WO2021063140A1 - 通信方法和相关装置 - Google Patents

通信方法和相关装置 Download PDF

Info

Publication number
WO2021063140A1
WO2021063140A1 PCT/CN2020/111913 CN2020111913W WO2021063140A1 WO 2021063140 A1 WO2021063140 A1 WO 2021063140A1 CN 2020111913 W CN2020111913 W CN 2020111913W WO 2021063140 A1 WO2021063140 A1 WO 2021063140A1
Authority
WO
WIPO (PCT)
Prior art keywords
length
impulse noise
transmission unit
interval
ofdm symbol
Prior art date
Application number
PCT/CN2020/111913
Other languages
English (en)
French (fr)
Inventor
黄亚东
曾焱
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021063140A1 publication Critical patent/WO2021063140A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to the field of communication technology, and more specifically, to communication methods and related devices.
  • Power Line Communication (PLC) technology is a communication method that uses power lines to transmit data.
  • Power line communication technology can maximize the use of power transmission lines that have been laid to transmit data, which can save a lot of wiring costs.
  • the power line is the medium through which power is transmitted. Therefore, it has not been considered as a communication transmission medium when designing and laying out power lines. Therefore, power line communication equipment (such as power cat) and electrical equipment (such as household appliances) work in the same network. Special circuit structures and components in electrical equipment (such as rectifier circuits, motors, etc.) will generate noise signals in the power line network. These noise signals will interfere with power line communication signals, thereby affecting the speed of power line communication, and then affecting the related services carried on the communication channel.
  • power line communication equipment such as power cat
  • electrical equipment such as household appliances
  • the embodiments of the present application provide a communication method and related devices, which can reduce the interference of periodic impulse noise in power line communication to normal communication.
  • an embodiment of the present application provides a communication method, including: determining that there is periodic impulse noise in a power line between a first communication device and a second communication device, and the energy in each impulse noise in the periodic impulse noise
  • the length between the initial pulse point and the last pulse point greater than or equal to a threshold is k, and k is a number greater than 0
  • the transmission unit is determined according to the repetition period of the periodic impulse noise, and the transmission unit includes a quadrature Frequency division multiplexing OFDM symbol, the OFDM symbol includes an interval part and a non-interval part, the non-interval part is used to carry service data and/or control data, the length of the interval part is greater than or equal to k, and the length of the repetition period is equal to N times the length of the transmission unit, where N is a positive integer greater than or equal to 1; sending a first indication message to the second communication device, where the first indication information is used to indicate the subcarrier interval and information about the length of the interval part ,
  • the subcarrier
  • the main part of the periodic impulse noise can fall in the interval part of the OFDM symbol.
  • the interval part is mainly to suppress the interference between symbols and does not participate in the demodulation of the signal. Therefore, whether the receiver can successfully receive and demodulate the content carried in the interval has no effect on the communication of useful data (such as service data and/or control data) between the receiver and the transmitter.
  • useful data such as service data and/or control data
  • the data carried in the interval part can be said to be useless data.
  • all or most of the periodic impulse noise can be partially overlapped with the interval for transmitting unnecessary data. In other words, the service data and/or control data between the first communication device and the second communication device are transmitted at a moment when there is no impulse noise or the impulse noise is small. In this way, the impact of impulse noise on data transmission can be reduced.
  • the first indication message includes first time information, the first time information is used to indicate a target time, and the target time is the amount of time that the second communication device sends the transmission unit according to the periodic impulse noise. time.
  • the periodic impulse noise is detected and determined by the receiving side device of the transmission unit.
  • Periodic impulse noise has the greatest impact on the receiving side. Therefore, it is more convenient for the receiving side device (ie, the first communication device) to perform noise detection and determine the relevant parameters of the transmission unit.
  • the sending-side device ie, the second communication device
  • the transmitting-side device only needs to wait for the target time after detecting the periodic impulse noise and send the transmission unit, so as to ensure that all or most of the periodic impulse noise partially overlaps with the interval for transmitting useless data.
  • the method further includes: sending a second indication message to the second communication device, where the second indication message includes second time information, and the second time information is used to instruct the second communication device to send The start time of this transmission unit.
  • the transmitting device may not be able to detect periodic impulse noise.
  • the receiving-side device may be responsible for determining the starting time to start sending the transmission unit, and indicating the starting time to the transmitting-side device. In this way, the sending-side device can directly start sending the transmission unit according to the starting time, so that it can be ensured that all or most of the periodically occurring impulse noise partially overlaps with the interval for transmitting useless data.
  • the length of the OFDM symbol in the transmission unit is the length of the OFDM symbol determined in advance.
  • the length of the OFDM symbol determined in advance is determined according to the length of the repetition period.
  • the transmission unit further includes a passband symbol, and the passband symbol is used to carry service data and/or control data.
  • the length of the repetition period of the periodic impulse noise is greater than or equal to 1.5 times the length of the load part of the standard OFDM symbol and less than or equal to 2 times the length of the load part of the standard OFDM symbol
  • the passband symbol is included in the transmission unit. If a transmission unit is also composed of only one OFDM symbol, the length of the non-interval part in the OFDM symbol is close to or equal to the length of the load part of a standard OFDM symbol. This causes a waste of transmission resources. Therefore, a passband symbol is added to the transmission unit structure of the above technical solution, and the passband symbol can be used to carry service data and/or control data. In this way, data transmission can be carried out more efficiently.
  • the method before sending the first indication information to the second communication device, the method further includes: determining the target time according to the length of the interval portion and the width of the first impulse noise, and the first Impulse noise is any impulse noise in the periodic impulse noise.
  • the determining the target time according to the length of the interval portion and the width of the first impulse noise includes: determining the target time when the length of the interval portion is less than the width of the first impulse noise
  • the target time is the difference between the length of the transmission unit and the first time length
  • the first time length is the time length from the peak of the first impulse noise to the upper boundary of the interval portion corresponding to the first pulse; where the length of the interval portion is greater than Or equal to the width of the first impulse noise
  • the target time is determined according to the length of the interval, the length of the transmission unit, the second duration, and the third duration
  • the second duration is the first impulse noise
  • the duration from the peak of the first impulse noise to the start boundary of the first impulse noise, and the third duration is the duration from the peak of the first impulse noise to the end boundary of the first impulse noise.
  • the energy of the first impulse noise in the interval portion corresponding to the first pulse is greater than that in the first pulse. The energy outside the corresponding interval.
  • a signal processing device which may be a communication device, or a component (for example, a chip or a circuit, etc.) in the communication device.
  • the signal processing device includes a processing module and a sending module.
  • the processing unit may be a processor, and the sending unit may be a transmitter;
  • the communication device may also include a storage module, and the storage module may be a memory;
  • the processing module executes the instructions stored by the storage module, so that the communication device executes the method in the first aspect.
  • the processing module may be a processor, and the sending module may be an input/output interface, a pin or a circuit, etc.; the processing The module line stores the instructions stored by the module so that the communication device executes the method in the first aspect.
  • the storage module may be a storage unit (for example, a register, a cache, etc.) in the chip, or may be the A storage unit (for example, read-only memory, random access memory, etc.) located outside the chip in the communication device.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the methods in the foregoing aspects.
  • the above-mentioned computer program code may be stored in whole or in part on a first storage medium, where the first storage medium may be packaged with the processor, or may be packaged separately with the processor.
  • first storage medium may be packaged with the processor, or may be packaged separately with the processor.
  • a computer-readable medium stores program code, and when the computer program code runs on a computer, the computer executes the methods in the above-mentioned aspects.
  • Figure 1 is a schematic diagram of periodic impulse noise.
  • FIG. 2 shows two standard OFDM symbols.
  • Figure 3 is a schematic diagram of the structure of a transmission unit for transmission between a receiver and a transmitter.
  • Fig. 4 is a schematic diagram of the structure of the transmission unit transmitted between the receiver and the transmitter.
  • Fig. 5 is a schematic diagram of the structure of a transmission unit for transmission between a receiver and a transmitter.
  • Fig. 6 is a schematic diagram of the structure of a transmission unit for transmission between a receiver and a transmitter.
  • Fig. 7 is a schematic diagram of the structure of the transmission unit transmitted between the receiver and the transmitter.
  • Fig. 8 is a schematic diagram of the start time and the waiting time of the transmitter sending the transmission unit.
  • Fig. 9 is a schematic diagram of determining the length of the target time.
  • Fig. 10 is another schematic diagram of determining the length of the target time.
  • Fig. 11 is a schematic flow chart of detecting whether the noise is periodic impulse noise.
  • Fig. 12 is a communication method provided according to its own embodiment.
  • Fig. 13 is a schematic structural diagram of a signal processing apparatus according to an embodiment of the present application.
  • Fig. 14 is a structural block diagram of a communication device according to an embodiment of the present invention.
  • information, signal, and message can sometimes be used together. It should be noted that, when the difference is not emphasized, the meanings to be expressed are the same. “Corresponding (relevant)” and “corresponding” can sometimes be used interchangeably. It should be pointed out that when the difference is not emphasized, the meanings to be expressed are the same.
  • the subscript sometimes as W 1 may form a clerical error at non-target as W1, while not emphasize the difference, to express their meaning is the same.
  • references described in this specification to "one embodiment” or “some embodiments”, etc. mean that one or more embodiments of the present application include a specific feature, structure, or characteristic described in conjunction with the embodiment. Therefore, the sentences “in one embodiment”, “in some embodiments”, “in some other embodiments”, “in some other embodiments”, etc. appearing in different places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless it is specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • the technical solution of this application can be applied to power line communication systems that comply with the G.hn standard, Home Plug Power Line Alliance (Home Plug), and so on.
  • Home Plug Home Plug Power Line Alliance
  • the impulse noise generated by most large household appliances is impulse noise that recurs periodically. This periodic impulse noise can be called periodic impulse noise.
  • Figure 1 is a schematic diagram of periodic impulse noise.
  • the impulse noise shown in Figure 1 recurs periodically.
  • the distance between the peaks of two adjacent impulse noises (that is, the position with the largest noise amplitude) is equal.
  • the distance between the peaks of two adjacent impulse noises can be referred to as the length of the repetition period of the periodic impulse noise.
  • rep is used in the embodiments of the present application to represent the length of the repetition period of periodic impulse noise.
  • the smallest unit of transmitter and receiver transmission is an OFDM symbol. If there is no periodic impulse noise in the power line communication system, the length of the OFDM symbol used to transmit service data and/or service data in the power line communication system is equal to the length of the OFDM symbol.
  • This OFDM symbol may be called a standard OFDM symbol or a default OFDM symbol.
  • the standard OFDM symbol can be composed of a Cyclic Prefix (CP) part and a load part.
  • Figure 2 is a schematic diagram of a standard OFDM symbol.
  • Figure 2 shows two standard OFDM symbols. As shown in Figure 2, each of the two standard OFDM symbols includes a CP part and a load part.
  • the load part of the standard OFDM symbol is used for fast Fourier transform (fast Fourier transform, FFT) size, subcarrier spacing (SCS) and sampling rate have the following relationship:
  • Nstd the size of the load part of the standard OFDM symbol used for FFT
  • SCS the subcarrier spacing
  • the size used for FFT has the following relationship with the number of subcarriers:
  • Tstd represents the number of subcarrier intervals of the load part of the standard OFDM symbol
  • Nstd represents the size of the load part of the standard OFDM symbol used for FFT.
  • the number of subcarrier intervals has the following relationship with the duration
  • Lstd represents the length of the load part of the standard OFDM symbol
  • Tstd represents the number of subcarrier intervals of the CP part of the standard OFDM symbol
  • fs represents the sampling rate
  • Lcp represents the length of the CP part of the standard OFDM symbol
  • Lstd represents the size of the load part of the standard OFDM symbol used for FFT
  • the value of k is 1, 2, ..., 8, and the general value of k is 4 or 8. .
  • the effective bandwidth is 100MHz
  • the sampling rate is 200MHz
  • the subcarrier spacing is 24.414K.
  • the Nstd obtained is the size of the load part of the standard OFDM symbol used for FFT.
  • the number of subcarriers in the load part of the standard OFDM symbol is equal to 4096.
  • the number of subcarriers of the load part of the standard OFDM symbol is put into formula 3, and the length Lstd of the load part of the standard OFDM symbol is obtained.
  • the length of the payload part of this standard OFDM symbol is equal to 40.96 microseconds ( ⁇ s).
  • the size of the load part of the standard OFDM symbol used for FFT is put into formula 4, and the length Lcp of the CP part of the standard OFDM symbol is obtained. Assuming the value of k is 8, then the length of the CP part of the standard OFDM symbol is equal to 10.24 ⁇ s.
  • Lstd represents the length of the load part in the standard OFDM symbol
  • Lcp represents the length of the CP part in the OFDM symbol.
  • the "length" referred to in the embodiments of the present application can be understood as the length of time, and can also be referred to as the length of time.
  • the following is a schematic diagram of the structure of the transmission unit used to transmit service data and/or control data between the transmitter and the receiver in the above three relationships in conjunction with FIG. 3 to FIG. 7 respectively.
  • the schematic structural diagrams of the transmission unit shown in FIGS. 3 to 7 are schematic structural diagrams of the transmission unit transmitted between the transmitter and the receiver in the case of detecting that there is periodic impulse noise between the transmitter and the receiver.
  • Figure 3 is a schematic diagram of the structure of a transmission unit for transmission between a receiver and a transmitter.
  • the schematic structural diagram shown in FIG. 3 is a schematic structural diagram of the transmission unit in the case of the above relationship 1.
  • Fig. 3 shows two transmission units, and each transmission unit of the two transmission units shown in Fig. 3 is composed of one OFDM symbol.
  • the length of each transmission unit is the same as the length of the repetition period of the periodic impulse noise.
  • Each transmission unit is composed of an interval part and a non-interval part.
  • the non-interval part is used to carry service data and/or control data.
  • the length of the non-interval part is equal to the length of the load part of the standard OFDM symbol.
  • the length of the interval part is equal to the difference between the length of the repetition period and the length of the load part of the standard OFDM symbol.
  • L gap3 represents the length of the gap part in the transmission unit shown in FIG. 3
  • the OFDM symbol in the transmission unit shown in FIG. 3 is referred to as the first OFDM symbol below.
  • Fig. 4 is a schematic diagram of the structure of the transmission unit transmitted between the receiver and the transmitter.
  • the schematic structural diagram shown in FIG. 4 is a schematic structural diagram of another transmission unit in the case of the above relationship 1.
  • Fig. 4 shows two transmission units.
  • Each transmission unit of the two transmission units shown in Fig. 4 is composed of an OFDM symbol and a passband symbol.
  • the length of each transmission unit is the same as the length of the repetition period of the periodic impulse noise.
  • Each transmission unit is composed of an interval part and a non-interval part.
  • the non-interval part is used to carry service data and/or control data.
  • the length of the non-interval part is equal to the length of the load part of the standard OFDM symbol.
  • m is 2 t
  • t is a positive integer greater than or equal to 1, and the value of t can generally be 1 or 2.
  • the length of the repetition period of the periodic impulse noise may be close to or equal to the length of the load part of two standard OFDM symbols.
  • the length of the non-interval part in the OFDM symbol is close to or equal to the length of the load part of a standard OFDM symbol. This causes a waste of transmission resources. Therefore, a passband symbol is added to the transmission unit structure shown in FIG. 4, and the passband symbol can be used to carry service data and/or control data. In this way, data transmission can be carried out more efficiently.
  • the length of the repetition period of the periodic impulse noise when the length of the repetition period of the periodic impulse noise is greater than the length of the load part of a standard OFDM symbol and less than 1.5 times the length of the load part of the standard OFDM symbol, it can be used
  • the structure of the transmission unit shown in Figure 3; the length of the repetition period of the periodic impulse noise is greater than or equal to 1.5 times the length of the load part of the standard OFDM symbol and less than or equal to 2 times the length of the load part of the standard OFDM symbol
  • the structure of the transmission unit as shown in FIG. 4 can be adopted.
  • the OFDM symbol in the transmission unit shown in FIG. 4 is referred to as a second OFDM symbol below.
  • Fig. 5 is a schematic diagram of the structure of a transmission unit for transmission between a receiver and a transmitter.
  • the schematic structural diagram shown in FIG. 5 is a schematic structural diagram of the transmission unit in the case of the above relationship 2.
  • Fig. 5 shows four transmission units, and each of the four transmission units shown in Fig. 5 consists of one OFDM symbol.
  • the sum of the lengths of the two transmission units is the same as the length of the repetition period of the periodic impulse noise.
  • Each transmission unit is composed of an interval part and a non-interval part.
  • the non-interval part is used to carry service data and/or control data.
  • the length of the non-interval part is equal to the length of the load part of the standard OFDM symbol.
  • L gap5 represent the length of the gap part in the transmission unit shown in FIG. 5
  • L gapn represents the length of the gap portion
  • L datan represents the length of the non-gap portion
  • the value of n is a positive integer greater than or equal to 2
  • L datan Lstd
  • the OFDM symbol in the transmission unit shown in FIG. 5 is referred to as a third OFDM symbol below.
  • one transmission unit may include one OFDM symbol and one passband symbol .
  • the structure of the transmission unit can be referred to as shown in FIG. 4 and FIG. 5. For the sake of brevity, it will not be repeated here.
  • Fig. 6 is a schematic diagram of the structure of a transmission unit for transmission between a receiver and a transmitter.
  • the schematic structural diagram shown in FIG. 6 is a schematic structural diagram of the transmission unit in the case of the relationship 3 above.
  • Fig. 6 shows two transmission units, and each transmission unit of the two transmission units shown in Fig. 6 is composed of one OFDM symbol.
  • the length of each transmission unit is the same as the length of the repetition period of the periodic impulse noise.
  • Each transmission unit is composed of an interval part and a non-interval part.
  • the non-interval part is used to carry service data and/or control data.
  • the OFDM symbol in the transmission unit shown in FIG. 6 is referred to as the fourth OFDM symbol below.
  • Fig. 7 is a schematic diagram of the structure of the transmission unit transmitted between the receiver and the transmitter.
  • the schematic structural diagram shown in Fig. 7 is a schematic structural diagram of another transmission unit in the case of relation 3 above.
  • Fig. 7 shows two transmission units.
  • Each transmission unit of the two transmission units shown in Fig. 7 is composed of an OFDM symbol and a passband symbol.
  • the length of each transmission unit is the same as the length of the repetition period of the periodic impulse noise.
  • Each transmission unit is composed of an interval part and a non-interval part.
  • the non-interval part is used to carry service data and/or control data.
  • L gap7 represent the length of the gap part in the transmission unit shown in FIG. 7
  • L data7 represent the length of the non-space part in the transmission unit shown in FIG. 7
  • L pass7 identify the passband in the transmission unit shown in FIG. The length of the symbol.
  • m is 2 t
  • t is a positive integer greater than or equal to 1
  • the value of t can generally be 1 or 2
  • k is a negative integer less than or equal to -1.
  • the OFDM symbol in the transmission unit shown in FIG. 7 is referred to as the fifth OFDM symbol below.
  • the subcarrier interval of the OFDM symbol is the subcarrier interval used when determining the standard OFDM symbol.
  • the sub-carrier interval can be referred to as the standard sub-carrier interval.
  • the standard subcarrier spacing can be represented by SCS std.
  • the subcarrier spacing of the passband symbol in the transmission unit shown in FIG. 4 is SCS std /m, where the value of m is the same as the value of m used when determining the length of the passband symbol.
  • the subcarrier spacing of the OFDM symbol can be SCS std ⁇ 2 -k , where the value of k and the value of k used to determine the length of the non-interval part of the transmission unit Same value
  • the subcarrier spacing of the passband symbol is SCS std ⁇ 2- k ⁇ m, where the value of m is equal to the value of m used when determining the length of the non-spacing part of the transmission unit.
  • the value is the same, and the value of k is the same as the value of k used when determining the length of the non-interval part of the transmission unit.
  • the interval part in the structure of the transmission unit may be a CP.
  • the interval part in the structure of the transmission unit may be a cyclic suffix.
  • the interval part in the structure of the transmission unit may be a silent symbol.
  • the interval part is mainly to suppress the interference between symbols and does not participate in the demodulation of the signal. Therefore, whether the receiver can successfully receive and demodulate the content carried in the interval has no effect on the communication of useful data (such as service data and/or control data) between the receiver and the transmitter.
  • useful data such as service data and/or control data
  • the data carried in the interval part can be said to be useless data.
  • Fig. 3 to Fig. 7 that during the communication process between the transmitter and the receiver, by adjusting the structure of the data unit, all or most of the periodic impulse noise can be partially overlapped with the interval used to transmit unnecessary data. .
  • the service data and/or control data sent by the transmitter to the receiver are transmitted when there is no impulse noise or the impulse noise is small. In this way, the impact of impulse noise on data transmission can be reduced.
  • the length of the first OFDM symbol to the fifth OFDM symbol is determined according to the length of the repetition period of the periodic impulse noise.
  • the first OFDM symbol to the fifth OFDM symbol are collectively referred to as the extracted and determined OFDM symbols below. It can be seen from FIG. 3 to FIG. 7 that the length of the repetition period is greater than or equal to the length of an OFDM symbol determined in advance.
  • the length of the OFDM symbol determined in advance may be determined according to the length of the repetition period.
  • the length of the OFDM symbol determined in advance is the same as the length of the repetition period.
  • the length of the OFDM symbol determined in advance may be equal to the length of the repetition period of periodic impulse noise and The difference in the length of the passband symbol.
  • the length of the OFDM symbol determined in advance may be the same as the length of the repetition period of the periodic impulse noise. 1/n.
  • the length of the OFDM symbol determined in advance may be the same as the length of the repetition period of the periodic impulse noise. 2 k times, where k is a negative integer less than or equal to -1.
  • the transmitter can wait for a period of time before starting to send the transmission unit. This allows the impulse noise to partially overlap the interval.
  • Fig. 8 is a schematic diagram of the start time and the waiting time of the transmitter sending the transmission unit.
  • the transmitter can wait for a period of time from a peak of impulse noise, and then start sending the transmission unit.
  • the waiting time of the transmitter can be used as the target time.
  • the target time is T_d.
  • the length of the target time can be determined according to the length of the interval portion of the transmission unit and the width of the impulse noise. In some embodiments, the length of the interval portion is greater than or equal to the width of the impulse noise. In other embodiments, the length of the interval portion is smaller than the width of the impulse noise.
  • Fig. 9 is a schematic diagram of determining the length of the target time. As shown in Figure 9, the length of the interval is greater than the bandwidth of the impulse noise.
  • T may represent the length of the transmission unit.
  • T may represent the length of the repetition period.
  • the target time can be determined according to Formula 5:
  • T_d T-w/2+(B_up-B_down)/2, formula 5.
  • Formula 5 can also be used to calculate the target time when the length of the interval is equal to the bandwidth of the impulse noise.
  • Fig. 10 is another schematic diagram of determining the length of the target time. As shown in Figure 10, the length of the interval is smaller than the bandwidth of the impulse noise.
  • T_d represents the target time
  • w represents the length of the interval portion.
  • T may represent the length of the transmission unit.
  • T may represent the length of the repetition period.
  • the target time can be determined according to Equation 6:
  • T_d T-B_down', formula 6.
  • Equation 6 The meaning of each symbol in Equation 6 is as described above.
  • the energy of the impulse noise in the interval portion is greater than the energy outside the interval portion.
  • the impulse noise energy in the interval portion accounts for 85%, 90%, or 95% of the total impulse noise energy.
  • both the transmitter and the receiver can detect the periodic impulse noise.
  • the above-mentioned work of determining the length of the OFDM symbol determined in advance and the target time can be implemented by the receiver.
  • the receiver may send a first indication message to the transmitter, the first indication message including information for indicating the subcarrier interval and the length of the interval part in the transmission unit.
  • the subcarrier spacing and the length of the OFDM symbol in the transmission unit are related.
  • the first indication message may also include first time information, and the first time information is used to indicate the target time.
  • the transmitter can determine the transmission unit according to the subcarrier spacing.
  • the length of the non-spacing part in the transmission unit can be determined to be Nstd.
  • the transmission unit may also include passband symbols.
  • the length of the passband symbol is Nstd/m
  • m is 2 t
  • t is a positive integer greater than or equal to 1
  • the value of t can generally be 1 or 2.
  • the length of the interval is Nstd/2-Nstd/m.
  • the transmitter After determining the transmission unit, the transmitter can wait for the target time after detecting the peak of the periodic impulse noise, and then start sending the transmission unit to the receiver.
  • the receiver can detect the periodic impulse noise, and the transmitter cannot detect the periodic impulse noise.
  • the above-mentioned work of determining the length of the OFDM symbol determined in advance and the target time can be implemented by the receiver.
  • the receiver may send a first indication message to the transmitter, the first indication message including information for indicating the subcarrier interval and the length of the interval part in the transmission unit. The length of the gap part and the length of the OFDM symbol in the transmission unit are related.
  • the receiver may also send a second indication message to the transmitter, and the second indication message may be second time information, and the second time information is used to indicate the start time for the transmitter to send the transmission unit.
  • the manner in which the transmitter determines the transmission unit according to the first indication message is the same as that in the foregoing embodiment, and for the sake of brevity, details are not repeated here.
  • the time indicated by the second time information may be a waiting time calculated by the receiver according to the current time.
  • the second time information sent to the transmitter may indicate the target time, or the second time information may indicate the target time and an offset value.
  • the offset value may be the average transmission delay for the receiver to send a message to the transmitter.
  • the second time information sent to the transmitter may indicate the time from the initial boundary of the impulse noise to the sending of the transmission unit.
  • the transmitter may determine the start time for sending the transmission unit according to the second time information. For example, in some embodiments, the transmitter may directly wait for the duration indicated by the second time information. For another example, in some other embodiments, the transmitter may determine the start time according to the duration indicated by the second time information and the average transmission delay of the receiver sending the message to the transmitter.
  • the transmitter can detect the periodic impulse noise.
  • the foregoing tasks such as determining the structure of the transmission unit, the length of the OFDM symbol determined in advance, and the target time can be implemented by the transmitter.
  • the transmitter After the transmitter detects the peak of the periodic impulse noise, it can start sending the transmission unit after waiting for the target time.
  • the transmitter may send a first indication message to the receiver, the first indication message including information for indicating the subcarrier interval and the length of the interval part in the transmission unit.
  • the length of the gap part and the length of the OFDM symbol in the transmission unit are related.
  • the transmitter may also determine the receiver side before sending the transmission unit to the receiver according to the determined transmission unit
  • the impulse noise and the periodic impulse noise detected by the transmitter are the same noise.
  • the impulse noise on the receiver side is also periodic impulse noise (hereinafter referred to as the second impulse noise)
  • the length of the repetition period of the second periodic impulse noise is the same as the length of the repetition period of the first impulse noise and/or
  • the width of the impulse noise of the second periodic impulse noise is the same as the width of the impulse noise of the first periodic impulse noise, it can be determined that the second periodic impulse noise and the first periodic impulse noise are the same periodic impulse noise.
  • the receiver may determine the transmission unit according to the first instruction message, and receive the transmission unit sent from the transmitter according to the determined transmission unit.
  • the implementation manner in which the receiver determines the transmission unit according to the first indication message is the same as the implementation manner in which the above-mentioned receiver determines the transmission unit according to the first indication message. For brevity, details are not described herein again.
  • Fig. 11 is a schematic flow chart of detecting whether the noise is periodic impulse noise. The method shown in FIG. 11 can be executed by the transmitter or the receiver.
  • step 1102 may be performed.
  • it may be determined according to the average power of the noise of multiple OFDM symbols.
  • the detecting whether there is impulse noise may include: determining whether there is impulse noise according to the number of noise points in the first time period.
  • Th1 is the first impulse noise decision threshold
  • the first impulse noise decision threshold is a preset number
  • fs represents the sampling rate
  • Num_p is less than Th2, it can be determined that there is no impulse noise; otherwise, it can be determined that there is impulse noise, where Th2 is the second impulse noise decision threshold, and the second impulse noise decision threshold is a preset number. .
  • the first point is regarded as the starting position t1 of impulse noise. If the time difference ⁇ t1 between two adjacent impulse noise points is greater than ts, the previous point is regarded as the end position of the first impulse noise t2, and then sequentially detect other impulse noises in the window. among them S IN,i is the position of the i-th sampling point in the window among the N sampling points with impulse noise.
  • determining whether the impulse noise occurs periodically according to the extracted impulse noise may include: determining Num_q pulse envelopes in the second time period according to the extracted impulse noise, and the Num_q Any two pulse envelopes in the two pulse envelopes have the same width.
  • the width of the pulse is equivalent to the width of the pulse noise.
  • acorr norm represents the autocorrelation parameter
  • IN i is the sum of the amplitudes of all noise points in the i-th pulse envelope in the Num_q pulse envelopes
  • IN j is the j-th pulse envelope in the Num_q pulse envelopes
  • Fig. 12 is a communication method provided according to its own embodiment.
  • the method shown in FIG. 12 may be implemented by a first communication device, or may be implemented by a component (for example, a chip or a circuit, etc.) in the first communication device.
  • a component for example, a chip or a circuit, etc.
  • each impulse noise in the periodic impulse noise has a starting pulse point and a last pulse whose energy is greater than or equal to a threshold.
  • the length between the points is k, and k is a number greater than zero.
  • the transmission unit includes an Orthogonal Frequency Division Multiplexing OFDM symbol, the OFDM symbol includes an interval part and a non-interval part, and the non-interval part is used to carry service data. And/or control data, the length of the interval portion is greater than or equal to k, the length of the repetition period is equal to N times the length of the transmission unit, and N is a positive integer greater than or equal to 1.
  • the first indication information is used to indicate the subcarrier interval and information about the length of the interval part, and the subcarrier interval is associated with the length of the OFDM symbol.
  • the first indication message includes first time information
  • the first time information is used to indicate a target time
  • the target time is the second communication device sending the transmission unit according to periodic impulse noise time.
  • the method shown in FIG. 12 further includes: sending a second indication message to the second communication device, where the second indication message includes second time information, and the second time information is used to indicate The second communication device sends the start time of the transmission unit.
  • the length of the repetition period is greater than or equal to the length of an OFDM symbol determined in advance
  • the length of the OFDM symbol in the transmission unit is the length of the OFDM symbol determined in advance
  • the length of the OFDM symbol determined in advance is determined according to the length of the repetition period.
  • the transmission unit further includes a passband symbol, and the passband symbol is used to carry service data and/or control data.
  • the method before sending the first indication information to the second communication device, the method further includes: determining the target time according to the length of the interval portion and the width of the first impulse noise, the The first impulse noise is any impulse noise in the periodic impulse noise.
  • determining the target time according to the length of the interval portion and the width of the first impulse noise includes: when the length of the interval portion is less than the width of the first impulse noise, It is determined that the target time is the difference between the length of the transmission unit and the first time length, and the first time length is the time length from the peak of the first impulse noise to the upper boundary of the interval portion corresponding to the first pulse; In the case that the length is greater than or equal to the width of the first impulse noise, the target time is determined according to the length of the interval, the length of the transmission unit, the second time length, and the third time length, and the second time length is the first time length.
  • the time length from the peak of the impulse noise to the start boundary of the first impulse noise, and the third time length is the time length from the peak of the first impulse noise to the end boundary of the first impulse noise.
  • the energy of the first impulse noise in the interval portion corresponding to the first pulse is greater than that in the first pulse.
  • the first communication device may be a receiver
  • the second communication device may be a transmitter
  • the first communication device may be a transmitter
  • the second communication device may be a receiver
  • the first communication device may periodically determine whether there is periodic impulse noise in the power line, and if there is a periodic impulse, execute the method shown in FIG. 12.
  • the first communication device may determine whether there is periodic impulse noise in the power line through a preset event trigger, and if there is periodic impulse noise, execute the method shown in FIG. 12. For example, the first communication device may determine whether there is periodic impulse noise in the power line when the error rate of Forward Error Correction (FEC) reaches a preset condition, and if there is periodic impulse noise, then Perform the method shown in Figure 12.
  • FEC Forward Error Correction
  • Fig. 13 is a schematic structural diagram of a signal processing apparatus according to an embodiment of the present application.
  • the signal processing device 1300 includes: a processing module 1301 and a sending module 1302.
  • the processing module 1301 is used to determine that there is periodic impulse noise in the power line between the first communication device and the second communication device, and the starting pulse point of each impulse noise in the periodic impulse noise whose energy is greater than or equal to a threshold
  • the length between the pulse point and the last pulse point is k, and k is a number greater than zero.
  • the processing module 1301 is further configured to determine a transmission unit according to the repetition period of the periodic impulse noise.
  • the transmission unit includes an Orthogonal Frequency Division Multiplexing OFDM symbol.
  • the OFDM symbol includes an interval part and a non-interval part.
  • the non-interval part Used to carry service data and/or control data, the length of the interval part is greater than or equal to k, the length of the repetition period is equal to N times the length of the transmission unit, and N is a positive integer greater than or equal to 1.
  • the sending module 1302 is configured to send a first indication message to the second communication device, where the first indication information is used to indicate information about the subcarrier interval and the length of the interval part, and the subcarrier interval is associated with the length of the OFDM symbol.
  • the first indication message includes first time information
  • the first time information is used to indicate a target time
  • the target time is the second communication device sending the transmission unit according to periodic impulse noise time.
  • the sending module 1302 is further configured to send a second indication message to the second communication device, where the second indication message includes second time information, and the second time information is used to indicate the second communication device. 2. The start time when the communication device sends the transmission unit.
  • the length of the repetition period is greater than or equal to the length of an OFDM symbol determined in advance
  • the length of the OFDM symbol in the transmission unit is the length of the OFDM symbol determined in advance
  • the length of the OFDM symbol determined in advance is determined according to the length of the repetition period.
  • the transmission unit further includes a passband symbol, and the passband symbol is used to carry service data and/or control data.
  • the processing module 1301 is further configured to determine the target time according to the length of the interval and the width of the first impulse noise before sending the first indication information to the second communication device ,
  • the first impulse noise is any impulse noise in the periodic impulse noise.
  • the processing module 1301 is specifically configured to determine that the target time is the length of the transmission unit and the first duration when the length of the interval is less than the width of the first impulse noise. Difference, the first duration is the duration from the peak of the first impulse noise to the upper boundary of the interval portion corresponding to the first pulse; in the case that the length of the interval portion is greater than or equal to the width of the first impulse noise,
  • the target time is determined according to the length of the interval, the length of the transmission unit, the second time length, and the third time length.
  • the second time length is the range from the peak of the first impulse noise to the start boundary of the first impulse noise Duration
  • the third duration is the duration from the peak of the first impulse noise to the end boundary of the first impulse noise.
  • the energy of the first impulse noise in the interval portion corresponding to the first pulse is greater than that in the first pulse.
  • Fig. 14 is a structural block diagram of a communication device according to an embodiment of the present invention.
  • the communication device includes a processor 1401, a memory 1402, and a transceiver 1403.
  • the processor 1401 may be used to process communication protocols and communication data, control communication devices, execute software programs, and process data of software programs, and so on.
  • the memory 1402 is mainly used to store software programs and data.
  • FIG. 14 For ease of description, only one memory and processor are shown in FIG. 14. In an actual communication device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the circuit with the transceiver function can be regarded as the transceiver 1403 of the communication device, and the processor with the processing function can be regarded as the processing unit of the communication device.
  • the transceiver may also be referred to as a transceiver unit, transceiver, transceiver, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver 1403 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver 1403 as the sending unit, that is, the transceiver 1403 includes the receiving unit and the sending unit.
  • the processor 1401, the memory 1402, and the transceiver 1403 communicate with each other through internal connection paths to transfer control and/or data signals
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 1401 or implemented by the processor 1401.
  • the processor 1401 may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 1401 or instructions in the form of software.
  • the processor described in each embodiment of the present application may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), and a field programmable gate array (field programmable gate array). , FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory (RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory, or electrically erasable programmable memory, registers, etc. mature in the field Storage medium.
  • RAM random access memory
  • flash memory read-only memory
  • read-only memory read-only memory
  • ROM programmable read-only memory
  • electrically erasable programmable memory registers, etc. mature in the field Storage medium.
  • the storage medium is located in the memory, and the processor reads the instructions in the memory and completes the steps of the above method in combination with its hardware.
  • the memory 1402 may store instructions for executing the method executed by the communication device in the method shown in FIG. 12.
  • the processor 1401 can execute instructions stored in the memory 1402 in combination with other hardware (for example, the transceiver 1403) to complete the steps executed by the first communication device in the method shown in FIG. 12.
  • other hardware for example, the transceiver 1403
  • An embodiment of the present application also provides a chip, which includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the chip can execute the method on the first communication device side in the above method embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium on which an instruction is stored, and when the instruction is executed, the method on the first communication device side in the foregoing method embodiment is executed.
  • the embodiments of the present application also provide a computer program product containing instructions that, when executed, execute the method on the first communication device side in the foregoing method embodiments.
  • the embodiment of the present application also provides a chip system.
  • the chip heartache includes: a logic circuit for coupling with an input/output interface, and transmitting data through the input/output interface to execute the method on the first communication device side in the above method embodiment.
  • the present application also provides a system, which includes the aforementioned first communication device and the second communication device.
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本申请实施例提供一种通信方法和相关装置,该方法包括:确定第一通信设备与第二通信设备之间的电力线中存在周期性脉冲噪声;根据该周期性脉冲噪声的重复周期,确定传输单元,该传输单元包括一个正交频分复用OFDM符号,该OFDM符号包括间隔部分和非间隔部分,该非间隔部分用于携带业务数据和/或控制数据,该间隔部分的长度大于或等于k,该重复周期的长度等于该传输单元的长度的N倍;向该第二通信设备发送第一指示消息,该第一指示信息用于指示子载波间隔和该间隔部分的长度的信息,该子载波间隔和该OFDM符号的长度关联。上述技术方案能够减少电力线通信中周期性脉冲噪声对正常通信的干扰。

Description

通信方法和相关装置
本申请要求于2019年9月30日提交中国国家知识产权局、申请号为201910942171.9、发明名称为“通信方法和相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,更具体地,涉及通信方法和相关装置。
背景技术
电力线通信(Power Line Communication,PLC)技术是利用电力线传输数据的一种通信方式。电力线通信技术可以最大程度地利用已布设的电力传输线传输数据,从而可以节省大量的布线成本。
电力线是传输电力的介质。因此,在设计以及布设电力线时并未考虑作为通信传输介质。因此,电力线通信设备(例如电力猫)和用电设备(例如家用电器)工作在同一张网络中。用电设备中的特殊电路结构和部件(如整流电路、电机等)会在电力线网络中产生噪声信号。这些噪声信号会对电力线通讯信号产生干扰,从而对电力线通讯的速率产生影响,进而影响相关承载在通信通道上的业务。
发明内容
本申请实施例提供一种通信方法和相关装置,能够减少电力线通信中周期性脉冲噪声对正常通信的干扰。
第一方面,本申请实施例提供一种通信方法,包括:确定第一通信设备与第二通信设备之间的电力线中存在周期性脉冲噪声,该周期性脉冲噪声中的每个脉冲噪声中能量大于或等于一个阈值的起始脉冲点和最后一个脉冲点之间的长度为k,k为大于0的数;根据该周期性脉冲噪声的重复周期,确定传输单元,该传输单元包括一个正交频分复用OFDM符号,该OFDM符号包括间隔部分和非间隔部分,该非间隔部分用于携带业务数据和/或控制数据,该的间隔部分的长度大于或等于k,该重复周期的长度等于该传输单元的长度的N倍,N为大于或等于1的正整数;向该第二通信设备发送第一指示消息,该第一指示信息用于指示子载波间隔和该间隔部分的长度的信息,该子载波间隔和该OFDM符号的长度关联。
通过上述技术方案,周期性脉冲噪声的主要部分可以落在OFDM符号的间隔部分。间隔部分主要是来抑制符号间的干扰,不参与信号的解调。因此,接收机是否能成功接收并解调间隔部分携带的内容对于接收机与发射机之间有用数据(例如业务数据和/或控制数据)的通信并没有影响。为了便于描述,可以称间隔部分携带的数据是无用数据。通过调整数据单元的结构,可以使得周期性出现的脉冲噪声的全部或者大部分与用于传输无用数据的间隔部分重叠。换句话说,第一通信设备和第二通信设备之间的业务数据和/或控制数据是在没有脉冲噪声或者脉冲噪声较小的时刻传输的。这样,可以降低脉冲噪声对数据传输的 影响。
在一种可能的设计中,该第一指示消息包括第一时间信息,该第一时间信息用于指示目标时间,该目标时间为该第二通信设备根据该周期性脉冲噪声发送该传输单元的时间。
基于上述技术方案,周期性脉冲噪声时在传输单元的接收侧设备检测并确定的。周期性脉冲噪声对接收侧的影响最大。所以由接收侧设备(即第一通信设备)进行噪声检测并确定传输单元的相关参数较为方便。此外上述计数方案中,发送侧设备(即第二通信设备)也可以检测到周期性脉冲噪声。这样,发送侧设备只需要在检测到周期性脉冲噪声后等待该目标时间后发送传输单元,就可以保证周期性出现的脉冲噪声的全部或者大部分与用于传输无用数据的间隔部分重叠。
在一种可能的设计中,该方法还包括:向该第二通信设备发送第二指示消息,该第二指示消息包括第二时间信息,该第二时间信息用于指示该第二通信设备发送该传输单元的起始时间。
在一些情况下,发送侧设备可能并不能检测到周期性脉冲噪声。在此情况下,接收侧设备可以负责确定开始发送传输单元的起始时间,并将该起始时间指示给发送侧设备。这样,该发送侧设备可以直接根据该起始时间开始发送传输单元,这样就可以保证周期性出现的脉冲噪声的全部或者大部分与用于传输无用数据的间隔部分重叠。
在一种可能的设计中,当该重复周期的长度大于或等于一个提前确定的OFDM符号的长度时,该传输单元中的OFDM符号的长度为该提前确定的OFDM符号的长度。
在一种可能的设计中,该提前确定的OFDM符号的长度是根据该重复周期的长度确定的。
在一种可能的设计中,该传输单元还包括通带符号,该通带符号用于携带业务数据和/或控制数据。
可选的,在一些实施例中,在周期性脉冲噪声的重复周期的长度大于或等于标准OFDM符号的负载部分的长度的1.5倍且小于或等于标准OFDM符号的负载部分的长度的2倍的情况下,该传输单元中包括通带符号。若一个传输单元中还仅由一个OFDM符号组成,那么该OFDM符号中的非间隔部分的长度接近或等于1个标准OFDM符号的负载部分长度。这样就造成了传输资源的浪费。因此,上述技术方案的传输单元结构中增加了通带符号,该通带符号可以用于携带业务数据和/或控制数据。这样,可以更为有效地进行数据传输。
在一种可能的设计中,在该向该第二通信设备发送第一指示信息之前,该方法还包括:根据该间隔部分的长度和第一脉冲噪声的宽度,确定该目标时间,该第一脉冲噪声为该周期性脉冲噪声中的任一个脉冲噪声。
在一种可能的设计中,该根据该间隔部分的长度和第一脉冲噪声的宽度,确定该目标时间,包括:在该间隔部分的长度小于该第一脉冲噪声的宽度的情况下,确定该目标时间为该传输单元的长度与第一时长的差,该第一时长为该第一脉冲噪声的波峰到与该第一脉冲对应的间隔部分的上边界的时长;在该间隔部分的长度大于或等于该第一脉冲噪声的宽度的情况下,根据该间隔部分的长度、该传输单元的长度、第二时长和第三时长,确定的该目标时间,该第二时长为该第一脉冲噪声的波峰到该第一脉冲噪声的起始边界的时长,该第三时长为该第一脉冲噪声的波峰到该第一脉冲噪声的结束边界的时长。
在一种可能的设计中,在该间隔部分的长度小于该第一脉冲噪声的宽度的情况下,该第一脉冲噪声在与该第一脉冲对应的间隔部分内的能量大于在该第一脉冲对应的间隔部分外的能量。
在一种可能的设计中,该根据该间隔部分的长度、该传输单元的长度、第二时长和第三时长,确定的该目标时间,包括:根据以下公式确定该目标时间:T_d=T-w/2+(B_up-B_down)/2,其中T_d表示该目标时间,T表示该传输单元的长度、B_down表示该第二时长,B_up表示该第三时长,w表示该间隔部分的长度。
第二方面,本申请实施例提供一种信号处理装置,该信号处理装置可以是通信设备,也可以是通信设备内的部件(例如芯片或电路等)。该信号处理装置包括处理模块和发送模块。当该信号处理装置是通信设备时,所述处理单元可以是处理器,所述发送单元可以是发送器;该通信设备还可以包括存储模块,所述存储模块可以是存储器;所述存储模块用于存储指令,所述处理模块执行所述存储模块所存储的指令,以使所述通信设备执行第一方面中的方法。当所述信号处理装置是通信设备内的部件(例如芯片或电路等)时,所述处理模块可以是处理器,所述发送模块可以是输入/输出接口、管脚或电路等;所述处理模块行存储模块所存储的指令,以使所述通信设备执行第一方面中的方法,所述存储模块可以是所述芯片内的存储单元(例如,寄存器、缓存等),也可以是所述通信设备内的位于所述芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第三方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
需要说明的是,上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第四方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
附图说明
图1是一个周期性脉冲噪声的示意图。
图2示出了两个标准OFDM符号。
图3是接收机和发射机之间传输的传输单元的结构示意图。
图4接收机和发射机之间传输的传输单元的结构示意图。
图5是接收机和发射机之间传输的传输单元的结构示意图。
图6是接收机和发射机之间传输的传输单元的结构示意图。
图7接收机和发射机之间传输的传输单元的结构示意图。
图8是发射机发送传输单元的起始时间与等待时间的示意图。
图9是一种确定目标时间的长度的示意图。
图10是另一种确定目标时间的长度的示意图。
图11是一个检测噪声是否为周期性脉冲噪声的示意性流程图。
图12是根据本身实施例提供的一种通信方法。
图13是根据本申请实施例提供的一种信号处理装置的示意性结构图。
图14是根据本发明实施例提供的通信设备的结构框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,信息(information),信号(signal),消息(message)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W 1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请的技术方案可以应用于遵循G.hn标准、家庭插电联盟(Home Plug PowerLine Alliance,HomePlug)等的电力线通信系统中。
为了便于描述,首先对本申请实施例中涉及到的一些概念进行简单介绍。
(1)周期性脉冲噪声
大多数大家用电器产生的脉冲噪声都是周期性重复出现的脉冲噪声。这种周期性出现 的脉冲噪声可以称为周期性脉冲噪声。
图1是一个周期性脉冲噪声的示意图。如图1所示的脉冲噪声是周期性重复出现的。两个相邻的脉冲噪声的波峰(即噪声幅度最大的位置)之间的距离是相等的。两个相邻的脉冲噪声的波峰之间的距离可以称为该周期性脉冲噪声的重复周期的长度。为了便于描述,本申请实施例中使用rep表示周期性脉冲噪声的重复周期的长度。
(2)标准正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号
G.hn电力线通信系统采用OFDM调制方式,发射机与接收机传输的最小单元是一个OFDM符号。如果电力线通信系统中没有周期性脉冲噪声,那么该电力线通信系统中用于传输业务数据和/或业务数据的OFDM符号的长度等于该OFDM符号的长度。这个OFDM符号可以称为标准OFDM符号或者默认OFDM符号。
标准OFDM符号可以由循环前缀(Cyclic Prefix,CP)部分和负载部分组成。图2是标准OFDM符号的示意图。图2示出了两个标准OFDM符号。如图2所示,两个标准OFDM符号中的每个OFDM符号包括一个CP部分和一个负载部分。
标准OFDM符号中的负载部分用于进行快速傅里叶变换(fast Fourier transform,FFT)的大小、子载波间隔(subcarrier spacing,SCS)和采样率有满足如下关系:
fs/Nstd=SCS,公式1
其中fs表示采样率,Nstd表示标准OFDM符号中的负载部分用于进行FFT的大小,SCS表示子载波间隔。
用于进行FFT的大小和子载波数目有如下关系:
Nstd=2×Tstd,公式2
其中Tstd表示标准OFDM符号的负载部分的子载波间隔数目,Nstd表示标准OFDM符号中的负载部分用于进行FFT的大小。
子载波间隔数目与时长有如下关系
Lstd=Nstd/fs,公式3
其中Lstd表示标准OFDM符号的负载部分的长度,Tstd表示标准OFDM符号的CP部分的子载波间隔数目,fs表示采样率。
标准OFDM符号的CP部分的长度与负载部分的长度满足如下关系:
Lcp=(Lstd/32)×k,公式4
Lcp表示标准OFDM符号中的CP部分的长度,Lstd表示标准OFDM符号中的负载部分用于进行FFT的大小,k的取值为1,2,…,8,k的一般取值为4或者8。
以G.hn标准为例,有效带宽为100MHz,采样率为200MHz,子载波间隔为24.414K。将上述采样率和子载波间隔带入公式1,得到的Nstd就是该标准OFDM符号的负载部分用于进行FFT的大小。该标准OFDM符号的负载部分的子载波数目等于4096。将该标准OFDM符号的负载部分的子载波数目带入公式3,得到该标准OFDM符号的负载部分的长度Lstd。该标准OFDM符号的负载部分的长度等于40.96微秒(μs)。将该标准OFDM符号的负载部分用于进行FFT的大小带入公式4,得到该标准OFDM符号的CP部分的长度Lcp。假设k的值为8,那么该标准OFDM符号的CP部分的长度等于10.24μs。
以下实施例中以Lstd表示标准OFDM符号中的负载部分的长度,以Lcp表示OFDM 符号中的CP部分的长度。本申请实施例中所称的“长度”可以理解为时间长度,也可以称为时长。
周期性脉冲噪声的重复周期的长度和标准OFDM符号的负载部分的长度可以有以下几种关系:
关系1,1×Lstd<rep≤2×Lstd,即周期性脉冲噪声的重复周期的长度大于1个标准OFDM符号的负载部分的长度且小于或等于两个标准OFDM符号的负载部分的长度;
关系2,rep>2×Lstd,即周期性脉冲噪声的重复周期的长度大于2个标准OFDM符号的负载部分的长度;
关系3,rep≤1×Lstd,即周期性脉冲噪声的重复周期的长度小于或等于1个标准OFDM符号的负载部分的长度。
下面分别结合图3至图7对上述三种关系下,发射机和接收机之间用于传输业务数据和/或控制数据的传输单元的结构示意图。图3至图7所示的传输单元的结构示意图是在检测到发射机和接收机之间存在周期性脉冲噪声的情况下发射机和接收机之间传输的传输单元的结构示意图。
图3是接收机和发射机之间传输的传输单元的结构示意图。如图3所示的结构示意图是在上述关系1的情况下的传输单元的结构示意图。
图3示出了两个传输单元,如图3所示的两个传输单元中的每个传输单元由一个OFDM符号组成。该每个传输单元的长度与周期性脉冲噪声的重复周期的长度相同。
该每个传输单元由间隔部分和非间隔部分组成。该非间隔部分用于携带业务数据和/或控制数据。非间隔部分的长度等于标准OFDM符号的负载部分的长度。间隔部分的长度等于重复周期的长度与标准OFDM符号的负载部分的长度的差。
以L gap3表示图3所示的传输单元中间隔部分的长度,以L data3表示图3所示的传输单元中非间隔部分的长度。那么L gap3、L data3、Lstd和rep满足以下关系:L data3=Lstd;L gap3=rep-L data3
为了便于描述,以下将如图3所示的传输单元中的OFDM符号称为第一OFDM符号。
图4接收机和发射机之间传输的传输单元的结构示意图。如图4所示的结构示意图是在上述关系1的情况下的另一种传输单元的结构示意图。
图4示出了两个传输单元,如图4所示的两个传输单元中的每个传输单元由一个OFDM符号和一个通带(passband)符号组成。该每个传输单元的长度与周期性脉冲噪声的重复周期的长度相同。
该每个传输单元由间隔部分和非间隔部分组成。该非间隔部分用于携带业务数据和/或控制数据。非间隔部分的长度等于标准OFDM符号的负载部分的长度。
以L gap4表示图4所示的传输单元中间隔部分的长度,以L data4表示图4所示的传输单元中非间隔部分的长度,以L pass标识图4所示的传输单元中的通带符号的长度。那么L gap4、L data4、L pass、Nstd和rep满足以下关系:L data4=Lstd,L pass=Lstd/m,rep=L gap4+L data4+L pass。m为2 t,t为大于或等于1的正整数,t的值一般可以取1或者2。
在上述关系1的情况下,周期性脉冲噪声的重复周期的长度可能接近或等于两个标准OFDM符号的负载部分的长度。在此情况下,若一个传输单元中还仅由一个OFDM符号组成,那么该OFDM符号中的非间隔部分的长度接近或等于1个标准OFDM符号的负载部分 长度。这样就造成了传输资源的浪费。因此,图4所示的传输单元结构中增加了通带符号,该通带符号可以用于携带业务数据和/或控制数据。这样,可以更为有效地进行数据传输。
可选的,在一些实施例中,在周期性脉冲噪声的重复周期的长度大于1个标准OFDM符号的负载部分的长度且小于标准OFDM符号的负载部分的长度的1.5倍的情况下,可以采用如图3所示的传输单元的结构;在周期性脉冲噪声的重复周期的长度大于或等于标准OFDM符号的负载部分的长度的1.5倍且小于或等于标准OFDM符号的负载部分的长度的2倍的情况下,可以采用如图4所示的传输单元的结构。
为了便于描述,以下将如图4所示的传输单元中的OFDM符号称为第二OFDM符号。
图5是接收机和发射机之间传输的传输单元的结构示意图。如图5所示的结构示意图是在上述关系2的情况下的传输单元的结构示意图。
图5示出了四个传输单元,如图5所示的四个传输单元中的每个传输单元由一个OFDM符号组成。该两个传输单元的长度的和与周期性脉冲噪声的重复周期的长度相同。
该每个传输单元由间隔部分和非间隔部分组成。该非间隔部分用于携带业务数据和/或控制数据。非间隔部分的长度等于标准OFDM符号的负载部分的长度。
以L gap5表示图5所示的传输单元中间隔部分的长度,以L data5表示图3所示的传输单元中非间隔部分的长度。那么L gap5、L data5、Lstd和rep满足以下关系:L data5=Lstd;L gap5=(rep-L data5×2)/2。
若周期性脉冲噪声的重复周期的长度与n个传输单元的长度的和相同,则每个传输单元中的间隔部分、非间隔部分、rep的关系满足以下公式:
L gapn=(rep-L datan×n)/n,
其中L gapn表示间隔部分的长度,L datan表示非间隔部分的长度,n的值为大于或等于2的正整数,L datan=Lstd。
为了便于描述,以下将如图5所示的传输单元中的OFDM符号称为第三OFDM符号。
可选的,在另一些实施例中,若周期性脉冲噪声的重复周期的长度和标准OFDM符号的负载部分的长度满足上述关系2,则一个传输单元中可以包括一个OFDM符号和一个通带符号。在此情况下传输单元的结构可以参考图4与图5所示,为了简洁,在此就不再赘述。
图6是接收机和发射机之间传输的传输单元的结构示意图。如图6所示的结构示意图是在上述关系3的情况下的传输单元的结构示意图。
图6示出了两个传输单元,如图6所示的两个传输单元中的每个传输单元由一个OFDM符号组成。该每个传输单元的长度与周期性脉冲噪声的重复周期的长度相同。
该每个传输单元由间隔部分和非间隔部分组成。该非间隔部分用于携带业务数据和/或控制数据。
以L gap6表示图6所示的传输单元中间隔部分的长度,以L data6表示图6所示的传输单元中非间隔部分的长度。那么L gap6、L data6、Lstd和rep满足以下关系:L data6=Lstd×2 k;L gap6=rep-L data6,其中k为小于或等于-1的负整数。
为了便于描述,以下将如图6所示的传输单元中的OFDM符号称为第四OFDM符号。
图7接收机和发射机之间传输的传输单元的结构示意图。如图7所示的结构示意图是 在上述关系3的情况下的另一种传输单元的结构示意图。
图7示出了两个传输单元,如图7所示的两个传输单元中的每个传输单元由一个OFDM符号和一个通带(passband)符号组成。该每个传输单元的长度与周期性脉冲噪声的重复周期的长度相同。
该每个传输单元由间隔部分和非间隔部分组成。该非间隔部分用于携带业务数据和/或控制数据。
以L gap7表示图7所示的传输单元中间隔部分的长度,以L data7表示图7所示的传输单元中非间隔部分的长度,以L pass7标识图7所示的传输单元中的通带符号的长度。那么L gap7、L data7、L pass7、Lstd和rep满足以下关系:L data7=L pass7=Lstd×2 k/m,rep=L gap7+L data7+L pass7。m为2 t,t为大于或等于1的正整数,t的值一般可以取1或者2,k为小于或等于-1的负整数。
为了便于描述,以下将如图7所示的传输单元中的OFDM符号称为第五OFDM符号。
可选的,在一些实施例中,如果rep-Nstd×2 k大于Nstd×2 k-1,则可以采用
在图3至图6所示的传输单元的结构中,OFDM符号的子载波间隔是确定标准OFDM符号时使用的子载波间隔。为了便于描述,可以称该子载波间隔为标准子载波间隔。该标准子载波间隔可以使用SCS std表示。
在图4所示的传输单元中的通带符号的子载波间隔为SCS std/m,其中m的取值与确定通带符号的长度时使用的m的取值相同。
在图6或图7所示的传输单元的结构中,OFDM符号的子载波间隔可以为SCS std×2 -k,其中k的取值和确定传输单元中非间隔部分的长度时使用的k的取值相同
在图7所示的传输单元的结构中,通带符号的子载波间隔为SCS std×2 -k×m,其中m的取值和在确定传输单元的非间隔部分的长度时使用的m的取值相同,k的取值和在确定传输单元的非间隔部分的长度时使用的k的取值相同。
可选的,在一些实施例中,传输单元的结构中的间隔部分可以是CP。
可选的,在另一些实施例中,传输单元的结构中的间隔部分可以是循环后缀。
可选的,在另一些实施例中,传输单元的结构中的间隔部分可以是静默符号。
间隔部分主要是来抑制符号间的干扰,不参与信号的解调。因此,接收机是否能成功接收并解调间隔部分携带的内容对于接收机与发射机之间有用数据(例如业务数据和/或控制数据)的通信并没有影响。为了便于描述,可以称间隔部分携带的数据是无用数据。从图3至图7可以看出,发射机与接收机在通信过程中,通过调整数据单元的结构,可以使得周期性出现的脉冲噪声的全部或者大部分与用于传输无用数据的间隔部分重叠。换句话说,发射机发送给接收机的业务数据和/或控制数据是在没有脉冲噪声或者脉冲噪声较小的时刻传输的。这样,可以降低脉冲噪声对数据传输的影响。
第一OFDM符号至第五OFDM符号的长度是根据周期性脉冲噪声的重复周期的长度确定的。为了便于描述,以下将第一OFDM符号至第五OFDM符号统称为提取确定的OFDM符号。从图3至图7可以看出,重复周期的长度大于或等于一个提前确定的OFDM符号的长度。
该提前确定的OFDM符号的长度可以根据重复周期的长度确定。
例如,在周期性脉冲噪声的重复周期的长度和标准OFDM符号的负载部分的长度满足 上述关系1的情况下,该提前确定的OFDM符号的长度与重复周期的长度相同。
又如,在周期性脉冲噪声的重复周期的长度和标准OFDM符号的负载部分的长度满足上述关系1的情况下,该提前确定的OFDM符号的长度可以等于周期性脉冲噪声的重复周期的长度与通带符号的长度的差。
又如,在周期性脉冲噪声的重复周期的长度和标准OFDM符号的负载部分的长度满足上述关系2的情况下,该提前确定的OFDM符号的长度可以为周期性脉冲噪声的重复周期的长度的1/n。
又如,在周期性脉冲噪声的重复周期的长度和标准OFDM符号的负载部分的长度满足上述关系3的情况下,该提前确定的OFDM符号的长度可以为周期性脉冲噪声的重复周期的长度的2 k倍,其中k为小于或等于-1的负整数。
在确定了传输单元后,发射机可以等待一段时间,然后再开始发送该传输单元。这样可以使得脉冲噪声与间隔部分重叠。
图8是发射机发送传输单元的起始时间与等待时间的示意图。如图8所示,发射机可以从一个脉冲噪声的波峰起等待一段时间,然后开始发送传输单元。为了便于描述,可以将该发射机等待的时间成为目标时间。该目标时间为T_d。
该目标时间的长度可以根据传输单元的间隔部分的长度和脉冲噪声的宽度确定的。在一些实施例中,间隔部分的长度大于或等于脉冲噪声的宽度。在另一些实施例中,间隔部分的长度小于脉冲噪声的宽度。
图9是一种确定目标时间的长度的示意图。如图9所示,间隔部分的长度大于脉冲噪声的带宽。
图9中的B_down表示第二时长,该第二时长是脉冲噪声的波峰到该脉冲噪声的起始边界的时长;B_up表示第三时长,该第三时长是脉冲噪声的波峰到该脉冲噪声的结束边界的时长;T_d表示该目标时间;w表示间隔部分的长度,相应的w/2为间隔部分的长度的二分之一。可选的,在一些实施例中,T可以表示传输单元的长度。可选的,在另一些实施例中,T可以表示重复周期的长度。
如图9所示,该目标时间可以根据公式5确定:
T_d=T-w/2+(B_up-B_down)/2,公式5。
公式5中各个符号的含义如上所述。
公式5除了可以应用于计算间隔部分的长度大于脉冲噪声的带宽时的目标时间外,还可以用于计算间隔部分的长度等于脉冲噪声的带宽时的目标时间。
图10是另一种确定目标时间的长度的示意图。如图10所示,间隔部分的长度小于脉冲噪声的带宽。
图10中的B_down’表示第一时长,该第一时长是脉冲噪声的波峰到该脉冲噪声对应的间隔部分的上边界的时长;T_d表示该目标时间;w表示间隔部分的长度。可选的,在一些实施例中,T可以表示传输单元的长度。可选的,在另一些实施例中,T可以表示重复周期的长度。
如图10所示,该目标时间可以根据公式6确定:
T_d=T-B_down’,公式6。
公式6中各个符号的含义如上所述。
可选的,在该间隔部分的长度小于该脉冲噪声的宽度的情况下,该脉冲噪声在与间隔部分内的能量大于在间隔部分外的能量。例如,间隔部分内的脉冲噪声能量占到总脉冲噪声能量的85%、90%或者95%等。
可选的,在一些实施例中,发射机和接收机均可以检测到该周期性脉冲噪声。在此情况下,上述确定提前确定的OFDM符号的长度以及目标时间的工作可以由接收机实现。在此情况下,接收机可以向发射机发送第一指示消息,该第一指示消息包括用于指示子载波间隔和传输单元中的间隔部分的长度的信息。子载波间隔和传输单元中的OFDM符号的长度是相关联的。该第一指示消息还可以包括第一时间信息,该第一时间信息用于指示目标时间。
发射机可以根据该子载波间隔确定该传输单元。
例如,若子载波间隔为标准子载波间隔SCS std,则可以确定该传输单元中的非间隔部分的长度为Nstd。
又如,若子载波间隔为标准子载波间隔SCS std,则可以确定该传输单元中的非间隔部分的长度为Nstd,且该传输单元中还可以包括通带符号。该通带符号的长度为Nstd/m,m为2 t,t为大于或等于1的正整数,t的值一般可以取1或者2。间隔部分的长度为Nstd/2-Nstd/m。
又如,若子载波间隔不为标注子载波间隔SCS std,则可以根据标准子载波间隔SCS std和接收到的第一指示消息所指示的子载波间隔,确定传输单元中非间隔部分的长度。例如,假设第一指示消息所指示的子载波间隔为SCS’,且SCS’=SCS std×2 -k,则可以确定非间隔部分的长度为Nstd×2 k
发射机在确定该传输单元后,可以在检测到周期性脉冲噪声的波峰后,等待该目标时间,然后开始向接收机发送传输单元。
可选的,在另一些实施例中,接收机可以检测到该周期性脉冲噪声,且发射机无法检测到该周期性脉冲噪声。在此情况下,上述确定提前确定的OFDM符号的长度以及目标时间的工作可以由接收机实现。在此情况下,接收机可以向发射机发送第一指示消息,该第一指示消息包括用于指示子载波间隔和传输单元中的间隔部分的长度的信息。间隔部分的长度和传输单元中的OFDM符号的长度是相关联的。此外,该接收机还可以向该发射机发送第二指示消息,该第二指示消息可以第二时间信息,该第二时间信息用于指示该发射机发送该传输单元的起始时间。
该发射机根据第一指示消息确定传输单元的方式和上述实施例相同,为了简洁,在此就不再赘述。
该第二时间信息所指示的时间可以是该接收机根据当前时刻计算出的一个等待时间。例如,接收机在检测到脉冲噪声的波峰后,向该发射机发送的第二时间信息可以指示该目标时间,或者,该第二时间信息指示的是该目标时间和一个偏置值。该偏置值可以是该接收机向该发射机发送消息的平均传输时延。又如,接收机在检测到脉冲噪声的起始边界后,向该发射机发送的第二时间信息可以指示从该脉冲噪声的起始边界到发送传输单元的时间。
该发射机在接收到该第二指示消息后,可以根据该第二时间信息确定发送传输单元的起始时间。例如,在一些实施例中,发射机可以直接等待第二时间信息所指示的时长。又 如,在另一些实施例中,发射机可以根据第二时间信息所指示的时长和该接收机向该发射机发送消息的平均传输时延确定该起始时间。
可选的,在另一些实施例中,发射机可以检测到该周期性脉冲噪声。在此情况下,上述确定传输单元的结构、提前确定的OFDM符号的长度以及目标时间等工作可以由发射机实现。发射机在检测到周期性脉冲噪声的波峰后,等待目标时间后可以开始发送传输单元。发射机可以向接收机发送第一指示消息,该第一指示消息包括用于指示子载波间隔和传输单元中的间隔部分的长度的信息。间隔部分的长度和传输单元中的OFDM符号的长度是相关联的。
可选的,在发射机可以检测到该周期性脉冲噪声(以下简称第一脉冲噪声)的情况下,该发射机在按照确定的传输单元向接收机发送传输单元之前,还可以确定接收机侧的脉冲噪声和发射机检测到的周期性脉冲噪声是同一个噪声。例如,如果接收机侧的脉冲噪声也是周期性脉冲噪声(以下简称第二脉冲噪声),且该第二周期性脉冲噪声的重复周期的长度与第一脉冲噪声的重复周期的长度相同和/或第二周期性脉冲噪声的脉冲噪声的宽度和第一周期性脉冲噪声的脉冲噪声的宽度相同,则可以确定第二周期性脉冲噪声和第一周期性脉冲噪声时同一个周期性脉冲噪声。
该接收机可以根据该第一指示消息确定该传输单元,并根据确定的传输单元接收来自于发射机发送的传输单元。该接收机根据第一指示消息确定传输单元的实现方式和上述接收机根据该第一指示消息确定该传输单元的实现方式相同,为了简洁,在此就不再赘述。
图11是一个检测噪声是否为周期性脉冲噪声的示意性流程图。图11所示的方法可以由发射机执行,也可以由接收机执行。
1101,检测是否有脉冲噪声。
若确定不存在脉冲噪声,则可以确定不存在周期性脉冲噪声。
若确定存在脉冲噪声,则可以执行步骤1102。
可选的,在一些实施例中,可以根据多个OFDM符号的噪声的平均功率确定。
检测是否有脉冲噪声可以包括:根据第一时间段内的噪声点的数目,确定是否存在脉冲噪声。
例如,假设在时间长度LenT内采集了Num_k个OFDM符号的噪声数据。
先确定LenT内的噪声的平均功率P ave。根据该平均功率确定噪声阈值P th
Figure PCTCN2020111913-appb-000001
确定噪声幅度的绝对值大于噪声阈值P th的采样点数Num_p。Num_p即噪声点的数目。
在一些实施例中,若
Figure PCTCN2020111913-appb-000002
则可以确定不存在脉冲噪声,否则,确定存在脉冲噪声,其中Th1为第一脉冲噪声判决阈值,该第一脉冲噪声判决阈值是一个预设的数,fs表示采样率。
在另一些实施例中,若Num_p小于Th2,则可以确定不存在脉冲噪声,否则,确定存在脉冲噪声,其中Th2为第二脉冲噪声判决阈值,该第二脉冲噪声判决阈值是一个预设的数。
1102,提取脉冲噪声。
检测出窗口内所有的脉冲噪声点,第一个点被认为脉冲噪声的起始位置t1,如果两个 邻近脉冲噪声点时间差Δt1大于ts,则前一个点被认为第一个脉冲噪声的结束位置t2,然后依次检测出窗口内的其它脉冲噪声。其中
Figure PCTCN2020111913-appb-000003
S IN,i为含脉冲噪声的N个采样点中第i个采样点在窗口中的位置。
1103,根据提取的脉冲噪声,确定脉冲噪声是否是周期性出现的。
可选的,在一些实施例中,该根据提取的脉冲噪声,确定脉冲噪声是否是周期性出现的可以包括:根据提取的脉冲噪声,确定第二时间段内的Num_q个脉冲包络,该Num_q个脉冲包络中的任意两个脉冲包络的宽度相同。脉冲包括的宽度相当于脉冲噪声的宽度。
根据以下公式确定自相关参数:
Figure PCTCN2020111913-appb-000004
其中acorr norm表示自相关参数,IN i为Num_q个脉冲包络中的第i个脉冲包络中的全部噪声点的幅度的和,IN j为Num_q个脉冲包络中的第j个脉冲包络中的全部噪声点的幅度的和,i=1,…,Num_q,j=1,…,Num_q,且i不等于j。若确定该自相关参数大于一个预设阈值,则确定该脉冲噪声是周期性脉冲噪声,否则该脉冲噪声不是周期性脉冲噪声。
图12是根据本身实施例提供的一种通信方法。图12所示的方法可以由第一通信设备实现,也可以由第一通信设备中的部件(例如芯片或电路等)实现。
1201,确定第一通信设备与第二通信设备之间的电力线中存在周期性脉冲噪声,该周期性脉冲噪声中的每个脉冲噪声中能量大于或等于一个阈值的起始脉冲点和最后一个脉冲点之间的长度为k,k为大于0的数。
1202,根据该周期性脉冲噪声的重复周期,确定传输单元,该传输单元包括一个正交频分复用OFDM符号,该OFDM符号包括间隔部分和非间隔部分,该非间隔部分用于携带业务数据和/或控制数据,该的间隔部分的长度大于或等于k,该重复周期的长度等于该传输单元的长度的N倍,N为大于或等于1的正整数。
1203,向该第二通信设备发送第一指示消息,该第一指示信息用于指示子载波间隔和该间隔部分的长度的信息,该子载波间隔和该OFDM符号的长度关联。
可选的,在一些实施例中,该第一指示消息包括第一时间信息,该第一时间信息用于指示目标时间,该目标时间为该第二通信设备根据周期性脉冲噪声发送该传输单元的时间。
可选的,在一些实施例中,图12所示的方法还包括:向该第二通信设备发送第二指示消息,该第二指示消息包括第二时间信息,该第二时间信息用于指示该第二通信设备发送该传输单元的起始时间。
可选的,在一些实施例中,当该重复周期的长度大于或等于一个提前确定的OFDM符号的长度时,该传输单元中的OFDM符号的长度为该提前确定的OFDM符号的长度。
可选的,在一些实施例中,该提前确定的OFDM符号的长度是根据该重复周期的长度确定的。
可选的,在一些实施例中,该传输单元还包括通带符号,该通带符号用于携带业务数据和/或控制数据。
可选的,在一些实施例中,在该向该第二通信设备发送第一指示信息之前,该方法还 包括:根据该间隔部分的长度和第一脉冲噪声的宽度,确定该目标时间,该第一脉冲噪声为该周期性脉冲噪声中的任一个脉冲噪声。
可选的,在一些实施例中,该根据该间隔部分的长度和第一脉冲噪声的宽度,确定该目标时间,包括:在该间隔部分的长度小于该第一脉冲噪声的宽度的情况下,确定该目标时间为该传输单元的长度与第一时长的差,该第一时长为该第一脉冲噪声的波峰到与该第一脉冲对应的间隔部分的上边界的时长;在该间隔部分的长度大于或等于该第一脉冲噪声的宽度的情况下,根据该间隔部分的长度、该传输单元的长度、第二时长和第三时长,确定的该目标时间,该第二时长为该第一脉冲噪声的波峰到该第一脉冲噪声的起始边界的时长,该第三时长为该第一脉冲噪声的波峰到该第一脉冲噪声的结束边界的时长。
可选的,在一些实施例中,在该间隔部分的长度小于该第一脉冲噪声的宽度的情况下,该第一脉冲噪声在与该第一脉冲对应的间隔部分内的能量大于在该第一脉冲对应的间隔部分外的能量。
可选的,在一些实施例中,该根据该间隔部分的长度、该传输单元的长度、第二时长和第三时长,确定的该目标时间,包括:根据以下公式确定该目标时间:T_d=T-w/2+(B_up-B_down)/2,其中T_d表示该目标时间,T表示该传输单元的长度、B_down表示该第二时长,B_up表示该第三时长,w表示该间隔部分的长度。
可选的,在一些实施例中,第一通信设备可以是接收机,第二通信设备可以是发射机。
可选的,在另一些实施例中,第一通信设备可以是发射机,第二通信设备可以是接收机。
可选的,在一些实施例中,该第一通信设备可以周期性地确定电力线中是否有周期性脉冲噪声的判断,如果有周期性脉冲,则执行图12所示的方法。
可选的,在另一些实施例,该第一通信设备可以通过预设事件触发进行电力线中是否有周期性脉冲噪声的判断,如果有周期性脉冲噪声,则执行图12所示的方法。例如,该第一通信设备可以在前向纠错码(Forward Error Correction,FEC)误码率到达预设条件的情况下,判断电力线中是否存在周期性脉冲噪声,若存在周期性脉冲噪声,则执行图12所示的方法。
图12中各个步骤的具体实现方式可以参见图1至图11的描述,为了简洁,在此就不再赘述。
图13是根据本申请实施例提供的一种信号处理装置的示意性结构图。如图13所示,信号处理装置1300包括:处理模块1301和发送模块1302。
处理模块1301,用于确定第一通信设备与第二通信设备之间的电力线中存在周期性脉冲噪声,该周期性脉冲噪声中的每个脉冲噪声中能量大于或等于一个阈值的起始脉冲点和最后一个脉冲点之间的长度为k,k为大于0的数。
处理模块1301,还用于根据该周期性脉冲噪声的重复周期,确定传输单元,该传输单元包括一个正交频分复用OFDM符号,该OFDM符号包括间隔部分和非间隔部分,该非间隔部分用于携带业务数据和/或控制数据,该的间隔部分的长度大于或等于k,该重复周期的长度等于该传输单元的长度的N倍,N为大于或等于1的正整数。
发送模块1302,用于向该第二通信设备发送第一指示消息,该第一指示信息用于指示 子载波间隔和该间隔部分的长度的信息,该子载波间隔和该OFDM符号的长度关联。
可选的,在一些实施例中,该第一指示消息包括第一时间信息,该第一时间信息用于指示目标时间,该目标时间为该第二通信设备根据周期性脉冲噪声发送该传输单元的时间。
可选的,在一些实施例中,发送模块1302,还用于向该第二通信设备发送第二指示消息,该第二指示消息包括第二时间信息,该第二时间信息用于指示该第二通信设备发送该传输单元的起始时间。
可选的,在一些实施例中,当该重复周期的长度大于或等于一个提前确定的OFDM符号的长度时,该传输单元中的OFDM符号的长度为该提前确定的OFDM符号的长度。
可选的,在一些实施例中,该提前确定的OFDM符号的长度是根据该重复周期的长度确定的。
可选的,在一些实施例中,该传输单元还包括通带符号,该通带符号用于携带业务数据和/或控制数据。
可选的,在一些实施例中,处理模块1301,还用于在该向该第二通信设备发送第一指示信息之前,根据该间隔部分的长度和第一脉冲噪声的宽度,确定该目标时间,该第一脉冲噪声为该周期性脉冲噪声中的任一个脉冲噪声。
可选的,在一些实施例中,处理模块1301,具体用于在该间隔部分的长度小于该第一脉冲噪声的宽度的情况下,确定该目标时间为该传输单元的长度与第一时长的差,该第一时长为该第一脉冲噪声的波峰到与该第一脉冲对应的间隔部分的上边界的时长;在该间隔部分的长度大于或等于该第一脉冲噪声的宽度的情况下,根据该间隔部分的长度、该传输单元的长度、第二时长和第三时长,确定的该目标时间,该第二时长为该第一脉冲噪声的波峰到该第一脉冲噪声的起始边界的时长,该第三时长为该第一脉冲噪声的波峰到该第一脉冲噪声的结束边界的时长。
可选的,在一些实施例中,在该间隔部分的长度小于该第一脉冲噪声的宽度的情况下,该第一脉冲噪声在与该第一脉冲对应的间隔部分内的能量大于在该第一脉冲对应的间隔部分外的能量。
可选的,在一些实施例中,处理模块1301,具体用于根据以下公式确定该目标时间:T_d=T-w/2+(B_up-B_down)/2,其中T_d表示该目标时间,T表示该传输单元的长度、B_down表示该第二时长,B_up表示该第三时长,w表示该间隔部分的长度。
图14是根据本发明实施例提供的通信设备的结构框图。如图14所示,通信设备包括处理器1401、存储器1402、收发器1403。处理器1401可以用于对通信协议以及通信数据进行处理,以及对通信设备进行控制,执行软件程序,处理软件程序的数据等。存储器1402主要用于存储软件程序和数据。
为便于说明,图14中仅示出了一个存储器和处理器。在实际的通信设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的电路视为通信设备的收发器1403,将具有处理功能的处理器视为通信设备的处理单元。收发器也可以称为收发单元、收发机、收发 装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发器1403中用于实现接收功能的器件视为接收单元,将收发器1403中用于实现发送功能的器件视为发送单元,即收发器1403包括接收单元和发送单元。
处理器1401、存储器1402和收发器1403之间通过内部连接通路互相通信,传递控制和/或数据信号
上述本发明实施例揭示的方法可以应用于处理器1401中,或者由处理器1401实现。处理器1401可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1401中的硬件的集成逻辑电路或者软件形式的指令完成。
本申请各实施例所述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。
可选的,在一些实施例中,存储器1402可以存储用于执行如图12所示方法中通信设备执行的方法的指令。处理器1401可以执行存储器1402中存储的指令结合其他硬件(例如收发器1403)完成如图12所示方法中第一通信设备执行的步骤,具体工作过程和有益效果可以参见上述实施例中的描述。
本申请实施例还提供一种芯片,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。该芯片可以执行上述方法实施例中第一通信设备侧的方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中第一通信设备侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中第一通信设备侧的方法。
本申请实施例还提供一种芯片系统。该芯片心痛包括:逻辑电路,所述逻辑电路用于与输入/输出接口耦合,通过所述输入/输出接口传输数据,以执行上述方法实施例中第一通信设备侧的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述第一通信设备和第二通信设备。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟 的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种通信方法,其特征在于,包括:
    确定第一通信设备与第二通信设备之间的电力线中存在周期性脉冲噪声,所述周期性脉冲噪声中的每个脉冲噪声中能量大于或等于一个阈值的起始脉冲点和最后一个脉冲点之间的长度为k,k为大于0的数;
    根据所述周期性脉冲噪声的重复周期,确定传输单元,所述传输单元包括一个正交频分复用OFDM符号,所述OFDM符号包括间隔部分和非间隔部分,所述非间隔部分用于携带业务数据和/或控制数据,所述的间隔部分的长度大于或等于k,所述重复周期的长度等于所述传输单元的长度的N倍,N为大于或等于1的正整数;
    向所述第二通信设备发送第一指示消息,所述第一指示信息用于指示子载波间隔和所述间隔部分的长度的信息,所述子载波间隔和所述OFDM符号的长度关联。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示消息包括第一时间信息,所述第一时间信息用于指示目标时间,所述目标时间为所述第二通信设备根据所述周期性脉冲噪声发送所述传输单元的时间。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:向所述第二通信设备发送第二指示消息,所述第二指示消息包括第二时间信息,所述第二时间信息用于指示所述第二通信设备发送所述传输单元的起始时间。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,当所述重复周期的长度大于或等于一个提前确定的OFDM符号的长度时,所述传输单元中的OFDM符号的长度为所述提前确定的OFDM符号的长度。
  5. 如权利要求4所述的方法,其特征在于,所述提前确定的OFDM符号的长度是根据所述重复周期的长度确定的。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述传输单元还包括通带符号,所述通带符号用于携带业务数据和/或控制数据。
  7. 如权利要求2所述的方法,其特征在于,在所述向所述第二通信设备发送第一指示信息之前,所述方法还包括:
    根据所述间隔部分的长度和第一脉冲噪声的宽度,确定所述目标时间,所述第一脉冲噪声为所述周期性脉冲噪声中的任一个脉冲噪声。
  8. 如权利要求7所述的方法,其特征在于,所述根据所述间隔部分的长度和第一脉冲噪声的宽度,确定所述目标时间,包括:
    在所述间隔部分的长度小于所述第一脉冲噪声的宽度的情况下,确定所述目标时间为所述传输单元的长度与第一时长的差,所述第一时长为所述第一脉冲噪声的波峰到与所述第一脉冲对应的间隔部分的上边界的时长;
    在所述间隔部分的长度大于或等于所述第一脉冲噪声的宽度的情况下,根据所述间隔部分的长度、所述传输单元的长度、第二时长和第三时长,确定的所述目标时间,所述第二时长为所述第一脉冲噪声的波峰到所述第一脉冲噪声的起始边界的时长,所述第三时长 为所述第一脉冲噪声的波峰到所述第一脉冲噪声的结束边界的时长。
  9. 如权利要求8所述的方法,其特征在于,在所述间隔部分的长度小于所述第一脉冲噪声的宽度的情况下,所述第一脉冲噪声在与所述第一脉冲对应的间隔部分内的能量大于在所述第一脉冲对应的间隔部分外的能量。
  10. 如权利要求8所述的方法,其特征在于,所述根据所述间隔部分的长度、所述传输单元的长度、第二时长和第三时长,确定的所述目标时间,包括:根据以下公式确定所述目标时间:
    T_d=T-w/2+(B_up-B_down)/2,
    其中T_d表示所述目标时间,T表示所述传输单元的长度、B_down表示所述第二时长,B_up表示所述第三时长,w表示所述间隔部分的长度。
  11. 一种信号处理装置,其特征在于,包括:
    处理模块,用于确定第一通信设备与第二通信设备之间的电力线中存在周期性脉冲噪声,所述周期性脉冲噪声中的每个脉冲噪声中能量大于或等于一个阈值的起始脉冲点和最后一个脉冲点之间的长度为k,k为大于0的数;
    所述处理模块,还用于根据所述周期性脉冲噪声的重复周期,确定传输单元,所述传输单元包括一个正交频分复用OFDM符号,所述OFDM符号包括间隔部分和非间隔部分,所述非间隔部分用于携带业务数据和/或控制数据,所述的间隔部分的长度大于或等于k,所述重复周期的长度等于所述传输单元的长度的N倍,N为大于或等于1的正整数;
    发送模块,用于向所述第二通信设备发送第一指示消息,所述第一指示信息用于指示子载波间隔和所述间隔部分的长度的信息,所述子载波间隔和所述OFDM符号的长度关联。
  12. 根据权利要求11所述的信号处理装置,其特征在于,所述第一指示消息包括第一时间信息,所述第一时间信息用于指示目标时间,所述目标时间为所述第二通信设备根据所述周期性脉冲噪声发送所述传输单元的时间。
  13. 根据权利要求11所述的信号处理装置,其特征在于,所述发送模块,还用于向所述第二通信设备发送第二指示消息,所述第二指示消息包括第二时间信息,所述第二时间信息用于指示所述第二通信设备发送所述传输单元的起始时间。
  14. 如权利要求11至13中任一项所述的信号处理装置,其特征在于,当所述重复周期的长度大于或等于一个提前确定的OFDM符号的长度时,所述传输单元中的OFDM符号的长度为所述提前确定的OFDM符号的长度。
  15. 如权利要求14所述的信号处理装置,其特征在于,所述提前确定的OFDM符号的长度是根据所述重复周期的长度确定的。
  16. 如权利要求11至15中任一项所述的信号处理装置,其特征在于,所述传输单元还包括通带符号,所述通带符号用于携带业务数据和/或控制数据。
  17. 如权利要求12所述的信号处理装置,其特征在于,所述处理模块,还用于在所述向所述第二通信设备发送第一指示信息之前,根据所述间隔部分的长度和第一脉冲噪声的宽度,确定所述目标时间,所述第一脉冲噪声为所述周期性脉冲噪声中的任一个脉冲噪声。
  18. 如权利要求17所述的信号处理装置,其特征在于,所述处理模块,具体用于在所述间隔部分的长度小于所述第一脉冲噪声的宽度的情况下,确定所述目标时间为所述传输 单元的长度与第一时长的差,所述第一时长为所述第一脉冲噪声的波峰到与所述第一脉冲对应的间隔部分的上边界的时长;
    在所述间隔部分的长度大于或等于所述第一脉冲噪声的宽度的情况下,根据所述间隔部分的长度、所述传输单元的长度、第二时长和第三时长,确定的所述目标时间,所述第二时长为所述第一脉冲噪声的波峰到所述第一脉冲噪声的起始边界的时长,所述第三时长为所述第一脉冲噪声的波峰到所述第一脉冲噪声的结束边界的时长。
  19. 如权利要求18所述的信号处理装置,其特征在于,在所述间隔部分的长度小于所述第一脉冲噪声的宽度的情况下,所述第一脉冲噪声在与所述第一脉冲对应的间隔部分内的能量大于在所述第一脉冲对应的间隔部分外的能量。
  20. 如权利要求18所述的信号处理装置,其特征在于,所述处理模块,具体用于根据以下公式确定所述目标时间:
    T_d=T-w/2+(B_up-B_down)/2,
    其中T_d表示所述目标时间,T表示所述传输单元的长度、B_down表示所述第二时长,B_up表示所述第三时长,w表示所述间隔部分的长度。
  21. 一种通信设备,其特征在于,包括:处理器,所述处理器用于与存储器耦合,读取并执行所述存储器中的指令和/或程序代码,以执行如权利要求1-10中任一项所述的方法。
  22. 一种芯片系统,其特征在于,包括:逻辑电路,所述逻辑电路用于与输入/输出接口耦合,通过所述输入/输出接口传输数据,以执行如权利要求1-10中任一项所述的方法。
  23. 一种计算机可读介质,其特征在于,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1-10中任一项所述的方法。
PCT/CN2020/111913 2019-09-30 2020-08-27 通信方法和相关装置 WO2021063140A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910942171.9A CN112583754B (zh) 2019-09-30 2019-09-30 通信方法和相关装置
CN201910942171.9 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021063140A1 true WO2021063140A1 (zh) 2021-04-08

Family

ID=75116384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111913 WO2021063140A1 (zh) 2019-09-30 2020-08-27 通信方法和相关装置

Country Status (2)

Country Link
CN (2) CN112583754B (zh)
WO (1) WO2021063140A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1526223A (zh) * 2000-12-20 2004-09-01 在一根电力供应导线上多个载波的传输
US20080298382A1 (en) * 2007-05-31 2008-12-04 Matsushita Electric Industrial Co., Ltd. Method, apparatus and system for progressive refinementof channel estimation to increase network data throughput and reliability
CN101944938A (zh) * 2009-07-02 2011-01-12 多拉股份公司 在受脉冲噪声影响的多相电力线上传输数字数据包的方法
US20120033722A1 (en) * 2010-07-09 2012-02-09 Texas Instruments Incorporated Time-Domain Link Adaptation
CN103210621A (zh) * 2010-08-27 2013-07-17 兰蒂克德国有限责任公司 在噪声介质上进行通信的鲁棒前导码
EP2790368A2 (en) * 2013-04-09 2014-10-15 Nokia Corporation Cyclic prefix based opportunistic transmission/reception scheme for interference cancelation
CN106936753A (zh) * 2015-12-31 2017-07-07 钜泉光电科技(上海)股份有限公司 一种基于ofdm电力线通信的传输方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2387161B1 (en) * 2007-07-23 2020-01-22 Sony Corporation Method for transmitting a signal between a transmitter and a receiver in a power line network, transmitter, receiver, power line communication modem and powerline communication system
GB2469069A (en) * 2009-03-31 2010-10-06 Sony Corp A receiver for OFDM which idenitifies and cancels impulse noise by comparison with the long term noise.
US9064388B1 (en) * 2013-02-11 2015-06-23 Maxim Integrated Products, Inc. Impulse noise detection and cancellation in power line communication device
CN103259754B (zh) * 2013-03-21 2017-06-23 国家电网公司 一种用于电力线载波通信的数字前端系统及其实现方法
CN104301009B (zh) * 2014-08-22 2017-05-10 国家电网公司 一种电力线载波通信方法
CN104301280B (zh) * 2014-10-22 2017-08-25 国网重庆市电力公司电力科学研究院 一种基于ofdm的电力线载波周期脉冲噪声检测和抑制方法
GB2531367B (en) * 2015-01-09 2016-12-28 Imagination Tech Ltd Impulsive noise rejection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1526223A (zh) * 2000-12-20 2004-09-01 在一根电力供应导线上多个载波的传输
US20080298382A1 (en) * 2007-05-31 2008-12-04 Matsushita Electric Industrial Co., Ltd. Method, apparatus and system for progressive refinementof channel estimation to increase network data throughput and reliability
CN101944938A (zh) * 2009-07-02 2011-01-12 多拉股份公司 在受脉冲噪声影响的多相电力线上传输数字数据包的方法
US20120033722A1 (en) * 2010-07-09 2012-02-09 Texas Instruments Incorporated Time-Domain Link Adaptation
CN103210621A (zh) * 2010-08-27 2013-07-17 兰蒂克德国有限责任公司 在噪声介质上进行通信的鲁棒前导码
EP2790368A2 (en) * 2013-04-09 2014-10-15 Nokia Corporation Cyclic prefix based opportunistic transmission/reception scheme for interference cancelation
CN106936753A (zh) * 2015-12-31 2017-07-07 钜泉光电科技(上海)股份有限公司 一种基于ofdm电力线通信的传输方法

Also Published As

Publication number Publication date
CN112583754A (zh) 2021-03-30
CN114915532A (zh) 2022-08-16
CN112583754B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
Fang et al. Design and simulation of UART serial communication module based on VHDL
US9287902B2 (en) Method and device for sending and receiving data
TW200945825A (en) Apparatus for detecting radar signals applied to a wireless network and method thereof
CN104253659B (zh) 一种频谱检测方法及其装置
WO2021063140A1 (zh) 通信方法和相关装置
EP3048767A1 (en) Filter scheduling method and system
CN109714236B (zh) 总线供电及通讯方法、装置及存储介质
Aman et al. Distinguishing between channel errors and collisions in IEEE 802.11
CN109889419B (zh) 总线供电及通讯方法、装置及存储介质
CN105453607B (zh) 无线局域网的传输方法及传输设备
WO2019179273A1 (zh) 一种数据传输方法及装置
CN103384227A (zh) 一种联合信道估计的部分传输序列相位盲检测方法
CN108028824A (zh) 一种确定时间偏移的方法及装置
CN116015324A (zh) 一种强化抗干扰的uart数据接收装置及其接收方法
CN104507110A (zh) Lte-fdd的prach精确检测算法
TWI779247B (zh) 封包偵測方法及通訊裝置
CN103346848B (zh) 一种噪声检测的方法和设备
CN112134676A (zh) 参考信号传输方法、装置、通信节点及存储介质
Pereira et al. Power line communication technology based on morphological filtering for machine-to-machine applications
Zhijian Notice of Retraction: Research and design of 1553B protocol Bus Control Unit
CN102957638B (zh) 一种单载波频域均衡高速业务的信道估计方法和装置
CN104767705A (zh) Ofdm调制的电力线载波通信系统的帧同步方法及装置
CN110430548A (zh) 数据补发方法、装置、采集器及存储介质
WO2021082698A1 (zh) 一种通信方法及装置
Wang et al. Performance analysis of Broadband Power line Communications under impulsive noise and crosstalk

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873258

Country of ref document: EP

Kind code of ref document: A1