离相等为例进行示意。
本实施方式中的谐振单元231包括相邻的两个第一导电线路232与相邻的两个第二导电线路233交叉的部分,以及交叉的部分之间形成镂空。相较于形状为导电贴片而不包括镂空的谐振单元231而言,对于预设频段的射频信号,本申请的谐振单元231的尺寸较小,从而有利于所述天线装置10的集成化及小型化。
请参阅图21,图21为本申请第六实施方式提供的谐振结构的示意图。所述谐振结构230包括多个阵列设置的导电网格234,每个所述导电网格234由至少一条导电线路237围成,相邻的两个所述导电网格234至少部分复用所述导电线路237。阵列分布的导电网格234构成所述谐振单元231。
所述导电网格234的形状可以为但不仅限于为圆形、矩形、三角形、多边形、椭圆形中的任意一种,其中,当所述导电网格234的形状为多边形时,所述导电网格234的边的个数为大于3的正整数。在本实施方式的示意图中以所述导电网格234的形状为三角形为例进行示意。
当所述谐振结构230包括阵列设置的导电网格234,相较于形状为导电贴片而不包括镂空结构的谐振单元231而言,对于预设频段的射频信号,本申请的谐振单元231的尺寸较小,从而有利于所述天线装置10的集成化及小型化。进一步地,相邻的两个导电网格234至少部分复用导电线路237,对于预设频段的射频信号而言,从而进一步使得谐振单元231的尺寸进一步减小。
请参阅图22,图22为本申请第七实施方式提供的谐振结构的示意图。在本实施方式的示意图中以所述导电网格234的形状为正六边形为例进行示意。
请参阅图23-图30,图23-图30为谐振结构中的谐振单元的结构示意图。其中,图23示意的谐振单元231为圆形贴片,所述谐振单元231不包括镂空结构,图24示意的谐振单元231为正六边形贴片,图25示意的谐振单元231为圆形贴片且具有圆形的镂空结构;图26示意的谐振单元231为矩形贴片且具有矩形镂空结构;图27示意的谐振单元231为十字形;图28示意的谐振单元231和图27示意的谐振单元231的形状类似,为耶路撒冷十字形;图29示意的谐振单元231为正六边形且具有正六边形的镂空结构;图30示意的谐振单元231包括多个环绕的分支,也可视为包括镂空结构。在这些示意图中,包括镂空结构的谐振单元231可以为前述包括第一镂空结构2353的第一谐振单元2351,或者为包括第二镂空结构2363的第二谐振单元2361。
进一步地,所述谐振结构230对预设频段的射频信号的反射相位与入射相位之间的差值φR满足:
Figure PCTCN2020115516-appb-000007
其中,h为中心线从所述天线模组100的辐射面到所述谐振结构230面对所述天线模组100的表面之间的长度,所述中心线为垂直于所述天线模组100的辐射面的直线,c为光速,f为射频信号的频率,其中,N为正整数。
当所述谐振结构230对预设频段的射频信号的反射相位与入射相位之间的差值满足上述关系时,可 以看出反射相位与入射相位之间的差值φR随着所述射频信号频率的增加而增加,此时,可使得所述天线罩200通过的射频信号的带宽增大,即拓展了所述射频信号的带宽。
对于射频信号而言,由于常规的地系统为PEC,那么,当所述射频信号入射至PEC上会产生-π的相位差。因此,对于射频信号而言,所述天线罩200达到谐振的条件为:
Figure PCTCN2020115516-appb-000008
其中,h为所述天线模组100的辐射面的中心线从所述辐射面到所述谐振结构230面对所述天线模组100的表面的线段长度,所述中心线为垂直所述天线模组100的辐射面的直线,φR为所述谐振结构230对所述射频信号的反射相位与入射相位之间的差值,λ为所述第一射频信号在空气中的波长,N为正整数。当φR=0时,
Figure PCTCN2020115516-appb-000009
此时,对于射频信号而言,所述天线模组100的辐射面到所述谐振结构230面对所述天线模组100的表面的距离最近。从而可使得所述天线装置10的厚度较小。当所述天线装置10应用于所述电子设备1时,可使得所述电子设备1的厚度较小。本实施方式中,h的选取可增强射频信号的波束的方向性及增益,即,所述谐振结构230可补偿所述射频信号在传输中的损耗,从而可使得所述第一射频信号具有较长的传输距离,从而提升了所述天线装置10的整体性能。因此,本申请的天线装置10有利于提升所述天线装置10所应用的电子设备1的通信性能。进一步地,相比传统使用复杂电路来增强射频信号的方向性和增益而言,本案天线装置10中天线罩200的结构较为简单,占用面积较小,成本低廉,有利益增加产品的竞争力。
此时,所述天线罩200除了达到谐振之外,经由所述天线罩200透射出去的射频信号的方向性系数的最大值为:
Figure PCTCN2020115516-appb-000010
其中,D max为第一射频信号的方向性系数,
Figure PCTCN2020115516-appb-000011
其中,S 11表征所述天线罩200对所述射频信号的反射系数幅值。
上述各个实施方式介绍的天线装置10,所述预设频段至少包括3GPP毫米波全频段。所述预设频段包括3GPP毫米波全频段可提升所述天线装置10的通信效果。
请参阅图31,图31为本申请第七实施方式提供的天线装置的示意图。所述天线装置10包括:天线模组100、及天线罩200。所述天线模组100用于朝向预设方向范围内收发预设频段的射频信号。所述天线罩200与所述天线模组100间隔设置,且所述天线罩200位于所述预设方向范围内,所述天线罩200包括基板210和承载于所述基板210的谐振结构230,所述天线罩200对所述预设频段的射频信号的反射相位与入射相位的差值随着频率的增加而增加,所述预设频段的射频信号可通过所述天线罩200。
所述天线罩200及所述谐振结构230的结构请参阅前面描述及相关附图,在此不再赘述。当所述天线罩200对所述预设频段的射频信号的反射相位与入射相位的差值随着频率的增加而增加时,所述天线罩200对所述预设频段的反射相位与入射相位的差值φR随着频率的变化而呈正的相位梯度,可使得所述天线罩200通过的射频信号的带宽增大,即拓展了所述天线罩200可通过的所述射频信号的带宽。
可选地,所述基板210对预设频段的射频信号的反射相位与入射相位的差值随着频率的增加而减少。即,所述基板210对预设频段的射频信号的反射相位与入射相位的差值随着频率的变化呈负的相位梯度。当所述基板210对预设频段的射频信号的反射相位与入射相位的差值随着频率的增加而较小时,所述基 板210通过的射频信号的带宽较小。本申请中通过增加了所述谐振结构230,所述谐振结构230对预设频段的射频信号的反射相位与入射相位的差值随着频率的增加而增加,从而使得包含所述谐振结构230的天线罩200对所述预设频段的反射相位与入射相位的差值φR随着频率的变化而呈正的相位梯度。
可选地,在其他实施方式中,所述基板210对预设频段的射频信号的反射相位与入射相位的差值随着频率的增加而增加,即,所述基板210对所述预设频段的反射相位与入射相位的差值随着频率的变化而呈正的相位梯度。此时,可进一步扩展所述天线罩200可通过的射频信号的带宽。
可选地,所述谐振结构230包括层叠设置的第一谐振层235及第二谐振层236,所述第一谐振层235相较于所述第二谐振层236背离所述天线模组100,所述第一谐振层235的谐振频率为第一频率,所述第二谐振层236的频率为第二频率,所述第一频率大于所述第二频率。请参阅图9,图9示意出了第一谐振层235及所述第二谐振层236设置于基板210相对的两个表面。可以理解地,所述谐振结构230的结构并不仅限于图9中的结构,只要满足所述第一谐振层235及所述第二谐振层236层叠设置即可。
可选地,参阅再次图10至图12,所述第一谐振层235包括周期性排布的多个第一谐振单元2351,所述第二谐振层236包括周期性排布的多个第二谐振单元2361,所述第一谐振单元2351及所述第二谐振单元2361均为导电贴片,第一谐振单元2351的边长为L1,所述第二谐振单元2361的边长为L2,L1<L2<P,其中,P为第一谐振单元2351和所述第二谐振单元2361的排布周期。
可选地,所述谐振结构230对预设频段的射频信号的反射相位与入射相位之间的差值φR满足:
Figure PCTCN2020115516-appb-000012
其中,h为中心线从所述天线模组100的辐射面到所述谐振结构230面对所述天线模组100的表面之间的长度,所述中心线为垂直于所述天线模组100的辐射面的直线,c为光速,f为射频信号的频率,N为正整数。所述谐振结构230对预设频段的射频信号的反射相位与入射相位之间的差值之间的上述关系所带来的有益效果请参阅前面描述,在此不再赘述。
可选地,所述天线模组100的方向性系数的最大值D max满足
Figure PCTCN2020115516-appb-000013
其中,
Figure PCTCN2020115516-appb-000014
其中,S11表征所述天线罩200对所述射频信号的反射系数幅值。所述天线模组100的方向性系数的最大值D max满足
Figure PCTCN2020115516-appb-000015
有益效果等相关描述请参阅前面描述,在此不再赘述。
下面结合仿真图对本申请的天线模组100的性能进行分析。请参阅图32,图32为不同介电常数的基板对应的反射系数S11曲线。在本实施方式中,以所述基板210的厚度为0.55mm为例进行仿真。在本示意图中,横轴表征频率,单位为GHz,纵轴表征反射系数,单位为dB。在本示意图中,曲线①为基板210的介电常数为3.5时反射系数S11随着频率的变化曲线,曲线②为基板210的介电常数为6.8时反射系数S11随着频率的变化曲线,曲线③为基板210的介电常数为10.9时反射系数S11随着频率的变化曲线,曲线④为基板210的介电常数为25时反射系数S11随着频率的变化曲线,曲线⑤为基板210的介电常数为36时反射系数S11随着频率的变化曲线。由本示意图可见,不同介电常数的基板210的反射系数S11随着介电常数的增大反射系数S11增大。对于相同介电常数的基板210,反射系数S11随着频率的变化不明显。
请参阅图33,图33为不同介电常数的基板对应的反射相位的曲线。在本实施方式中,以所述基板210的厚度为0.55mm为例进行仿真。在本示意图中,横轴表征频率,单位为GHz,纵轴表征相位,单位为deg。在本示意图中,曲线①为基板210的介电常数为3.5时反射相位随着频率的变化曲线,曲线②为基板210的介电常数为6.8时反射相位随着频率的变化曲线,曲线③为基板210的介电常数为10.9 时反射相位随着频率的变化曲线。由本示意图可见,对于相同介电常数的基板210,所述基板210的反射相位随着频率的增大而减小。即,所述基板210对预设频段的射频信号的反射相位与入射相位的差值随着频率的变化呈负的相位梯度。
请参阅图34,图34为本申请提供的天线罩的反射系数S11的幅度的曲线示意图。本实施方式中以所述天线罩200中包括层叠设置的第一谐振层235及第二谐振层236,所述第一谐振层235及第二谐振层236均包括正方形导电贴片,第一谐振层235相较于所述第二谐振层236背离所述天线模组100的结构进行仿真。在本示意图中,横轴表征频率,单位为GHz,纵轴表征反射系数,单位为dB。在本示意图中,曲线①为第一谐振层235的边长为1.5mm,第二谐振层236的边长为1.8mm,所述第一谐振层235及所述第二谐振层236的周期为2.2mm的仿真曲线;曲线②为第一谐振层235的边长为1.5,第二谐振层236的边长为1.8,所述第一谐振层235及所述第二谐振层236的周期为2mm的仿真曲线;曲线③为第一谐振层235的边长为1.6mm,第二谐振层236的边长为1.9mm,第一谐振层235及所述第二谐振层236的周期为2.2mm的仿真曲线。由这些仿真曲线可见,所述谐振结构230对对各个频段的射频信号的反射系数较大。由于所述谐振结构230对各个频段的射频信号的反射系数越大,则,所述射频信号的方向性系数越大,所述射频信号的方向性更好。由此可见,射频信号通过本申请的天线罩200之后具有较好的方向性。当所述天线装置10集成在电子设备1中时,有利于提升所述电子设备1的通信效果。
请参阅图35,图35为本申请提供的天线罩的反射相位S11的相位的曲线示意图。本实施方式中以所述天线罩200中包括层叠设置的第一谐振层235及第二谐振层236,所述第一谐振层235及第二谐振层236均包括正方形导电贴片,第一谐振层235相较于所述第二谐振层236背离所述天线模组100的结构进行仿真。在本示意图中,横轴表征频率,单位为GHz,纵轴表征增益,单位为dB。在本示意图中,曲线①为第一谐振层235的边长为1.5mm,第二谐振层236的边长为1.8mm,所述第一谐振层235及所述第二谐振层236的周期为2.2mm的仿真曲线;曲线②为第一谐振层235的边长为1.5,第二谐振层236的边长为1.8,所述第一谐振层235及所述第二谐振层236的周期为2mm的仿真曲线;曲线③为第一谐振层235的边长为1.6mm,第二谐振层236的边长为1.9mm,第一谐振层235及所述第二谐振层236的周期为2.2mm的仿真曲线。由这些仿真曲线可见,在26-30GHz范围内,各个曲线向上,所述天线罩200对26-30GHz频段范围的反射相位与入射相位的差值φR随着频率的变化而呈正的相位梯度,可使得所述天线罩200通过的射频信号的带宽增大,即由于所述谐振结构230的作用拓展了所述天线罩200可通过的所述射频信号的带宽。
本申请还提供了一种电子设备1,下面结合前面描述的天线装置10对本申请提供的电子设备1进行介绍。请参阅图36,图36为本申请一实施方式提供的电子设备电路框图。所述电子设备1包括控制器30和前面任意一实施方式所述的天线装置10,所述天线装置10与所述控制器30电连接,天线装置10中的天线模组100用于在所述控制器30的控制下透过天线装置10中的天线罩200收发射频信号。
请参阅图37,图37为本申请一实施方式提供的电子设备的结构示意图。所述电子设备1包括电池盖50,所述基板210至少包括所述电池盖50,所述电池盖50位于所述天线收发预设频段的射频信号的预设方向范围内。在一实施方式中,所述谐振结构230直接制备在所述电池盖50的外表面。换句话说,所述谐振结构230直接制备在所述电池盖50背离所述天线模组100的表面。由于所述电池盖50的外表面较为平整,将所述谐振结构230直接制备在所述电池盖50的外表面,可降低所述谐振结构230制备的难度。在另一实施方式中,所述谐振结构230直接制备在所述电池盖50的内表面。换句话说,所述谐振结构230直接制备在所述电池盖50面对所述天线模组100的表面。所述谐振结构230直接制备在所述电池盖50的内表面,电池盖50可构成所述谐振结构230的保护层,减小或避免外界物体对所述谐振结构230的磨损。在另一实施方式中,所述谐振结构230贴附于承载膜220上,并通过承载膜220贴附于所述电池盖50的内表面或外表面。所述承载膜220可参阅前面介绍天线装置10时的描述,在此不再赘述。当所述谐振结构230贴附于承载膜220上再通过承载膜220贴附于电池盖50的内表面或外表面可降低所述谐振结构230设置于所述电池盖50上的难度。在本实施方式的示意图中以所述谐振结构 230位于所述电池盖50面对所述天线模组100的一侧且所述谐振结构230直接设置于所述电池盖50面对所述天线模组100的表面为例进行示意。
可以理解地,所述谐振结构230对应所述电池盖50的局部设置,或者对应整个电池盖50设置。所述谐振结构230可以为一体化,也可以为非一体化的。
可选地,所述电池盖50包括背板510及与所述背板510周缘连接的边框520。所述背板510位于所述预设方向范围内。所述基板210至少包括所述背板510,所述谐振结构230承载于所述背板510。所述背板510的面积通常大于所述边框520的面积,将所述谐振结构230承载于所述背板510,可方便所述谐振结构230的放置。
在本实施方式的示意图中,以所述谐振结构230对应所述电池盖50的局部设置,且所述谐振结构230设置于所述电池盖50的内表面为例进行示意。
进一步地,所述电子设备1还包括屏幕70。所述屏幕70设置于所述电池盖50的开口处。所述屏幕70用于显示文字、图像、视频等。
请参阅图38,图38为本申请另一实施方式提供的电子设备的结构示意图。所述电子设备1包括屏幕70,所述基板210至少包括所述屏幕70,所述屏幕70包括盖板710及与所述盖板710层叠设置的显示模组730,所述谐振结构230位于所述盖板710与所述显示模组730之间。所述显示模组730可以为但不仅限于为液晶显示模组730,或者是有机发光二极管显示模组730,相应地,所述屏幕70可以为但不仅限于为液晶显示屏或有机发光二极管显示屏。
可以理解地,在一实施方式中,所述谐振结构230可直接设置于所述盖板710的面对所述显示模组730的表面,也可通过承载膜贴附于所述盖板710的内表面。在另一实施方式中,所述谐振结构230可直接设置在所述显示模组730上,也可通过承载膜贴附于所述显示模组730上。所述谐振结构230可对应所述盖板710的局部设置,或者可对应所述整个盖板710设置。所述谐振结构230可以为一体化,也可以为非一体化的。为了不影响所述屏幕70的透光率,所述谐振结构230为透明的。
在本实施方式中,以所述谐振结构230直接设置在所述盖板710面对所述显示模组730的表面,且以所述谐振结构230对应所述改变710的局部设置为例进行示意。
进一步地,所述电子设备1还包括电池盖50,所述屏幕70设置于所述电池盖50的开口处。所述电池盖50通常包括背板510及与所述背板510周缘弯折相连的边框520。
在一实施方式中,所述谐振结构230位于所述盖板710面对所述显示模组730的表面。所述谐振结构230位于所述盖板710面对所述显示模组730的表面相较于所述谐振结构230设置于所述显示模组730之中而言,可降低所述谐振结构230形成于所述盖板710的难度。
可以理解地,所述谐振结构230可对应所述盖板710的局部设置,或者可对应整个盖板710设置。所述谐振结构230可以为一体化,也可以为非一体化的。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (22)

  1. 一种天线装置,其特征在于,所述天线装置包括:
    天线模组,所述天线模组用于朝预设方向范围收发预设频段的射频信号;
    天线罩,所述天线罩与所述天线模组间隔设置,且所述天线罩位于所述预设方向范围内,所述天线罩包括基板和承载于所述基板的谐振结构;
    所述基板用于通过预设频段中第一频段的射频信号,所述谐振结构用于调节所述基板对于所述预设频段的射频信号的通带宽度,以使所述天线罩可通过预设频段中第二频段的射频信号,其中,所述第二频段的带宽大于所述第一频段的带宽,且第二频段的射频信号包括所述第一频段的射频信号。
  2. 如权利要求1所述的天线装置,其特征在于,所述谐振结构包括层叠设置的第一谐振层及第二谐振层,所述第一谐振层相较于所述第二谐振层背离所述天线模组,所述第一谐振层的谐振频率为第一频率,所述第二谐振层的频率为第二频率,所述第一频率大于所述第二频率。
  3. 如权利要求2所述的天线装置,其特征在于,所述第一谐振层包括周期性排布的多个第一谐振单元,所述第二谐振层包括周期性排布的多个第二谐振单元,所述第一谐振单元及所述第二谐振单元均为导电贴片,第一谐振单元的边长为L1,所述第二谐振单元的边长为L2,L1<L2<P,其中,P为第一谐振单元和所述第二谐振单元的排布周期。
  4. 如权利要求2所述的天线装置,其特征在于,所述第一谐振层包括周期性排布的多个第一谐振单元,所述第二谐振层包括周期性排布的多个第二谐振单元,所述第一谐振单元为导电贴片,所述第二谐振单元为导电贴片且所述第二谐振单元上具有镂空结构,所述镂空结构贯穿所述第二谐振单元相对的两个表面,所述第一谐振单元的边长为L1,所述第二谐振大纳言的边长为L2,P>L1≥L2,其中,P为第一谐振单元和第二谐振单元的排布周期,且镂空结构的面积越大,L1与L2的差值越大。
  5. 如权利要求2所述的天线装置,其特征在于,所述第一谐振层包括周期性排布的多个第一谐振单元,所述第二谐振层包括周期性排布的多个第二谐振单元,所述第一谐振单元为导电贴片,所述第一谐振单元上具有第一镂空结构,所述第一镂空结构贯穿所述第一谐振单元相对的两个表面,所述第二谐振单元为导电贴片,所述第二谐振单元上具有第二镂空结构,所述第二镂空结构贯穿所述第二谐振单元相对的两个表面,第一谐振单元和第二谐振单元的排布周期为P,所述第一谐振单元的边长为L1,所述第二谐振单元的边长为L2,P>L1≥L2,且第一镂空结构的面积小于第二镂空结构的面积。
  6. 如权利要求2-5任意一项所述的天线装置,其特征在于,所述第一谐振层及所述第二谐振层绝缘设置。
  7. 如权利要求2-5任意一项所述的天线装置,其特征在于,所述第一谐振层与所述第二谐振层通过连接件电连接。
  8. 如权利要求1所述的天线装置,其特征在于,谐振结构包括多条间隔排布的第一导电线路,以及多条间隔排布的第二导电线路,所述多条第一导电线路与所述多条第二导电线路交叉设置,且所述多条第一导电线路与所述多条第二导电线路在交叉处电连接。
  9. 如权利要求1所述的天线装置,其特征在于,所述谐振结构包括多个阵列设置的导电网格,每个所述导电网格由至少一条导电线路围成,相邻的两个所述导电网格至少部分复用所述导电线路。
  10. 如权利要求1所述的天线装置,其特征在于,所述谐振结构对预设频段的射频信号的反射相位与入射相位之间的差值φR满足:
    Figure PCTCN2020115516-appb-100001
    其中,h为中心线从所述天线模组的辐射面到所述谐振结构面对所述天线模组的表面之间的长度,所述中心线为垂直于所述天线模组的辐射面的直线,c为光速,f为射频信号的频率。
  11. 如权利要求10所述的天线装置,其特征在于,所述天线模组的方向性系数的最大值D max满足
    Figure PCTCN2020115516-appb-100002
    其中,
    Figure PCTCN2020115516-appb-100003
    其中,S11表征所述天线罩对所述射频信号的反射系数幅值。
  12. 如权利要求1所述的天线装置,其特征在于,所述预设频段至少包括3GPP毫米波全频段。
  13. 一种天线装置,其特征在于,所述天线装置包括:
    天线模组,所述天线模组用于朝向预设方向范围内收发预设频段的射频信号;
    天线罩,所述天线罩与所述天线模组间隔设置,且所述天线罩位于所述预设方向范围内,所述天线罩包括基板和承载于所述基板的谐振结构,所述天线罩对所述预设频段的射频信号的反射相位与入射相位的差值随着频率的增加而增加,所述预设频段的射频信号可通过所述天线罩。
  14. 如权利要求13所述的天线装置,其特征在于,所述基板对预设频段的射频信号的反射相位与入射相位的差值随着频率的增加而减少;所述谐振结构对预设频段的射频信号的反射相位与入射相位的差值随着频率的增加而增加。
  15. 如权利要求13所述的天线装置,其特征在于,所述谐振结构包括层叠设置的第一谐振层及第二谐振层,所述第一谐振层相较于所述第二谐振层背离所述天线模组,所述第一谐振层的谐振频率为第一频率,所述第二谐振层的频率为第二频率,所述第一频率大于所述第二频率。
  16. 如权利要求15所述的天线装置,其特征在于,所述第一谐振层包括周期性排布的多个第一谐振单元,所述第二谐振层包括周期性排布的多个第二谐振单元,所述第一谐振单元及所述第二谐振单元均为导电贴片,第一谐振单元的边长为L1,所述第二谐振单元的边长为L2,L1<L2<P,其中,P为第一谐振单元和所述第二谐振单元的排布周期。
  17. 如权利要求13所述的天线装置,其特征在于,所述谐振结构对预设频段的射频信号的反射相位与入射相位之间的差值φR满足:
    Figure PCTCN2020115516-appb-100004
    其中,h为中心线从所述天线模组的辐射面到所述谐振结构面对所述天线模组的表面之间的长度,所述中心线为垂直于所述天线模组的辐射面的直线,c为光速,f为射频信号的频率。
  18. 如权利要求10所述的天线装置,其特征在于,所述天线模组的方向性系数的最大值D max满足
    Figure PCTCN2020115516-appb-100005
    其中,
    Figure PCTCN2020115516-appb-100006
    其中,S11表征所述天线罩对所述射频信号的反射系数幅值。
  19. 一种电子设备,其特征在于,所述电子设备包括控制器和如权利要求1-18任意一项所述的天线装置,所述天线装置与所述控制器电连接,天线装置中的天线模组用于在所述控制器的控制下透过天线装置中的天线罩收发射频信号。
  20. 如权利要求19所述的电子设备,其特征在于,所述电子设备包括电池盖,所述基板至少包括所述电池盖,所述电池盖位于所述天线收发预设频段的射频信号的预设方向范围内,所述谐振结构位于所述电池盖面对所述天线模组的一侧。
  21. 如权利要求20所述的电子设备,其特征在于,所述电池盖包括背板及与所述背板周缘连接的边框,所述背板位于所述预设方向范围内。
  22. 如权利要求19所述的电子设备,其特征在于,所述电子设备还包括屏幕,所述基板至少包括所述屏幕,所述屏幕包括盖板及与所述盖板层叠设置的显示模组,所述谐振结构位于所述盖板与所述显示模组之间。
PCT/CN2020/115516 2019-09-30 2020-09-16 天线装置及电子设备 WO2021063179A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20872662.0A EP3993160A4 (en) 2019-09-30 2020-09-16 AERIAL DEVICE AND ELECTRONIC DEVICE
US17/577,980 US11901625B2 (en) 2019-09-30 2022-01-18 Antenna apparatus and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910948454.4 2019-09-30
CN201910948454.4A CN110635242B (zh) 2019-09-30 2019-09-30 天线装置及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/577,980 Continuation US11901625B2 (en) 2019-09-30 2022-01-18 Antenna apparatus and electronic device

Publications (1)

Publication Number Publication Date
WO2021063179A1 true WO2021063179A1 (zh) 2021-04-08

Family

ID=68975625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115516 WO2021063179A1 (zh) 2019-09-30 2020-09-16 天线装置及电子设备

Country Status (4)

Country Link
US (1) US11901625B2 (zh)
EP (1) EP3993160A4 (zh)
CN (1) CN110635242B (zh)
WO (1) WO2021063179A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234362B (zh) * 2019-06-30 2022-03-01 Oppo广东移动通信有限公司 壳体组件、天线组件及电子设备
CN112234340B (zh) * 2019-06-30 2022-01-11 Oppo广东移动通信有限公司 壳体组件、天线组件及电子设备
CN110635242B (zh) * 2019-09-30 2021-09-14 Oppo广东移动通信有限公司 天线装置及电子设备
CN111276792B (zh) * 2020-01-22 2022-05-27 Oppo广东移动通信有限公司 电子设备
CN113259507A (zh) * 2020-02-12 2021-08-13 北京小米移动软件有限公司 一种终端设备
CN111180865B (zh) * 2020-02-17 2021-08-31 Oppo广东移动通信有限公司 电子设备
CN111509397B (zh) * 2020-04-23 2022-01-11 Oppo广东移动通信有限公司 壳体组件、天线组件及电子设备
CN111725632A (zh) * 2020-06-23 2020-09-29 Oppo广东移动通信有限公司 相位调整组件、电子设备
CN112164871B (zh) * 2020-09-28 2024-04-16 京东方科技集团股份有限公司 天线及其制备方法、电子装置
CN113295940B (zh) * 2021-04-25 2022-08-12 中国人民解放军陆军工程大学 一种等效天线方向性系数最大值的近似估计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664313A (zh) * 2012-04-13 2012-09-12 深圳光启创新技术有限公司 一种带有柔性膜的壳结构及其制备方法
CN101425621B (zh) * 2007-10-31 2012-12-19 财团法人工业技术研究院 天线结构及其天线罩
CN106602252A (zh) * 2017-01-20 2017-04-26 浙江大学 网格方环加载过孔结构的2.5维超宽带移动通信天线罩
CN108777359A (zh) * 2018-05-24 2018-11-09 西安电子科技大学 基于频率触发机制的超材料天线罩
CN110416739A (zh) * 2019-08-05 2019-11-05 Oppo广东移动通信有限公司 壳体组件及移动终端
CN110635242A (zh) * 2019-09-30 2019-12-31 Oppo广东移动通信有限公司 天线装置及电子设备
CN111224222A (zh) * 2020-02-28 2020-06-02 Oppo广东移动通信有限公司 电子设备

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2909557Y (zh) * 2005-03-16 2007-06-06 佛山市顺德区汉达精密电子科技有限公司 双频天线
CN2872626Y (zh) * 2006-01-05 2007-02-21 汉达精密电子(昆山)有限公司 双振子单频平面倒f型天线
CN2865038Y (zh) * 2006-01-05 2007-01-31 汉达精密电子(昆山)有限公司 双振子单频天线
US7737899B1 (en) * 2006-07-13 2010-06-15 Wemtec, Inc. Electrically-thin bandpass radome with isolated inductive grids
KR101119354B1 (ko) * 2010-04-13 2012-03-07 고려대학교 산학협력단 대역폭 향상을 위한 다층 기판에 내장된 유전체 공진기 안테나
KR101255947B1 (ko) * 2011-10-05 2013-04-23 삼성전기주식회사 대역폭 조절 가능한 유전체 공진기 안테나
CN102694255B (zh) * 2012-04-27 2014-08-13 深圳光启创新技术有限公司 超材料微波天线罩和天线系统
CN102969573B (zh) * 2012-11-20 2013-10-30 深圳光启创新技术有限公司 一种三维结构超材料的制备方法
CN104201468B (zh) * 2014-09-19 2017-02-01 中国人民解放军国防科学技术大学 X/k波段复合超材料及天线罩和天线阵一体化结构
JP6848863B2 (ja) * 2015-07-08 2021-03-24 日本電気株式会社 無線通信装置
CN105609903B (zh) * 2015-12-23 2018-11-16 西安电子科技大学 选择性高和角度稳定的频率选择表面
CN105576383B (zh) * 2016-01-04 2018-04-06 中国人民解放军国防科学技术大学 一种超薄双侧吸波频选超材料及其天线罩和天线系统
CN205543161U (zh) * 2016-01-27 2016-08-31 深圳光启高等理工研究院 一种带通滤波结构、天线罩和电磁产品保护壳
CN105914462B (zh) * 2016-06-06 2019-02-22 浙江大学 基于天线-滤波器-天线阵列的超宽带移动通信天线罩
US10165398B2 (en) * 2016-08-23 2018-12-25 General Electric Company Geofencing for wireless communications
CN107093800A (zh) * 2017-04-14 2017-08-25 东南大学 一种传输型人工电磁表面及其设计方法
US11011834B2 (en) * 2017-06-27 2021-05-18 Florida State University Research Foundation, Inc. Metamaterials, radomes including metamaterials, and methods
EP3537537B1 (en) * 2018-03-07 2023-11-22 Nokia Solutions and Networks Oy A reflector antenna arrangement
US20190386364A1 (en) * 2018-06-14 2019-12-19 Edward Liang Angle of incidence-stable frequency selective surface device
WO2020010039A1 (en) * 2018-07-05 2020-01-09 Commscope Technologies Llc Multi-band base station antennas having radome effect cancellation features
CN109066080B (zh) 2018-08-07 2022-03-04 维沃移动通信有限公司 一种天线罩、天线结构及无线电子设备
CN109167159A (zh) * 2018-08-09 2019-01-08 上海交通大学 基于石墨烯贴片阵列结构的Fabry-Perot谐振天线
CN109411892B (zh) * 2018-09-07 2021-08-20 西安电子科技大学 双频带吸波频率选择表面系统及设计方法、飞行器
CN109301460A (zh) * 2018-10-31 2019-02-01 南通至晟微电子技术有限公司 5g毫米波双频段双阵列天线
CN109728405B (zh) * 2018-12-28 2022-03-01 维沃移动通信有限公司 天线结构及高频无线通信终端
CN209298341U (zh) * 2019-03-18 2019-08-23 Oppo广东移动通信有限公司 天线装置和电子设备
CN110048224B (zh) * 2019-03-28 2021-05-11 Oppo广东移动通信有限公司 天线模组和电子设备
CN110021812B (zh) * 2019-04-08 2021-04-13 Oppo广东移动通信有限公司 天线组件及电子设备
US11005176B2 (en) * 2019-05-26 2021-05-11 Wisense Technologies Ltd Radome shell having a non-uniform structure
CN112235449B (zh) * 2019-06-30 2022-01-04 Oppo广东移动通信有限公司 壳体组件、天线组件及电子设备
US11735825B1 (en) * 2022-06-09 2023-08-22 City University Of Hong Kong Antenna

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425621B (zh) * 2007-10-31 2012-12-19 财团法人工业技术研究院 天线结构及其天线罩
CN102664313A (zh) * 2012-04-13 2012-09-12 深圳光启创新技术有限公司 一种带有柔性膜的壳结构及其制备方法
CN106602252A (zh) * 2017-01-20 2017-04-26 浙江大学 网格方环加载过孔结构的2.5维超宽带移动通信天线罩
CN108777359A (zh) * 2018-05-24 2018-11-09 西安电子科技大学 基于频率触发机制的超材料天线罩
CN110416739A (zh) * 2019-08-05 2019-11-05 Oppo广东移动通信有限公司 壳体组件及移动终端
CN110635242A (zh) * 2019-09-30 2019-12-31 Oppo广东移动通信有限公司 天线装置及电子设备
CN111224222A (zh) * 2020-02-28 2020-06-02 Oppo广东移动通信有限公司 电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3993160A4 *

Also Published As

Publication number Publication date
US11901625B2 (en) 2024-02-13
CN110635242A (zh) 2019-12-31
CN110635242B (zh) 2021-09-14
EP3993160A4 (en) 2022-08-03
US20220173519A1 (en) 2022-06-02
EP3993160A1 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
WO2021063179A1 (zh) 天线装置及电子设备
WO2021083027A1 (zh) 天线模组及电子设备
CN110416739B (zh) 壳体组件及移动终端
WO2021082967A1 (zh) 天线模组及电子设备
WO2021078147A1 (zh) 天线装置及电子设备
US10516218B2 (en) Dual-band radiation system and antenna array thereof
US11283193B2 (en) Substrate integrated waveguide antenna
US11201394B2 (en) Antenna device and electronic device
WO2021000731A1 (zh) 天线组件及电子设备
EP3979417A1 (en) Housing assembly, antenna apparatus, and electronic device
CN111162371B (zh) 电子设备
US20220094041A1 (en) Housing assembly, antenna device, and electronic device
US20220320709A1 (en) Display substrate and method for manufacturing display substrate
US20220102841A1 (en) Antenna assembly and electronic device
US20220094039A1 (en) Housing assembly, antenna assembly, and electronic device
WO2021000732A1 (zh) 壳体组件、天线组件及电子设备
JPWO2020095783A1 (ja) 同軸コネクタ及び同軸コネクタ付き基板
CN210956975U (zh) 显示基板
KR102669018B1 (ko) 안테나 유닛, 안테나 유닛 구비 창 유리 및 정합체
US20220085078A1 (en) Display screen assembly, antenna assembly, and electronic device
WO2024037707A1 (en) Mesh pattern antennas on glass for back cover and display directions using through glass vias
CN117767009A (zh) 一种微带天线及显示装置
CN117996440A (zh) 一种显示面板及显示装置
KR20210018786A (ko) 안테나 유닛, 안테나 유닛 구비 창 유리 및 정합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020872662

Country of ref document: EP

Effective date: 20220126

NENP Non-entry into the national phase

Ref country code: DE