WO2021062992A1 - 一种已内酰胺生产废气中n 2o和voc协同处理的系统及方法 - Google Patents
一种已内酰胺生产废气中n 2o和voc协同处理的系统及方法 Download PDFInfo
- Publication number
- WO2021062992A1 WO2021062992A1 PCT/CN2020/084587 CN2020084587W WO2021062992A1 WO 2021062992 A1 WO2021062992 A1 WO 2021062992A1 CN 2020084587 W CN2020084587 W CN 2020084587W WO 2021062992 A1 WO2021062992 A1 WO 2021062992A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- voc
- exhaust gas
- waste gas
- caprolactam production
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8631—Processes characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/402—Dinitrogen oxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/30—Improvements relating to adipic acid or caprolactam production
Definitions
- the invention belongs to the field of environmental protection, and specifically relates to a system and method for co-processing N 2 O and VOC in the waste gas of caprolactam production.
- Caprolactam is one of the important basic organic chemical raw materials, mainly used in the production of nylon 6 engineering plastics and nylon 6 fibers, and is widely used in electronics, automobiles, textiles, machinery and other fields. At present, my country mostly adopts cyclohexanone ammoximation process to produce caprolactam.
- the main process units include hydrogen peroxide preparation unit, cyclohexanone production unit, cyclohexanone ammoximation unit, caprolactam refining unit and ammonium sulfate recovery unit, cyclohexanone ammoxime
- the chemical device is the core process, which uses hydrogen peroxide, cyclohexanone and ammonia under low pressure conditions to synthesize cyclohexanone oxime with tert-butanol as a solvent under the action of a titanium catalyst.
- the chemical reaction formula is as follows:
- the waste gas produced during the production of caprolactam is mainly composed of N 2 O, tert-butanol, water vapor, NH 3 , O 2 and N 2 , among which N 2 O is a greenhouse gas, and the latent heat of warming is 310 times that of CO 2 , CH 4 is 21 times higher. Every time the concentration of N 2 O in the atmosphere doubles, the global temperature will rise by 0.3K. N 2 O is very stable in the atmosphere, and its life span is more than 120 years. In addition, N 2 O O can also destroy the ozone in the atmosphere to form acid rain, which is extremely harmful to the ecological environment. Therefore, controlling the emission of N 2 O is very important for environmental protection.
- VOC volatile organic compound
- tert-butanol in the exhaust gas from caprolactam production is a volatile organic compound (VOC).
- VOC is extremely harmful to the human body. It can cause imbalance in the body's immune level, affect the function of the central nervous system, and cause dizziness, headaches, and headaches. Symptoms such as drowsiness, weakness, chest tightness, etc., can damage the digestive system, liver function, and hematopoietic system in severe cases.
- VOC is not only a source of primary pollution, but also a precursor of ozone and photochemical reactions, which can cause ozone pollution and photochemical smog pollution, and cause serious harm to human health and the ecological environment. Therefore, controlling the emission of tert-butanol is of great significance to VOC emission reduction.
- the volume concentration of N 2 O in the waste gas from caprolactam production is greater than 60000 ppm, and the mass concentration of tert-butanol is greater than 10000 mg/m 3.
- High concentrations of N 2 O and tert-butanol are directly discharged into the atmosphere, which will inevitably reduce the quality of the atmospheric environment and give the ecological environment Bring serious harm and cause huge losses to the national economy. Therefore, it is necessary to purify the waste gas from caprolactam production before it is discharged, so that the content of air pollutants such as N 2 O and tert-butanol can reach the emission standard limit.
- the conventional treatment process for waste gas from caprolactam production is as follows: (1) The waste gas is absorbed by the circulating water condenser and the desalinated water absorption tower to recover most of NH 3 and tert-butanol; (2) The waste gas discharged from the desalinated water absorption tower contains N 2 O, tert-butanol and steam, etc., continue to enter the tail gas reactor for catalytic treatment.
- the tail gas reactor is an adiabatic fixed bed reactor with Rh-Al 2 O 3 catalyst inside, and the N 2 O removal rate reaches 99.9%; 3)
- the treated waste gas is passed into the tail gas absorption tower, activated carbon is the adsorbent, and the waste gas is emptied after purification.
- CN201510635007.5 discloses a caprolactam tail gas treatment method and device, including an absorption unit, an adsorption unit and a reflux unit.
- the absorption unit uses concentrated sulfuric acid and hydrogen peroxide.
- the absorption liquid absorbs NO X and SO X cyclically.
- the adsorbent is used to further adsorb the NO X and SO X in the exhaust gas to achieve the purpose of exhaust gas purification.
- the adsorbent is reused after being analyzed by the vacuum pump to analyze the high concentration produced. NO X and SO X enter the absorption unit for cyclic absorption.
- This method does not treat the VOC in the caprolactam production exhaust gas.
- High-concentration NO X and SO X are cyclically absorbed in the device, causing equipment corrosion and energy waste. A large amount of waste absorption liquid is produced in the process, causing potential pollution to the environment.
- CN201510076772.8 discloses a method for purifying caprolactam production waste gas by using Fe-zeolite catalyst. Additional NH 3 is introduced as a reducing agent in a catalytic reactor, and N 2 O and NO can be simultaneously reduced at a reaction temperature of 300 to 400°C. However, the NH 3 introduced by this method is also one of the air pollutants, and the exhaust gas needs additional treatment, and the invention does not treat the VOC of the caprolactam production exhaust gas.
- the prior art believes that the VOC of the exhaust gas produced by caprolactam mainly comes from the products or raw materials in the reaction process, and it is necessary to add an additional exhaust gas treatment device in the production equipment. The cost is high and the efficiency is low. However, even so, the overall exhaust gas treatment The VOC content after the process is still high. Therefore, how to find the cause of the VOC in the caprolactam production process and effectively treat the VOC has become an urgent technical problem to be solved.
- the present invention creatively discovered that in the caprolactam production process, tert-butanol as a solvent is precisely the main source of VOC in the production of caprolactam, but this technical problem is not recognized in the prior art.
- the existing VOC processing technology has low efficiency and high cost when processing tert-butanol. It also needs to introduce additional oxidizing substances, which increases the production and operation costs of enterprises. Moreover, the introduction of oxidizing substances greatly reduces safety and is easy to cause Major safety accidents such as explosions. Based on the foregoing reasons, the VOC content in the waste gas from caprolactam production has always been difficult to meet the national environmental protection emission standards.
- the present invention provides a system and method for treating VOC generated in the caprolactam production process by using N 2 O in the waste gas from caprolactam production , No need to add additional special treatment devices, and no need to add additional oxidizing substances, to realize the effective treatment of VOC in the waste gas of caprolactam production.
- the present invention provides a system and method for co-processing N 2 O and VOC in the exhaust gas produced by caprolactam. Under the action of a catalyst, the active oxygen atoms produced by N 2 O in the exhaust gas are used to generate the reaction with tert-butanol in the exhaust gas.
- the oxidation-reduction reaction realizes the cooperative treatment of N 2 O and tert-butanol in the waste gas from caprolactam production, and achieves the purpose of synergistic denitrification and VOC emission reduction, and waste treatment by waste.
- the present invention provides a system for co-processing N 2 O and VOC in exhaust gas from caprolactam production.
- the system sequentially includes a gas storage device, a water washing device, a gas dilution device, a catalytic reaction device, and a flue gas monitoring device. And exhaust device.
- the water washing device has a spray tower structure.
- the water washing device is equipped with a water pump for providing spray water to the water washing device.
- a mist eliminator is provided on the top of the water washing device for removing acid mist in the waste gas from caprolactam production.
- mist eliminator is a baffle type mist eliminator, a cyclone impeller mist eliminator, or a compound mist eliminator.
- the waste gas is treated by the water washing device, a part of the tert-butanol in the waste gas is condensed and absorbed, and discharged from the bottom of the water washing device to the water treatment unit along with the waste water.
- the gas dilution device is a gas bag, in which N 2 is introduced to dilute the N 2 O concentration in the exhaust gas.
- the catalytic reaction device is an adiabatic fixed-bed catalytic reactor.
- the adiabatic fixed bed catalytic reactor is a radial adiabatic fixed bed catalytic reactor or an axial adiabatic fixed bed catalytic reactor.
- the adiabatic fixed-bed catalytic reactor is a single-stage adiabatic fixed-bed catalytic reactor, a 2-stage adiabatic fixed-bed catalytic reactor or a 3-stage adiabatic fixed-bed catalytic reactor.
- the catalyst beds of the two-stage adiabatic fixed-bed catalytic reactor or the three-stage adiabatic fixed-bed catalytic reactor are directly connected.
- the catalytic bed of the adiabatic fixed-bed catalytic reactor is filled with a honeycomb catalyst.
- the catalyst is a zeolite molecular sieve-based metal catalyst, and preferably, the catalyst is Fe-Beta, Co-Beta or Cu-Beta.
- the flue gas monitoring device is an online flue gas monitoring device.
- the exhaust device includes an induced draft fan and a chimney.
- the height of the chimney is 10-15 meters.
- the present invention also provides a method for co-processing N 2 O and VOC in waste gas from caprolactam production by adopting the above-mentioned system, which includes the following steps:
- Waste gas from caprolactam production is discharged into the gas storage device, from the gas storage device to the water washing device, a part of the tert-butanol in the waste gas is condensed and absorbed, and discharged to the water treatment unit along with the waste water.
- the concentration of butanol is reduced to 1850 ⁇ 2010mg/m 3 , after which the exhaust gas continues to enter the gas dilution device, and N 2 is introduced into the gas dilution device to dilute the exhaust gas, and further reduce the concentration of N 2 O in the exhaust gas to 59000 ⁇ 60500ppm;
- Catalytic reaction the pre-treated exhaust gas enters the catalytic reaction device, and the N 2 O in the exhaust gas and tert-butanol undergo an oxidation-reduction reaction under the catalysis of the catalyst to realize the efficient and coordinated treatment of the exhaust gas from caprolactam production;
- the flow rate of the waste gas into the water washing device in step (1) is 8000-15000 m 3 /h.
- step (1) the volume concentration of N 2 O before the exhaust gas enters the water washing device is ⁇ 300,000 ppm.
- the concentration of tert-butanol before the waste gas in step (1) enters the water washing device is greater than or equal to 10000 mg/m 3 .
- step (1) passes through the water washing device from bottom to top.
- the flow rate of N 2 in step (1) is 30,000 to 40,000 m 3 /h.
- the catalyst in step (2) is prepared from a metal salt solution and a zeolite molecular sieve by an impregnation method, the metal salt is preferably a nitrate, and the zeolite molecular sieve is preferably a Beta molecular sieve.
- the catalyst is a zeolite molecular sieve-based metal catalyst, preferably Fe-Beta, Co-Beta or Cu-Beta.
- the filling amount of the catalyst in step (2) is 1000-5000 kg.
- volume concentration of N 2 O after the exhaust gas in step (2) is efficiently and collaboratively treated is 3-7 ppm.
- the concentration of tert-butanol after the waste gas in step (2) is efficiently and synergistically treated is 2-5 mg/m 3 .
- the conversion rate of N 2 O after the exhaust gas in step (2) is efficiently and cooperatively treated is 99.99%.
- the conversion rate of tert-butanol after the waste gas in step (2) is efficiently and cooperatively processed is 99.77% to 99.87%.
- the products of the redox reaction in step (2) are N 2 , CO 2 and water.
- reaction temperature of the catalytic reaction device in step (2) is not lower than 450°C.
- the space velocity of the catalytic reaction device in step (2) is 3000-5000 h -1 .
- the emission standard in step (3) is the "Comprehensive Emission Standard of Air Pollutants" (GB16297-1996), and the emission limit of the VOC is 120 mg/m 3 .
- step (3) reaches the emission standard, and is discharged to the atmosphere through an exhaust device.
- the inventive discovery of the present invention is that the VOC in the waste gas from caprolactam production is mainly caused by the solvent tert-butanol, rather than the VOC that has been believed in the prior art to come from reaction products or reactants. Based on this technical problem, the existing waste gas treatment device cannot effectively treat tert-butanol. Furthermore, the present invention uses the N 2 O oxidizing property in the caprolactam production waste gas to co-process the tert-butanol in the caprolactam waste gas for the first time, thereby realizing the caprolactam production waste gas.
- the conversion rate of N 2 O in VOC is 99.95 ⁇ 99.98%, and the conversion rate of tert-butanol is 99.96 ⁇ 99.99%.
- the VOC emission of caprolactam production exhaust gas can meet the emission standard. Denitration and VOC emission reduction are carried out at the same time to achieve waste treatment. the goal of.
- the present invention realizes the simultaneous treatment of N 2 O and tert-butanol in the waste gas of caprolactam production for the first time.
- the system process is simple, the equipment occupies a small area, is safe and easy to operate, and does not require an additional VOC treatment device.
- the system of the present invention is directly used to simultaneously realize the co-processing of denitration and VOC, and the catalyst used in the present invention is low in cost, easy to obtain and has a long service life, which greatly saves production and operation costs for enterprises and has universal industrial promotion value.
- the present invention does not need to add an additional oxidizing substance or an additional heat source.
- the reaction temperature can be reached by using the adiabatic temperature rise of the fixed bed reactor, with low energy consumption, low operating cost and safe working conditions. Strong controllability, economical, practical and industrial application prospects.
- the present invention uses a metal-supported molecular sieve-based catalyst for the cooperative treatment of caprolactam production waste gas for the first time .
- the active oxygen atoms generated by N 2 O are used for redox reaction with tert-butanol.
- the reaction products are N 2 , CO 2 and Water, non-toxic, harmless, and environmentally friendly.
- the VOC indicator of the exhaust gas from caprolactam produced by the system and method of the present invention is better than the national emission standards, which is beneficial to the sustainable development of the environment and can greatly reduce the production and production of enterprises. Operating costs, realizing waste treatment with waste, is a technological innovation in the field of energy conservation and environmental protection.
- Fig. 1 is a schematic diagram of a system for co-processing N 2 O and VOC in waste gas from caprolactam production provided by the present invention.
- gas storage device 1 water pump 2; water washing device 3; air bag 4; catalytic reaction device 5; online flue gas monitoring device 6; induced draft fan 7; chimney 8.
- a system for co-processing N 2 O and VOC in the exhaust gas from caprolactam production includes a gas storage device 1, a water pump 2, a water washing device 3, an air bag 4, a catalytic reaction device 5, and an online Smoke monitoring device 6, induced draft fan 7 and chimney 8.
- the caprolactam production waste gas enters the gas storage device 1 for buffering, and enters the washing device 3 from bottom to top.
- the spray water enters from the top of the washing device 3 through the water pump 2.
- the exhaust gas is discharged from the bottom of 3, and the exhaust gas continues to flow into the air bag 4, and N 2 is introduced into the air bag 4 to dilute the exhaust gas to reduce the concentration of N 2 O in the exhaust gas.
- the pretreated exhaust gas enters the catalytic reaction device 5, Under the action, the N 2 O and tert-butanol in the exhaust gas undergo an oxidation-reduction reaction in the catalytic reaction device 5.
- the exhaust gas that is efficiently co-treated is detected by the online flue gas monitoring device 6, and the exhaust gas that meets the standard is discharged through the induced draft fan 7 through the chimney 8. In the atmosphere, the exhaust gas that does not meet the standard is returned to the gas storage device 1 for recycling treatment.
- the waste gas from caprolactam production enters the spray washing tower, the flow of the waste gas is 8000m 3 /h, the concentration of tert-butanol in the waste gas is 10000mg/m 3 , the concentration of N 2 O in the waste gas is 300,000 ppm, and the washing tower
- the internal temperature is 20°C
- the spray water flow rate is 5t/h.
- Part of the tert-butanol in the treated waste gas is condensed and absorbed, and discharged to the corresponding water treatment unit along with the waste water.
- the waste gas is diluted by N 2 and N 2
- the volume concentration of O is reduced to 60500ppm, and the concentration of tert-butanol in the exhaust gas after pretreatment is 2000mg/m 3 ;
- Catalytic reaction the pretreated exhaust gas enters a two-stage adiabatic fixed-bed catalytic reactor, the catalyst is Fe-Beta catalyst, the catalyst filling amount is 2000kg, the space velocity of the reactor is 4000h -1 , and the reactor temperature At 450°C, the N 2 O in the exhaust gas undergoes an oxidation-reduction reaction with tert-butanol;
- the waste gas from caprolactam production enters the spray washing tower, the flow of the waste gas is 8000m 3 /h, the concentration of tert-butanol in the waste gas is 10000mg/m 3 , the concentration of N 2 O in the waste gas is 300,000 ppm, and the washing tower
- the internal temperature is 20°C
- the spray water flow rate is 6t/h.
- Part of the tert-butanol in the treated waste gas is condensed and absorbed, and discharged to the corresponding water treatment unit with the waste water.
- the waste gas is diluted by N 2 and N 2
- the volume concentration of O is reduced to 60100ppm, and the concentration of tert-butanol in the exhaust gas after pretreatment is 2010mg/m 3 ;
- Catalytic reaction the pretreated exhaust gas enters a two-stage adiabatic fixed-bed catalytic reactor, the catalyst is Fe-Beta catalyst, the catalyst filling amount is 2000kg, the space velocity of the reactor is 4000h -1 , and the reactor temperature At 450°C, the N 2 O in the exhaust gas undergoes redox reaction with tert-butanol;
- the waste gas from caprolactam production enters the spray washing tower, the flow of the waste gas is 8000m 3 /h, the concentration of tert-butanol in the waste gas is 10000mg/m 3 , the concentration of N 2 O in the waste gas is 300,000 ppm, and the washing tower
- the internal temperature is 20°C
- the spray water flow rate is 7t/h.
- a part of the tert-butanol in the treated waste gas is condensed and absorbed, and discharged to the corresponding water treatment unit with the waste water.
- the waste gas is diluted by N 2 and N 2
- the volume concentration of O is reduced to 60000ppm, and the concentration of tert-butanol in the exhaust gas after pretreatment is 2000mg/m 3 ;
- Catalytic reaction the pretreated exhaust gas enters a two-stage adiabatic fixed-bed catalytic reactor, the catalyst is Fe-Beta catalyst, the catalyst filling amount is 2000kg, the space velocity of the reactor is 4000h -1 , and the reactor temperature At 450°C, the N 2 O in the exhaust gas undergoes redox reaction with tert-butanol;
- the waste gas from caprolactam production enters the spray washing tower, the flow of the waste gas is 8000m 3 /h, the concentration of tert-butanol in the waste gas is 10000mg/m 3 , the concentration of N 2 O in the waste gas is 300,000 ppm, and the washing tower
- the internal temperature is 20°C
- the spray water flow rate is 8t/h.
- Part of the tert-butanol in the treated waste gas is condensed and absorbed, and discharged to the corresponding water treatment unit with the waste water.
- the waste gas is diluted by N 2 and N 2
- the volume concentration of O is reduced to 59000ppm, and the concentration of tert-butanol in the exhaust gas after pretreatment is 1850mg/m 3 ;
- Catalytic reaction the pretreated exhaust gas enters a two-stage adiabatic fixed-bed catalytic reactor, the catalyst is Fe-Beta catalyst, the catalyst filling amount is 2000kg, the space velocity of the reactor is 4000h -1 , and the reactor temperature At 450°C, the N 2 O in the exhaust gas undergoes redox reaction with tert-butanol;
- the concentration of tert-butanol in the exhaust gas detected by the VOC detector is 2.4 mg/m 3
- the concentration of N 2 O in the exhaust gas is 3.6 ppm detected by the N 2 O detection sensor
- the conversion of tert-butanol and N 2 O The rate is shown in Table 1.
- the exhaust gas is discharged to the atmosphere through the 15m high chimney through the induced draft fan.
Landscapes
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Treating Waste Gases (AREA)
Abstract
一种已内酰胺生产废气中N 2O和VOC协同处理的系统,按照废气流动方向,系统依次包括储气装置(1)、水洗装置(3)、气体稀释装置、催化反应装置(5)、烟气监测装置(6)和排气装置。此外还公开了一种利用系统进行已内酰胺生产废气中N 2O和VOC协同处理的方法,己内酰胺生产废气由储气装置(1)进入水洗装置(3),预处理后进入催化反应装置(5),在催化剂的作用下发生氧化还原反应,产物经烟气监测装置(6)检测各项指标,通过排气装置排放。
Description
本发明属于环境保护领域,具体涉及一种已内酰胺生产废气中N
2O和VOC协同处理的系统及方法。
己内酰胺是重要的基础有机化工原料之一,主要用于生产尼龙6工程塑料和锦纶6纤维,广泛应用于电子、汽车、纺织、机械等领域。我国目前多采用环己酮氨肟化工艺生产己内酰胺,主要工艺单元包括双氧水制备装置、环己酮生产装置、环己酮氨肟化装置、己内酰胺精制装置和硫铵回收装置,环己酮氨肟化装置是核心工艺,是采用双氧水、环己酮和氨在低压条件下,以叔丁醇为溶剂,在钛催化剂作用下合成环己酮肟,其化学反应式如下:
主反应:NH
3+H
2O
2+C
6H
10O=C
6H
11ON+2H
2O
副反应:4H
2O
2+2NH
3=N
2O+7H
2O
3H
2O
2+2NH
3=N
2+6H
2O
2H
2O
2=O
2+2H
2O
己内酰胺生产过程中产生的废气主要由N
2O、叔丁醇、水蒸汽、NH
3、O
2和N
2等组成,其中N
2O是一种温室气体,增温潜热是CO
2的310倍、CH
4的21倍,N
2O在大气中的浓度每增加1倍,将导致全球温度升高0.3K,N
2O在大气层中非常稳定,其寿命长达120年以上,此外,N
2O还会破坏大气层中的臭氧形成酸雨,对生态环境产生极大危害,因此控制N
2O的排放对环境保护至关重要。
己内酰胺生产废气中叔丁醇是一种挥发性有机物(volatile organic compounds,以下简称VOC),VOC对人体危害极大,会引起机体免疫水平失 调,影响中枢神经系统功能,使人出现头晕、头痛、嗜睡、无力、胸闷等症状,严重时会损害消化系统、肝功能和造血系统等。VOC不仅是一次污染源,还是臭氧和光化学反应的前驱体,会引起臭氧污染和光化学烟雾污染,对人类健康和生态环境造成严重危害,因此控制叔丁醇的排放对VOC减排具有重要意义。
己内酰胺生产废气中N
2O的体积浓度大于60000ppm,叔丁醇的质量浓度大于10000mg/m
3,高浓度的N
2O和叔丁醇直接排入大气,必然使大气环境质量下降,给生态环境带来严重危害,给国民经济造成巨大损失,因此需要将己内酰胺生产废气在排放前进行净化处理,使得N
2O和叔丁醇等大气污染物含量达到排放标准限值。己内酰胺生产废气常规处理工艺是:(1)废气经过循环水冷凝器和脱盐水吸收塔吸收,回收大部分的NH
3和叔丁醇;(2)从脱盐水吸收塔排出的废气中含有N
2O、叔丁醇和水蒸汽等,继续进入尾气反应器中进行催化处理,尾气反应器为绝热固定床反应器,内部装有Rh-Al
2O
3催化剂,N
2O去除率达到99.9%;(3)经处理后的废气通入尾气吸收塔,活性炭为吸附剂,废气净化后排空。
国内外的研究学者对己内酰胺生产废气的处理进行了广泛研究,例如CN201510635007.5公开了一种己内酰胺尾气处理方法和装置,包括吸收单元、吸附单元和回流单元,在吸收单元中利用浓硫酸和双氧水等吸收液对NO
X和SO
X循环吸收,进入吸收单元后利用吸附剂进一步吸附废气中的NO
X和SO
X,达到废气净化的目的,吸附剂在真空泵解析后重复利用,解析产生的高浓度NO
X和SO
X再进入吸收单元进行循环吸收,该方法没有对己内酰胺生产废气中的VOC进行处理,高浓度的NO
X和SO
X在装置中循环吸收,造成设备腐蚀和能源浪费,且在处理过程中产生大量的废吸收液,对环境造成潜在污染。CN201510076772.8公开了一种利用Fe-沸石催化剂净化己内酰胺生产废气的方法,在催化反应器中通入额外的NH
3作为还原剂,在300~400℃反应温度可以同时还原N
2O和NO,但该方法引入的NH
3也是大气污染物之一,废气还需要 进行额外处理,并且该发明没有对己内酰胺生产废气VOC进行处理。
综上所述,现有技术均认为己内酰胺生产废气VOC主要来自于反应过程中的产物或者原料,并且需要在生产设备中额外增加废气处理装置,成本高、效率差,但即使如此,整体废气处理过程后的VOC含量仍然居高不下,因此,如何找到己内酰胺生产过程中VOC产生的原因、并有效对VOC进行处理,成为亟待解决的技术问题。
发明内容
针对上述技术问题,本发明创造性发现,在己内酰胺生产过程中,作为溶剂的叔丁醇恰恰是己内酰胺生产废气VOC的主要来源,但现有技术中并未认识到这一技术问题。然而,现有处理VOC的技术在处理叔丁醇时效率低、成本大,还需要另外引入氧化物质,增加了企业的生产经营成本,并且由于氧化物质的引入,极大降低安全性,容易引发爆炸等重大安全事故。基于前述原因,己内酰胺生产废气中VOC含量始终难以达到国家环保排放标准,正是针对这些问题,本发明提供一种利用己内酰胺生产废气中的N
2O处理己内酰胺生产过程中产生的VOC的系统及方法,无需额外增加专门的处理装置,也无需额外增加氧化物质,即可实现己内酰胺生产废气中VOC的有效处理。
本发明提供一种已内酰胺生产废气中N
2O和VOC协同处理的系统及方法,在催化剂的作用下,利用废气中的N
2O产生的活性氧原子,与废气中的叔丁醇发生氧化还原反应,实现己内酰胺生产废气中N
2O和叔丁醇协同处理,达到脱硝与VOC减排协同进行、以废治废的目的。
本发明提供一种已内酰胺生产废气中N
2O和VOC协同处理的系统,按照废气流动方向,所述系统依次包括储气装置、水洗装置、气体稀释装置、催化反应装置、烟气监测装置和排气装置。
进一步地,所述水洗装置为喷淋塔式结构。
进一步地,所述水洗装置配有水泵,用于向所述水洗装置提供喷淋水。
进一步地,所述水洗装置的顶部设有除雾器,用于去除己内酰胺生产废气中的酸雾。
进一步地,所述除雾器为折流板式除雾器、旋流叶轮除雾器或复挡式除雾器。
进一步地,所述废气经所述水洗装置处理后,所述废气中的一部分叔丁醇被冷凝和吸收,随废水从所述水洗装置底部排出至水处理单元。
进一步地,所述气体稀释装置为气包,其中通入N
2稀释废气中的N
2O浓度。
进一步地,所述催化反应装置为绝热式固定床催化反应器。
进一步地,所述绝热式固定床催化反应器为径向绝热式固定床催化反应器或轴向绝热式固定床催化反应器。
进一步地,所述绝热式固定床催化反应器为单段式绝热式固定床催化反应器、2段式绝热式固定床催化反应器或3段式绝热式固定床催化反应器。
进一步地,所述2段式绝热式固定床催化反应器或所述3段式绝热式固定床催化反应器的催化剂床层直接相连。
进一步地,所述绝热式固定床催化反应器的催化床层填充有蜂窝状催化剂。
进一步地,所述催化剂为沸石分子筛基金属催化剂,优选地,所述催化剂为Fe-Beta、Co-Beta或Cu-Beta。
进一步地,所述烟气监测装置为在线烟气监测装置。
进一步地,所述排气装置包括引风机和烟囱。
进一步地,所述烟囱的高度为10~15米。
本发明还提供一种采用上述系统协同处理己内酰胺生产废气中N
2O和VOC的方法,包括以下步骤:
(1)预处理:己内酰胺生产废气排入储气装置,由储气装置进入水洗装置,废气中一部分叔丁醇被冷凝和吸收,随废水排出至水处理单元,经水洗装置处理的废气中叔丁醇的浓度降低至1850~2010mg/m
3,之后废气继续进入气体稀释 装置,气体稀释装置中通入N
2对废气进行稀释,进一步将废气中N
2O的浓度降低至59000~60500ppm;
(2)催化反应:经预处理的废气进入催化反应装置中,废气中的N
2O与叔丁醇在催化剂的催化作用下发生氧化还原反应,实现己内酰胺生产废气的高效协同处理;
(3)排放:经过高效协同处理后的产物通过烟气监测装置检测各项指标,VOC浓度达到排放标准,通过排气装置排放。
进一步地,步骤(1)所述废气进入水洗装置的流量为8000~15000m
3/h。
进一步地,步骤(1)所述废气进入水洗装置前N
2O的体积浓度≥300000ppm。
进一步地,步骤(1)所述废气进入水洗装置前叔丁醇的浓度≥10000mg/m
3。
进一步地,步骤(1)所述废气由下至上通过水洗装置。
进一步地,步骤(1)所述N
2的流量为30000~40000m
3/h。
进一步地,步骤(2)所述催化剂由金属盐溶液和沸石分子筛采用浸渍法制备得到,金属盐优选硝酸盐,沸石分子筛优选Beta分子筛。
进一步地,所述催化剂为沸石分子筛基金属催化剂,优选Fe-Beta、Co-Beta或Cu-Beta。
进一步地,步骤(2)所述催化剂的填充量为1000~5000kg。
进一步地,步骤(2)所述废气经高效协同处理后N
2O的体积浓度为3~7ppm。
进一步地,步骤(2)所述废气经高效协同处理后叔丁醇的浓度为2~5mg/m
3。
进一步地,步骤(2)所述废气经高效协同处理后N
2O的转化率为99.99%。
进一步地,步骤(2)所述废气经高效协同处理后叔丁醇的转化率为99.78~99.87%。
进一步地,步骤(2)所述氧化还原反应的产物为N
2、CO
2和水。
进一步地,步骤(2)所述催化反应装置的反应温度不低于450℃。
进一步地,步骤(2)所述催化反应装置的空速为3000~5000h
-1。
进一步地,步骤(3)所述排放标准为《大气污染物综合排放标准》(GB16297-1996),所述VOC的排放限值是120mg/m
3。
进一步地,步骤(3)所述VOC浓度达到排放标准,通过排气装置排放至大气。
本发明的有益效果
1、本发明创造性的发现,己内酰胺生产废气中VOC主要由溶剂叔丁醇引起,而并非现有技术中一直认为的VOC来自反应产物或者反应物。基于该技术问题,现有的废气处理装置并不能有效处理叔丁醇,进而,本发明首次利用己内酰胺生产废气中的N
2O氧化性协同处理己内酰胺废气中的叔丁醇,实现了己内酰胺生产废气VOC中N
2O的转化率为99.95~99.98%、叔丁醇的转化率为99.96~99.99%的处理效果,己内酰胺生产废气VOC可以达标排放,脱硝和VOC减排同时进行,达到以废治废的目的。
2、相对于现有技术,本发明首次实现同时处理已内酰胺生产废气中的N
2O和叔丁醇,系统流程简单,设备占地面积小,安全易操作,不需要额外增加VOC处理装置,直接利用本发明的系统同时实现脱硝和VOC的协同处理,并且本发明所用催化剂成本低廉、易得且使用寿命长,极大为企业节约生产经营成本,具有普遍的工业推广价值。
3、相对于现有技术,本发明无需额外添加氧化物质,也无需额外添加热源,利用固定床反应器的绝热温升就可达到反应温度,能耗低,运行成本低,工况安全,可控性强,具有经济性、实用性和工业应用前景。
4、本发明首次将金属负载的分子筛基催化剂用于己内酰胺生产废气的协同处理,利用N
2O产生的活性氧原子,与叔丁醇发生氧化还原反应,其反应产物 为N
2、CO
2和水,无毒无害,绿色环保,经本发明系统及方法处理后的己内酰胺生产废气VOC指标优于国家规定的排放标准,有利于环境的可持续发展,并且能够极大的降低企业的生产和经营成本,实现以废治废,是节能环保领域的技术创新。
图1是本发明提供的已内酰胺生产废气中N
2O和VOC协同处理的系统示意图。图中,储气装置1;水泵2;水洗装置3;气包4;催化反应装置5;在线烟气监测装置6;引风机7;烟囱8。
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。
实施例1
一种已内酰胺生产废气中N
2O和VOC协同处理的系统,如附图1所示,该系统包括储气装置1、水泵2、水洗装置3、气包4、催化反应装置5、在线烟气监测装置6、引风机7和烟囱8。己内酰胺生产废气进入储气装置1缓冲,由下而上进入水洗装置3,同时喷淋水通过水泵2从水洗装置3的顶部进入,废气中的叔丁醇被冷凝和吸收,随废水由水洗装置3的底部排出,废气继续通入气包4,气包4中通入N
2对废气进行稀释,以降低废气中N
2O的浓度,经过预处理的废气进入催化反应装置5,在催化剂的作用下,废气中的N
2O与叔丁醇在催化反应装置5中发生氧化还原反应,高效协同处理的废气经在线烟气监测装置6检测,达标的废气通过引风机7经由烟囱8排放至大气,不达标的废气重新回到储气装置1进行循环处理。
实施例2
采用如附图1所示的系统,对己内酰胺废气中N
2O和VOC的处理方法步骤如下:
(1)预处理:己内酰胺生产废气进入喷淋式水洗塔,废气的流量为8000m
3/h,废气中叔丁醇的浓度为10000mg/m
3,废气中N
2O的浓度为300000ppm,水洗塔内的温度为20℃,喷淋水的流量为5t/h,处理后的废气中一部分叔丁醇被冷凝和吸收,随废水排出至相对应的水处理单元,废气经过N
2稀释,N
2O的体积浓度降到60500ppm,经预处理后废气中叔丁醇的浓度为2000mg/m
3;
(2)催化反应:经预处理的废气进入2段式绝热式固定床催化反应器中,催化剂为Fe-Beta催化剂,催化剂填充量为2000kg,反应器的空速为4000h
-1,反应器温度为450℃,废气中的N
2O与叔丁醇发生氧化还原反应;
(3)排放:经VOC检测仪检测废气中叔丁醇的浓度为4.3mg/m
3,经N
2O检测传感器检测废气中N
2O的浓度为3.9ppm,叔丁醇和N
2O的转化率见表1,废气通过引风机,经由15m高烟囱排放至大气。
实施例3
采用如附图1所示的系统,对己内酰胺废气中N
2O和VOC的处理方法步骤如下:
(1)预处理:己内酰胺生产废气进入喷淋式水洗塔,废气的流量为8000m
3/h,废气中叔丁醇的浓度为10000mg/m
3,废气中N
2O的浓度为300000ppm,水洗塔内的温度为20℃,喷淋水的流量为6t/h,处理后的废气中一部分叔丁醇被冷凝和吸收,随废水排出至相对应的水处理单元,废气经过N
2稀释,N
2O的体积浓度降到60100ppm,经预处理后废气中叔丁醇的浓度为2010mg/m
3;
(2)催化反应:经预处理的废气进入2段式绝热式固定床催化反应器中, 催化剂为Fe-Beta催化剂,催化剂填充量为2000kg,反应器的空速为4000h
-1,反应器温度为450℃,废气中的N
2O与叔丁醇发生氧化还原反应;
(3)排放:经VOC检测仪检测废气中叔丁醇的浓度为2.8mg/m
3,经N
2O检测传感器检测废气中N
2O的浓度为5.6ppm,叔丁醇和N
2O的转化率见表1,废气通过引风机,经由15m高烟囱排放至大气。
实施例4
采用如附图1所示的系统,对己内酰胺废气中N
2O和VOC的处理方法步骤如下:
(1)预处理:己内酰胺生产废气进入喷淋式水洗塔,废气的流量为8000m
3/h,废气中叔丁醇的浓度为10000mg/m
3,废气中N
2O的浓度为300000ppm,水洗塔内的温度为20℃,喷淋水的流量为7t/h,处理后的废气中一部分叔丁醇被冷凝和吸收,随废水排出至相对应的水处理单元,废气经过N
2稀释,N
2O的体积浓度降到60000ppm,经预处理后废气中叔丁醇的浓度为2000mg/m
3;
(2)催化反应:经预处理的废气进入2段式绝热式固定床催化反应器中,催化剂为Fe-Beta催化剂,催化剂填充量为2000kg,反应器的空速为4000h
-1,反应器温度为450℃,废气中的N
2O与叔丁醇发生氧化还原反应;
(3)排放:经VOC检测仪检测废气中叔丁醇的浓度为3.1mg/m
3,经N
2O检测传感器检测废气中N
2O的浓度为4.8ppm,叔丁醇和N
2O的转化率见表1,废气通过引风机,经由15m高烟囱排放至大气。
实施例5
采用如附图1所示的系统,对己内酰胺废气中N
2O和VOC的处理方法步骤如下:
(1)预处理:己内酰胺生产废气进入喷淋式水洗塔,废气的流量为8000m
3/h,废气中叔丁醇的浓度为10000mg/m
3,废气中N
2O的浓度为300000ppm,水洗塔内的温度为20℃,喷淋水的流量为8t/h,处理后的废气中一部分叔丁醇被冷凝和吸收,随废水排出至相对应的水处理单元,废气经过N
2稀释,N
2O的体积浓度降到59000ppm,经预处理后废气中叔丁醇的浓度为1850mg/m
3;
(2)催化反应:经预处理的废气进入2段式绝热式固定床催化反应器中,催化剂为Fe-Beta催化剂,催化剂填充量为2000kg,反应器的空速为4000h
-1,反应器温度为450℃,废气中的N
2O与叔丁醇发生氧化还原反应;
(3)排放:经VOC检测仪检测废气中叔丁醇的浓度为2.4mg/m
3,经N
2O检测传感器检测废气中N
2O的浓度为3.6ppm,叔丁醇和N
2O的转化率见表1,废气通过引风机,经由15m高烟囱排放至大气。
表1叔丁醇和N
2O转化率
实施例 | 叔丁醇转化率(%) | N 2O的转化率(%) |
实施例2 | 99.85 | 99.99 |
实施例3 | 99.86 | 99.99 |
实施例4 | 99.87 | 99.99 |
实施例5 | 99.78 | 99.99 |
本发明实施例中所述Fe-Beta催化剂的制备方法为:(1)按照Beta分子筛(Si/Al=15):Fe(NO
3)
3·H
2O:去离子水的质量比为19:1:1266,称量Beta分子筛、Fe(NO
3)
3·H
2O和去离子水放入茄型瓶中,在搅拌速度150r/min下混合均匀,得到悬浊液;(2)将悬浊液在90℃下恒温加热6h后,在60℃下减压旋转蒸发除去水分,减压旋蒸的真空度为0.1,得到固体物料;(3)将固体物料 置于70℃烘箱中干燥2h,取出后再置于马弗炉中,设置程序升温,起始温度为室温,终止温度为500℃,升温速率为5℃/min,固体物料在500℃下焙烧8h后,经自然冷却,得到Fe-Beta催化剂。
基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
Claims (10)
- 一种已内酰胺生产废气中N 2O和VOC协同处理的系统,其特征在于,按照废气流动方向,所述系统依次包括储气装置、水洗装置、气体稀释装置、催化反应装置、烟气监测装置和排气装置。
- 根据权利要求1所述的已内酰胺生产废气中N 2O和VOC协同处理的系统,其特征在于,所述水洗装置为喷淋塔式结构。
- 根据权利要求1所述的已内酰胺生产废气中N 2O和VOC协同处理的系统,其特征在于,所述气体稀释装置为气包,其中通入N 2稀释废气中的N 2O浓度。
- 根据权利要求1所述的已内酰胺生产废气中N 2O和VOC协同处理的系统,其特征在于,所述催化反应装置为绝热式固定床催化反应器。
- 一种利用权利要求1-4任一项所述的已内酰胺生产废气中N 2O和VOC协同处理的系统进行已内酰胺生产废气中N 2O和VOC协同处理的方法,其特征在于,所述方法包括以下步骤:(1)预处理:己内酰胺生产废气排入储气装置,由储气装置进入水洗装置,废气中一部分叔丁醇被冷凝和吸收,随废水排出至水处理单元,经水洗装置处理的废气中叔丁醇的浓度降低至1850~2010mg/m 3,之后废气继续进入气体稀释装置,气体稀释装置中通入N 2对废气进行稀释,进一步将废气中N 2O的浓度降低至59000~60500ppm;(2)催化反应:经预处理的废气进入催化反应装置中,废气中的N 2O与叔丁醇在催化剂的催化作用下发生氧化还原反应,实现己内酰胺生产废气的高效协同处理;(3)排放:经过高效协同处理后的产物通过烟气监测装置检测各项指标,VOC浓度达到排放标准,通过排气装置排放。
- 根据权利要求5所述的方法,其特征在于,步骤(1)所述废气由下至上通过水洗装置。
- 根据权利要求5所述的方法,其特征在于,步骤(2)所述催化剂的填充量为1000~5000kg。
- 根据权利要求7所述的方法,其特征在于所述催化剂为沸石分子筛基金属催化剂。
- 根据权利要求5所述的方法,其特征在于,步骤(2)所述废气经高效协同处理后N 2O的转化率为99.99%。
- 根据权利要求5所述的方法,其特征在于,步骤(2)所述废气经高效协同处理后叔丁醇的转化率为99.78~99.87%。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910937953.3A CN110538570B (zh) | 2019-09-30 | 2019-09-30 | 一种己内酰胺生产废气中n2o和voc协同处理的系统及方法 |
CN201910937953.3 | 2019-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021062992A1 true WO2021062992A1 (zh) | 2021-04-08 |
Family
ID=68715173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/084587 WO2021062992A1 (zh) | 2019-09-30 | 2020-04-14 | 一种已内酰胺生产废气中n 2o和voc协同处理的系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110538570B (zh) |
WO (1) | WO2021062992A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110538570B (zh) * | 2019-09-30 | 2024-03-22 | 河南神马尼龙化工有限责任公司 | 一种己内酰胺生产废气中n2o和voc协同处理的系统及方法 |
CN113649065B (zh) * | 2021-09-27 | 2023-09-15 | 北京工业大学 | 一种利用金属催化剂协同净化己内酰胺多组分尾气的方法及金属催化剂的制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1297883A2 (en) * | 2001-08-09 | 2003-04-02 | Rafael Vidal Fernandez | A chemical-mechanical process whereby the contamination occuring through combustion of fossil fuels, petroleum and its by products is reduced. |
CN102580525A (zh) * | 2012-03-21 | 2012-07-18 | 河北工业大学 | 一种使用活性炭负载氧化铜复合催化剂吸附含氮氧化物的方法 |
CN106268160A (zh) * | 2015-05-15 | 2017-01-04 | 湖北三宁化工股份有限公司 | 一种尾气吸收塔热能综合利用装置 |
CN106552479A (zh) * | 2015-09-30 | 2017-04-05 | 中国石油化工股份有限公司 | 一种己内酰胺尾气处理方法和装置 |
EP3409360A1 (en) * | 2017-06-02 | 2018-12-05 | Paccar Inc | Hybrid binary catalysts, methods and uses thereof |
CN110538570A (zh) * | 2019-09-30 | 2019-12-06 | 河南神马尼龙化工有限责任公司 | 一种己内酰胺生产废气中n2o和voc协同处理的系统及方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102802768A (zh) * | 2010-01-26 | 2012-11-28 | 国际壳牌研究有限公司 | 从气流中去除一氧化二氮的工艺 |
DE102013100856A1 (de) * | 2013-01-29 | 2014-07-31 | Chemisch Thermische Prozesstechnik Gmbh | Verfahren und Vorrichtung zur Reinigung von Abgasen |
KR101550289B1 (ko) * | 2014-02-13 | 2015-09-07 | 한국에너지기술연구원 | 촉매를 사용한 화학공장 배기가스 내 아산화질소와 일산화질소의 동시 제거 방법 |
CN104930525A (zh) * | 2014-03-20 | 2015-09-23 | 化学热处理技术有限责任公司 | 用于废气纯化的方法和装置 |
-
2019
- 2019-09-30 CN CN201910937953.3A patent/CN110538570B/zh active Active
-
2020
- 2020-04-14 WO PCT/CN2020/084587 patent/WO2021062992A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1297883A2 (en) * | 2001-08-09 | 2003-04-02 | Rafael Vidal Fernandez | A chemical-mechanical process whereby the contamination occuring through combustion of fossil fuels, petroleum and its by products is reduced. |
CN102580525A (zh) * | 2012-03-21 | 2012-07-18 | 河北工业大学 | 一种使用活性炭负载氧化铜复合催化剂吸附含氮氧化物的方法 |
CN106268160A (zh) * | 2015-05-15 | 2017-01-04 | 湖北三宁化工股份有限公司 | 一种尾气吸收塔热能综合利用装置 |
CN106552479A (zh) * | 2015-09-30 | 2017-04-05 | 中国石油化工股份有限公司 | 一种己内酰胺尾气处理方法和装置 |
EP3409360A1 (en) * | 2017-06-02 | 2018-12-05 | Paccar Inc | Hybrid binary catalysts, methods and uses thereof |
CN110538570A (zh) * | 2019-09-30 | 2019-12-06 | 河南神马尼龙化工有限责任公司 | 一种己内酰胺生产废气中n2o和voc协同处理的系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110538570A (zh) | 2019-12-06 |
CN110538570B (zh) | 2024-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102489149B (zh) | 废气净化处理方法 | |
CN101279185B (zh) | 气相氧化-液相还原吸收脱除废气中氮氧化物的方法 | |
CN107051144A (zh) | 一种含氰有机废气的处理方法及系统 | |
CN106975481B (zh) | 具有高效光热协同催化净化VOCs的碱土金属掺杂MnO2催化剂的制备方法 | |
WO2021062992A1 (zh) | 一种已内酰胺生产废气中n 2o和voc协同处理的系统及方法 | |
CN202961941U (zh) | 多级组合式废气净化处理系统 | |
CN105597535A (zh) | 含氯气、氯化氢、氮氧化合物混合有机废气的处理方法 | |
CN107282141B (zh) | 一种用于舰船烟气脱硫脱硝的光催化剂及其制备方法 | |
CN113648825B (zh) | 一种净化高湿化工医药VOCs与异味尾气的技术方法 | |
CN207822779U (zh) | 一种含氨VOCs废气处理装置 | |
CN102527369A (zh) | 一种活性炭负载稀土金属氧化物还原脱硝催化剂、制备方法及其应用 | |
CN104841441B (zh) | 一种水解‑氧化耦合法净化hcn的催化剂制备方法及应用 | |
CN110743316A (zh) | 一种氨纶生产过程中废气处理工艺及装置 | |
CN111514736A (zh) | 一种臭氧氧化联合氨法喷淋的烟气脱硫脱硝系统及方法 | |
CN107261805B (zh) | 一种烟囱烟气脱硫脱硝专用联氨溶液及其制备方法 | |
CN210786898U (zh) | 一种己内酰胺生产废气中n2o和voc协同处理的系统 | |
CN108970352A (zh) | 一种烟道尾气低温脱硝方法 | |
CN112439303B (zh) | 丙烯腈尾气冷却低温吸收系统及吸收方法 | |
CN206823509U (zh) | 一种含氰有机废气的处理系统 | |
CN210171198U (zh) | 一种基于物理吸附前置氧化的烟气湿法脱硝系统 | |
CN204865481U (zh) | 类气相预氧化结合吸收的烟气一体化脱除系统 | |
CN113941225A (zh) | 一种改进硝酸溶解金属尾气的资源化方法 | |
CN202725025U (zh) | 废气净化处理装置 | |
CN107185398A (zh) | 一种治理锅炉烟气的系统及其工作方法 | |
CN103506003B (zh) | 一种co偶联合成草酸二甲酯工艺尾气处理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20873015 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20873015 Country of ref document: EP Kind code of ref document: A1 |