WO2021082698A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021082698A1
WO2021082698A1 PCT/CN2020/111924 CN2020111924W WO2021082698A1 WO 2021082698 A1 WO2021082698 A1 WO 2021082698A1 CN 2020111924 W CN2020111924 W CN 2020111924W WO 2021082698 A1 WO2021082698 A1 WO 2021082698A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
silent
data frame
probe units
units
Prior art date
Application number
PCT/CN2020/111924
Other languages
English (en)
French (fr)
Inventor
贺超
黄亚东
孔令晓
潘稻
曾焱
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021082698A1 publication Critical patent/WO2021082698A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/544Setting up communications; Call and signalling arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • PLC power line communication
  • power line communication equipment such as power cat
  • electrical equipment household appliances, industrial equipment, etc.
  • special circuit structure and components in the electrical equipment such as rectifier circuit, motor Etc.
  • the alternating current (AC) cycle of the power line can be divided into multiple communication windows by means of dynamic window division, and different communication parameters are used for communication in each communication window, thereby improving the effectiveness of communication.
  • the main method adopted is to transmit a signal probe frame in the power line, and determine the communication window according to the power of the signal probe frame, so that the window can be divided according to the channel distribution characteristics of the power line, and then the communication parameters of each communication window can be determined Among them, the payload of the signal probe frame is composed of multiple signal probe units.
  • the silent probe frame is transmitted in the power line, and the communication window is determined according to the power of the silent probe frame, so that the window can be divided according to the noise distribution characteristics of the power line, and then the communication parameters of each communication window can be determined, where silent
  • the load of the probe frame is composed of multiple silent probe units.
  • the present application provides a communication method and device for optimizing the communication parameter determination process in power line communication.
  • the present application provides a communication method, which can be implemented by a power line communication device or a chip in the power line communication device.
  • the power line communication device may be a power line communication modem such as a power modem.
  • a data frame transmitted through a power line can be received.
  • the data frame can be composed of multiple orthogonal frequency division multiplexing (OFDM) symbols.
  • the data frame can include one or more silent probe units and one Or multiple signal probe units.
  • the frame header of the data frame includes a first indication, and the first indication is used to indicate that the data frame includes the one or more silent probe units and the one or more signal probe units.
  • the communication parameters of the power line are determined according to the data frame.
  • the communication parameters can be determined according to one type of data frame. Since the data frame includes a silent probe unit and a signal probe unit, the power of the silent probe unit can reflect the noise distribution characteristics of the power line, and the power of the signal probe unit can reflect the power line Therefore, the process of determining communication parameters according to the data frame considers the channel and noise distribution characteristics of the power line to improve the accuracy of communication parameter determination. At the same time, the process does not need to switch the frame type to save time and overhead.
  • the communication window of the power line transmission can be determined according to the power of the silent probe unit on each OFDM symbol and the power of the signal probe unit on each OFDM symbol, and according to the silent probe unit in the communication window.
  • the power and the power of the signal probe unit determine the communication parameters corresponding to the communication window.
  • the communication window can be determined by calculating the power scheme after the data frame is received, and the communication parameters of each communication window can be determined.
  • methods such as calculating frequency domain equalizer (FEQ) parameters and/or signal to noise ratio (signal to noise ratio, SNR) may also be used to determine the communication parameters corresponding to the communication window.
  • FEQ frequency domain equalizer
  • SNR signal to noise ratio
  • the communication parameters may include any one of the anti-noise margin, table B, low density parity check code (LDPC) code rate, or guard interval (GI) or Multiple parameters
  • the B table can be used to indicate the number of bits loaded on the subcarriers in the OFDM symbol.
  • the LDPC code rate can represent the ratio of effective bits in the LDPC code to the code length.
  • GI may represent the length of the guard interval between OFDM symbols.
  • the frame header in the data frame may also include a second indication, which is used to indicate the subcarrier bits of the OFDM symbol occupied by the one or more silent probe units, and to indicate The subcarrier bits of the OFDM symbol occupied by the one or more signal probe units.
  • the above-mentioned second instruction can also be sent separately from the data frame.
  • the power line communication device before receiving the data frame, can also receive the second instruction transmitted through the power line to learn the silent probe unit and the signal in the data frame.
  • the second indication may be sent by the power line communication device that sends the data frame.
  • one or more silent probe units in the data frame may be located between two signal probe units.
  • one or more signal probe units in the data frame may be located between two silent probe units.
  • the signal probe unit and the silent probe unit are alternately distributed, making the windowing result more accurate, thereby improving the accuracy of communication parameters.
  • a signal probe unit is distributed between any two consecutive silent probe units in a data frame, and a silent probe unit is distributed between any two consecutive signal probe units in a data frame unit.
  • the signal probe unit and the silent probe unit are alternately distributed at a ratio of 1:1 to further improve the accuracy of the windowing results, thereby improving the accuracy of communication parameters.
  • the present application provides a communication device, which may be a power line communication device or a chip in a power line communication device.
  • the power line communication device may be a power modem or other power line communication modem.
  • the communication device may be used to perform the functions or steps or operations provided in the first aspect or any possible design of the first aspect.
  • the communication device can implement each function or step or operation in each of the foregoing methods through a hardware structure, a software module, or a hardware structure plus a software module.
  • a communication device may be provided with functional modules corresponding to the functions or steps or operations in the foregoing methods to support the communication device to execute the foregoing methods.
  • the communication device may include a communication module and a processing module coupled with each other, wherein the communication module can be used to support the communication device to communicate, and the processing module can be used for the communication device to perform processing operations, Such as generating information/messages that need to be sent, or processing received signals to obtain information/messages.
  • the communication module may be used to receive a data frame transmitted through a power line.
  • the data frame is composed of multiple OFDM symbols.
  • the data frame includes one or more silent probe units and one or more signal probe units.
  • the data frame header of includes a first indication, and the first indication is used to indicate that the data frame includes the one or more silent probe units and the one or more signal probe units.
  • the processing module may be used to determine the communication window of the power line transmission according to the power of the silent probe unit on each OFDM symbol and the power of the signal probe unit on each OFDM symbol.
  • the processing module may also be used to determine the communication parameters corresponding to the communication window according to the power of the silent probe unit and the power of the signal probe unit in the communication window.
  • the processing module may also use methods such as calculating FEQ parameters or SNR to determine the communication parameters corresponding to the communication window.
  • the communication parameters may include any one or more of the anti-noise reservation coefficient, B table, low-density check code LDPC code rate, or guard interval GI.
  • the B table may be used to indicate the loading of subcarriers in the OFDM symbol. Number of bits.
  • the frame header in the data frame may also include a second indication, which is used to indicate the subcarrier bits of the OFDM symbol occupied by the one or more silent probe units, and to indicate The subcarrier bits of the OFDM symbol occupied by the one or more signal probe units.
  • the above-mentioned second instruction can also be sent separately from the data frame.
  • one or more silent probe units in the data frame may be located between two signal probe units.
  • one or more signal probe units in the data frame may be located between two silent probe units.
  • a signal probe unit is distributed between any two consecutive silent probe units in a data frame, and a silent probe unit is distributed between any two consecutive signal probe units in a data frame unit.
  • the communication device may include a processor for executing the functions or steps or operations provided in the above-mentioned first aspect and/or any possible design of the first aspect.
  • the communication device may also include a memory.
  • the memory may be used to store instructions, and the processor may be used to call and run the instructions from the memory to execute the functions or steps or operations provided in the first aspect and/or any possible design of the first aspect.
  • the communication device may further include a communication interface for the communication device to communicate through the power line.
  • the above-mentioned communication interface may be used to receive a data frame transmitted through a power line.
  • the data frame is composed of a plurality of orthogonal frequency division multiplexing OFDM symbols, and the data frame includes one or more A silent probe unit and one or more signal probe units.
  • the frame header of the data frame includes a first indication, and the first indication is used to indicate that the data frame includes the one or more silent probe units and the one or more silent probe units. Or multiple signal probe units.
  • the processor can be used to determine the communication parameters of the power line according to the data.
  • the processor may determine the communication window of the power line transmission according to the power of the silent probe unit on each OFDM symbol and the power of the signal probe unit on each OFDM symbol. And, the processor may determine the communication parameter corresponding to the communication window according to the power of the silent probe unit and the power of the signal probe unit in the communication window.
  • the processor may also use methods such as calculating FEQ parameters or SNR to determine the communication parameters corresponding to the communication window.
  • the communication parameters may include any one or more of the anti-noise reservation coefficient, B table, low-density check code LDPC code rate, or guard interval GI.
  • the B table may be used to indicate the loading of subcarriers in the OFDM symbol. Number of bits.
  • the frame header further includes a second indication used to indicate the subcarrier bits of the OFDM symbol occupied by the one or more silent probe units, and used to indicate the one or more silent probe units.
  • one or more silent probe units in the data frame may be located between two signal probe units.
  • one or more signal probe units in the data frame may be located between two silent probe units.
  • a signal probe unit is distributed between any two consecutive silent probe units in a data frame, and a silent probe unit is distributed between any two consecutive signal probe units in a data frame unit.
  • the present application provides a communication system, which may include the communication device and transmitter shown in the second aspect.
  • the communication device shown in the second aspect may be composed of software modules and/or hardware components.
  • the transmitter can be used to transmit data frames over power lines.
  • the transmitter may be a power line communication device or a chip in a power line communication device.
  • the transmitter may be used to send a data frame through the power line
  • the communication device may be used to receive a data frame transmitted through the power line.
  • the data frame is composed of a plurality of orthogonal frequency division multiplexing OFDM symbols. It includes one or more silent probe units and one or more signal probe units.
  • the frame header of the data frame includes a first indication, and the first indication is used to indicate that the data frame includes the one or more silent probe units and the one or more silent probe units. Or multiple signal probe units, and the communication device can be used to determine the communication parameters of the power line according to the data frame.
  • this application provides a computer-readable storage medium in which instructions (or programs) are stored, which when invoked and executed on a computer, cause the computer to execute the first aspect or the first aspect described above. Aspects of any one of the possible designs described in the method.
  • the computer when the readable storage medium is invoked and executed on a computer, the computer can be used to determine the communication parameters of the power line according to the data frame.
  • the data frame is composed of multiple orthogonal frequency division multiplexing OFDM symbols.
  • the data frame includes one or more silent probe units and one or more signal probe units.
  • the frame header of the data frame includes a first indication , The first indication is used to indicate that the data frame includes the one or more silent probe units and the one or more signal probe units.
  • the data frame may be received by the communication interface of the computer through the power line.
  • the computer can also determine the communication window of the power line transmission according to the power of the silent probe unit on each OFDM symbol and the power of the signal probe unit on each OFDM symbol.
  • the processor may determine the communication parameter corresponding to the communication window according to the power of the silent probe unit and the power of the signal probe unit in the communication window.
  • the computer can also use methods such as calculating FEQ parameters or SNR to determine the communication parameters corresponding to the communication window.
  • the communication parameters may include any one or more of the anti-noise reservation coefficient, B table, low-density check code LDPC code rate, or guard interval GI.
  • the B table may be used to indicate the loading of subcarriers in the OFDM symbol. Number of bits.
  • the frame header further includes a second indication for indicating the subcarrier bits of the OFDM symbol occupied by the one or more silent probe units, and for indicating the one or more silent probe units.
  • one or more silent probe units in the data frame may be located between two signal probe units.
  • one or more signal probe units in the data frame may be located between two silent probe units.
  • a signal probe unit is distributed between any two consecutive silent probe units in a data frame, and a silent probe unit is distributed between any two consecutive signal probe units in a data frame unit.
  • this application provides a computer program product, which may contain instructions that when the computer program product is run on a computer, the computer can execute the first aspect or any one of the possible designs of the first aspect. The method described.
  • the present application provides a chip and/or a chip system including the chip, and the chip may include a processor.
  • the chip may also include a memory (or storage module) and/or a communication interface (or communication module).
  • the chip can be used to implement the method described in the first aspect or any one of the possible designs of the first aspect.
  • the chip system may be composed of the above-mentioned chips, or may include the above-mentioned chips and other discrete devices, such as a memory (or storage module) and/or a communication interface (or communication module).
  • Figure 1 is a schematic diagram of the architecture of a power line communication system
  • Figure 2 is a schematic diagram of the AC cycle and MAC cycle of a power line window
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of the structure of a data frame provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of the structure of a data frame provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a structure of a data frame provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of the structure of a data frame provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a structure of a data frame provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of the structure of a data frame provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a structure of a data frame provided by an embodiment of this application.
  • FIG. 11 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • an embodiment of the present application provides a communication method, which can be applied to a power line communication system.
  • An exemplary power line communication system may have the architecture shown in FIG. 1.
  • the power line communication system may include power lines, gateway devices, multiple power line communication devices, and terminals and other network equipment. Among them, power lines are used to transmit power signals, and voltage signals can be used to drive electrical appliances.
  • the gateway device is connected to the Internet to provide Internet access.
  • the power line communication device may include a gateway side power line communication device (for example, the first power line communication device shown in FIG. 1), and the gateway side power line communication device is connected to the gateway device.
  • the power line communication device may further include a terminal-side power line communication device (for example, the second power line communication device shown in FIG. 1) for providing network signals to network-using devices such as terminals.
  • the first power line communication device may receive the data sent from the Internet to the terminal from the gateway device.
  • the first power line communication device can also modulate the data from the gateway onto the PLC signal and couple it to the power line, so that the power line can be used to forward data packets.
  • the second power line communication device can be used to demodulate the PLC signal transmitted by the power line, and transfer the demodulated data to the terminal device, so that the network device such as the terminal can receive the data packet on the Internet side.
  • the system shown in Figure 1 can also realize data transmission from the terminal to the Internet side.
  • the above power line communication device may specifically be a power modem or other types of power line communication modems.
  • the current power line communication protocol is designed according to the channel characteristics of the power line, and the alternating current (AC) cycle of the two power lines is used as the medium access control (MAC) cycle of the protocol communication, and according to the impedance change characteristics of the electrical appliances, one
  • the MAC cycle is divided into multiple communication windows to maximize the use of channel capacity.
  • Figure 2 it is a schematic diagram of the power line AC cycle, MAC cycle, and divided communication windows.
  • the communication method provided by the embodiment of the present application can be used to collect the channel distribution characteristics (such as channel attenuation) and noise distribution characteristics of a power line through a data frame, and determine one or more communication windows accordingly. According to each communication window, the communication parameters of the communication window can be determined, and data transmission is performed according to the corresponding communication parameters in each communication window, so as to improve the effectiveness of data transmission in each window and reduce packet loss.
  • channel distribution characteristics such as channel attenuation
  • noise distribution characteristics of a power line through a data frame
  • the communication parameters of the communication window can be determined, and data transmission is performed according to the corresponding communication parameters in each communication window, so as to improve the effectiveness of data transmission in each window and reduce packet loss.
  • the communication method provided by the embodiment of the present application may be executed by a power line communication device (hereinafter referred to as the first communication device).
  • the first communication device when the first power line communication device (or a transmitter integrated with the first power line communication device) sends the data frame provided by this application to the power line, the second power line communication device can execute the implementation of this application
  • the second power line communication device can be regarded as the first communication device at this time.
  • the first power line communication device can execute the data frame provided by the embodiment of this application.
  • Communication method at this time, the first power line communication device can be regarded as the first communication device.
  • the method may specifically include the following steps:
  • the data frame may be composed of multiple orthogonal frequency division multiplexing (OFDM) symbols.
  • the data frame includes one or more silent probe units and one or more signals.
  • a probe unit, the header of the data frame includes a first indication, and the first indication is used to indicate that the data frame includes the one or more silent probe units and the one or more signal probe units.
  • S102 Determine the communication parameters of the power line according to the data frame.
  • the communication parameters can be determined according to one type of data frame. Since the data frame includes a silent probe unit and a signal probe unit, the power of the silent probe unit can reflect the noise distribution characteristics of the power line, and the power of the signal probe unit can reflect the power line Therefore, the process of determining communication parameters according to the data frame considers the channel and noise distribution characteristics of the power line, which can improve the accuracy of communication parameter determination. At the same time, the process does not need to switch the frame type to save time and overhead.
  • the data frame may include a preamble, a frame header, and a payload.
  • the preamble sequence can be used for synchronization.
  • the preamble sequence can also be used for initial channel estimation (initial channel estimation), automatic gain control (AGC), and so on.
  • the frame header may include some parameter information of the physical layer (physical, PHY) layer, such as the identification (ID) of the sending end device (also known as the source identification (SID)), and the ID of the receiving end device (It can also be called destination identification (DID)) and so on.
  • the frame header may be composed of at least one continuous OFDM symbol (hereinafter may be simply referred to as a symbol).
  • the data frame may also include additional channel estimation information.
  • the additional channel estimation information is located between the frame header and the load, and is carried on at least one symbol, that is, the number of symbols carrying the additional channel estimation information is one or more, which is not limited.
  • the load can include multiple silent probe units and multiple signal probe units.
  • the above first indication can be carried.
  • a specific field (which may be referred to as field 0) in the frame header may be used to indicate that the data frame includes the one or more silent probe units and the one or more signal probe units.
  • the above meanings represented by the first indication can be defined by related protocols, indicated by configuration information (such as configuration information sent by the first communication device to the second communication device, or configuration information sent by the second communication device to the first communication device, or The configuration information shared by the first communication device and the second communication device) or the first communication device and the second communication device are known by a pre-configuration method.
  • the load of the data frame may be composed of signal probe units and silent probe units that appear alternately.
  • one or more silent probe units are located between two signal probe units, and/or one or more signal probe units are located between two silent probe units.
  • the silent probe unit and the signal probe unit can be arranged in multiple ways. The descriptions are given below with reference to Figures 5 to 10 respectively.
  • a data frame may include multiple OFDM symbols in the time domain, where each silent probe unit may occupy all subcarrier bits of an OFDM symbol (or each The silent probe unit occupies one OFDM symbol), and each signal probe unit in the data frame can occupy all the sub-carrier bits of an OFDM symbol (or, each signal probe unit occupies one OFDM symbol).
  • two adjacent OFDM symbols occupied by silent probe units in the time domain may include one OFDM symbol occupied by signal probe units, and two adjacent OFDM symbols.
  • the OFDM symbols occupied by the signal probe unit may include an OFDM symbol occupied by the silent probe unit.
  • the first symbol of the load of the data frame as shown in FIG. 5 is all composed of silent probe units, and the signal probe unit may also be used to form the first symbol of the load of the data frame in the time domain, so as to obtain the data shown in FIG. 6
  • the data frame structure in the time domain is all composed of silent probe units, and the signal probe unit may also be used to form the first symbol of the load of the data frame in the time domain, so as to obtain the data shown in FIG. 6
  • the data frame structure in the time domain is all composed of silent probe units
  • each silent probe unit occupies all subcarrier bits of an OFDM symbol (or, each silent probe unit occupies one OFDM symbol), and each silent probe unit occupies one OFDM symbol in the data frame.
  • the signal probe unit occupies all subcarrier bits of an OFDM symbol (or, each signal probe unit occupies one OFDM symbol).
  • one or more silent probe units may be used as a silent probe unit group and one or more signal probe units may be used as a signal probe unit group, and the load may be constituted in a way that the silent probe unit group and the signal probe unit group alternate. As shown in Figure 7, two adjacent silent probe units in the time domain are a silent probe unit group, and a signal probe unit is a signal probe unit group, and then the silent probe unit group and the signal probe unit group appear alternately.
  • the load that constitutes the data frame.
  • each silent probe unit in the data frame can also occupy a part of all subcarrier bits of an OFDM symbol, and each signal probe unit in the data frame can occupy one OFDM symbol.
  • a part of the subcarrier bits in all subcarrier bits, the subcarrier bits of each symbol are occupied by one or more silent probe units and one or more signal probe units.
  • an OFDM symbol is composed of multiple subcarrier bits in the frequency domain, and the subcarrier bits of each symbol are composed of one or more silent probe units (as shown by the dashed arrow in Figure 8) And one or more signal probe units (as shown by the solid arrow in FIG. 8) are occupied, where each dashed arrow and each solid arrow represent a subcarrier bit.
  • two adjacent subcarrier bits occupied by silent probe units may include one subcarrier bit occupied by signal probe units, and two adjacent subcarrier bits occupied by signal probe units.
  • the sub-carrier bits can include a sub-carrier bit occupied by silent probe units.
  • the first subcarrier bit of the first symbol of the load of the data frame as shown in FIG. 8 is occupied by the silent probe unit.
  • the signal probe unit may also occupy the first symbol of the load of the data frame.
  • each silent probe unit in the time domain occupies a part of all subcarrier bits of an OFDM symbol
  • each signal probe unit in the data frame occupies one OFDM symbol
  • a part of all subcarrier bits can also use one or more silent probe units as a silent probe unit group and one or more signal probe units as a signal probe unit group, and the silent probe unit group is combined with the silent probe unit group.
  • the signal probe unit group alternately constitutes the load.
  • 3 silent probe units are a silent probe unit group
  • 3 signal probe units are a signal probe unit group, and then alternate silent probe units and signal probe units constitute the load of the data frame.
  • Figures 5 to 10 illustrate possible structures in the time domain of the data frame provided by the embodiments of this application by way of example, but it should not be understood that the structure of the data frame provided by this application is limited to the above Figure 5 -As shown in Figure 10.
  • the structure of the data frame provided in this application also includes other structures not shown in FIG. 5 to FIG. 10.
  • the silent probe unit and the signal probe unit in the data frame do not use an alternate form; or in other words, the silent probe unit and the signal probe unit in the data frame are arranged in a random manner.
  • the frame header of the data frame may further include a second indicator, the second indicator being used to indicate the subcarrier bits of the OFDM symbol occupied by the one or more silent probe units, and to indicate the one or more signal The subcarrier bits of the OFDM symbol occupied by the probe unit.
  • the above meanings represented by the second instruction can be defined through related protocol definitions, configuration information instructions (such as the configuration information sent by the first communication device to the second communication device, or the configuration information sent by the second communication device to the first communication device, or The configuration information shared by the first communication device and the second communication device) or the first communication device and the second communication device are known by a pre-configuration method.
  • the second indication may be a specific field in the frame header.
  • field 1 can be used to indicate the arrangement of silent probe units and signal probe units as shown in Fig. 5;
  • field 2 can be used to indicate the arrangement of silent probe units and signal probe units as shown in Fig. 6;
  • field 3 can be used for Represents the arrangement of silent probe units and signal probe units as shown in Figure 7;
  • field 4 can be used to represent the arrangement of silent probe units and signal probe units as shown in Figure 8;
  • field 5 can be used to represent the arrangement shown in Figure 9 The arrangement of silent probe units and signal probe units;
  • field 6 can be used to indicate the arrangement of silent probe units and signal probe units as shown in FIG. 10.
  • the above-mentioned second instruction can also be sent separately from the data frame.
  • the second communication device can send the second instruction and the data frame through the power line.
  • the first communication device can receive the second instruction transmitted through the power line, and learn the silent probe unit and the signal in the data frame.
  • the communication method provided by the embodiment of the present application may include the following steps:
  • the second communication device sends a data frame through the power line, where the data frame is composed of multiple OFDM symbols, and the data frame includes one or more silent probe units and one or more signal probe units.
  • the frame header of the data frame A first indication is included, and the first indication is used to indicate that the data frame includes the one or more silent probe units and the one or more signal probe units.
  • one or more silent probe units and one or more signal probe units may be carried in the payload of the data frame.
  • S202 The first communication device receives the data frame through the power line.
  • the first communication device calculates the power of the silent probe unit on the OFDM symbol and the power of the signal probe unit on the OFDM symbol.
  • the first communication device may execute the step shown in S203 after determining that the frame header of the data frame contains the first indication.
  • the power of the silent probe unit on the OFDM symbol may be the average power of the silent probe unit on each OFDM symbol.
  • the power of the signal probe unit on the OFDM symbol may be the average power of the signal probe unit on each OFDM symbol.
  • the first communication device may start from the next symbol (or the first symbol of the load) of the symbol (header symbol) occupied by the header, calculate the power of the silent probe unit on each OFDM symbol of the received signal, and calculate The power of the signal probe unit on each OFDM symbol of the received signal.
  • the power of the OFDM symbol is the power of silent probe units on this OFDM.
  • the power of this OFDM symbol is the power of signal probe units on this OFDM.
  • the average power of the signal probe unit in the OFDM symbol can be determined according to the following formula:
  • P i represents the average power of the OFDM symbol unit signal probe
  • s is the amplitude of each sampling point or each subcarrier
  • N denotes the number of signal probe unit of OFDM symbols occupied.
  • the signal probe unit occupies all the subcarriers of the OFDM symbol
  • s represents the amplitude of each sampling point in the OFDM symbol
  • the signal probe unit occupies part of the subcarriers of all the subcarriers of the OFDM symbol
  • s represents the The amplitude of each subcarrier within the OFDM symbol.
  • the first communication device may perform fast Fourier transformation (FFT) on the received OFDM symbol, and perform FFT according to the sub-carrier after FFT
  • FFT fast Fourier transformation
  • the first communication device determines the position of the first type of breakpoint according to the power of the silent probe unit on each OFDM symbol, and determines the position of the second type of breakpoint according to the power of the signal probe unit on each OFDM symbol.
  • the position of the first type of breakpoint above can be determined based on the power difference between silent probe units on two adjacent OFDM symbols, and the position of the second type of breakpoint can be based on the difference between two adjacent OFDM symbols.
  • the power difference between signal probe units is determined.
  • the following formula can be used to determine whether the boundary between two OFDM symbols meets the breakpoint condition, and if it is satisfied, the boundary position is regarded as a first type of breakpoint s position:
  • P i represents the average power of the signal probe unit in the OFDM symbol
  • P ave (k) represents the power of the signal probe unit in the OFDM symbol between the previous type 1 breakpoint (or the starting position of the load) and the current boundary position
  • P ave (k) can be determined according to the following formula:
  • n represents the number of OFDM symbols between the previous first-type breakpoint (or the starting position of the load) and the current boundary position
  • s is the amplitude of each sampling point or each subcarrier.
  • the first communication device determines a communication window according to the position of the first type of breakpoint and the position of the second type of breakpoint.
  • the first communication device determines that there are multiple first-type breakpoints and multiple second-type breakpoints in the AC cycle
  • two of the multiple first-type breakpoints and the multiple second-type breakpoints may be relative to each other.
  • the adjacent breakpoints serve as a communication window.
  • the time-domain positions of the two adjacent breakpoints can be referred to as a windowing coefficient, and the windowing coefficient is used to indicate the boundary position of the communication window.
  • the communication window determined by the first communication device may satisfy one or more of the following conditions:
  • a MAC cycle is generally divided into 256 (or other values) time windows to reduce implementation complexity. Therefore, the window length of the communication window can also be rounded to 1/256 MAC cycle, for example, The MAC cycle is 20 milliseconds (ms), and the window length of the communication window can be an integer multiple of (20/256) ms. For example, when the distance between two adjacent breakpoints A and B does not satisfy an integer multiple of (20/256)ms, the area between breakpoint A and time domain position C can be determined as a communication Window, where the time domain position C is the time domain position closest to the break point B among the time domain positions where the distance between the breakpoint A and the time domain position C meets an integer multiple of (20/256) ms.
  • Condition 2 The window length of the communication window is not less than 0.5ms. If it is less than, the communication window will be assigned to the previous communication window.
  • the first communication device determines the communication parameters of each communication window according to the power of the silent probe unit and the signal probe unit in each communication window.
  • the above method of determining communication parameters can refer to the prior art.
  • the communication parameter refers to an anti-noise reservation coefficient, such as a margin parameter.
  • the communication parameters may also include any of the bit loading table (or B table), low density parity check code (LDPC) code rate, or guard interval (GI).
  • B table can be used to indicate the number of bits loaded by subcarriers in an OFDM symbol.
  • the LDPC code rate can represent the ratio of effective bits in the LDPC code to the code length.
  • GI may represent the length of the guard interval between OFDM symbols.
  • the solution of determining the communication window according to the power of the silent probe unit and the power of the signal probe unit and determining the communication parameters of the communication window is introduced by way of example.
  • the first communication device may also determine the communication parameters by calculating frequency domain equalizer (FEQ) parameters and/or signal-to-noise ratio (SNR).
  • FEQ frequency domain equalizer
  • SNR signal-to-noise ratio
  • the manner of determining the communication parameter according to the FEQ parameter and/or SNR after receiving the data frame may refer to the manner of determining the communication parameter according to the FEQ parameter and/or SNR in the prior art.
  • the first communication device may demodulate the signal probe unit in the data frame, obtain the FEQ coefficient, calculate the constellation error, and finally obtain the SNR.
  • the FEQ parameter can reflect the channel change of the power line
  • the SNR can reflect the noise change of the power line, so that the FEQ parameter and SNR can provide input for dynamic windowing, and the communication parameters such as the anti-noise reserve coefficient can also be estimated from the noise fluctuation.
  • the method provided in the embodiments of the present application is introduced from the perspective of the functions implemented by the power line communication device.
  • the power line communication device may include a hardware structure and/or a software module, and realize the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function of the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • a communication device may include a communication module 1201 and a processing module 1202, and the communication module 1201 and the processing module 1202 are coupled with each other.
  • the communication device 1200 can be used to perform the steps performed by the terminal device 101 in the above method embodiments.
  • the communication module 1201 may be used to support the communication device 1200 to communicate.
  • the communication module 1201 may have a wired communication function, such as being able to receive and/or send data frames through a power line.
  • the processing module 1202 can be used to support the communication device 1200 to perform the processing actions of the terminal device in the foregoing method embodiments, including but not limited to: generating information and messages sent by the communication module 1201, and/or performing processing on the signals received by the communication module 1201 Demodulate and decode, determine communication parameters based on received data frames, and so on.
  • the above communication module 1201 can be used to receive a data frame transmitted through the power line.
  • the data frame is composed of multiple OFDM symbols, and the data frame includes one or more silent probes. Unit and one or more signal probe units, the frame header of the data frame includes a first indication, and the first indication is used to indicate that the data frame includes the one or more silent probe units and the one or more signal probe units.
  • the processing module 1202 can be used to determine the communication parameters of the power line according to the data frame.
  • the processing module 1202 may be used to determine the communication window of the power line transmission according to the power of the silent probe unit on each OFDM symbol and the power of the signal probe unit on each OFDM symbol, and according to the silent probe in the communication window
  • the power of the unit and the power of the signal probe unit determine the communication parameters corresponding to the communication window.
  • the processing module 1202 may also use methods such as calculating FEQ parameters and/or SNR to determine the communication parameters corresponding to the communication window.
  • the data frame may include the structure described in any one of FIGS. 4 to 10.
  • the communication parameters include any one or more of the anti-noise reservation coefficient, B table, LDPC code rate, or GI.
  • the frame header in the data frame may also include a second indication, which is used to indicate the subcarrier bits of the OFDM symbol occupied by the one or more silent probe units, and to indicate The subcarrier bits of the OFDM symbol occupied by the one or more signal probe units.
  • the above-mentioned second instruction can also be sent separately from the data frame.
  • the above-mentioned second instruction may also be sent separately from the data frame.
  • the communication module 1201 may receive the second instruction through the power line before receiving the data frame, and the second instruction may be sent separately from the data frame.
  • one or more silent probe units in the data frame may be located between two signal probe units.
  • one or more signal probe units in the data frame may be located between two silent probe units.
  • a signal probe unit is distributed between any two consecutive silent probe units in a data frame, and a silent probe unit is distributed between any two consecutive signal probe units in a data frame unit.
  • the communication device may also include the structure shown in FIG. 13. As shown in FIG. 13, the communication device 1300 may include a processor 1301, a memory 1302, and a communication interface 1303.
  • the above processor 1301 can be used to process the communication protocol and communication data, control the communication device, execute the software program, and process the data of the software program.
  • the memory 1302 may be used to store programs and data, and the processor 1301 may execute the method executed by the power line communication device in the embodiment of the present application based on the program.
  • the communication interface 1303 can be used in the present application for the communication device 1300 to perform power line communication, for example, to receive signals transmitted through the power line, and to send signals to the power line.
  • the above processor may be used to execute the steps executed by the processing module 1202.
  • the communication interface 1303 can be used to execute the steps performed by the communication module 1201.
  • the aforementioned communication interface 1303 may be used to receive a data frame transmitted through a power line.
  • the data frame may be composed of multiple orthogonal frequency division multiplexing OFDM symbols.
  • the data frame includes one or more silent probe units and one or more silent probe units.
  • a signal detection signal probe unit, the frame header of the data frame includes a first indication, and the first indication is used to indicate that the data frame includes the one or more silent probe units and the one or more signal probe units.
  • the processor 1301 may be used to determine the communication parameters of the power line according to the data.
  • the processor 1301 may determine the communication window of the power line transmission according to the power of the silent probe unit on each OFDM symbol and the power of the signal probe unit on each OFDM symbol. And, the processor 1301 may determine the communication parameter corresponding to the communication window according to the power of the silent probe unit and the power of the signal probe unit in the communication window.
  • the processor 1301 may also use methods such as calculating FEQ parameters or SNR to determine the communication parameters corresponding to the communication window.
  • the communication parameters may include any one or more of the anti-noise reservation coefficient, B table, low-density check code LDPC code rate, or guard interval GI.
  • the B table may be used to indicate the loading of subcarriers in the OFDM symbol. Number of bits.
  • the frame header further includes a second indication for indicating the subcarrier bits of the OFDM symbol occupied by the one or more silent probe units, and for indicating the one or more silent probe units.
  • one or more silent probe units in the data frame may be located between two signal probe units.
  • one or more signal probe units in the data frame may be located between two silent probe units.
  • a signal probe unit is distributed between any two consecutive silent probe units in a data frame, and a silent probe unit is distributed between any two consecutive signal probe units in a data frame unit.
  • the above communication device may also be composed of a chip.
  • the chip includes a processor 1301.
  • the chip may also be coupled with any one or more components in the memory 1302 or the communication interface 1303.
  • the embodiment of the application also provides a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, the computer executes the above method embodiment and method implementation.
  • this application also provides a computer program product, which when invoked and executed by a computer, enables the computer to implement the above method embodiment and any possible implementation of the method embodiment The methods involved.
  • the present application also provides a chip or a chip system, and the chip may include a processor.
  • the chip may also include a memory (or storage module) and/or a communication interface (or communication module), or the chip may be coupled with a memory (or storage module) and/or a communication interface (or communication module), wherein the communication interface ( (Or communication module) can be used to support the chip for wired communication, the memory (or storage module) can be used to store a program, and the processor can call the program to implement the above method embodiment and any one of the possible implementations of the method embodiment The methods involved.
  • the chip system may include the above chips, or may include the above chips and other discrete devices, such as a memory (or storage module) and/or a communication interface (or communication module).
  • the present application also provides a communication system, which may include the above communication device and a transmitter.
  • the communication system can be used to implement the foregoing method embodiment and the method involved in any one of the possible implementation manners of the method embodiment.
  • the communication system may have a structure as shown in FIG. 1.
  • the transmitter can be used to send a data frame through the power line
  • the communication device can be used to receive a data frame transmitted through the power line.
  • the data frame is composed of a plurality of orthogonal frequency division multiplexing OFDM symbols
  • the data frame includes one or more A silent probe unit and one or more signal probe units
  • the frame header of the data frame includes a first indication
  • the first indication is used to indicate that the data frame includes the one or more silent probe units and the one or more signal
  • the probe unit and the communication device can be used to determine the communication window of the power line transmission according to the power of the silent probe unit on each OFDM symbol and the power of the signal probe unit on each OFDM symbol.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Abstract

本申请提供一种通信方法及装置。可根据电力线中传输的数据帧确定电力线的通信参数,其中,该数据帧由多个OFDM符号组成,该数据帧包括一个或多个silent probe单元以及一个或多个signal probe单元,因此根据该数据帧能够获得电力线的噪声分布特性以及获得电力线的信道分布特性,因此根据该数据帧确定电力线的通信参数的过程考虑了电力线的信道和噪声分布特性,可提高确定的通信参数的准确度,同时,该过程不需要进行帧类型的切换从而节省时间开销。

Description

一种通信方法及装置
本申请要求于2019年10月28日提交中国国家知识产权局、申请号为201911032227.3、发明名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在电力线通信(power line communication,PLC)技术中,通过铜或其他金属、非金属材质的电力线进行通信信号的传输,从而达到传输信息的目的。
然而,电力线本身作为传输电力的介质,设计及铺设时并没有专门考虑通信传输的需要。因此,在工作中,电力线通信设备(如电力猫)和用电设备(家庭电器,工业设备等等)工作在同一张网络当中,用电设备中的特殊电路结构和部件(如整流电路、电机等)会在电力线网络中产生高频信号,对电力线通信产生干扰。
目前可采用动态分窗的方式对电力线的交流电(AC)周期划分为多个通信窗口,在每个通信窗口内采用不同的通信参数进行通信,从而提高通信有效性。主要采取的方法是,在电力线中传输信号探测(signal probe)帧,并根据signal probe帧的功率确定通信窗口,从而可根据电力线的信道分布特性进行分窗,进而确定每个通信窗口的通信参数,其中,signal probe帧的负载由多个signal probe单元构成。或者,在电力线中传输静默探测(silent probe)帧,并根据silent probe帧的功率确定通信窗口,从而可根据电力线的噪声分布特性进行分窗,进而确定每个通信窗口的通信参数,其中,silent probe帧的负载由多个silent probe单元构成。
然而无论是根据signal probe帧还是根据silent probe帧确定通信参数的方案均无法同时考虑电力线的信道分布特性以及噪声分布特性,不能实现通信参数的最优化。因此,为了获取最优的通信参数,需要发送多个不同类型的帧,由于分窗需要采集整个AC周期内的噪声或信道特性,会对业务传输有较大影响,而发送两种帧的方式还涉及帧类型的切换,导致时间开销进一步增加。
发明内容
本申请提供一种通信方法及装置,用以优化电力线通信中的通信参数确定过程。
第一方面,本申请提供一种通信方法,该通信方法可由电力线通信设备或电力线通信设备中的芯片实施。其中,电力线通信设备可以是电力猫等电力线通信调制解调器。
根据该方法,可接收通过电力线传输的数据帧,该数据帧可由多个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号组成,该数据帧可包括一个或多个silent probe单元以及一个或多个signal probe单元。该数据帧的帧头包括第一指示,该第一指示用于表示该数据帧包括该一个或多个silent probe单元以及该一个或多个signal probe单元。以及,根据该数据帧确定该电力线的通信参数。
采用以上方式,可根据一种类型的数据帧确定通信参数,由于该数据帧包括silent probe单元以及signal probe单元,silent probe单元的功率能够体现电力线的噪声分布特性,signal probe单元的功率能够体现电力线的信道分布特性,因此根据该数据帧确定通信参数的过程考虑了电力线的信道和噪声分布特性,以提高通信参数确定的准确度,同时,该过程不需要进行帧类型的切换从而节省时间开销。
示例性的,还可根据每个OFDM符号上silent probe单元的功率以及每个OFDM符号上signal probe单元的功率,确定该电力线传输的通信窗口,以及,根据该通信窗口内的该silent probe单元的功率和该signal probe单元的功率,确定该通信窗口对应的通信参数。
采用以上设计,可在接收数据帧后通过计算功率的方案确定通信窗口,并确定每个通信窗口的通信参数。此外,在接收数据帧后,也可采用计算频域均衡(frequency domain equalizer,FEQ)参数和/或信噪比(signal to noise ratio,SNR)等方式确定该通信窗口对应的通信参数。
本申请中,通信参数可包括抗噪预留系数(margin)、B表、低密度校验码(low density parity check code,LDPC)码率或者保护间隔(guard interval,GI)中的任意一个或多个参数,该B表可用于表示OFDM符号内子载波装载的比特数。LDPC码率可表示LDPC编码中有效比特位占码长的比例。GI可表示OFDM符号间保护间隔长度。
在一种可能的设计中,数据帧中的帧头还可包括第二指示,该第二指示用于指示该一个或多个silent probe单元所占用的OFDM符号的子载波位,以及用于指示该一个或多个signal probe单元所占用的OFDM符号的子载波位。此外,上述第二指示也可独立于该数据帧单独发送,例如,在接收该数据帧之前,电力线通信设备还可接收通过电力线传输的第二指示,以获知数据帧中的silent probe单元以及signal probe单元所分别占用的OFDM符号的子载波位,该第二指示可以是发送数据帧的电力线通信设备发送的。
在一种可能的设计中,数据帧中的一个或多个该silent probe单元可位于两个该signal probe单元之间。另外,数据帧中的一个或多个该signal probe单元可位于两个该silent probe单元之间。
采用该设计,signal probe单元以及silent probe单元交替分布,使得分窗结果更为精确,从而提高通信参数准确度。
在一种可能的设计中,数据帧中的任意两个连续的silent probe单元之间分布有一个signal probe单元,以及数据帧中的任意两个连续的该signal probe单元之间分布有一个silent probe单元。
采用该设计,signal probe单元以及silent probe单元按照1:1的比例交替分布,进一步提高分窗结果的准确度,从而提高通信参数准确度。
第二方面,本申请提供一种通信装置,该通信装置可以是电力线通信设备或电力线通信设备中的芯片。该电力线通信设备可以是电力猫或者其他的电力线通信调制解调器。该通信装置可用于执行上述第一方面或第一方面的任一可能的设计中提供的功能或步骤或操作。该通信装置可通过硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各方法中的各功能或步骤或操作。比如,在通信装置中可以设置与上述各方法中的功能或步骤或操作相对应的功能模块来支持该通信装置执行上述方法。
在通过软件模块实现第二方面所示通信装置时,该通信装置可包括相互耦合的通信模块以及处理模块,其中,通信模块可用于支持通信装置进行通信,处理模块可用于通信装置执行处理操作,如生成需要发送的信息/消息,或对接收的信号进行处理以得到信息/消息。
示例性的,该通信模块可用于接收通过电力线传输的数据帧,该数据帧由多个OFDM符号组成,该数据帧包括一个或多个silent probe单元以及一个或多个signal probe单元,该数据帧的帧头包括第一指示,该第一指示用于表示该数据帧包括该一个或多个silent probe单元以及该一个或多个signal probe单元。
示例性的,该处理模块可用于根据每个OFDM符号上silent probe单元的功率以及每个OFDM符号上signal probe单元的功率,确定该电力线传输的通信窗口。该处理模块还可用于根据该通信窗口内的该silent probe单元的功率和该signal probe单元的功率,确定该通信窗口对应的通信参数。
此外,在通信模块接收数据帧后,处理模块也可采用计算FEQ参数或SNR等方式确定该通信窗口对应的通信参数。
本申请中,通信参数可包括抗噪预留系数、B表、低密度校验码LDPC码率或者保护间隔GI中的任意一个或多个参数,该B表可用于表示OFDM符号内子载波装载的比特数。
在一种可能的设计中,数据帧中的帧头还可包括第二指示,该第二指示用于指示该一个或多个silent probe单元所占用的OFDM符号的子载波位,以及用于指示该一个或多个signal probe单元所占用的OFDM符号的子载波位。此外,上述第二指示也可独立于该数据帧单独发送。
在一种可能的设计中,数据帧中的一个或多个该silent probe单元可位于两个该signal probe单元之间。另外,数据帧中的一个或多个该signal probe单元可位于两个该silent probe单元之间。
在一种可能的设计中,数据帧中的任意两个连续的silent probe单元之间分布有一个signal probe单元,以及数据帧中的任意两个连续的该signal probe单元之间分布有一个silent probe单元。
在通过硬件组件实现第二方面所示通信装置时,该通信装置可包括处理器,用于执行上述第一方面和/或第一方面的任意可能的设计中提供的功能或步骤或操作。该通信装置还可以包括存储器。其中,存储器可用于存储指令,处理器可用于从该存储器中调用并运行该指令,以执行上述第一方面和/或第一方面的任意可能的设计中提供的功能或步骤或操作。该通信装置还可包括通信接口,用于通信装置通过电力线进行通信。
在通过硬件组件实现第二方面所示通信装置时,上述通信接口可用于接收通过电力线传输的数据帧,该数据帧由多个正交频分复用OFDM符号组成,该数据帧包括一个或多个静默探测silent probe单元以及一个或多个信号探测signal probe单元,该数据帧的帧头包括第一指示,该第一指示用于表示该数据帧包括该一个或多个silent probe单元以及该一个或多个signal probe单元。该处理器可用于根据该数据确定该电力线的通信参数。
示例性的,该处理器可根据每个OFDM符号上silent probe单元的功率以及每个OFDM符号上signal probe单元的功率,确定该电力线传输的通信窗口。以及,处理器可根据该通信窗口内的silent probe单元的功率和signal probe单元的功率,确定该通信窗口对应的通信参数。
此外,在通信接口接收数据帧后,处理器也可采用计算FEQ参数或SNR等方式确定该通信窗口对应的通信参数。
本申请中,通信参数可包括抗噪预留系数、B表、低密度校验码LDPC码率或者保护间隔GI中的任意一个或多个参数,该B表可用于表示OFDM符号内子载波装载的比特数。
在一种可能的设计中,该帧头还包括第二指示,该第二指示用于指示该一个或多个silent  probe单元所占用的OFDM符号的子载波位,以及用于指示该一个或多个signal probe单元所占用的OFDM符号的子载波位。
在一种可能的设计中,数据帧中的一个或多个该silent probe单元可位于两个该signal probe单元之间。另外,数据帧中的一个或多个该signal probe单元可位于两个该silent probe单元之间。
在一种可能的设计中,数据帧中的任意两个连续的silent probe单元之间分布有一个signal probe单元,以及数据帧中的任意两个连续的该signal probe单元之间分布有一个silent probe单元。
第三方面,本申请提供一种通信系统,该通信系统可以包括第二方面所示的通信装置以及发射机。其中,第二方面所示的通信装置可由软件模块和/或硬件组件构成。该发射机可用于通过电力线传输数据帧。具体的,发射机可以是电力线通信设备或电力线通信设备中的芯片。
示例性的,该通信系统中,发射机可用于通过电力线发送数据帧,通信装置可用于接收通过电力线传输的数据帧,该数据帧由多个正交频分复用OFDM符号组成,该数据帧包括一个或多个silent probe单元以及一个或多个signal probe单元,该数据帧的帧头包括第一指示,该第一指示用于表示该数据帧包括该一个或多个silent probe单元以及该一个或多个signal probe单元,以及,通信装置可用于根据该数据帧确定电力线的通信参数。
第四方面,本申请提供一种计算机可读存储介质,所述计算机存储介质中存储有指令(或称程序),当其在计算机上被调用执行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
示例性的,当可读存储介质在计算机上被调用执行时,计算机可用于根据数据帧确定电力线的通信参数。该数据帧由多个正交频分复用OFDM符号组成,该数据帧包括一个或多个静默探测silent probe单元以及一个或多个信号探测signal probe单元,该数据帧的帧头包括第一指示,该第一指示用于表示该数据帧包括该一个或多个silent probe单元以及该一个或多个signal probe单元。该数据帧可以是计算机的通信接口通过电力线接收的。
计算机还可根据每个OFDM符号上silent probe单元的功率以及每个OFDM符号上signal probe单元的功率,确定该电力线传输的通信窗口。以及,处理器可根据该通信窗口内的silent probe单元的功率和signal probe单元的功率,确定该通信窗口对应的通信参数。
此外,计算机也可采用计算FEQ参数或SNR等方式确定该通信窗口对应的通信参数。
本申请中,通信参数可包括抗噪预留系数、B表、低密度校验码LDPC码率或者保护间隔GI中的任意一个或多个参数,该B表可用于表示OFDM符号内子载波装载的比特数。
在一种可能的设计中,该帧头还包括第二指示,该第二指示用于指示该一个或多个silent probe单元所占用的OFDM符号的子载波位,以及用于指示该一个或多个signal probe单元所占用的OFDM符号的子载波位。
在一种可能的设计中,数据帧中的一个或多个该silent probe单元可位于两个该signal probe单元之间。另外,数据帧中的一个或多个该signal probe单元可位于两个该silent probe单元之间。
在一种可能的设计中,数据帧中的任意两个连续的silent probe单元之间分布有一个signal probe单元,以及数据帧中的任意两个连续的该signal probe单元之间分布有一个silent probe单元。
第五方面,本申请提供一种计算机程序产品,该计算机程序产品可包含指令,当该计算 机程序产品在计算机上运行时使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第六方面,本申请提供一种芯片和/或包含芯片的芯片系统,该芯片可包括处理器。该芯片还可以包括存储器(或存储模块)和/或通信接口(或通信模块)。该芯片可用于执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。该芯片系统可以由上述芯片构成,也可以包含上述芯片和其他分立器件,如存储器(或存储模块)和/或通信接口(或通信模块)。
上述第二方面至第六方面及其可能的设计中的有益效果可以参考对第一方面及第一方面的可能的设计中所述方法的有益效果的描述。
附图说明
图1为一种电力线通信系统的架构示意图;
图2为一种电力线分窗AC周期以及MAC周期示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为本申请实施例提供的一种数据帧的结构示意图;
图5为本申请实施例提供的一种数据帧的结构示意图;
图6为本申请实施例提供的一种数据帧的结构示意图;
图7为本申请实施例提供的一种数据帧的结构示意图;
图8为本申请实施例提供的一种数据帧的结构示意图;
图9为本申请实施例提供的一种数据帧的结构示意图;
图10为本申请实施例提供的一种数据帧的结构示意图;
图11为本申请实施例提供的一种通信方法的流程示意图;
图12为本申请实施例提供的一种通信装置的结构示意图;
图13为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为了提高电力线传输的有效性同时节省时间开销,本申请实施例提供一种通信方法,该方法可应用于电力线通信系统。
一种示例性的电力线通信系统可具有图1所示架构。如图1所示,电力线通信系统可包括电力线、网关设备、多个电力线通信设备以及终端等用网设备。其中,电力线用于传输电源信号,电压信号可用于驱动电器。网关设备与互联网连接,用于提供互联网的接入。电力线通信设备可包括网关侧电力线通信设备(例如图1所示的第一电力线通信设备),网关侧电力线通信设备与网关设备连接。电力线通信设备还可包括用于向终端等用网设备提供网络信号的终端侧电力线通信设备(例如图1所示的第二电力线通信设备)。
在从互联网向终端发送数据时,第一电力线通信设备可接收自于网关设备的从互联网向终端发送的数据。第一电力线通信设备还可将来自网关的数据调制到PLC信号上并耦合到电力线,从而可利用电力线转发数据包。第二电力线通信设备可用于将电力线传输的PLC信号进行解调,并将解调后的数据转给终端设备,从而令终端等用网设备接收到互联网侧的数据包。同理,图1所示系统也可以实现由终端向互联网侧的数据传输。
以上电力线通信设备具体可以是电力猫或其他类型的电力线通信调制解调器。
目前的电力线通讯在协议设计上根据电力线的信道特点,把2个电力线的交流电(AC) 周期作为协议通信的介质访问控制(medium access control,MAC)周期,以及根据电器的阻抗变化特点,把一个MAC周期分割为多个通信窗口,以最大化利用信道容量。如图2所示,为电力线AC周期、MAC周期以及划分的通信窗口的示意图。
本申请实施例提供的通信方法,可用于通过一种数据帧采集的电力线的信道分布特点(如信道衰减)和噪声分布特点,并据此确定一个或多个通信窗口。根据每个通信窗口可确定通信窗口的通信参数,并在每个通信窗口内根据相应的通信参数进行数据的传输,以提高每个窗口数据传输的有效性,减小丢包。
本申请实施例提供的通信方法可由电力线通信设备(以下称为第一通信装置)执行。如图1所示,当由第一电力线通信设备(或与第一电力线通信设备设置于一体的发射机)向电力线中发送本申请提供的数据帧时,可由第二电力线通信设备执行本申请实施例提供的通信方法,此时第二电力线通信设备可视为第一通信装置。同理,当由第二电力线通信设备(或与第二电力线通信设备设置于一体的发射机)向电力线中发送本申请提供的数据帧时,可由第一电力线通信设备执行本申请实施例提供的通信方法,此时第一电力线通信设备可视为第一通信装置。如图3所示,该方法具体可包括以下步骤:
S101:接收通过电力线传输的数据帧,该数据帧可由多个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号组成,该数据帧包括一个或多个silent probe单元以及一个或多个signal probe单元,该数据帧的帧头(header)包括第一指示,该第一指示用于表示该数据帧包括该一个或多个silent probe单元以及该一个或多个signal probe单元。
S102:根据数据帧确定电力线的通信参数。
采用以上方式,可根据一种类型的数据帧确定通信参数,由于该数据帧包括silent probe单元以及signal probe单元,silent probe单元的功率能够体现电力线的噪声分布特性,signal probe单元的功率能够体现电力线的信道分布特性,因此根据该数据帧确定通信参数的过程考虑了电力线的信道和噪声分布特性,可提高通信参数确定的准确度,同时,该过程不需要进行帧类型的切换从而节省时间开销。
下面以图4为例,对本申请所涉及的数据帧进行说明。如图4所示,数据帧可包括前导序列(preamble)、帧头、以及负载(payload)。
其中,前导序列可用于进行同步。此外,前导序列还可以用于初始信道估计(initial channel estimation)、用于自动增益控制(automatic gain control,AGC)等。帧头可包括物理层(physical,PHY)层的一些参数信息,例如发送端设备的标识(identification,ID)(又可以称之为源端标识(source identification,SID))、接收端设备的ID(又可称之为目的端标识(destination identification,DID))等。例如,帧头可以是由至少一个连续的OFDM符号(以下可简称为符号)组成的。在一些实施例中,数据帧还可以包括额外的信道估计信息。具体的,额外的信道估计信息位于帧头和负载之间,被承载在至少一个符号上,即承载额外的信道估计信息的符号的个数为一个或多个,对此不作限定。负载可包括多个silent probe单元和多个signal probe单元。
在帧头部分,可携带以上第一指示。例如,可通过帧头中特定的字段(可称为字段0)表示数据帧包括该一个或多个silent probe单元以及该一个或多个signal probe单元。该第一指示所表示的以上含义可通过相关协议定义、配置信息指示(如第一通信装置发送给第二通信装置的配置信息,或第二通信装置发送给第一通信装置的配置信息,或第一通信装置以及第二通信装置共用的配置信息)或者通过预配置的方式令第一通信装置以及第二通信装 置获知。
示例性的,数据帧的负载可由交替出现的signal probe单元以及silent probe单元构成。或者说,一个或多个silent probe单元位于两个signal probe单元之间,和/或,一个或多个signal probe单元位于两个silent probe单元之间。
具体来说,silent probe单元以及signal probe单元的排列方式可以有多种。下面分别结合附图5-图10分别进行说明。
在一种可能的示例中,如图5所示,数据帧在时域上可包括多个OFDM符号,其中,每个silent probe单元可占用一个OFDM符号的全部子载波位(或称,每个silent probe单元占用一个OFDM符号),以及数据帧中的每个signal probe单元可占用一个OFDM符号的全部子载波位(或称,每个signal probe单元占用一个OFDM符号)。
另外,如图5所示的数据帧中,在时域上相邻的两个由silent probe单元占用的OFDM符号之间可包含一个由signal probe单元占用的OFDM符号,以及,相邻的两个由signal probe单元占用的OFDM符号之间可包含一个由silent probe单元占用的OFDM符号。
应理解,如图5所示的数据帧的负载的第一个符号全部由silent probe单元构成,也可由signal probe单元构成时域上数据帧的负载的第一个符号,从而得到图6所示的在时域上的数据帧结构。
在另一种可能的示例中,若在时域上每个silent probe单元占用一个OFDM符号的全部子载波位(或称,每个silent probe单元占用一个OFDM符号),以及数据帧中的每个signal probe单元占用一个OFDM符号的全部子载波位(或称,每个signal probe单元占用一个OFDM符号)。此外,也可采用一个或多个silent probe单元为一个silent probe单元组以及一个或多个signal probe单元为一个signal probe单元组,并以silent probe单元组与signal probe单元组交替的方式构成负载。如图7所示,在时域上相邻的两个silent probe单元为一个silent probe单元组,一个signal probe单元为一个signal probe单元组,之后由交替出现的silent probe单元组与signal probe单元组构成数据帧的负载。
在另外的示例中,数据帧中的每个silent probe单元也可占用一个OFDM符号的全部子载波位中的一部子载波位,以及数据帧中的每个signal probe单元可占用一个OFDM符号的全部子载波位中的一部子载波位,每个符号的子载波位由一个或多个silent probe单元以及一个或多个signal probe单元占用。
例如图8所示,在时域上,一个OFDM符号在频域上由多个子载波位组成,每个符号的子载波位由一个或多个silent probe单元(如图8中虚线箭头所示)以及一个或多个signal probe单元(如图8中实线箭头所示)占用,其中,每个虚线箭头以及每个实线箭头表示一个子载波位。
另外,如图8所示,相邻的两个由silent probe单元占用的子载波位之间可包含一个由signal probe单元占用的子载波位,以及,相邻的两个由signal probe单元占用的子载波位之间可包含一个由silent probe单元占用的子载波位。
应理解,如图8所示的数据帧的负载的第一个符号的第一个子载波位由silent probe单元占用,同理,也可由signal probe单元占用数据帧的负载的第一个符号的第一个子载波位,从而得到图9所示的数据帧结构。
在另一种可能的示例中,若时域上每个silent probe单元占用一个OFDM符号的全部子载波位中的一部子载波位,以及数据帧中的每个signal probe单元占用一个OFDM符号的全部子载波位中的一部子载波位,也可采用一个或多个silent probe单元为一个silent probe 单元组以及一个或多个signal probe单元为一个signal probe单元组,并以silent probe单元组与signal probe单元组交替的方式构成负载。如图10所示,3个silent probe单元为一个silent probe单元组,3个signal probe单元为一个signal probe单元组,之后由交替出现的silent probe单元与signal probe单元构成数据帧的负载。
应理解,以上图5-图10以举例的方式介绍了本申请实施例提供的数据帧在时域上的可能的结构,但不应理解为本申请提供的数据帧的结构限定于以上图5-图10所示。本申请提供的数据帧的结构还包括图5至图10未示出的其他结构。例如,数据帧中的silent probe单元以及signal probe单元不采用交替出现的形式;或者换句话说,数据帧中的silent probe单元以及signal probe单元采用随机的方式排列silent probe单元以及signal probe单元。
示例性的,数据帧的帧头还可包括第二指示,第二指示用于指示该一个或多个silent probe单元所占用的OFDM符号的子载波位,以及用于指示该一个或多个signal probe单元所占用的OFDM符号的子载波位。该第二指示所表示的以上含义可通过相关协议定义、配置信息指示(如第一通信装置发送给第二通信装置的配置信息,或第二通信装置发送给第一通信装置的配置信息,或第一通信装置以及第二通信装置共用的配置信息)或者通过预配置的方式令第一通信装置以及第二通信装置获知。
具体来说,第二指示可以是帧头中特定的字段。
例如,字段1可用于表示如图5所示的silent probe单元以及signal probe单元的排列方式;字段2可用于表示如图6所示的silent probe单元以及signal probe单元的排列方式;字段3可用于表示如图7所示的silent probe单元以及signal probe单元的排列方式;字段4可用于表示如图8所示的silent probe单元以及signal probe单元的排列方式;字段5可用于表示如图9所示的silent probe单元以及signal probe单元的排列方式;字段6可用于表示如图10所示的silent probe单元以及signal probe单元的排列方式。
此外,上述第二指示也可独立于该数据帧单独发送。例如,可由第二通信装置通过电力线发送该第二指示以及该数据帧,则在接收数据帧之前,第一通信装置可接收通过电力线传输的第二指示,获知数据帧中的silent probe单元以及signal probe单元所分别占用的OFDM符号的子载波位。
下面结合图11,介绍本申请实施例提供的通信方法的一种示例。
如图11所示,本申请实施例提供的通信方法可包括以下步骤:
S201:第二通信装置通过电力线发送数据帧,其中,该数据帧由多个OFDM符号组成,该数据帧包括一个或多个silent probe单元以及一个或多个signal probe单元,该数据帧的帧头包括第一指示,该第一指示用于表示该数据帧包括该一个或多个silent probe单元以及该一个或多个signal probe单元。
具体的,一个或多个silent probe单元以及一个或多个signal probe单元可携带在数据帧的负载。
S202:第一通信装置通过电力线接收数据帧。
S203:第一通信装置计算OFDM符号上silent probe单元的功率以及OFDM符号上signal probe单元的功率。其中,第一通信装置可在确定数据帧的帧头包含第一指示后,执行S203所示步骤。
示例性的,OFDM符号上silent probe单元的功率可以是每个OFDM符号上silent probe单元的平均功率。OFDM符号上signal probe单元的功率可以是每个OFDM符号上signal probe单元的平均功率。
第一通信装置可以从头部所占用的符号(header symbol)的下一个符号(或负载的第一个符号)起始,计算接收信号的每个OFDM符号上silent probe的单元的功率,以及计算收信号的每个OFDM符号上signal probe的单元的功率。
应理解,当OFDM符号的全部子载波位均由silent probe单元占用时,该OFDM符号的功率就是这个OFDM上silent probe单元的功率。同理,当OFDM符号的全部子载波位均由signal probe单元占用时,该OFDM符号的功率就是这个OFDM上signal probe单元的功率。
以signal probe单元为例,可根据以下公式确定OFDM符号内signal probe单元的平均功率:
P i=∑ Ns 2;(公式一)
其中,P i表示OFDM符号内signal probe单元的平均功率,s为每个采样点或每个子载波的幅度,N表示signal probe单元占用的OFDM符号的数量。其中,若signal probe单元占用OFDM符号的全部子载波,则s表示该OFDM符号内的每个采样点的幅度,若signal probe单元占用OFDM符号的全部子载波中的部分子载波,则s表示该OFDM符号内的每个子载波的幅度。
当OFDM符号的全部子载波位由silent probe单元以及signal probe单元占用时,第一通信装置可对接收的OFDM符号进行快速傅里叶变换(fast Fourier transformation,FFT),并根据FFT后的子载波功率计算OFDM符号内signal probe单元的功率以及计算OFDM符号内silent probe单元的功率。
S204:第一通信装置根据每个OFDM符号上silent probe单元的功率确定第一类断点的位置,以及根据每个OFDM符号上signal probe单元的功率确定第二类断点的位置。
其中,以上第一类断点的位置可以是根据相邻的两个OFDM符号上silent probe单元之间的功率差确定的,第二类断点的位置可以是根据相邻的两个OFDM符号上signal probe单元之间的功率差确定的。
以signal probe单元为例,在确定第一类断点时,可根据以下公式判断两个OFDM符号之间的边界是否满足断点条件,若满足,则将该边界位置作为一个第一类断点的位置:
Figure PCTCN2020111924-appb-000001
其中,P i表示OFDM符号内signal probe单元的平均功率,P ave(k)表示上一个第一类断点(或者负载的起始位置)到当前边界位置之间OFDM符号内signal probe单元的功率。X、Y为设定值,例如,X=0.8,Y=1.2。
示例性的,可根据以下公式确定P ave(k):
P ave(k)=∑ ns 2;(公式三)
其中,n表示上一个第一类断点(或者负载的起始位置)到当前边界位置之间OFDM符号的数量,s为每个采样点或每个子载波的幅度。
S205:第一通信装置根据第一类断点的位置以及第二类断点的位置,确定通信窗口。
例如,当第一通信装置确定AC周期内存在多个第一类断点以及多个第二类断点时,可将多个第一类断点以及多个第二类断点中两个相邻的断点之间作为一个通信窗口。其中,该两个相邻的断点的时域位置可被称为分窗系数,分窗系数用于表示通信窗口的边界位置。
示例性的,第一通信装置确定的通信窗口可满足以下条件中的一个或多个条件:
条件1,从实现层面考虑,1个MAC周期一般划分成256(或者,也可取其他值)个时间窗口,以减少实现复杂性,因此通信窗口的窗长也可以1/256MAC周期四舍五入,例如,MAC 周期为20毫秒(ms),通信窗口的窗长可取(20/256)ms的整数倍。例如,当两个相邻的断点A与断点B之间的间距不满足(20/256)ms的整数倍时,可将断点A与时域位置C之间的区域确定为一个通信窗口,其中,时域位置C是使得断点A与时域位置C之间的间距满足(20/256)ms的整数倍的时域位置中,距离断点B最近的时域位置。
条件2,通信窗口的窗长不小于0.5ms。若小于,则将该通信窗口划入上一个通信窗口。
条件3,一个MAC周期内通信窗口的数量不超过M个,M为正整数。例如M=10。
S206:第一通信装置根据每个通信窗口内的silent probe单元和signal probe单元的功率,确定每个通信窗口的通信参数。
以上确定通信参数的方式可参照现有技术。
示例性的,通信参数是指抗噪预留系数,例如余量(margin)参数。此外,通信参数还可包括比特装载表(bit loading table)(或称B表)、低密度校验码(low density parity check code,LDPC)码率或者保护间隔(guard interval,GI)中的任意一个或多个参数。其中,该B表可用于表示OFDM符号内子载波装载的比特数。LDPC码率可表示LDPC编码中有效比特位占码长的比例。GI可表示OFDM符号间保护间隔长度。
以上图11中通过举例的方式介绍了根据silent probe单元的功率和signal probe单元的功率确定通信窗口,并确定通信窗口的通信参数的方案。应理解,在接收数据帧后,第一通信装置也可采用计算频域均衡(frequency domain equalizer,FEQ)参数和/或信噪比(signal to noise ratio,SNR)等方式确定通信参数。应理解,在接收数据帧后根据FEQ参数和/或SNR确定通信参数的方式,可参照现有技术根据FEQ参数和/或SNR确定通信参数的方式。
示例性的,第一通信装置可解调数据帧中的signal probe单元,获得FEQ系数,计算星座图误差,最终获得SNR。由于FEQ参数可以反映电力线的信道变化,SNR可以反映电力线的噪声变化,这样根据FEQ参数和SNR就能为动态分窗提供输入,抗噪预留系数等通信参数也可以从噪声波动中得到估计。
上述本申请提供的实施例中,从电力线通信设备所实现的功能的角度对本申请实施例提供的方法即方法流程进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,该电力线通信设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图12所示,本申请实施例提供的一种通信装置可以包括通信模块1201以及处理模块1202,以上通信模块1201以及处理模块1202之间相互耦合。该通信装置1200可用于执行以上方法实施例中由终端装置101执行的步骤。该通信模块1201可用于支持通信装置1200进行通信,通信模块1201可具备有线通信功能,例如能够通过电力线进行数据帧的接收和/或发送。处理模块1202可用于支持该通信装置1200执行上述方法实施例中终端设备的处理动作,包括但不限于:生成由通信模块1201发送的信息、消息,和/或,对通信模块1201接收的信号进行解调解码、根据接收的数据帧确定通信参数等等。
在执行上述方法实施例中由电力线通信设备执行的步骤时,以上通信模块1201可用于接收通过电力线传输的数据帧,该数据帧由多个OFDM符号组成,该数据帧包括一个或多个silent probe单元以及一个或多个signal probe单元,该数据帧的帧头包括第一指示,该第一指示用于表示该数据帧包括该一个或多个silent probe单元以及该一个或多个signal probe单元。该处理模块1202可用于根据该数据帧确定电力线的通信参数。
示例性的,处理模块1202可用于根据每个OFDM符号上silent probe单元的功率以及每个OFDM符号上signal probe单元的功率,确定该电力线传输的通信窗口,并根据该通信窗口内的该silent probe单元的功率和该signal probe单元的功率,确定该通信窗口对应的通信参数。
此外,在接收数据帧后,处理模块1202也可采用计算FEQ参数和/或SNR等方式确定该通信窗口对应的通信参数。
示例性的,该数据帧可包括如图4-图10中任一所述的结构。
本申请中,该通信参数包括抗噪预留系数、B表、LDPC码率或者GI中的任意一个或多个参数。
在一种可能的设计中,数据帧中的帧头还可包括第二指示,该第二指示用于指示该一个或多个silent probe单元所占用的OFDM符号的子载波位,以及用于指示该一个或多个signal probe单元所占用的OFDM符号的子载波位。此外,上述第二指示也可独立于该数据帧单独发送。此外,上述第二指示也可独立于该数据帧单独发送,例如,通信模块1201可在接收数据帧之前,通过电力线接收第二指示,该第二指示独立于数据帧单独发送。
在一种可能的设计中,数据帧中的一个或多个该silent probe单元可位于两个该signal probe单元之间。另外,数据帧中的一个或多个该signal probe单元可位于两个该silent probe单元之间。
在一种可能的设计中,数据帧中的任意两个连续的silent probe单元之间分布有一个signal probe单元,以及数据帧中的任意两个连续的该signal probe单元之间分布有一个silent probe单元。
通信装置还可包括如图13所示结构。如图13所示,通信装置1300可包括处理器1301、存储器1302以及通信接口1303。
以上处理器1301可用于对通信协议以及通信数据进行处理,以及对通信装置进行控制,执行软件程序,处理软件程序的数据等。存储器1302可用于存储程序和数据,处理器1301可基于该程序执行本申请实施例中由电力线通信设备执行的方法。通信接口1303在本申请中可用于通信装置1300进行电力线通信,例如,接收通过电力线传输的信号,以及向电力线发送信号。
示例性的,以上处理器可用于执行由处理模块1202所执行的步骤。通信接口1303可用于执行由通信模块1201执行的步骤。
具体的,上述通信接口1303可用于接收通过电力线传输的数据帧,该数据帧可由多个正交频分复用OFDM符号组成,该数据帧包括一个或多个静默探测silent probe单元以及一个或多个信号探测signal probe单元,该数据帧的帧头包括第一指示,该第一指示用于表示该数据帧包括该一个或多个silent probe单元以及该一个或多个signal probe单元。该处理器1301可用于根据该数据确定该电力线的通信参数。
示例性的,该处理器1301可根据每个OFDM符号上silent probe单元的功率以及每个OFDM符号上signal probe单元的功率,确定该电力线传输的通信窗口。以及,处理器1301可根据该通信窗口内的silent probe单元的功率和signal probe单元的功率,确定该通信窗口对应的通信参数。
此外,在通信接口1303接收数据帧后,处理器1301也可采用计算FEQ参数或SNR等方式确定该通信窗口对应的通信参数。
本申请中,通信参数可包括抗噪预留系数、B表、低密度校验码LDPC码率或者保护间隔 GI中的任意一个或多个参数,该B表可用于表示OFDM符号内子载波装载的比特数。
在一种可能的设计中,该帧头还包括第二指示,该第二指示用于指示该一个或多个silent probe单元所占用的OFDM符号的子载波位,以及用于指示该一个或多个signal probe单元所占用的OFDM符号的子载波位。
在一种可能的设计中,数据帧中的一个或多个该silent probe单元可位于两个该signal probe单元之间。另外,数据帧中的一个或多个该signal probe单元可位于两个该silent probe单元之间。
在一种可能的设计中,数据帧中的任意两个连续的silent probe单元之间分布有一个signal probe单元,以及数据帧中的任意两个连续的该signal probe单元之间分布有一个silent probe单元。
应理解,以上通信装置也可由芯片构成。例如,该芯片包含处理器1301。另外,该芯片还可与存储器1302或者通信接口1303中的任意一个或多个组件耦合。
基于与上述方法实施例相同构思,本申请实施例中还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时,使该计算机执行上述方法实施例、方法实施例的任意一种可能的实现方式中涉及的方法。
基于与上述方法实施例相同构思,本申请还提供一种计算机程序产品,该计算机程序产品在被计算机调用执行时,可以使得计算机实现上述方法实施例、方法实施例的任意一种可能的实现方式中涉及的方法。
基于与上述方法实施例相同构思,本申请还提供一种芯片或芯片系统,该芯片可包括处理器。该芯片还可包括存储器(或存储模块)和/或通信接口(或通信模块),或者,该芯片与存储器(或存储模块)和/或通信接口(或通信模块)耦合,其中,通信接口(或通信模块)可用于支持该芯片进行有线通信,存储器(或存储模块)可用于存储程序,该处理器调用该程序可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中涉及的方法。该芯片系统可包括以上芯片,也可以包含上述芯片和其他分立器件,如存储器(或存储模块)和/或通信接口(或通信模块)。
基于与上述方法实施例相同构思,本申请还提供一种通信系统,该通信系统可包括以上通信装置以及发射器。该通信系统可用于实现上述方法实施例、方法实施例的任意一种可能的实现方式中涉及的方法。示例性的,该通信系统可具有如图1所示结构。
该通信系统中,发射机可用于通过电力线发送数据帧,通信装置可用于接收通过电力线传输的数据帧,该数据帧由多个正交频分复用OFDM符号组成,该数据帧包括一个或多个silent probe单元以及一个或多个signal probe单元,该数据帧的帧头包括第一指示,该第一指示用于表示该数据帧包括该一个或多个silent probe单元以及该一个或多个signal probe单元,以及,通信装置可用于根据每个OFDM符号上silent probe单元的功率以及每个OFDM符号上signal probe单元的功率,确定该电力线传输的通信窗口。
本申请实施例是参照实施例所涉及的方法、装置、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工 作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (18)

  1. 一种通信方法,其特征在于,包括:
    接收通过电力线传输的数据帧,所述数据帧由多个正交频分复用OFDM符号组成,所述数据帧包括一个或多个静默探测silent probe单元以及一个或多个信号探测signal probe单元,所述数据帧的帧头包括第一指示,所述第一指示用于表示所述数据帧包括所述一个或多个silent probe单元以及所述一个或多个signal probe单元;
    根据所述数据帧确定所述电力线的通信参数。
  2. 如权利要求1所述的方法,其特征在于,根据所述数据确定所述电力线的通信参数,包括:
    根据每个OFDM符号上silent probe单元的功率以及每个OFDM符号上signal probe单元的功率,确定所述电力线传输的通信窗口;
    所述终端设备根据所述通信窗口内的silent probe单元的功率和signal probe单元的功率,确定所述通信窗口对应的通信参数。
  3. 如权利要求1或2所述的方法,其特征在于,所述帧头还包括第二指示,所述第二指示用于指示所述一个或多个silent probe单元所占用的OFDM符号的子载波位,以及用于指示所述一个或多个signal probe单元所占用的OFDM符号的子载波位。
  4. 如权利要求1-3中任一所述的方法,其特征在于,一个或多个所述silent probe单元位于两个所述signal probe单元之间;和/或,
    一个或多个所述signal probe单元位于两个所述silent probe单元之间。
  5. 如权利要求1-4中任一所述的方法,其特征在于,任意两个连续的所述silent probe单元之间分布有一个所述signal probe单元,以及任意两个连续的所述signal probe单元之间分布有一个所述silent probe单元。
  6. 如权利要求1-5中任一所述的方法,其特征在于,所述通信参数包括以下参数中的至少一个:
    抗噪预留系数;或者,
    B表,所述B表用于表示OFDM符号内子载波装载的比特数;或者,
    低密度校验码LDPC码率;或者,
    保护间隔GI。
  7. 一种通信装置,其特征在于,包括通信模块以及处理模块;
    所述通信模块,用于接收通过电力线传输的数据帧,所述数据帧由多个正交频分复用OFDM符号组成,所述数据帧包括一个或多个静默探测silent probe单元以及一个或多个信号探测signal probe单元,所述数据帧的帧头包括第一指示,所述第一指示用于表示所述数据帧包括所述一个或多个silent probe单元以及所述一个或多个signal probe单元;
    所述处理模块,用于根据所述数据确定所述电力线的通信参数。
  8. 如权利要求7所述的通信装置,其特征在于,所述处理模块具体用于:
    根据每个OFDM符号上silent probe单元的功率以及每个OFDM符号上signal probe单元的功率,确定所述电力线传输的通信窗口;
    根据所述通信窗口内的silent probe单元的功率和signal probe单元的功率,确定所述通信窗口对应的通信参数。
  9. 如权利要求7或8所述的通信装置,其特征在于,所述帧头还包括第二指示,所述第二指示用于指示所述一个或多个silent probe单元所占用的OFDM符号的子载波位,以及用于指示所述一个或多个signal probe单元所占用的OFDM符号的子载波位。
  10. 如权利要求7-9中任一所述的通信装置,其特征在于,一个或多个所述silent probe单元位于两个所述signal probe单元之间;和/或,
    一个或多个所述signal probe单元位于两个所述silent probe单元之间。
  11. 如权利要求7-10中任一所述的通信装置,其特征在于,任意两个连续的所述silent probe单元之间分布有一个所述signal probe单元,以及任意两个连续的所述signal probe单元之间分布有一个所述silent probe单元。
  12. 如权利要求7-11中任一所述的通信装置,其特征在于,所述通信参数包括以下参数中的至少一个:
    抗噪预留系数;或者,
    B表,所述B表用于表示OFDM符号内子载波装载的比特数;或者,
    低密度校验码LDPC码率;或者,
    保护间隔GI。
  13. 一种通信装置,其特征在于,包括通信接口以及处理器;
    所述通信接口,用于接收通过电力线传输的数据帧,所述数据帧由多个正交频分复用OFDM符号组成,所述数据帧包括一个或多个静默探测silent probe单元以及一个或多个信号探测signal probe单元,所述数据帧的帧头包括第一指示,所述第一指示用于表示所述数据帧包括所述一个或多个silent probe单元以及所述一个或多个signal probe单元;
    所述处理器,用于根据所述数据确定所述电力线的通信参数。
  14. 如权利要求13所述的通信装置,其特征在于,所述处理器具体用于:
    根据每个OFDM符号上silent probe单元的功率以及每个OFDM符号上signal probe单元的功率,确定所述电力线传输的通信窗口;
    根据所述通信窗口内的silent probe单元的功率和signal probe单元的功率,确定所述通信窗口对应的通信参数。
  15. 如权利要求13或14所述的通信装置,其特征在于,所述帧头还包括第二指示,所述第二指示用于指示所述一个或多个silent probe单元所占用的OFDM符号的子载波位,以及用于指示所述一个或多个signal probe单元所占用的OFDM符号的子载波位。
  16. 如权利要求13-15中任一所述的通信装置,其特征在于,一个或多个所述silent probe单元位于两个所述signal probe单元之间;和/或,
    一个或多个所述signal probe单元位于两个所述silent probe单元之间。
  17. 如权利要求13-16中任一所述的通信装置,其特征在于,任意两个连续的所述silent probe单元之间分布有一个所述signal probe单元,以及任意两个连续的所述signal probe单元之间分布有一个所述silent probe单元。
  18. 如权利要求13-17中任一所述的通信装置,其特征在于,所述通信参数包括以下参数中的至少一个:
    抗噪预留系数;或者,
    B表,所述B表用于表示OFDM符号内子载波装载的比特数;或者,
    低密度校验码LDPC码率;或者,
    保护间隔GI。
PCT/CN2020/111924 2019-10-28 2020-08-27 一种通信方法及装置 WO2021082698A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911032227.3A CN112737635B (zh) 2019-10-28 2019-10-28 一种通信方法及装置
CN201911032227.3 2019-10-28

Publications (1)

Publication Number Publication Date
WO2021082698A1 true WO2021082698A1 (zh) 2021-05-06

Family

ID=75588862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111924 WO2021082698A1 (zh) 2019-10-28 2020-08-27 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN112737635B (zh)
WO (1) WO2021082698A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650442A (zh) * 2011-07-14 2014-03-19 领特德国有限公司 用于单输入单输出及多输入多输出的探测帧
US20140307572A1 (en) * 2013-04-16 2014-10-16 Metanoia Communications Inc. Powerline Interference Indication And Mitigation For DSL Transceivers
CN104735013A (zh) * 2013-12-18 2015-06-24 英特尔公司 Ofdm系统中的适应性信道预测和干扰减轻
CN106571854A (zh) * 2016-11-05 2017-04-19 北京晓程科技股份有限公司 电力载波ofdm系统频率域帧检测同步方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011009128A1 (en) * 2009-07-17 2011-01-20 Aware, Inc. Combined data and probe (cdp) frame
CN103490813A (zh) * 2013-09-26 2014-01-01 江苏理工学院 基于可见光与电力载波通信的博物展馆智能讲解系统
CN105007099A (zh) * 2015-07-28 2015-10-28 中国科学院微电子研究所 一种基于ofdm技术的电力线通信系统
CN107770110A (zh) * 2016-08-19 2018-03-06 弥亚微电子(上海)有限公司 一种非连续帧的发送方法、信道补偿方法
CN108270714A (zh) * 2018-02-02 2018-07-10 北京晓程科技股份有限公司 一种帧前导信号的生成方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650442A (zh) * 2011-07-14 2014-03-19 领特德国有限公司 用于单输入单输出及多输入多输出的探测帧
US20140307572A1 (en) * 2013-04-16 2014-10-16 Metanoia Communications Inc. Powerline Interference Indication And Mitigation For DSL Transceivers
CN104735013A (zh) * 2013-12-18 2015-06-24 英特尔公司 Ofdm系统中的适应性信道预测和干扰减轻
CN106571854A (zh) * 2016-11-05 2017-04-19 北京晓程科技股份有限公司 电力载波ofdm系统频率域帧检测同步方法及装置

Also Published As

Publication number Publication date
CN112737635A (zh) 2021-04-30
CN112737635B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
JP5415552B2 (ja) 異なるサイクリック・プリフィックス長を使用するスーパーフレーム内の異なるフレームの不平等なマルチパス保護
US20060025079A1 (en) Channel estimation for a wireless communication system
KR101224502B1 (ko) 보이스 오버 인터넷 프로토콜 통신 동안 전력 절감 모드를 사용하기 위한 방법들 및 시스템들
TWI507066B (zh) 配置用於降低功率之一訊框的方法及傳送端、處理降低功率的方法及通訊系統
KR100874264B1 (ko) Sc-fdma 시스템에서의 다중 코드 워드 송수신 방법및 장치
JPWO2005002101A1 (ja) マルチキャリヤ伝送を行なう無線通信システム、受信装置及び受信方法、送信装置及び送信方法、並びに遅延時間算出装置及び遅延時間算出方法
US10594525B2 (en) Dual-use of doppler mode indication in high efficiency wireless LAN
TWI646786B (zh) 相位雜訊補償參考信號的傳輸方法、發送設備及接收設備
US20220256373A1 (en) Signal processing method, device and communication device
JP5347203B2 (ja) マルチパスチャネルの遅延スプレッドを推定する方法及び装置
CN104780033A (zh) 一种用于sim-ofdm系统的自适应子载波分配方法
KR20150064595A (ko) 가변 가능한 보호 구간을 이용한 데이터 송수신 방법 및 그 장치
TWI405487B (zh) 用於dl-map 處理的方法和系統
JP2009528754A (ja) Ofdmシステムにおけるチャネルのコヒーレンス帯域幅に基づくガードインターバル長選択
US10999108B2 (en) Wireless communication method, apparatus, and system
WO2021082698A1 (zh) 一种通信方法及装置
Al-Mawali et al. Simple discrete bit-loading for OFDM systems in power line communications
CN103873220B (zh) 一种pucch的信号检测方法及设备
US8731109B2 (en) Methods and systems for effective channel estimation in OFDM systems
JP2007158805A (ja) Ofdm送信装置および方法、ofdm受信装置および方法、並びに、通信プログラム
US11652672B1 (en) Adaptive guard interval using channel impulse response data
WO2020220769A1 (zh) 一种通信方法及通信装置
CN114727329B (zh) 一种NR5G PUCCH Format0处理优化方法
CN108737049B (zh) 辅助参考信号的发送、接收方法、网络侧设备及终端
WO2019141033A1 (zh) 信号的发送、接收方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881128

Country of ref document: EP

Kind code of ref document: A1