WO2021063150A1 - 一种血压测量方法及电子设备 - Google Patents

一种血压测量方法及电子设备 Download PDF

Info

Publication number
WO2021063150A1
WO2021063150A1 PCT/CN2020/113102 CN2020113102W WO2021063150A1 WO 2021063150 A1 WO2021063150 A1 WO 2021063150A1 CN 2020113102 W CN2020113102 W CN 2020113102W WO 2021063150 A1 WO2021063150 A1 WO 2021063150A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
blood pressure
value
electronic device
user
Prior art date
Application number
PCT/CN2020/113102
Other languages
English (en)
French (fr)
Inventor
匡运生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/764,787 priority Critical patent/US20220338748A1/en
Priority to EP20871855.1A priority patent/EP4023149A4/en
Publication of WO2021063150A1 publication Critical patent/WO2021063150A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02116Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6843Monitoring or controlling sensor contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the oscillometric method
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7239Details of waveform analysis using differentiation including higher order derivatives

Definitions

  • This application relates to the field of electronic equipment, and in particular to a blood pressure measurement method and electronic equipment.
  • Wrist sphygmomanometers such as blood pressure watches or blood pressure wristbands
  • Wrist sphygmomanometers have smaller size and lighter weight, so they can be worn by users for a long time to meet the long-term and real-time blood pressure detection needs.
  • the basic principle of the wrist sphygmomanometer for measuring blood pressure is: when the wrist sphygmomanometer is worn on the user's wrist, the airbag included in it is in close contact with the user's radial artery. It can be considered that the pressure value in the airbag is approximately equal to the pressure value of the radial artery.
  • the wrist sphygmomanometer can determine the user's blood pressure value by detecting the pressure value in the airbag.
  • the blood pressure value may include systolic blood pressure (SBP) and diastolic blood pressure (DBP).
  • SBP systolic blood pressure
  • DBP diastolic blood pressure
  • the tightness of the wrist sphygmomanometer will have a very obvious impact on the accuracy of blood pressure measurement. For example, if the sphygmomanometer is worn too loosely, the pressure value in the balloon will be greater than the pressure value at the radial artery, and the blood pressure value obtained by the measurement will be higher. For another example, if the sphygmomanometer is worn too tightly, the pressure value in the balloon will be less than the pressure value at the radial artery, and the blood pressure value obtained by the measurement will be low.
  • the embodiments of the present application provide a blood pressure measurement method and electronic device, which at least solves the problem of low blood pressure measurement accuracy caused by different degrees of wearing tightness.
  • embodiments of the present application provide a blood pressure measurement method, which can be applied to an electronic device.
  • the electronic device can be worn on a user's wrist through a wristband of the electronic device.
  • the electronic device includes an airbag and an air pump.
  • the method may include: when the electronic device is worn on the user's wrist, the electronic device controls the air pump to inflate and pressurize the airbag. In the process of controlling the air pump to inflate and pressurize the airbag, the electronic device obtains the pressure value of the airbag.
  • the electronic device obtains a first pressure signal, which is a signal that the pressure value of the airbag changes with time from the time the air pump starts to inflate and pressurize the airbag until the pressure value of the airbag is equal to the preset pressure value.
  • the electronic device determines the tightness of the wristband worn by the user according to the first pressure signal. According to the degree of tightness, the electronic device corrects the blood pressure measurement value determined according to the second pressure signal to determine the user's blood pressure value.
  • the second pressure signal is the change in the pressure value of the airbag over time after the pressure value of the airbag exceeds the preset pressure value. signal.
  • the electronic device determines the degree of tightness of the user's wearing by analyzing the original signal (ie the first pressure signal) of the initial compression stage, and corrects the blood pressure measurement value according to the degree of tightness, which will be caused by the difference in the degree of wearing tightness.
  • the difference in blood pressure measurement results is compensated to the blood pressure measurement value in order to improve the accuracy of blood pressure measurement.
  • the electronic device determines the tightness of the wristband worn by the user according to the first pressure signal, including: the electronic device determines the pressure slope of the first pressure signal, and the pressure slope is the curve of the first pressure signal Slope, the pressure slope is used to indicate how tightly the wristband is worn by the user.
  • the electronic device corrects the blood pressure measurement value determined according to the second pressure signal according to the degree of tightness to determine the user's blood pressure value, including: the electronic device corrects the blood pressure measurement value according to the pressure slope of the first pressure signal to determine the blood pressure value .
  • the degree of wearing tightness is quantified according to the slope of the curve of the original signal (ie the first pressure signal) in the initial compression phase, and then the blood pressure measurement value is compensated correspondingly according to the slope to obtain a more accurate blood pressure value.
  • the electronic device corrects the blood pressure measurement value according to the pressure slope of the first pressure signal to determine the blood pressure value, including: the electronic device determines the compensation value according to the pressure slope of the first pressure signal and the mapping relationship ,
  • the mapping relationship includes the mapping relationship between the pressure slope of the first pressure signal and the compensation value.
  • the electronic device uses the compensation value to correct the blood pressure measurement value to determine the blood pressure value. In this way, the electronic device can determine the value that needs to be compensated for the blood pressure measurement value under the current wearing tightness according to the pressure slope and the mapping relationship, so that the electronic device can correct the blood pressure measurement value according to the value that needs to be compensated for the blood pressure measurement value.
  • the electronic device corrects the blood pressure measurement value according to the pressure slope of the first pressure signal to determine the blood pressure value, including: when the electronic device determines that the pressure slope is greater than the first slope and less than the second slope , According to the pressure slope of the first pressure signal, correct the blood pressure measurement value to determine the blood pressure value.
  • the electronic device can determine that the pressure slope in the current blood pressure measurement is within a preset range (for example, between the first slope and the second slope) that can more accurately compensate for the blood pressure measurement value, and then calculates the pressure according to the pressure slope.
  • the correction of the blood pressure measurement value can obtain the user's blood pressure value more accurately.
  • the method further includes: when the electronic device determines that the pressure slope is less than the first slope, controlling the air pump to stop inflating the airbag and prompting the user to tighten the wristband.
  • the electronic device determines that the pressure slope is greater than the second slope, and the electronic device controls the air pump to stop inflating the airbag and prompts the user to relax the wrist strap.
  • the electronic device can determine that in the current wearing state, the wearing tightness is too loose or the wearing is too tight, and even if the measurement result is compensated, a more accurate blood pressure value cannot be obtained.
  • the electronic device stops the measurement and prompts the user to tighten or relax Wristband, so that the wearing tightness can be adjusted to the range of more accurate blood pressure measurement.
  • the electronic device determines the degree of tightness of the wristband worn by the user according to the first pressure signal, including: the electronic device determines, according to the first pressure signal, that the pressure value of the airbag from the beginning of the inflation to the airbag is equal to the preset pressure The value of the compression time, the compression time is used to indicate the tightness of the wristband worn by the user.
  • the electronic device corrects the blood pressure measurement value determined according to the second pressure signal to determine the user's blood pressure value, including: the electronic device corrects the blood pressure measurement value according to the compression time to determine the blood pressure value.
  • the pressure time of the curve of the first pressure signal that is, the time it takes for the pressure value in the airbag to reach the preset pressure from the beginning of the pressure
  • the tightness of the wearing is quantified, and then the blood pressure is calculated according to the time The measured value is compensated accordingly to obtain a more accurate blood pressure value.
  • the electronic device corrects the blood pressure measurement value according to the pressurization time to determine the blood pressure value, including: the electronic device determines the compensation value according to the pressurization time and the mapping relationship, and the mapping relationship includes the pressurization time and the compensation value The mapping relationship.
  • the electronic device uses the compensation value to correct the blood pressure measurement value to determine the blood pressure value. In this way, the electronic device can determine the value that needs to be compensated for the blood pressure measurement value under the current wearing tightness according to the compression time and the mapping relationship, so that the electronic device can correct the blood pressure measurement value according to the value that needs to be compensated for the blood pressure measurement value.
  • the electronic device corrects the blood pressure measurement value according to the pressurization time to determine the blood pressure value, including: when the electronic device determines that the pressurization time is greater than the first time and less than the second time, according to the pressurization time , Correct the blood pressure measurement value to determine the blood pressure value. In this way, the electronic device can determine that in the current wearing state, the blood pressure measurement value can be more accurately compensated according to the wearing tightness (such as the compression time).
  • the method further includes: when the electronic device determines that the pressurization time is less than the first time, controlling the air pump to stop inflating and pressurizing the airbag, prompting the user to tighten the wrist strap.
  • the electronic device determines that the pressurization time is greater than the second time, it controls the air pump to stop inflating and pressurizing the airbag, prompting the user to relax the wrist strap.
  • the electronic device can determine that in the current wearing state, the wearing tightness is too loose or the wearing is too tight, and even if the measurement result is compensated, a more accurate blood pressure value cannot be obtained.
  • the electronic device stops the measurement and prompts the user to tighten or relax Wristband, so that the wearing tightness can be adjusted to the range of more accurate blood pressure measurement.
  • an embodiment of the present application provides an electronic device.
  • the electronic device can be worn on the user's wrist through the wristband of the electronic device.
  • the electronic device includes a micro-control unit MCU, a pressure sensor, an air bag, and an air pump.
  • the MCU is used to control the air pump to inflate and pressurize the airbag when the electronic device is worn on the user's wrist.
  • the pressure sensor is used to obtain the pressure value of the airbag during the process of controlling the air pump to inflate and pressurize the airbag.
  • the MCU is also used to obtain a first pressure signal.
  • the first pressure signal is a signal that the pressure value of the airbag changes with time from the time the air pump starts to inflate and pressurize the airbag until the pressure value of the airbag is equal to the preset pressure value.
  • the MCU is also used to determine the tightness of the wristband worn by the user according to the first pressure signal.
  • the MCU is also used to correct the blood pressure measurement value determined according to the second pressure signal according to the degree of tightness to determine the user's blood pressure value.
  • the second pressure signal is that when the pressure value of the airbag exceeds the preset pressure value, the pressure value of the airbag changes with Time-varying signal.
  • the MCU is also used to determine the tightness of the wristband worn by the user according to the first pressure signal, including: MCU, used to determine the pressure slope of the first pressure signal, the pressure slope is the first The slope of the pressure signal curve, and the pressure slope is used to indicate how tight the wristband is worn by the user.
  • the MCU is also used to correct the blood pressure measurement value determined according to the second pressure signal according to the degree of tightness to determine the user's blood pressure value, including: MCU, used to perform the measurement of the blood pressure value according to the pressure slope of the first pressure signal Correct to determine the blood pressure value.
  • the MCU is used for correcting the blood pressure measurement value according to the pressure slope of the first pressure signal to determine the blood pressure value, including: MCU, used for mapping and mapping according to the pressure slope of the first pressure signal The relationship determines the compensation value, and the mapping relationship includes the mapping relationship between the pressure slope of the first pressure signal and the compensation value.
  • the MCU is also used to correct the blood pressure measurement value by using the compensation value to determine the blood pressure value.
  • the MCU is used to correct the blood pressure measurement value according to the pressure slope of the first pressure signal to determine the blood pressure value, including: the MCU determines that the pressure slope is greater than the first slope and less than the second slope When, according to the pressure slope of the first pressure signal, the blood pressure measurement value is corrected to determine the blood pressure value.
  • the MCU is also used to control the air pump to stop inflating and pressurizing the airbag when it is determined that the pressure slope is less than the first slope, prompting the user to tighten the wrist strap.
  • the MCU is also used to control the air pump to stop inflating and pressurizing the airbag when it is determined that the pressure slope is greater than the second slope, prompting the user to relax the wrist strap.
  • the MCU is also used to determine the tightness of the wristband worn by the user according to the first pressure signal, including: MCU, used to determine the pressure of the airbag from the beginning to the airbag according to the first pressure signal The value is equal to the pressure time of the preset pressure value, and the pressure time is used to indicate the tightness of the wristband worn by the user.
  • the MCU is also used to correct the blood pressure measurement value determined according to the second pressure signal according to the degree of tightness to determine the user's blood pressure value, including: MCU, which is used to correct the blood pressure measurement value according to the compression time to determine the blood pressure value .
  • the MCU is used to correct the blood pressure measurement value according to the pressurization time to determine the blood pressure value, including: MCU, used to determine the compensation value according to the pressurization time and the mapping relationship, the mapping relationship includes the pressurization The mapping relationship between time and compensation value.
  • the MCU is also used to correct the blood pressure measurement value by using the compensation value to determine the blood pressure value.
  • the MCU is used to correct the blood pressure measurement value according to the compression time to determine the blood pressure value, including: when the MCU determines that the compression time is greater than the first time and less than the second time, according to the compression Time, correct the blood pressure measurement value to determine the blood pressure value.
  • the MCU is also used to control the air pump to stop inflating and pressurizing the airbag when it is determined that the pressurization time is less than the first time, prompting the user to tighten the wrist strap.
  • the MCU is also used to control the air pump to stop inflation and pressurization of the airbag when it is determined that the pressurization time is greater than the second time, and prompt the user to relax the wristband.
  • an embodiment of the present application provides an electronic device.
  • the electronic device may include a processor, which is configured to be connected to a memory and call a program stored in the memory to execute the first aspect or possible implementation manners of the first aspect. Any blood pressure measurement method.
  • an embodiment of the present application provides a computer-readable storage medium, including computer software instructions.
  • the computer software instruction runs in the electronic device, the electronic device is caused to execute the blood pressure measurement method of the first aspect or any one of the possible implementation manners of the first aspect.
  • the embodiments of the present application provide a computer program product, which when the computer program product runs on a computer, causes the computer to execute the blood pressure measurement method as in the first aspect or any one of the possible implementation manners of the first aspect.
  • an embodiment of the present application provides a device that has the function of implementing the behavior of the electronic device in the method of the first aspect.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions, for example, a control unit or module, a determination unit or module, an acquisition unit or module, a prompt unit or module, and so on.
  • the electronic equipment of the second aspect and the third aspect provided above, the computer-readable storage medium of the fourth aspect provided above, the computer program product of the fifth aspect, and the apparatus of the sixth aspect are all used to execute the above
  • the corresponding method provided therefore, the beneficial effects that can be achieved can refer to the beneficial effects of the corresponding method provided above, which will not be repeated here.
  • Fig. 1 is a schematic diagram of a blood pressure measurement method provided by the prior art
  • FIG. 2 is a schematic diagram of the composition of an electronic device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a product form of an electronic device provided by an embodiment of the application.
  • Figure 4 is a schematic diagram of the comparison of the waveforms of the original signals in the initial compression stage under different wearing tightness
  • FIG. 5 is a schematic flowchart of a blood pressure measurement method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a method for triggering blood pressure measurement according to an embodiment of the application.
  • FIG. 7 is a schematic diagram of a method for calculating the pressure slope according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of prompting the user to adjust the degree of wearing tightness according to an embodiment of the application.
  • FIG. 9 is a schematic diagram of a mapping relationship between SBP compensation value and pressure slope according to an embodiment of the application.
  • FIG. 10 is a schematic flowchart of another blood pressure measurement method provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of a mapping relationship between SBP compensation value and pressurization time according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of the logical composition of an electronic device provided by an embodiment of the application.
  • the wrist sphygmomanometer can meet the needs of users for real-time blood pressure measurement, so they are gradually being widely used.
  • the wrist sphygmomanometer is mainly composed of an air bag, an air pump and a pressure sensor.
  • the wrist sphygmomanometer controls the air pump to inflate the airbag so that the airbag is pressurized and expanded, compressing the radial artery of the wrist. Since the airbag is in close contact with the user's radial artery, the wrist sphygmomanometer can monitor the pressure of the airbag through the pressure sensor to detect the pressure value near the radial artery, thereby realizing the measurement of the user's blood pressure.
  • the pressure sensor in the wrist sphygmomanometer can detect the real-time pressure of the airbag in real time.
  • the wrist sphygmomanometer can generate the original signal as shown in Figure 1 according to the real-time pressure.
  • Figure 1 in the initial pressurization phase, there is still a certain gap between the pressure value in the balloon and the pressure value of the user's radial artery, so it appears as a smooth rise in the original signal.
  • the pressure value in the balloon is closer to the pressure value of the user's radial artery, so subtle but continuously fluctuating pulse waves will appear in the original signal (as shown in the pulse wave appearance phase in Figure 1) signal.
  • the wrist sphygmomanometer can obtain a linearly changing static pressure signal and a fluctuating pulse wave signal with characteristic information, and then determine the user's blood pressure based on the static pressure signal and the characteristic information of the pulse wave signal.
  • the above process is based on the premise that the air pressure in the balloon is equal to the pressure at the radial artery, and the pulse wave signal at the radial artery is extracted by acquiring the change in the air pressure in the balloon to determine the user's blood pressure.
  • the air pressure in the balloon is not necessarily the same as the pressure at the place where the radial artery is compressed.
  • the airbag is tightly attached to the wrist but is not stressed, so that the inflation pressure of the airbag is basically transmitted to the compression on the wrist.
  • the pressure value of the airbag is the same as the pressure value of the radial artery.
  • the pulse wave signal obtained by the wrist sphygmomanometer can accurately reflect the user's blood pressure, so that the blood pressure measurement result is more accurate.
  • the balloon will inflate a part of it to stick to the skin of the wrist and transmit the pressure to the compression of the radial artery.
  • the balloon inflation requires a certain amount of pressure, which causes the pressure inside the balloon to be greater than the pressure that oppresses the radial artery. In this way, the pulse wave signal obtained by the wrist sphygmomanometer will shift towards the high pressure direction as a whole, which will cause the measured blood pressure to be higher than the actual blood pressure.
  • the wristband-bound airbag has already exerted pressure on the wrist, compressing the radial artery. In this way, during the pressurization process, the pressure in the balloon is less than the pressure that compresses the radial artery, and the pulse wave signal will shift towards the low pressure direction as a whole, which will cause the measured blood pressure to be lower than the actual blood pressure.
  • the tightness of the wrist sphygmomanometer will have a very obvious impact on the accuracy of blood pressure measurement.
  • the wristband used to wear the wrist sphygmomanometer on the user's wrist can be provided with a hard support with an oval-like ring structure.
  • the wristband with hard support is provided with a gap in the middle, and the airbag is pasted on the hard support.
  • the hard support is stuck on the wrist, so that the airbag is close to the wrist and does not exert pressure on the wrist, so as to ensure that the pressure value in the airbag is consistent with the pressure value of the radial artery.
  • the size of the rigid support is not well suited to different users. This does not guarantee that the airbag does not apply pressure to the wrist while the airbag is tightly attached to the wrist. At the same time, it will be obvious when the user wears it. Wrist discomfort.
  • an embodiment of the present application provides a blood pressure measurement method, which can be applied to an electronic device, and the electronic device can be worn on a user's wrist through a wristband to measure blood pressure.
  • the electronic device can determine the degree of tightness of the wear based on the collected original signals of the initial compression stage, and correct the measured blood pressure value according to the degree of tightness. This can at least solve the problem of low blood pressure measurement accuracy caused by the difference in wearing tightness.
  • the electronic device in the embodiments of the present application may be a mobile phone, a tablet computer, a desktop computer, a laptop, a handheld computer, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook, and a cellular phone.
  • wearable devices such as smart watches, wrist blood pressure monitors (such as blood pressure watches or blood pressure watches)
  • wrist blood pressure monitors such as blood pressure watches or blood pressure watches
  • wristbands For devices with blood pressure measurement functions such as wristbands
  • the specific form of the device is not particularly limited in the embodiments of the present application.
  • FIG. 2 is a schematic diagram of the composition of an electronic device provided by an embodiment of this application.
  • the electronic device 200 may include a micro-controller unit (MCU) 201, a storage unit 202, an air pump 203, an air bag 204, and a pressure sensor 205. These components can be connected through the communication line 206.
  • the electronic device 200 further includes a wristband 207 through which the user can wear the electronic device 200 on the wrist.
  • the MCU 201 can be used to control and process information, and is responsible for signal detection and control of other components.
  • the storage unit 202 may be used to store a preset pressure value.
  • the preset pressure value is the possible pressure value of the airbag when the pulse wave signal appears, which can be determined according to sample data of a large number of users.
  • the electronic device 200 can determine whether the pulse wave signal will appear according to the preset pressure value.
  • the storage unit 202 may also be used to store a preset first slope and a second slope, so that the electronic device 200 can determine the range in which the wearing tightness can be quantified according to the first slope and the second slope.
  • the storage unit 202 can also be used to store a preset first time and a second time. The first time and the second event can provide the electronic device 200 with a range in which the wearing tightness can be quantified.
  • the air pump 203 can inflate and pressurize the airbag 204 or deflate the airbag 204 under the control of the MCU 201.
  • the airbag 204 may be made of polyvinyl chloride or silica gel. When the airbag 204 is not inflated, the airbag 204 is flat. Once the airbag 204 is inflated, the airbag 204 will slowly inflate, compressing the radial artery of the wrist. At this time, the pressure value of the airbag 204 changes with the radius of the wrist. The pulsation of the arteries can form a corresponding relationship.
  • the airbag 204 is provided with at least two connection holes, of which one connection hole (for example, the connection hole 1) can be used to connect the air pump 203 to achieve inflation or deflation of the airbag 204, and the other connection hole (for example, the connection hole 1) can be used to inflate or deflate the airbag 204.
  • the hole 2) can be used to connect the pressure sensor 205 to realize the real-time pickup of the pressure value of the airbag 204 by the pressure sensor 205.
  • the pressure value picked up by the pressure sensor 205 is strictly speaking the pressure value of the airbag 204 at the connection hole 2.
  • the pressure value near the connecting hole 1 for connecting the air pump 203 is relatively large, while the pressure value in the area far away from the connecting hole 1 is relatively small.
  • the pressure value distribution in the airbag 204 will not be very different. Therefore, in the embodiment of the present application, it can be considered that the pressure value in the airbag 204 is evenly distributed. That is, in this embodiment, it can be considered that the pressure value of the airbag 204 at the connection hole 2 picked up by the pressure sensor 205 is the pressure value of the airbag 204.
  • MCU 201 may also be called a processor, which may include one or more processing units, for example: may include an application processor (AP), a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU), etc.
  • the different processing units may be independent devices or integrated in one or more processors.
  • the MCU 201 may receive the pressure value in the airbag 204 transmitted by the pressure sensor 205, and determine the pressure signal according to the relationship between the pressure value and time, such as determining the first pressure signal or the second pressure information number.
  • the storage unit 202 may also be referred to as an internal memory, and may be used to store executable program code of the electronic device, where the executable program code includes instructions.
  • the MCU 201 executes various functional applications and data processing of the electronic device by running the instructions stored in the storage unit 202. For example, in the embodiment of the present application, the MCU 201 may execute an instruction stored in the storage unit 202, and after receiving the operation of measuring blood pressure, execute the corresponding event as a response to the operation. For example, the MCU 201 may execute the corresponding event according to The slope or time of the curve of the original signal of the initial compression phase collected before the pressure value in the airbag 204 reaches the preset pressure value quantifies the wearing tightness, and the blood pressure measurement value is corrected according to the wearing tightness.
  • the storage unit 202 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, at least one application program (such as a sound playback function, an image playback function, etc.) required by at least one function.
  • the data storage area can store data (such as pressure signals, etc.) created during the use of the electronic device.
  • the storage unit 202 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, a universal flash storage (UFS), and the like.
  • UFS universal flash storage
  • connection relationship between the modules illustrated in this embodiment is only a schematic description, and does not constitute a structural limitation of the electronic device.
  • the electronic device may also adopt different connection modes in the foregoing embodiments, or a combination of multiple connection modes.
  • the structure illustrated in this embodiment does not constitute a specific limitation on the electronic device.
  • the electronic device may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the electronic device may further include one or more of the following modules: the charging management module is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module may receive the charging input of the wired charger through the USB interface.
  • the charging management module may receive the wireless charging input through the wireless charging coil of the electronic device. While the charging management module charges the battery of the electronic device, it can also supply power to the electronic device through the power management module.
  • the power management module is used to connect the battery of the electronic device.
  • the power management module receives input from the battery and/or charging management module, and supplies power to the MCU 201, the storage unit 202, the air pump control unit, and the like.
  • the power management module can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
  • the power management module may also be provided in the processor.
  • the power management module and the charging management module may also be provided in the same device.
  • Electronic equipment can also have wireless communication capabilities. Its wireless communication function can be realized by antenna 1, antenna 2, mobile communication module, wireless communication module, modem processor and baseband processor.
  • the antenna 1 and the antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in an electronic device can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module can provide applications on electronic equipment including the 3rd Generation Telecommunication (The 3rd Generation Telecommunication, 3G)/The 4rd Generation Telecommunication (The 4rd Generation Telecommunication, 4G)/The 5th Generation Mobile Communication Technology (The 5rd Generation Telecommunication, 5G) and other wireless communication solutions.
  • the mobile communication module may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module can receive electromagnetic waves by the antenna 1, and perform processing such as filtering and amplifying the received electromagnetic waves, and then transmitting them to the modem processor for demodulation.
  • the mobile communication module can also amplify the signal modulated by the modem processor, and convert it into electromagnetic waves to radiate through the antenna 1.
  • at least part of the functional modules of the mobile communication module may be provided in the processor.
  • at least part of the functional modules of the mobile communication module and at least part of the modules of the processor may be provided in the same device.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing. After the low-frequency baseband signal is processed by the baseband processor, it is passed to the application processor.
  • the application processor can output sound signals through the audio equipment of the electronic device (not limited to speakers, receivers, etc.), or display images or videos through the display screen of the electronic device.
  • the modem processor may be an independent device. In other embodiments, the modem processor may be independent of the processor, and be provided in the same device as the mobile communication module or other functional modules.
  • the wireless communication module can provide applications in electronic devices including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), Bluetooth (bluetooth, BT), and global navigation satellite systems ( Global navigation satellite system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • BT Bluetooth
  • GNSS global navigation satellite systems
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module may be one or more devices integrating at least one communication processing module.
  • the wireless communication module receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor.
  • the wireless communication module can also receive the signal to be sent from the processor, perform frequency modulation, amplify, and radiate electromagnetic waves through the antenna 2.
  • the antenna 1 of the electronic device is coupled with the mobile communication module, and the antenna 2 is coupled with the wireless communication module, so that the electronic device can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the electronic device may also have a display function.
  • the display function can be realized through GPU, display screen, and application processor.
  • the GPU is a microprocessor for image processing, connected to the display screen and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • the processor may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen is used to display images, videos, etc.
  • the display screen includes a display panel.
  • the display panel can use liquid crystal display (LCD), organic light-emitting diode (OLED), active matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light-emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • active-matrix organic light-emitting diode active-matrix organic light-emitting diode
  • emitting diode AMOLED, flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (QLED), etc.
  • the electronic device may include 1 or N display screens, and N is a positive integer greater than 1.
  • the electronic device may also have a shooting function, for example, it can realize the shooting function through an ISP, a camera, a video codec, a GPU, a display screen, and an application processor.
  • a shooting function for example, it can realize the shooting function through an ISP, a camera, a video codec, a GPU, a display screen, and an application processor.
  • ISP is used to process the data fed back from the camera.
  • the camera is used to capture still images or video.
  • the object generates an optical image through the lens and is projected to the photosensitive element.
  • the photosensitive element converts the optical signal into an electrical signal, and then transfers the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the electronic device may include 1 or N cameras, and N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device selects the frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device can support one or more video codecs.
  • electronic devices can play or record videos in multiple encoding formats, such as moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, and so on.
  • MPEG moving picture experts group
  • NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • NPU can realize the intelligent cognition of electronic equipment and other applications, such as: image recognition, face recognition, speech recognition, text understanding, etc.
  • the electronic device may also include an external memory interface, which can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device.
  • the external memory card communicates with the processor through the external memory interface to realize the data storage function. For example, save music, video and other files in an external memory card.
  • Electronic devices can also implement audio functions, such as audio modules, speakers, receivers, microphones, earphone jacks, and application processors. For example, music playback, recording, etc.
  • the electronic device may also include one or more of the following sensors: a gyroscope sensor may be used to determine the movement posture of the electronic device.
  • the angular velocity of the electronic device around three axes ie, x, y, and z axis
  • the gyroscope sensor can be used for shooting anti-shake.
  • the gyroscope sensor can also be used for navigation and somatosensory game scenes.
  • the pressure sensor is used to measure air pressure.
  • the electronic device calculates the altitude based on the air pressure value measured by the pressure sensor to assist positioning and navigation.
  • the magnetic sensor includes a Hall sensor.
  • the electronic device can use a magnetic sensor to detect the opening and closing of the flip holster.
  • the acceleration sensor can detect the magnitude of the acceleration of the electronic device in various directions (usually three axes). When the electronic device is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices, and apply to applications such as horizontal and vertical screen switching, pedometers and so on.
  • Distance sensor used to measure distance. Electronic equipment can measure distance through infrared or laser.
  • the proximity light sensor may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the electronic device emits infrared light to the outside through the light emitting diode.
  • Electronic devices use photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device. When insufficient reflected light is detected, the electronic device can determine that there is no object near the electronic device.
  • the ambient light sensor is used to sense the brightness of the ambient light. The electronic device can adaptively adjust the brightness of the display screen according to the perceived brightness of the ambient light.
  • the fingerprint sensor is used to collect fingerprints. Electronic devices can use the collected fingerprint characteristics to unlock fingerprints, access application locks, take photos with fingerprints, and answer calls with fingerprints.
  • the temperature sensor is used to detect temperature. Touch sensor, also called "touch panel".
  • the touch sensor can be set on the display screen, and the touch screen is composed of the touch sensor and the display screen, also called "touch screen".
  • the touch sensor is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • the visual output related to the touch operation can be provided through the display screen.
  • the touch sensor may also be arranged on the surface of the electronic device, which is different from the position of the display screen.
  • Bone conduction sensors can acquire vibration signals.
  • the bone conduction sensor can obtain the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor can also contact the human pulse and receive the blood pressure pulse signal.
  • the bone conduction sensor may also be provided in the earphone, combined with the bone conduction earphone.
  • the audio module can parse the voice signal based on the vibration signal of the vibrating bone block of the voice obtained by the bone conduction sensor to realize the voice function.
  • the application processor can parse the heart rate information based on the blood pressure beating signal obtained by the bone conduction sensor to realize the heart rate detection function.
  • the electronic device may also include an indicator, such as an indicator light, which can be used to indicate the charging status, power change, and can also be used to indicate messages, missed calls, notifications, and so on.
  • the SIM card interface is used to connect to the SIM card. The SIM card can be inserted into the SIM card interface or pulled out from the SIM card interface to achieve contact and separation with the electronic device.
  • the electronic device can support 1 or N SIM card interfaces, and N is a positive integer greater than 1.
  • the electronic device shown in FIG. 2 can be implemented in various forms.
  • FIG. 3 is a schematic diagram of a product form of an electronic device provided by an embodiment of this application.
  • the electronic device is a blood pressure watch as an example.
  • the blood pressure watch may include a watch body 310, a wristband 320, and an air bag 330.
  • One or more physical buttons 311 may be provided on the meter body 310.
  • the user can trigger the blood pressure watch to execute the corresponding event by operating the physical button 311.
  • the one or more physical buttons 311 include at least one physical button for triggering a blood pressure watch to start measuring blood pressure.
  • the physical button 311 may not be provided on the meter body 310.
  • the meter body 310 may also be provided with a display screen 312.
  • the display screen 312 can be used to display relevant information to the user, such as blood pressure measurement results, or to prompt the user to adjust the wearing of the blood pressure watch.
  • the display screen 312 may be a touch screen, and the user can input related operations through the display screen 312. For example, in some embodiments, the user can input related operations on the display screen 312, such as clicking on an icon displayed on the display screen 312 (the icon can be an icon of an application for blood pressure measurement installed in a blood pressure watch, or other Trigger the blood pressure watch to measure blood pressure icon) to trigger the blood pressure watch to start measuring blood pressure.
  • the wristband 320 may be used to tie the blood pressure watch to the user's wrist.
  • An airbag 330 is provided inside the wristband 302. When the user wears the blood pressure watch on the wrist through the wristband 320, the airbag 330 will fit the user’s radial artery. When the airbag 330 is inflated and its pressure value is close to the pressure value of the user’s radial artery, the blood pressure watch The change of the pressure value in 330 measures the pressure value at the user's radial artery, thereby determining the user's blood pressure value.
  • the methods in the following embodiments can all be implemented in an electronic device having the above hardware structure.
  • the following takes the electronic device as a wrist sphygmomanometer (such as a blood pressure watch) as an example for description.
  • the original signal in the initial pressurization stage is the pressurization signal obtained by measurement when the air pressure value in the airbag is less than or equal to the preset pressure value (for example, 20 mmHg).
  • the preset pressure value for example, 20 mmHg.
  • the initial pressurization stage may be a pressurization stage in which the pressure value in the airbag is less than the preset pressure value.
  • the preset pressure value may be determined according to the possible pressure value of the airbag when the pulse wave signal appears.
  • the blood pressure watch controls the air pump to inflate and pressurize the airbag until the pressure in the airbag reaches the preset pressure value, because the airbag exerts a small pressure on the radial artery, it has no obvious compression effect on the radial artery. Therefore, during this period of time, the pulse wave signal cannot be extracted from the original signal, and the original signal within this period of time seems to rise linearly.
  • the time when the pulse wave signal appears varies from person to person, not necessarily. However, it can be determined by a large number of user sample data that under a certain pressure value, the pulse wave signal will not appear in the original signal collected when most users measure blood pressure, and the pressure value can be set It is the preset pressure value.
  • An embodiment of the application provides a blood pressure measurement method that obtains the pressure slope of the waveform curve from the waveform of the original signal in the initial pressure phase, and uses the pressure slope as a physical quantity to quantify the wearing tightness, and at the same time according to the initial pressure phase
  • the mapping relationship between the pressure slope of the original signal waveform curve and the compensation value of the blood pressure measurement value is determined to determine the compensation value during the blood pressure measurement process, and the blood pressure measurement value is corrected according to the compensation value to obtain a more accurate blood pressure value.
  • FIG. 5 is a schematic flowchart of a blood pressure measurement method provided by an embodiment of this application. As shown in FIG. 5, the method may include S501-S505.
  • the blood pressure watch receives the first input, and the air pump inflates and pressurizes the airbag.
  • a corresponding operation can be input to trigger the blood pressure watch to start measuring blood pressure.
  • the user can press the physical button 311-1 set on the blood pressure watch to trigger the blood pressure watch to start measurement blood pressure.
  • the user can touch the "blood pressure measurement” icon on the display 312 of the blood pressure watch To trigger the blood pressure watch to start measuring blood pressure.
  • the "blood pressure measurement” icon is an icon of an application for blood pressure measurement installed in a blood pressure watch. After receiving this operation, the blood pressure watch can control the air pump to inflate and pressurize the airbag to start measuring blood pressure.
  • the blood pressure watch obtains the pressure value of the airbag.
  • the blood pressure watch can monitor the change of the pressure value in the airbag in real time.
  • the pressure sensor 205 in the process of controlling the air pump to inflate and pressurize the airbag, can obtain the pressure value in the airbag 204 in real time and report it to the MCU 201 so that the MCU 201 can determine the pressure value in the airbag 204 Changes are monitored in real time.
  • the pressure value acquired by the pressure sensor 205 may also be stored in the storage unit 202 for subsequent determination of the user's blood pressure.
  • the blood pressure watch acquires a first pressure signal.
  • the first pressure signal is a signal that the pressure value of the airbag changes with time from the time the air pump starts to inflate and pressurize the airbag until the pressure value of the airbag is equal to the preset pressure value.
  • the preset pressure value may be preset in the blood pressure watch or configured by the user.
  • the first pressure signal may be the original signal in the initial pressurization stage as shown in FIG. 1.
  • the blood pressure watch may start from inflating the air bag to detect whether the pressure value in the air bag reaches the preset pressure value.
  • the blood pressure watch can inflate the airbag from the beginning until the pressure in the airbag reaches the preset pressure value, and the original signal detected during the period is used as the first pressure signal.
  • the preset pressure value can be in the range of 20-30 mmHg. In the embodiment of the present application, the preset pressure value may be 20 mmHg.
  • the first pressure signal can be the original signal detected by the blood pressure watch from the time the airbag is inflated to the pressure value in the airbag reaching 20mmHg.
  • the blood pressure watch determines the pressure slope of the first pressure signal, where the pressure slope is used to indicate the degree of tightness of the wristband worn by the user.
  • the tightness of the wristband worn by the user on the wrist is a subjective concept, and there is no uniform physical quantity that can be used to measure the tightness.
  • the pressure slope of the first pressure signal curve can reflect the tightness of the wristband worn by the user. Therefore, in this embodiment of the present application, the pressure slope can be used as a measure of the wristband being worn on the wrist by the user.
  • the physical quantity of tightness. Among them, the pressure slope can be determined by a variety of methods.
  • the average slope of the curve of the first pressure signal may be used as the pressure slope.
  • the blood pressure watch can calculate the average slope according to the following formula (1).
  • K ave is the average slope of the curve of the first pressure signal
  • A is the maximum pressure on the curve of the first pressure signal, that is, the preset pressure value
  • B is the pressure value from the beginning of the inflation and pressurization of the airbag to the time the airbag reaches the pressure value
  • the duration of the preset pressure value is the pressurization time.
  • the maximum instantaneous slope on the curve of the first pressure signal may be used as the pressure slope.
  • a blood pressure watch can randomly select multiple points on the curve of the first pressure signal, such as P 1 -P n , where n is an integer greater than 1, calculate the instantaneous slopes at these n points, and set the maximum The instantaneous slope is used as the pressure slope.
  • the instantaneous slope can be calculated according to formula (2).
  • K n is the instantaneous slope of the nth point
  • a n is the pressure value of the nth point
  • B n is the time corresponding to the nth point.
  • Watch the blood pressure is determined on the curve on the first pressure signal, a value of pressure P 1 on the point A 1, corresponding to the time of B 1, then according to equation (1), P instantaneous slope K 1 can be one dot that A 1 / B 1 .
  • the pressure value of point P 2 is A 2
  • the corresponding time is B 2
  • the instantaneous slope of point P 2 is A 2 /B 2
  • the pressure value at point P 3 is A 3
  • the corresponding time is B 3 , so the instantaneous slope at point P 3 is A 3 /B 3 .
  • the pressure value at point P 4 is A 4
  • the corresponding time is B 4
  • the instantaneous slope of point P 4 is A 4 /B 4 .
  • the blood pressure watch can select the maximum value from K 1 , K 2 , K 3 and K 4 as the pressure slope.
  • an average value of the larger slopes among the average slopes of the curve between multiple adjacent points on the curve of the first pressure signal may be used as the pressure slope.
  • the blood pressure watch can randomly select multiple points on the curve of the first pressure signal, such as P 1 -P n , where n is an integer greater than 1.
  • the blood pressure watch separately calculates the average slope of the curve between two adjacent points among these n points, sorts the obtained slopes from large to small, and takes the first m slopes to average, where m is less than n Is a positive integer. Then the average slope can be used as the pressure slope.
  • the average slope of the curve between two adjacent points can be calculated by the following formula (3).
  • K i is the average slope of the curve between the i-th point and the i+1-th point among n points
  • B i+1 is the pressure value of the i+1-th point
  • B i is the i-th point pressure value
  • a i is the i th point of time corresponding to.
  • the number of points to be taken can be flexibly selected according to needs, and the embodiment of the present application does not limit it here.
  • the average slope of the curve of the first pressure signal is used as the method of the pressure slope.
  • the calculation process is simple. Only one calculation is needed to determine the pressure slope during the current blood pressure test process. The watch causes an excessive handling burden.
  • the maximum instantaneous slope on the curve of the first pressure signal is used as the method of the pressure slope. Because users of different wrist types and different wrist circumferences are measuring blood pressure, the average slope of the curve of the first pressure signal may not be much different, but its The maximum instantaneous slope will have a large difference. Therefore, for users of different wrist types and different wrist circumferences, the maximum instantaneous slope can be used as the pressure slope, so that the blood pressure watch can accurately quantify the wearing tightness.
  • the first slope and the second slope can be set in the blood pressure watch, where the first slope is smaller than the second slope.
  • First slope, second slope can be used to calibrate the above interval.
  • the first slope and the second slope may be preset in the blood pressure watch or configured by the user.
  • the embodiments of the application are not limited here.
  • the first slope and the second slope may be determined according to a large number of sample data and preset in the blood pressure watch, or may be set by the user according to actual conditions.
  • the correction of the blood pressure measurement value based on the pressure slope may cause some deviations, resulting in insufficient accuracy of the result. Therefore, in some designs, depending on whether the pressure slope is within the range of [first slope, second slope] (such as the pressure slope is less than the first slope, the pressure slope is greater than the first slope and less than the second slope). , Or the pressure slope is greater than the second slope) for different treatments.
  • the blood pressure watch may, if the pressure slope is greater than the first slope and less than the second slope, it indicates that the pressure slope can be used to quantify the wearing tightness and accordingly. Correct the blood pressure measurement value. At this time, the following S505 can be executed.
  • the blood pressure watch controls the air pump to stop inflating the airbag, and prompts the user that the blood pressure measurement watch is worn too loose this time and needs to tighten the wristband and restart the measurement.
  • the blood pressure watch can display prompt information on the display screen 312.
  • the prompt information can be text information as shown in Figure 8(a), such as "wearing too loosely, Please tighten the wrist strap and start measuring blood pressure again.”
  • the blood pressure watch can also display other information on the display screen 312, such as a dynamic image of tightening the wristband, which is used to remind the user to tighten the wristband and restart blood pressure measurement.
  • a blood pressure watch includes a motor. The blood pressure watch can control the motor to vibrate according to a preset frequency, such as a lower frequency vibration, to remind the user that the current wearing state is too loose, and the wristband needs to be tightened and blood pressure measurement restarted.
  • a blood pressure watch includes an indicator light. The blood pressure watch can control the indicator light to flash at a preset frequency, such as flashing at a lower frequency to remind the user that the current wearing state is too loose, and the wristband needs to be tightened and blood pressure measurement restarted.
  • a blood pressure watch may display prompt information on the display 312.
  • the prompt information may be text information as shown in (b) in FIG. 8, such as "too tight, Please relax the wristband and start measuring blood pressure again.”
  • the blood pressure watch can also display other information on the display 312, such as a dynamic image of the relaxed wristband, to remind the user to relax the wristband and restart blood pressure measurement.
  • a blood pressure watch includes a motor. The blood pressure watch can control the motor to vibrate according to a preset frequency, such as a higher frequency vibration, to remind the user that the current wearing state is too tight, and the wristband needs to be loosened and blood pressure measurement restarted.
  • a blood pressure watch includes an indicator light. The blood pressure watch can control the indicator light to flash at a preset frequency, such as flashing at a higher frequency to remind the user that the current wearing state is too tight, and the wristband needs to be loosened and blood pressure measurement restarted.
  • the blood pressure watch corrects the blood pressure measurement value determined according to the second pressure signal to determine the user's blood pressure value.
  • the second pressure signal is when the pressure value of the airbag exceeds the preset pressure value. A signal that the pressure value of the airbag changes over time.
  • the blood pressure watch can extract the pulse wave from the original signal in a short time. signal. That is, the blood pressure watch can extract the pulse wave signal from the second pressure signal obtained after the pressure value of the air bag exceeds the preset pressure value.
  • the pulse wave signal can be obtained by filtering the original signal.
  • a Butterworth filter or a Finite Impulse Response (Finite Impulse Response, FIR) filter can be used to obtain the original signal. Filter to obtain the pulse wave signal.
  • the envelope of the extracted pulse wave signal presents a unimodal characteristic that first increases and then decreases, but there are also a small number of users whose pulse wave envelope presents double peaks or other waveforms.
  • the blood pressure watch After the blood pressure watch obtains the pulse wave signal, it can extract relevant characteristic information from it.
  • the characteristic information may include envelope peak pressure, maximum slope static pressure, and so on. Further, the blood pressure watch can determine the user's blood pressure measurement value based on these characteristic information.
  • the blood pressure measurement value will have different degrees of deviation due to the tightness of the wristband worn on the user’s wrist.
  • the blood pressure measurement method provided in the embodiments of the present application can be based on the quantified wearing tightness (such as adding (Pressure slope) to correct the blood pressure measurement value to obtain a more accurate blood pressure value.
  • the compensation value in the measurement process can be determined according to the mapping relationship between the compression slope and the compensation value. That is, the blood pressure watch can use the compensation value corresponding to the pressure slope determined according to the first pressure signal as the compensation value of this measurement, and correct the blood pressure measurement value according to the compensation value.
  • a large number of sample statistics can be used to obtain the mapping relationship between the SBP compensation value or the DBP compensation value and the pressure slope.
  • the realization of the mapping relationship in a blood pressure watch may include a correspondence table between the pressure slope and the SBP compensation value or the pressure slope and the DBP compensation value, or it may be able to reflect the pressure slope and the SBP compensation value or the pressure The curve of the corresponding relationship between the slope and the DBP compensation value.
  • the blood pressure watch can determine the SBP compensation value corresponding to the pressure slope in this blood pressure measurement according to the mapping relationship between the SBP compensation value and the pressure slope, and correct the SBP measurement value according to the SBP compensation value.
  • the following is an example of a curve formed by the mapping relationship between the pressure slope and the SBP compensation value.
  • the SBP compensation value has an approximately positive correlation with the pressure slope.
  • the pressure slope is small, and the corresponding compensation value is negative.
  • the pressure slope gradually becomes larger.
  • the corresponding compensation value is positive.
  • the blood pressure watch determines that the pressure slope is 0.7mmHg/s, corresponding to the point P1 on the curve shown in Figure 9, the blood pressure watch can determine the compensation value of SBP to be -10. It means that the actual SBP value is 10mmHg lower than the measured SBP value due to wearing too loosely. Therefore, the corrected SBP is the measured SBP minus 10mmHg.
  • the blood pressure watch determines that the pressure slope is 2.8mmHg/s, corresponding to the point P2 on the curve shown in FIG. 9, the blood pressure watch can determine that the SBP compensation value is 20. It means that the actual SBP value is 20mmHg higher than the measured SBP value due to the wearing too tight, so the corrected SBP is the measured SBP plus 20mmHg.
  • the blood pressure watch can determine the DBP compensation value corresponding to the pressure slope in this blood pressure measurement according to the mapping relationship between the DBP compensation value and the pressure slope, and correct the DBP measurement value according to the DBP compensation value.
  • mapping relationship between the corresponding compensation value and the pressure slope is different for different materials, different widths, and different structures of the airbag.
  • statistical analysis of a large sample can be performed to obtain the mapping relationship between the DBP and SBP compensation values and the pressure slope corresponding to the hardware specifications.
  • the electronic device quantifies the degree of tightness worn by the user according to the pressure slope of the first pressure signal, and determines the compensation value of the measurement result according to the quantified result, and then realizes the compensation of the measurement result to obtain the tightness that is not worn.
  • a more accurate blood pressure measurement affected by the degree of difference.
  • the electronic device also determines whether there is a problem of over-wearing or over-tightening according to whether the quantified wearing tightness (such as the pressure slope) is within a preset interval. If there is any problem, it can prompt the user to correct the wearing problem. Further improve the accuracy of blood pressure measurement.
  • the blood pressure measurement method provided in the embodiments of the present application can quantify the degree of wearing tightness according to the change of the pressure value in the airbag.
  • the method accurately judges the current wearing according to the current user's wrist type and the change of the pressure value in the airbag under the wrist circumference.
  • the effect of tightness on blood pressure measurement can be adapted to users of different wrist types and wrist circumferences.
  • An embodiment of the present application also provides a blood pressure measurement method.
  • the electronic device can determine the compression time from the beginning of the airbag to the preset pressure value, and use the compression time as a physical quantity to quantify the wearing tightness. Further, according to the mapping relationship between the compression time and the blood pressure measurement value compensation value, the compensation value during this blood pressure measurement process can be determined, and the blood pressure watch can compensate the blood pressure measurement value according to the compensation value to obtain a more accurate user blood pressure value. .
  • FIG. 10 is a schematic flowchart of another blood pressure measurement method provided by an embodiment of this application. As shown in FIG. 10, the method may include S1001-S1005.
  • S1001-S1003 are the same as S501-S503 in FIG. 5, which is not repeated in this embodiment.
  • the difference between S1004 and S1005 will be described in detail below.
  • the blood pressure watch determines the pressure time from the beginning of the airbag to the pressure value of the airbag equal to the preset pressure value, and the pressure time is used to indicate the degree of tightness of the wristband worn by the user.
  • the tightness of the wristband worn by the user on the wrist is a subjective concept, and there is no uniform physical quantity that can be used to measure the tightness.
  • the tighter the wristband worn by the user is the shorter the time it takes for the pressure value in the airbag to reach the preset pressure value (ie, the compression time) from the beginning of compression.
  • the pressure time may be used as a physical quantity to measure the tightness of the wristband worn on the wrist by the user.
  • the blood pressure watch may determine the length of time from the appearance to the end of the first pressure signal based on the first pressure signal (ie, the original signal in the initial pressure phase), and the length at this time is the pressure time.
  • the blood pressure watch may also use the difference between the time when the pressure value in the airbag reaches the preset pressure value and the time when the pressure is started as the pressure time.
  • the first time and the second time may be set in the blood pressure watch to calibrate the above interval.
  • the first time and the second time may be preset in the blood pressure watch or configured by the user. The embodiments of the application are not limited here.
  • pressurization time is not within the range of [first time, second time]
  • the correction of the blood pressure measurement value according to the pressurization time may cause some deviations, which may cause the result to be inaccurate. Therefore, in some designs, depending on whether the pressurization time is within the range of [first time, second time] (for example, pressurization time is less than the first time, pressurization time is greater than the first time and less than the second time , Or pressurization time is greater than the second time) for different treatment.
  • the blood pressure watch may determine that the compression time is greater than the first time and less than the second time, which indicates that the compression time can be used to quantify the wearing tightness. In this case, the following S1005 can be performed .
  • the blood pressure watch controls the air pump to stop inflating the airbag, and prompts the user to wear the blood pressure watch too tight this time and need to relax the wristband and restart the measurement.
  • the blood pressure watch controls the air pump to stop inflating the airbag, and prompts the user to wear the blood pressure watch too loose this time and need to tighten the wristband and restart the measurement. In this way, it is possible to avoid inaccurate blood pressure measurement caused by wearing too loose or too tight, and at the same time prompt the user to make corresponding adjustments to the wearing of the blood pressure watch, so that the blood pressure can be measured accurately.
  • the blood pressure watch corrects the blood pressure measurement value determined according to the second pressure signal according to the pressurization time to determine the user's blood pressure value. Time-varying signal.
  • the blood pressure measurement value will have different degrees of deviation due to the difference in the degree of tightness of the wristband worn on the user’s wrist.
  • the blood pressure measurement method provided in the embodiments of the present application can be based on the quantified degree of tightness of the wearing. (Such as pressurization time) to correct the blood pressure measurement value to obtain a more accurate blood pressure value.
  • the compensation value in the measurement process can be determined according to the mapping relationship between the compression time and the compensation value. That is, the blood pressure watch can use the compensation value corresponding to the pressurization time as the measured compensation value, and correct the blood pressure measurement value according to the compensation value.
  • the realization of the mapping relationship in a blood pressure watch may include a correspondence table between the compression time and the SBP compensation value or the compression time and the DBP compensation value, or it may be able to reflect the compression time and the SBP compensation value or the compression The curve of the corresponding relationship between time and DBP compensation value.
  • the blood pressure watch can determine the SBP compensation value corresponding to the compression time in this blood pressure measurement according to the mapping relationship between the SBP compensation value and the compression time, and correct the SBP measurement value according to the SBP compensation value.
  • the following is an example of a curve formed by the mapping relationship between the pressure time and the SBP compensation value.
  • the SBP compensation value has an approximately positive correlation with the compression time.
  • the compression time is small, and the corresponding compensation value is negative.
  • the pressure time gradually becomes longer.
  • the corresponding compensation value is positive.
  • the blood pressure watch determines that the compensation value of SBP is -8mmHg, which means that the actual SBP value is higher than the measured value due to excessive wear.
  • the SBP value is 8mmHg higher, so the corrected SBP is the measurement SBP plus 8mmHg.
  • the blood pressure watch determines that the compression time is 2.7s, corresponding to the P2 point of the curve shown in Figure 11, the blood pressure watch can determine the SBP compensation value to be 17mmHg, which means that the actual SBP value is higher than the measured SBP due to the loose fit.
  • the value is 17mmHg lower, so the corrected SBP is the measured SBP minus 17mmHg.
  • the blood pressure watch can determine the DBP compensation value corresponding to the compression time in this blood pressure measurement according to the mapping relationship between the DBP compensation value and the compression time, and correct the DBP measurement value according to the DBP compensation value.
  • mapping relationship between the corresponding compensation value and the pressurization time is different for different materials, different widths, and different structures of the airbag.
  • a large sample of statistical analysis can be performed to obtain the mapping relationship between the DBP and SBP compensation values corresponding to the hardware specifications and the compression time.
  • the electronic device quantifies the degree of tightness worn by the user according to the pressurization time of the first pressure signal, and determines the compensation value of the measurement result according to the quantification result, and then realizes the compensation of the measurement result to obtain the non-wearing tightness A more accurate blood pressure measurement affected by the degree of difference.
  • the electronic device also determines whether there is a problem of over-wearing or over-wearing according to whether the quantified degree of wearing tightness (such as the compression time) is within a preset interval. If there is the above-mentioned problem, it can prompt the user to correct the wearing problem. Further improve the accuracy of blood pressure measurement.
  • an electronic device includes hardware structures and/or software modules corresponding to each function, and these hardware structures and/or software modules corresponding to each function may constitute an electronic device.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the electronic device into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 12 shows a schematic diagram of a possible composition of the electronic device involved in the foregoing embodiment.
  • the electronic device includes: a control unit 1201, The acquiring unit 1202 and the determining unit 1203.
  • the control unit 1201 is used to control the air pump of the electronic device to inflate and pressurize the airbag of the electronic device when the electronic device is worn on the user's wrist.
  • the control unit 1201 may be used to execute S501 of the blood pressure measurement method shown in FIG. 5 above.
  • the control unit 1201 may also be used to execute S1001 of the blood pressure measurement method shown in FIG. 10 above.
  • the obtaining unit 1202 is used for obtaining the pressure value of the airbag during the process of controlling the air pump to inflate and pressurize the airbag.
  • the acquiring unit 1202 may be used to execute S502 of the blood pressure measurement method shown in FIG. 5 above.
  • the acquiring unit 1202 may also be used to execute S1002 of the blood pressure measurement method shown in FIG. 10.
  • the acquiring unit 1202 is also used to acquire a first pressure signal, which is a signal that the pressure value of the airbag changes with time from the time the air pump starts to inflate and pressurize the airbag until the pressure value of the airbag equals the preset pressure value.
  • a first pressure signal which is a signal that the pressure value of the airbag changes with time from the time the air pump starts to inflate and pressurize the airbag until the pressure value of the airbag equals the preset pressure value.
  • the acquiring unit 1202 may be used to execute S503 of the blood pressure measurement method shown in FIG. 5 above.
  • the acquiring unit 1202 may also be used to execute S1003 of the blood pressure measurement method shown in FIG. 10.
  • the determining unit 1203 is configured to determine the tightness of the wristband worn by the user according to the first pressure signal. Exemplarily, the determining unit 1203 may be used to execute S504 of the blood pressure measurement method shown in FIG. 5 above. The determining unit 1203 may also be used to execute S1004 of the blood pressure measurement method shown in FIG. 10 above.
  • the determining unit 1203 is also used to correct the blood pressure measurement value determined according to the second pressure signal according to the degree of tightness to determine the blood pressure value of the user.
  • the second pressure signal is the pressure of the airbag after the pressure value of the airbag exceeds the preset pressure value.
  • the determining unit 1203 may be used to execute S505 of the blood pressure measurement method shown in FIG. 5 above.
  • the determining unit 1203 may also be used to execute S1005 of the blood pressure measurement method shown in FIG. 10.
  • the determining unit 1203 is used to determine the pressure slope of the first pressure signal, where the pressure slope is the slope of the curve of the first pressure signal, and the pressure slope can be used to indicate that the wristband is The degree of tightness worn by the user.
  • the determining unit 1203 is further configured to correct the blood pressure measurement value according to the pressure slope of the first pressure signal to determine the blood pressure value.
  • the determining unit 1203 may be used to execute S504-S505 of the blood pressure measurement method shown in FIG. 5 above.
  • the determining unit 1203 is further configured to determine the compensation value according to the pressure slope of the first pressure signal and the mapping relationship, and the mapping relationship includes the mapping relationship between the pressure slope of the first pressure signal and the compensation value.
  • the determining unit 1203 is also used to correct the blood pressure measurement value by using the compensation value to determine the blood pressure value.
  • the determining unit 1203 determines that the pressure slope is greater than the first slope and less than the second slope, it corrects the blood pressure measurement value according to the pressure slope of the first pressure signal to determine the blood pressure value.
  • the device further includes a prompt unit 1204.
  • the control unit 1201 is further configured to control the air pump to stop inflating and pressurizing the airbag when it is determined that the pressure slope is less than the first slope.
  • the prompt unit 1204 is used to prompt the user to tighten the wristband.
  • the control unit 1201 is further configured to control the air pump to stop inflating and pressurizing the airbag when it is determined that the pressure slope is greater than the second slope.
  • the prompt unit 1204 is used to prompt the user to relax the wristband.
  • the determining unit 1203 is used to determine, according to the first pressure signal, the time that the airbag is inflated until the pressure value of the airbag is equal to the preset pressure value.
  • the pressure time is used to indicate that the wristband is The degree of tightness worn by the user.
  • the determining unit 1203 is also used to correct the blood pressure measurement value according to the pressurization time to determine the blood pressure value.
  • the determining unit 1203 may be used to execute S1004-S1005 of the blood pressure measurement method shown in FIG. 10.
  • the determining unit 1203 is further configured to determine the compensation value according to the pressurization time and the mapping relationship, and the mapping relationship includes the mapping relationship between the pressurization time and the compensation value.
  • the determining unit 1203 is also used to correct the blood pressure measurement value by using the compensation value to determine the blood pressure value.
  • the determining unit 1203 determines that the pressurization time is greater than the first time and less than the second time, it corrects the blood pressure measurement value according to the pressurization time to determine the blood pressure value.
  • the device further includes a prompt unit 1204.
  • the control unit 1201 is also used for controlling the air pump to stop inflating and pressurizing the airbag when it is determined that the pressurization time is less than the first time.
  • the prompt unit 1204 is used to prompt the user to tighten the wristband.
  • the control unit 1201 is further configured to control the air pump to stop inflating and pressurizing the airbag when it is determined that the pressurization time is greater than the second time.
  • the prompt unit 1204 is used to prompt the user to relax the wristband.
  • the disclosed device and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate, and the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. It includes several instructions to make a device (may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Physiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Dentistry (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本申请实施例公开了一种血压测量方法及电子设备,涉及电子设备领域,解决了由于佩戴松紧程度的不同导致的血压测量精度低的问题。具体方案为:电子设备接收第一输入,气泵向气囊充气加压;在控制气泵向气囊充气加压的过程中,电子设备获取气囊的压力值;电子设备获取第一压力信号,第一压力信号是从气泵开始向气囊充气加压至气囊的压力值等于预设压力值的过程中,气囊的压力值随时间变化的信号;电子设备根据第一压力信号确定腕带被用户佩戴的松紧程度;电子设备根据松紧程度,对根据第二压力信号确定的血压测量值进行修正,确定用户的血压值,第二压力信号是气囊的压力值超过预设压力值后,气囊的压力值随时间变化的信号。

Description

一种血压测量方法及电子设备
本申请要求于2019年9月30日提交国家知识产权局、申请号为201910940521.8、申请名称为“一种血压测量方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备领域,尤其涉及一种血压测量方法及电子设备。
背景技术
目前,电子血压计已经成为血压计的主流产品。市场上主流的电子血压计大多为上臂式电子血压计。这种电子血压计虽能满足用户血压测量的需求,但是从设备尺寸和重量方面来说是无法长期佩戴的。对于一些需要长期进行血压测量的需求(例如夜间血压测量、血压实时跟踪检测以及血压反馈控制等)无能为力。而这些需求恰恰又是有效防治高血压、预防脑卒中等突发疾病的重要手段,对于用户,尤其是高血压患者来说是刚性需求。
腕式血压计(如血压手表或血压腕带)由于具有更小的尺寸、更轻的重量,因此能够长期被用户佩戴,满足长期且实时对血压进行检测的需求。腕式血压计测量血压的基本原理为:腕式血压计被佩戴在用户腕部时,其包括的气囊与用户的桡动脉紧贴,可以认为气囊中的压力值近似等于桡动脉的压力值。腕式血压计通过检测气囊中的压力值便可确定用户的血压值。该血压值可以包括收缩压(systolic blood pressure,SBP)以及舒张压(diastolic blood pressure,DBP)。
在血压测量时,腕式血压计的佩戴松紧度会对血压测量的精确度产生非常明显的影响。例如,如果血压计佩戴过松,气囊中的压力值会大于桡动脉处的压力值,那么测量获取的血压值就会偏高。又如,如果血压计佩戴过紧,气囊中的压力值会小于桡动脉处的压力值,那么测量获取的血压值就会偏低。
发明内容
本申请实施例提供一种血压测量方法及电子设备,至少解决了由于佩戴松紧程度的不同导致的血压测量精度低的问题。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种血压测量方法,该方法可以应用于电子设备,通过电子设备的腕带,电子设备能够被佩戴在用户手腕上,该电子设备包括气囊和气泵。该方法可以包括:在电子设备被佩戴在用户手腕上时,电子设备控制气泵向气囊充气加压。在控制气泵向气囊充气加压的过程中,电子设备获取气囊的压力值。电子设备获取第一压力信号,第一压力信号是从气泵开始向气囊充气加压至气囊的压力值等于预设压力值的过程中,气囊的压力值随时间变化的信号。电子设备根据第一压力信号确定腕带被用户佩戴的松紧程度。电子设备根据松紧程度,对根据第二压力信号确定的血压测量值进行修正,确定用户的血压值,第二压力信号是气囊的压力值超过预设压力值后,气囊的压力值随时间变化的信号。
这样,电子设备通过对初始加压阶段的原始信号(即第一压力信号)的分析,确定用户佩戴松紧程度,并根据该松紧程度对血压的测量值进行修正,即将由于佩戴松紧程度的不同导致的血压测量结果的差异补偿到血压测量值中,以便提高血压测量精准度。
在一种可能的设计中,电子设备根据第一压力信号确定腕带被用户佩戴的松紧程度,包括:电子设备确定第一压力信号的加压斜率,加压斜率是第一压力信号的曲线的斜率,加压斜率用于表示腕带被用户佩戴的松紧程度。电子设备根据松紧程度,对根据第二压力信号确定的血压测量值进行修正,确定用户的血压值,包括:电子设备根据第一压力信号的加压斜率,对血压测量值进行修正,确定血压值。这样,根据初始加压阶段的原始信号(即第一压力信号)的曲线的斜率对佩戴松紧程度进行量化,进而根据该斜率的大小对血压测量值进行对应的补偿,以获取更加准确的血压值。
在一种可能的设计中,电子设备根据第一压力信号的加压斜率,对血压测量值进行修正,确定血压值,包括:电子设备根据第一压力信号的加压斜率与映射关系确定补偿值,映射关系包括第一压力信号的加压斜率与补偿值的映射关系。电子设备采用补偿值对血压测量值进行修正,确定血压值。这样,电子设备就可以根据加压斜率与映射关系确定当前佩戴松紧程度下需要对血压测量值补偿的值,以便电子设备根据该需要对血压测量值补偿的值对血压测量值进行修正。
在一种可能的设计中,电子设备根据第一压力信号的加压斜率,对血压测量值进行修正,确定血压值,包括:电子设备在确定加压斜率大于第一斜率且小于第二斜率时,根据第一压力信号的加压斜率,对血压测量值进行修正,确定血压值。这样,电子设备可以确定当前血压测量中的加压斜率在预设的能够较为准确地补偿血压测量值的范围(如第一斜率到第二斜率之间)之内,则根据该加压斜率对血压测量值的修正就可以更加准确地获取用户的血压值。
在一种可能的设计中,方法还包括:电子设备在确定加压斜率小于第一斜率时,控制气泵停止向气囊充气加压,提示用户勒紧腕带。电子设备确定加压斜率大于第二斜率,电子设备控制气泵停止向气囊充气加压,提示用户放松腕带。这样,电子设备就可以确定当前佩戴状态下,佩戴松紧过松或者佩戴过紧,即使对测量结果进行补偿也不能获取较为准确的血压值,则电子设备停止此次测量,提示用户勒紧或者放松腕带,使得佩戴松紧程度可以被调整到能够较为准确的测量血压的范围内。
在一种可能的设计中,电子设备根据第一压力信号确定腕带被用户佩戴的松紧程度,包括:电子设备根据第一压力信号,确定气囊从开始加压至气囊的压力值等于预设压力值的加压时间,加压时间用于表示腕带被用户佩戴的松紧程度。电子设备根据松紧程度,对根据第二压力信号确定的血压测量值进行修正,确定用户的血压值,包括:电子设备根据加压时间,对血压测量值进行修正,确定血压值。这样,根据第一压力信号的曲线的加压时间,也就是气囊中的压力值从开始加压到到达预设压力所耗费的时间,对佩戴松紧程度进行量化,进而根据该时间的大小对血压测量值进行对应的补偿,以获取更加准确的血压值。
在一种可能的设计中,电子设备根据加压时间,对血压测量值进行修正,确定血压值,包括:电子设备根据加压时间与映射关系确定补偿值,映射关系包括加压时间与补偿值的映射关系。电子设备采用补偿值对血压测量值进行修正,确定血压值。这样,电子设备就可以根据加压时间与映射关系确定当前佩戴松紧程度下需要对血压测量值补偿的值,以便电子设备根据该需要对血压测量值补偿的值对血压测量值进行修正。
在一种可能的设计中,电子设备根据加压时间,对血压测量值进行修正,确定血压值,包括:电子设备在确定加压时间大于第一时间且小于第二时间时,根据加压时间,对血压测量值进行修正,确定血压值。这样,电子设备就可以确定当前佩戴状态下,能够根据佩戴松紧程度(如加压时间)对血压测量值进行较为准确的补偿。
在一种可能的设计中,该方法还包括:电子设备在确定加压时间小于第一时间时,控制气泵停止向气囊充气加压,提示用户勒紧腕带。电子设备在确定加压时间大于第二时间时,控制气泵停止向气囊充气加压,提示用户放松腕带。这样,电子设备就可以确定当前佩戴状态下,佩戴松紧过松或者佩戴过紧,即使对测量结果进行补偿也不能获取较为准确的血压值,则电子设备停止此次测量,提示用户勒紧或者放松腕带,使得佩戴松紧程度可以被调整到能够较为准确的测量血压的范围内。
第二方面,本申请实施例提供一种电子设备。通过电子设备的腕带,该电子设备能够被佩戴在用户手腕上,该电子设备包括微控制单元MCU、压力传感器、气囊以及气泵。其中,MCU,用于在电子设备被佩戴在用户手腕上时,控制气泵向气囊充气加压。压力传感器,用于在控制气泵向气囊充气加压的过程中,获取气囊的压力值。MCU,还用于获取第一压力信号,第一压力信号是从气泵开始向气囊充气加压至气囊的压力值等于预设压力值的过程中,气囊的压力值随时间变化的信号。MCU,还用于根据第一压力信号确定腕带被用户佩戴的松紧程度。MCU,还用于根据松紧程度,对根据第二压力信号确定的血压测量值进行修正,确定用户的血压值,第二压力信号是气囊的压力值超过预设压力值后,气囊的压力值随时间变化的信号。
在一种可能的设计中,MCU,还用于根据第一压力信号确定腕带被用户佩戴的松紧程度,包括:MCU,用于确定第一压力信号的加压斜率,加压斜率是第一压力信号的曲线的斜率,加压斜率用于表示腕带被用户佩戴的松紧程度。MCU,还用于根据松紧程度,对根据第二压力信号确定的血压测量值进行修正,确定用户的血压值,包括:MCU,用于根据第一压力信号的加压斜率,对血压测量值进行修正,确定血压值。
在一种可能的设计中,MCU,用于根据第一压力信号的加压斜率,对血压测量值进行修正,确定血压值,包括:MCU,用于根据第一压力信号的加压斜率与映射关系确定补偿值,映射关系包括第一压力信号的加压斜率与补偿值的映射关系。MCU,还用于采用补偿值对血压测量值进行修正,确定血压值。
在一种可能的设计中,MCU,用于根据第一压力信号的加压斜率,对血压测量值进行修正,确定血压值,包括:MCU在确定加压斜率大于第一斜率且小于第二斜率时,根据第一压力信号的加压斜率,对血压测量值进行修正,确定血压值。
在一种可能的设计中,MCU,还用于在确定加压斜率小于第一斜率时,控制气泵停止向气囊充气加压,提示用户勒紧腕带。MCU,还用于在确定加压斜率大于第二斜率时,控制气泵停止向气囊充气加压,提示用户放松腕带。
在一种可能的设计中,MCU,还用于根据第一压力信号确定腕带被用户佩戴的松紧程度,包括:MCU,用于根据第一压力信号,确定气囊从开始加压至气囊的压力值等于预设压力值的加压时间,加压时间用于表示腕带被用户佩戴的松紧程度。MCU,还用于根据松紧程度,对根据第二压力信号确定的血压测量值进行修正,确定用户的血压值,包括:MCU,用于根据加压时间,对血压测量值进行修正,确定血压值。
在一种可能的设计中,MCU,用于根据加压时间,对血压测量值进行修正,确定血压值,包括:MCU,用于根据加压时间与映射关系确定补偿值,映射关系包括加压时间与补偿值的映射关系。MCU,还用于采用补偿值对血压测量值进行修正,确定血压值。
在一种可能的设计中,MCU,用于根据加压时间,对血压测量值进行修正,确定血压值,包括:MCU在确定加压时间大于第一时间且小于第二时间时,根据加压时间,对血压测量值进行修正,确定血压值。
在一种可能的设计中,MCU,还用于在确定加压时间小于第一时间时,控制气泵停止向气囊充气加压,提示用户勒紧腕带。MCU,还用于在确定加压时间大于第二时间时,控制气泵停止向气囊充气加压,提示用户放松腕带。
第三方面,本申请实施例提供一种电子设备,该电子设备可以包括处理器,用于与存储器相连,调用存储器中存储的程序,以执行如第一方面或第一方面的可能的实现方式中任一的血压测量方法。
第四方面,本申请实施例提供一种计算机可读存储介质,包括:计算机软件指令。当计算机软件指令在电子设备中运行时,使得电子设备执行如第一方面或第一方面的可能的实现方式中任一种的血压测量方法。
第五方面,本申请实施例提供一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行如第一方面或第一方面的可能的实现方式中任一种的血压测量方法。
第六方面,本申请实施例提供一种装置,该装置具有实现上述第一方面的方法中电子设备行为的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块,例如,控制单元或模块,确定单元或模块,获取单元或模块,提示单元或模块等。
可以理解地,上述提供的第二方面和第三方面的电子设备,上述提供的第四方面的计算机可读存储介质,第五方面的计算机程序产品以及第六方面的装置均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为现有技术提供的一种血压测量方法示意图;
图2为本申请实施例提供的一种电子设备的组成示意图;
图3为本申请实施例提供的一种电子设备的产品形态示意图;
图4为不同佩戴松紧度下初始加压阶段的原始信号的波形对比示意图;
图5为本申请实施例提供的一种血压测量方法的流程示意图;
图6为本申请实施例提供的一种触发血压测量的方法示意图;
图7为本申请实施例提供的一种加压斜率的计算方法示意图;
图8为本申请实施例提供的一种提示用户对佩戴松紧程度进行调整的示意图;
图9为本申请实施例提供的一种SBP补偿值与加压斜率的映射关系示意图;
图10为本申请实施例提供的又一种血压测量方法的流程示意图;
图11为本申请实施例提供的一种SBP补偿值与加压时间的映射关系示意图;
图12为本申请实施例提供的一种电子设备的逻辑组成示意图。
具体实施方式
腕式血压计可以满足用户对血压进行实时测量的需求,因而逐渐被广泛的使用。腕式血压计主要由气囊、气泵和压力传感器组成。在测量血压时,腕式血压计控制气泵向气囊充气,使得气囊加压膨胀,压迫腕部的桡动脉。由于气囊与用户的桡动脉紧贴,因此,腕式血压计可以通过压力传感器监测气囊的压力实现对桡动脉附近压力值的检测,进而实现对用户血压的测量。
示例性的,气囊在充气升压的过程中,腕式血压计中的压力传感器可实时检测到气囊的实时压力。腕式血压计根据实时压力可生成如图1中的原始信号。如图1所示,在初始加压阶段,气囊中的压力值与用户桡动脉的压力值还有一定差距,所以在原始信号中表现为平滑上升。而在初始加压阶段结束之后,气囊中的压力值与用户桡动脉的压力值比较接近,所以在原始信号中(如图1所示脉搏波出现阶段)就会出现细微但连续波动的脉搏波信号。腕式血压计通过分析该原始信号,可获取线性变化的静压力信号以及波动的具有特征信息的脉搏波信号,进而根据静压力信号和脉搏波信号的特征信息确定用户血压。
需要说明的是,上述过程是以气囊内的气压等同于压迫桡动脉处的压力为前提,通过获取气囊内气压的变化来提取桡动脉处的脉搏波信号,进而确定用户血压的。但实际情况中,当腕式血压计的佩戴松紧度不同时,气囊内的气压并不一定与压迫桡动脉处的压力值相同。
示例性的,如果佩戴松紧度适中,气囊紧贴腕部但又不受力,这样气囊膨胀的压力基本全部传递到对腕部的压迫上,此时,气囊的压力值与桡动脉的压力值近似相同,腕式血压计测量所获得的脉搏波信号能够准确的体现用户的血压,这样血压测量的结果比较准确。
如果腕式血压计佩戴过松,气囊没有贴近腕部。那么,在加压的过程中气囊会膨胀一部分才会贴住腕部皮肤,将压力传导至对桡动脉的压迫上。而气囊膨胀需要一定的压力,导致气囊内的压力大于压迫桡动脉的压力。这样,腕式血压计获取的脉搏波信号会整体向高压方向偏移,这就会导致测量得到的血压高于实际血压。例如,通过实验证明,如果腕带佩戴比正常松紧程度松5mm,脉搏波的峰值压力的平均值就会从113.4mmHg变为135.9mmHg,偏移了超过20mmHg。也就是说腕带佩戴过松会导致根 据脉搏波的峰值压力计算获取的血压值的明显偏差。
如果腕式血压计佩戴过紧,在还没有开始加压测量时,腕带绑缚气囊就已经对腕部施加了压力,压迫了桡动脉。这样在加压的过程中,气囊内的压力要小于压迫桡动脉的压力,脉搏波信号会整体向低压方向偏移,这就会导致测量得到的血压低于实际血压。
也就是说,腕式血压计的佩戴松紧度会对血压测量的精确度产生非常明显的影响。为了减小佩戴松紧度对测量结果的影响,用于将腕式血压计佩戴在用户手腕上的腕带中,可以设置具有类椭圆形环形结构的硬质支撑。该具有硬质支撑的腕带中间设置豁口,气囊粘贴在硬质支撑上。佩戴血压手表时,硬质支撑卡在手腕处,使得气囊紧贴腕部且不对腕部施加压力,以保证气囊中的压力值与桡动脉的压力值保持一致。然而,由于手腕尺寸的个体差异,硬质支撑的规格尺寸也不能很好适用于不同用户,由此并不能保证气囊贴紧腕部的同时不对腕部施加压力,同时用户佩戴时也会产生明显的手腕不适。
为解决上述问题,本申请实施例提供一种血压测量方法,该方法可以应用于电子设备,该电子设备可以通过腕带佩戴在用户手腕上进行血压的测量。电子设备可以根据采集到的初始加压阶段的原始信号,判断佩戴的松紧程度,并根据松紧程度对测量出来的血压值进行修正。这样至少可以解决由于佩戴松紧程度的不同导致的血压测量精度低的问题。
下面将结合附图对本申请实施例的实施方式进行详细描述。
示例性的,本申请实施例中的电子设备可以是手机、平板电脑、桌面型、膝上型、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本,以及蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备,可穿戴设备(如智能手表,腕式血压计(如血压手表或血压腕带))等具备血压测量功能的设备,本申请实施例对该设备的具体形态不作特殊限制。
请参考图2,为本申请实施例提供的一种电子设备的组成示意图。
如图2所示,电子设备200可以包括微控制单元(Micro-Controller Unit,MCU)201,存储单元202,气泵203,气囊204以及压力传感器205。这些部件可通过通信线路206连接。电子设备200还包括腕带207,用户通过腕带207可将电子设备200佩戴在手腕上。
在本实施例中,MCU 201可以用于控制和处理信息,负责信号检测和对其他部件进行控制。
存储单元202可以用于存储预设压力值。该预设压力值是脉搏波信号出现时气囊的可能压力值,可根据大量用户的样本数据确定。电子设备200根据该预设压力值可以确定脉搏波信号是否会出现。在一些实施例中,存储单元202还可以用于存储预设的第一斜率和第二斜率,以便电子设备200可以根据该第一斜率和第二斜率确定佩戴松紧度可以被量化的范围。在其他一些实施例中,存储单元202还可用于存储预设的第一时间和第二时间,该第一时间和第二事件可以为电子设备200提供确定佩戴松紧度可以被量化的范围。
气泵203可以在MCU 201的控制下,对气囊204进行充气加压或对气囊204进行放气。
气囊204可以由聚氯乙烯或硅胶构成。在不充气的情况下气囊204呈扁平状,一旦往气囊204中充气,气囊204就会慢慢鼓胀起来,压迫手腕部的桡动脉,此时,气囊204的压力值的变化与手腕部的桡动脉的脉动可以形成对应的关系。气囊204上至少设置有两个连接孔,其中,一个连接孔(如称为连接孔1)可以用于连接气泵203,以实现气囊204的充气或放气,另一个连接孔(如称为连接孔2)可以用于连接压力传感器205,以实现压力传感器205对于气囊204的压力值的实时拾取。
可以理解的是,由于压力传感器205是通过连接孔2与气囊204连接的,因此,压力传感器205拾取的压力值严格上来说是,连接孔2处气囊204的压力值。而气囊204中,用于连接气泵203的连接孔1附近的压力值较大,而远离该连接孔1的区域的压力值则相对较小。但是,由于气囊204的尺寸比较小,气囊204中的压力值分布差异也不会很大,因此,本申请实施例中,可以认为气囊204中的压力值是均匀分布的。也就是说,在本实施例中,可以认为压力传感器205拾取的连接孔2处气囊204的压力值即为气囊204的压力值。
其中,MCU 201也可以称为处理器,其可以包括一个或多个处理单元,例如:可以包括应用处理器(application processor,AP),图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。示例性的,MCU 201可以接收压力传感器205传送的气囊204中的压力值,并根据该压力值与时间的关系确定压力信号,如确定第一压力信号或第二压力信息号。
存储单元202也可以称为内部存储器,可以用于存储电子设备可执行程序代码,所述可执行程序代码包括指令。MCU 201通过运行存储在存储单元202的指令,从而执行电子设备的各种功能应用以及数据处理。例如,在本申请实施例中,MCU 201可以通过执行存储在存储单元202中的指令,在接收到测量血压的操作后,作为对该操作的响应,执行相应的事件,例如,MCU 201可以根据气囊204中的压力值达到预设压力值之前采集到的初始加压阶段的原始信号的曲线的斜率或时间量化佩戴松紧度,并根据该佩戴松紧度对血压测量值进行修正。存储单元202可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备使用过程中所创建的数据(比如压力信号等)等。此外,存储单元202可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
可以理解的是,本实施例示意的各模块间的连接关系,只是示意性说明,并不构成对电子设备的结构限定。在另一些实施例中,电子设备也可以采用上述实施例中不同的连接方式,或多种连接方式的组合。
另外,本实施例示意的结构并不构成对电子设备的具体限定。在另一些实施例中, 电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
例如,电子设备还可以包括以下模块中的一个或多个:充电管理模块用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块可以通过USB接口接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块可以通过电子设备的无线充电线圈接收无线充电输入。充电管理模块为电子设备的电池充电的同时,还可以通过电源管理模块为电子设备供电。
电源管理模块用于连接电子设备的电池。电源管理模块接收电池和/或充电管理模块的输入,为MCU 201,存储单元202,气泵控制单元等供电。电源管理模块还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块也可以设置于处理器中。在另一些实施例中,电源管理模块和充电管理模块也可以设置于同一个器件中。
电子设备还可具备无线通信功能。其的无线通信功能可以通过天线1,天线2,移动通信模块,无线通信模块,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块可以提供应用在电子设备上的包括第3代移动通信技术(The 3rd Generation Telecommunication,3G)/第4代移动通信技术(The 4rd Generation Telecommunication,4G)/第5代移动通信技术(The 5rd Generation Telecommunication,5G)等无线通信的解决方案。移动通信模块可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块的至少部分功能模块可以被设置于处理器中。在一些实施例中,移动通信模块的至少部分功能模块可以与处理器的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器可通过电子设备的音频设备(不限于扬声器,受话器等)输出声音信号,或通过电子设备的显示屏显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器,与移动通信模块或其他功能模块设置在同一个器件中。
无线通信模块可以提供应用在电子设备上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency  modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器。无线通信模块还可以从处理器接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备的天线1和移动通信模块耦合,天线2和无线通信模块耦合,使得电子设备可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备还可具备显示功能。例如,可通过GPU,显示屏,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏用于显示图像,视频等。显示屏包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备可以包括1个或N个显示屏,N为大于1的正整数。
电子设备还可具备拍摄功能,例如,其可以通过ISP,摄像头,视频编解码器,GPU,显示屏以及应用处理器等实现拍摄功能。
ISP用于处理摄像头反馈的数据。摄像头用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备可以包括1个或N个摄像头,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备可以支持一种或多种视频编解码器。这样,电子设备可以播放或录制多种编码格式的视频,例如:动态图像专 家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
电子设备还可包括外部存储器接口,可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备的存储能力。外部存储卡通过外部存储器接口与处理器通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
电子设备还可实现音频功能,如可以通过音频模块,扬声器,受话器,麦克风,耳机接口,以及应用处理器等实现音频功能。例如音乐播放,录音等。
电子设备除了包括上述压力传感器205外,还可以包括以下传感器中的一个或多个:陀螺仪传感器可以用于确定电子设备的运动姿态。在一些实施例中,可以通过陀螺仪传感器确定电子设备围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器可以用于拍摄防抖。陀螺仪传感器还可以用于导航,体感游戏场景。压力传感器用于测量气压。在一些实施例中,电子设备通过压力传感器测得的气压值计算海拔高度,辅助定位和导航。磁传感器包括霍尔传感器。电子设备可以利用磁传感器检测翻盖皮套的开合。加速度传感器可检测电子设备在各个方向上(一般为三轴)加速度的大小。当电子设备静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。距离传感器,用于测量距离。电子设备可以通过红外或激光测量距离。接近光传感器可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备通过发光二极管向外发射红外光。电子设备使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备附近有物体。当检测到不充分的反射光时,电子设备可以确定电子设备附近没有物体。环境光传感器用于感知环境光亮度。电子设备可以根据感知的环境光亮度自适应调节显示屏亮度。指纹传感器用于采集指纹。电子设备可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。温度传感器用于检测温度。触摸传感器,也称“触控面板”。触摸传感器可以设置于显示屏,由触摸传感器与显示屏组成触摸屏,也称“触控屏”。触摸传感器用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器也可以设置于电子设备的表面,与显示屏所处的位置不同。骨传导传感器可以获取振动信号。在一些实施例中,骨传导传感器可以获取人体声部振动骨块的振动信号。骨传导传感器也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器也可以设置于耳机中,结合成骨传导耳机。音频模块可以基于所述骨传导传感器获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器获取的血压跳动信号解析心率信息,实现心率检测功能。
电子设备还可包括指示器,如可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。SIM卡接口用于连接SIM卡。SIM卡可以 通过插入SIM卡接口,或从SIM卡接口拔出,实现和电子设备的接触和分离。电子设备可以支持1个或N个SIM卡接口,N为大于1的正整数。
本申请实施例中,图2所示的电子设备可以以多种形态实现。示例性的,请参考图3,为本申请实施例提供的一种电子设备的产品形态示意图。如图3所示,以电子设备为血压手表为例。其中,图3中的(a)示出了该血压手表的正视图,图3中的(b)则示出了该血压手表的侧视图。该血压手表可以包括表体310,腕带320以及气囊330。
表体310上可以设置有一个或多个实体按键311。用户通过对该实体按键311进行操作,可以触发血压手表执行对应事件。例如,在一些实施例中,该一个或多个实体按键311中至少包括一个实体按键用于触发血压手表开始测量血压。当用户对该实体按键进行操作,如按下该实体按键后,血压手表开始测量血压。表体310上也可以不设置实体按键311。
表体310上还可以设置有显示屏312。该显示屏312可以用于向用户展示相关信息,如血压测量结果,又如提示用户对血压手表的佩戴进行调整等。该显示屏312可以为触摸屏,用户能够通过显示屏312输入相关操作。例如,在一些实施例中,用户可以在显示屏312中输入相关操作,如点击显示屏312上显示的图标(该图标可以为血压手表中安装的用于血压测量的应用的图标,或者其他能够触发血压手表测量血压的图标),以触发血压手表开始测量血压。
腕带320可以用于将血压手表绑缚在用户手腕上。腕带302内侧设置有气囊330。当用户通过腕带320将血压手表佩戴在手腕上时,气囊330会与用户桡动脉贴合,当气囊330被充气,其压力值接近用户桡动脉处的压力值时,血压手表就可以根据气囊330中的压力值的变化情况测量用户桡动脉处的压力值,从而确定出用户的血压值。
以下实施例中的方法均可以在具有上述硬件结构的电子设备中实现。以下以电子设备为腕式血压计(如血压手表)为例进行说明。
一般来说,在测量血压时,血压手表佩戴松紧度的不同会对初始加压阶段的原始信号产生显著影响。请参考图4,为不同佩戴松紧度下初始加压阶段的原始信号的波形对比示意图。其中,初始加压阶段的原始信号是气囊中气压值小于或等于预设压力值(如20mmHg)时测量获取的加压信号。如图4中的(a)所示,当血压手表佩戴较紧时,由于气囊已经紧贴皮肤,而且已经受力,气囊膨胀遇到的阻力很大,导致充入少量气体就会使气囊内压力陡然上升,因此得到的初始加压时段的原始信号加压速率快,信号持续时间短。如图4中的(b)所示,当血压手表佩戴松紧度较为合适时,气囊中的压力值会随着气体的充入以较为平缓的曲线上升,信号持续时间相对较长。如图4中的(c)所示,当血压手表佩戴较松时,气囊需要先膨胀至贴近皮肤,继续膨胀后才会对皮肤施压。而气囊膨胀的阻力要远小于接触皮肤后的阻力,因此得到的初始加压时段的原始信号加压速率较慢,持续时间较长。
其中,初始加压阶段可以为气囊中的压力值小于预设压力值的加压阶段。
示例性的,该预设压力值可以根据脉搏波信号出现时的气囊可能的压力值确定。在血压手表控制气泵开始对气囊充气加压直至气囊中的压力值达到预设压力值的过程中,由于气囊给桡动脉施加的压力较小,对桡动脉没有起到明显的压迫效果。因此,在该段时间内,在原始信号中是提取不出脉搏波信号的,则该段时间内的原始信号近 似于线性上升。当然,脉搏波信号出现的时间因人而异,并不是一定的。但是,通过大量用户的样本数据可以确定,在某一特定的压力值下,绝大部分用户测量血压时采集到的原始信号中是不会出现脉搏波信号的,则该压力值就可以被设置为预设压力值。
本申请实施例提供的一种血压测量方法,从初始加压阶段的原始信号的波形中获取波形曲线的加压斜率,并将加压斜率作为量化佩戴松紧度的物理量,同时根据初始加压阶段的原始信号波形曲线的加压斜率与血压测量数值补偿值的映射关系,确定此次血压测量过程中的补偿值,并根据该补偿值对血压测量值进行修正以获取更加准确的血压值。
请参考图5,为本申请实施例提供的一种血压测量方法的流程示意图,如图5所示,该方法可以包括S501-S505。
S501、血压手表接收第一输入,气泵向气囊充气加压。
示例性的,当用户需要通过佩戴在手腕上的血压手表进行血压测量时,可以输入对应操作(如第一输入),以触发血压手表开始测量血压。例如,请参考图6,当用户使用如图6中的(a)所示的血压手表进行血压测量时,用户可以按下设置在血压手表上的实体按键311-1,以触发血压手表开始测量血压。又如,当用户使用如图6中的(b)所示的带有触控功能的显示屏312的血压手表进行血压测量时,用户可以触摸血压手表的显示屏312上的“血压测量”图标,以触发血压手表开始测量血压。其中,“血压测量”图标是血压手表中安装的用于血压测量的应用的图标。血压手表在接收到该操作后,可以控制气泵向气囊充气加压,以开始测量血压。
S502、在控制气泵向气囊充气加压的过程中,血压手表获取气囊的压力值。
血压手表在控制气泵向气囊充气加压的过程中,可以实时监测气囊中压力值的变化。
示例性的,结合图2,在控制气泵向气囊充气加压的过程中,压力传感器205可实时获取气囊204中的压力值,并上报给MCU 201,以便MCU 201对气囊204中的压力值的变化进行实时监测。在一些实施例中,还可将压力传感器205获取到的压力值存储在存储单元202中,用于后续确定用户的血压。
S503、血压手表获取第一压力信号,第一压力信号是从气泵开始向气囊充气加压至气囊的压力值等于预设压力值的过程中,气囊的压力值随时间变化的信号。
其中,预设压力值可以是预置在血压手表中的,也可以是用户配置的。第一压力信号可以是如图1所示的初始加压阶段的原始信号。
示例性的,血压手表可以从向气囊充气开始,检测气囊中的压力值是否达到预设压力值。当气囊中的压力值达到预设压力值时,血压手表就可以将从开始向气囊充气直至气囊中的压力值达到预设压力值为止,期间检测到的原始信号作为第一压力信号。例如,预设压力值可以在20-30mmHg范围内。在本申请实施例中,该预设压力值可以为20mmHg。则第一压力信号就可以是血压手表从开始对气囊充气到气囊中的压力值到达20mmHg之间检测到的原始信号。
S504、血压手表确定第一压力信号的加压斜率,该加压斜率用于表示腕带被用户佩戴的松紧程度。
腕带被用户佩戴在手腕上的松紧程度是一个主观的概念,并没有统一的物理量可以用于衡量该松紧程度。而根据图4,第一压力信号曲线的加压斜率可以体现腕带被用户佩戴的松紧程度,因此,在本申请实施例中,可采用加压斜率作为衡量腕带被用户佩戴在手腕上的松紧程度的物理量。其中,加压斜率可以通过多种方法确定。
在一些实施例中,可以采用第一压力信号的曲线的平均斜率作为加压斜率。
示例性的,血压手表可以根据如下公式(1)计算获取平均斜率。
K ave=A/B……公式(1)
其中,K ave为第一压力信号的曲线的平均斜率,A为第一压力信号的曲线上的最大压力,即预设压力值,B为从开始向气囊充气加压到气囊中的压力值达到预设压力值的时长,即加压时间。这样,血压手表可以将根据第一压力信号确定出的K ave作为加压斜率。
在另一些实施例中,可以采用第一压力信号的曲线上的最大瞬时斜率作为加压斜率。
示例性的,血压手表可以在第一压力信号的曲线上任意选取多个点,如P 1-P n,n是大于1的整数,分别计算这n个点处的瞬时斜率,并将最大的瞬时斜率作为加压斜率。其中,瞬时斜率可以根据公式(2)计算获取。
K n=A n/B n……公式(2)
其中,K n为第n个点的瞬时斜率,A n为第n个点的压力值,B n为第n个点对应的时间。
例如,如图7所示,取n=4,在第一压力信号的曲线上,分别选取P 1-P 4共4个点。血压手表确定第一压力信号的曲线上上,P 1点的压力值为A 1,对应的时间为B 1,那么根据公式(1),P 1点的瞬时斜率K 1就可以为A 1/B 1。类似的,P 2点的压力值为A 2,对应的时间为B 2,则P 2点的瞬时斜率为A 2/B 2。P 3点的压力值为A 3,对应的时间为B 3,则P 3点的瞬时斜率为A 3/B 3。P 4点的压力值为A 4,对应的时间为B 4,则P 4点的瞬时斜率为A 4/B 4。这样血压手表可以从K 1、K 2、K 3和K 4中选取最大值作为加压斜率。
在另一些实施例中,可以采用第一压力信号的曲线上的多个相邻点之间曲线的平均斜率中较大的几个斜率的平均值作为加压斜率。
示例性的,血压手表可以在第一压力信号的曲线上任意选取多个点,如P 1-P n,n是大于1的整数。血压手表分别计算这n个点中,相邻两个点之间曲线的平均斜率,对获取的多个斜率由大到小进行排序,取前m个斜率求平均值,其中,m为小于n的正整数。那么该平均斜率就可以被作为加压斜率。相邻两个点之间曲线的平均斜率可以由如下公式(3)计算获得。
K i=(B i+1-B i)/(A i+1-A i)……公式(3)
其中,K i为n个点中,第i个点与第i+1个点之间曲线的平均斜率,B i+1为第i+1个点的压力值,B i为第i个点的压力值,A i+1为第i+1个点对应的时间,A i为第i个点对应的时间。
当采用多个点的瞬时斜率或者多个点之间的斜率确定加压斜率时,取点越多,最终获取的结果也就越精确。在实际实施过程中,对于取点的多少可以根据需要灵活选取,本申请实施例在此不做限制。
在本申请实施例中,采用第一压力信号的曲线的平均斜率作为加压斜率的方法,计算过程简单,只需要进行一次计算就可确定当前血压测试过程中的加压斜率,不会给血压手表造成过大处理负担。采用第一压力信号的曲线上的最大瞬时斜率作为加压斜率的方法,由于不同腕型、不同腕围的用户在血压测量时,第一压力信号的曲线的平均斜率可能差异不大,但其最大瞬时斜率会存在较大差异,因此,对于不同腕型、不同腕围的用户而言,可将最大瞬时斜率作为加压斜率,以便血压手表能够准确地对佩戴松紧度进行量化。采用第一压力信号的曲线上的多个相邻点之间曲线的平均斜率中较大的几个斜率的平均值作为加压斜率的方法,能够避免第一压力信号的曲线上个别点位置的瞬时斜率异常(如数据采集有误等)导致的对佩戴松紧度量化不准确的情况发生。在实际应用中,可以根据需要灵活选取,本申请实施例在此不做限制。
另外,需要说明的是,经过大量实验,可以得到以下结论:将佩戴松紧度量化为加压斜率是有一个线性量化的空间的,即只有腕带被佩戴在用户手腕上,其佩戴松紧度处于一定区间内时,采用加压斜率量化佩戴松紧程度的方法是比较准确的。在这个区间内,加压斜率与由佩戴松紧度造成的血压测量偏移会保持一种线性关系。但是超过这个区间,这种线性关系就被打破,也无法根据加压斜率准确地量化佩戴松紧程度,进而反推血压的偏移。因此,在本申请实施例中,可以在血压手表中设置第一斜率和第二斜率,其中,第一斜率小于第二斜率。[第一斜率,第二斜率]就可以用于标定上述区间。其中,第一斜率和第二斜率可以是预置在血压手表中的,也可以是用户配置的。本申请实施例在此不做限制。本申请实施例中,第一斜率以及第二斜率可以根据大量样本数据确定,并预置在血压手表中,也可以是用户根据实际情况设置的。
基于上述原因,当加压斜率不在[第一斜率,第二斜率]范围内时,根据加压斜率对血压测量值的修正就可能产生一些偏差,导致结果不够准确。因此,在一些设计中,可以根据加压斜率是否处于[第一斜率,第二斜率]范围内的不同情况(如加压斜率小于第一斜率,加压斜率大于第一斜率且小于第二斜率,或加压斜率大于第二斜率)进行不同的处理。
示例性的,在一些实施例中,血压手表可以在确定加压斜率之后,如果加压斜率大于第一斜率且小于第二斜率,则表明可以采用加压斜率对佩戴松紧度进行量化并据此对血压测量值进行修正,此时,可执行如下S505。
如果加压斜率小于第一斜率,则表明腕带佩戴过松,无法准确地根据加压斜率对佩戴松紧度进行量化,血压手表可停止此次测量。示例性的,当加压斜率小于第一斜率时,血压手表控制气泵停止向气囊充气,并提示用户此次测量血压手表佩戴过松, 需要勒紧腕带后重新开始测量。例如,如图8中的(a)所示,血压手表可以在显示屏312上显示提示信息,该提示信息可以为如图8中的(a)所示的文字信息,如“佩戴过松,请勒紧腕带,重新开始测量血压”。血压手表还可以在显示屏312上显示其他信息,如勒紧腕带的动态图像,用于提醒用户勒紧腕带,并重新开始血压测量。又如,血压手表包括马达。血压手表可以控制马达按照预先设置的频率震动,如进行较低频率的震动,以提示用户当前佩戴状态过于松弛,需要勒紧腕带并重新开始血压测量。又如,血压手表包括指示灯。血压手表可以控制指示灯按照预设的频次闪动,如进行较低频率的闪动,以提示用户当前佩戴状态过于松弛,需要勒紧腕带并重新开始血压测量。
如果加压斜率大于第二斜率,则表明腕带佩戴过紧,无法准确地根据加压斜率对佩戴松紧度进行量化,血压手表可停止此次测量。示例性的,当加压斜率大于第二斜率时,血压手表控制气泵停止向气囊充气,并提示用户此次测量血压手表佩戴过紧,需要放松腕带后重新开始测量。这样就可以避免佩戴过于松弛或者过于紧张导致的血压测量不准确的情况发生,同时提示用户对血压手表的佩戴进行相应的调整,以便能够准确地进行血压测量。例如,如图8中的(b)所示,血压手表可以在显示屏312上显示提示信息,该提示信息可以为如图8中的(b)所示的文字信息,如“佩戴过紧,请放松腕带,重新开始测量血压”,血压手表还可以在显示屏312上显示其他信息,如放松腕带的动态图像,用于提醒用户放松腕带,并重新开始血压测量。又如,血压手表包括马达。血压手表可以控制马达按照预先设置的频率震动,如进行较高频率的震动,以提示用户当前佩戴状态过于紧张,需要放松腕带并重新开始血压测量。又如,血压手表包括指示灯。血压手表可以控制指示灯按照预设的频次闪动,如进行较高频率的闪动,以提示用户当前佩戴状态过于紧张,需要放松腕带并重新开始血压测量。
S505、血压手表根据第一压力信号的加压斜率,对根据第二压力信号确定的血压测量值进行修正,确定用户的血压值,第二压力信号是气囊的压力值超过预设压力值后,气囊的压力值随时间变化的信号。
如图1所示,当气囊中的压力值超过预设压力值后,气囊中的压力值与用户的血压值已经比较接近,则血压手表在短时间内便可从原始信号中提取出脉搏波信号。即血压手表可以从气囊的压力值超过预设压力值后获取的第二压力信号中提取出脉搏波信号。
其中,脉搏波信号可以采用对原始信号进行滤波的方法得到,示例性的,可以采用巴特沃斯滤波器(Butterworth滤波器)或者有限冲激响应(Finite Impulse Response,FIR)滤波器对原始信号进行滤波以获取脉搏波信号。一般来说,提取出来的脉搏波信号的包络呈现先增大后减小的单峰特性,但也有少量用户的脉搏波包络呈现双峰或者其它波形。血压手表在获取脉搏波信号后,就可以从中提取相关特征信息,例如,该特征信息可以包括包络峰值压力、最大斜率静压力等。进一步的,血压手表就可以根据这些特征信息确定用户的血压测量值。
根据上述说明,该血压测量值会由于腕带在用户手腕上佩戴的松紧程度的不同而产生不同程度的偏移,本申请实施例提供的血压测量方法,可以根据量化的佩戴松紧 度(如加压斜率)对该血压测量值进行修正,以获取更加准确的血压值。
示例性的,当采用加压斜率量化佩戴松紧度时,可以根据加压斜率与补偿值之间的映射关系确定此次测量过程中的补偿值。即血压手表可以将根据第一压力信号确定的加压斜率对应的补偿值作为此次测量的补偿值,并根据该补偿值对血压测量值进行修正。
本申请实施例中,可以通过大量样本统计,获取SBP补偿值或DBP补偿值与加压斜率的映射关系。示例性的,该映射关系在血压手表中的实现可以是包括加压斜率与SBP补偿值或加压斜率与DBP补偿值的对应表,也可以是能够体现加压斜率与SBP补偿值或加压斜率与DBP补偿值之间对应关系的曲线。在血压测量过程中,血压手表可以根据SBP补偿值与加压斜率的映射关系,确定此次血压测量中加压斜率对应的SBP补偿值,并根据该SBP补偿值对SBP测量值进行修正。以下以映射关系为加压斜率与SBP补偿值之间对应关系构成的曲线为例进行说明。
如图9所示,当佩戴松紧程度在一定范围内(即没有佩戴过于松弛或者过于紧张)时,SBP补偿值与加压斜率存在近似正相关的关系。其中,血压手表佩戴处于松弛状态时,加压斜率较小,对应的补偿值为负。随着血压手表的佩戴松紧程度逐渐变得紧张,加压斜率逐渐变大,当血压手表佩戴处于紧张状态时,对应的补偿值为正。
例如,当血压手表确定加压斜率为0.7mmHg/s时,对应于图9所示曲线上的P1点,血压手表可以确定SBP的补偿值为-10。则说明由于佩戴过松,实际SBP值比测量SBP值低10mmHg。因此修正后的SBP就是测量SBP减去10mmHg。又如,当血压手表确定加压斜率为2.8mmHg/s时,对应于图9所示曲线上的P2点,血压手表可以确定SBP的补偿值为20。则说明由于佩戴过紧,实际SBP值比测量SBP值高20mmHg,因此修正后的SBP就是测量SBP加上20mmHg。
类似的,血压手表可以根据DBP补偿值与加压斜率的映射关系,确定此次血压测量中加压斜率对应的DBP补偿值,并根据该DBP补偿值对DBP测量值进行修正。
需要说明的是,气囊的材质不同、宽度不同和结构不同,对应的补偿值与加压斜率的映射关系都是不同的。在血压手表的设计阶段,可以在把血压手表的硬件规格确定之后,经过大样本的统计分析,得到与该硬件规格对应的DBP和SBP补偿值与加压斜率的映射关系。
这样,电子设备就根据第一压力信号的加压斜率对用户佩戴的松紧程度进行了量化,并根据该量化结果确定测量结果的补偿值,进而实现对测量结果进行补偿,以获取不受佩戴松紧程度差异影响的较为精确的血压测量值。另外,电子设备还根据量化的佩戴松紧程度(如加压斜率)是否在预设的区间内,确定是否存在佩戴过松或者过紧的问题,如果存在上述问题,就可以提示用户矫正佩戴问题,进一步提高血压测量的准确度。另外,由于佩戴松紧程度与每个用户的使用习惯以及感受强相关,因此通过固定的佩戴方法是无法准确适配所有用户的。而本申请实施例提供的血压测量方法,能够根据气囊中的压力值的变化对佩戴松紧程度进行量化,该方法根据当前用户腕型以及腕围下气囊中压力值的变化情况准确地判断当前佩戴松紧程度下对血压测量的影 响,能够适配不同腕型以及腕围的用户。
本申请实施例还提供的一种血压测量方法,电子设备可以确定气囊从开始加压到到达预设压力值的加压时间,并将加压时间作为量化佩戴松紧度的物理量。进一步的,根据加压时间与血压测量数值补偿值的映射关系,可以确定此次血压测量过程中的补偿值,血压手表可以根据该补偿值对血压测量值进行补偿以获得更加准确的用户血压值。
请参考图10,为本申请实施例提供的又一种血压测量方法的流程示意图,如图10所示,该方法可以包括S1001-S1005。
其中,S1001-S1003与图5中的S501-S503均一一相同,本实施例在此不做赘述。以下对存在差异的S1004和S1005进行详细说明。
S1004、血压手表确定气囊从开始加压至气囊的压力值等于预设压力值的加压时间,该加压时间用于表示腕带被用户佩戴的松紧程度。
腕带被用户佩戴在手腕上的松紧程度是一个主观的概念,并没有统一的物理量可以用于衡量该松紧程度。而用户佩戴腕带的松紧程度越是紧张,气囊中的压力值从开始加压到达到预设压力值的耗时(即加压时间)就越短,相反的,用户佩戴腕带的松紧程度于是松弛,加压时间就越长。因此,本申请实施例中,可以采用加压时间作为衡量腕带被用户佩戴在手腕上的松紧程度的物理量。
在一些实施例中,血压手表可以根据第一压力信号(即初始加压阶段的原始信号),确定第一压力信号从出现到结束的时长,此时长就是加压时间。
在另一些实施例中,血压手表也可以将气囊中的压力值达到预设压力值的时间与开始加压的时间之差作为加压时间。
另外,经过大量实验,可以得到与S503中类似的结论:只有腕带被佩戴在用户手腕上,其佩戴松紧度处于一定区间内时,采用加压时间量化佩戴松紧程度的方法是比较准确的。在这个区间内,加压时间与由佩戴松紧度造成的血压测量偏移会保持一种线性关系。但是超过这个区间,这种线性关系就被打破,也无法根据加压时间准确地量化佩戴松紧程度,进而反推血压的偏移。因此,本申请实施例中,可以在血压手表中设置第一时间和第二时间,用于标定上述区间。其中,第一时间和第二时间可以是预置在血压手表中的,也可以是用户配置的。本申请实施例在此不做限制。
因此,当加压时间不在[第一时间,第二时间]范围内时,根据加压时间对血压测量值的修正就可能产生一些偏差,导致结果不够准确。因此,在一些设计中,可以根据加压时间是否处于[第一时间,第二时间]范围内的不同情况(如加压时间小于第一时间,加压时间大于第一时间且小于第二时间,或加压时间大于第二时间)进行不同的处理。
在一些实施例中,血压手表可以在确定加压时间之后,判断加压时间大于第一时间且小于第二时间,则表明可以采用加压时间对佩戴松紧度进行量化,此时可执行如下S1005。
如果加压时间小于第一时间,则表明腕带佩戴过紧,无法准确地根据加压时间对 佩戴松紧度进行量化,血压手表可停止此次测量。示例性的,当加压时间小于第一时间时,血压手表控制气泵停止向气囊充气,并提示用户此次测量血压手表佩戴过紧,需要放松腕带后重新开始测量。
如果加压时间大于第二时间,则表明腕带佩戴过松,无法准确地根据加压时间对佩戴松紧度进行量化,血压手表可停止此次测量。示例性的,当加压时间大于第二时间时,血压手表控制气泵停止向气囊充气,并提示用户此次测量血压手表佩戴过松,需要勒紧腕带后重新开始测量。这样就可以避免佩戴过于松弛或者过于紧张导致的血压测量不准确的情况发生,同时提示用户对血压手表的佩戴进行相应的调整,以便能够准确地进行血压测量。
S1005、血压手表根据加压时间,对根据第二压力信号确定的血压测量值进行修正,确定用户的血压值,第二压力信号是气囊的压力值超过预设压力值后,气囊的压力值随时间变化的信号。
如上述S505中的描述,该血压测量值会由于腕带在用户手腕上佩戴的松紧程度的不同而产生不同程度的偏移,本申请实施例提供的血压测量方法,可以根据量化的佩戴松紧度(如加压时间)对该血压测量值进行修正,以获取更加准确的血压值。
示例性的,当采用加压时间量化佩戴松紧度时,可以根据加压时间与补偿值之间的映射关系确定此次测量过程中的补偿值。即血压手表可将加压时间对应的补偿值作为测量的补偿值,并根据该补偿值对血压测量值进行修正。
类似于S505中的说明,可以通过大量样本统计,获取SBP补偿值或DBP补偿值与加压时间的映射关系。示例性的,该映射关系在血压手表中的实现可以是包括加压时间与SBP补偿值或加压时间与DBP补偿值的对应表,也可以是能够体现加压时间与SBP补偿值或加压时间与DBP补偿值之间对应关系的曲线。在血压测量过程中,血压手表可以根据SBP补偿值与加压时间的映射关系,确定此次血压测量中加压时间对应的SBP补偿值,并根据该SBP补偿值对SBP测量值进行修正。以下以映射关系为加压时间与SBP补偿值之间对应关系构成的曲线为例进行说明。
示例性的,如图11所示,当佩戴松紧程度在一定范围内(即没有佩戴过于松弛或者过于紧张)时,SBP补偿值与加压时间存在近似正相关的关系。其中,血压手表佩戴处于紧张状态时,加压时间较小,对应的补偿值为负。随着血压手表的佩戴松紧程度逐渐变得松弛,加压时间逐渐变大,当血压手表佩戴处于较为松弛的状态时,对应的补偿值为正。
例如,当血压手表确定加压时间为0.8s时,对应于图11所示曲线中的P1点,血压手表可以确定SBP的补偿值为-8mmHg,则说明由于佩戴过紧,实际SBP值比测量SBP值高8mmHg,因此修正后的SBP就是测量SBP加上8mmHg。又如,当血压手表确定加压时间为2.7s时,对应于图11所示曲线的P2点,血压手表可以确定SBP的补偿值为17mmHg,则说明由于佩戴过松,实际SBP值比测量SBP值低17mmHg,因此修正后的SBP就是测量SBP减去17mmHg。
类似的,血压手表可以根据DBP补偿值与加压时间的映射关系,确定此次血压测 量中加压时间对应的DBP补偿值,并根据该DBP补偿值对DBP测量值进行修正。
需要说明的是,气囊的材质不同、宽度不同和结构不同,对应的补偿值与加压时间的映射关系都是不同的。在血压手表的设计阶段,可以在把血压手表的硬件规格确定之后,经过大样本的统计分析,得到与该硬件规格对应的DBP和SBP补偿值与加压时间的映射关系。
这样,电子设备就根据第一压力信号的加压时间对用户佩戴的松紧程度进行了量化,并根据该量化结果确定测量结果的补偿值,进而实现对测量结果进行补偿,以获取不受佩戴松紧程度差异影响的较为精确的血压测量值。另外,电子设备还根据量化的佩戴松紧程度(如加压时间)是否在预设的区间内,确定是否存在佩戴过松或者过紧的问题,如果存在上述问题,就可以提示用户矫正佩戴问题,进一步提高血压测量的准确度。
以上说明主要从电子设备的角度对本申请实施例提供的方案进行了介绍。可以理解的是,电子设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块,这些执行各个功能相应的硬件结构和/或软件模块可以构成一个电子设备。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对电子设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图12示出了上述实施例中涉及的电子设备的一种可能的组成示意图,如图12所示,该过电子设备包括:控制单元1201,获取单元1202,确定单元1203。
其中,控制单元1201,用于在电子设备被佩戴在用户手腕上时,控制电子设备的气泵向电子设备的气囊充气加压。示例性的,控制单元1201可以用于执行上述图5所示血压测量方法的S501。控制单元1201还可以用于执行上述图10所示血压测量方法的S1001。
获取单元1202,用于在控制气泵向气囊充气加压的过程中,获取气囊的压力值。示例性的,获取单元1202可以用于执行上述图5所示血压测量方法的S502。获取单元1202还可以用于执行上述图10所示血压测量方法的S1002。
获取单元1202,还用于获取第一压力信号,第一压力信号是从气泵开始向气囊充气加压至气囊的压力值等于预设压力值的过程中,气囊的压力值随时间变化的信号。示例性的,获取单元1202可以用于执行上述图5所示血压测量方法的S503。获取单元1202还可以用于执行上述图10所示血压测量方法的S1003。
确定单元1203,用于根据第一压力信号确定腕带被用户佩戴的松紧程度。示例性的,确定单元1203可以用于执行上述图5所示血压测量方法的S504。确定单元1203还可以用于执行上述图10所示血压测量方法的S1004。
确定单元1203,还用于根据松紧程度,对根据第二压力信号确定的血压测量值进行修正,确定用户的血压值,第二压力信号是气囊的压力值超过预设压力值后,气囊的压力值随时间变化的信号。示例性的,确定单元1203可以用于执行上述图5所示血压测量方法的S505。确定单元1203还可以用于执行上述图10所示血压测量方法的S1005。
在一种可能的设计中,确定单元1203,用于确定第一压力信号的加压斜率,其中,加压斜率是第一压力信号的曲线的斜率,该加压斜率可以用于表示腕带被用户佩戴的松紧程度。确定单元1203,还用于根据第一压力信号的加压斜率,对血压测量值进行修正,确定血压值。示例性的,确定单元1203可以用于执行上述图5所示血压测量方法的S504-S505。
在一种可能的设计中,确定单元1203,还用于根据第一压力信号的加压斜率与映射关系确定补偿值,映射关系包括第一压力信号的加压斜率与补偿值的映射关系。确定单元1203,还用于采用补偿值对血压测量值进行修正,确定血压值。
在一种可能的设计中,确定单元1203在确定加压斜率大于第一斜率且小于第二斜率时,根据第一压力信号的加压斜率,对血压测量值进行修正,确定血压值。
在一种可能的设计中,装置还包括提示单元1204。控制单元1201,还用于在确定加压斜率小于第一斜率时,控制气泵停止向气囊充气加压。提示单元1204,用于提示用户勒紧腕带。控制单元1201,还用于在确定加压斜率大于第二斜率时,控制气泵停止向气囊充气加压。提示单元1204,用于提示用户放松腕带。
在一种可能的设计中,确定单元1203,用于根据第一压力信号,确定气囊从开始加压至气囊的压力值等于预设压力值的加压时间,加压时间用于表示腕带被用户佩戴的松紧程度。确定单元1203,还用于根据加压时间,对血压测量值进行修正,确定血压值。示例性的,确定单元1203可以用于执行上述图10所示血压测量方法的S1004-S1005。
在一种可能的设计中,确定单元1203,还用于根据加压时间与映射关系确定补偿值,映射关系包括加压时间与补偿值的映射关系。确定单元1203,还用于采用补偿值对血压测量值进行修正,确定血压值。
在一种可能的设计中,确定单元1203在确定加压时间大于第一时间且小于第二时间时,根据加压时间,对血压测量值进行修正,确定血压值。
在一种可能的设计中,装置还包括提示单元1204。控制单元1201,还用于在确定加压时间小于第一时间时,控制气泵停止向气囊充气加压。提示单元1204,用于提示用户勒紧腕带。控制单元1201,还用于在确定加压时间大于第二时间时,控制气泵停止向气囊充气加压。提示单元1204,用于提示用户放松腕带。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应 功能模块的功能描述,在此不再赘述。本申请实施例提供的电子设备,用于执行上述血压测量方法,因此可以达到与上述血压测量方法相同的效果。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种血压测量方法,其特征在于,应用于电子设备,所述电子设备包括腕带、气囊和气泵,所述电子设备佩戴在用户手腕上,所述方法包括:
    所述电子设备接收第一输入,所述气泵向所述气囊充气加压;
    所述电子设备获取第一压力信号,所述第一压力信号是从所述气泵开始向所述气囊充气加压至预设压力值的过程中,所述气囊的压力值随时间变化的信号;
    所述电子设备根据所述第一压力信号确定所述腕带被用户佩戴的松紧程度;
    所述电子设备根据所述松紧程度,对根据第二压力信号确定的血压测量值进行修正,确定用户的血压值,所述第二压力信号是所述气囊的压力值超过所述预设压力值后,所述气囊的压力值随时间变化的信号。
  2. 根据权利要求1所述的方法,其特征在于,所述电子设备根据所述第一压力信号确定所述腕带被用户佩戴的松紧程度,包括:
    所述电子设备确定所述第一压力信号的加压斜率,所述第一压力信号的加压斜率用于表示所述腕带被用户佩戴的松紧程度;
    所述电子设备根据所述松紧程度,对所述血压测量值进行修正,确定用户的血压值,包括:
    所述电子设备根据所述第一压力信号的加压斜率,对所述血压测量值进行修正,确定所述用户的血压值。
  3. 根据权利要求2所述的方法,其特征在于,所述电子设备根据所述第一压力信号的加压斜率,对所述血压测量值进行修正,确定所述用户的血压值,包括:
    所述电子设备根据映射关系确定补偿值,所述映射关系包括所述第一压力信号的加压斜率与所述补偿值的映射关系;
    所述电子设备采用所述补偿值对所述血压测量值进行修正,确定所述用户的血压值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述电子设备根据所述第一压力信号的加压斜率,对所述血压测量值进行修正,确定所述用户的血压值,包括:
    所述电子设备在所述第一压力信号的加压斜率大于第一斜率且小于第二斜率时,对所述血压测量值进行修正,确定所述用户的血压值。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述电子设备在所述第一压力信号的加压斜率小于所述第一斜率时,控制所述气泵停止向所述气囊充气加压,提示用户勒紧所述腕带;
    所述电子设备在所述第一压力信号的加压斜率大于所述第二斜率时,所述电子设备控制所述气泵停止向所述气囊充气加压,提示用户放松所述腕带。
  6. 根据权利要求1所述的方法,其特征在于,所述电子设备根据所述第一压力信号确定所述腕带被用户佩戴的松紧程度,包括:
    所述电子设备根据所述第一压力信号,确定所述气囊从开始加压至所述气囊的压力值等于所述预设压力值的加压时间,所述加压时间用于表示所述腕带被用户佩戴的松紧程度;
    所述电子设备根据所述松紧程度,对所述血压测量值进行修正,确定用户的血压值,包括:
    所述电子设备根据所述加压时间,对所述血压测量值进行修正,确定所述用户的血压值。
  7. 根据权利要求6所述的方法,其特征在于,所述电子设备根据所述加压时间,对所述血压测量值进行修正,确定所述用户的血压值,包括:
    所述电子设备根据映射关系确定补偿值,所述映射关系包括所述加压时间与所述补偿值的映射关系;
    所述电子设备采用所述补偿值对所述血压测量值进行修正,确定所述用户的血压值。
  8. 根据权利要求6或7所述的方法,其特征在于,所述电子设备根据所述加压时间,对所述血压测量值进行修正,确定所述用户的血压值,包括:
    所述电子设备在所述加压时间大于第一时间且小于第二时间时,根据所述加压时间,对所述血压测量值进行修正,确定所述用户的血压值。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述电子设备在所述加压时间小于第一时间时,控制所述气泵停止向所述气囊充气加压,提示用户勒紧所述腕带;
    所述电子设备在所述加压时间大于第二时间时,控制所述气泵停止向所述气囊充气加压,提示用户放松所述腕带。
  10. 一种电子设备,其特征在于,通过所述电子设备的腕带,所述电子设备能够被佩戴在用户手腕上,所述电子设备包括微控制单元MCU、压力传感器、气囊以及气泵;
    所述MCU,用于在所述电子设备被佩戴在用户手腕上时,控制所述气泵向所述气囊充气加压;
    所述压力传感器,用于在控制所述气泵向所述气囊充气加压的过程中,获取所述气囊的压力值;
    所述MCU,还用于获取第一压力信号,所述第一压力信号是从所述气泵开始向所述气囊充气加压至所述气囊的压力值等于预设压力值的过程中,所述气囊的压力值随时间变化的信号;
    所述MCU,还用于根据所述第一压力信号确定所述腕带被用户佩戴的松紧程度;
    所述MCU,还用于根据所述松紧程度,对根据第二压力信号确定的血压测量值进行修正,确定用户的血压值,所述第二压力信号是所述气囊的压力值超过所述预设压力值后,所述气囊的压力值随时间变化的信号。
  11. 根据权利要求10所述的电子设备,其特征在于,所述MCU,还用于根据所述第一压力信号确定所述腕带被用户佩戴的松紧程度,包括:
    所述MCU,用于确定所述第一压力信号的加压斜率,所述第一压力信号的加压斜率用于表示所述腕带被用户佩戴的松紧程度;
    所述MCU,还用于根据所述松紧程度,对所述血压测量值进行修正,确定用户的血压值,包括:
    所述MCU,用于根据所述第一压力信号的加压斜率,对所述血压测量值进行修正,确定所述用户的血压值。
  12. 根据权利要求11所述的电子设备,其特征在于,所述MCU,用于根据所述第一压力信号的加压斜率,对所述血压测量值进行修正,确定所述用户的血压值,包括:
    所述MCU,用于根据映射关系确定补偿值,所述映射关系包括所述第一压力信号的加压斜率与所述补偿值的映射关系;
    所述MCU,还用于采用所述补偿值对所述血压测量值进行修正,确定所述用户的血压值。
  13. 根据权利要求11或12所述的电子设备,其特征在于,所述MCU,用于根据所述第一压力信号的加压斜率,对所述血压测量值进行修正,确定所述用户的血压值,包括:
    所述MCU在确定所述第一压力信号的加压斜率大于第一斜率且小于第二斜率时,根据所述第一压力信号的加压斜率,对所述血压测量值进行修正,确定所述用户的血压值。
  14. 根据权利要求13所述的电子设备,其特征在于,
    所述MCU,还用于在所述第一压力信号的加压斜率小于所述第一斜率时,控制所述气泵停止向所述气囊充气加压,提示用户勒紧所述腕带;
    所述MCU,还用于在所述第一压力信号的加压斜率大于所述第二斜率时,控制所述气泵停止向所述气囊充气加压,提示用户放松所述腕带。
  15. 根据权利要求10所述的电子设备,其特征在于,所述MCU,还用于根据所述第一压力信号确定所述腕带被用户佩戴的松紧程度,包括:
    所述MCU,用于根据所述第一压力信号,确定所述气囊从开始加压至所述气囊的压力值等于所述预设压力值的加压时间,所述加压时间用于表示所述腕带被用户佩戴 的松紧程度;
    所述MCU,还用于根据所述松紧程度,对根据第二压力信号确定的血压测量值进行修正,确定用户的血压值,包括:
    所述MCU,用于根据所述加压时间,对所述血压测量值进行修正,确定所述用户的血压值。
  16. 根据权利要求15所述的电子设备,其特征在于,所述MCU,用于根据所述加压时间,对所述血压测量值进行修正,确定所述用户的血压值,包括:
    所述MCU,用于根据映射关系确定补偿值,所述映射关系包括所述加压时间与所述补偿值的映射关系;
    所述MCU,还用于采用所述补偿值对所述血压测量值进行修正,确定所述用户的血压值。
  17. 根据权利要求15或16所述的电子设备,其特征在于,所述MCU,用于根据所述加压时间,对所述血压测量值进行修正,确定所述用户的血压值,包括:
    所述MCU在所述加压时间大于第一时间且小于第二时间时,根据所述加压时间,对所述血压测量值进行修正,确定所述用户的血压值。
  18. 根据权利要求17所述的电子设备,其特征在于,
    所述MCU,还用于在所述加压时间小于第一时间时,控制所述气泵停止向所述气囊充气加压,提示用户勒紧所述腕带;
    所述MCU,还用于在所述加压时间大于第二时间时,控制所述气泵停止向所述气囊充气加压,提示用户放松所述腕带。
PCT/CN2020/113102 2019-09-30 2020-09-02 一种血压测量方法及电子设备 WO2021063150A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/764,787 US20220338748A1 (en) 2019-09-30 2020-09-02 Blood Pressure Measurement Method and Electronic Device
EP20871855.1A EP4023149A4 (en) 2019-09-30 2020-09-02 BLOOD PRESSURE MEASUREMENT METHOD AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910940521.8A CN112568884B (zh) 2019-09-30 2019-09-30 一种血压测量方法及电子设备
CN201910940521.8 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021063150A1 true WO2021063150A1 (zh) 2021-04-08

Family

ID=75116295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113102 WO2021063150A1 (zh) 2019-09-30 2020-09-02 一种血压测量方法及电子设备

Country Status (4)

Country Link
US (1) US20220338748A1 (zh)
EP (1) EP4023149A4 (zh)
CN (1) CN112568884B (zh)
WO (1) WO2021063150A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113827211A (zh) * 2021-08-09 2021-12-24 研和智能科技(杭州)有限公司 一种基于多信号的血压测量计算方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113143234B (zh) * 2021-04-13 2023-04-14 研和智能科技(杭州)有限公司 一种血压测量装置和控制方法
CN113679364A (zh) * 2021-08-09 2021-11-23 研和智能科技(杭州)有限公司 一种血压测量计算方法
CN116172533A (zh) * 2021-11-27 2023-05-30 华为终端有限公司 一种提示方法、装置、电子设备以及计算机可读存储介质
CN114983372A (zh) * 2022-05-30 2022-09-02 歌尔股份有限公司 一种可穿戴运动设备及其数据检测方法、装置及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1689508A (zh) * 2004-04-26 2005-11-02 欧姆龙健康医疗事业株式会社 血压测定用带的卷绕控制装置和方法
US20090118628A1 (en) * 2007-11-01 2009-05-07 Triage Wireless, Inc. System for measuring blood pressure featuring a blood pressure cuff comprising size information
CN102307519A (zh) * 2009-02-06 2012-01-04 欧姆龙健康医疗事业株式会社 具有卷绕在测定部位上的袖袋的血压测定装置
CN109984736A (zh) * 2017-12-29 2019-07-09 华为技术有限公司 一种血压测量装置及血压测量方法
CN110123294A (zh) * 2018-02-02 2019-08-16 深圳市理邦精密仪器股份有限公司 无创血压测量方法、装置、无创血压测量仪器和存储介质
CN110151155A (zh) * 2018-02-12 2019-08-23 广东乐心医疗电子股份有限公司 一种电子血压计血压计算方法、装置和电子血压计

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10206623B2 (en) * 2015-09-28 2019-02-19 Apple Inc. Band tightness sensor of a wearable device
CN105361872B (zh) * 2015-12-10 2018-09-04 美的集团股份有限公司 血压计袖带捆绑检测方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1689508A (zh) * 2004-04-26 2005-11-02 欧姆龙健康医疗事业株式会社 血压测定用带的卷绕控制装置和方法
US20090118628A1 (en) * 2007-11-01 2009-05-07 Triage Wireless, Inc. System for measuring blood pressure featuring a blood pressure cuff comprising size information
CN102307519A (zh) * 2009-02-06 2012-01-04 欧姆龙健康医疗事业株式会社 具有卷绕在测定部位上的袖袋的血压测定装置
CN109984736A (zh) * 2017-12-29 2019-07-09 华为技术有限公司 一种血压测量装置及血压测量方法
CN110123294A (zh) * 2018-02-02 2019-08-16 深圳市理邦精密仪器股份有限公司 无创血压测量方法、装置、无创血压测量仪器和存储介质
CN110151155A (zh) * 2018-02-12 2019-08-23 广东乐心医疗电子股份有限公司 一种电子血压计血压计算方法、装置和电子血压计

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4023149A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113827211A (zh) * 2021-08-09 2021-12-24 研和智能科技(杭州)有限公司 一种基于多信号的血压测量计算方法

Also Published As

Publication number Publication date
US20220338748A1 (en) 2022-10-27
CN112568884A (zh) 2021-03-30
EP4023149A4 (en) 2023-03-08
EP4023149A1 (en) 2022-07-06
CN112568884B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2021063150A1 (zh) 一种血压测量方法及电子设备
JP3211889U (ja) 加圧ポンプなしの装着型血圧測定装置
US9943263B2 (en) Wrist watch style blood pressure monitor
WO2020248949A1 (zh) 一种血压测量方法及电子设备
WO2018058979A1 (en) Blood pressure measurement device and calibration method thereof
WO2015137412A1 (ja) 生体センサ、生体データ収集端末、生体データ収集システム、及び生体データ収集方法
CN113520307B (zh) 一种可穿戴设备
WO2022007720A1 (zh) 可穿戴设备的佩戴检测方法、装置及电子设备
WO2019071878A1 (zh) 一种手表腕带
WO2018209983A1 (zh) 脉搏压力传导结构、便携式血压检测模块和智能穿戴设备
WO2022100407A1 (zh) 智能眼罩、终端设备、健康管理方法与系统
JP6615970B1 (ja) 血圧推定装置および血圧推定プログラム
KR101260465B1 (ko) 손목동맥 맥파를 감지하여 혈압을 산출하는 방법 및 장치
KR102599771B1 (ko) 전자 장치에서 혈압 보정 시점을 결정하기 위한 장치 및 방법
WO2021248976A1 (zh) 脉搏检测方法、终端设备和智能鞋
WO2019102874A1 (ja) 情報処理装置、情報処理方法、及び情報処理プログラム
CN116671884A (zh) 血压测量的方法及装置
CN113509144B (zh) 提示方法及装置
US20240081738A1 (en) Nail Sensing Based, Wireless Multi-Modal Tonoarteriogram Monitoring Apparatus And System
CN117598676A (zh) 血压测量方法、气囊组件以及可穿戴设备
WO2023093570A1 (zh) 一种提示方法、装置、电子设备以及计算机可读存储介质
JPH027654B2 (zh)
CN113359120B (zh) 用户活动距离的测量方法、设备和电子设备
US20230157555A1 (en) Blood-volume-based cuff-less non-invasive blood pressure monitoring
WO2020162741A1 (en) Method of providing spoken instructions for a device for determining a heartbeat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020871855

Country of ref document: EP

Effective date: 20220331