WO2018209983A1 - 脉搏压力传导结构、便携式血压检测模块和智能穿戴设备 - Google Patents

脉搏压力传导结构、便携式血压检测模块和智能穿戴设备 Download PDF

Info

Publication number
WO2018209983A1
WO2018209983A1 PCT/CN2018/071863 CN2018071863W WO2018209983A1 WO 2018209983 A1 WO2018209983 A1 WO 2018209983A1 CN 2018071863 W CN2018071863 W CN 2018071863W WO 2018209983 A1 WO2018209983 A1 WO 2018209983A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
blood pressure
housing
pulse pressure
detecting module
Prior art date
Application number
PCT/CN2018/071863
Other languages
English (en)
French (fr)
Inventor
章年平
龚大成
黄智明
Original Assignee
深圳金亿帝医疗设备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳金亿帝医疗设备股份有限公司 filed Critical 深圳金亿帝医疗设备股份有限公司
Publication of WO2018209983A1 publication Critical patent/WO2018209983A1/zh
Priority to US16/788,526 priority Critical patent/US20200178812A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0024Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system for multiple sensor units attached to the patient, e.g. using a body or personal area network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7405Details of notification to user or communication with user or patient ; user input means using sound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0431Portable apparatus, e.g. comprising a handle or case
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements

Definitions

  • the present invention relates to a blood pressure detecting device, and in particular to a pulse pressure transmitting structure of a blood pressure detecting device.
  • Arterial blood pressure is the most important and commonly used measurement parameter in clinical practice, and blood pressure is also a component of the risk scores of various important cardiovascular diseases. Therefore, the measurement of blood pressure is of great medical significance.
  • both the oscillometric oscilloscope and the auscultation sphygmomanometer are cuff sphygmomanometers.
  • the cuff includes a bag and an air bag, and the length of the air bag is generally required to be approximately 0.8 times that of the limb, and the width of the air bag is 0.4 times that of the limb.
  • the cuff is wrapped around the limb and the limb arteries are pressed. The blood pressure is detected by pressing the airbag in the cuff to prevent blood flow in the arterial blood vessel, detecting a change in the air pressure in the airbag, or detecting the Korotkoff sound and the air pressure in the airbag.
  • the present application provides a novel pulse pressure transmitting structure and a portable blood pressure detecting module using the pulse pressure transmitting structure, and further provides a smart wearing device using the pulse pressure transmitting structure or the portable blood pressure detecting module.
  • an embodiment provides a pulse pressure transmitting structure of an electronic sphygmomanometer, including a housing and a pulse pressure transmitting member, the pulse pressure transmitting member being mounted on the housing and the housing
  • the body or the fixing member fixed to the housing encloses a cavity for inflation, and at least a portion of the pulse pressure transmitting member is exposed from the housing, so that the pulse pressure transmitting member can directly or indirectly act upon inflation
  • the pulse pressure transmitting member comprises an elastic portion made of an elastic material and/or a flexible portion made of a flexible material.
  • At least one of the housing and the pulse pressure transmitting member has a cavity, and the housing and the pulse pressure transmitting member close the cavity to form the cavity.
  • an outer wall of the housing is recessed to form a first cavity, and a side of the pulse pressure transmitting member facing the first cavity is recessed to form a second cavity, and the pulse is pressed by the pressing member The pressure transmitting member seal is pressed against the first cavity such that the first cavity and the second cavity enclose a cavity for inflation.
  • the pulse pressure transmitting member is mounted within a housing, and a portion of the pulse pressure transmitting member projects from within the housing to outside the housing.
  • the portion of the pulse pressure transmitting member exposed to the housing is made of an elastic film or a flexible film.
  • an embodiment provides a portable blood pressure detecting module, including:
  • a pulse pressure transmitting member mounted on the housing and enclosing the housing to form a cavity for inflation, at least a portion of the pulse pressure transmitting member being exposed from the housing such that The pulse pressure transmitting member can directly or indirectly act on the detecting portion of the object to be detected when inflating;
  • a charging and discharging structure which is in communication with the cavity for charging and discharging the cavity
  • a detecting unit configured to detect a pulse pressure signal of the cavity
  • a blood pressure calculation unit configured to calculate a blood pressure detection result according to the detected pulse pressure signal
  • the charge and discharge structure, the detection unit, and the blood pressure calculation unit are installed in the mounting cavity.
  • a communication unit is further included, and the communication unit is connected to the blood pressure calculating unit for establishing a communication connection between the portable blood pressure detecting module and other devices.
  • the communication unit includes a wireless transmission unit.
  • the detecting unit includes a gas pressure sensor in communication with the cavity for detecting a gas pressure signal in the cavity.
  • the detecting unit includes an acoustic sensor for detecting a Korotkoff sound and a barometric pressure sensor for detecting a cavity pressure signal.
  • the display unit and/or the sound prompting unit are further connected to the blood pressure calculating unit for displaying and/or prompting the detection result.
  • the charge and discharge gas structure includes an air pump for pressurization and a quick exhaust valve for exhaust gas, the air pump and the quick exhaust valve being in communication with the cavity.
  • the charge and discharge gas structure includes an integrated air pump having a charge and discharge function, and the integrated air pump is in communication with the cavity.
  • a mounting structure is further included, the mounting structure being fixedly coupled to the housing for mounting the portable blood pressure detecting module to other devices.
  • the mounting structure includes at least one of a bonding structure, a snapping structure, a screwing structure, and a magnetic adsorption structure.
  • the wearing structure is fixedly coupled to the housing for wearing the portable blood pressure detecting module at an artery of the object to be tested.
  • the wearing structure includes at least one of a belt structure, a ring structure, a suction structure, and an adhesive structure.
  • the wearing structure is integrally formed from at least one side of the housing.
  • the pulse pressure transmitting member includes an elastic portion made of an elastic material and/or a flexible portion made of a flexible material.
  • At least one of the housing and the pulse pressure transmitting member has a cavity, and the housing and the pulse pressure transmitting member close the cavity to form the cavity.
  • an outer wall of the housing is recessed to form a first cavity, and a side of the pulse pressure transmitting member facing the first cavity is recessed to form a second cavity, and the pulse is pressed by the pressing member.
  • the pressure transmitting member seal is pressed against the first cavity such that the first cavity and the second cavity enclose a cavity for inflation.
  • the pulse pressure transmitting member is mounted within the housing, and a portion of the pulse pressure transmitting member projects from the inside of the housing to the outside of the housing.
  • the portion of the elastic member that exposes the housing is made of an elastic film or a flexible film.
  • an embodiment provides a smart wearable device, including:
  • a pulse pressure transmitting structure for transmitting a pulse pressure of a subject
  • a detecting unit configured to detect a pulse pressure signal of the cavity
  • a blood pressure calculation unit configured to calculate a blood pressure detection result according to the detected pulse pressure signal
  • a display unit and/or an audible prompt unit connected to the blood pressure calculation unit for displaying and/or prompting the detection result.
  • an embodiment provides a smart wearable device comprising the blood pressure detecting module according to any of the above, for detecting a pulse pressure of a subject.
  • the second communication unit establishing a wireless and/or wired communication connection with the blood pressure detecting module
  • a display unit and/or an audible prompt unit for displaying and/or prompting the detection result.
  • the smart wearable device includes one of a smart watch and a smart bracelet.
  • the pulse pressure transmitting structure includes a housing and a pulse pressure transmitting member, and the pulse pressure transmitting member is fixed to the housing or the fixed
  • the fixing member on the housing encloses a cavity for inflation, and at least a portion of the pulse pressure transmitting member can directly or indirectly act on the detecting portion of the object to be detected when inflating.
  • the pulse pressure transmitting component of the structure does not need to be wrapped around the limb, and the use position is not limited, and the pulse pressure transmitting component only needs to cover the artery, and the pulse pressure reflects the pulse pressure transmitting component in the gas change in the cavity, thereby facilitating
  • the blood pressure detecting membrane detects the pulse pressure signal.
  • the portable blood pressure detecting module is not limited to an artery at the wrist or the arm, and can also be used for other parts such as the neck artery and the heart. Moreover, after the large-volume airbag and cuff are omitted, the portable blood pressure detecting module can be made small, not only allowing the portable blood pressure detecting module to be attached to the site to be tested alone, or being easily attached to other wearing articles. , for example, is attached to the watch strap. It also provides detection space for other vital sign parameter detection devices.
  • the pulse pressure transmitting structure or the portable blood pressure detecting module can be miniaturized and integrated into a smart wearable device such as a smart wristband or a smart watch to detect blood pressure and understand health status anytime and anywhere.
  • FIG. 1 is a schematic structural view of a first embodiment of a portable blood pressure detecting module of the present application
  • FIG. 2 is a schematic view showing the use of the first embodiment of the portable blood pressure detecting module of the present application
  • Figure 3 is a cross-sectional view of the structure shown in Figure 2;
  • 4 and 5 are schematic diagrams showing the use of the first embodiment of the portable blood pressure detecting module of the present application.
  • FIG. 6 is a schematic structural view of a second embodiment of a portable blood pressure detecting module of the present application.
  • FIG. 7 is a schematic structural view of a third embodiment of a portable blood pressure detecting module of the present application.
  • Figure 8 is a schematic structural view of a fourth embodiment of the portable blood pressure detecting module of the present application.
  • FIG. 9 is a schematic structural diagram of a fifth embodiment of a portable blood pressure detecting module of the present application.
  • FIG. 10 is a schematic structural view of a sixth embodiment of a portable blood pressure detecting module of the present application.
  • Figure 11 is a schematic view showing the use of the sixth embodiment of the portable blood pressure detecting module of the present application.
  • FIG. 12 is a schematic view showing the use of a seventh embodiment of the portable blood pressure detecting module of the present application.
  • Figure 13 is an exploded view of the embodiment of Figure 12;
  • the embodiment provides a portable blood pressure detecting module, which can be used alone or attached to other wearable devices for detecting blood pressure by oscillography or auscultation.
  • the portable blood pressure detecting module includes a housing, a pulse pressure transmitting member, a charge and discharge structure, a detecting unit, and a blood pressure calculating unit.
  • the housing has a mounting cavity that is mounted to the housing to form a pulse pressure transmitting structure with the housing.
  • the pulse pressure transmission structure can be applied not only to the portable blood pressure detecting module of the embodiment, but also to other forms of electronic blood pressure monitors, such as a desktop electronic blood pressure monitor, a wristwatch electronic blood pressure monitor, etc. .
  • the pulse pressure transmitting member is enclosed with the housing to form a cavity for inflation. At least a portion of the pulse pressure transmitting member is exposed from the housing such that the pulse pressure transmitting member can directly or indirectly act upon the detecting portion of the object to be detected while inflating.
  • the pulse pressure transmitting structure replaces a conventional balloon structure.
  • the pulse pressure transmitting member has at least partially a certain degree of flexibility or elasticity.
  • the pulse pressure transmitting member includes a resilient portion made of an elastic material. And/or a flexible portion made of a flexible material.
  • the cavity is inflated to cause the pulse pressure transmitting member to expand, so that at least a portion of the pulse pressure transmitting member is convexly protruded from the housing and directly or indirectly attached to the detecting portion, thereby completing the transmission of the pulse pressure.
  • the charging and discharging structure is connected to the cavity for charging and discharging the cavity.
  • the detecting unit is configured to detect the pulse pressure signal of the cavity and transmit the pulse pressure signal to the blood pressure calculating unit, and the blood pressure calculating unit calculates the blood pressure detecting result according to the detected pulse pressure signal.
  • the pulse pressure transmitting component may be directly attached to the detecting portion, or may be indirectly attached to the detecting portion via a protective cover or other components such as a jacket.
  • the charging and discharging structure, the detecting unit and the blood pressure calculating unit are installed in the mounting cavity, and the pulse pressure transmitting member may be partially or completely installed in the mounting cavity, and only a part of the protruding housing is attached to the portion to be tested when inflating. Or the pulse pressure transmitting member is directly attached to the outer wall of the casing, and the entire pulse pressure transmitting member is exposed outside the casing, and the volume of the pulse pressure transmitting member is substantially the same as or slightly larger than the casing, and does not need to surround the entire wrist like a conventional airbag or Arm. This allows the entire portable blood pressure detection module to be designed to be very small.
  • the blood pressure calculation unit 103 can be a single chip microcomputer or other device having a logic operation function.
  • the charge and discharge structure includes a slow bleed valve 104, a quick vent valve 105, and an air pump 108.
  • the air pump 108, the slow deflation valve 104, and the quick vent valve 105 are all built into the mounting cavity of the housing.
  • the oscillometric method is used to measure blood pressure.
  • the detection unit employs a gas pressure sensor 106 that is built into the mounting cavity.
  • the detection unit may also use an acoustic sensor to detect blood pressure by auscultation.
  • the pulse pressure transmitting member includes an elastic film 102 disposed under the housing 101 to form a cavity with the outer wall of the housing 101.
  • the cavity communicates with the air pump 108, the rapid exhaust valve 105, and the air pressure sensor 106 to form a gas path.
  • a wrist radial artery test is taken as an example, wherein RA represents the radial artery, W represents the wrist, and 100 represents the portable blood pressure detecting module.
  • the housing 101 is placed at the radial artery, and the portable blood pressure detecting module 100 is attached to the radial artery RA.
  • the air pump 108 pressurizes the cavity, causing the elastic membrane 102 to compress the arterial blood vessel RA to prevent blood flow.
  • the slow deflation valve 104 slowly bleeds the compressed gas in the cavity, the change in vascular pressure is superimposed on the internal pressure of the cavity, and the air pressure sensor 106 detects the change in the cavity pressure.
  • the blood pressure calculation unit 103 calculates a blood pressure value based on the signal detected by the air pressure sensor 106. Thereafter, the rapid exhaust valve 105 rapidly discharges the gas in the cavity to release the arterial blood vessels.
  • the portable blood pressure detecting module 100 may further include a power source 107 for supplying power to the electrical components.
  • a power source 107 for supplying power to the electrical components.
  • it may be a detachable battery having a battery compartment for mounting a dry battery.
  • it can have a power cable for connection to an external power source.
  • the portable blood pressure detecting module 100 can also be a communication unit that is coupled to the blood pressure calculating unit 103 for establishing a communication connection between the portable blood pressure detecting module 100 and other devices.
  • the communication connection may be wireless or wired communication, preferably wireless, which facilitates the use of the portable blood pressure detection module 100.
  • the communication unit employs a wireless transmission unit 110 that can establish wireless communication with other terminals, such as remote controls, cell phones, smart watches, and the like.
  • other terminals such as remote controls, cell phones, smart watches, and the like.
  • the portable blood pressure detecting module 100 starts the detecting operation after receiving the start command of the external terminal. After the detection is completed, the test results are reflected on the external terminal.
  • the portable blood pressure detection module 100 further includes a display unit and/or an audible prompt unit coupled to the blood pressure calculation unit 103 for display and/or prompting Test results.
  • the display unit may be a screen display device such as a display screen or a touch screen, or may be a structure such as an indicator light (the indicator lights of different colors represent different detection results).
  • the voice prompting unit may be various devices capable of voice prompting, such as voice announcements.
  • the portable blood pressure detecting module 100 can be independently applied to each part capable of detecting an arterial pulse, such as a wrist, an arm, a neck artery, a heart, and the like.
  • these portions can be fixed by a self-contained wearing structure that is fixedly coupled (directly or indirectly fixedly connected) to the housing 101 for wearing the portable blood pressure detecting module 100 at the arterial blood vessel of the subject to be tested.
  • the wearing structure comprises at least one of a ribbon structure, a loop structure, a suction structure, and an adhesive structure.
  • the wearing structure can be a wristband 109.
  • the band structure includes a structure such as a watch band or other belt-like object, which forms a ring structure by snapping, tying, bonding, etc., so that the portable blood pressure detecting module 100 can be worn on a wrist, a watch, a neck, etc. Part.
  • the loop structure includes a loop or loop structure having elasticity.
  • the suction structure includes a structure in which a suction cup or the like is mounted by suction.
  • the adhesive structure includes a medical tape or the like for bonding and fixing.
  • the portable blood pressure detecting module 100 can be installed on the portable blood pressure detecting module 100, and the portable blood pressure detecting module 100 can be directly installed by other external fixing means.
  • the portable blood pressure detecting module 100 is attached to the test using a medical tape commonly used in medical treatment. Part.
  • the portable blood pressure detecting module 100 can be attached to other wearable devices in addition to being used independently.
  • the portable blood pressure detecting module 100 includes a mounting structure that is fixedly coupled to the housing 101 for mounting the portable blood pressure detecting module 100 to other devices. It is usually fixed to other wearable devices in a detachable manner. Of course, in some embodiments, it may also be non-removable.
  • the mounting structure includes at least one of a bonding structure, a snap-fit structure, a screw-on structure, and a magnetically-adsorbing structure.
  • the bonding structure includes a series of structures such as Velcro that can be bonded and mounted.
  • the snap-fit structure includes a structure that is secured by a snap fit.
  • the threaded structure includes a structure that is mounted by screwing and a structure that screws the portable blood pressure detecting module 100 itself to the wearable device.
  • the magnetic adsorption structure includes a fixed structure realized by magnetic adsorption force.
  • the portable blood pressure detecting module 100 is mounted on a wristwatch 200.
  • the wristwatch 200 includes a watch 210 and a strap 220.
  • the portable blood pressure detecting module 100 is mounted on the strap 220.
  • the portable blood pressure detecting module 100 can be attached to the radial artery to measure the pulse pressure.
  • the wristwatch 200 may be an ordinary wristwatch 200 for displaying time, or may be a smartwatch 200 having other functions.
  • the smart watch 200 can establish a wireless and/or wired communication connection with the communication unit of the portable blood pressure detecting module 100, thereby controlling the portable blood pressure detecting module 100 and/or displaying the portable blood pressure detecting module 100. Test results.
  • At least one of the housing 101 and the pulse pressure transmitting member has a cavity, and the housing 101 and the pulse pressure transmitting member close the cavity to form the above type. Cavity.
  • the pulse pressure transmitting member when the pulse pressure transmitting member itself has elasticity, it is also possible not to form a cavity, but to rely on deformation of the material itself during inflation to produce a desired cavity.
  • the pulse pressure transmitting component is mounted within the housing 101 and a portion of the pulse pressure transmitting component projects from within the housing 101 to the exterior of the housing 101.
  • the portable blood pressure detecting module 100 can be further designed to be smaller and more portable and usable.
  • the portion of the pulse pressure transmitting member that exposes the housing 101 may be made of an elastic film 102 or a flexible film, which may utilize the elastic properties of the elastic film 102 to extend beyond the housing 101 during expansion deformation. When deflated, it will be retracted into the housing 101 or retracted to a position close to the housing 101, making the portable blood pressure detecting module 100 smaller.
  • the inner diameter of the radial artery of the wrist is generally about 2.3 +/- 0.4 mm.
  • a pulse pressure transmitting member such as approximately 10 mm long and 8 mm wide may be designed.
  • the elastic membrane which completely covers the radial artery.
  • the blood pressure detecting module does not need to wrap the limb, cover only the local arterial blood vessels of the limb, and does not form a wearing burden.
  • the device is placed between the wristband and the wrist and the radial artery for blood pressure detection.
  • the size of the blood pressure detecting module can even reach 20 mm * 15 mm * 8 mm or less.
  • the strap width of the watch is approximately 20 mm, and the width of the watch is approximately 30 mm. Since it does not take up too much space on the wrist, it can be used together with a watch that detects heart rate by photoelectric method.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the second embodiment provides a second portable blood pressure detecting module 100.
  • the portable blood pressure detecting module 100 is different from the portable blood pressure detecting module 100 shown in the first embodiment in that:
  • the charge and discharge structure of the portable blood pressure detecting module 100 includes an air pump 108 and a quick exhaust valve 105. Both the air pump 108 and the quick exhaust valve 105 are built into the mounting cavity of the housing 101. The air pump 108 and the quick exhaust valve 105 communicate with the cavity to form a gas path.
  • a wrist radial artery test is taken as an example, wherein RA represents the radial artery, W represents the wrist, and 100 represents the portable blood pressure detecting module 100.
  • the housing 101 is disposed at the radial artery blood vessel RA, and the portable blood pressure detecting module 100 is attached to the arterial blood vessel RA.
  • the air pump 108 pressurizes the cavity, causing the elastic membrane 102 to compress the arterial blood vessel RA, and the change in blood vessel pressure is superimposed on the air pressure inside the cavity.
  • the air pressure sensor 106 detects a change in the cavity pressure, and the blood pressure calculation unit 103 calculates the blood pressure value based on the signal detected by the air pressure sensor 106. Thereafter, the rapid exhaust valve 105 rapidly discharges the gas in the cavity.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • This embodiment provides a third portable blood pressure detecting module 100.
  • the portable blood pressure detecting module 100 is different from the portable blood pressure detecting module 100 shown in the second embodiment in that:
  • the charging and discharging structure of the portable blood pressure detecting module 100 includes an integrated air pump 111 having a charging and discharging function, and the integrated air pump 111 communicates with the cavity to form a gas path.
  • the integrated air pump 111 is built in the mounting cavity of the housing 101.
  • a wrist radial artery detection is taken as an example, wherein RA represents a radial artery, W represents a wrist, and 100 represents a portable blood pressure detecting module 100.
  • the housing 101 is disposed at the radial artery blood vessel RA, and the portable blood pressure detecting module 100 is attached to the arterial blood vessel RA.
  • the integrated air pump 111 pressurizes the cavity, causing the elastic membrane 102 to compress the arterial blood vessel RA, and the change in blood vessel pressure is superimposed on the air pressure inside the cavity.
  • the air pressure sensor 106 detects a change in the cavity pressure, and the blood pressure calculation unit 103 calculates the blood pressure value based on the signal detected by the air pressure sensor 106. Thereafter, the gas in the cavity is quickly discharged through the integrated air pump 111.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • This embodiment provides a fourth portable blood pressure detecting module 100.
  • the portable blood pressure detecting module 100 is different from the portable blood pressure detecting module 100 shown in the third embodiment in that:
  • the detecting unit of the portable blood pressure detecting module 100 includes a sound sensor 113 for detecting a Korotkoff sound, and a barometric pressure sensor 106 for detecting a change in the cavity pressure.
  • the charging and discharging structure of the portable blood pressure detecting module 100 includes an accelerating and decompressing air pump 112 which is built in the mounting cavity of the casing 101 and communicates with the cavity to form a gas path.
  • a wrist radial artery detection is taken as an example, wherein RA represents a radial artery, W represents a wrist, and 100 represents a portable blood pressure detecting module 100.
  • the housing 101 is disposed at the radial artery blood vessel RA, and the portable blood pressure detecting module 100 is attached to the arterial blood vessel.
  • the pressure-reducing air pump 112 pressurizes the cavity to press the elastic membrane 102 against the artery, and the change in the blood vessel pressure is superimposed on the air pressure inside the cavity.
  • the sound sensor 113 detects the Korotkoff sound
  • the air pressure sensor 106 detects the change in the cavity pressure.
  • the blood pressure calculation unit 103 calculates the blood pressure value based on the Korotk signal and the signal detected by the air pressure sensor 106. Thereafter, the decompression air pump 112 discharges the gas in the cavity.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • This embodiment provides a fifth portable blood pressure detecting module 100.
  • the portable blood pressure detecting module 100 is different from the portable blood pressure detecting module 100 shown in the first embodiment in that:
  • the pulse pressure transmitting structure of the portable blood pressure detecting module 100 forms a capsule structure 114, and the pulse pressure transmitting member is closed into a cavity by a member fixed to the housing 101 or the housing 101.
  • This embodiment provides a sixth portable blood pressure detecting module 100.
  • the portable blood pressure detecting module 100 is different from the portable blood pressure detecting module 100 shown in the first embodiment in that:
  • the portable blood pressure detecting module 100 has a wristband 122 as a wearing structure, and the housing 101 of the portable blood pressure detecting module 100 is mounted inside the wristband 122 such that the portable blood pressure detecting module 100 can be attached to the wrist when the wristband 122 is worn Or at the artery of the arm.
  • This embodiment provides a seventh portable blood pressure detecting module.
  • the portable blood pressure detecting module is different from the portable blood pressure detecting module 100 shown in the first embodiment in that:
  • the outer wall of the casing 101 of the portable blood pressure detecting module is recessed to form a first cavity, and one side of the pulse pressure transmitting member 102 facing the first cavity is recessed to form a second cavity, and the pulse pressure transmitting member 102 is tightly pressed by the pressing member 101a.
  • the first cavity and the second cavity are enclosed into a cavity C for inflation.
  • the pressing member 101a is a hollow pressure plate, and a part of the pulse pressure transmitting member 102 (for example, an elastic film) is housed in a hollow portion of the pressure plate.
  • the pressure plate presses the pulse pressure transmitting member 102 against the casing 101 to form a closed cavity C.
  • the opposite side of the housing 101 from the first cavity has a mounting cavity in which components such as the air pressure sensor 106, the integrated air pump 111, and the like can be mounted.
  • the air pressure sensor 106 communicates with the cavity C through the connecting pipe 106a.
  • the integrated air pump 111 communicates with the cavity C through the connecting pipe 111a.
  • the integrated air pump 111 energizes and closes the normally open valve, pressurizes, stops the pressurization after the power is turned off, and opens the normally open valve.
  • the eighth embodiment provides a smart wristband comprising the pulse pressure transmitting structure shown in any of the embodiments for transmitting the pulse pressure of the subject.
  • the smart bracelet further includes a charging and discharging structure, a detecting unit, a blood pressure calculating unit, and a display unit and/or an audible prompt unit.
  • the charge and discharge structure is used to charge and discharge the cavity.
  • the detecting unit is configured to detect a pulse pressure signal of the cavity.
  • the blood pressure calculation unit is configured to calculate a blood pressure detection result based on the detected pulse pressure signal.
  • the display unit and/or the voice prompt unit are coupled to the blood pressure calculation unit for displaying and/or prompting the detection result.
  • the charging and discharging structure, the detecting unit, the blood pressure calculating unit, the display unit and/or the sound prompting unit may adopt the solutions disclosed in any of the above embodiments, and other solutions not described in the above embodiments may also be used.
  • the pulse pressure transmitting structure is typically disposed on the annulus of the smart bracelet to enable the pulse pressure transmitting structure to adhere to the arterial vessel.
  • the smart bracelet can also add other functions, such as other vital signs parameters, step detection, sleep quality, heart rate and other functions.
  • the ninth embodiment provides a smart wristband, which includes the blood pressure detecting module shown in any of the embodiments to detect the pulse pressure of the detected person.
  • the blood pressure detecting module may be non-removably mounted or detachable.
  • the blood pressure detection module can usually be placed on the annulus of the smart bracelet to enable the pulse pressure transmitting structure to attach to the arterial vessel.
  • the smart bracelet can also add other functions, such as other vital signs parameters, step detection, sleep quality, heart rate and other functions.
  • the tenth embodiment provides a smart watch comprising the pulse pressure transmitting structure shown in any of the embodiments for transmitting the pulse pressure of the subject.
  • the smart watch further includes a charging and discharging structure, a detecting unit, a blood pressure calculating unit, and a display unit and/or an audible prompt unit.
  • the charge and discharge structure is used to charge and discharge the cavity.
  • the detecting unit is configured to detect a pulse pressure signal of the cavity.
  • the blood pressure calculation unit is configured to calculate a blood pressure detection result based on the detected pulse pressure signal.
  • the display unit and/or the voice prompt unit are coupled to the blood pressure calculation unit for displaying and/or prompting the detection result.
  • the charging and discharging structure, the detecting unit, the blood pressure calculating unit, the display unit and/or the sound prompting unit may adopt the solutions disclosed in any of the above embodiments, and other solutions not described in the above embodiments may also be used.
  • the pulse pressure transmitting structure is generally disposed on the inner side of the wristband of the smart watch near the artery for enabling the pulse pressure transmitting structure to adhere to the arterial blood vessel.
  • the smart watch can also add other functions, such as other vital signs parameters, step detection, sleep quality, heart rate and other functions.
  • the eleventh embodiment provides a smart watch including the blood pressure detecting module shown in any of the embodiments for detecting the pulse pressure of the subject.
  • the blood pressure detecting module may be non-removably mounted or detachable.
  • the blood pressure detecting module can usually be placed on the inner side of the wristband of the smart watch near the artery for enabling the pulse pressure transmitting structure to attach to the arterial blood vessel.
  • the smart watch can also add other functions, such as other vital signs parameters, step detection, sleep quality, heart rate and other functions.
  • the pulse pressure transmitting structure and the blood pressure detecting module shown above can be applied to other smart wearing devices and smart wristbands as described above, and can be applied to other smart wearing devices, and the switching mode can be referred to the above embodiment.
  • the smart wearable device refers to a device and device that can be worn on the human body with data processing capability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Physiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种脉搏压力传导结构、便携式血压检测模块(100)及智能穿戴设备,该脉搏压力传导结构包括壳体(101)和脉搏压力传导部件(102),该脉搏压力传导部件(102)与壳体(101)或固定在壳体(101)上的固定件围合形成用于充气的型腔(C),脉搏压力传导部件(102)至少一部分能够在充气时直接或间接作用到待检测对象的检测部位。这种结构脉搏压力传导部件(102)无需缠绕在肢体上,使用部位不受限制,因此并不限于手腕或手臂处的动脉,也可用于颈部动脉、心脏等其他部位。省去了大体积的气囊和袖带后,该脉搏压力传导结构可以做到很小,可集成到便携式血压检测模块(100),使其能够单独被贴附到待测部位或者轻松地附加到其他穿戴用品上,同时还给其他生命体征参数检测设备提供了检测空间。

Description

脉搏压力传导结构、便携式血压检测模块和智能穿戴设备 技术领域
本发明涉及血压检测装置,具体涉及一种血压检测装置的脉搏压力传导结构。
背景技术
动脉血压是临床实践中最重要和最常用的测量参数,而且血压还是各种重要心血管疾病的风险评分中的组成部分,因此对血压的测量在医学上有着重要的意义。
目前的无创电子血压计大多使用示波法,个别使用听诊法。无论示波法的血压计还是听诊法的血压计都是袖带式血压计。其中,袖带包括布袋及气囊,通常要求气囊的长度大致为肢体的0.8倍,气囊的宽度为肢体的0.4倍。血压测量时,将袖带缠绕于肢体,压住肢体动脉血管。通过加压袖带内的气囊,阻止动脉血管血流,检测气囊内气压变化或检测柯氏音及气囊内气压,从而检测血压。
这种袖带式血压计的问题在于,使用时需要使这种袖带(气囊)缠绕于肢体上,使用部位有限制,而且使用麻烦。同时,由于占用了手腕或手臂整周,使得需同时检测血压以外的生命体征参数(如通过光电法检测心率)的设备难以实现。
技术问题
本申请提供一种新型的脉搏压力传导结构及采用了这种脉搏压力传导结构的便携式血压检测模块,此外还提供了运用了该脉搏压力传导结构或便携式血压检测模块的智能穿戴设备。
技术解决方案
根据本申请的一方面,一种实施例提供了一种电子血压计的脉搏压力传导结构,包括壳体和脉搏压力传导部件,所述脉搏压力传导部件安装在壳体上,并与所述壳体或固定在壳体上的固定件围合形成用于充气的型腔,所述脉搏压力传导部件至少一部分从壳体中露出,使得所述脉搏压力传导部件能够在充气时直接或间接作用到待检测对象的检测部位。
作为所述脉搏压力传导结构的进一步改进,所述脉搏压力传导部件包括弹性材料制成的弹性部和/或柔性材料制成的柔性部。
作为所述脉搏压力传导结构的进一步改进,所述壳体与脉搏压力传导部件中至少其一具有凹腔,所述壳体与脉搏压力传导部件将所述凹腔封闭形成所述型腔。
作为所述脉搏压力传导结构的进一步改进,所述壳体的外壁凹陷形成第一凹腔,所述脉搏压力传导部件面向第一凹腔的一面凹陷形成第二凹腔,通过压紧件将脉搏压力传导部件密封压紧在第一凹腔上,使所述第一凹腔与第二凹腔围成用于充气的型腔。
作为所述脉搏压力传导结构的进一步改进,所述脉搏压力传导部件安装在壳体内,且所述脉搏压力传导部件的一部分从壳体内伸出到壳体外。
作为所述脉搏压力传导结构的进一步改进,所述脉搏压力传导部件露出壳体的部分采用弹性膜或柔性膜制成。
根据本申请的一方面,一种实施例提供了一种便携式血压检测模块,包括:
壳体,所述壳体具有安装腔;
脉搏压力传导部件,所述脉搏压力传导部件安装在壳体上,并与所述壳体围合形成用于充气的型腔,所述脉搏压力传导部件至少一部分从壳体中露出,使得所述脉搏压力传导部件能够在充气时直接或间接作用到待检测对象的检测部位;
充放气结构,其与所述型腔连通,用于对型腔进行充放气操作;
检测单元,用于检测所述型腔的脉搏压力信号;
以及血压计算单元,用于根据检测的脉搏压力信号计算出血压检测结果;
所述充放气结构、检测单元和血压计算单元安装在所述安装腔内。
作为所述便携式血压检测模块的进一步改进,还包括通信单元,所述通信单元与血压计算单元连接,用于将便携式血压检测模块与其他装置建立通信连接。
作为所述便携式血压检测模块的进一步改进,所述通信单元包括无线传输单元。
作为所述便携式血压检测模块的进一步改进,所述检测单元包括气压传感器,所述气压传感器与所述型腔连通,用于检测所述型腔内的气体压力信号。
作为所述便携式血压检测模块的进一步改进,所述检测单元包括声音传感器和气压传感器,所述声音传感器用于检测柯氏音,所述气压传感器用于检测型腔压力信号。
作为所述便携式血压检测模块的进一步改进,还包括显示单元和/或声音提示单元,所述显示单元和/或声音提示单元与血压计算单元连接,用于显示和/或提示检测结果。
作为所述便携式血压检测模块的进一步改进,所述充放气结构包括用于加压的气泵和用于排气的快速排气阀,所述气泵和快速排气阀与所述型腔连通。
作为所述便携式血压检测模块的进一步改进,所述充放气结构包括具有充放气功能的集成气泵,所述集成气泵与所述型腔连通。
作为所述便携式血压检测模块的进一步改进,还包括安装结构,所述安装结构与所述壳体固定连接,用于将所述便携式血压检测模块安装到其他装置上。
作为所述便携式血压检测模块的进一步改进,所述安装结构包括粘接结构、卡接结构、螺接结构、磁性吸附结构中的至少一种。
作为所述便携式血压检测模块的进一步改进,还包括佩戴结构,所述佩戴结构与所述壳体固定连接,用于将所述便携式血压检测模块佩戴在待测对象的动脉血管处。
作为所述便携式血压检测模块的进一步改进,所述佩戴结构包括带状结构、环状结构、吸合结构、粘合结构中的至少一种。
作为所述便携式血压检测模块的进一步改进,所述佩戴结构自壳体至少一侧一体延伸形成。
作为所述便携式血压检测模块的进一步改进,所述脉搏压力传导部件包括弹性材料制成的弹性部和/或柔性材料制成的柔性部。
作为所述便携式血压检测模块的进一步改进,所述壳体与脉搏压力传导部件中至少其一具有凹腔,所述壳体与脉搏压力传导部件将所述凹腔封闭形成所述型腔。
作为所述便携式血压检测模块的进一步改进,所述壳体的外壁凹陷形成第一凹腔,所述脉搏压力传导部件面向第一凹腔的一面凹陷形成第二凹腔,通过压紧件将脉搏压力传导部件密封压紧在第一凹腔上,使所述第一凹腔与第二凹腔围成用于充气的型腔。
作为所述便携式血压检测模块的进一步改进,所述脉搏压力传导部件安装在壳体内,且所述脉搏压力传导部件的一部分从壳体内伸出到壳体外。
作为所述便携式血压检测模块的进一步改进,所述弹性件露出壳体的部分采用弹性膜或柔性膜制成。
根据本申请的一方面,一种实施例提供了一种智能穿戴设备,包括:
如上述任一项所述的脉搏压力传导结构,用以传导被检测者的脉搏压力;
充放气结构,用于对型腔进行充放气操作;
检测单元,用于检测所述型腔的脉搏压力信号;
血压计算单元,用于根据检测的脉搏压力信号计算出血压检测结果;
以及显示单元和/或声音提示单元,所述显示单元和/或声音提示单元与血压计算单元连接,用于显示和/或提示检测结果。
根据本申请的一方面,一种实施例提供了一种智能穿戴设备,包括如上述任一项所述的血压检测模块,用以检测被检测者的脉搏压力。
如上述任一项所述的智能穿戴设备,其特征在于,还包括:
第二通信单元,所述第二通信单元与血压检测模块建立无线和/或有线通信连接;
以及显示单元和/或声音提示单元,所述显示单元和/或声音提示单元用于显示和/或提示检测结果。
作为所述智能穿戴设备的进一步改进,所述智能穿戴设备包括智能手表和智能手环中的一种。
有益效果
依据上述实施例的便携式血压检测模块,由于便携式血压检测模块采用了一种特殊的脉搏压力传导结构,该脉搏压力传导结构包括壳体和脉搏压力传导部件,该脉搏压力传导部件与壳体或固定在壳体上的固定件围合形成用于充气的型腔,脉搏压力传导部件至少一部分能够在充气时直接或间接作用到待检测对象的检测部位。这种结构脉搏压力传导部件无需缠绕在肢体上,使用部位不受限制,只需将脉搏压力传导部件覆盖动脉即可,脉搏压力将会脉搏压力传导部件反映在型腔内气体变化中,从而便于血压检测膜检测脉搏压力信号。该便携式血压检测模块并不限于手腕或手臂处的动脉,也可用于颈部动脉、心脏等其他部位。而且省去了大体积的气囊和袖带后,该便携式血压检测模块可以做到很小,不仅使得便携式血压检测模块能够单独被贴附到待测部位,或者被轻松地附加到其他穿戴用品上,例如被安装到手表的表带上。而且还给其他生命体征参数检测设备提供了检测空间。
该脉搏压力传导结构或便携式血压检测模块能够实现小型化,可集成到智能穿戴设备,例如智能手环或智能手表上,以便于随时随地检测血压,了解健康状况。
附图说明
图1为本申请便携式血压检测模块第一种实施例的结构示意图;
图2为本申请便携式血压检测模块第一种实施例的使用示意图;
图3为图2所示结构的截面图;
图4和5为本申请便携式血压检测模块第一种实施例的使用示意图;
图6为本申请便携式血压检测模块第二种实施例的结构示意图;
图7为本申请便携式血压检测模块第三种实施例的结构示意图;
图8为本申请便携式血压检测模块第四种实施例的结构示意图;
图9为本申请便携式血压检测模块第五种实施例的结构示意图;
图10为本申请便携式血压检测模块第六种实施例的结构示意图;
图11为本申请便携式血压检测模块第六种实施例的使用示意图;
图12为本申请便携式血压检测模块第七种实施例的使用示意图;
图13为图12所示实施例的分解图;
图14和15为图12所示实施例的剖视图。
本发明的实施方式
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
实施例一
本实施例提供一种便携式血压检测模块,该便携式血压检测模块能够单独使用,也可附加到其他穿戴设备上使用,用于通过示波法或听诊法实现血压的检测。
在一种实施例中,该便携式血压检测模块包括壳体、脉搏压力传导部件、充放气结构、检测单元以及血压计算单元。
该壳体具有安装腔,该脉搏压力传导部件安装在壳体上,与壳体形成一种脉搏压力传导结构。需要指出的是,该脉搏压力传导结构不仅可运用到本实施例这种便携式血压检测模块上,也可以运用到其他形式的电子血压计上,例如台式电子血压计、腕表式电子血压计等。
具体地,在该脉搏压力传导结构中,脉搏压力传导部件并与壳体围合形成用于充气的型腔。脉搏压力传导部件至少一部分从壳体中露出,使得脉搏压力传导部件能够在充气时直接或间接作用到待检测对象的检测部位。
该脉搏压力传导结构代替了传统的气囊结构,通常来说脉搏压力传导部件至少部分具有一定的扩展性或弹性,例如在一种实施例中,该脉搏压力传导部件包括弹性材料制成的弹性部和/或柔性材料制成的柔性部。使用时向型腔内充气,促使脉搏压力传导部件扩展,使得脉搏压力传导部件至少一部分外凸于壳体并直接或间接贴附检测部位,从而完成脉搏压力的传导。
该充放气结构与型腔连通,用于对型腔进行充放气操作。检测单元则用于检测型腔的脉搏压力信号并传递给血压计算单元,血压计算单元根据检测的脉搏压力信号计算出血压检测结果。
其中,该脉搏压力传导部件可直接贴附到检测部位,也可以隔着保护套或者外套等其他部件间接贴附到检测部位上。
该充放气结构、检测单元和血压计算单元安装在安装腔内,脉搏压力传导部件可以部分或全部安装在安装腔内,只在充气时有一部分凸出壳体贴附待测部位。或者脉搏压力传导部件直接贴附在壳体外壁,整个脉搏压力传导部件露在壳体外,脉搏压力传导部件的体积基本与壳体一致或略大于壳体,无需像传统的气囊一样围绕整个手腕或手臂。由此使得整个便携式血压检测模块体积可以设计的非常小。
请参考图1,在一种实施例中,该血压计算单元103可以是单片机或其他具有逻辑运算功能的装置。充放气结构包括慢速泄气阀104、快速排气阀105和气泵108。该气泵108、慢速泄气阀104和快速排气阀105均内置于壳体的安装腔内。
在本实施例中采用示波法实现血压的测量。具体地,检测单元采用气压传感器106,其内置于安装腔。在其他实施例中,检测单元也可以采用声音传感器,通过听诊法来检测血压。
该脉搏压力传导部件包括弹性膜102,该弹性膜102设置于壳体101下方,与壳体101外壁形成型腔。该型腔与气泵108、快速排气阀105及气压传感器106连通构成气路。
请参考图1-3,在一种实施例中,以腕部桡骨动脉检测为例,其中RA表示桡骨动脉,W表示手腕,100代表便携式血压检测模块。
使用时,壳体101设置于桡骨动脉血管处,便携式血压检测模块100被贴附在桡骨动脉血管RA上。开始检测时,气泵108给型腔加压,使弹性膜102压迫动脉血管RA,阻止血液流动。此时,慢速泄气阀104缓慢地泄放型腔中的压缩气体,血管压力的变化叠加于型腔内部气压,气压传感器106检测型腔压力的变化。血压计算单元103根据气压传感器106检测的信号,计算出血压值。此后,快速排气阀105将型腔中的气体快速排放,释放动脉血管。
另外,便携式血压检测模块100还可以包括电源107,用于给用电部件供电。或者,还可以是具有电池仓,用于安装干电池等可拆卸式电池。此外,还可以具有电源连接线,用于与外接电源连接。
便携式血压检测模块100还可以通信单元,该通信单元与血压计算单元103连接,用于将便携式血压检测模块100与其他装置建立通信连接。通信连接可以是无线或者有线通信,较好的是选择无线方式,这样便于便携式血压检测模块100的使用。
请继续参考图1,在一种实施例中,该通信单元采用的是无线传输单元110,其可与其他终端,例如遥控器、手机、智能手表等,建立无线通信。从而由外接终端来控制便携式血压检测模块100的开始、暂停和结束等操作,同时也可以由外接终端来显示便携式血压检测模块100的测量结果。
例如,便携式血压检测模块100在接收到外接终端的开始指令后,即开始检测工作。检测工作完成后,将检测结果反映到外接终端上。
另一方面,在一种实施例中,便携式血压检测模块100还包括显示单元和/或声音提示单元,该显示单元和/或声音提示单元与血压计算单元103连接,用于显示和/或提示检测结果。
显示单元可以是显示屏、触控屏等屏类显示装置,也可能是指示灯(不同颜色的指示灯代表不同检测结果)等结构。
声音提示单元则可以是各种能够进行声音提示的装置,例如语音播报等。
进一步地,该便携式血压检测模块100可以独立的运用于各个能够检测到动脉脉搏的部位,如手腕、手臂、颈部动脉、心脏等部位。使用时,可通过自带的佩戴结构固定在这些部位,该佩戴结构与壳体101固定连接(直接或间接固定连接),用于将便携式血压检测模块100佩戴在待测对象的动脉血管处。例如,在某些实施例中,佩戴结构包括带状结构、环状结构、吸合结构、粘合结构中的至少一种。请参考图4,在一种实施例中,佩戴结构可以为腕带109。
带状结构包括如表带或者其他带状物体一样的结构,其通过扣合、绑系、粘合等方式形成环状结构,使得便携式血压检测模块100能够被佩戴在手腕、手表、颈部等部位。
环套结构包括具有弹性的环套或环带结构。吸合结构包括吸盘等通过吸合作用实现安装的结构。粘合结构包括医用胶布等用于粘合固定的结构。
此外,还可以在便携式血压检测模块100上不设置佩戴结构,而直接通过其他外部固定手段实现便携式血压检测模块100的安装,例如采用医疗中常用的医用胶布把便携式血压检测模块100贴在待测部位。
另一方面,便携式血压检测模块100除了独立使用外,还可以附加到其他穿戴设备上使用。
在其他实施例中,便携式血压检测模块100包括安装结构,该安装结构与壳体101固定连接,用于将便携式血压检测模块100安装到其他装置上。通常是以可拆地方式固定在其他穿戴设备上。当然,在某些实施例中,也可是不可拆卸式的固定。
在一些实施例中,安装结构包括粘接结构、卡接结构、螺接结构、磁性吸附结构中的至少一种。
粘接结构包括魔术贴等一系列可以实现粘接安装的结构。卡接结构包括利用卡扣配合所实现固定的结构。螺接结构包括通过螺钉固定方式实现安装的结构以及将便携式血压检测模块100自身螺纹连接到穿戴设备上的结构。磁性吸附结构包括利用磁性吸附力所实现的固定结构。
请参考图5,在一种实施例中,该便携式血压检测模块100安装在一种手表200上,该手表200包括表头210和表带220,该便携式血压检测模块100装设在表带220的内侧,使得戴上表带220后,便携式血压检测模块100可以贴附于桡骨动脉,进而测量脉搏压力。
该手表200可以是用于显示时间的普通手表200,也可以是兼具其他功能的智能手表200。当手表200为智能手表200时,该智能手表200可以与便携式血压检测模块100的通信单元建立无线和/或有线通信连接,进而用来控制便携式血压检测模块100和/或显示便携式血压检测模块100检测结果。
另一方面,为了形成所要的型腔,在某些实施例中,壳体101与脉搏压力传导部件中至少其一具有凹腔,该壳体101与脉搏压力传导部件将凹腔封闭形成上述型腔。
当然,在其他实施例中,当脉搏压力传导部件本身具有弹性时,也可以不形成凹腔,而是在充气时依靠材料本身的变形从而产生需要的型腔。
进一步地,在某些实施例中,脉搏压力传导部件安装在壳体101内,且脉搏压力传导部件的一部分从壳体101内伸出到壳体101外。这种情况下脉搏压力传导部件只有需要与待测部位贴附的部分从壳体101中伸出,能进一步将便携式血压检测模块100设计的更小,更便于携带和使用。
通常来说,脉搏压力传导部件露出壳体101的部分可以采用弹性膜102或柔性膜制成,这可以利用弹性膜102的弹性特性,使其在膨胀变形时能够伸出到壳体101外,而泄气时会收回到壳体101内或者收回到靠近壳体101的位置,使得便携式血压检测模块100体积更小。
请再次参考图1和2,通常手腕的桡骨动脉血管的内径大致为2.3+/-0.4mm,考虑到穿戴时引起的位置误差,可以设计一种脉搏压力传导部件,比如大致10mm长、宽度8mm的弹性膜,其完全可以覆盖住桡骨动脉血管。通过给型腔加压(或加压后减压),使桡骨动脉血管内的压力变化叠加于型腔的内压。检测叠加了桡骨动脉血管内压的型腔压力的变化,即可测量出桡骨动脉血管的血压。
这种血压检测模块,无需缠绕肢体、仅覆盖肢体的局部动脉血管、不形成佩带负担,比如,如图5所示,将这种装置设置于表带与手腕桡骨动脉之间进行血压检测。这种血压检测模块的大小甚至可以达到20mm*15mm*8mm或以下,目前手表的表带宽度大致20mm,宽一点的话大致30mm左右。由于没有占用手腕太多空间,可以配合通过光电法检测心率的手表一起使用
实施例二:
本实施例二提供了第二种便携式血压检测模块100。
请参考图6,本便携式血压检测模块100与实施例一所示的便携式血压检测模块100区别之处在于:
本便携式血压检测模块100的充放气结构包括气泵108和快速排气阀105。该气泵108和快速排气阀105均内置于壳体101的安装腔内。气泵108和快速排气阀105与型腔连通构成气路。
请继续参考图6,在一种实施例中,以腕部桡骨动脉检测为例,其中RA表示桡骨动脉,W表示手腕,100代表便携式血压检测模块100。
壳体101设置于桡骨动脉血管RA处,便携式血压检测模块100与动脉血管RA贴附。气泵108给型腔加压,使弹性膜102压迫动脉血管RA,血管压力的变化叠加于型腔内部的气压。与此同时,气压传感器106检测型腔压力的变化,血压计算单元103根据气压传感器106检测的信号,计算出血压值。此后,快速排气阀105将型腔中的气体快速排放。
实施例三:
本实施例提供了第三种便携式血压检测模块100。
请参考图7,本便携式血压检测模块100与实施例二所示的便携式血压检测模块100区别之处在于:
本便携式血压检测模块100的充放气结构包括具有充放气功能的集成气泵111,该集成气泵111与型腔连通构成气路。该集成气泵111内置于壳体101的安装腔内。
请参考图7,在一种实施例中,以腕部桡骨动脉检测为例,其中RA表示桡骨动脉,W表示手腕,100代表便携式血压检测模块100。
壳体101设置于桡骨动脉血管RA处,便携式血压检测模块100与动脉血管RA贴附。集成气泵111给型腔加压,使弹性膜102压迫动脉血管RA,血管压力的变化叠加于型腔内部的气压。与此同时,气压传感器106检测型腔压力的变化,血压计算单元103根据气压传感器106检测的信号,计算出血压值。此后,型腔中的气体通过集成气泵111快速排放。
实施例四:
本实施例提供了第四种便携式血压检测模块100。
请参考图8,本便携式血压检测模块100与实施例三所示的便携式血压检测模块100区别之处在于:
本便携式血压检测模块100的检测单元包括声音传感器113和气压传感器106,声音传感器113用于检测柯氏音,气压传感器106检测型腔压力的变化。
另一方面,本便携式血压检测模块100的充放气结构包括加减压气泵112,该加减压气泵112内置于壳体101的安装腔内,并与型腔连通构成气路。
请参考图8,在一种实施例中,以腕部桡骨动脉检测为例,其中RA表示桡骨动脉,W表示手腕,100代表便携式血压检测模块100。
壳体101设置于桡骨动脉血管RA处,便携式血压检测模块100与动脉血管贴附。加减压气泵112向型腔加压使弹性膜102压迫动脉血管,血管压力的变化叠加于型腔内部的气压。与此同时声音传感器113检测柯氏音,气压传感器106检测型腔压力的变化。血压计算单元103根据柯氏音信号和气压传感器106检测的信号,计算出血压值。此后,加减压气泵112将型腔中的气体排放出去。
实施例五:
本实施例提供了第五种便携式血压检测模块100。
请参考图9,本便携式血压检测模块100与实施例一所示的便携式血压检测模块100区别之处在于:
本便携式血压检测模块100的脉搏压力传导结构形成一个囊状结构114,并由壳体101或壳体101上固定的某个部件将该脉搏压力传导部件封闭为型腔。
实施例六:
本实施例提供了第六种便携式血压检测模块100。
请参考图10和11,本便携式血压检测模块100与实施例一所示的便携式血压检测模块100区别之处在于:
本便携式血压检测模块100具有作为佩戴结构的腕带122,该便携式血压检测模块100的壳体101安装在腕带122内侧,从而使得佩戴上腕带122时,便携式血压检测模块100可以贴附在手腕或手臂的动脉处。
实施例七:
本实施例提供了第七种便携式血压检测模块。
请参考图12和15,本便携式血压检测模块与实施例一所示的便携式血压检测模块100区别之处在于:
本便携式血压检测模块的壳体101外壁凹陷形成第一凹腔,脉搏压力传导部件102面向第一凹腔的一面凹陷形成第二凹腔,通过压紧件101a将脉搏压力传导部件102密封压紧在第一凹腔上,使第一凹腔与第二凹腔围成用于充气的型腔C。
该压紧件101a为中空的压板,脉搏压力传导部件102(例如弹性膜)的一部分容置在该压板的中空部分。压板将脉搏压力传导部件102压合在壳体101上,从而形成密闭型腔C。
进一步地,请继续参考图12和15,壳体101的与第一凹腔相反的一面具有安装腔,其中,可用来安装气压传感器106、集成气泵111等部件。该气压传感器106通过连接管106a与型腔C连通。集成气泵111通过连接管111a与型腔C连通。集成气泵111通电闭合常开阀、加压,断电后停止加压、常开阀开放。
实施例八:
本实施例八提供一种智能手环,该智能手环包括所述任一实施例中所示的的脉搏压力传导结构,用以传导被检测者的脉搏压力。
此外,该智能手环还包括充放气结构、检测单元、血压计算单元以及显示单元和/或声音提示单元。
该充放气结构用于对型腔进行充放气操作。该检测单元用于检测所述型腔的脉搏压力信号。该血压计算单元用于根据检测的脉搏压力信号计算出血压检测结果。显示单元和/或声音提示单元与血压计算单元连接,用于显示和/或提示检测结果。
其中,充放气结构、检测单元、血压计算单元以及显示单元和/或声音提示单元可以采用上述任一实施例中所公开方案,也可以使用未被记载在上述实施例中的其他方案。
该脉搏压力传导结构通常是设置在智能手环的环带上,用以使脉搏压力传导结构能够贴附动脉血管。
此外,智能手环还可以附加其他功能,如其他生命体征参数、步数检测、睡眠质量、心率等功能。
实施例九:
本实施例九提供一种智能手环,该智能手环包括所述任一实施例中所示的的血压检测模块,用以检测被检测者的脉搏压力。
该血压检测模块可以是不可拆卸式地安装,也可以是可拆卸式的安装。通常可以将血压检测模块设置在智能手环的环带上,用以使脉搏压力传导结构能够贴附动脉血管。
此外,智能手环还可以附加其他功能,如其他生命体征参数、步数检测、睡眠质量、心率等功能。
实施例十:
本实施例十提供一种智能手表,该智能手表包括所述任一实施例中所示的的脉搏压力传导结构,用以传导被检测者的脉搏压力。
此外,该智能手表还包括充放气结构、检测单元、血压计算单元以及显示单元和/或声音提示单元。
该充放气结构用于对型腔进行充放气操作。该检测单元用于检测所述型腔的脉搏压力信号。该血压计算单元用于根据检测的脉搏压力信号计算出血压检测结果。显示单元和/或声音提示单元与血压计算单元连接,用于显示和/或提示检测结果。
其中,充放气结构、检测单元、血压计算单元以及显示单元和/或声音提示单元可以采用上述任一实施例中所公开方案,也可以使用未被记载在上述实施例中的其他方案。
该脉搏压力传导结构通常是设置在智能手表的表带内侧靠近动脉的部分,用以使脉搏压力传导结构能够贴附动脉血管。
此外,该智能手表还可以附加其他功能,如其他生命体征参数、步数检测、睡眠质量、心率等功能。
实施例十一:
本实施例十一提供一种智能手表,该智能手表包括所述任一实施例中所示的的血压检测模块,用以检测被检测者的脉搏压力。
该血压检测模块可以是不可拆卸式地安装,也可以是可拆卸式的安装。通常可以将血压检测模块设置在智能手表的表带内侧靠近动脉的部分,用以使脉搏压力传导结构能够贴附动脉血管。
此外,该智能手表还可以附加其他功能,如其他生命体征参数、步数检测、睡眠质量、心率等功能。
以上所示的脉搏压力传导结构以及血压检测模块除了能够应用到上述的智能手表和智能手环上,还能应用于其他智能穿戴设备上,其转用方式可参考上述实施例所述。其中,智能穿戴设备是指具有数据处理能力的可穿戴到人体上的设备和装置。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (28)

  1. 一种电子血压计的脉搏压力传导结构, 其特征在于,包括壳体和脉搏压力传导部件,所述脉搏压力传导部件安装在壳体上,并与所述壳体或固定在壳体上的固定件围合形成用于充气的型腔,所述脉搏压力传导部件至少一部分从壳体中露出,使得所述脉搏压力传导部件能够在充气时直接或间接作用到待检测对象的检测部位。
  2. 如权利要求1所述的脉搏压力传导结构,其特征在于,所述脉搏压力传导部件包括弹性材料制成的弹性部和/或柔性材料制成的柔性部。
  3. 如权利要求1所述的脉搏压力传导结构,其特征在于,所述壳体与脉搏压力传导部件中至少其一具有凹腔,所述壳体与脉搏压力传导部件将所述凹腔封闭形成所述型腔。
  4. 如权利要求3所述的脉搏压力传导结构,其特征在于,所述壳体的外壁凹陷形成第一凹腔,所述脉搏压力传导部件面向第一凹腔的一面凹陷形成第二凹腔,通过压紧件将脉搏压力传导部件密封压紧在第一凹腔上,使所述第一凹腔与第二凹腔围成用于充气的型腔。
  5. 如权利要求1所述的脉搏压力传导结构,其特征在于,所述脉搏压力传导部件安装在壳体内,且所述脉搏压力传导部件的一部分从壳体内伸出到壳体外。
  6. 如权利要求1-5任一项所述的脉搏压力传导结构,其特征在于,所述脉搏压力传导部件露出壳体的部分采用弹性膜或柔性膜制成。
  7. 一种便携式血压检测模块,其特征在于,包括:
    壳体,所述壳体具有安装腔;
    脉搏压力传导部件,所述脉搏压力传导部件安装在壳体上,并与所述壳体围合形成用于充气的型腔,所述脉搏压力传导部件至少一部分从壳体中露出,使得所述脉搏压力传导部件能够在充气时直接或间接作用到待检测对象的检测部位;
    充放气结构,其与所述型腔连通,用于对型腔进行充放气操作;
    检测单元,用于检测所述型腔的脉搏压力信号;
    以及血压计算单元,用于根据检测的脉搏压力信号计算出血压检测结果;
    所述充放气结构、检测单元和血压计算单元安装在所述安装腔内。
  8. 如权利要求7所述的便携式血压检测模块,其特征在于,还包括通信单元,所述通信单元与血压计算单元连接,用于将便携式血压检测模块与其他装置建立通信连接。
  9. 如权利要求8所述的便携式血压检测模块,其特征在于,所述通信单元包括无线传输单元。
  10. 如权利要求7所述的便携式血压检测模块,其特征在于,所述检测单元包括气压传感器,所述气压传感器与所述型腔连通,用于检测所述型腔内的气体压力信号。
  11. 如权利要求7所述的便携式血压检测模块,其特征在于,所述检测单元包括声音传感器和气压传感器,所述声音传感器用于检测柯氏音,所述气压传感器用于检测型腔压力信号。
  12. 如权利要求7所述的便携式血压检测模块,其特征在于,还包括显示单元和/或声音提示单元,所述显示单元和/或声音提示单元与血压计算单元连接,用于显示和/或提示检测结果。
  13. 如权利要求7所述的便携式血压检测模块,其特征在于,所述充放气结构包括用于加压的气泵和用于排气的快速排气阀,所述气泵和快速排气阀与所述型腔连通。
  14. 如权利要求7所述的便携式血压检测模块,其特征在于,所述充放气结构包括具有充放气功能的集成气泵,所述集成气泵与所述型腔连通。
  15. 如权利要求7所述的便携式血压检测模块,其特征在于,还包括安装结构,所述安装结构与所述壳体固定连接,用于将所述便携式血压检测模块安装到其他装置上。
  16. 如权利要求15所述的便携式血压检测模块,其特征在于,所述安装结构包括粘接结构、卡接结构、螺接结构、磁性吸附结构中的至少一种。
  17. 如权利要求7所述的便携式血压检测模块,其特征在于,还包括佩戴结构,所述佩戴结构与所述壳体固定连接,用于将所述便携式血压检测模块佩戴在待测对象的动脉血管处。
  18. 如权利要求17所述的便携式血压检测模块,其特征在于,所述佩戴结构包括带状结构、环状结构、吸合结构、粘合结构中的至少一种。
  19. 如权利要求18所述的便携式血压检测模块,其特征在于,所述佩戴结构自壳体至少一侧一体延伸形成。
  20. 如权利要求7-19任一项所述的便携式血压检测模块,其特征在于,所述脉搏压力传导部件包括弹性材料制成的弹性部和/或柔性材料制成的柔性部。
  21. 如权利要求20所述的便携式血压检测模块,其特征在于,所述壳体与脉搏压力传导部件中至少其一具有凹腔,所述壳体与脉搏压力传导部件将所述凹腔封闭形成所述型腔。
  22. 如权利要求21所述的便携式血压检测模块,其特征在于,所述壳体的外壁凹陷形成第一凹腔,所述脉搏压力传导部件面向第一凹腔的一面凹陷形成第二凹腔,通过压紧件将脉搏压力传导部件密封压紧在第一凹腔上,使所述第一凹腔与第二凹腔围成用于充气的型腔。
  23. 如权利要求20所述的便携式血压检测模块,其特征在于,所述脉搏压力传导部件安装在壳体内,且所述脉搏压力传导部件的一部分从壳体内伸出到壳体外。
  24. 如权利要求20所述的便携式血压检测模块,其特征在于,所述弹性件露出壳体的部分采用弹性膜或柔性膜制成。
  25. 一种智能穿戴设备,其特征在于,包括:
    如权利要求1-6所述的脉搏压力传导结构,用以传导被检测者的脉搏压力;
    充放气结构,用于对型腔进行充放气操作;
    检测单元,用于检测所述型腔的脉搏压力信号;
    血压计算单元,用于根据检测的脉搏压力信号计算出血压检测结果;
    以及显示单元和/或声音提示单元,所述显示单元和/或声音提示单元与血压计算单元连接,用于显示和/或提示检测结果。
  26. 一种智能穿戴设备,其特征在于,包括如权利要求7-24所述的血压检测模块,用以检测被检测者的脉搏压力。
  27. 如权利要求26所述的智能穿戴设备,其特征在于,还包括:
    第二通信单元,所述第二通信单元与血压检测模块建立无线和/或有线通信连接;
    以及显示单元和/或声音提示单元,所述显示单元和/或声音提示单元用于显示和/或提示检测结果。
  28. 如权利要求25-27任一项所述的智能穿戴设备,其特征在于,所述智能穿戴设备包括智能手表和智能手环中的一种。
PCT/CN2018/071863 2017-05-16 2018-01-09 脉搏压力传导结构、便携式血压检测模块和智能穿戴设备 WO2018209983A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/788,526 US20200178812A1 (en) 2017-05-16 2020-02-12 Pulse pressure conducting structure, portable blood pressure detection module, and smart wearable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710343416.7A CN107174229A (zh) 2017-05-16 2017-05-16 脉搏压力传导结构、便携式血压检测模块和智能穿戴设备
CN201710343416.7 2017-05-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/788,526 Continuation US20200178812A1 (en) 2017-05-16 2020-02-12 Pulse pressure conducting structure, portable blood pressure detection module, and smart wearable device

Publications (1)

Publication Number Publication Date
WO2018209983A1 true WO2018209983A1 (zh) 2018-11-22

Family

ID=59831110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071863 WO2018209983A1 (zh) 2017-05-16 2018-01-09 脉搏压力传导结构、便携式血压检测模块和智能穿戴设备

Country Status (3)

Country Link
US (1) US20200178812A1 (zh)
CN (1) CN107174229A (zh)
WO (1) WO2018209983A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107174229A (zh) * 2017-05-16 2017-09-19 深圳金亿帝医疗设备股份有限公司 脉搏压力传导结构、便携式血压检测模块和智能穿戴设备
TWI676463B (zh) * 2017-11-07 2019-11-11 研能科技股份有限公司 穿戴式血壓測量裝置
CN108030482B (zh) * 2017-12-06 2023-12-29 深圳市星河泉新材料有限公司 加压结构、气囊式血压检测模块以及血压智能检测设备
TWI688368B (zh) * 2018-10-31 2020-03-21 研能科技股份有限公司 穿戴式健康監測裝置
CN109700446A (zh) * 2019-01-24 2019-05-03 深圳金亿帝医疗设备股份有限公司 一种血压测量设备
CN113288077A (zh) * 2021-07-10 2021-08-24 郑州大学 一种多部位脉搏波采集装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1030353A (zh) * 1987-07-03 1989-01-18 株式会社高桥 血压测量装置
CN2559313Y (zh) * 2002-08-13 2003-07-09 许瑞琛 腕带式血压计
CN101843495A (zh) * 2009-03-27 2010-09-29 新奥特硅谷视频技术有限责任公司 法庭上用于监测证人血压的装置
US20120165687A1 (en) * 2010-12-28 2012-06-28 Omron Healthcare Co., Ltd. Sphygmomanometer
CN204306810U (zh) * 2014-12-05 2015-05-06 四川省人民医院 一种腕戴式脉搏与血压监测装置
CN204839495U (zh) * 2015-08-04 2015-12-09 龙微科技无锡有限公司 一种高精度集成式手环血压计
WO2016068495A1 (ko) * 2014-10-28 2016-05-06 (주)참케어 손목 혈압계
CN205391108U (zh) * 2016-03-03 2016-07-27 四川农业大学 一种多功能测压装置
CN107174229A (zh) * 2017-05-16 2017-09-19 深圳金亿帝医疗设备股份有限公司 脉搏压力传导结构、便携式血压检测模块和智能穿戴设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100398058C (zh) * 2000-04-21 2008-07-02 陆渭明 无创伤测量血压的装置
CN101548883A (zh) * 2009-05-26 2009-10-07 上海三埃弗电子有限公司 一种血压测量方法
CN207837535U (zh) * 2017-05-16 2018-09-11 深圳金亿帝医疗设备股份有限公司 脉搏压力传导结构、便携式血压检测模块和智能穿戴设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1030353A (zh) * 1987-07-03 1989-01-18 株式会社高桥 血压测量装置
CN2559313Y (zh) * 2002-08-13 2003-07-09 许瑞琛 腕带式血压计
CN101843495A (zh) * 2009-03-27 2010-09-29 新奥特硅谷视频技术有限责任公司 法庭上用于监测证人血压的装置
US20120165687A1 (en) * 2010-12-28 2012-06-28 Omron Healthcare Co., Ltd. Sphygmomanometer
WO2016068495A1 (ko) * 2014-10-28 2016-05-06 (주)참케어 손목 혈압계
CN204306810U (zh) * 2014-12-05 2015-05-06 四川省人民医院 一种腕戴式脉搏与血压监测装置
CN204839495U (zh) * 2015-08-04 2015-12-09 龙微科技无锡有限公司 一种高精度集成式手环血压计
CN205391108U (zh) * 2016-03-03 2016-07-27 四川农业大学 一种多功能测压装置
CN107174229A (zh) * 2017-05-16 2017-09-19 深圳金亿帝医疗设备股份有限公司 脉搏压力传导结构、便携式血压检测模块和智能穿戴设备

Also Published As

Publication number Publication date
US20200178812A1 (en) 2020-06-11
CN107174229A (zh) 2017-09-19

Similar Documents

Publication Publication Date Title
WO2018209983A1 (zh) 脉搏压力传导结构、便携式血压检测模块和智能穿戴设备
KR100657959B1 (ko) 커프의 점탄성 특성을 이용한 혈압계 및 이를 구비한이동형 단말기
WO2021208745A1 (zh) 一种血压测量装置及方法
WO2018099389A1 (zh) 具血压量测功能的穿戴式装置
WO2011163576A1 (en) Non-invasive blood pressure sensor
KR20130125567A (ko) 손목시계형 혈압계
CN112006671B (zh) 穿戴式生命体征监护设备
JPS62292137A (ja) 血圧測定器
CN110022763A (zh) 一种手表腕带
US20210169347A1 (en) Pulse transit time measurement device and blood pressure measurement device
KR20180019325A (ko) 손목 혈압계
JP2020500080A (ja) 手首式血圧計
CN108030482B (zh) 加压结构、气囊式血压检测模块以及血压智能检测设备
WO2020039829A1 (ja) 測定装置
CN112190246A (zh) 可穿戴设备及其主体
KR101485700B1 (ko) 손목시계형 혈압계
US5509423A (en) Pump band
KR20150092465A (ko) 손목시계형 혈압계
KR101485717B1 (ko) 손목시계형 혈압계
JP2007533357A (ja) 血圧計
KR101680197B1 (ko) 손목 혈압계
CN201743675U (zh) 数字式血压袖带
KR20110018765A (ko) 혈압계
CN207837535U (zh) 脉搏压力传导结构、便携式血压检测模块和智能穿戴设备
CN213787371U (zh) 手表式以及臂式生命体征监护设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801499

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18801499

Country of ref document: EP

Kind code of ref document: A1